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Abstract
Synchromodal freight transport is introduced as intermodal transport, so container trans-
port that uses several transportation vehicles, with an increased focus on a-modal booking,
cooperation and real-time flexibility.

It is confirmed that general synchromodal network planning methods are rare or non-existent
at the operational level.

An extensive framework is developed that describes characteristics of different mathemat-
ical synchromodal optimisation problems on the tactical-operational levels.

Three different problems are defined using this framework. Solution methods for these three
problems are developed in this thesis, with a focus on low computation times so as to facil-
itate decision-support and real-time flexibility, and a focus on generality so as to make the
methods applicable throughout different organisation structures.

In the first problem, it is assumed that the transportation vehicles have fixed time tables
and one only has to decide on a container-to-mode assignment, so by what modality-paths
all containers reach their destination against minimal total cost. The containers have re-
lease times and deadlines. A model that also allows soft due dates is developed. Moreover,
the option of using trucks or other ‘infinite resources’ to help fulfil requests is added. With
appropriate graph reductions, this problem can be solved to optimality in little time by solv-
ing the minimum cost multi-commodity flow problem on an appropriate space-time network.

In the second problem, the goal is the same but almost any element can be stochastic: for
instance, travel times and container release times could be given a discrete probability distri-
bution rather than a fixed value. Rigorous definitions are formulated to capture the general-
ities in this stochasticity. Multistage stochastic optimisation and Markov Decision Processes
are illustrated, but advised against for their computing time: instead, Expected Future Iter-
ation and 70%-Pessimistic Future Iteration are developed and shown to yield near-optimal
results in a small amount of time in the simulated environment.

In the final problem, there are no stochastic elements, but the decision-maker is given control
over the vehicle time tables in addition to the control over container-to-mode assignments.
This problem is argued to be a departure from classical optimisation problems, but shown
to still be strongly NP-hard. An integer linear program is developed to solve the problem, but
the results show that it scales too poorly to solve problems of ‘real life size’ in an appropriate
amount of time for decision support. The Greedy Gain heuristic and Compatibility Cluster-
ing heuristic are developed: they solve much more limited sub-problems with the ILP, but
unfortunately, even these sub-problems require too much computational effort at the wished
instance size.

A number of topics for future research are formulated, giving concrete advice on how to
solve the second problem more robustly and how to solve the third problem more quickly.
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Extended management summary
Chapter 1 (Introduction). Intermodal freight transport means transporting freight containers
using a series of different transportation modalities: for example, using a barge for the first
half of the journey and a truck for the second. Synchromodal freight planning is a form of
intermodal planning, with increased focus on at least one of the following three aspects:

1. A-modal booking: Customers do not tell the logistics service provider (LSP) what modal-
ities they want their goods transported by, but leave it up to the LSP, just as long as the
goods arrive at the agreed time against an agreed price;

2. Cooperation: Different transporters share their information and resources to form a syn-
chromodal network, so they or an LSP can find efficient ways to fulfil all transportation
requests;

3. Real-time flexibility: Planning is done using real-time data: plans are adjusted when dis-
turbances occur, but also, robust plans are made keeping potential future disturbances
into account. It must be possible to re-evaluate plans at any moment.

This thesis seeks to answer the following research question:

How can on-line container-to-transport assignment and operational transport
scheduling in synchromodal freight transport be optimised against their

corresponding definition of ‘optimal’?

To this end, this thesis studies:

1. Developing a framework for synchromodal problems and literature;

2. Problem 1: how to synchromodally assign containers to transportation modalities if the
transports have fixed timetables and there are no unknowns;

3. Problem 2: problem 1, but with stochastic elements;

4. Problem 3: how to synchromodally determine both the transport timetables and container-
to-mode assignments if there are no unknowns.

Solutions should be produced fast enough for operational decision-support.

Chapter 2 (Literature study). In operations research, people often speak of problems on either
the strategic, tactical or operational level. This thesis mainly studies operational problems.
Synchromodal freight transport is a young concept, and several literature studies point out
that operational synchromodal network-wide planning methods are rare or non-existent in
literature. Work relevant to this thesis was performed by Pedersen, Kooiman, Rivera, van
Riessen, Behdani and Ozdaglar.
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Chapter 3 (Framework). (Co-authored.) A tactical/operational synchromodal planning prob-
lem can largely be characterised by whether the following elements are fixed, controlled,
stochastic, dynamic or not relevant: Text

𝑅𝑂: resource origin 𝐷𝑂: demand origin
𝑅𝐷: resource destination 𝐷𝐷: demand destination
𝑅𝐶: resource capacity 𝐷𝑉: demand volume
𝑅𝐷𝑇: resource departure time 𝐷𝑅𝐷: demand release date
𝑅𝑇𝑇: resource travel time 𝐷𝐷𝐷: demand due date
𝑅𝑃: resource price 𝐷𝑃: demand penalty
𝑇𝐻: terminal handling time 𝐷2𝑅: demand-to-resource assignment

Furthermore, information can either be available globally or locally, and optimisation can be
either global or local: global optimisation concerns achieving low total network costs, whereas
local optimisation concerns achieving low individual costs for different parties. Therefore, the
system behaviour can be either social, selfish, cooperative or limited.

For example: in the Kooiman pick-up problem [35], barges make fixed round trips, starting
at a depot. Containers that must be transported to this depot appear at terminals at random
times. At each terminal, the barges must decide how many containers to load here, given
that they may have to reserve space for the next terminals, but not knowing exactly how
many containers will be released at those terminals by the time they arrive.

In the proposed framework notation, the Kooiman pick-up problem can be denoted as a
�̄�, 𝑇𝐻|�̄�, [𝐷2𝑅], 𝐷𝑅𝐷|𝑠𝑜𝑐𝑖𝑎𝑙(1)-problem, because: the resources (barges) have mainly fixed fea-
tures (�̄�); the terminal handling times are irrelevant (𝑇𝐻); the demand items (containers)
have mainly fixed features (�̄�); the demand-to-resource assignment is controlled ([𝐷2𝑅]); the
demand release dates are stochastic (𝐷𝑅𝐷). There is only one decision-making entity, the
information is global and the optimisation is global as well (𝑠𝑜𝑐𝑖𝑎𝑙(1)).
More examples of classification of papers are given in Table 3.3. Examples of classification
of real life use cases and problems are given in Table 3.4.

If an element varies depending on state or time but in a known way, this element is dubbed
dynamic. For example, if resources are pricier during the weekends, this is denoted as 𝑅𝑃.
If there is more than one decision-making entity in the system, the interaction can be mod-
elled as either 𝑜𝑛𝑒 𝑡𝑢𝑟𝑛 𝑜𝑛𝑙𝑦, so everyone gets one turn to make decisions, 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚, so
turns are circulated until no one updates their plans or 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑, so decision-makers do not
know what decisions the others make. This can be added as a fourth field in the framework
notation.
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The benefits of this framework lie in structuring existing literature, pointing modellers to-
wards literature useful to their problem and discovering similarities between problems. The
challenges lie mainly in the partial subjectivity of classification.

Chapter 4 (Problem 1). In this problem, vehicle schedules are assumed to be already fixed
and one only has to decide how to assign containers to modality-paths, to get each container
where it needs to be against minimum total cost. Suppose 18 containers are released at
location A, time 09:00, and are due at location B, time 14:00; suppose also that one barge
and one train depart in the meantime, the former from A to B at 09:30 with capacity 20 and
unit price 523, arriving at 13:30; the latter from A to B at 11:00 with capacity 10 and price
498, arriving at 12:30. This can be translated into the space-time network seen in Figure 1.
In this specific instance, it is optimal to send 10 containers by train, using all its capacity,
and sending the other 8 containers by barge.

In general, solving Problem 1 to optimality is a matter of modelling it as a minimum cost

Location A

Location B

09:00 10:00 11:00 12:00 13:00 14:00

18

Price: 523
Capacity: 20 Price: 498

Capacity: 10

Figure 1: The network described in Figure 4.1, translated to a space-time network without trucks. The black arcs represent
‘waiting arcs’ with infinite capacity and cost zero. The 18 containers are situated at the white square node in space-time and
need to go to the black square node in space-time.

multi-commodity flow problem on a space-time network, which can be solved with an ILP
solver. The model can be expanded to also allow using trucks or other ‘infinite resources’
from any place to any other place at any time, against a high price. The model can also be
expanded to allow simultaneous soft due dates and hard deadlines.

When applying Algorithm 1 to remove redundant information from the model, instances of
‘real life size’, with 40 requests over 32 locations and 121 time steps, can be solved to opti-
mality in an average of only 9 seconds on modest hardware. This is related to how in 100%
of the generated instances, it suffices to use an LP-solver rather than an ILP-solver, though
instances exist where this is not the case.

Chapter 5 (Problem 2). In this problem, the challenge is again only to assign containers
to modality paths; however, many elements can be random. For example, in Figure 2, 1
container has to be transported with soft due date 2 and hard deadline 4: it could be sent by
a barge, which has a probability of 1/3 to arrive at time 2, so a lateness penalty of 0 has to be
paid, a probability of 1/3 to arrive at time 3, so a lateness penalty of 75 has to be paid, and
a probability of 1/3 to arrive at time 4, so a lateness penalty of 500 has to be paid. It could
also be sent by a truck, which is certain to arrive on time, but costs 200 to call on instead of
100. Sending it by barge has an expected cost of 291.67, while the truck has a certain cost of
200, so it is a ‘better’ choice to send it by truck, even though barge has a 66.7% probability
of being cheaper.

To generalise this idea, much attention is spent in this chapter on how to interpret the
objects in the problem and what planning assumptions are made. Multistage stochastic pro-
gramming and Markov Decision Processes are illustrated as a way to solve this problem, but
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𝑠

𝑡

𝑣

𝑓 = 0 𝑓 = 75 𝑓 = 500

𝑓 = 200

𝑓 = 100

1

0 1 2 3 4

A

B

𝑃 =
1/3 𝑃 =

1/3 𝑃 = 1
/3

Figure 2: One container has to be assigned to a transportation modality. The red, dashed option has probability / of taking two
time steps, thus arriving just on time, probability / of taking three time steps, causing a lateness penalty of 75 and probability
/ of taking four time steps, causing a lateness penalty of 500. The green option is guaranteed to be on time, but has a base

usage cost of 200 instead of 100. Both transports have capacity 10. At time , a planner is faced with the decision: red or
green?

they are argued to require far too much computation time.

Instead, two other decision processes are developed. The first is Expected Future Iteration:
assume that every unknown will take its expected value, so that a non-random instance can
be observed, which is an instance of Problem 1 and can be solved as such. This leads to some
decisions that have to be enacted in the current time step: enact those, then go to the next
time step and recompute the expected future, knowing all that you know now, and repeat
this process ad infinitum.

Expected Future Iteration can give arbitrarily bad results, because it blindly assumes that
a certain future will take place and ‘does not optimise its plan B’. To partly counteract this,
70%-Pessimistic Future Iteration is developed; though it has the same property, the prob-
ability of negative consequences is made smaller at the cost of higher expected costs. It
resembles robust optimisation, except no guarantees are made on the probability that the
given plan will work out. The method works the same as Expected Future Iteration, except
70%-percentiles are taken instead of expected values; any percentile, of course, could be
taken to adjust the amount of ‘risk’ a decision-maker is willing to make for the possibility of
profit.

Both methods produce near optimal average costs for instances of ‘real life size’ in an average
half minute on modest hardware, though these results may differ when used in actual oper-
ational practice, rather than the used simulations. The simulation method used by Kooiman
may yield better results, because this ‘does optimise its plan B’, but a faster solution method
for Problem 1 would be necessary for a fast implementation of this simulation method.

Chapter 6 (Problem 3). In this final problem, there are no more random elements, but the
decision-maker must simultaneously determine vehicle time tables and container-to-mode
assignment; in other words, the decision-maker must tell barges and other vehicles where to
go when and what containers to take with them. Again, trucks and other infinite resources
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can be used to deliver those containers that cannot be delivered by the other vehicles. A
typical instance of this problem, together with one of its feasible solutions, are presented in
Figure 3.

This problem has a large decision space, and a large number of variables and parame-

𝑠 𝑡

𝑠 𝑠 𝑡 𝑡

𝑠 𝑡

0 1 2 3 4 5 6 7

South factory

Port 1

Port 2

Port 3

North factory

Barge start

7

9

71

Final iteration: assign request 1 to barge
Unassigned requests: 2, 4

7

9 1

7

+9,−1

−9+1

Figure 3: A barge with capacity 20 is sent to handle two of the four requests. Its route is given in red. The first request is to
deliver 1 container, released at Port 2, time 1, to North Factory with deadline 6. The other three can be read from the figure
similarly. The barge can only visit ports, not factories: request 3 spends the first part of its journey on a truck (green) to Port
3. During time step 1, the one container of request 1 is loaded; during time step 3, the nine containers of request 3 are loaded
and the 1 one container of request is unloaded; during time step 5, the nine containers are unloaded. Though black waiting arcs
are present everywhere, they are only left in where they might help track the containers’ path through space-time. Note that if
all costs are ‘vertically symmetrical’, a better solution would be to take a route over Port 1 instead of Port 3, to handle the 14
containers of request 2 and 4 by barge so that only the 10 containers of request 1 and 3 have to be trucked.

ters must be introduced to discuss the problem properly. The problem can be shown to be
NP hard: in other words, that no polynomial time solution method exists, nor that a Fully
Polynomial Time Approximation Scheme exists, unless 𝑃 = 𝑁𝑃.

An integer linear program is again proposed to solve instances of the problem to optimal-
ity. However, only in small instances can this produce results fast enough for operational
decision support. Instead, the Greedy Gain heuristic is proposed for larger instances: it as-
signs requests to vehicles one at a time, based on the highest immediate gain, which can be
found by solving an appropriate sub-problem with the ILP. Greedy heuristics typically yield
non-optimal results, because they may make unfortunate decisions that seem smart in the
moment. To avoid this effect, the Compatibility Clustering heuristic is developed, which first
tries to cluster requests on how ‘compatible’ they are, then solves sub-problems to see how
much it would cost to assign some vehicle to some cluster, then takes the minimum cost
matching between vehicles and clusters.

Unfortunately, these limited sub-problems add up to something computationally too heavy:
none of the three methods, as they stand now, can produce results fast enough for opera-
tional decision support in instances of ‘real life size’. Furthermore, the Greedy Gain heuristic
finds quite non-optimal solutions, and the Compatibility Clustering heuristic achieves worse
costs: the actual way to go about clusteringmay have to be looked at closer in future research.

Future research should aim at speeding up these methods so that results can be found fast
enough for operational decision support, or at finding other methods to do so, where this
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thesis advises against solving sub-problems with the current integer linear program because
of its computational intensity. Several concrete routes of improvement are proposed.

Chapter 7 (Conclusion) A comprehensive framework was developed and its merits and chal-
lenges discussed. Problem 1 can be solved to optimality in little time, using an integer linear
program. Problem 2 can be solved to near-optimality in little time, using either Expected
Future Iteration or 70%-Pessimistic Future Iteration, though this may require verification
against real use case data. Problem 3 can be solved, either to optimality or with heuristics,
but currently, not in little time for problems of ‘real life size’. A number of topics for future re-
search are proposed, mainly in the form of concrete advice for how to speed up these methods
and how to achieve better costs with heuristics.
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1
Introduction

Synchromodal freight transport is a new concept within the logistics sector. It is a continua-
tion of intermodal freight transport, that is to say, sending freight in standardised containers
that may for example spend the first part of their journey on truck, the second part on barge,
the final part on train and the final part on truck again. Synchromodality improves on this
by introducing three new ways of working [31]:

1. A-modal booking: Customers do not tell the logistics service provider (LSP) what modal-
ities they want their goods transported by, but leave it up to the LSP, just as long as the
goods arrive at the agreed time against an agreed price;

2. Cooperation: Different transporters share their information and resources to form a syn-
chromodal network, so they or an LSP can find efficient ways to fulfil all transportation
requests;

3. Real-time flexibility: Planning is done using real-time data: plans are adjusted when dis-
turbances occur, but also, robust plans are made keeping potential future disturbances
into account. It must be possible to re-evaluate plans at any moment.

The goal of aspect 1 and 2 is to increase overall efficiency and sustainability, by facilitating
consolidation, in other words, letting one small request wait at a terminal so it can be com-
bined with some other request. See also Figure 1.1 and the work by Vinke [59]. Aspect 2 also
facilitates smarter equipment repositioning, for example, by moving leftover empty contain-
ers directly to a nearby terminal where they are needed instead of through a depot [2]. In a
mathematical sense, having someone coordinate a large network allows for a larger decision
space, in which smarter solutions can be found, but for which smarter solution methods may
also be necessary.

Figure 1.1: Consolidation: one of the benefits of global information and a central operator (aspects 1 and 2 of synchromodality).

1
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Figure 1.2: On-line changes in transport planning (aspect 3 of synchromodality).

The goal of aspect 3 is to increase flexibility and reliability. For example: if the weather
is going to be unfavourable, it may be a good idea to send containers by rail instead of barge.
See also Figure 1.2.

Interest in synchromodality has increased, due to improvements in data technology, an in-
creased focus on the more complicated hinterland transport and the ever-growing need for
efficiency [3]. However, synchromodality faces several challenges that keep it from being
adopted in practice [31]. For one, the information infrastructure and standardisation is ab-
sent. Secondly, many people are not even aware of the concept of synchromodality. Thirdly,
companies are often reluctant to supply information, because this could harm their competi-
tive position. Fourthly, in the case of having a central operator making decisions for different
parties, there is not yet a business model that ‘promises’ that indeed all parties are better
off than when they make their own decisions. The scepticism caused by these last three
issues have, as of late, been addressed by serious gaming projects like SynchroMania [10]
and SYNCHRO-GAMING [9].

A final challenge is of a mathematical nature: if indeed information and control are shared
to some degree, and real-time switching is allowed and expected, how does a net operator
make an optimal planning? If this question can be answered, it should greatly contribute to
the advancement of and towards synchromodal transport.

1.1. Research question
Several theses will be written within a larger NWO program [5] on different aspects of the
large, multidisciplinary problem of implementing a synchromodal transport chain. The goal
of this specific thesis is to provide freight transport decision-support by optimisation in two
fields: container-to-transport assignment and operational transport scheduling. By the former
is meant, for example, deciding whether a container should be transported by barge A, train
B, barge C, or barge A but on its voyage of next week. By the latter, the same is meant but
with added control on the actual time tables of the resources. These stochastic versions of
these problems are viewed as Time-stamp Stochastic Assignment Problems, and as such,
this thesis will build upon the work of Kooiman et al. [35]. General optimisation methods
will be developed and compared for different net-centric scenarios and the scenarios will be
put in a framework. All in all, the following research question is posed:

How can on-line container-to-transport assignment and operational transport
scheduling in synchromodal freight transport be optimised against their

corresponding definition of ‘optimal’?
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This is answered along the following sub-questions:

1. How can different scenarios of synchromodal freight transport be classified within an
exhaustive framework?

2. How can a low cost net-centric container-to-transport assignment be found fast enough
for on-line use if everything is known beforehand?

3. How can a low cost net-centric container-to-transport assignment be found fast enough
for on-line use if new data is still expected to come in?

4. How can a low cost net-centric operational transport schedule be found fast enough for
on-line use if everything is known beforehand?

1.2. Report structure
Chapter 1 introduced the thesis problem. Chapter 2 will discuss the existing nomenclature
and literature that is applied in the thesis. Chapter 3 until Chapter 6 will discuss sub-
questions 1 until 4 respectively. In Chapter 7, the results of this thesis will be concluded
and future work for members of the NWO project will be proposed.





2
Literature study

In this chapter, the conventional terminology in synchromodal freight transport discussions
is summarised, including where the research problem fits within the bigger picture of oper-
ations research. When this is determined, relevant literature is summarised.

2.1. Conventional terminology
Several related terms exist in transportation approaches [53]. Unimodal transport usually
refers, bluntly put, to simply loading cargo onto a truck and driving it from origin to desti-
nation. Multimodal transport refers to transporting cargo from origin to destination by more
than one transportation mode, both in regards to transportation vessel as containment unit.
In intermodal transport, more than one transportation mode may be used, but the contain-
ment unit must always be a container of standardised size. For example: when transporting
oil barrels from a Dutch refinery through the Port of Amsterdam to a client in China, this is
considered multimodal for first using a truck in its pre-haul to the port, then a cargo ship
for its long haul to China and then a truck for its post-haul to the client. However, it is not
considered intermodal, as barrels are being used instead of intermodal containers. Co-modal
transport resembles multimodal transport, but requires a consortium of shippers and has a
focus on exploiting the benefits of each transportation mode in a smart way. Finally, syn-
chromodal transport is a version of intermodal transport that focuses on real-time planning
flexibility and coordination between different shippers, both using large amounts of real-time
data.

Any project that uses the collection and sharing of real-time data to make smarter freight
transport decisions can, as such, be seen as a synchromodal transport project. This results
in the existence of similar research fields with different names: some of the problems re-
searched in the Netherlands and Austria under the name of synchromodality, are researched
in France under the name of ‘physical internet’. Some experts advocate not getting stuck in
discussions on the semantics of whether a research project or development project is in
the field of multimodality, intermodality, synchromodality or physical internet, as long as
progress is being made [31]. However, for the purpose of modelling a problem and finding
related problems, it is useful to employ consistent terminology that communicates model as-
sumptions and optimisation goals, while remaining aware that valuable research may have
been done under different names. Reis discusses the current ambiguity of terminology and
the potential usefulness of consistent terminology [49]. This report attempts to use and de-
fine more consistent terminology, as further detailed in Chapter 3.

Freight transport decision problems are often categorised on three levels [15, 53, 58]: prob-
lems on the strategic, tactical and operational level. Strategic problems concern long-term
investments in the transportation network, for example, where to build new terminals. Tac-
tical problems may concern service design, for example, determining how many times in a

5
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month a barge should make a round-trip. Operational problems concern using a current
network in an optimal way for problems occurring in the present. The problems covered in
this report are considered operational, because of their on-line nature of decision making.

More specifically, Behdani describes [15] not three, but six levels of decision problems in
synchromodal freight transport, paraphrased here from most strategical to most operational:

• Synchromodal Network Design: determining optimal infrastructural nodes and connec-
tions, for example, determining where to build terminals and rail lines;

• Synchromodal Service Pricing Strategies: determining how much the client should pay
for a-modal service, as opposed to service where the client determines the chosenmodes;

• Intermodal Gain Sharing and Contract Design: determining the rules between parties in
the transport chain, including how the costs and profits are divided;

• Synchromodal Service Design: determining delivery priority policies and expected service
levels and, using this, designing products of varying price, delivery time and reliability;

• Operational Resource Scheduling: determining transportation schedules and container-
to-mode assignments on a day-to-day basis;

• Exception Handling and Real-Time Switching: updating these schedules and assign-
ments, if beneficial or necessary, using real-time information.

This report focuses on problems on the last two levels, keeping potential real-time switching
in the future in mind. More specifically, the following optimisation problems are investigated,
in different contexts of synchromodal transportation:

• Determining operational transportation schedules,

• determining operational container-to-mode assignments,

• real-time switching in the above two;

in each case respecting potential real-time switching in the uncertain future.

2.2. Relevant literature
In her recent literature review, SteadieSeifi remarks [53]: “[Co-modality and synchromodality]
have not received any attention from the OR community.” In his even more recent overview,
Van Riessen adds [58]: “For efficient synchromodal transport plans it is essential to allow
real-time switching, i.e. real-time planning updates. This was recognized by all studies that
referred to synchromodal transportation, but not many real-time planning methods that pro-
vide a network-wide plan exist yet.” However, a number of methods for intermodal planning
exist [22]: if a general way of adding real-time switching to these methods can be found, a
large amount of synchromodal methods can be created.

In the field of intermodal transportation, Pedersen formulated a CapacitatedMulti-Commodity
Network Design model, which can be reinterpreted for simultaneous operational scheduling
and container-to-mode assignment. He formulates it as a MILP and proposes a Tabu Search
method [44]. Bektas comments on this solution method: “Pedersen, Crainic, and Madsen
(2006) and Andersen et. al. (2006, 2007) present formulations and propose solution meth-
ods, but significant research work is still needed” [16]. Behdani optimally solved off-line
multimodal schedule design in a way that may be reinterpreted for container-to-mode as-
signment [15]. However, his solution method relies on solving a large ILP, which may be
too computationally intensive for on-line applications. Van Riessen provides another off-line
container-to-mode solution in the form of his LCAT model and quantified the effect of on-line
disturbances in the system [57].
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In the field of on-line synchromodal container-to-mode assignment, several methods in dif-
ferent directions have been tried. Zhang et al. propose on-line container-to-mode assignment
by assigning a request, when it comes in, to its cheapest path that still has capacity remain-
ing [62]. This method completely disregards the capacity that will still be needed for future
requests and one can easily think up examples where this disregard yields suboptimal re-
sults. Mes et al. also determine shortest paths in an on-line setting, but disregard capacity
and instead focus on soft restrictions, decision-support and reducing the amount of compu-
tations that have to be done on-line [40].

In also regarding future assignments, the work of Rivera et al. seems more appropriate: they
formulate the container-to-mode assignment problem as a Markov Decision Process and ap-
proximate its solution by means of Approximate Dynamic Programming [45]. Kooiman et al.
investigate a more general spectrum of Time-stamp Stochastic Assignment Problems and a
number of solution methods for them. They conclude that their most potent method is a sim-
ulation method [35], which Rivera’s Approximate Dynamic Programming method resembles.
Lium, Crainic and Wallace take this approach one step further: they ‘discretise the possi-
ble futures’ and optimise against the discretised expected value [39]. They underline that
this discretisation has to be done in a way such that the optimisation is performed towards
the problem and not towards its discretisation. They formulate some stability properties by
which to measure this and study the effects of stochasticity and correlations on planning
procedures.

Le Li et al. study cooperative synchromodality: their model assumes that a number of ‘cen-
tral’ operators control their own subnetworks and that exchange between these networks
is determined by negotiation [36]. It may be worthwhile to investigate whether this can be
generalised to several settings where multiple agents make decisions towards their own goals
and cooperative goals. They formulate the problem in a Distributed Model Predictive Flow
Control setting and employ several solution methods from the field of systems and control
theory. Their model does not address stochastic elements.

Of course, when modelling agent-centric optimisation, so various parties in a joint network
working towards individual goals, it could make sense to study game theory. Though no
application of game theory to synchromodal transport was found, Theys approached cooper-
ative intermodality from a game-theoretical perspective [56]: that is to say, he studied how
cooperation can still be stimulated when agents set their own interests first. He briefly ex-
plains how costs and benefits can be divided using a cost-allocation game, which can be
solved with a Nucleolus if the game is subadditive. However, he also comments that for more
realistic scenarios of intermodal transport, including those where trucks may be used, the
cost-allocation game will often not be subadditive and more advanced game theory and com-
putation power may be required. Game theory in operations research is more widely studied
in the book by Baumol [14].

