
Cluster Editing with Diamond-free Vertices

Damiaan Rhebergen∗

Delft University of Technology

June 2021

Abstract

The Cluster Editing problem asks to transform a graph into a union of disjoint cliques
in the minimum number of edge additions and deletions. The Cluster Deletion problem
has the same goal, but allows edge deletions only. Recently, a connection between Cluster
Editing on diamond-free graphs and Cluster Deletion was established. In this paper we
examine this connection in depth and show that for vertices that are not part of a diamond
subgraph, it suffices to consider only edge deletions. In doing so, we provide techniques
that can be used to study properties of optimal solutions of Cluster Editing, and prove
the existence of a diamond-free subgraph for which an optimal solution consisting of edge
deletions only can be used as part of the solution to the whole graph.

Keywords: Cluster Editing, Cluster Deletion, Clustering, diamond-free Graphs, NP-hard problem

1 Introduction

The NP-hard Cluster Editing problem is a widely studied problem in complexity theory.
Given a graph G, the goal is to transform G into a union of disjoint cliques by the minimum
number of edge modifications. Here an edge modification means that we either delete an edge
that is in G or insert an edge that is not in G. A union of disjoint cliques is called a cluster
graph.

Clustering plays an important part in solving many real-world problems. In the field of
computational biology, for instance, the weighted variant of Cluster Editing has been used
to model the clustering of proteins and genes [1, 2]. Thus, finding ways to solve this problem
efficiently could provide real benefit for these areas of study.

Unfortunately however, Cluster Editing has been shown to be NP-hard numerous times
[3, 4], making it unlikely that an efficient algorithm for general graphs will be found. Still, a lot
of progress has been made in mapping out the difficulty of the problem.

A problem is fixed parameter tractable (FPT) if there exists some parameter, that can be
used as extra information in order to solve the problem in polynomial time. It is known that

∗Email address: d.d.rhebergen@student.tudelft.nl

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Cluster Editing is FPT when we take the optimal solution size k, that is the minimum
number of edge modifications to transform a graph into a cluster graph, as parameter [5]. This
means that Cluster Editing can be solved in polynomial time if already we know the optimal
solution size k beforehand. Komusiewicz and Uhlmann have shown that if the maximum number
of clusters d in the solution graph is given as parameter Cluster Editing is still NP-hard, and
that the same is true for the maximum number of edge modifications t per vertex as parameter.
They have also shown, however, that if these parameters are taken together, Cluster Editing
is FPT [6].

Motivated by results from parameterized Vertex Cover, van Bevern et al studied the pa-
rameterization above some guaranteed lower bound of the solution size for Cluster Editing
[7]. The idea here is that if a lower bound that is near the optimal solution size can be found
efficiently, this bound could be exploited by algorithms that rely on iteratively trying higher
values for the optimal solution size as a parameter.

Currently, the fastest know theoretical algorithm is due to Bökker and runs in O(1.62k +n+
m) time, where k is the size of the optimal solution, and n and m are the size of the vertex set
and the size of the edge set respectively [8].

For Cluster Editing, a kernelization algorithm transforms a graph G with with parameter
k into a graph G′ and parameter k′ in polynomial time and in such a way that G can be
transformed into a cluster graph by k edge modifications if and only if G′ can be solved into a
cluster graph by k′ edge modifications. G′ and k′ then form a kernel of G and k. Ideally, the
algorithm ensures the size of the kernel less than the size of the original instance.

The best known kernelization algorithms for Cluster Editing return a kernel with size
O(2k) [9, 10].

A problem closely related to Cluster Editing (CE) is the (also NP-hard) Cluster Dele-
tion (CD) problem, which asks to transform G into a cluster graph by the minimum number
of edge deletions only. Malek and Naanaa have shown that, for a graph that does not have a so
called ”diamond” as a subgraph, an optimal solution for CD is also an optimal solution for CE
[11]. That is, for ”diamond-free” graphs, we can get an optimal solution for CE just by deleting
existing edges.

This raises the natural question of what structure in a graph makes an edge addition more
optimal than just deleting edges. In other words, to what extent do the optimal solutions of
Cluster Editing and Cluster Deletion coincide?

The exploration of this question is the main focus of this paper. The result on diamond-free
graphs from [11] suggests that diamonds play a key role here. We present several observations
about graphs that do contain diamonds, but also have a subgraph that is diamond-free. We
show edges adjacent to vertices that are not part of any diamond can be treated as if we are
solving the Cluster Deletion problem. Moreover, we show that in such graphs, there exists
a subgraph containing all vertices that are not part of any diamond that can be solved optimally
as part of the optimal solution of the whole graph. Note that, in general, an optimal solution
to a subgraph is not included in an optimal solution to the whole graph [10].

