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Abstract. To optimize treatment in patients with craniosynostosis, bet-
ter understanding of the disease process is essential, for example us-
ing brain MRI analysis to study brain volume, brain perfusion, and
brain micro-architecture. However, such analyses require image registra-
tion, which is challenging because of disease-related brain deformations.
Therefore, the aim of this project is to optimize image registration for
children with syndromic craniosynostosis, aged 0 to 6 years old. We com-
pared conventional and deep learning registration methods in a quanti-
tative evaluation using synthetic data (i.e. deformed atlases) and in a
qualitative experiment using registration of atlas scans to craniosynosto-
sis scans. In addition to comparing registration methods, we evaluate the
influence of using both T1-weighted and T2-weighted scans and using an
infant or adult atlas. Our qualitative results showed that head shape was
registered well by both the conventional and the deep learning registra-
tion method, while the deep learning method performed better regard-
ing registration of the ventricles. Quantitatively, our results showed that
white matter structures were registered well (Dice: 0.70-0.81). However,
regarding registration of the cortical brain regions, both methods resulted
in a sub-optimal accuracy (Dice: 0.45-0.63). In general, the approaches
of using T2-weighted infant atlases or T1-weighted adult atlases outper-
formed the alternative approaches. In conclusion, we obtained the best
registration result using the deep learning approach, probably as prior
spatial information is incorporated in the training process. In addition,
we showed that infant atlases based on T2-weighted scans lead to the
best results in registration of infant scans.

Keywords: Image Registration - Craniosynostosis - Deep Learning

1 Introduction

Craniosynostosis is a congenital disorder in which one or more cranial sutures
close prematurely, causing skull, brain, and facial anomalies [1]. The prevalence
of this disorder is currently 7.2 in 10.000 live births for the Netherlands [2].
Craniosynostosis is often accompanied by an increased risk in behavioural disor-
ders, neurocognitive problems and brain abnormalities such as ventriculomegaly,
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especially in severe cases of syndromic or multisuture craniosynostosis [1, 3]. Cur-
rently, treatment is directed at preserving intracranial pressure and restoring the
shape of the head by surgery within the first year of life [1, 3]. However, it is yet
unclear which patients benefit from surgery, as it is unknown which functional
and structural brain abnormalities relate to growth restriction of the skull [4, 5].

To optimize treatment, it is necessary to improve understanding of the im-
plications of craniosynostosis on the developing brain. A key step is studying the
impact of the disease on brain structure and function using advanced magnetic
resonance imaging (MRI) techniques such as high resolution structural MRI,
arterial spin labelling and diffusion tensor imaging. This requires image registra-
tion, for example to align the brain with an existing brain atlas for identification
of brain regions [6]. However, registration of MRI scans of children with cran-
iosynostosis is challenging. First, in young children, the brain is still growing and
the contrast between grey and white matter is constantly changing due to the
ongoing myelination [7-9], which complicates registration of the cortex. Second,
standard registration methods may be unable to compensate for the severe brain
and skull deformations.

In recent years, image registration methods increasingly use deep learning
[10], which has shown to be faster and overall has a better performance than
conventional registration methods [11,12]. However, neither conventional nor
deep learning registration methods have been previously applied to MRI scans of
brains with large deformations. Therefore it is unknown if deep learning methods
also outperform conventional registration methods when registering scans with
large deformations such as seen in craniosynostosis. Considering brain growth
and changing contrasts, both T1-weighted (T1w) and T2-weighted (T2w) scans
have been shown added value for brain segmentation [13]. This is due to the fact
that the contrast between white matter (WM) and gray matter (GM) is better
visible on T2w scans before an age of 6 months, while it is better visible on T1w
scans after an approximate age of 9 months. Using both T1w and T2w scans may
improve registration, as this would allow for the use of information from either
modality at each developmental stage. Additionally, the use of either an infant
or adult brain atlas could also influence the registration performance, as young
infants display a distinctively different WM-GM pattern than older infants and
children [8]. While no research has been performed on any of these aspects, it is
necessary to evaluate how current registration methods perform on craniosynos-
tosis brain imaging data and how these methods might be improved to include
brain growth, changing contrasts and brain deformations using different scan
modalities and atlases.

This work aims to evaluate conventional and deep learning methods for reg-
istration of brain atlases in children with syndromic craniosynostosis, aged 0 to 6
years old. We will perform quantitative experiments on deformed atlas data and
qualitative experiments on data of patients with craniosynostosis. Additionally,
we will evaluate the influence of using both T1lw and T2w scans and using an
infant or adult atlas.
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2 Background

2.1 MRI Modalities

T1lw and T2w images are two of the most commonly used structural MRI se-
quences [14], on which tissues show different intensities due to differences in T1
and T2 tissue relaxation times [14]. On T1lw scans, tissues with a high lipid
content show a high intensity (fat, brain white matter) and other areas show
a lower intensity (air, spinal cord, cerebrospinal fluid (CSF), grey matter). On
T2w scans tissues with a high water content show a high intensity, such as the
CSF. An example of T1w and T2w brain MRI scans is shown in Figure 1.