All in all, in the context of synchromodal transportation planning, this literature study sug-
gests that movement towards synchromodality has been done in two separate directions.
Firstly, in the studied literature, some deterministic methods are extended to optimise against
stochastic elements and other interpretations of uncertain future, with various degrees of so-
phistication. Such methods are important for building solution methods that respect current
and future real-time switching. They always balance computational efficiency against how
comprehensively to be prepared for any future outcome. Computational efficiency, of course,
is paramount for developing the on-line applications this research is devoted to. Secondly,
to a limited degree, more complex control structures have been studied than just having one
central control tower and no other parties with control and interests. Systems and control
theory has been used to model several decision-makers working towards common and indi-
vidual goals simultaneously in the context of synchromodal transport. Game theory has seen
applications in multimodal transport and more broadly in operations research, but seemingly
not yet in synchromodal transport. Most notably, no literature has yet been found that com-
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bines dealing with uncertain futures and dealing with non-central control structures.

This research will not explicitly focus on the combining of these two directions. Rather, it will
assume a simple control tower structure and investigate a wider range of possibly stochastic
elements and control elements. That is to say, whereas most papers focus on one specific el-
ement being stochastic, such as request arrival times or barge travel times, this research will
develop and investigate general stochastic optimisation methods for both container-to-mode
assignment and operational scheduling against a wide choice of stochastic elements. Using
this, a non-central control structure can be implied: if, for example, the handling processes
at terminals are controlled by some other entity and the net operator knows nothing about
these processes, the terminal handling times could be modelled as stochastic. This way, this
research will address the absence of real-time operational planning methods that allow for
real-time switching, for a class of logistic problems rather than for one given case.



3
Framework for synchromodal problems

This chapter is co-authored byMax Roberto Ortega del Vecchyo, graduate student at the depart-
ment of Applied Mathematics, Delft University of Technology, by Myrte De Juncker, graduate
student at the department of Applied Mathematics, Eindhoven University of Technology and
by the author of this thesis.

When solving an optimisation problem, it is important to first properly define it. In this
co-authored chapter, a framework is introduced by which to classify mathematical models
described in the literature on synchromodal transportation problems. In this thesis, three
different problems will be discussed; the framework will help in compactly describing the dif-
ferences between these three problems. As such, this question seeks to answer the following
research sub-question:

1. How can different scenarios of synchromodal freight transport be classified within an
exhaustive framework?

Other reasons for such a framework will be elaborated on in the next section, but briefly
put, this framework should help researchers and developers by pointing towards solution
methodologies that are commonly used in their problem instance.

Section 3.1 will describe the context and motivation of the framework. Section 3.2 will intro-
duce the classification framework and Section 3.3 will introduce a short-hand notation for
it. In Section 3.4, some examples are provided. In Section 3.5, these examples are used to
discuss strengths and weaknesses of the framework.

3.1. Motivation
Synchromodal transport is a topic that requires innovation from different fields of expertise.
Pfoser describes the following seven critical success factors for synchromodality [46]:

1. Network, collaboration and trust

2. Awareness and mental shift

3. Legal and political framework

4. Pricing/cost/service

5. ICT/ITS technologies

6. Sophisticated planning

7. Physical infrastructure

9
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From the list above, the different branches of knowledge become more clear. Roughly, it can
be argued that the first and second factor are mainly social problems, the third is a political
problem, the fourth is a mathematical, social and political problem, the fifth is a technolog-
ical problem, the sixth is a mathematical problem, and the seventh is a technological and
constructional problem. The framework is mainly interested in challenges within the realm of
mathematics. These challenges are therefore directly related to the fourth and sixth success
factors, but can also impact the first three in an indirect way, by promoting the effectiveness
of synchromodality.

Synchromodal problems are often divided into three main categories: strategical, tactical,
and operational. The same is true for mathematical synchromodal problems. These prob-
lems are related in a pyramidal-like structure in the following sense: tactical problems are
usually considered where a specific strategical instance is given, and operational problems
are frequently solved where a strategical and tactical structure is fixed. See also see Figure
3.1. Sometimes problems in two consecutive levels are solved simultaneously: for instance,
Behdani determines how frequently a resource should be sent out, which is considered a
tactical problem, while also allocating the flow of freight [15], which is considered an opera-
tional problem.

Mathematical synchromodal transportation problems on a tactical or operational level are
usually represented via tools from graph theory and optimisation [53]. However, more often
than not, the similarities end there: most of the models used to analyse a synchromodal
transportation network are targeted to a specific real problem of interest [53], and knowl-
edge and methods of other branches such as statistics, stochastic processes, or systems and
control are often used. The models emphasise what is most important for the given circum-
stances. Consequently, mathematical synchromodal transportation problems on a tactical
or operational level have been reviewed with approaches that may differ in many aspects:

• The exhaustiveness of the elements considered varies: for example, traffic conditions
are considered in some models [37], but not all.

• The elements that can be manipulated and controlled may vary: for example, the de-
parture time of some transportation means may be altered if suitable [15] or it may be
that all transportation schedules are fixed [40].

• The amount of information relevant to the behaviour of the network may vary, and if a
lack of information is considered, the way to model this situation may also vary [45, 62].

• Some models take other stakeholders with control into account and model their be-
haviour in different ways [36, 56], while many ignore other decision makers [15, 35, 40,
45, 62].

A model is not necessarily improved by making it increasingly exhaustive. As it happens with
most model-making, accuracy comes with a trade-off, in this case, computational power.
This computational burden is an intrinsic property of operational synchromodal problems
[51] and one that is of the utmost importance, given the real-time nature of operational prob-
lems: new information is constantly fed and it should be processed in time.

There is no rule of thumb for making the decisions above [53]. Also, each of the decisions
mentioned above will shape themodel, and likely steer its solutionmethods to a specific direc-
tion. Though literature reviews of synchromodal transportation exist [51, 53], it appears no
generalised mathematical model for synchromodal transportation problems has been found
yet, nor a way of categorising the existing literature by their modelling approaches.

The framework for mathematical synchromodal transportation problems on a tactical or oper-
ational level presented in this chapter aims to capture the essential model-making decisions
done in the model built to represent the problem. When no such model is specified, for ex-
ample in simply defining a problem, it shows the model-making decisions likely to be done in
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Figure 3.1: Two common categorisations of mathematical synchromodal problems. The three problems coloured in green are
the ones considered in this framework: problems more tactical or strategical than assigning schedules to resources are outside
the scope of this framework.

that case. Note that this ‘likeliness’ makes classification partly subjective. This classification
is done in an attempt to grasp the characteristics of the model or case in a compact way,
enabling easy classification and comparison between models and cases, as well as to see the
complexity of a specific case at a glance. Also, it provides a perspective to better relate new
problems with previous ones, thus identifying used methodologies for the problem at hand.

3.2. Framework identifiers and elements
The framework will refer to demand and resources. In synchromodal transportation models,
demand will likely be containers that need to shipped from a certain origin to a destination.
Resources can for example be trucks, train and barges. However, the framework allows for
a broader interpretation of these terms. In repositioning problems, empty containers can be
regarded as resources, whereas the demand items are bulks of cargo that need to be put in
a container.

The framework has two main parts. The first part consists of the identifiers: these are specific
questions one can answer about the model that depict the general structure of the model.
The other is a list of elements: these elements are used to depict in more detail what the
nature is of the different entities of the synchromodal transportation problem.

3.2.1. Identifiers
This section will elaborate on the identifiers of the framework. These identifiers are questions
about the model. They identify the number of authorities, so how many agents are in con-
trol of elements within the model and they will also identify the nature of different elements
within the model. The list of elements will be discussed in detail in Section 3.2.2, but they
are used to determine which components in the model are under control, which are fixed,
which are dynamic and which are stochastic. For instance, the departure time of a barge
may be a control element, but it could also be fixed upfront, or modelled as stochastic. Some
of the questions address how the information is shared between different agents and if the
optimisation objective is aimed at global optimisation or local optimisation. All the answers
on these questions together present an overview of the model, which can then be easily in-
terpreted by others or compared to models from the literature.

The identifiers that discuss the behaviour of the model in more detail are discussed below.

1. Are there other authorities (i.e. agents that make decisions)?
Here it is identified if there is one global controller that steers all agents in the network
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or that there are multiple agents that make decisions on their own.

• If there other authorities, how is their behaviour modelled: one turn only, equilibrium
or isolated?
If the previous question is answered with yes, so there aremultiple agents that make
decisions, one needs to specify how these authorities react to each other. Three
different ways are distinguished for modelling the behaviour of multiple authorities
in a synchromodal network:

– One turn only: this means that each agent gets a turn to make a decision. After
the decision is made, the agent will not switch again. For instance, there could
be three agents 𝐴, 𝐵 and 𝐶. Agent 𝐴 will first make a decision, then agent 𝐵 and
then agent 𝐶. The modelling ends here, since agent 𝐴 will not differ from its
first decision.

– Equilibrium: the difference between “one turn only” and “equilibrium” is that af-
ter each agent has decided, agents can alter their decision with this new knowl-
edge. In the same example: agents 𝐴, 𝐵 and 𝐶 make a decision, but agent 𝐴 then
decides to alter its decision due to the decision of agent 𝐵. If nobody wants to
alter their decision any more, an equilibrium between the agents is reached.

– Isolated: if the behaviour of the various authorities is isolated, it means that
from the perspective of one of the authorities there is only limited information
about the decisions of the other agents. For instance: agent 𝐶 needs to make
a decision. It is not known what agents 𝐴 and 𝐵 have chosen or will choose,
but agent 𝐶 knows historic data on the decisions of agents 𝐴 and 𝐵. Agent 𝐶
can then use this information to make an educated guess on the behaviour of
agents 𝐴 and 𝐵.

2. Is information within the network global or local?
This identifies if the information within the network is available globally or locally. If
the information is locally available, it means that only the agents themselves know for
example where they are or what their status is at a certain time. If the information is
global, this information is also known to the network operator, to all other agents or
both.

3. Is the optimisation objective global or local?
The same can hold for the optimisation objective. If all agents need to be individually
optimised, the optimisation objective is local. If the optimisation objective is global, the
best option for the entire network is the desired outcome.

4. Which elements are controlled?
In a decision problem, at least one element of the system must be in control. For exam-
ple: if one wants to determine which containers will be transported by a certain mode
in a synchromodal network, the demand-to-resource assignment is controlled. If the
problem is to determine which trains will depart at which time, the resource departure
time is controlled. An extensive list of elements is given in Section 3.2.2. Of course, the
controllable element can have constraints: perhaps the departure times of trains can
be determined, but they cannot depart before a certain time in the morning. This is still
a controllable element. Thus, an element is considered controllable if a certain part of
it can be controlled.

5. What is the nature of the other elements: fixed, dynamic, stochastic or irrelevant?
The other elements within the network can also have different behaviours. These four
are distinguished:

• Fixed: a fixed element does not change within the scope of the problem.

• Dynamic: a dynamic element might change over time or due to a change in the
state of the system, for example when the amount of containers loaded on a barge
affects its travel time, but this change is known or computable beforehand.
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• Stochastic: a stochastic element is not necessarily known beforehand. For instance
it is not known when requests will arrive, but they arrive by a Poisson process. It
might also occur that the time the request is placed is known, but the amount of
containers for a certain request follows a normal distribution.

• Irrelevant: the list proposed in Section 3.2.2 is quite extensive. It might occur that
for certain problems not all elements are taken into consideration to model the
system. Then these elements are irrelevant.

6. What is the optimisation objective?
This identifier is for the optimisation objective. One can look at the exact same system
but still want to minimise a different function. One could think of travel times and CO
emissions. It is also possible to provide a much more specific optimisation objective.
Examples of optimisation objectives are in Section 3.4.

3.2.2. Elements
In this section a list of elements is given that exist in most synchromodal transportation
problems. They are divided in two parts: resource elements and demand elements. The
resource elements are all elements related to the resources, which are mostly barges, trains
and trucks. However, for compactness, terminals are also viewed as a resource. The demand
elements are all elements related to the demand, which are most of the time freight or empty
containers. Most elements mentioned in this list are straight-forward, but small clarifications
are given if considered necessary.

• Resource elements:

– Resource Type (𝑅𝑇): Different modalities can be modelled as different resource
types. Another way to use this element is for owned and subcontracted resources.

– Resource Features (𝑅𝐹): These features can be appointed to the different resource
types or can have the same nature for the different types. For instance, it may be
that there are barges and trains in the problem, but their schedules are both fixed,
thus making the nature of the resource features fixed for both resource types.
⋄ Resource Origin (𝑅𝑂)
⋄ Resource Destination (𝑅𝐷)
⋄ Resource Capacity (𝑅𝐶): Indication of howmuch demand the different resources
can handle.

⋄ Resource Departure Time (𝑅𝐷𝑇)
⋄ Resource Travel Time (𝑅𝑇𝑇): Time it takes to travel from the origin to the desti-
nation in the case of a moving resource.

⋄ Resource Price (𝑅𝑃): This can be per barge, train, truck, container or other
resource item.

– Terminal Handling time (𝑇𝐻): Time it takes to handle the different types of modes at
the terminal. This can again be per barge, train, truck, container or other resource
item.

• Demand elements:

– Demand Type (𝐷𝑇): One can also think of different types of demand. For instance,
larger and smaller containers or bulk.

– Demand-to-Resource assignment (𝐷2𝑅): The assignment of the demand to the re-
sources.

– Demand Features (𝐷𝐹)
⋄ Demand Origin (𝐷𝑂)
⋄ Demand Destination (𝐷𝐷)
⋄ Demand Volume (𝐷𝑉): It might be that different customers have a different
amount of containers that are being transported.
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⋄ Demand Release Date (𝐷𝑅𝐷): The release date is the date at which the demand
item is available for transportation.

⋄ Demand Due Date (𝐷𝐷𝐷): Latest date that the demand item should be at its
destination.

⋄ Demand Penalty (𝐷𝑃): Costs that are incurred when the due date is not met or
when the container is transported before the release date, which is sometimes
possible when coordinated with the customers.

3.3. Notation
In this section, some notation is introduced which will make it easier to quickly compare
different models. Obviously, it is hard to keep a compact notation and still incorporate all
aspects of a synchromodal system. Therefore, some of details are left out of the compact
notation. When comparing models in detail, it is easier to look at all answers to the identi-
fiers given in Section 3.2.1. The proposed notation has similarities to Kooiman’s framework
for Time stamp Stochastic Assignment Problems [35], Kendall’s notation for classification of
queue types [33], the notation of theoretic scheduling problems proposed by Graham, Lawler,
Lenstra and Rinnooy Kan [28] and other frameworks.

A synchromodal transportation model is described by the notation:

𝑅|𝐷|𝑆 or 𝑅|𝐷|𝑆|𝐵,
depending on whether or not there are other authorities in the system. The letters denote
the following things:

• 𝑅: resource elements,

• 𝐷: demand elements,

• 𝑆: system characteristics,

• 𝐵: behaviour of other authorities (if applicable).

Resource and demand elements
The first two entries in the notation can be filled with all elements mentioned in the list in
Section 3.2.2. As mentioned before, an element can be one of five different things: controlled,
fixed, dynamic, stochastic or irrelevant. If the element of Demand-to-Resource assignment
(D2R) is being observed, the following notation reflects the five possibilities for this element:

• controlled element: [𝐷2𝑅],

• fixed element: 𝐷2𝑅,
• dynamic element: 𝐷2𝑅,
• stochastic element: 𝐷2𝑅,
• element irrelevant: 𝐷2𝑅.

Writing down all elements will still result in a large string of text. Therefore, it is suggested
to use 𝑅 and 𝐷 for the most common aspect and further noting only the elements that are
different. Suppose for example that for the resource elements everything is fixed, except the
departure time, which can be controlled. This will be written as: 𝑅, [𝑅𝐷𝑇].

If different resource types or demand types have a difference in some of the elements, one
can also write this down by separating the classifications by brackets. Suppose for exam-
ple: for barges everything is fixed, except for the dynamic capacity, but for the train the
capacity is stochastic and the other elements are fixed. This can be noted in the following
way: {𝑅, 𝑅𝐶}, {𝑅, 𝑅𝐶}. Note that this is the only way in which the types are incorporated into
the notation. To know which types are used in the different models, one has to look at the
expanded notation. This choice is also made for the sake of compactness.
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System characteristics
For the system characteristics, a notation was developed to immediately answer questions
1, 2 and 3 of the identifiers. Thus: are there other authorities, is the information global or
local and is optimisation global or local?

The notation is based on Figure 3.2. In a similar way to this figure, the four options for
the field System characteristics in the notation are:

• selfish: information global and optimisation local,

• social: information global and optimisation global,

• cooperative: information local and optimisation global,

• limited: information local and optimisation local.

Figure 3.2: Different models of a synchromodal network.

In order to see if there are other authorities within the system, either an (1) or (1+) is written
behind the option chosen. If it is known how many authorities there are it also possible
to denote that number between brackets. One could for example write down: social(1) or
cooperative(1+).

Behaviour of other authorities
If there are other authorities within the system, question 1𝑎 in Section 3.2.1 states their
behaviour should be known. The options are the same as discussed before:

• one turn only,

• equilibrium,

• isolated.

This field can be left blank if there are no other authorities in the system.
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Remarks

The notation we developed does not include the optimisation objective. This is done on pur-
pose. Within a specific model there is of course an option to look at different optimisation
objectives. Since these might be quite elaborate, no way was found to shorten these objec-
tives to a few words in a way that does them justice. This would only result in notation that
needs more clarification. If a reader is interested in the optimisation objective, he or she can
look at the entire list of identifiers instead of the compact notation.

This framework is developed in collaboration with multiple parties that study synchromodal
systems. Therefore, many of the resource and demand elements that are most common in
synchromodal problems are identified. However, for certain specific problems one might need
to extend the framework. This can easily be done in the same way as the framework was set
up. For example, one can add some elements within the list of elements or a different nature
of one of the elements. However, one must keep in mind that the scope of the framework
mainly covers mathematical problems on the operational and tactical levels.

3.4. Examples

As discussed earlier, one of the ideas of the framework is that, when starting work on a
new problem, one can first classify the assumptions this model would need, then investigate
papers that have similar classification. Therefore, a number of classification examples are
presented in this section for both existing models as well as new problems. First, the identi-
fier questions are answered for the Kooiman pick-up case [35] in Table 3.2. Then, it is shown
how this can be written in the compressed notation. Afterwards, Table 3.3 shows compressed
notation of some other problems described in papers, so that the interested reader can study
more examples of the framework classification. Then, using Table 3.4, some real life cases
are examined and possible classifications are given. These real life problems do not yet have
an explicitly described model, so this classification is based on how someone could approach
and model these practical problems, but other modellers may make other modelling deci-
sions. Finally, the given examples will be used as input for discussion.

In the Kooiman pick-up case, a barge makes a round trip along terminals in a fixed schedule
to pick up containers to bring back to the main terminal; however, the arrival times of the
containers at the terminals are stochastic. At each terminal, a decision has to be made of
how many containers to load onto the barge, and an estimate has to be made of how much
capacity will be needed for later terminals, all while minimising the amount of late contain-
ers. The actual time of residing at the terminal is disregarded. In Table 3.2, the framework
questions are answered. The reader is referred to Table 3.1 for a reminder of the framework
element abbreviations.

𝑅𝑂: resource origin 𝐷𝑂: demand origin
𝑅𝐷: resource destination 𝐷𝐷: demand destination
𝑅𝐶: resource capacity 𝐷𝑉: demand volume
𝑅𝐷𝑇: resource departure time 𝐷𝑅𝐷: demand release date
𝑅𝑇𝑇: resource travel time 𝐷𝐷𝐷: demand due date
𝑅𝑃: resource price 𝐷𝑃: demand penalty
𝑇𝐻: terminal handling time 𝐷2𝑅: demand-to-resource assignment

Table 3.1: Abbreviations of the framework elements used in the compressed notation.
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Other authorities No
Information global/local Global
Optimisation global/local Global
Resource elements 𝑅𝑇: barges

Controlled resource elements: none
𝑅𝐹: fixed, except 𝑇𝐻

Demand elements 𝐷𝑇: freight containers
Controlled demand elements: 𝐷2𝑅
𝐷𝐹: fixed, except 𝐷𝑅𝐷

Optimisation objective Maximise percentage of containers that travel by
barge instead of truck

Table 3.2: The framework questions applied to the Kooiman pick-up case.

Note that only barges have been taken into consideration as resources, not trucks. It would
have been possible to describe trucks as resources as well, but they are classified here as
part of the lateness penalty, because there is no decision-making in how the trucks are used.
Also, it may seem strange to speak of global or local information and optimisation when there
are no other decision-making authorities. The information is considered global, because the
only decision-making authority knows ‘everything’ that happens in the network; the optimi-
sation is considered global, because the decision-maker wants to optimise the performance
over all demand in the network put together, not over some individual piece or pieces of
freight.

Using the framework notation, most of Table 3.2 can be summarised as follows:
�̄�, 𝑇𝐻|�̄�, [𝐷2𝑅], 𝐷𝑅𝐷|𝑠𝑜𝑐𝑖𝑎𝑙(1). Only the optimisation objective and type specifications are lost
in this process.

In Table 3.3, the framework is applied to more problems from academic papers. In this
table, the optimisation objectives are included to illustrate the wide range of optimisation
possibilities. It is not actually necessary to describe the optimisation objective when using
the compressed problem notation. In some cases, especially practical problem descriptions,
optimisation objectives may not yet be explicitly known. Therefore, Table 3.4 leaves them
out. In that table, some practical problem descriptions are reviewed and the framework is
applied to these descriptions.
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Behdani [15]
�̄�, [𝑅𝐷𝑇]|�̄�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Objective: minimise transportation costs and waiting penalties
Kooiman [35]
�̄�, 𝑇𝐻|�̄�, [𝐷2𝑅], 𝐷𝑅𝐷|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Objective: maximise percentage of containers by barge instead of truck
Le Li [36]
�̄�,𝑅𝐷𝑇|�̄�, [𝐷2𝑅], 𝐷𝑉,𝐷𝑅𝐷,𝐷𝐷𝐷|𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒(1+)|𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚
Objective: with self-optimising subnetworks, minimise total cost in union
Lin [38]
�̄�, 𝑅𝐶,𝑅𝑃|�̄�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Objective: minimise total quality loss of perishable goods
Mes [40]
�̄�, 𝑅𝑃,𝑅𝐶|�̄�|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Objective: best modality paths against different balances of objectives
van Riessen [50]
{𝑅, ̄𝑅𝑂, ̄𝑅𝐷, [𝑅𝐷𝑇]}{𝑅, ̄𝑅𝑂, ̄𝑅𝐷}, ̄𝑇𝐻|�̄�, [𝐷2𝑅], 𝐷𝑃|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Objective: minimise transport and transfer cost, penalty for late delivery and cost of use of owned
transportation
Rivera [45]
𝑅|�̂�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Objective: minimise expected transportation costs
Theys [56]
�̄�, [𝑅𝑃],𝑅𝐷𝑇|�̄�, [𝐷2𝑅], [𝐷𝑃],𝐷𝑅𝐷,𝐷𝐷𝐷|𝑠𝑒𝑙𝑓𝑖𝑠ℎ(1+)|𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚
Objective: fairest allocation of individual costs
Zhang [62]
�̄�|�̃�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Objective: maximise balance of governmental goals

Table 3.3: For selected papers, a classification of where their problem falls in the synchromodal framework.

Lean and Green Synchromodal [4]
�̄�|�̄�, [𝐷2𝑅]|𝑠𝑒𝑙𝑓𝑖𝑠ℎ(1)
Rotterdam – Moerdijk – Tilburg [7]
�̄�, 𝑅𝑇𝑇, 𝑇𝐻|�̄�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Synchromodaily [11]
�̄�, [𝑅𝐷𝑇]|�̂�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Synchromodal Control Tower [8]
�̄�, [𝑅𝐶], 𝑅𝑃, 𝑅𝑇𝑇, 𝑇𝐻|�̄�, [𝐷2𝑅], [𝐷𝑉]|𝑠𝑜𝑐𝑖𝑎𝑙(1)
Synchromodal Cool Port control [1]
�̄�, [𝑅𝐷𝑇], 𝑅𝑇𝑇|�̄�, [𝐷2𝑅], 𝐷𝐷𝐷, 𝐷𝑃|𝑠𝑜𝑐𝑖𝑎𝑙(1)

Table 3.4: For selected use cases, a classification of where a possible model for this problem would fall in the synchromodal
framework.

Suppose now the reader wants to model an agent-centric synchromodal network. Here all
agents want to be at their destination as fast as possible, but everyone does share the infor-
mation about where they are and where they are going with everybody else in the network.
Table 3.5 shows the answer to the questions of the framework. In the short notation this
problem is:

𝑅 | �̂�, [𝐷2𝑅], 𝐷𝑃 | selfish(1+) | equilibrium
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Other authorities Yes
Information global/local Global
Optimisation global/local Local
Resource elements 𝑅𝑇: barges, trains and trucks

Controlled resource elements: none
𝑅𝐹: fixed

Demand elements 𝐷𝑇: containers
Controlled demand elements: 𝐷2𝑅
𝐷𝐹: stochastic, except 𝐷𝑃

Optimisation objective Minimise travel times

Table 3.5: The framework questions answered for the agent-centric synchromodal network.

3.5. Discussion
The given examples show some strengths and limitations of the classification framework,
which are discussed in this section.

One of the goals of this framework was to offer guidance when tackling a new problem: as an
example, if the problem from the Synchromodaily [11] case is modelled in a non-stochastic
way, one can now see that it may be worthwhile to study the solution method presented by
Behdani [15], because they then have the same compressed framework classification. If such
a record is kept of papers and models, this could greatly improve the efficiency of develop-
ments in synchromodal transport. This would fulfil the second goal of the framework: to
collect literature on synchromodal transportation within a meaningful order.

The final goal of this framework was to expose and compare relationships between seem-
ingly different problems: for example, one can now see that the problems described by Le Li
[36] and Theys [56] have similarities, in that they investigate negotiation between parties and
do not focus on timeliness of deliveries. Similarly, one can see that the model assumption
Mes [40] makes in disregarding resource capacity, is an unusual decision.

In the Synchromodaily case [11], the given interpretation of the problem implies that the
demand features are stochastic. However, the problem could also be approached in a de-
terministic way, depending on choices that the modeller and contractor make based on the
scope of the problem, the requirements on the solution and the available information. This
shows the most important limitation of the classification framework: what classification to
assign to a problem or model remains dependent on modelling choices, as well as interpre-
tation of problem descriptions. Even without framework, however, modelling choices will
always introduce subjective elements into how a real-world problem is solved. This frame-
work can be used to consistently communicate these underlying model assumptions.

A second limitation of the framework is that, because of the large amount of elements de-
scribed in it, two similar problems are relatively unlikely to fall in the exact same space in
the framework because of their minor differences. Therefore, one should not only look for
problems with the exact same classification, but also problems with a classification that is
only slightly different. In a more general sense, solution methods may apply to far more than
one of these very specific framework classes. If two problems have the exact same controlled
elements, it is imaginable that their models and solution methodologies may largely apply
to the other. As a point of future research, it could be interesting to investigate which clas-
sification similarities are likely to imply solution similarities, which may also be a stepping
stone towards a general solution methodology.