The rest of the paper is structured as follows: The Section 2 is used to establish the notation
used in this paper, and to give some preliminary definitions and results that will be used in

2

later sections. Then, in Section 3, we provide several Lemmas that give structure to clusters of
optimal solutions, which can be used to prove more properties of optimal solutions. Section 4
contains the main results of this paper. Section 5 gives a direct consequence of these results.
In Section 6 we discuss the results and their consequences, and the questions that arise and
could not be answered here are stated and discussed. In Section 7 we briefly discuss responsible
research and any ethical implications. Finally, in Section 8 we give a summary and end with
some concluding remarks.

2 Preliminaries

2.1 Notation

In this paper, all graphs are undirected and simple. Let G be a graph. Then V (G) denotes the
set of vertices in G, and E(G) denotes the set of edges in G.

Two vertices u, v ∈ V (G) are said to be adjacent if {u, v} ∈ E(G), that is, if there is an edge
between them.

The set of all vertices adjacent to a vertex v ∈ V (G) is called the neighborhood of v and is
denoted as NG(v). The closed neighborhood of v is defined as

NG[v] = NG(v) ∪ {v}.

The distance between two vertices u, v ∈ V (G) is equal to the number of edges in the shortest
path between u and v in G, and is denoted by dG(u, v). If there can be no confusion about the
graph, the subscript G may be omitted for the neighborhood and distance.

G is complete if every two vertices in G are adjacent, that is N [v] = V (G) for all v ∈ V (G)
or, alternatively, d(u, v) = 1 for all u, v ∈ V (G).

For a subset W ⊆ V (G), let G[W] denote the subgraph of G induced by W , where

V (G[W]) = W and E(G[W]) = {{u, v} ∈ E(G) : u, v ∈W}.

W = V (G) \W denotes the complement of W and the neighborhood of W is defined as

NG(W) =
⋃

v∈W
NG(v) \W,

with the closed neighborhood as

NG[W] =
⋃

v∈W
NG[v].

With E(W,W) we denote the set of edges that has one endpoint in W and the other in W

A clique in G is an induced subgraph that is complete. A clique of size n is denoted by Kn,
a simple path of on n vertices is called a Pn and a simple cycle with n vertices is denoted Cn.

3

Figure 1: From left to right: K4, P3, C4 and diamond

A graph with four vertices that misses only one edge of a K4 is called a diamond (figure 1).

For a graph F , a graph G is said to be F -free if it does not contain F as a vertex induced
subgraph. For instance, if G is diamond-free, then no set of four vertices in V (G) induce a
diamond in G.

For a graph G, let S ⊆ V × V . Define G4 S as the graph with

V (G4 S) = V (G)

and
E(G4 S) = E(G)4 S = (E(G) \ S) ∪ (S \ E(G)).

The set S is called an edge editing set. S is a solution to G, if G4 S is a union of disjoint
cliques.

We denote an optimal solution to a graph G with Opt(G). The size of Opt(G) is denoted by
ω(G).

An important characterization of a cluster graph is that it cannot have a P3 as an induced
subgraph. That is, G is a cluster graph if and only if it is a P3-free graph.

2.2 Preliminary results

We now reference some preliminary results that come from other research and will be used
throughout this paper.

First, we state explicitly the result from Malek and Naanaa about the correspondence be-
tween Cluster Deletion and Cluster Editing.

Lemma 2.1. [11] Every diamond-free graph admits an optimal Cluster Editing solution
with no added edges.

A nice consequence of this correspondence of optimal solutions of CD and CE on diamond-
free graphs is that several hardness results for CD carry over to CE on diamond-free graphs.
In [11], for instance, it is shown that the polynomial time solvability of Cluster Deletion
on (butterfly, diamond)-free graphs carries over to Cluster Editing, since Cluster Editing
can be solved on diamond-free graphs by deleting edges only.

The next result is due to Bastos et al. [12]. It states that two vertices that are distance 3
apart from each other can never be in the same cluster if we cluster optimally.

Lemma 2.2. [12] Let G be an undirected graph and let u, v ∈ V (G) such that dG(u, v) ≥ 3.
Then in any optimal solution S of G, vertices u and v belong to distinct clusters.

4

This becomes more clear if we take into account that two vertices with distance 3 do not
share any neighbors. Clustering the two vertices together then, would require an additional edge
modification for all of the neighbors of both vertices; either we need to add in order to include
it in the cluster, or we delete an edge to remove it from the cluster.

This last result will be used to prove properties of optimal solutions for Cluster Editing.
Indeed, for any cluster C that is part of the graph G4 S, where S is some optimal solution
to G, we can now assume, without loss of generality, that C does not contain two vertices that
have distance 3 in G. Otherwise, S would not be optimal by Lemma 2.2. This gives as some
structure to work with in trying to prove other properties.

3 Clustering Lemmas

In this section we add to the structure of optimal solutions that we started at the end of the last
section. We do this by giving three more Lemmas that allow us to, for an optimal solution S to
a graph G, restrict the clusters in G4 S to only include vertices that fulfill certain conditions
with regards to the other vertices in that cluster.