T1w and T2w sequences can be used to study the developing infant brain,
especially regarding the process of myelination [14,15]. Myelination of brain
regions starts during the fifth fetal month and proceeds up to about 2 years of
age [15]. Since myelin consists of 70 percent lipids [14], white matter changes from
a darker than grey matter intensity to a very bright intensity on the T1w scan
during myelination [16]. This causes a shift in intensities in both Tlw and T2w
images as can be seen in Figure 1 [9]. As myelination continues, white and grey
matter are better distinguished on T2w weighted images until an approximate
age of six months is reached [8, 17]. Between six and nine months of age, contrast
between white and grey matter is low on both the Tlw and T2w scans [8,17].
After an approximate age of nine months, white and grey matter are better
distinguished on T1w weighted images [8,17]. Therefore, it could be useful to
use both Tlw and T2w scans for registration of brain atlases to brain scans of
infants and children with craniosynostosis.

2 weeks 3 months 9 months 12 months

Tl-weighted
images

T2-weighted
images

Fig. 1. Registered T1-weighted (T1w) and T2-weighted (T2w) MRI images of an in-
fant, longitudinally scanned at 2 weeks, 3, 6, 9 and 12 months of age [17].
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2.2 Brain Atlases

A brain atlas consists of one or multiple reference scans (e.g. T1w/T2w), each
containing a set of labels belonging to the different brain regions, as can be seen
in Figure 2. The atlas represents a brain with certain characteristics, such as
a certain age. The atlas scan and corresponding labels can be registered to a
patient image to obtain the labels for the individual patient [18].

Fig. 2. M-CRIB infant brain atlas with 100 different labels, T1-weighted images (1),
T2-weighted images (2) and atlas images (3) are shown in coronal (A), axial (B) and
sagittal (C) plane [19].

Many adult brain atlases are available for atlas-based image registration;
however, the availability of infant brain atlases is limited due to difficulty in
manual segmentation [18,20]. This is mostly caused by low tissue contrast, high
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image noise and movement artefacts [18,20]. An atlas containing both Tlw,
T2w scans and a detailed parcellation map at different time points between the
ages of 0 and 2 years is preferable. However, such an atlas is still missing. Also,
no atlases are yet available that take any pathological cases into consideration.
Therefore, in the current study, atlases of ten healthy infants and ten healthy
adults are used. The atlases are further described in the methods section.

2.3 Conventional Image Registration

Image registration concerns the alignment of a moving image Iy to a fixed image
Ir by a transformation T. The objective of image registration is estimating the
optimal transformation by minimizing the dissimilarity C between Iy and the
transformed Iy:

T = argmintC(Ir, T (Im)) (1)

Conventional registration methods solve an optimization problem on a pair
of images, where each pair is solved independently. Differences in conventional
registration methods are mostly based on four different components: the image
features, the dissimilarity measure, the transformation model and the optimiza-
tion used for the registration [21, 22].

— Images features: Dissimilarity C is a metric, calculated based on certain
image features. Image features are most often the voxel intensities, but can
also be gradient magnitudes, edges, curves, landmarks or Gabor filters.

— Dissimilarity measure: The dissimilarity measure is the metric which is
used to calculate the dissimilarity C. Several examples are: Sum of squared
distances (SSD), sum of absolute distances (SAD), mean squared distance
(MSD), (normalised) cross-correlation (NCC/CC), correlation ratio (CR)
and (normalised) mutual information (NMI/MI).

— Transformation model: The transformation model determines which trans-
formation parameters are optimized. Transformation models can be divided
into rigid transformations: translation and rotation. And non-rigid transfor-
mations: scaling, shearing, affine (includes translation, rotation, shearing and
affine) and B-Spline deformation. A rigid or affine transformation step often
precedes a non-rigid B-spline registration. A few examples of transformation
models are shown in Figure 3.

— Optimization method: The optimization method is the way in which the
optimal transformation parameters are determined, for which C is mini-
mized. Several examples are: gradient descent, adaptive stochastic gradient
descent, Newton/Levenberg-Marquardt and Gaussian-Newton.

Finding the optimal transformation is an iterative process in which during
each step, image dissimilarity is determined based on the image features. Then
Iy is transformed according to the transformation model, for which the image
dissimilarity is minimized. This iterative process is continued until a measure is
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(b} moving (e} translation

(&) affine ([} B-spling

Fig. 3. Several different transformation models. Fixed image (A), moving image (B),
translation (C), rigid deformation (D), affine deformation (E) and B-Spline deformation
(F) [23].

[ Fixed image ] [ Moving image ]
I L
¥ o
Pre-registration
Similarity measure Interpolator ].u_ transfornmation
L : T (optional)
. Geometric
Optimizer .
transformation

Fig. 4. Typical algorithms used in intensity-based registration methodologies [21].
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satisfied or until a maximum number of iterations is reached. A typical algorithm
used in registration is shown in Figure 4.

Apart from the four mentioned components, Eq. 1 is often extended by adding
a regularization factor reg(T), which ensures smoothness of the estimated defor-
mation field and prevents an optimization to local minima. The regularization
parameter A determines the degree of smoothness. Thus, the formula becomes:

T = argmintC (I, T(I\)) + Areg(T) (2)

Furthermore, an interpolator is used to resample the voxel intensity of the
moving image into the new coordinate system [21]. In addition, in many regis-
tration methods a multi-resolution approach is used, in which image registration
is performed from lower to higher resolution images [21]. More elaborate reviews
on conventional registration methods are available [21, 22].