As a final limitation, the compressed notation does not reveal that the paper by Lin [38] and
the ‘Synchromodal Cool Port control’ [1] case both focus on perishable goods. This shared
focus is not only cosmetic: mathematically, it may imply objective functions and constraints
not focused on in other cases. To mitigate this limitation, anyone using the framework is



20 3. Framework for synchromodal problems

advised to offer both a compressed and an extended description of their problem or model.

3.6. Conclusion
In this chapter, a classification framework is offered to classify different mathematical syn-
chromodal problems. If the Kooiman pick-up case [35] is considered, where barges with a
fixed route have to decide how much containers to load at each location when the container
arrival times are stochastic, one could classify this problem as �̄�, 𝑇𝐻|�̄�, [𝐷2𝑅], 𝐷𝑅𝐷|𝑠𝑜𝑐𝑖𝑎𝑙(1),
which signifies that this is a problem where:

• all resource features are fixed (�̄�), except that the terminal handling times (𝑇𝐻) are
disregarded (𝑇𝐻);

• all demand features are fixed, except that the demand-to-resource assignment (𝐷2𝑅) is
controllable ([𝐷2𝑅]) and the demand release dates (𝐷𝑅𝐷) are stochastic (𝐷𝑅𝐷);

• the problem is 𝑠𝑜𝑐𝑖𝑎𝑙(1), so there is only one decision-making authority and the infor-
mation and optimisation are both global.

A comprehensive list of elements is given in Section 3.2.2; a short one is given in Table 3.1.

The framework is helpful in the following ways:

1. When investigating a problem, classifying it will help point towards literature that has
investigated similar problems;

2. The framework applies order to the dispersed research done in synchromodal transport;

3. The framework reveals similarities and common practices in modelling synchromodal
problems, which may assist in working towards general solution methodologies.

Additionally, this thesis investigates three problems and their differences can be quickly seen
by comparing their framework notations.

The most important limitation of the framework is that classification remains subject to the
subjectivity inherent to modelling. Other limitations are that similar problems are relatively
unlikely to have the exact same classification due to the extensiveness, and that information
is lost on the optimisation objective and other priorities. For each of these limitations, it is
suggested to combat them by more closely reading the concerned papers.
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Deterministic container-to-mode

assignment
In this chapter, the following research sub-question will be answered:

2. How can a low cost net-centric container-to-transport assignment be found fast enough
for on-line use if everything is known beforehand?

With that, the first and most basic problem of this thesis is studied. With determinis-
tic container-to-mode assignment (Problem 1), the following �̄�|�̄�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)-problem is
meant:

to assign freight containers to transports, so that the containers reach their destinations
before a deadline against minimum total cost, given that the transports have fixed given

schedules and all features of the problem are deterministic.

An example is given in Figure 4.1.

A B

Price: 523
Capacity: 20Departure: 09.30h

Price: 498
Capacity: 10

Departure: 11.00h

Arrival: 13:30h

Arrival: 12:30h

Volume: 18
Due at: 14.00h

10

8

Figure 4.1: An example of deterministic container-to-mode assignment, or Problem 1. 18 containers at location A are due at
location B at 14.00h. There are two available transits: the top one has departure time 09.30h, arrival time 13.30h, price 523 and
capacity 20; the bottom one has departure time 11.00h, arrival time 12.30h, price 498 and capacity 10. The cheapest feasible
container-to-mode assignment is to send 10 containers over the bottom transit and 8 over the top transit.

Deterministic container-to-mode assignment has several direct and indirect applications.
The studied one is of planning container flows on an operational level, given some trans-
ports with fixed schedule and no stochastic elements. However, it is also reinterpretable
to intermodal service network design on the tactical level, for example to determine weekly
freight flows: this is merely a difference in time-scale and whether time ‘loops’ or not. Even

21
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when considering stochastic elements, being able to solve deterministic container-to-mode
assignment is useful for comparing what could have been possible if the future was known
or predicted well enough. As a final use, Chapter 5 will contain stochastic container-to-mode
subproblems that reduce to deterministic ones.

4.1. Modelling the problem as a minimum cost multi-commodity
flow problem on a space-time network

The network represented in Figure 4.1 differs from classical graphs in that the edges have
time restrictions attached to them. Though time-dependent graphs have been studied as
such [24], this thesis uses the common technique of rewriting the graph to a space-time
network [12, 29]. Solving Problem 1 can then be done by solving the non-negative integral
minimum cost multi-commodity flow problem on such a space-time network. Both concepts
are elaborated on in this section, as well as extensions with which to allow some lateness of
deliveries and calling on trucks in times of need.

4.1.1. Space-time networks
Graph problems with time restrictions may benefit from being written as a space-time net-
work. Such a representation can make the time restrictions explicit in the graph structure.
A space-time network is a digraph where a node does not represent a physical place, but
rather a physical place at a certain timestep. If 𝐷 = (𝑉, 𝐴) is a digraph where the arcs have
departure and arrival times, a space-time network 𝒮 can be based on it in the following way:

• Pick a number of time steps 𝑇, based on the desired time window length and time
discretisation fineness;

• For 𝑣 = 1,… , |𝑉|, 𝑡 = 0, 1, … , 𝑇, define space-time node 𝑠 , ;

• Let 𝒮 have as node set the ‘grid’ {𝑠 , |𝑣 ∈ 𝑉, 𝑡 ∈ {0, 1, … , 𝑇}};

• Initialise the arc set of 𝒮 as all ‘waiting arcs’, in other words, all arcs in the set {(𝑠 , , 𝑠 , )|𝑣 ∈
𝑉, 𝑡 ∈ {0, 1, … , 𝑇 − 1}} with weight 0 and capacity ∞;

• For every arc 𝑎 in 𝐴, translate it to an arc in 𝒮 by finding the space-time nodes corre-
sponding to the start and end points of 𝑎, then connecting them with the same weight
and capacity as 𝑎. Add the resulting arc to the arc set of 𝒮;

• Add ‘truck arcs’ to the arc set of 𝒮, depending on the modelling choice for trucks that
can be called on at any time. Some of the possible choices will be presented in Section
4.3.

In Figure 4.2, the network of Figure 4.1 is translated to a space-time network. This space-time
network assumes that there are no trucks, thus no truck arcs. Indeed, the time restrictions
described in Figure 4.1 are now embedded explicitly in the graph structure of the graph in
Figure 4.2.

4.1.2. Minimum cost multi-commodity flow
In the previous section, it was shown how the studied problem can be represented in a space-
time network, thus how the time dependencies can be made explicit in the graph structure. A
question that was not answered, however, was how to optimally move the container demands
from their origins in space-time to their due destinations in space-time. This can be done
by solving the non-negative integral minimum cost multi-commodity flow problem (MCMCF) on
the space-time network.

The MCMCF is the problem of moving flow of different types as cheaply as possible through
a network where arcs have weights and may have limited capacity. More specifically, denote
for some digraph 𝐷 = (𝑉, 𝐴) and list of commodities 𝐾 the following variables and parameters:

• The variables 𝑥 , for the amount of flow of commodity 𝑘 that is being sent over arc (𝑖, 𝑗);
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A

B

09:00 10:00 11:00 12:00 13:00 14:00

18

Price: 523
Capacity: 20 Price: 498

Capacity: 10

Figure 4.2: The network described in Figure 4.1, translated to a space-time network without trucks. The black arcs represent
‘waiting arcs’ with infinite capacity and cost zero. The 18 containers are situated at the white square node in space-time and
need to go to the black square node in space-time.

• The parameters 𝑐 , for the capacity of arc (𝑖, 𝑗), so the maximal total amount of flow that
can be sent over this arc;

• The parameters 𝑓 , for the cost of sending one unit of flow of any commodity over arc
(𝑖, 𝑗);

• The parameters 𝑠 for the source node from which the flow of commodity 𝑘 emanates,
and 𝑡 for the sink node where all the flow of commodity 𝑘 should go;

• The parameters 𝑑 for the amount of flow of commodity 𝑘 that emanates from 𝑠 and
needs to go 𝑡 .

Then the MCMCF can be written as the following minimisation problem, in integer linear
programming (ILP) form:

min ∑( , )∈ ∑ ∈ 𝑓 , 𝑥 ,
𝑠.𝑡. ∑ ∈ 𝑥 , ≤ 𝑐 , ∀(𝑖, 𝑗) ∈ 𝐴 (4.1)

∑( , )∈ 𝑥 , = 𝑑 ∀𝑘 ∈ 𝐾 (4.2)

∑( , )∈ 𝑥 , = 𝑑 ∀𝑘 ∈ 𝐾 (4.3)

∑( , )∈ 𝑥 , = ∑( , )∈ 𝑥 , (∀𝑘 ∈ 𝐾)(∀𝑣 ∈ 𝑉\{𝑠 , 𝑡 }) (4.4)

𝑥 , ∈ ℕ (∀(𝑖, 𝑗) ∈ 𝐴)(∀𝑘 ∈ 𝐾) (4.5)

Inequality (4.1) states that the total flow on any arc cannot exceed the arc capacity. Equality
(4.2) states that for every commodity 𝑘, a total of 𝑑 flow of commodity 𝑘must leave the source
node 𝑠 . Similarly, equality (4.3) states that exactly 𝑑 flow of commodity 𝑘 must enter the
sink node 𝑡 . Equality (4.4) states that in all other nodes, there must be flow conservation:
whatever flow of some commodity enters the node, must also leave it. Finally, (4.5) states that
the amount of flow of any commodity that may traverse any arc must be a natural number.
The latter is essential for modelling the problem at hand, as for the practicality of the model,
it is not allowed to put a non-integral or negative amount of containers onto a transit.

Now, Problem 1 can be modelled and solved as follows. Given some transport network with
some fixed mode schedules, one can translate this to a space-time network. Next, every batch
of containers that is released at some location and some time and that is due at some location
and some time, can be interpreted as a commodity with corresponding 𝑑 (volume), 𝑠 (source
node in the space-time network) and 𝑡 (sink node in the space-time network). Finally, the
optimal assignment can be seen as an instance of the MCMCF, and the corresponding ILP
can be solved using an ILP solver.

The MCMCF and other linear cost multicommodity network flow problems are well studied,
and the interested reader is referred to Kennington’s survey [34].
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4.1.3. Allowing lateness with virtual sinks
In the logistics business, deadlines are often considered to be soft [17, 55]. Henceforth, this
report will refer to a due date as the time demand is supposed to be at its destination, which
may be violated against some penalty. With deadline, a hard final date will be meant. A
demand item is allowed to have both a due date and a deadline.

One may easily expand the given model to incorporate these due dates and deadlines with
time-specific unit penalties. An example of this is given in Figure 4.3. The idea is to, for every
commodity 𝑘, replace the original sink space-time node, 𝑡 , by a virtual sink node 𝑣 floating
outside of space-time. Suppose the due location is 𝐿, the due time is 𝑡, the deadline is 𝑢 and
the time-dependent unit penalty is specified by some (𝑢 − 𝑡)-dimensional vector �⃗�. Then the
first node space-time node ‘after’ 𝑡 , 𝑠 , , can be connected by an arc to 𝑣 with the first
entry of �⃗� as its weight and with infinite capacity. The same can then be done at times 𝑡 + 2,
𝑡 + 3, …, 𝑢. Of course, an arc with infinite capacity and cost 0 should be drawn from 𝑡 to 𝑣
to account for goods delivered on time. One may choose to implement connections beyond
time 𝑢 as well, using the last entry of �⃗� as weight; this is useful to guarantee feasibility in
Chapter 5. The last entry of �⃗� can then be made arbitrarily high to imply deadlines. If they
are all made arbitrarily high, this implies that the due date equals the deadline, on other
words, that no delay is allowed. It is worthwhile to note that the presented extension makes
the model applicable to �̄�|�̄�, [𝐷2𝑅], 𝐷𝑃|𝑠𝑜𝑐𝑖𝑎𝑙(1) problems where the delay penalty depends
arbitrarily on time and linearly on amount.

𝑠

𝑡

𝑣

𝑓 = 0 𝑓 = �⃗� 𝑓 = �⃗� 𝑓 = �⃗�

𝑡 𝑡 + 1 𝑡 + 2 𝑢

18

Figure 4.3: 18 containers should be delivered to , but they are allowed to be up to three time steps late, if they are made to be
due at virtual node . If containers are time steps late, the penalty is ⋅ ⃗ . If the green arc is very expensive and ⃗ is very
low, it may be worthwhile to send containers over the red arc rather than the green arc. One may choose to connect the nodes
beyond to as well, against cost ⃗ or , in order to guarantee the existence of feasible paths at any time step.

4.2. Solving to optimality
If there is only one batch of containers, the MCMCF reduces to a non-negative integral mini-
mum cost flow problem. This problem is known to be solvable in polynomial time and space,
because the continuous version is known to have an integral solution polytope [30]: in other
words, every vertex of the solution polytope has integral coordinates. Every linear program
has its optimal values in vertices of its solution polytope. LP solvers can find the optimal
solution, thus the optimal vertex, in polynomial time and space, for example by using inte-
rior point methods. Therefore, the optimal solution of the LP-relaxation of the non-negative
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integral minimum cost flow problem can be found efficiently. This gives a lower bound on
the non-negative integral minimum cost flow problem. But because this optimum is in a
vertex and all vertices have integral coordinates, this optimum has only integral flows, thus
is a feasible solution to the non-negative integral minimum cost flow problem that equals a
lower bound on the problem, thus is an optimum. In other words: if the LP-relaxation of
a problem has an integral solution polytope, the integral optimum can be found simply by
using an LP-solver.

Finding an non-negative integral two-commodity flow on a directed graph, however, is proven
by Even to be NP-complete [25]. Finding one with minimum cost and with at least two com-
modities must be at least as difficult. In some cases, it is possible to easily rewrite a MCMCF
as a single minimum cost flow problem, by creating a super source 𝑠 from which all sources
receive their flow and a super sink 𝑡 where all sinks send their flow to. An example of this
is given in Figure 4.4. However, the optimal single minimum cost flow cannot always be
reinterpreted as a feasible multi-commodity flow, as shown in Figure 4.5.
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Figure 4.4: On the left, a two-commodity minimum cost flow problem on a space-time network, where all arcs have infinite
capacity. On the right, an equivalent single-commodity minimum cost flow problem, where the dashed arcs have indicated
capacity and all the others have infinite capacity. Every flow that is feasible in the network on the right, can be reinterpreted as
a feasible flow in the network on the left, because no flow from can ever reach and vice versa.
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Figure 4.5: On the left, a two-commodity minimum cost flow problem on a space-time network, where all arcs have infinite
capacity and the red arcs are more expensive than the black arcs. On the right, a single-commodity minimum cost flow problem
on the same network but with a super source and super sink, where the dashed arcs have indicated capacity and all the others
have infinite capacity. The optimal flow in the problem on the right will send 4 containers over the black arcs and 1 over a red arc,
as the black arcs are cheaper than the red arcs. However, this result cannot be reinterpreted as a feasible flow for the problem
on the left.

Surprisingly, however, the LP-relaxation of the studied MCMCF’s almost always already has
an integral optimum. The implication is that it almost always suffices to solve the MCMCF
by means of an LP solver, which are typically fast, instead of an ILP solver, which are typi-
cally slow. In generating 500 random instances of MCMCF on space-time networks, all 500
had this immediate integrality. Ozdaglar noted that most of their non-integral optima were
due to some form of perfect symmetry in a cycle [43], which could lead one to suspect that
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digraphs without directed cycle do have an integral solution polytope. This, unfortunately,
is not always true: Figure 4.6 shows a digraph without directed cycle which has no feasible
non-negative integral two-commodity flow, but which does have a non-integral one. Figure
4.7 shows a space-time network based on this previous digraph. In this space-time network,
two expensive truck arcs have been added to enable integral feasible flows. But even then,
solving the LP-relaxation on the instance in 4.7 gives a non-integral optimum, as it will try
to squeeze itself through the cheap red network isomorphic to the one in Figure 4.6.

𝑠
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𝑡

1

1 𝑐 = 1 ∀(𝑖, 𝑗)

Figure 4.6: A digraph without directed cycles. Assuming that each arc has capacity 1, it has no feasible non-negative integral two-
commodity flow, but it does have a non-integral one: namely, send half a unit of commodity 1 over ( , , , , , ) and the other
half over ( , , , , , ) while sending half a unit of commodity 2 over ( , , , , , ) and the other half over ( , , , , , ).

The LP-relaxations of these examples have non-integral optima, because the cheap paths
are unfortunately ‘intertwined’. When randomly generating an instance by drawing cheap
arcs between random points in space-time, one may expect that a situation like this seldom
occurs. However, it may occur quite often in practice, when a handful of barges travel over a
roughly similar sequence of locations and overtake each other. Therefore, without knowing
or specifying the dynamics of the system, it is difficult to say how often this case of a non-
integral LP-relaxation optimum will occur.

What can be predicted, however, is that they are unlikely to influence computational time
much. In the given examples, as soon as one of the non-integral flow variables is branched
upon, the resulting branches do have integral LP-relaxation optima. This property is due
to the fact that the conflicts caused by these entwinings are ‘resolved’ by giving one of the
paths priority. As branch-and-bound applications first check whether the LP-relaxation has
an integral optimum, the advise is to simply use ILP solvers: if their search trees do not have
depth 1, they should have depth no more than the amount of commodities caught in each
entwining, given that resolving entwinings does not create new entwinings.

A final note made on this problem, is that the problem and its ILP may lend themselves
well to Lagrange relaxation on the capacity constraints: in other words, to punish flows that
exceed capacity, but not forbid them. Lagrange relaxations are known to give bounds at least
as strong as LP-relaxations [32], and the optimum of the Lagrange relaxation can probably
be computed easily: without the capacity constraints, the problem reduces to a shortest
path problem for each request. These Lagrange relaxations are irrelevant when the solution
polytope is indeed integral, but may give improvements for non-integral solution polytopes
or help in developing shortest path-based heuristics.

4.3. Infinite resource models and corresponding graph reductions
An assumption that is sometimes made in literature [35] is that freight can always be trans-
ported from any location to any other location by trucks with infinite capacity and a given
speed, but that trucks are more expensive than other modalities. Instead of trucks, one
could also model the option of subcontracted transport that ensures timely arrival against
a price, without much mathematical difference. This method of modelling will prove useful
in Chapter 6 to limit the sheer amount of vehicles to explicitly control. From this point, a
distinction is made between infinite resources, like a separate truck department or subcon-
tracted transportation, and vehicles, like controlled barges and trains. To steer intuition, the
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Figure 4.7: An instance where the LP-relaxation of the MCMCF has a non-integral optimum, given that the red arcs are cheap
and have capacity 1, while the green arcs are expensive and have capacity 100. There is an integer feasible point, namely by
sending all flow over the green arcs. However, it is possible and cheaper to send the flow only over red arcs; this subgraph is
isomorphic to the one in Figure 4.6.

terms ‘trucks’ and ‘infinite resources’ will sometimes be used interchangeably throughout
this report.

If infinite resources are modelled, so it is allowed to send containers from any place to any
other place at any time against a high price by for example trucks, this would imply that
a lot of truck arcs should be added to the previously discussed space-time networks to in-
corporate this flexibility. However, adding a truck arc to the space-time network from any
location to any other location at any time comes at the cost of adding 𝑛(𝑛 − 1) ⋅ (𝑇 − 1) arcs,
thus 𝑛(𝑛 − 1) ⋅ (𝑇 − 1) ⋅ |𝐾| variables, where 𝑛 is the number of locations in the system, 𝑇 is
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the final time step and 𝐾 is the set of observed commodities. Even though it was argued
that ILP solvers should find an optimum in relatively little time, the underlying LP solvers do
become significantly slower when an excessive amount of variables are added. The overall
computational performance can be significantly improved by excluding unnecessary nodes
and arcs in the space-time networks and conflating waiting arcs where possible. How such a
reduction process can be done, depends on the modelling choices for the trucks. Therefore,
this section describes two possible models for trucks with a corresponding graph reduction.

4.3.1. Double matrix infinite resources
Suppose that, indeed, the following assumptions are made:

• Trucks or other infinite resources can always be employed from anywhere to anywhere
with infinite capacity;

• The infinite resources have a fixed travel time𝑀 , that depends only on origin-destination
pair (𝑖, 𝑗);

• Transporting containers with an infinite resource from location 𝑖 to location 𝑗 ≠ 𝑖 has a
unit cost 𝑀 , per container that depends only on origin-destination pair;

• Triangle inequality: trucking from A to B directly is always cheaper than through C.

Allowing such trucks has two important merits: it is now possible to send containers by truck
if all other modality-paths are infeasible in time or capacity, and under smart choices of the
matrices 𝑀 ,𝑀 , the model now more closely simulates the practice of dividing a journey up
into pre-haul, long haul and post-haul.

Figure 4.8 shows a space-time network where it is always possible to take a truck from
any location to any other location in one time step. The truck arcs have high cost and infi-
nite capacity. This space-time network has a lot of redundancy:

• Time step 0 is superfluous;

• Because of the triangle inequality, location A is useless;

• First trucking from C to D and then waiting one time step is equivalent to first waiting
one time step and then trucking from C to D. Only one truck arc is needed to represent
this option of trucking. In order to facilitate synchromodality, so to facilitate keeping
options open until more has become known, one could choose to truck only at the last
minute to go to 𝑡 ;

• Similarly, if flow is to travel over some non-truck transit arc, one could truck only at
the last minute to catch that transit;

• If the waiting arc from 𝑠 , to 𝑠 , is used by some flow, then that same flow will always
use the waiting arc from 𝑠 , to 𝑠 , , so they might as well be joined into one arc.

From the above observations, it becomes clear that many nodes and arcs can be removed
from the network in Figure 4.8 to obtain a reduced instance that has the same optimum, but
involves a lot less arcs, thus a lot less variables, thus a lot less computation to solve. Most
importantly, many redundant paths can be removed by allowing trucking only at the last
moment, either to go to the (non-virtual) sink or to catch some transit. Rather than first gen-
erating a full space-time network and then removing arcs and nodes, it requires significantly
less computation to already exclude all unnecessary arcs and nodes during generation. The
employed way to generate such a reduced instance is described as Algorithm 1.

Using Algorithm 1, one could obtain a reduced instance to replace the instance shown in
Figure 4.8. This reduced instance is shown in Figure 4.9. Aside from creating a reduced
space-time network, one can also discard the flow variables for all but one commodity on the
arcs that end in a virtual sink.
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Figure 4.8: An unreduced space-time network with double matrix infinite resources: it is possible to truck with infinite capacity
from any location to any other location at any time against some high price. This price depends only on origin-destination pair.
Regardless of origin-destination pair, the travel time is always one time step. The thin green arcs are these expensive truck arcs
with infinite capacity. This network contains a lot of redundancy under these assumptions: trucking immediately from to and
then waiting one time step is equivalent to the converse.

It can be seen that more reduction is possible still: for example, the node at (𝐵, 2) is useless.
More importantly, under the current method, more and more nodes will remain preserved as
time progresses, because they could technically act as pre-sink nodes from which to depart to
a virtual sink if indeed all nodes after the deadline are still connected for feasibility. However,
one may see by inspection that the pre-sink node at (𝐷, 6) in Figure 4.9 is useless, assuming
that lateness penalties are non-decreasing. Aside this issue of more and more nodes being
marked as relevant, there should also be opportunities in not always allowing trucking to
catch some transit, but only if the added truck price and transit price are lower than the cost
of immediate trucking to the transit’s destination.

But in spite of these possible improvements, the current algorithm already fares well in com-
bating the growth of unnecessary truck arcs. The instance in Figure 4.8 has 102 arcs, thus
102 variables as there is only one commodity, whereas the instance in Figure 4.9 has only
19 arcs. While more ideas for instance reduction are imaginable, they will be left for further
research.
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Data: List of locations, list of requests (volume, due time, deadline, due location,
release time, release location, lateness penalty vector �⃗�) and list of vehicle
transits (capacity, unit price, departure time, departure location, arrival time,
arrival location), infinite resource travel time matrix 𝑀 , infinite resource travel
time matrix 𝑀

Result: Instance of MCMCF on a reduced space-time network
Initialise an empty space-time network 𝒮;
Determine first time step 𝑇 as first release time among requests;
Request a final time step 𝑇 , or generate it by some means;
Eliminate all locations that are not interesting, so that are not a request’s source or
sink node or a transit’s departure or arrival location;
for request in list of requests do

Add space-time source node to 𝒮, if not already present;
Add virtual sink node to 𝒮;
for 𝜏 in 𝑑𝑢𝑒 𝑡𝑖𝑚𝑒, 𝑑𝑢𝑒 𝑡𝑖𝑚𝑒 + 1,… , 𝑇 do

Add space-time pre-sink node at (𝑑𝑢𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝜏) to 𝒮, if not already present;
Add arc from space-time pre-sink node to virtual sink node with infinity capacity
and weight 0 if 𝜏 = 𝑑𝑢𝑒 𝑡𝑖𝑚𝑒 and with weight dictated by �⃗� otherwise;

end
Add a truck arc to 𝒮, if not already present, from any
(𝑖 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≠ 𝑑𝑢𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑗, 𝑑𝑢𝑒 𝑡𝑖𝑚𝑒 −𝑀 , ) to (𝑑𝑢𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑑𝑢𝑒 𝑡𝑖𝑚𝑒) with
infinite capacity and weight dictated by 𝑀 , , adding nodes if necessary;

end
for transit in list of transits do

if 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 ≥ 𝑇 and 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 ≤ 𝑇 then
Add arc to 𝒮, with supplied weight and capacity, adding nodes if necessary;
Add a truck arc to 𝒮, if not already present, from any
(𝑖 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≠ 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑗, 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 −𝑀 , ) to
(𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒) with infinite capacity and weight dictated
by 𝑀 , , adding nodes if necessary;
For every request with 𝑑𝑢𝑒 𝑡𝑖𝑚𝑒 ≥ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒, add a truck arc to 𝒮 if not
already present from (𝑖 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒) to
(𝑗 = 𝑑𝑢𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 +𝑀 , ) with cost 𝑀 , ;

end
end
Add horizontal waiting arcs between space-time nodes ;

Algorithm 1: Generating a reduced instance of MCMCF on a space-time network, given that infinite
resources are modelled as double matrix infinite resources.