We start with a Lemma that generalizes Lemma 2.2 to include to possibility of two vertices
sharing a single neighbor1.

Lemma 3.1. Let G be a graph, and u, v, w ∈ V (G) such that |NG(u)∩NG(v)| ≤ 1. Then there
exists an optimal solution where u and v are not in the same cluster.

Proof. Observe that Lemma 2.2 already proves the case where |NG(u) ∩NG(v)| = 0. Thus, we
assume that |NG(u) ∩NG(v)| = 1.

Let w ∈ NG(u) ∩ NG(v). Let S be a solution that puts u and v in the same cluster C in
G4 S and let S be optimal under that condition. We will show that we can find a solution S′

that is at least as good as S, where u and v are not in the same cluster in G4 S′. Cluster C
can be partitioned as follows: C = C0 ∪ Cu ∪ Cv ∪ Cw ∪ Cu,w ∪ Cv,w ∪ {u, v, w}, where:

• C0 = {x ∈ C \ {u, v, w}|{x, u} /∈ E(G), {x, v} /∈ E(G), {x,w} /∈ E(G)}

• Cv = {x ∈ C \ {u, v, w}|{x, u} /∈ E(G), {x, v} ∈ E(G), {x,w} /∈ E(G)}

• Cw = {x ∈ C \ {u, v, w}|{x, u} /∈ E(G), {x, v} /∈ E(G), {x,w} ∈ E(G)}

• Cu,w = {x ∈ C \ {u, v, w}|{x, u} ∈ E(G), {x, v} /∈ E(G), {x,w} ∈ E(G)}

• Cv,w = {x ∈ C \ {u, v, w}|{x, u} /∈ E(G), {x, v} ∈ E(G), {x,w} ∈ E(G)}
Observe that by Lemma 2.2 and optimality of S, it holds that for all x ∈ Cu ∪ Cu,w (y ∈
Cv ∪ Cv,w), dG(x, v) = 2 (dG(y, u) = 2). It follows that (Cu ∪ Cu,w) ∩ (Cv ∪ Cv,w) = ∅, since u
and v share no neighbors except for w. Assume, without loss of generality, that |Cu ∪ Cu,w| ≥
|Cv ∪ Cv,w|. Consider the solution S′ that differs from S only in that it isolates v from C, and
compare the solution size of S and S′:

|S| − |S′| =3|C0|+ 2|Cu|+ 2|Cv|+ |Cu,w|+ |Cv,w|+ |{{u, v}}|
− (2|C0|+ |Cu + 3|Cv + 2|Cv,w|+ |{{v, w}}|

1It was later discovered that this Lemma was already proven by Komusiewicz and Uhlmann [13]

5

|S| − |S′| = |C0|+ |Cu|+ |Cu,w| − (|Cv|+ |Cv,w|)
≥ 0

So S′ is at least as good as S. This implies that there exists a optimal solution that does
not put v1 and v2 in the same cluster.

Note that the lemma does not exclude the possibility of an optimal solution that does put
the two vertices in the same cluster, but merely states that an optimal solution exists that does
not put them in the same cluster.

As it turns out, the mere existence of such a solution is enough to provide the structure
we need. This is because, in subsequent proofs of other properties, we just use the size of an
optimal solution, assume that it does not fulfill the property, and then proceed to give a new
solution that does fulfill the property and is guaranteed to be just as good as the optimal solu-
tion. Since it does not matter which optimal solution we take for this, we can simply assume
that the condition of Lemma 3.1 holds.

In the proof of Lemma 3.1, we examined a single cluster of the solution. If we do this again
for a different proof in which we want to use the structure that Lemma 3.1 gives, we need to
make sure that the property does not only hold for the whole graph, but also in the subgraph
that is induced by the cluster. Otherwise, it could well me the case that two vertices do indeed
share more than one neighbor, but that these neighbors are not in the same cluster and thus
can not add to the structure of the cluster.

The next two Lemmas ensure that if two vertices with distance 2 end up in the same cluster,
we can always assume that at least two common neighbors also end up in that cluster.

Lemma 3.2. Let G be a graph and let u, v ∈ V (G) such that dG(u, v) = 2. Then any optimal
solution that puts u and v in the same cluster will also put at least one common neighbor of u
and v in that cluster.

Proof. Let ω(G) be the optimal solution size for G. Let S be a solution that puts u and v in
a cluster that does not include any of their common neighbors. Assume for contradiction that
S is optimal, that is, |S| = ω(G). Let Eu,v = {{u,w}, {v, w} ∈ E(G) : w ∈ NG(u) ∩ NG(v)}.
Then Eu,v ⊆ S. Let G′ be the graph with exactly those edges missing. Note then, that
ω(G′) = ω(G)− |Eu,v|, since some optimal solution of G had those edges as a subset.