2.4 Learning-Based Image Registration

Learning-based image registration directly evaluates a function that maps an
input image pair to a deformation field. Instead of registering a single pair of
images using conventional optimization techniques, learning-based methods per-
form global optimization of shared parameters of a large set of image pairs. A
global registration function is learned from training data, and then applied onto
pairs of images to perform registration. [11]

Image registration using deep learning optimizes the same equation as stated
in Eq. 2, as the equation is used as loss function in the neural network. The inputs
to the network are certain image features (voxel intensities), on which a dissim-
ilarity measure is determined. However, the optimization of the transformation
parameters is now done by a neural network. Once trained, the learning-based
image registration methods have a higher accuracy and execute the registration
faster [11,12].

The structures of both the conventional and deep learning registration meth-
ods used in the current study are further described in the methods section.

3 Methods

3.1 Data

For evaluating the conventional and deep learning registration methods, the
following atlases, synthetic datasets and craniosynostosis dataset were used.

Atlases Atlases of ten healthy infants and ten healthy adults were used. The
parcellations of ten healthy infants are included in the M-CRIB Atlas 2.0 created
by Alexander et al. [19]. This atlas contains the T1w and T2w MRI scans, and
manual segmentations of 100 brain regions for each infant. Segmentations of the
brain regions were based on the Desikan-Killiany adult cortical atlas, to ensure
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compatibility with FreeSurfer [24]. The parcellations of the adult atlases were
obtained by processing the T1w and T2w MRI scans of ten healthy adults par-
ticipating in the Rotterdam Study [25]. These participants were processed using
FreeSurfer, making them compatible with the M-CRIB Atlas 2.0. An example
of Tlw and T2w images of both infant and adult atlases, with corresponding
parcellations are shown in Figure 5.

Fig. 5. Tlw images, T2w images and atlas of infant and adult atlas.
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Scans available in
craniosynostosis database
(n =436)
Non-syndromic craniosynostosis
> or unknown
v (n=116)
Syndromic craniosynostosis
(n =320)
N Age > 7 years
- (n = 150)
Y
Age 0-6 years
(n=170)
~ No T2w scans available
- (n=11)
Y
T1w and T2w scans available
(n =159)
N Insufficient image quality
" (n=1)
Y
Included in analysis
(n = 158)

Fig. 6. Flowchart of the inclusion of patients with syndromic craniosynostosis, aged
0-6 years old.

Table 1. Characteristics of included patients.

Grouping MRIs Unique patients
Male, n (%) 81 (53.2) 60 (49.6)
Female, n (%) 74 (46.8) 61 (50.4)
Apert, n (%) 27 (17.1) 18 (14.9)
Crouzon, n (%) 45 (28.5) 27 (22.3)
Muenke, n (%) 20 (12.7) 17 (14.0)
Pfeiffer, n (%) 7 (4.4) 4 (3.3)
Saerthre-Chotzen, n (%) 18 (11.4) 14 (11.6)
Complex, n (%) 36 (22.8) 30 (24.8)
TC12, n (%) 5 (3.2) 5 (4.1)

Mean age at scan, yrs (std) 2.5 (1.85) -
Total MRIs 158 121
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Synthetic Data To evaluate the performance of the registration methods
against a ground-truth, we created two synthetic datasets by non-rigidly de-
forming the infant and adult atlases. The non-rigid deformation was generated
using a normalized random displacement field, in which for each voxel a 3D
displacement vector u was created with random values between -0.5 and 0.5
[26]. The magnitude of the displacement in the deformation field is determined
by multiplying the vectors with the parameter a(Eq. 1) [26]. Here, R, and Ry
describe the location of the voxels in the original and warped images respectively.

Ry =R, + au (3)

Subsequently, the displacement field is smoothed using a Gaussian filter,
in which the standard deviation of the kernel is determined by the parameter
o. Therefore, o determines the smoothness of the deformation field [26]. For
creating the synthetic data sets, values of a were randomly chosen between 1200
and 1600, and values of o were randomly chosen between 7 and 10. These values
were chosen to imitate deformations caused by craniosynostosis as closely as
possible. Examples of atlas scans deformed with different combinations of o and
o are shown in Appendix A. 30 synthetic scans were created for each individual
adult and infant atlas, resulting in a total of 300 synthetic scans for the infant
atlas and 300 for the adult atlas.

Craniosynostosis Data We considered all children between the ages 0 and
6 with syndromic craniosynostosis (Apert, Crouzon-Pfeiffer, Muenke, Saethre-
Chotzen, TCf12, complex) that had MRI data acquired at the Dutch Craniofacial
Center (Erasmus University Medical Center) between 2008 and 2019 for inclu-
sion. For complex craniosynostosis, a genetic cause is unknown, but expected
because multiple sutures are involved. Patients were scanned on a 1.5T scanner
(GE Healthcare, either Signa HDxt or Signa Explorer). Patients were included
if both 3D T1w and T2w scans were available. A flowchart of the inclusion of
the craniosynostosis MRI data is shown in Figure 6. We included 158 scans from
121 unique patients. One subject was excluded due to insufficient image quality.
Patient characteristics are shown in Table 1.

3.2 Preprocessing

The preprocessing pipelines used for the atlases and craniosynostosis data are
visualised in Figure 7. Each preprocessing step is explained in more detail in the
following sections. The synthetic data was created using the fully preprocessed
atlases. Images resulting from each preprocessing step are shown in Figure 8.