Text

4.3.2. Other or no infinite resources
If there are no trucks in the model, then of course, no truck arcs need to be generated.
However, one could also choose not to generate truck arcs in the fashion of Section 4.3.1
because one of the key assumptions does not hold: perhaps trucks have limited capacity,
or they cost more in the weekends than on weekdays, or the trucks have to be explicitly
modelled to guarantee feasibility. Many truck models in this wider range of options could
still be modelled by giving them space-time arcs as one would with any other modality. The
necessity of generating a reduced instance would greatly depend on how many truck arcs are
added this way, and the methodology of generating a reduced instance would greatly depend
on the assumptions that do still hold. Therefore, further commentary on reduction methods
is not provided here, save two remarks. A reduction that should still be applicable in most
cases, is the conflation of waiting arcs: if a node has a waiting arc as its only incoming arc
and a waiting arc as its only outgoing arc, the node may as well be removed. Additionally,
one can always discard, for arcs going to a virtual sink, any flow variable that is not of the



4.4. Numerical results 31

𝑠

𝑡

𝑣

𝑓 = 0 𝑓 = �⃗� 𝑓 = �⃗� 𝑓 = �⃗�

0 1 2 3 4 5 6

A

B

C

D

Figure 4.9: A reduced version of the instance in Figure 4.8, obtained using Algorithm 1. This reduced instance has only 19 arcs
instead of the original 102. Further reduction should still be possible: for example, location A is useless here, as is the final
pre-sink node at ( , ).

commodity that the sink belongs to. For the rest, the reader is advised to construct some
reduction methodology, if necessary, by observing the given assumptions and Algorithm 1.

4.4. Numerical results
In this chapter, it was shown that Problem 1 can be solved to optimality by solving a mini-
mum cost multi-commodity flow problem on a space-time network. It was argued that this
can be done in relatively little time, because of the rarity of instances where the LP relaxation
has a non-integral optimum. Furthermore, a problem reduction procedure was shown in
the form of Algorithm 1 that should decrease computation time. In this section, numerical
results are presented to support this claim.

In the experiments, 10 random instances were generated in each of four test classes. These
instances were made by generating lists of random transits and requests, given a time-scale
of the problem and a list of locations. The transits had random capacity, duration, depar-
ture time and price, though the prices were always considerably below the standard truck
price. The orders had random volume, release time, due time and penalty vector, including
instances where the penalty would become arbitrarily large to simulate hard deadlines. Each
instance in test class 𝑖 = 1, 2, 3 concerned 5𝑖 random requests and random transits over 5𝑖
locations, within a time scale of 5𝑖 + 1 time steps. Test class 4 contained instances of ‘real
life size’: based on data from a NWO-affiliated use case, instances in this class concerned
40 random requests and 60 random transits over 32 locations and 121 time steps. This was
the minimum size specified to reflect operational use, where 121 time steps correspond to
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the 120 hours of a five day working week. Though the instances in this class are scaled
to the required size of the use case, the random placement of the transit arcs does not re-
flect scheduling procedures from the use case: rather, they reflect the ‘pandemonium’ a net
operator may experience when supervising container-to-mode assignment over uncontrolled
vehicles.

For each of these test classes, every instance was solved with and without the reduction
from Algorithm 1, assuming double matrix infinite resources in both cases. The objective
values, of course, were equal and optimal in both cases: rather, the solution two methods
were compared in running time. When solving an instance, it was randomly determined
which method to solve it with first, so as to mitigate cumulative slowdown bias. Also, for
each of the 80 ILP’s solved this way, it was monitored if indeed its LP relaxation had an in-
tegral optimum. The methods were implemented in Python 3.4, using the PuLP-library and
its built-in non-commercial MILP solver. The experiments were run on an Intel(R) Core(TM)
i7-6600U CPU @ 2.60GHz 2.80 GHz processor. The results can be viewed in Table 4.1. These

Class 1 Class 2 Class 3 Class 4
Average running time with reduction (in seconds) 0.182 0.430 0.884 8.889
Variance of the above (in squared seconds) 3.44 ⋅ 10 3.41 ⋅ 10 4.80 ⋅ 10 0.948
Amount of instances with integral LP-relaxation
optimum

10 10 10 10

Average running time without reduction (in sec-
onds)

0.2972 1.046 3.061 36.33

Variance of the above (in squared seconds) 1.07 ⋅ 10 4.90 ⋅ 10 3.07 ⋅ 10 0.506
Amount of instances with integral LP-relaxation
optimum

10 10 10 10

Table 4.1: Numerical results for deterministic container-to-mode assignment, or Problem 1. Class 4 contains instances of a size
that was specified as useful within an operational use case.

results support the following valuable conclusions:

• Algorithm 1 significantly reduces computation time;

• Without or without reduction, this problem is solved to optimality fast, even in instances
of ‘real life size’;

• The variation in computation time grows faster when using Algorithm 1, probably due
to the variation in how much reduction is possible;

• Among the 80 ILP’s, none was encountered of which the LP-relaxation had a non-integral
optimum.

4.5. Discussion
The methods described in this chapter have certain strong merits:

• An optimal solution can be found in surprisingly little time, given that the problem is
NP-hard;

• The method naturally models the option of consolidation.

However, there are still points of attention that could be investigated in future work:

• The given methods may still be not fast enough when used in iterative methods in an
on-line setting. A heuristic or further graph reduction may still be required;

• Possibilities for further graph reduction were mentioned, but not explored;

• There is currently no penalty in cost or time for containers switching modality, which
may not model reality well;
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4.5.1. Added value
Solving this problem by solving a min-cost multi-commodity flow on a space-time network is
not an entirely new idea [44, 53]. Where, then, lies the added value of this research?

• It has been proven that these methods can be translated well from tactical problems to
operational problems and that they are fast enough for operational on-line use;

• The possibility to model soft deadlines was added;

• A significant reduction of computation time was achieved using Algorithm 1;

• A partial explanation for the low computation time was found by investigating graph
theory, and the notion that an LP-solver is sufficient rather than an MILP-solver was
shown to be true in 100% of the randomly generated instances.

4.6. Conclusion
This chapter sought to answer the following research sub-question:

2. How can a low cost net-centric container-to-transport assignment be found fast enough
for on-line use if everything is known beforehand?

Deterministic container-to-mode assignment, or ‘Problem 1’, was defined to be the problem
of assigning freight containers optimally to transport modalities with predetermined sched-
ules, in the presence of time constraints and the absence of stochastic elements. It can
be solved to optimality by solving the non-negative integral min cost multi-commodity flow
problem on a space-time network. This model can be expanded to allow lateness, by intro-
ducing virtual sinks. Due to NP-hardness, solving the problem requires the use of an ILP
solver. In all randomly generated instances, however, the LP-relaxation has an integral op-
timum. In a carefully constructed instance, this was not the case, but only one branching
was required. Therefore, it is was hypothesised that ILP solvers will find an optimal solution
relatively quickly in almost all cases.

The option was added to truck from anywhere to anywhere with infinite capacity and an
origin-destination dependent unit cost. Algorithm 1 generates a reduced instance under this
truck model, in order to exclude a large amount of superfluous arcs and variables. Further
reductions are possible and recommended for future research.

Random instances of different sizes were generated to test this solution methodology on,
with or without the reduction from Algorithm 1. They show that problems of a ‘real life size’
can be solved to optimality in an average 8.889 seconds, even when using a non-commercial
MILP solver on a single computer. This makes the method suitable for on-line use.

To answer the sub-question: by solving the min cost multi-commodity flow problem on a
space-time network with an MILP-solver, an optimal assignment can be found in a matter of
seconds for problems of ‘real life size’.
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assignment
In this chapter, the following research sub-question will be answered:

3. How can a low cost net-centric container-to-transport assignment be found fast enough
for on-line use if new data is still expected to come in?

In the previous chapter, a method was developed to solve deterministic container-to-mode
assignment relatively efficiently. One of the important classifiers of synchromodal transport
is being able to adjust plannings in an on-line fashion as more information becomes avail-
able. A natural consequence of this is that decisions have to be made while some parameters
are still uncertain. This is also often the case in operational planning in practice: if one
cheap modality is ‘probably’ going to run into delays in the port area, and another modality
is more expensive but also more likely to be on time, what decision should be made? Figure
5.1 shows how such a decision could be seen as a stochastic optimisation problem.

Though Figure 5.1 shows a problem where only the travel time of a modality is stochas-
tic, uncertainties can manifest in many components of the transport chain. In literature, the
travel time is often modelled as uncertain [54, 61], for example due to weather conditions, ve-
hicle breakdowns, road congestion or general unpredictability. The demand patterns are also
often considered uncertain [54, 61]. Sometimes, handling time at terminals are considered
uncertain due to disturbances [61]. Aside from these more common factors, however, some
models also study uncertainty in things like price and capacity of resources. Industry ex-
perts in operational planning affirm that ‘any element’ of transport comes with uncertainties,
and Caris confirms that “real-life operational management is characterized by uncertainty”
[19]. Even the total capacity of a barge, which one would almost always consider fixed, can
be stochastic: for example, if a barge has to sail under a low bridge, then the maximum
stacking height can become dependent on water levels. As such, a complete consensus on
what uncertainties to model does not exist.

Where, then, does one draw the line? The move towards synchromodality is the move to-
wards cooperation, which requires methods to remain applicable when different parties with
different dynamics are integrated into the planning network. Therefore, in this thesis, meth-
ods are developed with a holistic view towards uncertainty: all elements proposed in Chapter
3 are modelled as stochastic, if not controlled. In particular, this chapter will study stochas-
tic container-to-mode assignment (Problem 2), by which the following 𝑅|�̂�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)-
problem is meant:

to assign freight containers to transports, so that the containers reach their destinations
before a deadline against minimum total costs, given that the transports have fixed given

schedules and some features of the problem are stochastic.

35
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Figure 5.1: One container has to be assigned to a transportation modality. The red, dashed option has probability / of taking
two time steps, thus arriving just on time, probability / of taking three time steps, causing a lateness penalty of 75 and probability
/ of taking four time steps, causing a lateness penalty of 500. The green option is guaranteed to be on time, but has a base

usage cost of 200 instead of 100. Both transports have capacity 10. At time , a planner is faced with the decision: red or
green?

5.1. Concepts and definitions
In Chapter 4, the concept of solving min-cost multi-commodity flow on a space-time network
was introduced. However, Figure 5.1 shows an example where a decision has to be made on
some form of ‘approximate’ space-time network, where it is still uncertain which of its three
possible outcomes it will eventually be. In this section, new concepts will be introduced from
which to construct decision-making methods.

5.1.1. Transit Ideas and transit instances
The first gap that will be addressed, is that a planning algorithm can no longer plan based
on a list of fixed transits, but on a list of transits with yet uncertain characteristics, as also
illustrated in Figure 5.1.

In the philosophical work of Plato, the concept of an Idea is proposed: that all physical objects
are instances or ‘shadows’ generated by some higher object. For example, in his theory of
Ideas, every hammer on Earth is a different instance of one single Idea of a hammer [48]. This
theory will not be discussed here, but it will be used as an analogy for the following definition.

A transit Idea 𝔗 is defined by a sextuple 𝔗 = (𝔗 ,𝔗 , 𝔗 , 𝔗 , 𝔗 , 𝔗∼) where:

• 𝔗 is a random variable representing the origin-destination pair of the transit;

• 𝔗 is a random variable representing the departure time of the transport, so the time
at which the transit starts;

• 𝔗 is a random variable representing the travel time of the transit;

• 𝔗 is a random variable representing the capacity of the transport performing the transit;

• 𝔗 is a random variable representing the unit price of the transit per container trans-
ported by it;
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• 𝔗∼ is a joint probability distribution on the random variables. If the random variables are
independent, this probability distribution equals the product of marginal distributions.

In some problems, not all of these features are stochastic: for example, it is common to model
transport capacity as fixed [15, 35, 45, 62]. This can be solved by making the corresponding
random variable equal to this fixed constant with probability 1. In the notation of transit
Ideas, such a random variable will then be replaced by its fixed outcome. Having remarked
this, the red dashed link in Figure 5.1 correspond to the following transit Idea 𝔗 :

𝔗 = ((𝐴, 𝐵), 0, 𝑋, 10, 100, 𝑈 {2, 4})

where 𝑃(𝑋 = 2) = 1/3, 𝑃(𝑋 = 3) = 1/3 and 𝑃(𝑋 = 4) = 1/3. So 𝔗 will certainly instantiate
with origin-destination pair (𝐴, 𝐵), departure time 0, capacity 10 and unit price 100, but the
travel time 𝑋 is drawn from a discrete uniform distribution.

When each of these five random variables are drawn, the result is henceforth called a tran-
sit instance. A transit instance corresponds to a fixed arc of a space-time network and is no
longer subject to any randomness. In Chapter 4, exclusively transit instances were observed.
The difference between transit Ideas and transit instances is also illustrated in Figure 5.2.

𝑓 = 100

0 1 2 3 4

A

B

𝑃 =
1/
3

𝑃 =
1/3

𝑃 =
1/3 𝑓 = 100

0 1 2 3 4

A

B

Transit Idea Transit instance

Figure 5.2: On the left, a transit Idea of which only the travel time is uncertain; on the right, one of the three possible instances
of the Idea.

5.1.2. Request Ideas and request instances
By the same philosophy of transit Ideas, a request Idea ℜ is defined as a sextuple ℜ =
(ℜ ,ℜ ,ℜ ,ℜ ,ℜ ,ℜ∼) where:

• ℜ is a random variable representing the origin-destination pair of the request;

• ℜ is a random variable representing the release time of the request, so the from which
the containers of the request can be picked up;

• ℜ is a random variable representing the due time of the request;

• ℜ is a random variable representing the amount of containers in the request;

• ℜ is a random variable representing the penalty function of lateness of the request, as
also described in Section 4.1.3;
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• ℜ∼ is a joint probability distribution on the random variables. If the random variables
are independent, this probability distribution equals the product of marginal distribu-
tions.

Again, drawing these random variables creates an instance of the request Idea, which will be
called a request instance.

5.1.3. Omnifutures
As transit Ideas generate all possible transit instances, and request Ideas generate all possible
request instances, putting them together creates an object that generates all possible futures.
Therefore, an omnifuture Ω is defined as a pair Ω = (𝔗,ℜ, Ω∼) where:

• 𝔗 is a list of transit Ideas;

• ℜ is a list of request Ideas;

• Ω∼ is a joint probability distribution on what instances are drawn from the Ideas. Ideas
can be dependent: for example, if two transit Ideas correspond to the first and second
transits of one vehicle, then if the former instantiates with large travel time, the latter
may be more likely to instantiate with a late departure time. If all Ideas are independent,
Ω∼ equals the product of marginal distributions of the separate Ideas. Otherwise, it
should be ensured that the final elements of the transit Ideas and request Ideas are
correct marginal distributions of Ω∼.

Using Ω∼, one can draw values for all transit Ideas and request Ideas. The result, a future,
can be interpreted as an instance of deterministic container-to-mode assignment and solved
using the techniques from Chapter 4.

The example given in Figure 5.1 displays an omnifuture consisting of two transit Ideas and a
request Idea. For one of the transit Ideas, there is uncertainty in its travel time and it could
instantiate into one of three different values. The other transit Idea has no uncertainties: it
generates only one fixed instance. The same goes for the request Idea. The three Ideas are
independent and the omnifuture generates three futures with equal probability. In a sense,
an omnifuture can be seen as a ‘future Idea’.

The implicit assumption in this definition is that the probability distribution on possible
futures is independent on the ‘current’ state. This conflicts directly with the synchromodal
principal of adjusting decisions to updated information. This will be resolved in later sections
by always basing an omnifuture on the ‘current’ state: when moving into a new state, a new
omnifuture is defined and assumed.

5.1.4. Finite window methods and rolling window methods
Two important uncertainties have not been addressed in the previous sections:

1. In the definition of an omnifuture, the amount of transit Ideas and request Ideas was
taken as fixed, while it may be difficult to predict how many requests will be placed;

2. None of the definitions take into account that new transit Ideas or request Ideas could
enter the system during the ‘resolution of the future’.

Of course, these two issues are closely related. Both are resolved by designing rolling window
methods: methods that keep adding new Ideas as they enter the system and make decisions
according to the presence or anticipation of new request Ideas and transit Ideas. If a method
assumes that no new Ideas will enter the system at any point, this will be referred to as a
finite window method.

5.1.5. Locked futures and future trees
As a final distinction, a model-maker must decide whether or not the future depends on the
decisions made by the decision-maker: in other words, whether or not the omnifuture is in-
dependent of decisions. For example, some barge operators are known to wait with departure
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until their barge is at least 70% filled with cargo, in order to make their trip worthwhile: in
this case, their uncertain departure time is dependent on the decision-maker’s container-to-
mode assignment.

This chapter assumes locked futures, meaning that the instantiation of Ideas does not de-
pend on choices in container-to-mode assignment. In other words: there is only one true
future, but the decision-maker does not yet know which one that is. If one would not assume
locked futures, one would have to make decisions regarding some form of future tree: a tree of
possible futures that branches on decisions. Though the latter is more general and arguably
more representative of real world practice, it is not investigated in this thesis due to expected
issues of computational and conceptual complexity.

5.1.6. Demifutures
The following two assumptions could be made to keep the problem of stochastic container-
to-mode assignment manageable:

• The window is finite. At the start of the problem, all transit Ideas and request Ideas are
given. No new ones will enter the system in the given time window. See also Section
5.1.4.

• The future is locked. How the Ideas will instantiate is independent of the choices in
container-to-mode assignment. See also Section 5.1.5.

Under these assumptions, the following situation must occur. At the start of the time win-
dow, some omnifuture Ω is given. Because the future is locked, there is some ‘true future’
Φ among the futures generated by Ω , but it is probably not yet known which one this is. If
Φ were known, the optimal container-to-mode assignment could be easily found using the
techniques from Chapter 4. Instead, one has to make decisions at time step 0 against an
uncertain future. At time step 1, more may be known: for example, transits may turn out to
depart in this time step, making their departure times and destinations known, or requests
may have been released, making their release time and other features known. Now, decisions
have to be made at time step 1 against some induced omnifuture Ω .

Because the window is finite and all time-related features can be assumed to be finite as
well, eventually, all transits and requests will have taken place, making all their features
known. Φ will have revealed itself to be the true future, and hopefully, good decisions will
have been made.

Under the two assumptions, a demifuture Ω can be defined as an omnifuture that was
obtained in the following way: by taking some initial omnifuture Ω , and knowing some true
future Φ, revealing everything that can be known of Φ at time 𝑡 and limiting Ω accordingly.
If 𝑡 → ∞, Ω can only generate Φ as a possible future. See also Figure 5.3.

In practice, of course, Φ is not known. The main purpose of demifutures is to simulate
the synchromodal principal of more becoming known over time and to be able to design and
test decision processes using this. Though equivalent definitions and properties of demifu-
tures may well be derived without these two assumptions, these are not necessary for this
thesis.

5.2. Solving to optimality
In this section, multistage stochastic programming and Markov Decision Processes will be
discussed as methods to solve Problem 2 to optimality. However, they will also be shown to
be computationally far too heavy to be of practical use.

5.2.1. Two-stage stochastic programming
Multistage stochastic programming relies on a technique found in two-stage stochastic pro-
gramming, which will be introduced here. Stochastic programs resemble linear programs,
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Figure 5.3: On the left, an omnifuture with three transit Ideas, of which only two have an uncertainty (travel time), and a request
Idea with only uncertain volume. This omnifuture generates 8 possible futures. At , the request has been released and
it turned out to have a volume of 6 containers. The transit that departed at has not yet been finished, so it cannot have
duration 1, so it must have duration 2, the only other option. In the demifuture at , only one Idea has uncertainty left. This
demifuture generates 2 possible futures. Every demifuture after this will only generate , the true future.

but with an expected value in the objective function based on randomness in the parameters
that define the decision space and/or objective function.

If the stochastic component of the objective function can only take a finite amount of val-
ues against known probabilities, and these values are linear in decision variables, then the
expected value can be substituted by these values times their probabilities to create one large
linear program, which is called its deterministic equivalent. An example will be given later in
this section.

In two-stage stochastic optimisation, some decisions have to be made before the random vari-
ables instantiate and some have to be made after. In the second stage, there are no more
random variables and the choice becomes much simpler; the difficulty lies in the first stage,
where decisions have to be made that influence the decision space of the second stage based
on uncertainties. One then has to balance the direct cost of decisions in the first stage and
the implied expected cost of decisions in the second stage.

A classical example of this is the newsvendor problem [23]: one wants to sell as many news-
papers as possible in stage 2, but has to order stock in stage 1 without knowing what the
demand will be in stage 2. Unsold newspapers become worthless at the end of the day. Sup-
pose, for the sake on an example, that newspapers can be ordered at cost 2 and sold at cost
4 and that if 𝐷 is the demand,

𝑃(𝐷 = 1) = 0.1, 𝑃(𝐷 = 2) = 0.2, 𝑃(𝐷 = 3) = 0.3, 𝑃(𝐷 = 4) = 0.4

If 𝑥 is the amount of newspapers to order in stage 1, 𝑦 is the amount to sell in stage 2 and 𝑦
is the amount to sell knowing that 𝐷 = 𝑖, problem 5.1 is a stochastic program that describes
this and problem 5.2 is its deterministic equivalent.

max
,

−2𝑥 + 4 𝔼[𝑦] (5.1)

𝑠.𝑡. 𝑦 ≤ 𝑥
𝑦 ≤ 𝐷
𝑥, 𝑦 ∈ ℕ
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max
, , , ,

−2𝑥 + 4(0.1𝑦 + 0.2𝑦 + 0.3𝑦 + 0.4𝑦 ) (5.2)

𝑠.𝑡. 𝑦 ≤ 𝑥 𝑖 = 1, 2, 3, 4
𝑦 ≤ 𝑖 𝑖 = 1, 2, 3, 4

𝑥, 𝑦 , 𝑦 , 𝑦 , 𝑦 ∈ ℕ

The deterministic equivalent can be solved using an ILP solver, giving as optimal solution
𝑥 = 3, 𝑦 = 1, 𝑦 = 2, 𝑦 = 3, 𝑦 = 3. This result can be interpreted as a ‘two stage policy’,
stating how many newspapers to order and how many to sell given a certain outcome of the
demand.

5.2.2. Multistage stochastic programming: an illustrative example
Multistage stochastic optimisation is a generalisation of two-stage stochastic optimisation that
involves more than two stages. This is suitable for synchromodal transport, because deci-
sions have to be made at each time step that influence later decisions, but there is still
uncertainty surrounding these later decisions. Multistage stochastic optimisation problems
can be solved using backward dynamic programming, where each recursion step involves
a two-stage stochastic program. This technique will be referred to as multistage stochastic
programming. An applied example is given here. Note that an example was formulated where
common sense supports the solution, so as to aid the reader, while in many actual instances,
the optimal policy may not be easy to see without this technique.

Consider the instance of Problem 2 described in Figure 5.4:
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Figure 5.4: A toy example of stochastic container-to-mode assignment, or Problem 2.

Three containers have to be sent from C to A. They have a deadline at 𝑡 = 3, which is another
way of saying they have a due date at 𝑡 = 3 with arbitrarily large lateness penalty. One transit
Idea departs at 𝑡 = 0 from C to B, but its duration 𝑋 is uncertain: it has probability 0.6 of
being 1 and probability 0.4 of being 2. Another transit Idea, departing from 𝐵 to 𝐴 at 𝑡 = 2,
has uncertain price and capacity: with probability 0.7, they are both 2, and with probability
0.3, they are both 4. All other features are fixed. Admittedly, it is not common in practice
to see that price and capacity are equal and random, but it is an allowed model within the
general scope of this thesis and serves for an example with manageable computation. Note
that the transits corresponding to arcs 𝜆 and 𝜋 represent the option of trucking at the last
moment under a double matrix infinite resource model.

In this toy example, one can manually deduce that the optimal policy is to send all three
containers over arc 𝛾, whichever its end point may be, then preferring 𝜂 over 𝜇 over 𝜆. If the
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end point of 𝛾 is 𝑠 , , two containers can be sent over 𝜂, which is always at least as cheap as
sending them over 𝜆 or 𝜇. The third container then goes to 𝑠 , by waiting. If the end point of
𝛾 is 𝑠 , , all three containers show up there. However many containers are at 𝑠 , , as much
as possible are sent over 𝜇, as sending containers over 𝜇 is at least as cheap as sending them
over 𝜆. A container sent via this policy contributes at most 5 to the cost, which is always at
least as cheap as sending it over 𝜋 instead.

Now, it will be shown how the same result can be derived by solving a multistage stochastic
problem by means of backward dynamic programming. This requires a definition of states.
Note that in this example, there are four possible futures, denoted as follows:

Φ ∶ (𝑋, 𝑌) = (1, 2); Φ ∶ (𝑋, 𝑌) = (1, 4); Φ ∶ (𝑋, 𝑌) = (2, 2); Φ ∶ (𝑋, 𝑌) = (2, 4)

Further note that at any of the discrete-time moments, a container can be one of the six
following ‘places’:

(𝑢𝑛𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑, 𝐴, 𝐵, 𝐶, 𝑜𝑛 𝑏𝑜𝑎𝑟𝑑 𝑜𝑓 𝛾, 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑)

If the source node in this example would have been at 𝑠 , instead of 𝑠 , , the containers would
have been at the location ‘unreleased’ at time 𝑡 = 0 and 𝑡 = 1 and at location C at 𝑡 = 3. In
other words, containers are at location ‘unreleased’ before their release time; similarly, they
are moved to the location ‘finished’ as soon as they reach their due location, A. Further note
that containers can only be at the location ‘on board of 𝛾’ at 𝑡 = 1, if 𝑋 = 2.

Using all this, a system state can be fully described by a 6-dimensional vector 𝑣 indicat-
ing where the containers currently are, an integer 𝜏 that represents the current time step
and a demifuture Ω that indicates both what has become certain so far and what uncer-
tainties there still are. As such, let 𝑆 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) denote the state that there are 𝑣
containers at location 𝑖, 𝑖 = 1, 2, 3, 4, 5, 6, that the current time is 𝑡 = 𝜏, 𝜏 ∈ {0, 1, 2, 3} and that
𝜙 ∈ {Φ ,Φ ,Φ ,Φ } is the true future, so the uncertainties are defined by the demifuture Ω .

Finally, denote 𝑋 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) the multistage policy that, assuming that the system
is in state 𝑆 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ), has minimal expected further cost 𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) to get
to the finishing state, where all containers are at location ‘finished’.

In this example, there are no more uncertainties at 𝑡 = 2, regardless of which future is
the true future. As such, 𝑋 (𝑣) can be calculated easily for any container distribution 𝑣 and
future 𝜙: this is a matter of solving deterministic container-to-mode assignment, using the
current container locations as source nodes. In futures Φ and Φ , the containers on board of
𝛾 arrive at node 𝑠 , and need to be absorbed into the system. One could thus solve problem
5.4 for futures Φ and Φ and problem 5.3 for futures Φ and Φ where 𝑌 is always known.

𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) =min ∑ , , , , , 𝑐 𝑥 (5.3)
𝑠.𝑡. 𝑥 = 𝑣

𝑥 + 𝑥 + 𝑥 = 𝑣
𝑥 + 𝑥 = 𝑣

𝑥 + 𝑥 + 𝑥 + 𝑥 = 3
𝑥 ≤ 𝑌

𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ∈ ℕ
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𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) =min ∑ , , , , , 𝑐 𝑥 (5.4)
𝑠.𝑡. 𝑥 = 𝑣

𝑥 + 𝑥 + 𝑥 = 𝑣 + 𝑣
𝑥 + 𝑥 = 𝑣

𝑥 + 𝑥 + 𝑥 + 𝑥 = 3
𝑥 ≤ 𝑌

𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ∈ ℕ

Alternatively, it is easy to manually verify that all containers at C are transported over 𝜋, at
most two containers at B are transported over 𝜇 and a potential third container over 𝜆 and
nothing needs to be done with containers at A, so

𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) = 𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) = 5𝑣 + 𝑌 ⋅min{𝑣 , 2} + 4 ⋅max{𝑣 − 2, 0}

𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) = 𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) = 5𝑣 + 𝑌 ⋅min{𝑣 + 𝑣 , 2} + 4 ⋅max{𝑣 + 𝑣 − 2, 0}

Note that, at 𝑡 = 2, no containers can be at the locations ‘unreleased’ or ‘finished’. This coin-
cides with how the values 𝑣 and 𝑣 have no meaning in problems 5.3 and 5.4. The allowed
states are only those where the three containers are divided as integers over locations A, B
and C, and ‘on board of 𝛾’ which can be done in 4 + 12+ 4 ways. Therefore, using the simple
computation above for all 20 allowed container distributions and all 4 futures, all 20 ⋅ 4 rele-
vant values 𝑉 (0, 𝑣 , 𝑣 , 𝑣 , 𝑣 , 0) can be computed.

Next, the decision at 𝑡 = 1 is examined. Herein lies a two-stage stochastic problem: the
immediate costs made at 𝑡 = 1 must be balanced against the expected costs 𝑉 (𝑣) induced
for 𝑡 = 2. It is not yet known at 𝑡 = 1, for example, if arc 𝜇 will have capacity and price 2 or
4. Note also that at 𝑡 = 1, some containers might still be on board of 𝛾 if it turned out that
𝑋 = 2. Therefore, in futures Φ and Φ , the decision problem is given in problem 5.5 and the
slightly different decision problem for Φ , Φ is given in problem 5.6.

𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) =min ∑ , , , 𝑐 𝑥 +∑𝑃(Φ = Φ |Ω )𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) (5.5)

𝑠.𝑡. 𝑥 = 𝑣
𝑥 + 𝑥 = 𝑣 + 𝑣
𝑥 = 𝑣
𝑥 ≤ 2
𝑣 = 0
𝑣 = 𝑥 + 𝑥
𝑣 = 𝑥
𝑣 = 𝑥
𝑣 = 0
𝑣 = 0

𝑥 , 𝑣 ∈ ℕ 𝑖 = 𝜀, 𝜂, 𝜃, 𝜄, 𝑘 = 1,… , 6
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𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) =min ∑ , , , 𝑐 𝑥 +∑𝑃(Φ = Φ |Ω )𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) (5.6)

𝑠.𝑡. 𝑥 = 𝑣
𝑥 + 𝑥 = 𝑣
𝑥 = 𝑣
𝑥 ≤ 2
𝑣 = 0
𝑣 = 𝑥 + 𝑥
𝑣 = 𝑥
𝑣 = 𝑥
𝑣 = 𝑣
𝑣 = 0

𝑥 , 𝑣 ∈ ℕ 𝑖 = 𝜀, 𝜂, 𝜃, 𝜄, 𝑘 = 1,… , 6

There are several things to note about these two problems:

• When computing 𝑉 (𝑣), so when assuming Φ will eventually turn out to be the true
future and so at 𝑡 = 1 it has become clear that 𝑋 = 1, every future where 𝑋 = 2 becomes
impossible. This gives conditional probabilities 𝑃(Φ = Φ |Ω ) = 𝑃(Φ = Φ |Ω ) = 0.
The outcome of 𝑌 is independent of 𝑋, so this gives the other conditional probabilities
𝑃(Φ = Φ |Ω ) = 𝑃(𝑌 = 2) = 0.7, 𝑃(Φ = Φ |Ω ) = 𝑃(𝑌 = 4) = 0.3. All other conditional
probabilities can be computed analogously.

• 𝑉 (𝑣), in its current form, is not linear in its arguments, making the programs non-
linear. Because integral arguments are expected and each argument must be at least
0 and the sum must equal 3, the amount of possible inputs 𝑣 are finite. Therefore,
the program can be made linear again by adding an indicator variable for each allowed
input 𝑣 using techniques for logic operations in linear programming [18]. Though this
makes the problems linear again, the amount of added variables and constraints can
be exponential in the amount of containers and locations.

Using these two observations, it is possible to find all values 𝑉 (𝑣) through linear program-
ming. Instead, it is manually observed here that getting containers from B to A is cheapest
over arc 𝜂 if possible, and this is the only arc that gives direct costs in this stage, so

𝑉 (0, 𝑣 , 𝑣 , 𝑣 , 𝑣 , 0) = 2 ⋅min{𝑣 + 𝑣 , 2} + 0.7𝑉 (0, 𝑣 +min{𝑣 + 𝑣 , 2},max{𝑣 + 𝑣 − 2, 0}, 𝑣 , 0, 0)
+0.3𝑉 (0, 𝑣 +min{𝑣 + 𝑣 , 2},max{𝑣 + 𝑣 − 2, 0}, 𝑣 , 0, 0)

𝑉 (0, 𝑣 , 𝑣 , 𝑣 , 𝑣 , 0) = 2 ⋅min{𝑣 + 𝑣 , 2} + 0.7𝑉 (0, 𝑣 +min{𝑣 + 𝑣 , 2},max{𝑣 + 𝑣 − 2, 0}, 𝑣 , 0, 0)
+0.3𝑉 (0, 𝑣 +min{𝑣 + 𝑣 , 2},max{𝑣 + 𝑣 − 2, 0}, 𝑣 , 0, 0)

𝑉 (0, 𝑣 , 𝑣 , 𝑣 , 𝑣 , 0) = 2 ⋅min{𝑣 , 2} + 0.7𝑉 (0, 𝑣 +min{𝑣 , 2},max{𝑣 − 2, 0}, 𝑣 , 𝑣 , 0)
+0.3𝑉 (0, 𝑣 +min{𝑣 , 2},max{𝑣 − 2, 0}, 𝑣 , 𝑣 , 0)

𝑉 (0, 𝑣 , 𝑣 , 𝑣 , 𝑣 , 0) = 2 ⋅min{𝑣 , 2} + 0.7𝑉 (0, 𝑣 +min{𝑣 , 2},max{𝑣 − 2, 0}, 𝑣 , 𝑣 , 0)
+0.3𝑉 (0, 𝑣 +min{𝑣 , 2},max{𝑣 − 2, 0}, 𝑣 , 𝑣 , 0)

This again yields 80 values 𝑉 (0, 𝑣 , 𝑣 , 𝑣 , 𝑣 , 0). Finally, the first decisions at 𝑡 = 0 are deter-
mined in problem 5.7, which has only one feasible container distribution: namely, that all 3
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containers have been released at location C.

𝑉 (0, 0, 0, 3, 0, 0) =min ∑ , , , 𝑐 𝑥 +∑𝑃(Φ = Φ |Ω )𝑉 (𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ) (5.7)

𝑠.𝑡. 𝑥 = 𝑣 = 0
𝑥 = 𝑣 = 0

𝑥 + 𝑥 = 𝑣 = 3
𝑥 ≤ 100
𝑣 = 0
𝑣 = 𝑥
𝑣 = 𝑥
𝑣 = 𝑥
𝑣 = 𝑥
𝑣 = 0

𝑥 , 𝑣 ∈ ℕ 𝑖 = 𝜀, 𝜂, 𝜃, 𝜄, 𝑘 = 1,… , 6

This program boils down to only one decision: how many of the three containers to send over
𝛾, while sending the rest over 𝛿. Therefore, only four values need to be checked:

• 0 ⋅ 1 + ∑ 𝑃(Φ = Φ )𝑉 (0, 0, 0, 3, 0, 0) = 15;

• 1 ⋅ 1 + ∑ 𝑃(Φ = Φ )𝑉 (0, 0, 0, 2, 1, 0) = 13.24;

• 2 ⋅ 1 + ∑ 𝑃(Φ = Φ )𝑉 (0, 0, 0, 1, 2, 0) = 11.48;

• 3 ⋅ 1 + ∑ 𝑃(Φ = Φ )𝑉 (0, 0, 0, 0, 3, 0) = 10.64;

The first value reflects the certainty that if all three containers are not sent over 𝛾, they
will be sent over 𝜋 against cost 5. The second value reflects the certain cost of 10 for the
two containers that do not travel over 𝛾, plus the expected cost for the final container: 1
to traverse 𝛾, then a further 2 against probability 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2, 𝑌 = 2) = 0.88 or 4
against probability 𝑃(𝑋 = 2, 𝑌 = 4) = 0.12, so an expected cost of 1 + 0.88 ⋅ 2 + 0.12 ⋅ 4 = 3.24.
Similarly, the third value equals 5 + 2 ⋅ 3.24. Finally, the fourth value can be checked with
the following computation: the first two containers each have expected cost 3.24, then the
third container has cost 1 + 2 only in Φ and 1 + 4 otherwise, so the third container has
expected cost 0.42 ⋅ 3 + 0.58 ⋅ 5 = 4.16 for a grand total expected cost of 10.64. Indeed, sending
all containers over 𝛾 is the decision to take at 𝑡 = 0 with the smallest expected cost.

5.2.3. Why multistage stochastic programming is not used
The example given in Section 5.2.2 could be generalised to solve stochastic container-to-mode
assignment to optimality. Dynamic programming largely halts the growth of complexity in
the length of the time window: if the example had a hundred time steps instead of only four,
each step would still only require the 80 values of the next time step and produce 80 values
before terminating, due to the property of state [20].

However, the required amount of values per time step may equal the amount of possible fu-
tures times the amount of allowed container distributions. In the example, this was 4 times
20, or 4 times 28 when not manually discarding the locations ‘unreleased’ and ‘finished’. In
general, the amount of possible futures may equal the product of the amount of values that
each stochastic element can take. Take for example the problem instance sketched in Figure
5.5: there are only three request Ideas and two transit Ideas, one of the requests is already
revealed at 𝑡 = 0, the other request Ideas have release time 𝑋 , 𝑋 respectively that may each
take four different random values and an independent random volume 𝑌 , 𝑌 of either 9 or
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Amount of possible system states per time step: 11769142469427200

Figure 5.5: An instance of Problem 2 that shows the explosive growth of the state space. There are three request Ideas: one
that is already revealed, the other two having 9 or 10 containers that are released at one of four possible times. The amounts are
independent of the release time. All containers are due at the same place and time. There are two transit Ideas with uncertain
travel time, one departing from , , the other from , ; for the rest, it is possible to take a truck from any location to any other
location in one time step to arrive just in time for the transit or the sink node. Though this instance is significantly smaller than
‘real life’, if the methodology from Section 5.2.2is applied, it would already involve having to keep track of values of over
states, as explained in Section 5.2.3.

10 containers, and the transit Ideas have travel time 𝑍 , 𝑍 respectively that may each take
five different random values. Then that instance already has 4 ⋅ 4 ⋅ 2 ⋅ 2 ⋅ 5 ⋅ 5 = 1600 possible
futures. If the instance concerns four real life locations A, B, C and D, so it concerns the 8
locations

(𝑢𝑛𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑, 𝐴, 𝐵, 𝐶, 𝐷, 𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 1, 𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 2, 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑),
and each request consists of 10 containers, then according to Theorem 5 in Appendix 𝐴, there
are

( 10 + 8 − 110 ) = 19448

ways of distributing the 10 containers of the revealed request over the 8 locations, so if
the others have 10 containers as well, 19448 = 7355714043392 distributions of all containers
over the locations. Multiplying this, the problem would have over 1.176⋅10 or 11 quadrillion
allowed states it could be in at each time step. In general, unless some smart reduction is
found, multistage stochastic programming could require keeping track of

𝒪( ∏ (𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠) ∏ ( 𝑐 + 𝑙 − 1
𝑐 ))

states, where 𝑐 is the largest possible amount of containers in request 𝑘.

At each time step, for each state, a two-stage stochastic problem would have to be solved
which can be made into an integer linear program at the cost of adding at least one variable
and constraint for each state: thus, the growth of these integer linear programs is also ex-
ponential.
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Long story short: unless some smart reduction is performed, the amount of states to keep
track of grows uncontrollably, from 112 in Figure 5.4 to 11769142469427200 in Figure 5.5.
For each of these states, an integer linear program with at least as many variables would
have to be solved at each time step. This explosive growth of required space and time makes
multistage stochastic programming unsuited for use beyond tiny instances.

5.2.4. Markov Decision Processes
The second way discussed here to solve Problem 2 is based on writing the decision process as
a Markov Decision Process. This alternative to multistage stochastic programming appears
to be more commonly discussed [35, 45]. In a Markov Decision Process (MDP), a number of
actions can be taken in each state that yield a direct reward and move the system to another
state with a certain probability. For examples, the reader is referred to White’s survey [60].

In the context of this problem, one can again define a state based on a container distri-
bution, a point in time and an omnifuture specifying the uncertainties that are still left. The
allowed actions are moving from one container distribution 𝑣 to another 𝑣 , which always
succeeds, given that the modalities to do so are present. If containers are brought to their
due location, they are immediately bounced to the ‘finished’ location. Due to the assump-
tion of locked futures, the probability that an action will move the system from state A with
demifuture Ω to state B with demifuture Ω is exactly the conditional probability that state
B has demifuture Ω given that its previous state has demifuture Ω . Rewards are exclusively
non-positive: they correspond to the arc weights used in Chapter 4 for transportation costs
and lateness penalties. See also Figure 5.6.

Being able to write a decision process as a MDP depends on whether or not the decision
process has the Markov property [47]: that probabilities and decisions depend only on the
current state, not on previous ones. This property is closely related to the property of state
mentioned in Section 5.2.3 and indeed, the methods appear related. These are at least three
ways in which using a MDP differs from using multistage stochastic programming:

• MDP’s are often defined with a discount factor 𝛾 ∈ [0, 1] that indicates how important
immediate savings are when compared to expected future savings;

• Because of this discount factor, and because of the absence of backwards dynamic
programming, MDP’s lend themselves more naturally to rolling time window methods;

• MDP’s have an action space with which tomove around states, wheremultistage stochas-
tic programming suggest moving from one state to another bymeans of two-stage stochas-
tic programming. As a consequence of Theorem 5 in Appendix A, the action space may

have size 𝒪(∏ ( 𝑐 + 𝑙 − 1
𝑐 )), where 𝑐 is the maximal amount of containers

in request 𝑘 and 𝑙 is the number of locations.

It is noted that such a discount factor, within the context of synchromodal freight transport,
is nice but not necessary. It was decided to limit this research to finite window methods,
making the second difference also of lesser importance. The most important reason MDP’s
would be chosen over multistage stochastic programming, would be if MDP’s could be solved
in significantly less time.

Several solution methods exist for MDP’s [13]. However, in the context of freight transporta-
tion, it is a common conclusion that the state space and action space are both too large to
solve MDP to optimality [35, 45]. Since this method uses almost the same enormous state
space that is used in Section 5.2.3 and also an exponentially large action space, the same
conclusion is drawn here without numeric evidence. Solving Problem 2 to optimality, using
either multistage stochastic programming or MDP’s, is only possible in tiny instances. When
looking for a method that is fast enough for on-line use, it appears necessary to either smartly
reduce the state spaces of these methods, or to use a heuristic or meta-heuristic.
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5.3. Single future iteration heuristics
The methods described in the previous section would probably not find solutions fast enough
to be feasible in most practical applications. In particular, synchromodal planning depends
on regular revaluations of the plannings, making it essential to formulate good plans in a
relatively short amount of time. In this section, two basic ways of doing this are described.

5.3.1. Expected future iteration
If a barge has a travel time that is with equal probability 10, 11 or 12 time steps, then one
could simplify the thought process by assuming the travel time will be its ‘average’, 11. Ex-
actly this is the idea of computing an expected future: assume that all stochastic elements
are independent, then for every numeric stochastic element, compute its rounded expected
value and work with that. See also Figure 5.7.

For non-numeric stochastic elements, like release location, one could randomly use any of
the values with highest probability instead.

The idea of Expected Future Iteration (EFI) is the following:

1. Compute the expected future;

2. Interpret the expected future as an instance of deterministic container-to-mode assign-
ment and solve it using the techniques from Chapter 4;

3. Use this solution to decide how to assign containers in the current time step. Enact
these decisions, then go to the next time step;

4. Go back to 1., working with the current container locations and the demifuture of this
new time step, that is to say, using all information that has become known up until this
new time step.

This process given in more detail in Algorithm 2 and Algorithm 3. Note that Algorithm 3
was designed for testing purposes: it simulates the decision process that, assuming locked
futures and finite windows, would take place if 2 were used until all containers have reached
their destinations. At the end of this process, the space-time network will be based on some
true future: of this true future, the optimal container-to-mode assignment can be found using
the techniques from Chapter 4, which then gives a lower bound on how well the decision-
process could have performed.

In practice, decisions would be made using only Algorithm 2, which relies less on the as-
sumptions of locked futures and finite windows. In particular, the temporary assumption
made at each time step that the time window is finite is not expected to be a large problem,
because when new requests do come in, they can simply be added to the next iteration. It
may be interesting, however, to see if transportation should be ‘pulled’ closer to the current
time, so as to reserve capacity near the end of the time window for new requests: this, and
other questions concerning rolling time windows, are proposed as future research.
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Data: Omnifuture Ω, double matrix infinite resource matrices 𝑀 ,𝑀
Result: Demand-to-resource assignment for current time step
for numeric stochastic variable do

compute its expected value;
end
for non-numeric stochastic variable do

obtain its mode, breaking ties randomly;
end
Create instance 𝐼 of deterministic container-to-mode assignment by replacing all Ideas
in Ω by instances with parameters equal to expected values and modes;
Obtain an optimal freight plan by solving 𝐼 with the techniques from Chapter 4, given
𝑀 ,𝑀 ;
From this solution, return all arcs that emanate from a node at time 𝑡 = 0 and translate
this back to a container-to-mode assignment at 𝑡 = 0. Return this assignment, STOP.;

Algorithm 2: Determining container-to-mode assignment for the current time step using Expected
Future Iteration.

Filler

Data: Omnifuture Ω, true future Φ, double matrix infinite resource matrices 𝑀 ,𝑀
Result: Synchromodal decisions over the entire time window
Initialise 𝑡 = 0;
Initialise all containers at location ‘unreleased’;
while there are still containers not yet at ‘finished’;
do

Obtain current demifuture Ω ;
for request in request Ideas do

if request release time equals 𝑡 according to Φ then
Move all containers of request from ‘unreleased’ to release location according
to Φ;

end
if request released according to Φ then

for chunk of containers of request do
if chunk at due location of request according to Φ then

Move chunk to location ‘finished’;
end
if chunk not at ‘finished’ then

Interpret chunk as request instance with source node 𝑠 , , where 𝑣 is
the location of chunk and 𝑡 the current time step;

end
end

end
end
Create instance 𝐼 of stochastic container-to-mode assignment with the transit Ideas
of Ω as transit Ideas and as request Ideas the request Ideas that are not yet
released according to Φ and the chunks interpreted as request instances;
Denote Ω the omnifuture based on taking Ω and redefining the request Ideas as
described;
Obtain a container-to-mode assignment for the current time step from Algorithm
2(Ω , 𝑀 , 𝑀 );
Enact this assignment at the current time step;
Update t := t + 1;

end
STOP;

Algorithm 3: Simulating synchromodal decision-making over the entire time window using Expected
Future Iteration. Designed for testing purposes.
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Expected Future Iteration has several merits: it is conceptually simple and it will be shown
in Section 5.4 to give decent results in little time. It has one glaring downside, however: it
fully trusts in the expected future and does not ‘optimise its plan B’, so if the actual values
do not equal the expected values, the result can be arbitrarily bad. See also Figure 5.8.
Furthermore, the underlying assumption that all stochastic elements are independent may
not always be a realistic assumption, especially when destinations are random. It would be
better to somehow use the final elements of the Ideas, the joint probability distributions, but
it is harder to define an expected value on these.

5.3.2. Partially pessimistic future iteration
The method described in this section could be viewed as a ‘safer’ version of Expected Future
Iteration. If 𝑋 is a discrete random variable that may take values in the finite set 𝜒 ⊂ ℝ, define

𝜎 (𝑋, 𝛼) =min{𝑥 ∈ 𝜒|𝑃(𝑋 ≤ 𝑥) ≥ 𝛼}

as the 𝛼-upper value of 𝑋 and

𝜎 (𝑋, 𝛼) =max{𝑥 ∈ 𝜒|𝑃(𝑋 ≥ 𝑥) ≥ 𝛼}

as the 𝛼-lower value of 𝑋. For example:

𝑃(𝑋 = 1) = 𝑃(𝑋 = 2) = 𝑃(𝑋 = 3) = 𝑃(𝑋 = 4) = 𝑃(𝑋 = 5) = 1/5 ⇒ 𝜎 (𝑋, 70%) = 4

Note that these values are defined for every 𝛼 ∈ [0, 1]: for example, 𝜎 (𝑋, 1) =max{𝑥 ∈ 𝜒}.

In general, if travel times turn out to be long, this is bad for minimising costs: it may cause
containers to arrive at their destination late or it may cause expected transfers to be missed.
In general, it makes the set of feasible modality-paths smaller: every solution that uses a
transit with long travel time has an equivalent solution for the case that the travel time was
short, namely by taking the same transit and waiting out the difference, but the opposite is
not true. Similarly, late request release dates are worse than early ones, but early due dates
are worse than late ones.

Following this logic, Table 5.1 states for each potentially random parameter if it is bad for
the value to be high or low.

transit departure location: non-numeric request release location: non-numeric
transit destination: non-numeric request due location: non-numeric
transit capacity: bad when low request volume: bad when high
transit departure time: bad when high request release date: bad when high
transit travel time: bad when high request due date: bad when low
resource price: bad when high request lateness penalty function: non-numeric
terminal handling time: bad when high container-to-mode assignment: non-numeric

Table 5.1: For each potentially random parameter, if it takes numeric values, whether it is generally bad for total transportation
costs when the value is high or rather when it is low.

Then, 𝛼-Pessimistic Future Iteration (𝛼PFI) is exactly the same as Expected Future Iteration,
except that instead of taking expected values for numeric random variables, the 𝛼-upper
bound is taken instead if Table 5.1 states that it is bad for the value to be high and and the
𝛼-lower bound is taken if it is bad for the value to be low. See also Figure 5.7.

Note that no simple robustness conclusions can be drawn from using this method: for ex-
ample, if a modality-path exists in the 70%-pessimistic future, this does not have to mean
that the path has a probability of at least 70% of existing, as demonstrated in Figure 5.9. The
same figure illustrates how the expected future is not necessarily the same thing as the 50%-
Pessimistic Future. Quantifying or correcting this dissonance, by reformulating the method
to be based on the probability that a used path exists and using this for robust optimisation,
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could be an insightful topic of future research.

Note also that 𝛼-Pessimistic Future Iteration retains the property of allowing for arbitrar-
ily bad solutions, which can be seen by modifying Figure 5.8. Still, intuition dictates that
the higher the pessimism parameter 𝛼 is set, the more robust the solution will become, at
the cost of discarding cheaper but riskier solutions.

5.4. Numerical results
Class 1 Class 4

EFI cost over optimal: mean 3.51% 3.54%
variance 28.52% 7.76%
worst 14.48% 8.56%

time for first step: mean 1.04𝑠 23.98𝑠
variance 0.02𝑠 1.64𝑠
worst 1.44𝑠 26.35𝑠

70PFI cost over optimal: mean 4.43% 3.34%
variance 38.41% 7.57%
worst 20.55% 8.67%

time for first step: mean 1.09𝑠 25.60𝑠
variance 0.02𝑠 2.45𝑠
worst 1.49𝑠 27.36𝑠

Table 5.2: Numerical results for stochastic container-to-mode assignment, or Problem 2. Expected Future Iteration and %-
Pessimistic Future Iteration are abbreviated to EFI and 70PFI respectively. Class 4 contains instances of a size that was specified
as useful within an operational use case.

In this section, the methods of Expected Future Iteration and 70%-Pessimistic Future Itera-
tion are tested on several random instances, under the same set-up as in Section 4.4.

If the true future is known completely at the start, one could solve for that future to at-
tain the perfect assignment. The two tested methods discover this true future gradually,
and one can only hope that the decisions they make while doing so are indeed the correct
decisions. Understanding this, it is possible to give a tight lower bound on what the objective
value could have been, and thus to express the efficiency of a decision process. This is one
of the two results produced in this test.

The other result concerns computing time, rather than efficiency. In the tests, the itera-
tion is performed until the end of the time window: however, in operational practice, one
would only run the first iteration, seeing as one cannot iterate over a future that is not yet
known. The relevant computing time, therefore, is the average computing time for the first
iteration only. All results are shown in Table 5.2.

5.5. Discussion
Despite the relative naiveté of Expected Future Iteration and 70%-Pessimistic Future Itera-
tion, the results in Section 5.4 show that both methods, in the testing environment, achieve
quite good results in not too much time. More precisely: on problems of class 4, so ‘real life
size’ problems, they found assignments with costs that were 3.34%−3.54% over the optimum
on average and 8.56% − 8.67% in the observed worst cases. In practice, so making one deci-
sion per hour, the time to take this decision with either method was not observed to exceed
thirty seconds.

By design, one would expect 70%-Pessimistic Future Iteration to achieve lower worst case
costs than Expected Future Iteration, but higher average costs; surprisingly, one might say
that these numerical results argue the opposite. It is unclear why this occurs, but two ex-
planations are suggested:
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• The two methods are structurally more different than they seem, which also relates to
how Expected Future Iteration does not map exactly to 50%-Pessimistic Future Iteration,
as observed earlier: as such, they cannot be compared well on the gradient of risk versus
robustness;

• The random generation of instances may not have included enough situations in which
the short-sightedness of single future iteration heuristics truly creates problems, not
allowing 70%-Pessimistic Future Iteration to ‘shine’ in this field.

Overall, there are several caveats to be addressed about these methods and results. For one,
bothmethods have the theoretic property that they may yield arbitrarily bad results, although
no spectacular excesses of cost were observed. Secondly, though the method of random
instance creation may suit some chaotic problems well, it is difficult to promise upfront how
efficiently these methods will perform on problems with more structurally defined system
dynamics. For example, day and night cycles were not simulated in the environment, while
these may cause great delays: if Expected Future Iteration blindly assumes that goods will
come in just before a terminal’s closing time, the consequences of arriving slightly late are
major, and methods that consider such consequences may be more suitable. This second
downside may well be solved by using the simulation method of Kooiman [35], though this
requires solving many instances of Problem 1 during the decision process, which may add
up to a decision process that would currently not be fast enough for on-line use. Thirdly,
in practice, probability distributions for stochastic elements may likely be unknown: the
developed methods depend greatly on reliable forecasting methods being available.