Let S′ = S \ Eu,v. Note that S′ is a solution of G′. Observe however, that dG′(u, v) ≥ 3,
since they have no common neighbor anymore in G′. By Lemma 2.2, we get that no optimal
solution of G′ will put u and v in the same cluster, and thus S′ cannot be an optimal solution
for G′. Thus, |S′| > ω(G′) = ω(G)− |Eu,v|. But then |S| = |S′|+ |Eu,v| > ω(G), contradicting
that S is an optimal solution to G.

Lemma 3.3. Let G be a graph and let u, v ∈ V (G) such that dG(u, v) = 2. For any solution
that puts u and v in the same cluster with exactly one of its neighbors, there is a solution that
is at least as good that does not put u and v in the same cluster.

Proof. Let S be a solution that puts u and v in the same cluster C with exactly one vertex that
is the neighbor of both u and v in G. Then, in the subgraph G[C], u and v have exactly one
neighbor, and thus by Lemma 3.1 there is an optimal solution for G[C] such that u and v are
not in the same cluster.
Let SG[C] denote the solution S restricted on G[C]. Let S1 be an optimal solution to G[C] that

6

does not keep u and v in the same cluster. Consider the solution S′ = (S \ SG[C]) ∪ S1. First
note that this is actually a solution. Indeed, G 4 (S \ SG[C]) deletes all the edges with one

endpoint in C and the other in C and transforms G[C] into a cluster graph. Then, since S1 is a
solution to G[C], G[C]4 S1 is a cluster graph. Therefore, S′ is a solution to G. Second, to see
that S′ is at least as good as S, observe that |S′| = |(S \SG[C])∪S1| = |S| − |SG[C]|+ |S1| ≤ |S|
since |S1| ≤ |SG[C]|.

With these Lemmas we have a decent amount of structure at our disposal, and can now turn
our attention to the main results of this paper.

4 Diamond-free Vertices

In this section, we look to generalize the result of Lemma 2.1 from [11] to general graphs. What
we are looking for are sufficient conditions for vertices to put those vertices in different clusters.
For this, we already have two conditions in Lemma 2.2 and Lemma 3.1, but Lemma 2.1 suggests
that we can take this further by looking specifically at diamonds.

To this end, we provide a new Lemma which states that a vertex that is not in any diamond
will not end up in a cluster with vertices it is not connected to. Such vertices are from now on
called diamond-free vertices.

Definition 4.1. Let G be a graph, and v ∈ V (G). If v is not in any diamond of G then v is
called a diamond-free vertex of G.

These diamond-free vertices have the following property that will be useful in proving the
main Lemma of this section.

Property 4.2. For a graph G, let v ∈ V (G) be a diamond-free vertex. Then for w1, w2, w3 ∈
N(v), if w1 is adjacent to w2, and w2 is adjacent to w3, then w1 is adjacent to w3.

Proof. Let w1, w2 ∈ N(v) be two adjacent neighbors of v. Assume for contradiction that w2 is
adjacent to some w3 ∈ N(v), while w1 is not adjacent to w3. Then the vertex set {v, w1, w2, w3}
forms a diamond in G, contradicting the condition that v was not in any diamond.

What this property gives us is that the neighborhood of a diamond-free vertex induces a
union of disjoint cliques in G. With this in mind, we give the main result of this paper.

Lemma 4.3. Let G be a graph. Let v be a diamond-free vertex, and let U = {u ∈ V (G) :
dG(u, v) = 2}. Then there exists an optimal solution to G that will not put v in a cluster with
any vertex u ∈ U .

Proof. Let S be a solution that puts v in a cluster C with some set of vertices U such that
d(u, v) = 2 for all u ∈ U and let it be optimal under this condition. Without loss of generality,
assume that for all u ∈ C with dG(u, v) = 2, u ∈ U . That is, the vertices in U are the only
vertices in C that have distance 2 from v (This assumption can be made, because U is arbitrary).

Define Cv = {v′ ∈ C : v′ ∈ N(v) and ∀u ∈ D, v′ /∈ N(u)}.
Since S is optimal under the condition that u and v are in the same cluster, Lemma 2.2

gives us that for all u ∈ U, v′ ∈ Cv, dG(u, v′) = 2 and by Lemma 3.2 we get that at least one

7

v

u

(a)

v

Cw

U

(b)

Figure 2: The two cases for Lemma 4.3. (a) is Case 1, (b) is Case 2

neighbor of u and v′ must be in C, that is, |NG(u) ∩NG(v′)| ≥ 1.

For all u ∈ U define

• Cu = {u′ ∈ C : u′ ∈ N(u), u′ /∈ N(v)

• Cu,v = {w ∈ C : w ∈ N(v), w ∈ N(u)}

• Cw =
⋃

u∈U Cu,v

Note that Lemma 3.1 already proves the case where |Cw| = 1.