N4ITK Bias Correction Each T1w and T2w image was corrected for intensity
non-uniformity using the N4ITK algorithm [27]. The following settings were used
for the correction; an initial mesh resolution of 200, a number of four times 50
iterations and a convergence threshold of 1*1071°.
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N4ITK bias
correction

Rigid registration T2w
scans to T1w scans

Affine registration to
reference atlas

Crop images

Extraction brain
mask

Rescaling and
resizing for VM

N4ITK bias
correction

Rigid registration T2w
scans to T1w scans

Crop images

Extraction brain
mask

Rescaling and
resizing for VM

11

Fig. 7. Pipelines for the preprocessing of atlases (A) and craniosynostosis data (B).
VM = VoxelMorph.
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T2w to Tlw Image Registration For each patient and atlas, the T2w scan
was rigidly registered to the T1w scan using Elastix. Often, the T2w scan con-
tained a large part of the neck, in addition to the head. By registering the T2w
scan to the T1lw scan, the T2w scan was automatically cropped to fit on the
T1w scan. This eliminated the need for further removal of the neck from the
scans to ensure correct brain extraction in a later preprocessing step. For the
rigid registration, a normalized mutual information (NMI) similarity metric and
an adaptive stochastic gradient descent optimization method were used.

Affine Registration to Reference This preprocessing step was only exe-
cuted for the atlases. For both the infant and adult atlas, one atlas was chosen
as a reference to affinely register all other atlases to. Aligning all atlases to a
reference ensured that there were only non-rigid deformations present in the
synthetic datasets. Therefore, it was unnecessary to perform affine registration
before evaluating the registration methods on the synthetic data. For the affine
registration, a NMI similarity metric and an adaptive stochastic gradient descent
optimization method were used.

Crop Images After registering the images, all T2w scans were cropped as much
as possible to remove the empty space around the skull. This was accomplished
using the crop image function available in the nilearn Python toolbox [28]. For
cropping, a relative tolerance of 0.1 was used. The offsets, with which the T2w
scans were cropped, were then applied to the T1w scans and parcellation maps.

Brain Extraction For both registration methods, skull-stripped atlases and
craniosynostosis scans were used. These skull-stripped images were acquired by
extracting the brain using the Brain Extraction Tool (BET) from the FMRIB
Software Library (FSL) [29]. A fractional intensity threshold of 0.3 was used,
ensuring extraction of the whole brain. Additionally, the robust brain centre
estimation option was used. This option repeatedly calls BET up to a maximum
of 10 iterations, each time setting the starting centre of the brain estimation to
the centre-of-gravity of the previously estimated brain extraction. The iterations
stop when the centre-of-gravity stops moving.

Rescaling and Resizing For using the atlases and craniosynostosis data in
VoxelMorph, the scans needed to be rescaled between the values 0 and 1. After
rescaling, the skull-stripped images were further cropped by determining the
most inferior point of the extracted brain. This point was then used to remove the
remaining empty space beneath the brain, which was created by skull-stripping
a.o. the neck using BET in the previous preprocessing step. Then, the images
were resized to a size of 128 x 128 x 128. Additionally, to prevent the GPU from
running out of memory during training, the data type of the images was set from
float32 to float16.



Original N4ITK T2w to T1lw Brain Rescaled
corrected registration and crop extraction and resized

Fig. 8. Preprocessing steps performed on a patient with craniosynostosis, shown on both T1lw and T2w images. The step involving the
affine registration to a reference scan is not shown.
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3.3 Registration methods

Conventional Registration As conventional registration method, we used
Elastix which is a toolbox for rigid and non-rigid image registration that uses
free-form deformations (FFD) based on the parameters of a cubic B-spline func-
tion [23]. These parameters were optimized using adaptive stochastic gradient
descent optimization with a normalized mutual information (NMI) similarity
metric. Furthermore, a pyramid scheme using three different resolutions (with
downsampling factors four, two and and one) was used, executing the registra-
tion from a coarse to fine image resolution.

Deep Learning-based Registration As deep learning registration method,
the VoxelMorph neural network was used [11]. VoxelMorph is an unsupervised
network that directly evaluates a function that maps an input image pair to a
deformation field. The network parameters/CNN kernels of VoxelMorph were
optimized using the NMI similarity metric and the ADAM optimizer with a
learning rate of 10"%. Due to the size of the data, a batch size of 1 was used. The
network was trained using a number of 1500 epochs, a masked loss, a regular-
ization parameter of 0.2 for the quantitative experiments and a regularization
parameter of 0.8 for the qualitative evaluation. Optimization of these parameters
is shown in Appendix C and D. Training, validating and testing of the network
were all executed using a GeForce RTX 2080 Ti.

3.4 Experiments

Quantitative Experiments Quantitative experiments were performed using
the synthetic data. Each original atlas was registered to each deformed syn-
thetic scans to evaluate the performance of both registration methods against a
ground-truth. Registrations were performed for all combinations of image modal-
ities (T1w, T2w, or combination of T1w and T2w) and atlases (infact or adult)
as input. For the deep learning-based registration, the VoxelMorph network was
trained, evaluated and tested for each of these six input combinations. Registra-
tion accuracy is here quantified as the overlap of brain regions, determined using
the Dice score. An overview of the division of brain labels into brain regions is
shown in Appendix B.

Qualitative Experiments Qualitative experiments were performed using the
craniosynostosis dataset. Each infant and adult atlas was registered to each cran-
iosynostosis patient. Registrations were performed for all combinations of image
modalities (T1w, T2w, or combination of Tlw and T2w) and atlases (infant
or adult) as input. Registration performance was evaluated visually. The visual
evaluation mostly focused on the head shape, ventricle shape and the grey mat-
ter pattern of the deformed atlas. We scored a brain to have normal or abnormal
structure based on the head shape and the presence of ventriculomegaly into four
categories: 1) age < 6 months with normal brain structure, 2) age < 6 months
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with abnormal brain structure, 3) age > 2 years with normal brain structure,
and 4) age > 2 years with abnormal brain structure.