5.5.1. Added value
Stochastic container-to-mode assignment has already been studied under different forms
and names, even in contexts that follow synchromodal paradigms [35, 45, 62]. However,
none of the encountered literature assumes the holistic stance of this research, in viewing
almost anything as potentially stochastic. Such holism may be essential in moving towards a
synchromodal setting that encompasses the different dynamics of different parties. As a con-
sequence, this research has formalised some concepts necessary to build these generalistic
foundations, in the form of Ideas and omnifutures. Furthermore, this thesis has verified that
reasonable solutions can be found for the stochastic container-to-mode assignment problem
fast enough for operational decision-support use.

5.6. Conclusion
This chapter sought to answer the following research sub-question:

3. How can a low cost net-centric container-to-transport assignment be found fast enough
for on-line use if new data is still expected to come in?

Stochastic container-to-mode assignment, or ‘Problem 2’, was defined to be the problem of
assigning freight containers optimally to transport modalities with predetermined schedules,
in the presence of time constraints and stochastic elements. It required the definition of not a
singular request, but a request Idea that generates different instances of the request against
different probabilities. Similarly, transits were replaced by transit Ideas and omnifutures
were designed as objects that generate all possible futures.

It was illustrated that this problem can be solved to optimality using multistage stochas-
tic programming, but also argued that multistage stochastic programming requires far too
much computing time beyond tiny instances. Instead, two decision process heuristics were
introduced: Expected Future Iteration, which at each time step assumes that all remaining
unknowns will take on their marginalised expected values, and 𝛼%-Pessimistic Future Itera-
tion, which instead assumes the unknowns will take on a variant of their ‘𝛼-percentile value’.

Random instances of different sizes were generated to compare these two methods. They
show that assignments for the current time step can be found for problems of a ‘real life
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size’ in an average 23.98 seconds and 25.60 seconds respectively, even when using a non-
commercial MILP solver on a single computer. This makes the method suitable for on-line
use. The numerical results suggest that the methods will find assignments with costs that
are on average 3.54% and 3.34% above optimal respectively.

To answer the sub-question: using either Expected Future Iteration or 70%-Pessimistic Fu-
ture Iteration serves as a near optimal decision policy as information becomes known. Both
methods run fast enough for on-line problems of ‘real life size’.
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Figure 5.6: Above, Figure 5.1. Below, the same problem interpreted as a Markov Decision Process. There are five locations:
(unreleased, A, B, on board of the uncertain transit, finished). There are five different demifutures: the initial omnifuture ,
the demifuture in which the transit certainly has travel time 2, the analogously defined and , and the demifuture

, in which the transit certainly does not have travel time 2, but the probability that it is 3 or 4 are both . . The states are
given as rectangular nodes; a circular node with text represents moving from the current container distribution to the container
distribution , that is to say, moving the container to location . Note that there is only one decision with multiple feasible answers:
whether, at , to commit the container to the uncertain transit or not. The Markov Decision Process ends when container
distribution is attained, so when the containers reaches location ‘finished’: in the case of state ; ; , it then turns
into a Markov Process, in which is replaced by either or .
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Figure 5.7: At the top, the instance from Figure 5.5. In the middle, its expected future, obtained by taking expected values for
all numeric random variables. At the bottom, its 70% pessimistic future, obtained by taking all smallest values for which the
probability is at least 70% that this value or a lower value is attained.
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Figure 5.9: An instance with two uncertain transits: one, dashed, from A to B that has uncertain travel time ; another, dotted,
from B to C that has uncertain departure time . and are independent. ( %, ) , ( %, ) , so in the %-
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6
Deterministic operational freight

planning
In this chapter, the final research sub-question will be answered:

4. How can a low cost net-centric operational transport schedule be found fast enough for
on-line use if everything is known beforehand?

In the two previous chapters, problems were studied where the timetables of barges and
other resources were already fixed and only the container-to-mode assignment had to be op-
timised. The former chapter observed the deterministic case of this problem, the latter the
stochastic case.

In this chapter, however, the decision-maker also fully or partially controls the timetables
of the transports. The decision-maker can decide where transports will go and when. The
optimisation, now, lies in simultaneous decision-making of fleet routing in space-time and
container-to-mode assignment. The final problem of this thesis is the fast optimisation of
deterministic operational freight planning (Problem 3), by which is the following
�̄�, [𝑅𝐷], [𝑅𝐷𝑇]|�̄�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)-problem is meant:

to simultaneously determine transport routes, determine transport departures times,
assign freight containers to transports and determine when and where to load and unload
said containers, so that the containers reach their destinations before a deadline against

minimum total cost, given that all features of the problem are deterministic.

Again, trucks or subcontracted transportation can either be explicitly modelled, left out or
modelled as double matrix infinite resources, as detailed in Section 4.3. A finite time window
with finite discretisation is again observed.

An example of this problem is given in Figure 6.1. In the language of the previous chap-
ters, Problem 3 could also be interpreted as follows: how can transit links be placed in a
space-time network, respecting travel time and terminal handling time, such that the cost of
the link placement and the corresponding minimum cost multi-commodity flow together are
minimal? See also Figure 6.2.

This problem has direct applications in practice: for the optimisation of a social synchro-
modal network of different parties, but also for the more current problem of real-time plan-
ning within the transport chain of one party. However, these applications hold only if all
stochasticity is discarded. The stochastic version of this problem may better suit operational
reality, but is left as future research. The techniques developed here for the deterministic
case may form the foundation for such research of the stochastic case, which is the final
reason this problem is studied here.

57
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Figure 6.1: Two requests are placed: Request 1 consists of 5 containers that appear at City 1 and are due at City 2 and Request
2 consists of 18 containers the other way round. One barge with a capacity of 16 containers becomes available at the depot at
07:00. Completely loading or unloading the barge at a terminal always costs one hour. Under the assumption of double matrix
truck modelling, any amount of trucks can be deployed at any time against given costs and travel times. The problem here is
how to assign containers to either the barge or to trucks and how to move the barge around, knowing that trucks are always
more expensive but there is not enough time to do everything by barge. Inspection shows that the optimal solution involves
transporting 16 containers of Request 2 by only barge and all other containers by only truck.
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Figure 6.2: One of the optimal solutions of the problem in Figure 6.1 represented in a space-time network. Barge A, represented
by the red arcs, starts at Depot north (7:00), departs (7:00), arrives at City 2 (10:00), loads 16 containers of Request 2, departs
(11:00), arrives at City 1 (16:00) and unloads the 16 containers of Request 2. At 16:00, the remaining 2 containers of Request
2 are trucked. At 10:00, all 5 containers of Request 1 are trucked. Note that the moments of trucking are quite arbitrary, leading
to many similar optimal solutions. The fact that the red barge could choose to arrive one time step later at City 2 or City 1 also
creates similar solutions.

6.1. Notation of variables and parameters
The reader is reminded that controlled barges, trains and the like will be referred to as ve-
hicles, while separate truck departments and subcontracted transportation will be referred
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to as infinite resources with infinite capacity but typically high cost. The large and varied
decision space of this problem merits a structured introduction of the variables used in this
chapter, denoted with lower case letters, before any further discussion:

• 𝑥 , , ∈ ℕ: the amount of containers from request 𝑘 that vehicle 𝑤 has on board at the
start of time 𝑡;

• 𝑦 , , ∈ ℕ: the amount of containers from request 𝑘 present at location 𝑖 at the start of
time 𝑡;

• 𝑧 , , ∈ {0, 1}: indicator variable that equals 1 if and only if vehicle 𝑤 is present at location
𝑖 at the start of time 𝑡;

• 𝑎 , , ∈ {0, 1}: indicator variable that equals 1 if and only if vehicle 𝑤 arrives at location 𝑖
just before the start of time 𝑡;

• 𝑏 , , , ∈ {0, 1}: indicator variable that equals 1 if and only if vehicle 𝑤 departs from
location 𝑖 to location 𝑗 just after the start of time 𝑡;

• 𝑟 , ∈ ℕ: the amount of remaining travel time vehicle 𝑤 has at the start of time 𝑡;

• ℎ , , ∈ {0, 1}: indicator variable that equals 1 if and only if vehicle 𝑤 stays at location 𝑖
throughout time 𝑡 to handle containers;

• 𝑙 , , , ∈ ℕ: the amount of containers from request 𝑘 that are loaded from location 𝑖 onto
vehicle 𝑤 during time 𝑡;

• 𝑢 , , , ∈ ℕ: the amount of containers from request 𝑘 that are unloaded from vehicle 𝑤
onto location 𝑖 during time 𝑡;

• 𝑞 , , , ∈ ℕ: the amount of containers from request 𝑘 that are sent by infinite resource
from location 𝑖 to location 𝑗, departing just after the start of time 𝑡;

• 𝑣 , , , ∈ ℕ: the amount of containers from request 𝑘 that arrive at location 𝑗 just before
the start of time 𝑡, having been sent by infinite resource from location 𝑖.

Seeing how the departure variables 𝑏 , , , are indexed on vehicle, origin, destination and
departure time, one may as well allow for the travel time incurred to also depend on vehicle,
origin, destination and departure time. Travel times can thus be defined as parameters 𝑇 , , , .
If an instance has symmetric travel times that depend only on the origin-destination pair, one
can simply set the values such that 𝑇 , , , = 𝑇 , = 𝑇 , ∀(𝑤, 𝑖, 𝑗, 𝑡). Following this philosophy
of generality, the parameters of this problem, denoted with upper case letters, are defined as
follows, with ℕ = {1, 2, 3, …}:

• 𝐸 , , , ∈ ℕ: cost incurred if vehicle 𝑤 travels from location 𝑖 to location 𝑗, departing just
after the start of time 𝑡;

• 𝐹 , , , ∈ ℕ: unit cost of loading containers from request 𝑘 from location 𝑖 onto vehicle 𝑤
during time 𝑡;

• 𝐺 , , , ∈ ℕ: unit cost of unloading containers from request 𝑘 from vehicle 𝑤 onto location
𝑖 during time 𝑡;

• 𝑇 , , , ∈ ℕ : travel time if vehicle 𝑤 travels from location 𝑖 to location 𝑗, departing just
after the start of time 𝑡;

• 𝑃 , , ∈ ℕ: processing speed, or total amount of containers that vehicle 𝑤 can load or
unload at location 𝑖 during time 𝑡;

• 𝑁 , ∈ ℕ: total amount of containers that can be loaded or unloaded at location 𝑖 during
time 𝑡;

• 𝐶 , ∈ ℕ : total capacity of vehicle 𝑤 at the start of time step 𝑡;
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• 𝐷 ∈ ℕ : volume of request 𝑘;

• 𝑂 , , , ∈ ℕ: unit cost of using infinite resources to move containers from request 𝑘 from
location 𝑖 to location 𝑗 departing just after the start of time 𝑡;

• 𝑆 , , , ∈ ℕ : amount of time steps required before containers from request 𝑘 arrive at
location 𝑗, having been sent by infinite resource from location 𝑖 just after the start of
time 𝑡.

Problem 3, then, is finding a feasible solution that minimises the sum over the vehicle travel
costs 𝐸 , , , 𝑏 , , , , the loading costs 𝐹 , , , 𝑙 , , , , the unloading costs 𝐺 , , , 𝑢 , , , and the costs
𝑂 , , , 𝑞 , , , incurred by using infinite resources. The definition of ‘feasible’ will be more thor-
oughly discussed in Section 6.3.1, but it largely follows such intuitions as ‘vehicles may only
unload at a location if they are present at the location’ and ‘vehicles may unload at most as
many containers as they have on board’. The discussion up until that section should be clear
enough to follow without the formal definition.

As in Section 4.1.3, one can define a soft due date for a request, next to a hard deadline,
by setting appropriate values for the time-dependent costs 𝐺 , , , of unloading at the due
location.

Notably absent from these parameters are, for example, release time and deadline of a re-
quest. In this model, it is assumed that if a request 𝑘 is not released yet, all of its containers
are present but stuck at the release location. So for every time step 𝑡 before the release time,
𝑦 , , = 𝐷 and 𝑦 , , = 0. Similarly, for every time step 𝑡 from
the deadline onwards, 𝑦 , , = 𝐷 and 𝑦 , , = 0. By enforcing these
variables to have these values, the behaviour of release times and deadlines is achieved.
Therefore, the final ‘parameter’ used in this model is a set Δ of fixed value pairs: for example,
(𝑥 , , , 2) ∈ Δ denotes that 𝑥 , , = 2 must hold, so that the vehicle 𝐵𝑎𝑟𝑔𝑒 𝐴 has
2 containers from request 101 on board at the start of time 0. If Δ = ∅, no variables are
enforced to have fixed values.

These fixed value pairs in Δ are important to model the following requirements, among others:

1. At the first time step, vehicles and containers can be at any place undergoing any ac-
tivity. Δ must enforce the starting situation on any variable;

2. In particular, if using an infinite resource during the time window to transport contain-
ers from request 𝑘 from location 𝑖 to location 𝑗 can get them there as early as some time
𝜏 according to parameters 𝑆 , , , , then 𝑣 , , , has a fixed value until 𝜏. This fixed value
is only greater than 0 if transport was started some time before the start of the time
window;

3. As discussed, the requests have release times and deadlines and Δ must enforce values
𝐷 and 0 on variables 𝑦 , , ;

4. If a terminal 𝑖 has closing times, then Δ must enforce 𝑧 , , = 0 for every vehicle 𝑤 if 𝑖 is
not open at time 𝑡;

5. If a terminal has specified the remaining time slots in which vehicles can still be handled,
Δ must enforce 𝑧 , , = 0 outside of these time slots;

6. If a terminal 𝑖 cannot service barges, perhaps because it has no water connection, then
Δ must enforce 𝑧 , , = 0 for every vehicle 𝑤 if 𝑤 is a barge and for every time 𝑡.

Note that in item 4, one could also choose to enforce that 𝑎 , , = 0 rather than 𝑧 , , = 0,
seeing how a vehicle cannot be at a location without arriving there and vice versa. In ev-
ery such case, it is encouraged to fix both values, to speed up the computation in the case
of integer linear programming and to make the boundaries of the decision space more explicit.
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Note finally that, in this formulation, the amount of containers a vehicle can load or un-
load in a time step is not request-dependent and the amount of containers a terminal can
load or unload depends on neither requests nor vehicles. This may not exactly represent
operational reality, but improvements would require some concept of the amount of ‘work’
loading or unloading certain containers requires, which is left as a topic of future research.

With a notation for this problem introduced, the discussion on the features and solution
methods of this problem can continue more efficiently.

6.2. Problem features
This problem is similar to the Capacitated Multicommodity Network Design (CMND) problem
investigated by Pedersen [44]. It is quite different, however, from the more well-known Dial-
A-Ride-Problem (DARP) [21] and other Vehicle Routing Problems (VRP) [52], in two important
senses:

• In intermodal transportation, it may be optimal for goods to be picked up by one vehicle
and dropped off by another, changing vehicles along the way any amount of times.
However, most DARP-formulations assume that the entire journey from pick-up to drop-
off is performed by one vehicle;

• In Problem 3, it is not necessary for vehicles to start and end at some depot location.
In fact, the real-time flexibility property of synchromodal planning demands that in the
starting situation, vehicles and containers can be at any location undergoing any type
of action. However, most VRP-formulations assume that vehicles start and end at some
depot.

Therefore, Problem 3 is a departure from many classical optimisation problems. It would
seem prudent, thus, to supply a proof why it is still a strongly NP-hard problem. This can be
done by a reduction from 3-partition, which is known to be a strongly NP-complete problem
[27].

Theorem 1. Deterministic operational freight planning is a strongly NP-hard optimisation problem.

Proof. First, observe the decision variant of deterministic operational freight planning: given some
instance of deterministic operational freight planning, does it have a feasible solution with cost smaller
than or equal to some threshold value 𝑌? This problem is obviously in NP:

• Solutions of this problem can be encoded in polynomial time and space with respect to the input
size: the variables, described in Section 6.1, are polynomially many in the amount of vehicles,
locations, requests and time steps;

• Whether or not a solution gives YES to the decision problem, can be checked in polynomial time
and space with respect to the input size: this is merely a matter of computing whether

∑
, , ,

𝐸 , , , 𝑏 , , , + ∑
, , ,

𝐹 , , , 𝑙 , , , + ∑
, , ,

𝐺 , , , 𝑢 , , , + ∑
, , ,

𝑂 , , , 𝑞 , , , ≤ 𝑌

Now, take any instance 𝐼 of 3-partition: thus, take any𝑚,𝐴 , 𝐴 ,… , 𝐴 , 𝐵 ∈ ℤ such that ∑ 𝐴 = 𝑚𝐵
and let 𝐼 be the decision problem ‘Can the list of numbers 𝐴 , 𝐴 ,… , 𝐴 be partitioned into 𝑚 triplets
𝑆 such that ∑ ∈ 𝐴 = 𝐵 for 𝑖 = 1, 2, … ,𝑚?’

Next, construct the instance 𝐼 of deterministic operational freight planning illustrated in Figure 6.3
as follows. Let there be 𝑚 homogeneous vehicles {1, 2, … ,𝑚} with capacity 𝐵. Let there be 3𝑚 re-
quests named 1, 2, … , 3𝑚 respectively, with volume 𝐷 = 𝐴 for 𝑗 = 1, 2, … , 3𝑚. Let there be 3𝑚 + 1
locations named 0, 1, 2, … , 3𝑚 respectively. Let the time steps be 0, 1, 2, … , 8. Employ Δ as follows:

• Let all vehicles start empty;
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Figure 6.3: A special instance of deterministic operational freight planning can be based on a random instance of 3-partition by
giving each item of the partition problem its own request and its own location for release and letting all requests be due at time
8 at location 0. At location 0, vehicles with capacity start empty at time 0. Travelling, loading and unloading always costs
one time step and has cost 0. Using infinite resources always costs one time step and has cost 1. A resource, thus, has time
to take care of at most three requests. This instance has a solution with cost less than or equal to 0, so a solution that uses no
infinite resources, if and only if each vehicle fully loads three requests before unloading them all, which is possible if and only if a
3-partition over the vehicles with capacity exists. To illustrate, this figure is based on the 3-partition instance where ,

, , , , , and , for which the partitioning { , , }, { , , } gives YES.
This partitioning corresponds to a set of routes in which all vehicles fill up exactly all of their capacity (20) before unloading; no
infinite resources are required so the total cost is 0. The first route is indicated in red arcs, the second in orange dashed arcs.
For every three items added to the 3-partition problem, three new locations and one new vehicle would appear in this figure.

• Let request 𝑘 have release time 0, release location 𝑘, deadline 7 and due location 0 for 𝑘 =
1, 2, … , 3𝑚;

• Let each vehicle 𝑤 start at location 0, with 𝑟 , = 0 and 𝑎 , , = 0 for each location 𝑖;

• Let 𝑣 , , , = 0 for each location 𝑖, each location 𝑗 and each request 𝑘, which will imply that no
infinite resources were called upon before time 0 that effect this time window.

Let all vehicle travel costs 𝐸 , , , , all loading costs 𝐹 , , , and all unloading costs 𝐺 , , , equal 0. Let all
infinite resource costs 𝑂 , , , equal 1. Let all vehicle travel times 𝑇 , , , and all infinite resource delivery
times 𝑆 , , , equal 1. Let 𝑃 , , = 𝐶 = 𝐵 and 𝑁 , = 𝑚𝐵 for each vehicle 𝑤, each location 𝑖 and each
time step 𝑡, which implies that loading and unloading at a location always costs 1 time step, regardless
of the amount of containers. With all parameters set, note that each vehicle can fully or partially service
at most three different requests, by performing this sequence of actions that each cost one time step:

(𝑔𝑜 𝑡𝑜 𝑓𝑖𝑟𝑠𝑡 𝑝𝑖𝑐𝑘𝑢𝑝, 𝑙𝑜𝑎𝑑, 𝑔𝑜 𝑡𝑜 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑖𝑐𝑘𝑢𝑝, 𝑙𝑜𝑎𝑑, 𝑔𝑜 𝑡𝑜 𝑡ℎ𝑖𝑟𝑑 𝑝𝑖𝑐𝑘𝑢𝑝, 𝑙𝑜𝑎𝑑, 𝑔𝑜 𝑡𝑜 0, 𝑢𝑛𝑙𝑜𝑎𝑑 𝑎𝑙𝑙)

Note also that for any solution, the objective value has costs equal to the amount of containers trans-
ported anywhere by infinite resource.

Finally, let 𝐼 be the decision problem “Does 𝐼 have a solution with value less than or equal to 0?”
Clearly, decision problem 𝐼 can be constructed from decision problem 𝐼 in polynomial time and space
in the input size of 𝐼 : this is simply a matter of creating 𝑚 vehicles, 3𝑚+1 locations, 3𝑚 requests and
9 time steps, assigning a polynomial amount of parameters their given values and creating a polyno-
mially sized list Δ.

If 𝐼 has answer YES, then let 𝑆 , 𝑆 , … , 𝑆 be a 3-partition. Construct the following solution of 𝐼 :
for 𝑤 = 1, 2, … ,𝑚, if 𝑆 = {𝛼, 𝛽, 𝛾}, let vehicle 𝑤 go to location 𝛼, load all containers of request 𝛼, do
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the same for 𝛽 and 𝛾, then arrive at location 0 at time 7 and unload all containers so they are in by their
deadline 8. As argued earlier, this is feasible in time. By choice of parameters 𝑃 , , and 𝑁 , , this is
feasible in the amount of processed containers. Because ∑ ∈ = 𝐵 = 𝐶 , the capacity of the vehicle
is at no time exceeded. All in all, this solution is feasible and requires no infinite resources so its total
cost is 0. So then 𝐼 has answer YES.

If 𝐼 has answer YES, then observe a solution of 𝐼 with total cost lower than or equal to 0. This solution,
then, must use no infinite resources. Each request must be fully serviced by vehicles. Because of the
deadlines, a vehicle can service at most three requests fully or partially. There are 𝑚 vehicles and
3𝑚 requests, so if no infinite resource are used, each vehicle must service three requests and each
request is serviced by exactly one vehicle. So each vehicle fully picks up three requests, then drops all
three off at location 0. It must be possible, then, to partition the requests into triples 𝑆 , where vehicle
𝑤 takes full responsibility for the requests in 𝑆 . Because the vehicles have capacity 𝐵, the sum of
volumes 𝐷 within in a triple cannot exceed 𝐵. The sum of all volumes is ∑ 𝐷 = ∑ 𝐴 = 𝑚𝐵, so
the sum of volumes 𝐷 within a triple must be exactly 𝐵. Therefore, observing the three jobs serviced
by vehicle 𝑤 gives a set 𝑆 such that 𝑆 , 𝑆 , … , 𝑆 is a 3-partitioning of 𝐴 , 𝐴 ,… , 𝐴 into 𝑚 partitions
of size 𝐵, so 𝐼 has answer YES.

To conclude: 𝐼 is in NP and can be constructed in polynomial time and space from the decision prob-
lem 𝐼 , 𝐼 and 𝐼 are equivalent and 𝐼 is known to be strongly NP-complete. Therefore, 𝐼 is also
strongly NP-complete. 𝐼 is a decision variant of 𝐼 , so 𝐼 is strongly NP-hard, and 𝐼 is an instance
of deterministic operational freight planning, so deterministic operational freight planning is strongly
NP-hard.

Therefore, unless 𝑃 = 𝑁𝑃, deterministic operational freight planning has no general solution
method that runs in poly-time. Additionally:

Theorem 2. Unless 𝑃 = 𝑁𝑃, no Fully Polynomial-Time Approximation Scheme (FPTAS) exists for
deterministic operational freight planning.

Proof. This follows directly from the fact that deterministic operational freight planning is a strongly
NP-hard optimisation problem [41].

So unless 𝑃 = 𝑁𝑃, each general solution method for deterministic operational freight planning
runs in an exponential amount of time and each non-exponential general approximation
method is a Polynomial-Time Approximation Scheme (PTAS) at best.

6.2.1. A note on labour conditions
Depending on the time-scale of the problem instance, it may be important to also model that
barge teams cannot work around the clock for weeks: sleep and refuelling may be necessary.
It is likely possible to add rest periods with time windows to this model for Problem 3 by
creating ‘requests’ that represent a rest period, which can only be executed by a specific
vehicle cheaply, so as to force them to go to the resting place within a specific time window.
It is also likely that labour conditions can be modelled in with some extra variables and
constraints instead, and that this is a less far-fetched solution. Expanding the model to
encompass labour conditions is left as a topic of future research.

6.3. Solving to optimality
The decision space of Problem 3 is obviously much larger and more convoluted than that
of Problem 1. However, Problem 3 may still be solved to optimality for small problems in a
reasonable amount of time, using the ILP developed in this section.