Claim. Cv = ∅.
Note then for each u ∈ U that Cu ⊆ U \ {u}. Indeed, if u′ ∈ Cu, then u′ is not adjacent

to v and thus by Lemma 2.2 and optimality of S dG[C](u
′, v) = 2. Since we assumed that all

vertices in the cluster with distance 2 from v are in U , this gives that u′ ∈ U . It follows then
that for v′ ∈ Cv and u′ ∈ Cu, there can be no edge from v′ to u′ because then v′ would be in
the neighborhood u′ ∈ U .

This observation gives us that v′ can only have edges to vertices in Cv ∪ Cw (excluding of
course its edge to v). In fact, since dG[C](u, v

′) = 2 for all u ∈ U , v′ ∈ Cv, v′ has to have
an edge to some w ∈ Cw. Moreover, by Property 4.2 v′ can only have an edge to w if either
both w and v′ don’t have any other neighbors in Cv∪Cw, or they share all neighbors in Cv∪Cw.

Lastly, observe for any u ∈ U , a vertex w1 ∈ Cu,v can only have an edge with w2 ∈ Cw if
w2 /∈ Cu,v (since otherwise the vertex set {u, v, w1, w2} would form a diamond in G) and thus
w2 is not adjacent to u.
Putting all of the above together, we find that for each v′ ∈ Cv and u ∈ U , |NG[C](u) ∩
NG[C](v

′)| = 1 and thus by Lemma 3.3 we can always choose S is such a way that Cv = ∅. This
proves the claim.

We divide into the case where |U | = 1 and the case where |U | ≥ 2 (see figure 2).

Case 1. |U | = 1.
Let u ∈ U be the only vertex with distance 2 from v in C. Observe that in this case, there

can be no edge between two w1, w2 ∈ Cw, otherwise {u, v, w1, w2} would induce a diamond in

8

G. The size of the solution S that put u, v and the vertices of Cw in the same cluster is thus
given by

|S| = |{u, v}|+
(
|Cw|

2

)
+ |S0|,

where S0 ⊆ S with the edges with at least one endpoint in C.

Let w1, w2 ∈ Cw with w1 6= w2. Consider instead the solution S′ to G that differs from S
only in that it solves G[C] by deleting all edges from u to Cw and v to Cw except for {u,w1}
and {v, w2}. Note that S′ is indeed a solution, since G[C]4 S′ consists of isolated vertices and
two cliques of size 2, while G[C]4 S′ is exactly the same as G[C]4 S and S′ deletes all edges
between C and C, giving that G4 S′ is a cluster graph. The size of S′ is given by

|S′| = 2|Cw| − 2 + |S0|.

Letting n = |Cw|, the difference in size between S and S′ is

|S| − |S′| = |{u, v}|+
(
n

2

)
− 2n + 2

=
1

2
n2 − 5

2
n + 3. (1)

The roots of (1) are at n = 2 and n = 3, which gives us that for all integer n ≥ 1,

|S| − |S′| ≥ 0.

This proves Case 1.

Case 2. |U | ≥ 2.
For w ∈ Cw define

• Cw
U = {u ∈ U : {u,w} ∈ E(G)}

• Xw
U = {u ∈ U : {u,w} /∈ E(G)} = U \ Cw

U

Observe that for w1 ∈ Cu1,v and w2 ∈ Cu2,v, if w1 and w2 share an edge, then u1 6= u2.
Otherwise the vertex set {u1, v, w1, w2} would induce a diamond in G. Furthermore, if w1 and
w2 share an edge, and w2 also shares an edge with w3 ∈ Cw (w1 6= w3), then by Property 4.2
w1 and w3 must also share an edge. It follows that G[Cw] is a union of disjoint cliques, where
two vertices in the same clique do not share neighbors in U .

Therefore, define the following equivalence relation: For w1, w2 ∈ Cw, we say that w1 ∼ w2

if and only if w1 and w2 are in the same clique in G[Cw]. Then for a ∈ Cw, [a] denotes the
equivalence class {w′ ∈ Cw : w′ ∼ a}. Let pa = |[a]| denote the number of vertices that are
equivalent to a for all a ∈ Cw/ ∼.
Observe now that the amount of missing edges between in G[Cw] is equal to(

n

2

)
−

∑
[a]∈G[Cw]/∼

(
pa
2

)
.

9

Let w1, w2 ∈ Cw such that w1 ∼ w2 and w1 6= w2. Recall that, since w1 and w2 share
an edge, they cannot be adjacent to the same u ∈ U . Therefore, Cw1

U ∪ Cw2

U = ∅ and thus
Xw1

U ∪Xw2

U = U . It follows that

|Xw1

U |+ |X
w2

U | = |U |+ |X
w1

U ∩Xw2

U |.

The size of S is then given by

|S| = |U |+
∑

[a],[b]∈G[Cw]/∼
a6∼b

papb +
∑

[a]∈G[Cw]/∼

pa−1∑
i=1

(|Xw
Uw2i−1|+ |Xw

Uw2i|)+

|S0|

= |U |(1 +
∑

[a]∈G[Cw]/∼

pa
2

) +
∑

[a],[b]∈G[Cw]/∼
a6∼b

papb+

∑
[a]∈G[Cw]/∼

pa−1∑
i=1

|Xw2i−1

U ∩Xw2i

U |+ |S0|,

where S0 = {{x, y} ∈ S : x, y /∈ Cw} ∪ {{x, y} ∈ S : x /∈ Cw, y /∈ U ∪ {v}.