3.5 Validation and statistics

Data Set Split Both synthetic datasets were divided into 200 scans for training,
50 for validation and 50 for testing for VoxelMorph. The test set was also used
for evaluation of Elastix. The craniosynostosis dataset was divided on a patient
level into 126 scans (80% of patients) for training, 14 scans (10% of patients) for
validation and 18 scans (10% patients) for testing.

Dice-score Registration accuracy is quantified as the overlap of brain regions
between the synthetic atlas and the registered atlas in ten cortical and subcortical
areas using Dice score:

2% | X NY|

Dice(X,Y) = I (4)

Statistics Differences in Dice scores were tested by paired two-sided t-tests.
Comparisons were made between all combinations of input and registration
methods (6 tests), the image modalities (12 tests) and the atlases (6 tests)
per brain region. The Bonferroni method was conducted to correct for multi-
ple comparisons. Values of p < 2.10e® were considered statistical significant (o
= 0.05/24).

Elastix VoxelMorph Elastix VoxelMorph

A) . B) A
y \
¥

N\
R d
Patient + ! 1 ¥

atlas

Patient +

A -
s

&9

Deformed 5}

ENEY /‘@
|

Fig. 9. T2w images of an adult atlas registered to a child with craniosynostosis using
Elastix. A) Registration was performed using T1w images. The brain pattern of this
child is relatively old and abnormal looking. B) Registration was performed using T2w
images. The brain pattern of this child is relatively young and abnormal looking.
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Fig. 10. Boxplots of the Dice scores for the registration of infant and adult atlases to
the synthetic datasets. Only results for the white matter structures (A) and frontal
cortex (B) are shown, as other white matter and cortex regions showed comparable
results.



Image Registration in Children with Craniosynostosis 17

4 Results

4.1 Quantitative Experiments

Figure 10 shows the registration accuracy for the synthetic data experiments.
Regarding registration methods, both Elastix and Voxelmorph significantly out-
performed the other method in some settings. The most significant difference was
observed in registering the frontal cortex using T2w infant scans with Elastix
(Dice = 0.52) and VoxelMorph (Dice = 0.62, p < 0.0001). Regarding image
modalities, Tlw scans (Dice = 0.63) and the combination of Tlw and T2w
scans (Dice = 0.62) of the adult atlas yielded significantly higher performance
than T2w scans (Dice = 0.58, p < 0.0001). However, for the infant atlas, reg-
istration accuracy using T2w scans (Dice = 0.62) was significantly higher than
when using only the Tlw scans (Dice = 0.48, p < 0.0001). Regarding atlases,
both infant and adult atlases showed high performances. The most significant
difference between the infant atlas (Dice = 0.45) and the adult atlas (Dice =
0.63) could be observed when using T1w scans for registration of the frontal
cortex (p < 0.0001).

4.2 Qualitative Experiments

Overall, visual evaluation showed similar results for all registration settings re-
garding the head shape and the grey matter pattern. However, when evaluating
the ventricles, Elastix registration in some cases resulted in a mid-line shift of
the ventricles. This happened for 14.4% of the craniosynostosis scans with a
relatively abnormal looking brain, both young and old, and for different types
of input modalities and atlases. An example of the mid-line shift is shown in
Figure 10A. VoxelMorph did not result in any mid-line shifts. Additionally, Vox-
elMorph showed better registration of the ventricles in craniosynostosis scans
with a relatively abnormal brain (see example in Figure 10B).

Regarding imaging modalities, the use of T2w scans or the combination of
Tlw and T2w scans of infant atlas resulted in better registration of the brain
outline than when using T1w scans (Figure 11). Similarly, for the adult atlases,
using T1w scans or the combination of T1w and T2w scans resulted in a better
registration of the brain outline (Figure 12), which is in line with the results
shown for the synthetic data. Additionally, the use of both T1w and T2w led to
less cases with ventricle mid-line shift. Regarding the type of atlas, in some cases
using the infant atlas resulted in a better overlap (Figure 13, red circles) and
in some cases the adult atlas did (yellow circles). Both types of atlases did not
show perfect overlap with the craniosynostosis grey matter patterns. However,
when registering the brain of a relatively young patient, the infant atlas showed
better overlap of the ventricles and white matter than the adult atlas.

An elaborate overview of all results is shown in Appendix E (Elastix regis-
tration on synthetic data), Appendix F (Elastix registration on craniosynostosis
data), Appendix G (VoxelMorph registration on synthetic data) and Appendix
H (VoxelMorph registration on craniosynostosis data).
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Fig.11. T2w images of an infant atlas registered with Elastix to the scans of a child
with a relatively old and normal appearing brain.
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Fig. 12. T2w images of an adult atlas registered with Elastix to the scans of a child
with a relatively old and normal appearing brain.
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NEIELES Adult atlas

Patient +
EMEN

Fig. 13. T2w images of an infant and adult atlas registered to a child with craniosyn-
ostosis using Elastix. Registration was performed using the combination of T1w and
T2w images. Regions where the infant atlas results in a better grey matter overlap are
displayed with red circles, regions where the adult atlas does are displayed with yellow
circles. The brain pattern of this child is relatively old and normal looking.