6.3.1. ILP formulation
Denote𝑊 the set of vehicles. Denote 𝐼 the set of locations. Denote 𝐾 the set of requests. With-
out loss of generality, denote 𝑇 = {0, 1, 2, … , 𝑒𝑛𝑑} ⊂ ℕ the set of time steps. Using the notation
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from Section 6.1, Problem 3 can be formulated as the following integer linear program:

min ∑ , , , 𝐸 , , , 𝑏 , , , + ∑ , , , 𝐹 , , , 𝑙 , , ,
+ ∑ , , , 𝐺 , , , 𝑢 , , , + ∑ , , , 𝑂 , , , 𝑞 , , ,
𝑠.𝑡. 𝑣𝑎𝑟 = 𝑣𝑎𝑙 ∀(𝑣𝑎𝑟, 𝑣𝑎𝑙) ∈ Δ (6.1)

𝑥 , , = 𝑥 , , + ∑ ∈ 𝑙 , , , − ∑ ∈ 𝑢 , , , (∀𝑤 ∈ 𝑊)(∀𝑘 ∈ 𝐾)(∀𝑡 ∈ 𝑇\{0}) (6.2)
𝑦 , , = 𝑦 , , − ∑ ∈ 𝑙 , , , + ∑ ∈ 𝑢 , , ,

−∑ ∈ 𝑞 , , , + ∑ ∈ 𝑣 , , , (∀𝑖 ∈ 𝐼)(∀𝑘 ∈ 𝐾)(∀𝑡 ∈ 𝑇\{0}) (6.3)
𝑧 , , = 𝑧 , , + 𝑎 , , − ∑ ∈ 𝑏 , , , (∀𝑤 ∈ 𝑊)(∀𝑖 ∈ 𝐼)(∀𝑡 ∈ 𝑇\{0}) (6.4)

∑ ∈ 𝑢 , , , ≤ 𝑥 , , (∀𝑤 ∈ 𝑊)(∀𝑘 ∈ 𝐾)(∀𝑡 ∈ 𝑇) (6.5)
∑ ∈ 𝑞 , , , + ∑ ∈ 𝑙 , , , ≤ 𝑦 , , (∀𝑖 ∈ 𝐼)(∀𝑘 ∈ 𝐾)(∀𝑡 ∈ 𝑇) (6.6)

𝑣 , , , = ∑ ∈ ∗ 𝑞 , , , (𝑇∗ = {𝜏 ∈ 𝑇 ∶ 𝜏 + 𝑆 , , , = 𝑡}) (∀𝑖, 𝑗 ∈ 𝐼)(∀𝑘 ∈ 𝐾)(∀𝑡 ∈ 𝑇) (6.7)
∑ ∈ 𝑥 , , ≤ 𝐶 , (∀𝑤 ∈ 𝑊)(∀𝑡 ∈ 𝑇) (6.8)

∑ ∈ 𝑙 , , , + ∑ ∈ 𝑢 , , , ≤ 𝑃 , , ℎ , , (∀𝑤 ∈ 𝑊)(∀𝑖 ∈ 𝐼)(∀𝑡 ∈ 𝑇) (6.9)
∑ ∈ ∑ ∈ 𝑙 , , , + ∑ ∈ ∑ ∈ 𝑢 , , , ≤ 𝑁 , (∀𝑖 ∈ 𝐼)(∀𝑡 ∈ 𝑇) (6.10)

ℎ , , ≤ 𝑧 , , (∀𝑤 ∈ 𝑊)(∀𝑖 ∈ 𝐼)(∀𝑡 ∈ 𝑇) (6.11)
𝑎 , , ≤ ∑ ∈ ∑ 𝑏 , , , − ∑ 𝑎 , , (∀𝑤 ∈ 𝑊)(∀𝑖 ∈ 𝐼)(∀𝑡 ∈ 𝑇\{0}) (6.12)

𝑟 , ≥ 𝑟 , − 1 (∀𝑤 ∈ 𝑊)(∀𝑡 ∈ 𝑇\{0}) (6.13)
𝑟 , ≥ ∑ ∈ ∑ ∈ 𝑇 , , , 𝑏 , , , (∀𝑤 ∈ 𝑊)(∀𝑡 ∈ 𝑇) (6.14)
𝑟 , ≤ 𝑒𝑛𝑑 − 𝑒𝑛𝑑 ⋅ ∑ ∈ 𝑎 , , (∀𝑤 ∈ 𝑊)(∀𝑡 ∈ 𝑇) (6.15)

∑ ∈ 𝑏 , , , ≤ 𝑧 , , (∀𝑤 ∈ 𝑊)(∀𝑖 ∈ 𝐼)(∀𝑡 ∈ 𝑇) (6.16)
∑ ∈ 𝑏 , , , + ℎ , , ≤ 1 (∀𝑤 ∈ 𝑊)(∀𝑖 ∈ 𝐼)(∀𝑡 ∈ 𝑇) (6.17)
∑ ∈ ∑ ∈ 𝑏 , , , ≤ 1 (∀𝑤 ∈ 𝑊)(∀𝑡 ∈ 𝑇) (6.18)

𝑏 , , , = 0 (∀𝑤 ∈ 𝑊)(∀𝑖 ∈ 𝐼)(∀𝑡 ∈ 𝑇) (6.19)
𝑞 , , , = 0 (∀𝑖 ∈ 𝐼)(∀𝑘 ∈ 𝐾)(∀𝑡 ∈ 𝑇) (6.20)
𝑣 , , , = 0 (∀𝑖 ∈ 𝐼)(∀𝑘 ∈ 𝐾)(∀𝑡 ∈ 𝑇) (6.21)

𝑎 , , , 𝑏 , , , , ℎ , , , 𝑧 , , ∈ {0, 1} ∀(𝑤, 𝑖, 𝑗, 𝑘, 𝑡) ∈ 𝑊 × 𝐼 × 𝐾 × 𝑇 (6.22)
𝑙 , , , , 𝑞 , , , , 𝑟 , , 𝑢 , , , , 𝑣 , , , , 𝑥 , , , 𝑦 , , ∈ ℕ ∀(𝑤, 𝑖, 𝑗, 𝑘, 𝑡) ∈ 𝑊 × 𝐼 × 𝐾 × 𝑇 (6.23)

The cost function minimises the total costs of moving the vehicles around, loading contain-
ers, unloading containers and employing infinite resources. The reader is reminded that
unit penalties for delivering after a soft due date can be embedded into the time-dependent
cost parameters. Equalities (6.1) state that some variables have fixed values, as detailed in
Section 6.1. Equalities (6.2) state that the amount of containers from request 𝑘 a vehicle has
on board at any time equals the amount it held in the previous time step, plus the amount
it has loaded in the previous time step, minus the amount it has unloaded in the previous
time step. Equalities (6.3) state that the amount of containers from request 𝑘 present at a
location at any time equals the amount present in the previous time step, minus the amount
vehicles took away in the previous time step, plus the amount vehicles have unloaded here
in the previous time step, minus the amount sent away by infinite resource in the previous
time step, plus the amount that appears here from having been sent by infinite resource.
Equalities (6.4) state that whether or not a vehicle is present at a location at any time de-
pends on whether it was present in the previous time step, whether it arrived just before the
start of this time step and whether it has departed to another location during the previous
time step. Inequalities (6.5) state that a vehicle cannot unload more containers from request
𝑘 than it has on board. Inequalities (6.6) state that no more containers from request 𝑘 can be
sent away by infinite resource or loaded onto vehicles than there are present. Equalities (6.7)
ensure that if containers are sent away by infinite resource, they arrive at the right point in
space-time. Inequalities (6.8) state the total amount of containers on board of a vehicle may
never exceed the vehicle capacity. Inequalities (6.9) state that the total amount of containers
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that a vehicle can load or unload, or process, at a location is limited by a processing speed.
Furthermore, processing can only be done if the vehicle has explicitly decide to spend this
time step on handling goods at this location. Inequalities (6.10) state that a location can
handle only so many containers in one time step. Inequalities (6.11) state that a vehicle can
only stay at a location to handle goods if it is present. Inequalities (6.12) state that a vehi-
cle can only arrive at a location if it has departed towards that location more often then it
has arrived there; in other words, a vehicle can only arrive somewhere if it has travelled to
that location, not counting previous trips. Inequalities (6.13) enact a ‘remaining travel time
counter’: each time step, it may be decremented by 1, but it always remains greater than or
equal to 0. When departing from one location to another, inequalities (6.14) set that counter
equal to the travel time. Inequalities (6.15) make it so that a vehicle cannot arrive somewhere
at any time step while it has more than zero remaining travel time on its counter; if some
𝑎 , , equals 1, then 𝑟 , must be less than or equal to 0, while if all 𝑎 , , equal 0, 𝑟 , must be
less than or equal to the length of the time window, which is a reasonable upper bound on
any 𝑟 , . Inequalities (6.16) state that a vehicle can only depart from a location if it is present
at that location. Inequalities (6.17) state that is not allowed for a vehicle to both leave from
a location and stay at the location to handle goods in the same time step. Inequalities (6.18)
state that a vehicle can depart to only one location at a time; if this were not present, it
could start ‘manifesting’ at multiple locations. Equalities (6.19), (6.20) and (6.21) disallow
that anything ‘goes’ from location 𝑖 to location 𝑖 by setting the appropriate variables equal
to 0; the same could be achieved by leaving the variables out or enforcing fixed values upon
them with Δ. Finally, (6.22) and (6.23) state that some variables are binary decision variables
and some variables are non-negative integer decision variables.

Notably absent from this formulation are inequalities that a vehicle can only be at one place at
a time and an analogue for containers. However, if the starting situation is properly defined
with Δ, the constraints disallow for vehicles and containers to ‘manifest’ at several places at
the same time, so the proper behaviours are implicitly present. Whether or not to make these
explicit, is discussed in Section 6.3.2.

Furthermore, it must be noted that the amount of variables and constraints grows poly-
nomially, but still unfavourably fast, in the amount of vehicles, locations, requests and time
steps. For example, the amount of variables 𝑙 , , , is equal to the amount of vehicles times
the amount of locations times the amount of requests times the amount of time steps; addi-
tionally, each of these variables may take any integer between 0 and 𝐷 as its value. Future
research may have to investigate ways to make this model better scalable, possibly by em-
ploying reasoning similar to those used in simplifying instances of Problem 1.

6.3.2. Speed-up from additional constraints
This section describes a number of constraints that can be added to the ILP from Section
6.3.1. These do not change the integral solution set, because they are explicit versions of
constraints that are already implicitly true. However, it will be shown in Section 6.6 that
including them significantly reduces computation time. Most likely, this is because they
constrain the solution polytope in such a way that the LP-relaxations can be solved more
easily, but explanations were not further investigated.

The added constraints are as follows:

𝑠.𝑡. ∑ ∈ 𝑧 , , ≤ 1 (∀𝑤 ∈ 𝑊)(∀𝑡 ∈ 𝑇) (6.24)
∑ ∈ 𝑎 , , ≤ 1 (∀𝑤 ∈ 𝑊)(∀𝑡 ∈ 𝑇) (6.25)
∑ ∈ ℎ , , ≤ 1 (∀𝑤 ∈ 𝑊)(∀𝑡 ∈ 𝑇) (6.26)

Inequalities (6.24) state that a vehicle cannot be at more than one location at a time. Inequal-
ities (6.25) state that a vehicle cannot arrive at more than one location at a time. Inequalities
(6.26) state that a vehicle cannot handle goods at more than one location at a time.
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Although the results in 6.6 show that these added constraints significantly reduce com-
putation time, they also show that the achieved computation times are still too long to make
this method useful for on-line use in problems of ‘real life size’.

6.4. Greedy Gain heuristic
As discussed earlier, heuristics will have to be used to find reasonable solutions for Problem
3 fast enough for on-line use. A first step is often to develop a simple, greedy algorithm: while
not sophisticated, they are often fast and serve as a good starting point for further develop-
ment.

The idea of the Greedy Gain heuristic (GG) is the following. Suppose for now that the in-
finite resources are trucks and none of the vehicles start with containers on board. The
vehicles are not under way to some location; they are simply waiting somewhere. Requests
may already be released and scattered over locations, but they are not on board of vehicles
or trucks: they are simply waiting. Each of these batches is considered a separate request.
Then, an initial solution can be found by simply trucking everything at its cheapest possible
time: this solution is easy to find, but probably very expensive, because infinite resources
are typically more expensive than vehicles and the vehicles are not being used at all. In the
Greedy Gain heuristic, each request is then assigned to one vehicle, one at a time. To deter-
mine which request to assign to which vehicle next, it is checked how much can be gained
immediately from each assignment, then the assignment with the highest gain is chosen,
as long as it is positive. When such an assignment is done, the request is ‘erased’ from the
system: if 9 containers of this request are on board of a vehicle 𝑤, this is no longer described
by variables, but rather by 𝑤 having 9 less capacity at that time in future problems. This
way, throughout most of the algorithm, only instances of Problem 3 are solved with just one
vehicle and just one request: this counteracts the fast scaling of the ILP computation time.
An example of the GG process is shown in Figure 6.4, Figure 6.5 and Figure 6.6.
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Figure 6.4: An instance of Problem 3 with one barge and four requests. The barge can visit ports, but not factories. South
factory is very close to Port 1 and North factory very close to Port 3; for the rest, distances and prices are all the same. Infinite
resources, in the form of trucks, are more expensive than barge usage. The barge starts at Port 2 with nothing on board. The
barge has capacity 20: , for , , … , . In the Greedy Gain heuristic, the initial solution is to just truck everything;
in each iteration, one of the requests will be added to a vehicle’s schedule.

If, however, in the starting situation a vehicle is not waiting but under way, let it become
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Figure 6.5: In the first iteration, request 3 is assigned to the barge, because this assignment has the highest immediate gain:
namely, 9 containers are now largely transported by barge instead of truck. In future iterations, request 3 no longer computation-
ally ‘exists’; instead, the barge has amysterious appointment at Port 3, time 3, in which its capacity changes from , to

, , and a mysterious appointment at Port 2, time 5, in which its capacity changes from , to , .
This way, the sub-problem of adding request 1 or another request to the current schedule of the barge, involves only variables
of the barge and the new request, not of the old request; this makes it computationally more manageable.
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South factory

Port 1

Port 2

Port 3

North factory

Barge start

7

9

71

Final iteration: assign request 1 to barge
Unassigned requests: 2, 4

7

9 1

7

+9,−1

−9+1

Figure 6.6: In the second iteration, the algorithmwould like to assign one of the requests of 7 containers to the barge, but it cannot:
the barge already has appointments at time 3 and time 5, so it cannot wait for the release of request 2 or 4. The containers of
request 2 could theoretically be trucked to Port 3 so they can be loaded during the existing appointment and unloaded during
the second appointment, but this would be more expensive than just trucking them straight to South factory, so this assignment
would have negative gain. The only assignment left with positive gain, is to add request 1 to the schedule of the barge; it consists
of only one container, but the barge is already taking a favourable route for it anyway. After this assignment, the next iteration
has only negative gains, so the algorithm stops. The final solution is sub-optimal: the barge handles request 1 and 3 for a total
of 10 containers, while it would have been smarter to handle request 2 and 4 for a total of 14 containers.

available to the algorithm only as soon as it arrives at its destination by enforcing values
of arrival variables 𝑎 , , and presence variables 𝑧 , , with Δ. Given an instance of Problem
3, these values should already be specified in its set Δ. If containers are under way on an
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infinite resource to some location 𝑗, arriving at 𝑡, ignore them if 𝑗 is their due location, and
interpret them as a batch that is released at 𝑗, time 𝑡 otherwise. If containers start on board
of a vehicle, interpret them as already assigned to that vehicle; in the initial solution, that
vehicles handles only those containers and the resulting schedule is again expressed in pa-
rameter changes rather than variables.

With these details addressed, the Greedy Gain heuristic is formally presented in Algorithm 4.

The most potent upside of the GG heuristic is that, throughout most of the algorithm, only
sub-problems are solved with just one vehicle and one request; this counteracts the fast com-
putational growth in the amount of vehicles and requests. However, it does nothing to reduce
the amount of locations and time steps in a sub-problem; in Section 6.6, it will become clear
that these still greatly contribute to the computation time. Reducing the amount of locations
and time steps in a sub-problem, or solving a sub-problem without the use of the ILP, may
be worthwhile venues for future research.

An obvious downside of the GG heuristic, being a greedy algorithm, is that it may make
‘bad choices’ in early stages that influence the decision space of later iterations. This hap-
pens in Figure 6.5, where greedily picking the request of size 9 makes it so that in the next
iteration, the algorithm can only pick a ‘close-by’ request of size 1; a better solution would
have been attained if the two ‘close-by’ requests of size 7 were picked. It would be smarter,
thus, if an algorithm could somehow recognise the ‘compatible’ requests of size 7 as one
cluster and the other two as another cluster, then assign the vehicle to the cluster with the
best value. This idea is the basis of the next heuristic discussed.
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Data: Instance of Problem 3 (set of vehicles 𝑊, set of locations 𝐼, set of requests 𝐾, list
of time steps; set Δ that forces fixed values to describe starting distribution and
system properties; parameters as described in Section 6.1)

Result: Solution of Problem 3, possibly non-optimal
for 𝑘 in set of requests do

Interpret each separate batch of containers belonging to 𝑘 as a ‘separate request’ 𝜅;
end
for 𝑤 in set of vehicles do

Initialise 𝐴𝑅(𝑤), the set of ‘separate requests’ assigned to 𝑤, as only those already
on board in the starting situation ;
if 𝐴𝑅(𝑤) = ∅ then

Initialise 𝐻(𝑤) =, the set of fixed values of ℎ that enforce the current schedule of
𝑤;
Initialise 𝑓(𝑤), the cost of the current schedule of 𝑤, as 0;

end
else

Solve, using the ILP, the sub-problem where only 𝑤 handles only the requests in
𝐴𝑅(𝑤), denote the solution 𝑋;
Initialise 𝐻(𝑤) = {(ℎ , , , 1)|ℎ , , = 1 𝑖𝑛 𝑋}, initialise 𝑓(𝑤) the cost of 𝑋;
Update 𝐶 , ∶= 𝐶 , − ∑ ∈ ( ) 𝑥 , , ;
Update 𝑃 , , ∶= 𝑃 , , − ∑ ∈ ( )(𝑙 , , , + 𝑢 , , , ) ;
Update 𝑁 , ∶= 𝑁 , − ∑ ∈ ( )(𝑙 , , , + 𝑢 , , , ) ;

end
end
Initialise the unassigned requests,
𝑈𝑅 = (𝑎𝑙𝑙 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠)\{𝐴𝑅(𝑤)|𝑤 𝑖𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠} ;
for unassigned request 𝜅 in 𝑈𝑅 do

Compute infinite resource cost 𝐼𝑅𝐶(𝜅) the cheapest cost of sending all of 𝜅 from its
release location to its due location by infinite resource ;
for vehicle 𝑤 in set of vehicles do

Create, solve and store sub-problem where only 𝑤 handles only 𝜅, respecting the
current 𝐻(𝑤), 𝐶 , , 𝑃 , , and 𝑁 , ;
Denote 𝑓(𝑤 + 𝜅) the cost of this sub-problem ;
Compute 𝑔𝑎𝑖𝑛(𝑤, 𝜅) = (𝑓(𝑤) + 𝐼𝑅𝐶(𝜅)) − 𝑓(𝑤 + 𝜅) ;

end
end
while 𝑈𝑅 ≠ ∅ and max ∈ 𝑔𝑎𝑖𝑛(𝑤, 𝜅) > 0 do

Determine (𝑤, 𝜅) = argmax𝑔𝑎𝑖𝑛(𝑤, 𝜅) with corresponding solution 𝑋 ;
Update 𝐴𝑅(𝑤) ∶= 𝐴𝑅(𝑤) ∪ {𝜅}, 𝑈𝑅 ∶= 𝑈𝑅\{𝜅} ;
Update 𝐻(𝑤) ∶= 𝐻(𝑤) ∪ {(ℎ , , , 1)|ℎ , , = 1 𝑖𝑛 𝑋}, 𝑓(𝑤) ∶= 𝑓(𝑤 + 𝜅);
Update 𝐶 , ∶= 𝐶 , − ∑ ∈ ( ) 𝑥 , , ;
Update 𝑃 , , ∶= 𝑃 , , − ∑ ∈ ( )(𝑙 , , , + 𝑢 , , , ) ;
Update 𝑁 , ∶= 𝑁 , − ∑ ∈ ( )(𝑙 , , , + 𝑢 , , , ) ;
for unassigned request 𝜅 in 𝑈𝑅 do

Create, solve and overwrite new sub-problem where only 𝑤 handles only 𝜅,
respecting the current 𝐻(𝑤), 𝐶 , , 𝑃 , , and 𝑁 , ;
Denote 𝑓(𝑤 + 𝜅) the cost of this sub-problem ;
Compute 𝑔𝑎𝑖𝑛(𝑤, 𝜅) = (𝑓(𝑤) + 𝐼𝑅𝐶(𝜅)) − 𝑓(𝑤 + 𝜅) ;

end
end
Compute and return solution where all 𝜅 𝑖𝑛 𝑈𝑅 are trucked as in the initial solution
and the solved (𝑤, 𝜅)-sub-problems enforce values on ℎ, 𝑙, 𝑞, 𝑢, 𝑣, 𝑥, 𝑦 through Δ.

Algorithm 4: The Greedy Gain heuristic: completely assign requests to vehicles, one at a time,
picking the one with highest immediate gain. This gain is computed by observing sub-problems of
one vehicle and one request, where the other requests handled by this vehicle are embedded as
parameters: capacities are decreased and handling appointments enforced.



70 6. Deterministic operational freight planning

6.5. Compatibility Clustering heuristic
The idea of the Compatibility Clustering heuristic (CC heuristic) is as follows: if there are 𝑛
requests and 𝑚 vehicles, divide the requests into 𝑚 clusters of requests that are ‘compatible’,
that is to say, likely to be handled together by one vehicle efficiently. If two requests have
releases at the same location at virtually the same time, and the same goes for their due
points in space-time, they are extremely compatible: it is very likely efficient that one vehicle
handles both these requests. If the due node in space-time of the first request almost coin-
cides with the release node of the second request, so dropping off the first request smoothly
leads into picking up the second request, these requests are also quite compatible, but not as
compatible as in the previous situation: in the first situation, the requests share two places
in space-time where the vehicle is needed, where in the latter, they share only one. See also
Figure 6.7.

Highly compatible Fairly compatible Hardly compatible

Figure 6.7: Pairs of requests with different ‘compatibility’, that is to say, likeliness that it is efficient to assign them both to the
same vehicle. The white nodes signify release points in space-time, the grey nodes signify where they are due. The left pair
consists of two requests that have to be picked up around the same place in space-time and dropped of around the same place
as well: they share two places in space-time where a vehicle would have to go to. The middle pair shares only one point in
space-time and the right pair shares none.

In order to actually use a existing clustering algorithms to cluster requests on their ‘com-
patibility’, the compatibility of requests must be properly expressed as a metric. Before this
is done, however, some remarks and an outline of the CC heuristic are given, to show that
some other metrics are necessary as well.

Compatibility must depend on both space and time: if two requests have the same origin-
destination pair, but one has its release today and the other next week, their shared origin-
destination pair loses all value. Understanding this, suppose the time window is 2𝑚 days.
If the requests are blindly divided into 𝑚 clusters, it may well happen that the first cluster
consists of all requests of the first two days, the second cluster comprises the second two
days, et cetera. Assigning vehicles to clusters, then, means telling one vehicle to try and take
care of everything that happens in two days and not contributing anything in all other days:
this is not the desired planning behaviour. So the CC heuristic consists of first splitting up
the instance into a given amount of periods, based on time, then within each period finding
𝑚 clusters, based on space-time. Vehicles should then be assigned to a sequence of clusters,
one cluster for each period. To determine these sequences smartly, one would have to know
how ‘connectible’ a cluster of one period is with a cluster of the next period, disregarding
time: if there are three remote major areas of activity and three vehicles, one would try to
sequence the clusters so the vehicles can stay within one area as much as possible. Thus,
the CC heuristic needs a variety of different metrics, which are developed in Section 6.5.1.
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6.5.1. Used metrics
This section introduces the metrics necessary for clustering. The reader is reminded that
any distance function 𝑑 ∶ 𝑋 × 𝑋 → [0,∞) is a metric and the pair (𝑋, 𝑑) a metric space if and
only if they satisfy the following properties:

1. 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑋;

2. 𝑑(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑋;

3. 𝑑(𝑥, 𝑦) = 0 ⇒ 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝑋;

4. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;

5. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Famous metrics include Euclidean distance and the taxicab metric. Furthermore, Fujita for-
mulated the following crucial result: if (𝑋, 𝑑) is a metric space, and 𝐴 and 𝐵 are finite subsets
of 𝑋, then the ‘average distance’ between points in 𝐴 and points in 𝐵 is a function that again
satisfies the properties of a metric [26].

First, if 𝑠 = (𝑣 , 𝑡 ) and 𝑠 = (𝑣 , 𝑡 ) are two space-time nodes in an instance of Problem 3, the
vehicle-based space-time distance between space-time nodes, 𝜎 ((𝑣 , 𝑡 ), (𝑣 , 𝑡 )) is defined as

𝜎 (𝑠 , 𝑠 ) =max{𝑇 , , , , |𝑡 − 𝑡 |}

It can be interpreted as follows: if vehicle 𝑤 wants to perform an infinitely short action at one
place in space-time and then another action at another location in space as soon as possible,
how much time steps will there be between these actions? If these actions are picking up
containers but their release times are far apart, 𝜎 equals that difference in time, |𝑡 − 𝑡 |. If
instead the actions occur very close together in time, the difference is the time it takes to get
from the first location to the second, 𝑇 , , , .

Theorem 3. Under the assumptions that for all locations 𝑖 and 𝑗, 𝑇 , , , is time-independent, is sym-
metric in 𝑖, 𝑗, equals 0 if 𝑖 = 𝑗 and is positive otherwise, and satisfies the triangle inequality, 𝜎 (𝑠 , 𝑠 )
is a metric on the space-time nodes of the instance.

Proof. 1. By assumption, 𝑇 , , , ≥ 0 for all locations 𝑖, 𝑗. Also, |𝑥 − 𝑦| ≥ 0 for all 𝑥, 𝑦 ∈ ℝ. So
𝜎 (𝑠 , 𝑠 ) ≥ 0 for all space-time nodes 𝑠 , 𝑠 .

2. 𝜎 (𝑠 , 𝑠 ) =max{𝑇 , , , , |𝑡 − 𝑡 |} =max{0, 0} = 0.

3. Suppose 𝜎 (𝑠 , 𝑠 ) = 0 for some space-time nodes 𝑠 = (𝑣 , 𝑡 ), 𝑠 = (𝑣 , 𝑡 ).
So 𝑇 , , , , |𝑡 − 𝑡 | ≤ 0. |𝑡 − 𝑡 | ≤ 0 ⇒ 𝑡 = 𝑡 , because the Euclidean distance is a metric.
By assumption, 𝑇 , , , ≤ 0 implies that 𝑣 = 𝑣 . So 𝑠 = (𝑣 , 𝑡 ) = (𝑣 , 𝑡 ) = 𝑠 .

4. Because 𝑇 , , , is assumed to be symmetric in 𝑖, 𝑗 and time-independent and |𝑡 − 𝑡 | = |𝑡 − 𝑡 |,
it follows that 𝜎 (𝑠 , 𝑠 ) =max{𝑇 , , , , |𝑡 − 𝑡 |} =max{𝑇 , , , , |𝑡 − 𝑡 |} = 𝜎 (𝑠 , 𝑠 ).

5. Let 𝑠 , 𝑠 and 𝑠 be space-time nodes of the instance. Suppose 𝜎 (𝑠 , 𝑠 ) = 𝑇 , , , . By the
assumptions of triangle inequality and time independence, 𝑇 , , , ≤ 𝑇 , , , + 𝑇 , , , , so

𝜎 (𝑠 , 𝑠 ) = 𝑇 , , , =≤ 𝑇 , , , + 𝑇 , , , ≤ 𝜎 (𝑠 , 𝑠 ) + 𝜎 (𝑠 , 𝑠 )

If instead 𝜎 (𝑠 , 𝑠 ) = |𝑡 − 𝑡 |,

𝜎 (𝑠 , 𝑠 ) = |𝑡 − 𝑡 | = |(𝑡 − 𝑡 ) + (𝑡 − 𝑡 )| ≤ |𝑡 − 𝑡 | + |𝑡 − 𝑡 | ≤ 𝜎 (𝑠 , 𝑠2) + 𝜎 (𝑠 , 𝑠 )
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A request is largely described by two space-time nodes: its release node in space-time and
its due node in space-time. Theoretically, it is not at all necessary that a a request be picked
up near its release time and delivered near its deadline, nor at the release or due locations,
but it may often be the case in efficient synchromodal practice. If a request 𝐽 is seen as a
pair of two nodes {𝑠 , 𝑠 }, and another request as 𝐽 = {𝑠 , 𝑠 }, then if every pair of request with
the same release node and due node are considered as one large request, the result of Fujita
can be used to define the vehicle-based space-time distance between requests, 𝑑 (𝐽 , 𝐽 ):

𝑑 (𝐽 , 𝐽 ) = 1
2|{𝑠 , 𝑠 , 𝑠 , 𝑠 }| ( ∑

∈{ , }
∑
∈ \

𝜎 (𝑠 , 𝑠 ) + ∑
∈{ , }

∑
∈ \

𝜎 (𝑠 , 𝑠 ))

Theorem 4. If 𝜎 is a metric on space-time nodes, 𝑑 is a metric on requests.