Consider now the solution S′ to G that deletes all edges between Cw and U , and deletes all
edges from v to Cw except for the edges to the vertices that form the largest clique in G[Cw].

Let p = max[a]∈G[Cw]/∼ pa be the size of the largest clique in G[Cw] and amax be any
representative vertex for some equivalence class of size p. If there are multiple cliques of size p,
then S′ deletes the edges from v to all but one of those cliques. The size of S′ is given by

|S′| = 2|Cw| − p.

The difference between the sizes of S and S′ is then given by

|S| − |S′| = |U |(1 +
∑

[a]∈G[Cw]/∼

pa
2

) +
∑

[a],[b]∈G[Cw]/∼
a6∼b

papb +

∑
[a]∈G[Cw]/∼

pa−1∑
i=1

|Xw2i−1

U ∩Xw2i

U | −

2|Cw|+ p.

10

Let |Cw| = n, and recall that |U | ≥ 2 and we can assume n ≥ 2 by Lemma 3.3. Then

|S| − |S′| ≥ 2 +
∑

[a]∈G[Cw]/∼

pa +
∑

[a],[b]∈G[Cw]/∼
a 6∼b

papb +

∑
[a]∈G[Cw]/∼

pa−1∑
i=1

|Xw2i−1

U ∩Xw2i

U | +

− 2n + p

≥ 2 + n +
∑

[a],[b]∈G[Cw]/∼
a6∼b

papb − 2n + p

≥ 2 +
∑

[a]∈G[Cw/∼
a 6∼amax

pap − n + p

= 2 + p(n− p)− (n− p)

= 2 + (p− 1)(n− p)

≥ 2 > 0

For 1 ≤ p ≤ n. Since p is defined as the size of the largest clique in G[Cw], this always holds.
Thus S′ is a better solution than S, which proves Case 2.

A consequence of Lemma 4.3 is that from now on, as with the Lemmas 3.1 and 3.3, we can
assume that an optimal solution will put vertices with distance 2 in the same cluster only if
neither is diamond-free, whenever it suits us.

In the next two Corollaries we use this extra structure that Lemma 4.3 gives us.

Corollary 4.4. Let u, v ∈ V (G) such that dG(u, v) = 2. If they have only one common neighbor
that is not diamond-free, there is an optimal solution that puts u and v in different clusters.

Proof. Observe that for two vertices w1, w2 ∈ NG(u)∩NG(v), dG(w1, w2) = 2. Indeed, since at
least one of them is diamond-free they are not adjacent, otherwise they would both be in the
diamond induced by {u, v, w1, w2}.
This means that by Lemma 4.3 there exists an optimal solution that does not put w1 and w2

in the same cluster. It follows that such a solution will put u and v in the same cluster with
at most one of their common neighbors. Then, by Lemma 3.3, there exists an optimal solution
that does not put u and v in the same cluster.

Corollary 4.5. Let v ∈ V (G) be a vertex that is part of a diamond in G. Let u ∈ V (G) such
that dG(u, v) = 2. If, in each diamond v is part of, there exists a vertex v′ 6= v such that at least
one of the following holds:

(i) |NG(u) ∩NG(v′)| ≤ 1,

(ii) u and v′ have at most one common neighbor that is not diamond-free.

Then there exists an optimal solution to G that does not put u and v in the same cluster.

11

Proof. Let S be an optimal solution to G that puts u and v in the same cluster. Let W be the
set of vertices in the diamonds that v is part of that fulfill either condition (i) or (ii).

If v′ ∈ W fulfills condition (i), then by Lemma 3.1, we can assume that S does not put v′

in the same cluster as u. If v′ fulfills condition (ii), then by Corollary 4.4 we can assume that
S does not put v′ in the same cluster as u. Thus W 6⊆ C.

This gives us that for each diamond that v is a part of, at least one vertex is not in C.
It follows that in G[C], v is a diamond-free vertex. Therefore, by Lemma 4.3 there exists an
optimal solution S1 to G[C] that does not put u and v in the same cluster.

Let SG[C] ⊆ S be the part of S such that each edge in SG[C] has both endpoints in C.
Then the edge modification set S′ = (S \ SG[C]) ∪ S1 is a solution to G that puts u and

v in different clusters. Furthermore, since S1 is an optimal solution to G[C], |S′| ≤ |S|. By
assumption S is optimal and thus, S′ is an optimal solution to G.

We can see from these Corollaries that Lemma 4.3 is stronger than what it states.

5 Diamond-free Subgraphs

In this section we give a few observations about subgraphs of a graph containing diamond-free
vertices that follow from Lemma 4.3.