5 Discussion

In the current study, we evaluated the performance of conventional and deep
learning registration methods on the registration of brain atlas MRI scans to
brain MRI scans of children with syndromic craniosynostosis. VoxelMorph re-
sulted better registration of cortical brain regions than Elastix in synthetically
deformed infant scans. Furthermore, the best registration results were obtained
when using T2w scans for infant synthetic data and T1w scans or the combina-
tion of T1w and T2w scans for adult synthetic data. This confirms the hypothesis
that using T2w scans might be beneficial when registering infant MRI scans. Ad-
ditionally, in the frontal cortex, adult synthetic data yielded significantly higher
Dice scores than infant synthetic data, confirming the difficulty associated with
registering and segmenting grey matter in infant scans.

Visual inspection showed better registration of craniosynostosis data using
VoxelMorph than using Elastix. In particular regarding registration of the ven-
tricles, as Elastix occasionally caused a mid-line shift or incomplete registration
of the ventricles. Such registration faults did not occur when using VoxelMorph
as prior information was obtained during training of the neural network, which
was then applied to each scan. This implies that registration of deformed scans is
more easily optimized using a neural network instead of pair-wise registrations.
In accordance with the quantitative evaluation, the brain outline was better reg-
istered using the T2w scans for registration using infant atlases and using the
T1w scans for registration using adult atlases. However, regarding registration
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of the cortical brain regions, both Elastix and VoxelMorph methods resulted in
a sub-optimal overlap using either the infant or adult atlas.

5.1 Comparison Previous Literature

Neither conventional nor deep learning registration methods have been previ-
ously applied to MRI scans of brains with large deformations. Therefore, it is
not possible to directly compare the results of this study to previous literature.
However, in comparison to adult brain registration using different conventional
registration methods, similar results were found by Klein et al. [30]. When reg-
istration was performed using brains scans with a similar number of parcella-
tions as used in the current study, Dice scores around 0.5 were reached [30] for
the cortical brain regions. Dice scores of cortical brain regions in the current
study ranged from 0.45 to 0.63, slightly higher than results by Klein et al. [30],
most probably as Dice scores were computed on synthetic data. Balakrishnan et
al. [11] obtained Dice scores of around 0.7-0.8 for registration of white matter
structures using the learning-based registration method, which is comparable to
the Dice scores ranging between 0.70 and 0.81 for learning-based registration
of white matter structures obtained in the current study. Dice scores of other
brain regions could not be compared as Dice scores by Balakrishnan et al. [11]
were computed on larger parcellations than in the current study. For registration
of atlas MRI scans to MRI scans of children with craniosynostosis the learning-
based method outperformed the conventional registration method, as it was able
to learn spatial prior information in the training process. This corresponds with
previous literature, as deep learning methods were found to have a faster and
overall better performance than conventional registration methods [11,12]. Ad-
ditionally, just as using T2w scans in addition to T1w scans has shown added
value for brain segmentation [13], using the T2w scans has also shown added
value for brain registration in children with craniosynostosis.

5.2 Limitations

A main limitation of this study is that no ground-truth labels were available and
therefore Dice scores were computed on synthetic datasets only. Instead, quali-
tative evaluation was used for evaluation of the registration of craniosynostosis
scans. Qualitative evaluation is subjective and does not allow for statistic test-
ing between different methods. However, the use of Dice scores is also limited
as these scores highly depend on the size of the brain area that is registered.
Therefore, Dice scores between different brain areas cannot be compared. Fur-
thermore, although MRI-scans from a diverse group of craniosynostosis patients
were used, the scans were all derived from the same medical centre and no ex-
ternal dataset was used to validate the network. Therefore, the trained network
might not be applicable to other datasets. Another limitation is that parameters
for Elastix registration were possibly not optimal for each individual registra-
tion. As the craniosynostosis cases in the dataset are very diverse in appearance,
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it is difficult to find one set of optimal parameters for all subjects. Therefore, pa-
rameters for Elastix registration were chosen such that MRI scans belonging to
the four different categories described in section 3.4 (Qualitative Experiments),
were visually registered well. Five MRI scans were evaluated per category. A
last limitation of this study is that no re-sampling of the train, validate and test
data, and no re-training of the network was performed to assess the variance in
registration. Therefore, the standard errors and confidence intervals of the reg-
istration accuracy are unknown and the network could possibly be over-trained
on the dataset.

5.3 Further Research

Overall, the outline of the head shape and ventricle shape of children with cran-
iosynostosis were registered well, especially when using VoxelMorph. However,
for use in clinical studies, better alignment of the cortical brain regions is re-
quired. In further research, the VoxelMorph neural network could possibly be
improved by adjusting it to register the cortical surface, for example by using
a spherical representation [31]. Additionally, re-sampling and re-training of the
network should be carried out to asses registration variance, as well as validation
of the network on an external dataset.

6 Conclusion

For registration of atlas MRI scans to MRI scans of children with craniosynosto-
sis the best results were obtained using a learning-based method, as it was able to
learn spatial prior information in the training process. In addition, when register-
ing infant craniosynostosis scans, the use of infant atlases based on T2-weighted
scans is advised. Regarding cortical registration, both approaches performed sub-
optimal, and consequently further research is needed towards optimizing correct
cortical registration. Such improved cortical registration is essential for the use of
this method for the analysis of advanced MRI data in clinical studies of children
with craniosynostosis.
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7 Appendices
7.1 Appendix A — Synthetic Data

[10, 10, 10]

Fig. 14. T2w images of synthetic data created from the infant atlas, with varying
values of o and o. When creating the synthetic data, three random values are used for
c.
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7.2 Appendix B — Brain Areas

Table 2: Division of both infant and adult atlas brain labels into
different brain areas.