Proof. This follows immediately fromFujita. The concerned readermay note that if 𝐽 = {𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑛𝑜𝑑𝑒 𝑖, 𝑑𝑢𝑒 𝑛𝑜𝑑𝑒 𝑖}
and 𝐽 = 𝐽 , then it might be that 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑛𝑜𝑑𝑒 1 = 𝑑𝑢𝑒 𝑛𝑜𝑑𝑒 2 and 𝑑𝑢𝑒 𝑛𝑜𝑑𝑒 1 = 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑛𝑜𝑑𝑒 2;
however, assuming that due nodes are always strictly further in time than release nodes, 𝐽 = 𝐽 implies
that the requests have equal release nodes and equal due nodes.

It was explained earlier in Section 6.5 that requests will first be divided over a specified
amount of time periods. This can also be done with clustering, using a metric that depends
only on time, namely the temporal distance between requests:

𝜏(𝐽 , 𝐽 ) = 1
2|{𝑠 , 𝑠 , 𝑠 , 𝑠 }| ( ∑

∈{ , }
∑
∈ \

|𝑡 − 𝑡 | + ∑
∈{ , }

∑
∈ \

|𝑡 − 𝑡 |)

From Fujita and the fact that |𝑡 − 𝑡 | is an Euclidean distance, it immediately follows that 𝜏
is a metric on the requests.

Finally, the need was argued to express connectability of request clusters from different time
periods, based mainly on spatial distance. This is done by first describing the vehicle-based
spatial distance between space-time nodes 𝑠 , 𝑠 as 𝜋 (𝑠 , 𝑠 ) = 𝑇 , , , , then the vehicle-
based spatial distance between requests, denoted 𝜋 (𝐽 , 𝐽 ), as the average spatial distance
between the sets {𝑠 , 𝑠 } and {𝑠 , 𝑠 }, then describing the vehicle-based spatial distance be-
tween clusters 𝐶 = {𝐽 , … , 𝐽 } and 𝐶 = {𝐽 , … , 𝐽 }, denoted 𝜋 (𝐶 , 𝐶 ), as the average spatial
distance between the sets {𝐽 , … , 𝐽 } and {𝐽 , … , 𝐽 }. So

𝜋 (𝐶 , 𝐶 ) = 1
|𝐶 ∪ 𝐶 ||𝐶 | ∑

∈
∑
∈ \

𝜋 (𝐽 , 𝐽 ) + 1
|𝐶 ∪ 𝐶 ||𝐶 | ∑

∈
∑
∈ \

𝜋 (𝐽 , 𝐽 )

If the same assumptions on 𝑇 , , , apply as in Theorem 3, 𝜋 is a metric on request clusters,
though this is not actually necessary for the functioning of the algorithm described in Section
6.5.2.

With these metrics, it becomes possible to cluster requests before assigning them. Three
downsides were discovered, however, in having to use metrics. For one, the functions are
currently only guaranteed metrics if the travel times 𝑇 , , , ‘behave metrically’ and are time-
independent: though this is often quite a natural assumption to make, it is still a loss of
generality. Secondly, if two requests are released and due at exactly the same times but
slightly different locations, they may in practice be exactly not compatible, because the ve-
hicle can only be present at one location for loading and miss the loading window for the
other; if however compatibility were modelled to decrease when requests come too close to-
gether, but be perfect when the requests exactly overlap, this would lead to an inevitable
loss of the triangle inequality. Fortunately, this ‘non-decreasingness’ of compatibility is often
not a problem, assuming that infinite resources can be used to get both batches in one place
cheaply, because they are close together. Finally, basing distances on average distances may
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even out the distinctiveness of requests too much, making all requests ‘about as compati-
ble’; though intuitively one may want to use a minimum distance rather than an average
distance, this leads to a loss of property 3 of metric functions as soon as requests may share
a node. If any of these behaviours are deemed too undesirable, it may be interesting to study
whether the algorithm in Section 6.5.2, or an appropriate adjustment of it, still works when
the undesirable behaviours are modelled out at the possible cost of non-metricity.

6.5.2. Description of algorithm
Finally, the CC heuristic is described as Algorithm 5. Figure 6.8 illustrates the desired result
of the algorithm and may serve as a visual aid when reading it.

Period 1 (5 requests) Period 2 (2 requests) Period 3 (6 requests)

Cluster sequence 1

Cluster sequence 2

Cluster sequence 3

Train B

Barge A

Barge C

Figure 6.8: The desired result of the Compatibility Clustering heuristic: first, the requests are divided into a given number of
time periods. Then, within each time period, the requests are divided in clusters based on compatibility, with the amount of
vehicles; if the amount of requests in a time period is less than or equal to , each request forms its own cluster, as here in Period
2. Each period then has at most clusters: these are stringed together into cluster sequences, by looking at the spatial cluster
distance between each cluster in one period and each cluster in the next, then finding a minimum weight perfect matching using
the Hungarian algorithm. Finally, this yields cluster sequences, and the vehicles are assigned to the cluster sequences,
again with a minimum weight perfect matching: the assignment costs are determined by solving a sub-problem where the given
vehicle executes the requests in the given cluster sequence.

Note that for its clustering, it uses the UPGMA method [42], because among clustering meth-
ods with non-Euclidean distances, it is known to produce clusters relatively equal in size [6],
which is beneficial in dividing work load fairly over vehicles and thus preventing having to
resort to infinite resources unnecessarily. Note furthermore that, though the metrics devel-
oped in Section 6.5.1 are defined vehicle-based, it is not yet known at some points in the
algorithm which vehicle will service certain requests or clusters; at these points, the distance
is averaged out over vehicles. In some real life instances, one may expect travel times to be
similar for different vehicles, and if not, this is partially compensated in the final stages of the
algorithm, where specific vehicles are taken into account. Further discussion on properties
of this algorithm is postponed to Section 6.7.
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Data: Instance of Problem 3 (set of vehicles 𝑊, set of locations 𝐼, set of requests 𝐾, list
of time steps, amount of time periods Ξ; set Δ that forces fixed values to describe
starting distribution and system properties; parameters as described in Section
6.1)

Result: Solution of Problem 3, possibly non-optimal
for request 𝑘 in 𝐾 do

Interpret each separate batch of containers belonging to 𝑘 as a ‘separate request’ 𝜅;
end
Cluster all requests into Ξ time periods, using UPGMA with the 𝜏(𝐽 , 𝐽 ) temporal
distance between requests and place the clusters into a chronological list ;
for cluster in list of time period clusters do

if amount of requests in this time period ≤ |𝑊| then
Make every request its own cluster;

end
else

Cluster the requests within this time period into |𝑊| clusters, using UPGMA with
the average (over vehicles) 𝑑 (𝐽 , 𝐽 ) space-time distance between requests ;

end
end
Initialise |𝑊| empty cluster sequences;
Add each cluster in the first time period to its own cluster sequence ;
for time period in {2, … , Ξ} do

Compute each spatial cluster distance 𝜋 (𝐶 , 𝐶 ) between the clusters at the end of
the current cluster sequences and the clusters in this time period;
if amount of non-empty cluster sequences ≥ amount of clusters in this time period then

Assign each cluster in this time period to a cluster at the end of a non-empty
cluster sequence, using the Hungarian algorithm ;
Set each cluster in this time period at the end of the sequence to which it is
assigned ;

end
else

Assign the last cluster in each non-empty cluster sequence to a cluster in this
time period, using the Hungarian algorithm ;
Set each unassigned cluster in this time period at the end of a currently empty
cluster sequence ;
Set each assigned cluster in this time period at the end of the sequence to which
it is assigned ;

end
end
for vehicle 𝑤 in𝑊 do

for cluster sequence in set of cluster sequences do
Compute the cost of assigning 𝑤 to this cluster sequence by solving the
sub-problem where only 𝑤 handles only the requests in this cluster sequence,
using the ILP and storing the solution;

end
end
Use the Hungarian algorithm to assign vehicles to cluster sequences ;
Return the solution where each vehicle 𝑤 and each request 𝑘 does exactly what it does
in the solved sub-problem if 𝑤 is assigned to the cluster sequence that contains 𝑘.

Algorithm 5: The Compatibility Clustering heuristic: in each time period, cluster the requests into |𝑊|
clusters according to their 𝑑(𝐽 , 𝐽 )-distance, then make |𝑊| strings of clusters over the time periods
by using the Hungarian algorithm between each time step and the next, then solve each sub-problem
where only vehicle 𝑤 handles only the requests in a given cluster sequence, then use the results to
assign vehicles to cluster sequences using the Hungarian algorithm.
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6.6. Numerical results

Class A (2, 5, 4, 14) Class B (3, 6, 5, 14) Class C (4, 8, 8, 14)
ILP cost over optimal: mean 0% – –

variance 0% – –
worst 0% – –

ILP computation time: mean 67.9𝑠 – –
variance 9549.6𝑠 – –
worst 288.9𝑠 – –

ILP+ cost over optimal: mean 0% 0% –
variance 0% 0% –
worst 0% 0% –

ILP+ computation time: mean 57.7𝑠 26.2𝑚 –
variance 4197.8𝑠 2149.1𝑚 –
worst 162.8𝑠 2.56ℎ –

GG cost over optimal: mean 210.5% 152.5% unknown
variance 72973% 40821% unknown
worst 887.5% 508.3% unknown

GG computation time: mean 15.4𝑠 31.5𝑠 113.5𝑠
variance 9.0𝑠 14.8𝑠 191.9𝑠
worst 22.0𝑠 40.0𝑠 140.2𝑠

CC cost over optimal: mean 243.8% 249.4% unknown
variance 150233% 74553% unknown
worst 1200.0% 720.0% unknown

CC computation time: mean 15.1𝑠 28.8𝑠 116.9𝑠
variance 14.0𝑠 43.3𝑠 349.0𝑠
worst 22.4𝑠 40.7𝑠 145.1𝑠

Table 6.1: Numerical results for random instances of Problem 3. Class A concerns instances with 2 vehicles, 5 locations, 4
requests and 14 time steps; the other classes can be interpreted the same way from their descriptions at the top of the table.

In this section, the various methods discussed in this chapter are tested for objective value
efficiency and computation time. ‘ILP’ represents solving the instance to optimality with the
ILP as given in Section 6.3.1, while ‘ILP+’ represents solving it with the additional constraints
from Section 6.3.2. Though the hardware set-up is still the same as in Section 4.4, different
class definitions are used: Class A consists of random problem 3 instances with 2 vehicles, 5
locations, 4 requests and 14 time steps, Class B has 3 vehicles, 6 locations, 5 requests and
14 time steps and Class C has 4 vehicles, 8 locations, 8 requests and 14 time steps. Un-
fortunately, no results are given for a class that represents ‘real life size’: this would involve
121 time steps rather than 14, and even the heuristics were unable to find a single solution
in under five hours, which is sufficient to prove that these methods cannot yet be applied in
on-line practice.

As problem classes become computationally more intense, certain solution methods are left
out. In the first two classes, the exact optima are known, but not in Class C; here, it can
only be stated that the Compatibility Clustering heuristic achieves results that have a cost
of, on average, 129.0% over the cost attained with the Greedy Gain heuristic. Among these
instances, none were found where CC found a cheaper solution than GG did.

The results can be viewed in Table 6.1 and are discussed in Section 6.7.

6.7. Discussion
From the results in Section 6.6, several things can be concluded.

1. Using the additional constraints from Section 6.3.2 leads to a significant decrease in
ILP computation time;
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2. Going from Class A to Class B, which is ‘only slightly larger’, increases the average ILP+
computation time by a factor 26;

3. Class B has an average ILP+ computation time of 26.2 minutes, with worst observed
case 2.56 hours, making the ILP unsuitable for decision-support in cases of size B or
up under the current hardware set-up;

4. On average, the GG heuristic achieves costs that are a factor 2.5 to 3.1 of the optimal
cost, though this gap appears to become smaller as problem instances grow;

5. The computation time of both heuristics is much more stable and predictable than that
of solving the ILP, and the growth of computation time is more manageable;

6. The computation times of the two heuristics are surprisingly similar, but the GG heuris-
tic attains better results in cost;

7. Class C consists of instances that have an average computation time of two minutes for
both heuristics. Depending on goals and preferences, this is ‘pushing the limit’ of how
much computation time is allowed in decision-support;

8. The growth of computation time observed in all methods makes it clear that instances
of the last class in previous chapters, consisting of 6 vehicles, 32 locations, 40 requests
and 121 time steps, cannot yet be solved efficiently with these methods.

Conclusion 1 is probably due to the LP-relaxation solution polytopes being smaller, leading
to better bounds in the ILP process. Conclusion 4, the non-optimality of the GG heuristic,
is explained in Section 6.4. Conclusion 6, or rather that the GG heuristic performs better
than the CC heuristic, is unfortunate, as the CC heuristic was designed to deal with the
non-optimality of the GG heuristic. It should be investigated if other clustering methods and
other distance metrics yield better results, perhaps even methods that discard metricity as
suggested in Section 6.5.1, and studying optimal solutions may lead to other ideas of how
to cluster, or other ideas for heuristics in general. Additionally, both heuristics assign a full
request to at most one vehicle, which limits options of intermodality and eliminates options
of consolidation in order to find a solution more quickly.

All other conclusions are about how the computation time grows too quickly for any of these
methods to be useful in operational decision-support for problems of ‘real life size’. This is
easy to explain: the variables 𝑏 , , , , 𝑞 , , , and 𝑣 , , , and their corresponding inequalities
grow enormously in amount, though these are only the worst offenders. Not only does this
mean that the ILP solver has to handle thousands of variables and constraints, but also
that the decision space is very large: the more time steps there are, the more random se-
quences of a vehicle visiting locations there are to investigate. More broadly, the solution
set contains ‘nonsensical’ solutions like a vehicle picking up one container, going to some
random location, dropping the container, picking it up again and repeating this until truck-
ing it at the end, but the non-optimality of such strategies should be picked up very quickly
in the branch-and-bound process; however, whether or not it is non-optimal to visit certain
locations under certain conditions may require a deeper search tree. The heuristics solve
sub-problems with only one vehicle 𝑤 and a limited amount of requests, but even then, the
amount of variables 𝑏 , , , is still the amount of locations squared times the amount of time
steps and the same or worse goes for 𝑞 , , , and 𝑣 , , , .

Though speed-ups can probably be attained using commercial ILP solvers, parallelisation,
cloud computing and streamlining of the implementations, this may cost a considerable
amount of money before the current methods are useful in operational practice. Instead,
there are still several mathematical innovations and refinements that are likely to reduce
computation time:

• In the field of heuristics, develop heuristics that solve ILP sub-problems more rarely
and carefully or not at all. This may not be a trivial task: the great benefit of solving
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a sub-problem using the ILP is not so much the minimal cost, but that the ILP solver
looks at the ILP and works out all details to make the solution feasible. When not using
an ILP solver, much attention may have to be spent on ensuring solution feasibility;

• When working with the GG heuristic or other iterative heuristics, try an ILP solver that
allows passing initial solutions: when checking the gain of adding request 𝑘 to the
schedule of vehicle 𝑤, it may be very useful to pass the current schedule of 𝑤 and the
current trucking decision for 𝑘 as an initial solution;

• When solving sub-problems of one vehicle and one request, investigate ways to limit
the amount of relevant locations and time steps as well, as these still make the sub-
problems too large for ‘real life size’ instances;

• When solving the ILP, look into column generation. In a given solution, the amount
of variables that have a value greater than 0 are comparatively small, because one
only needs a handful of positive variables to describe the route of a vehicle or the used
routes of a request. Applying column generation, however, is again not trivial, because
the complex system dynamics may make it so that a variable cannot be added one at a
time;

• Find lesser-indexed versions of variables. For example, it appears to be possible to
replace variables 𝑏 , , , (barge 𝑤 departs from location 𝑖 to location 𝑗 at time 𝑡) with
variables 𝑏 , , by splitting each equality

𝑧 , , = 𝑧 , , + 𝑎 , , −∑
∈
𝑏 , , ,

into four inequalities

𝑎 , , ≤ 𝑧 , , ≤ 𝑎 , , + 2𝑧 , , , 𝑎 , , + 2𝑧 , , −∑
∈
𝑏 , , − 1 ≤ 𝑧 , , ≤ 𝑎 , , −∑

∈
𝑏 , , + 1

and splitting each inequality 𝑟 , ≥ ∑ ∈ ∑ ∈ 𝑇 , , , 𝑏 , , , into |𝐼| inequalities
𝑟 , ≥ 𝑇 , , , (𝑧 , , +𝑏 , , −1) and treating the contribution to the cost function the same,
but with 𝐸 , , , ;

• Similar to how Algorithm 1 eliminates redundant information in Problem 1, investigate
how redundant information can be eliminated in Problem 3;

• When solving the ILP, see if it is beneficial to add more inequalities like the ones in
Section 6.3.2.

Each of these are recommended for future research.

6.7.1. Added value
In this chapter, a problem was formulated that is a departure from many classical VRP prob-
lems, despite it having direct applications in practice. Its strong NP-hardness was proven,
an ILP was formulated to solve it and two heuristics were proposed. Though the high compu-
tation time of these methods make them only applicable to small instances without resorting
to more costly hardware configurations, clear venues were set out for how to find solutions
more quickly through mathematical innovation.

6.8. Conclusion
This chapter sought to answer the following research sub-question:

4. How can a low cost net-centric operational transport schedule be found fast enough for
on-line use if everything is known beforehand?
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Deterministic operational freight planning, or ‘Problem 3’, was defined to be the problem of
making the time tables for vehicles for travelling to locations and handling goods at terminals
and simultaneously assigning containers to vehicles and infinite resources, all in such a way
that the total cost of getting the containers to their destinations is minimal.

Though one would expect Problem 3 to resemble VRP problems, it is actually quite a de-
parture from them, in that goods may switch vehicles any amount of times and vehicles do
not have to start or end at a depot. Problem 3 was proven to still be strongly NP-hard, thus
to not have an FPTAS.

An ILP formulation of this problem was developed, complete with the options to specify what
the vehicles are doing at time 0 and to disallow certain vehicles to arrive at certain locations
at certain times, so as to model opening times, terminal time slot availabilities and whether
a certain terminal can even handle a certain modality. It was made slightly faster by adding
additional inequalities.

Because the amount of variables in this ILP is polynomial but high in the amount of vehi-
cles, locations, requests and time steps, a Greedy Gain heuristic was developed which solves
sub-problems of only one vehicle and one request to see how much gain there is to be had in
adding this request to the schedule of this vehicle, then iteratively adding requests to vehicle
schedules based on the highest immediate gain. To counteract the obvious non-optimality
this strategy may attain, a Compatibility Clustering heuristic was developed, which first clus-
ters requests on how efficient it is to handle them together, then checks for each vehicle how
much it would cost to handle this cluster by solving the corresponding sub-problem, then
uses the Hungarian algorithm to assign vehicles to clusters.

Though the computation time of the CC heuristic is surprisingly similar to that of the GG
heuristic and both are much faster than solving the complete ILP, the CC heuristic finds
worse solutions than the GG heuristic, and none of the methods can find a solution fast
enough for operational decision-support in instances of ‘real life size’ on modest hardware,
because even the sub-problems are too large for those instances. Both heuristics find solu-
tions with significantly non-optimal costs, possibly because they sacrifice some intermodality
and all consolidation for speed, but the gap appears to become smaller for the GG heuristic as
instances grow. A number of recommendations were given to find a solution more quickly:
most importantly, a heuristic may have to be developed that does not solve sub-problems
with the ILP at all.

To answer the sub-question: small instances may be solved to optimality fast enough and
slightly larger instances may be solved with the Greedy Gain heuristic. For instances of
‘real life size’, however, more research will have to be done to find solutions fast enough for
operational decision support, and a number of venues for this were formulated.



7
Conclusion

The following research question was posed:

How can on-line container-to-transport assignment and operational transport
scheduling in synchromodal freight transport be optimised against their

corresponding definition of ‘optimal’?

This was answered along the following sub-questions:

1. How can different scenarios of synchromodal freight transport be classified within an
exhaustive framework?

2. How can a low cost net-centric container-to-transport assignment be found fast enough
for on-line use if everything is known beforehand?

3. How can a low cost net-centric container-to-transport assignment be found fast enough
for on-line use if new data is still expected to come in?

4. How can a low cost net-centric operational transport schedule be found fast enough for
on-line use if everything is known beforehand?

The provided answers are as follows:

1. Chapter 3 provides the framework asked for in the first sub-question. Though classifica-
tion within this framework is still partly subject to subjectivity, it provides a formulation
that captures many problem elements and whether they are controlled, fixed, stochas-
tic, dynamic or irrelevant and also how the interaction between the decision-maker and
the rest of the system is modelled.

2. A low cost net-centric container-to-transport assignment can be found by modelling
the �̄�|�̄�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)-problem as a minimum cost multi-commodity flow problem on
a space-time network. When removing redundant information using Algorithm 1, this
method finds the optimal assignment for instances of ‘real life size’ in an average 9 sec-
onds on modest hardware. The developed method allows for modelling of simultaneous
soft due dates and hard deadlines.

3. Though it is theoretically possible to find an assignment policy with minimum expected
cost for the 𝑅|�̂�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)-problem using multi-stage stochastic programming, this
is not possible in practice because of the enormous amount of computation it would
require. Instead, Expected Future Iteration and 70%-Pessimistic Future Iteration are
proposed: though they achieve near optimality in an average 24 seconds respectively
26 seconds per use, it is still unknown if they work as well under less uniform system
dynamics and full use case data may be needed to examine this.

79



80 7. Conclusion

4. For small instances, a minimum cost net-centric operational schedule for the
�̄�, [𝑅𝐷], [𝑅𝐷𝑇]|�̄�, [𝐷2𝑅]|𝑠𝑜𝑐𝑖𝑎𝑙(1)-problem, in the form of vehicle schedules and container-
to-mode assignments, can be found with integer linear programming. For slightly larger
instances, the computation time might become too high for integer linear programming,
but solutions may still be found using the Greedy Gain heuristic or Compatibility Clus-
tering heuristic, preferably the former. Though these methods could also be used to
solve instances of ‘real life size’, additional research or hardware investments will have
to be done to find a solution fast enough for operational decision support.

The added value of this thesis, more in-depth conclusions and remaining challenges can be
found in the final sections of Chapters 3, 4, 5 and 6.

7.1. Recommendations for future research
This thesis ends with a number of recommendations for future research, divided on which
problem or problems they relate to.

Problem 1:

• Refine Algorithm 1 to remove the redundancies it still leaves, or find some other minimal
representation;

• Find solutions for this problem more quickly, possibly using heuristics, so that the
simulation method used by Kooiman [35] can be applied in Problem 2;

• Investigate if combining shortest path algorithms with Lagrange relaxation on the capac-
ity constraints can give input to heuristics or improvements to finding exact solutions.

Problem 2:

• Study problems where just the travel times, request release times or terminal handling
times are stochastic: this may lead to more specialised versions of the synchromodal
algorithms proposed here, and the large amount of attention these problems receive in
literature justify the existence of specialised algorithms;

• Make single future iteration heuristics more suitable to rolling time windows, by quanti-
fying if certain containers should be transported earlier than optimal to reserve capacity
near the end of the time window for new requests;

• Apply the simulationmethod used by Kooiman, given that enough speed-up was achieved
in solving or approximating instances of Problem 1;

• Redefine the 70%-Pessimistic Future Iteration method to be based not on separate per-
centiles, but on actual probabilities that the chosen path turns out to exist, or more
accurately quantify this probability for the current method. This will move the method
more clearly into the field of robustness;

• Further develop the proposed decision processes to deal well with dependent random
variables.

Problem 3:

• Incorporate labour conditions by planning rest periods as well, either with virtual ‘re-
quests’ at the rest stop or by adding appropriate variables and constraints;

• Speed up the ILP with column generation, clever reformulations, powerful additional
constraints and removal of redundant options;

• Develop heuristics that find decent solutions of Problem 3 fast enough for operational
decision-support for instances of ‘real life size’ as well;

• Find a way to solve sub-problems of one vehicle and one request without using the ILP,
for iterative heuristics like the GG heuristic;
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• Find a way to solve sub-problems of one vehicle without using the ILP, for heuristics
like the GG heuristic and the CC heuristic;

• Investigate what metric properties are truly necessary for clustering and use this knowl-
edge to improve the CC heuristic;

• Add components of intermodality and consolidation to existing or new heuristics.

‘Problem 4’:

• Investigate the stochastic version of Problem 3, given that enough advancements were
made in Problem 2 and Problem 3 or that enough supporting literature already exists.

All problems:

• Test the methods against full data use cases and iterate on the results;

• Investigate the alternatives in meta-heuristics, where the rigorous problem definitions
from this thesis may serve as input to define neighbourhoods.





A
Amount of distributions

Theorem 5. Let 𝑎 ∈ {0, 1, 2, …} and 𝑏 ∈ {1, 2, …}. The amount of ways to distribute 𝑎 identical items

over 𝑏 recipients equals ( 𝑎 + 𝑏 − 1𝑏 − 1 ) = ( 𝑎 + 𝑏 − 1𝑎 ).
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Figure A.1: The amount of distributions of identical items over recipients follows the behaviour seen in Pascal’s Triangle.

Proof. First, note that if 𝑎 = 0, then the amount of distributions is 1: namely, all of the recipients get
nothing. Indeed, the amount of distributions is then

( 𝑎 + 𝑏 − 1𝑏 − 1 ) = ( 𝑏 − 1𝑏 − 1 ) = 1

Second, note that if 𝑏 = 1, the amount of distributions is 1: namely, the one recipient gets all 𝑎 items.
Indeed, the amount of distributions is then

( 𝑎 + 𝑏 − 1𝑎 ) = ( 𝑎𝑎 ) = 1

Now suppose 𝑎 ≠ 0, 𝑏 ≠ 1, so 𝑎 > 0, 𝑏 > 1. Denote 𝐶 the amount of distributions of 𝑎−1 items over 𝑏
recipients. Denote 𝐷 the amount of distributions of 𝑎 items over 𝑏 − 1 recipients. It will be proven here
that the amount of distributions of 𝑎 items over 𝑏 recipients equals 𝐶 + 𝐷.

To this end, observe the distributions of 𝑎 items over 𝑏 − 1 recipients. How many distributions are

83



84 A. Amount of distributions

there when another recipient is added? In each distribution, this new recipient either gets no items, or
gets at least one item. The amount of distributions in which it gets none of the items is the amount of
distributions of 𝑎 items over 𝑏 −1 recipients, so 𝐷. If the new recipient gets at least one item, the other
𝑎−1 items must still be distributed over the 𝑏 recipients, which can be done in 𝐶 ways. So the amount
of distributions of 𝑎 items over 𝑏 recipients equals 𝐶 + 𝐷.

Observe Figure A.1. It is well-known from the theory of Pascal’s Triangle that this two-dimensional
recursion, with the given base case, implies that the amount of distributions of 𝑎 items over 𝑏 recipients
equals ( 𝑎 + 𝑏 − 1𝑏 − 1 ) = ( 𝑎 + 𝑏 − 1𝑎 ).
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