First, we state the simple consequence that we can cluster a graph optimally such that no
vertex in the set of all diamond-free vertices gets clustered with a vertex that is not in the closed
neighborhood of that set.

Corollary 5.1. Let G be a graph, let W ⊂ V (G) be the set of all diamond-free vertices in G,
and let X = NG[W]. Then any optimal solution to G will put the vertices in W in different
clusters than the vertices in X.

Proof. Let u ∈ X and v ∈W . Since u /∈ NG[W], we can get that dG(u, v) ≥ 2. If dG(u, v) > 2,
Lemma 2.2 gives us that no optimal solution puts them in the same cluster. If dG(u, v) = 2,
note that v is not in any diamond, and thus certainly not in the same diamond as u. Then
Lemma 4.3 gives us that no optimal solution will put u and v in the same cluster.

From this, it follows that, for some subset of the closed neighborhood of this set of diamond-
free vertices, we can delete all edges that have exactly one endpoint in this set.

An optimal solution can then be found be solving the two separated graphs independently.

Corollary 5.2. let W ⊂ V (G) be the set of all diamond-free vertices in G. Then there exists a
subset F ⊆ NG[W] such that Opt(G[F]) ∪Opt(G[F]) ∪ E(F, F) is an optimal solution to G.

Proof. From Lemma 4.3 we build an optimal solution to G as follows: By Lemma 4.3, there
exists an optimal solution S∗ to G such that for any x ∈ X, w ∈W , x and w do not end up in
the same cluster.

Since W ⊂ X, there exists a subset F ⊆ X that does not such that no vertex from F ends
up in a cluster with a vertex from X.

If we take F to be maximal in the sense that there is no vertex not in F that ends up in a
cluster with some vertex of F , then it follows that the optimal solution S∗ needs to cut all the
edges between G[F] and G[F], so E(F, F) must be in our optimal solution.

12

Then S∗ will only be optimal if it contains some optimal solution Opt(G[F]) to G[F] and
some optimal solution Opt(G[F]) to G[F]. Notice that G[F]4Opt(G[F]) and G[F]4Opt(G[F])
are both cluster graphs, and since F ∪ F = V (G), G4 S∗ is a cluster graph.

Thus S∗ is a solution to G that makes no sub-optimal edge modifications. That is, S∗ is an
optimal solution to G.

The next logical step would be to find this subgraph explicitly.

6 Discussion

This section contains a brief discussion on the open questions that are raised by the results
from sections 4 and 5 to which no answer is provided in this paper. These questions can be
investigated in further research.

In the Section 5 we established the existence of a subgraph of a graph G induced by a set
that is contained in the closed neighborhood of the set W of diamond-free vertices in G (and
which itself contains W), that can be solved optimally as part of the optimal solution.

Interestingly, this subgraph is actually diamond-free, and hence, Lemma 2.1 tells us that it
can be solved optimally by edge deletions only.

The difficulty now lies in finding actually finding the vertices that belong to the subgraph in
polynomial time. Naturally, it contains all diamond-free vertices, but for each of the vertices in
N(W) the decision has to be made to include or exclude them from the subgraph.

Note that, although N [W] induces a diamond-free graph, its optimal solution is not neces-
sarily part of any optimal solution of G. To see this, imagine that some vertex w in NG(W) gets
clustered with some vertex u in NG[W] by all optimal solutions of G. It can happen that an
optimal solution S of G[N [W]] keeps the edge between w and some vertex in W intact. Then
the solution to G that includes S can not be optimal, since it will need to delete the edge u and
w or it will have to connect u and v, which is sub optimal by Lemma 4.3. Therefore, we can
not assume that all of N [W] is included in the subgraph.

From the proof of Lemma 4.3 we can see that two vertices in N(W) can only be adjacent
to the same diamond-free vertex if they are not adjacent to each other. Then, because the
subgraph we are looking for is diamond-free and can thus be solved optimally by deleting edges
only, we can make the following observation.

Observation 6.1. For two vertices in N(W) that are adjacent to the same diamond-free vertex,
there exists an optimal solution that does not put both of them in the same cluster as the diamond-
free vertex they are connected to.

This gives us that for two such vertices, if neither of them is connected to any other diamond-
free vertices, we can assume that at least one of them is not included in the diamond-free sub-
graph.

In order to decide more explicitly which vertices belong in the subgraph, we suspect that
more structure is needed similar to that given by Lemma 4.3. Since diamonds still seem to play

13

a large role in this decision, it seems like a good idea to look for this structure there.

It would be interesting to see how much more two vertices can be connected by diamonds
before no optimal solution puts them in different clusters.

What happens, for instance, with two vertices that are not adjacent and where one of the
vertices is not in a diamond with any of the neighbors of the other? Or what if no neighbor of
the one vertex is in a diamond with any neighbor of the other vertex? is it possible to find a
similar here result as with Lemma 4.3?