Brain Area Brain Label Number Brain Label
. 2 Left Cerebral White Matter
White Matter 41 Right Cerebral White Matter
4 Left Lateral Ventricle
Ventricles 14 3rd Ventricle
15 4th Ventricle
43 Right Lateral Ventricle
7 Left Cerebellum White Matter
8 Left Cerebellum Cortex
46 Right Cerebellum White Matter
Cerebellum 47 Right Cerebellum Cortex
75 Cerebellar Vermis Superior Posterior
76 Cerebellar Vermis Anterior
91 Left Cerebellar Hemisphere
93 Right Cerebellar Hemisphere
. 16 Brain Stem
Brain Stem 170 Brain Stem
9 Left Thalamus
10 Left Thalamus
11 Left Caudate
12 Left Putamen
13 Left Pallidum
17 Left Hippocampus
18 Left Amygdala
26 Left Accubens Area
48 Right Thalamus
49 Right Thalamus
.50 Right Caudate
WM Structures ) Right Putamen
52 Right Pallidum
53 Right Hippocampus
54 Right Amygdala
58 Right Accubens Area
192 Corpus Callosum
251 Corpus Callosum Posterior
252 Corpus Callosum Mid Posterior
253 Corpus Callosum Central
254 Corpus Callosum Mid Anterior

255 Corpus Callosum Anterior
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Table 2: (continued)

Brain Area Brain Label Number Brain Label
1006 Left Entorhinal Cortex
1007 Left Fusiform Cortex
1009 Left Inferior Temporal Cortex
1015 Left Middle Temporal Cortex
1016 Left Parahippocampal Cortex
1030 Left Superior Temporal Cortex
1033 Left Temporal Pole
Temporal Cortex 1034 Left Transverse Temporal Cortex
2006 Right Entorhinal Cortex
2007 Right Fusiform Cortex
2009 Right Inferior Temporal Cortex
2015 Right Middle Temporal Cortex
2016 Right Parahippocampal Cortex
2030 Right Superior Temporal Cortex
2033 Right Transverse Temporal Cortex
2034 Right Temporal Pole
1003 Left Caudal Middle Frontal Cortex
1012 Left Lateral Orbito Frontal Cortex
1014 Left Medial Orbito Frontal Cortex
1017 Left Paracentral Cortex
1018 Left Pars Opercularis Cortex
1019 Left Pars Orbitalis Cortex
1020 Left Pars Triangularis Cortex
1024 Left Precentral Cortex
1027 Left Rostral Middle Frontal Cortex
1028 Left Superior Frontal Cortex
Frontal Cortex 1032 Left Frontal Pole
2003 Right Caudal Middle Frontal Cortex
2012 Right Lateral Orbito Frontal Cortex
2014 Right Medial Orbito Frontal Cortex
2017 Right Paracentral Cortex
2018 Right Pars Opercularis Cortex
2019 Right Pars Orbitalis Cortex
2020 Right Pars Triangularis Cortex
2024 Right Precentral Cortex
2027 Right Rostral Middle Frontal Cortex
2028 Right Superior Frontal Cortex
2032 Right Frontal Pole
1008 Left Inferior Parietal Cortex
1022 Left Postcentral Cortex
1025 Left Precuneus Cortex
1029 Left Superior Parietal Cortex
1031 Left Supramarginal Cortex

Parietal Cortex
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Table 2: (continued)

Brain Area

Brain Label Number Brain Label

2008 Right Inferior Parietal Cortex

2022 Right Postcentral Cortex

2025 Right Precuneus Cortex

2029 Right Superior Parietal Cortex

2031 Right Supramarginal Cortex

1005 Left Cuneus Cortex

1011 Left Lateral Occipital Cortex

1013 Left Lingual Cortex
Occipital Cortex 1021 Left Pericalcarine Cortex

2005 Right Cuneus Cortex

2011 Right Lateral Occipital Cortex

2013 Right Lingual Cortex

2026 Right Pericalcarine Cortex

1002 Left Caudal Anterior Cingulate Cortex

1010 Left Isthmus Cingulate Cortex

1023 Left Posterior Cingulate Cortex
Cingulate Cortex 1026 Left Rostral Anterior Cingulate Cortex

2002 Right Caudal Anterior Cingulate Cortex

2010 Right Isthmus Cingulate Cortex

2023 Right Posterior Cingulate Cortex

2026 Right Rostral Anterior Cingulate Cortex
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7.3 Appendix C — VoxelMorph Optimization Synthetic Data
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Fig. 15. DICE scores of synthetic validation data, registered using the network trained
with T2w scans and the infant atlases, with varying parameter A.
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Fig. 16. DICE scores of synthetic validation data, registered using the network trained
with T2w scans and the infant atlases, with varying training sizes.
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Fig. 17. DICE scores of synthetic validation data, registered using the network trained
with T2w scans and the infant atlases, with a varying number of epochs.
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Fig. 18. DICE scores of synthetic validation data, registered using the network trained
with T2w scans and the infant atlases, with a masked loss and unmasked loss.
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7.4 Appendix D — VoxelMorph Optimization Craniosynostosis
Data