If it is, then we there would be a lot more structure to use in finding the diamond-free sub-
graph.

Regardless of whether these questions hold or not, they seem to be of interest to the question
raised in the Introduction:

To what extent do the optimal solutions of Cluster Editing and Cluster Deletion
coincide?

As a separate remark, it would also be interesting to see if the results of Section 4 can be
used by themselves to improve existing algorithms for Cluster Editing. In theory they could
be used to give a lower bound for size of the optimal solution, but it is likely that a similar lower
bound can already be found by existing techniques. Indeed, the neighborhood of a diamond-
free vertex forms a union disjoint cliques (Property 4.2), which means that in practice, it could
often be groups of densely vertices that are connected sparsely to the rest of the graph. The
kernelization algorithm of [10] already handles these types of graphs well.

7 Responsible Research

Since many NP-hard problems lie at the foundation of the worlds most complex challenges,
including the protection of digital privacy, protein folding and scheduling, it is important to be
aware of the consequences of a major breakthrough in this field.

And although the nature of NP-hard problems makes it unlikely that such a breakthrough
will result in rendering the way we currently handle privacy obsolete completely, in practice it
could still bring significant advancements in unexpected places.

Therefore, we commit ourselves to be conscientious about our work, even though we submit
that in the case of this research it is unlikely that such a breakthrough will occur.

8 Conclusion

In this paper the correspondence between solutions of Cluster Editing and Cluster Dele-
tion has been examined in order to get a better understanding of where they agree.

To that end, it is shown in Section 4 that for vertices that are not part of any diamond, it
is possible only look for edge deletions, excluding the possibility of adding an edge. This result
has consequences for the way vertices that are clustered together can be connected, as is also
shown in Section 4.

14

These can be used to provide extra structure to clusters of optimal solutions. This structure
can then be exploited in order to prove new properties of optimal solutions of Cluster Editing.

Furthermore, the result from Section 4 is used in Section 5 to prove the existence of a
subgraph to which an optimal Cluster Deletion solution is part of the optimal solution to
the whole graph.

Although the question of whether it is possible to find this subgraph efficiently remains open,
a further exploration towards the link between the absence of diamonds and Cluster Dele-
tion seems promising. These open questions are discussed in more detail in Section 6.

Further research into the role that diamonds play in the decision to cluster vertices together
or not could be aided by the results from Section 4, and would add to the understanding of the
correspondence between Cluster Editing and Cluster Deletion. As discussed in Section
6, this research could also provide more structure similar to that of Section 4, expanding the
toolbox for discovering new properties of the Cluster Editing problem.

9 Acknowledgements

I would hereby like to thank my supervisor Dr. Emir Demirović for his valuable feedback,
guidance and mentorship for the duration of this research project. Furthermore, I would like
to thank my fellow peers Angelos Zoumis, Imko Marijnissen en Lucas Holten for the helpful
discussions and feedback.

References

[1] Richard Röttger, Prabhav Kalaghatgi, Peng Sun, Siomar de Castro Soares, Vasco Azevedo,
Tobias Wittkop, and Jan Baumbach. Density parameter estimation for finding clusters
of homologous proteins—tracing actinobacterial pathogenicity lifestyles. Bioinformatics,
29(2), 1 2013.

[2] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering Gene Expression Patterns.
Journal of Computational Biology, 6(3-4), 10 1999.

[3] Mirko Kfivfinek and Jaroslav Morfivek. NP-Hard Problems in Hierarchical-Tree Clustering.
323:311–323, 1986.

[4] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004.

[5] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-Modeled Data Clus-
tering: Fixed-Parameter Algorithms for Clique Generation. 2003.

[6] Christian Komusiewicz and Johannes Uhlmann. Alternative Parameterizations for Cluster
Editing . Technical report, 2011.

15

[7] René van Bevern, Vincent Froese, and Christian Komusiewicz. Parameterizing Edge Mod-
ification Problems Above Lower Bounds. Theory of Computing Systems, 62(3):739–770, 4
2018.

[8] Sebastian Böcker. A golden ratio parameterized algorithm for Cluster Editing. Journal of
Discrete Algorithms, 16:79–89, 2012.

[9] Jie Chen Jianer
}and Meng. A 2k Kernel for the Cluster Editing Problem. In Sartaj Thai My T.
}and Sahni, editor, Computing and Combinatorics, pages 459–468, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[10] Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorith-
mica, 64(1):152–169, 2012.

[11] Sabrine Malek and Wady Naanaa. A new approximate cluster deletion algorithm for
diamond-free graphs. Journal of Combinatorial Optimization, 39(2):385–411, 2020.

[12] Lucas Bastos, Luiz Satoru Ochi, Fábio Protti, Anand Subramanian, Ivan César Martins,
and Rian Gabriel S. Pinheiro. Efficient algorithms for cluster editing. Journal of Combi-
natorial Optimization, 31(1):347–371, 2016.

[13] Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded mod-
ifications. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

16