Patient +
infant atlas

Deformed

infant atlas

Fig. 19. T2w images of an infant atlas registered to a child with craniosynostosis using
VoxelMorph. Both the deformed atlas scans and patient images with an overlay of the
deformed brain regions are shown separately for registration using a X of 0.2, 0.8 and
2. The brain pattern of this child is relatively old and normal looking.
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7.5 Appendix E — Elastix Registration Synthetic Data
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Fig. 20. Boxplots of DICE scores for various anatomical structures, resulting from Elastix registration performed on non-deformed infant
atlases. Scores are shown separately for registration using T1w images, T2w images and both T1w and T2w images. DICE scores of left
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Fig. 21. Boxplots of DICE scores for various anatomical structures, resulting from Elastix registration performed on deformed infant
atlases. Scores are shown separately for registration using T1w images, T2w images and both T1w and T2w images. DICE scores of left
and right brain structures are averaged.
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Fig. 22. Boxplots of DICE scores for various anatomical structures, resulting from Elastix registration performed on non-deformed adult
atlases. Scores are shown separately for registration using T1w images, T2w images and both T1w and T2w images. DICE scores of left
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Fig. 23. Boxplots of DICE scores for various anatomical structures, resulting from Elastix registration performed on deformed adult
atlases. Scores are shown separately for registration using T1w images, T2w images and both T1w and T2w images. DICE scores of left
and right brain structures are averaged.
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7.6 Appendix F — Elastix Registration Craniosynostosis Data
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Fig. 24. T2w images of infant and adult atlases registered to a child with craniosynos-
tosis using Elastix. Both the deformed atlas scans and patient images with an overlay
of the deformed brain regions are shown separately for registration using T1w images,
T2w images and both T1w and T2w images. The brain pattern of this child is relatively
young and normal looking.
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Fig. 25. T2w images of infant and adult atlases registered to a child with craniosynos-
tosis using Elastix. Both the deformed atlas scans and patient images with an overlay
of the deformed brain regions are shown separately for registration using T1w images,
T2w images and both T1w and T2w images. The brain pattern of this child is relatively
young and abnormal looking.
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Fig. 26. T2w images of infant and adult atlases registered to a child with craniosynos-
tosis using Elastix. Both the deformed atlas scans and patient images with an overlay
of the deformed brain regions are shown separately for registration using T1w images,
T2w images and both T1w and T2w images. The brain pattern of this child is relatively
old and normal looking.
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Fig. 27. T2w images of infant and adult atlases registered to a child with craniosynos-
tosis using Elastix. Both the deformed atlas scans and patient images with an overlay
of the deformed brain regions are shown separately for registration using T1w images,
T2w images and both T1w and T2w images. The brain pattern of this child is relatively
old and abnormal looking.
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7.7 Appendix G — VoxelMorph Registration Synthetic Data
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Fig. 28. Boxplots of DICE scores for various anatomical structures, resulting from VoxelMorph registration performed on non-deformed
infant atlases. Scores are shown separately for registration using T1w images, T2w images and both T1w and T2w images. DICE scores
of left and right brain structures are averaged.
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Fig. 29. Boxplots of DICE scores for various anatomical structures, resulting from VoxelMorph registration performed on deformed
infant atlases. Scores are shown separately for registration using T1w images, T2w images and both T1w and T2w images. DICE scores
of left and right brain structures are averaged.
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Fig. 30. Boxplots of DICE scores for various anatomical structures, resulting from VoxelMorph registration performed on non-deformed
adult atlases. Scores are shown separately for registration using T1w images, T2w images and both T1w and T2w images. DICE scores
of left and right brain structures are averaged.
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Fig. 31. Boxplots of DICE scores for various anatomical structures, resulting from VoxelMorph registration performed on deformed adult
atlases. Scores are shown separately for registration using T1w images, T2w images and both T1w and T2w images. DICE scores of left
and right brain structures are averaged.
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7.8 Appendix H — VoxelMorph Registration Craniosynostosis
Data
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Fig. 32. T2w images of infant and adult atlases registered to a child with craniosyn-
ostosis using VoxelMorph. Both the deformed atlas scans and patient images with an
overlay of the deformed brain regions are shown separately for registration using T1w
images, T2w images and both T1w and T2w images. The brain pattern of this child is
relatively young and normal looking.



48 D.C. Wijnbergen et al.

Tilw + T2w

Patient +
ENEES

Deformed

infant atlas

Patient +
adult atlas

Deformed
adult atlas

Fig. 33. T2w images of infant and adult atlases registered to a child with craniosyn-
ostosis using VoxelMorph. Both the deformed atlas scans and patient images with an
overlay of the deformed brain regions are shown separately for registration using T1w
images, T2w images and both T1w and T2w images. The brain pattern of this child is
relatively young and abnormal looking.
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Fig. 34. T2w images of infant and adult atlases registered to a child with craniosyn-
ostosis using VoxelMorph. Both the deformed atlas scans and patient images with an
overlay of the deformed brain regions are shown separately for registration using T1w
images, T2w images and both T1w and T2w images. The brain pattern of this child is
relatively old and normal looking.
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Fig. 35. T2w images of infant and adult atlases registered to a child with craniosyn-
ostosis using VoxelMorph. Both the deformed atlas scans and patient images with an
overlay of the deformed brain regions are shown separately for registration using T1w
images, T2w images and both T1w and T2w images. The brain pattern of this child is
relatively old and abnormal looking.



