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A B S T R A C T

PV-battery systems are currently not operated in an energy system optimal way as their operation heuristic
(maximization of self-consumption) is generally unaffected by competitive market signals. To evaluate potential
regulatory intervention, we propose a market alignment indicator which measures the relative economic effi-
ciency of a prosumer battery compared to a benchmark system that is completely responsive to wholesale market
prices. Investigating the case of PV-battery systems in Germany, we find that scarcity signals transmitted to
prosumers improve the market alignment of PV-battery systems while retaining similar levels of self-con-
sumption and autarky rates. Both dynamic prices for generation (time-varying feed-in remuneration) and con-
sumption (real-time electricity prices) can improve welfare, that is lowering consumer expenditures for elec-
tricity at the wholesale market. The effectiveness of the respective instrument mix depends on the relative levels
of the feed-in tariff, the grid consumption to be saved and the solar generation costs. Accordingly, increasing
fixed network charges can have a significant positive impact on the market alignment of prosumer batteries if
combined with dynamic prices, as they change the relative composition of retail prices.

1. Introduction

The levelized cost of electricity (LCOE) of solar photovoltaics (PV)
has fallen rapidly in recent years, a development that is transforming
energy markets worldwide (Agnew and Dargusch, 2015; Bazilian et al.,
2013; Breyer et al., 2017; Farmer and Lafond, 2016; Green, 2016). In
many countries around the world, the LCOE of solar PV is now below
the household retail electricity price (Lang et al., 2016). From the
consumer's point of view, there is thus an incentive to produce and
consume solar electricity directly on-site, as this saves the difference
between the household electricity price and the generation costs (Schill
et al., 2017). In Germany, for example, household consumers are sub-
ject to average retail electricity prices of around 0.29 Euro/kWh
(BDEW, 2017), while solar electricity can be produced for 0.12 Euro/
kWh or less under ideal conditions.

Like photovoltaics, battery storage has observed a significant drop
in system prices in recent years, indicating a similar transformation
ahead (Agnew and Dargusch, 2015). To moderate the intermittency of
solar and increase self-consumption, solar systems including batteries

are now becoming economically viable for end-consumers under cer-
tain support schemes and local generation potentials (Hoppmann et al.,
2014; Quoilin et al., 2016; Weniger et al., 2014).

Such PV-battery systems can be scaled as required and can be used
decentrally in residential and commercial applications where demand
occurs, providing renewable electricity without transmission losses.
These systems establish a direct link between producers and consumers
and generate a new class of electricity market players – so-called pro-
sumers, who operate partially independently from the rest of the elec-
tricity system (Schleicher Tappeser, 2012). Solar home systems can
facilitate the overall shift of the electricity system towards more sus-
tainable generation, as they allow for decentralized investments in solar
energy and are able to actualize the site potential of roof surfaces
(Mainzer et al., 2014; Schill et al., 2017).

These systems are not free of concerns, however, both technically
and economically. From a consumer perspective, the economic attrac-
tiveness of PV-battery systems depends largely on the avoided costs of
retail electricity, circumventing payments for grid services and other
surcharges. Retailers and system operators will have to recuperate this
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missing money by increasing charges for the remaining consumers,
while the cost induced by a prosumer to the grid are essentially similar
to the standard case of not having a PV-battery system. For example, the
contribution to peak grid consumption does not change substantially in
most cases, and prosumers still subscribe to the “service of security of
supply”. In the worst case, this decoupling can lead to a parasitic effect
on the system at large (Khalilpour and Vassallo, 2015; Laws et al., 2017;
Parag and Sovacool, 2016).

Moreover, PV-battery systems are in many cases not operated in an
energy system optimal way because the market's scarcity signals (ex-
pressed by the wholesale prices for electricity, assuming a frictionless,
optimized power system) do not reach the consumer, as they are always
exposed to the same retail price; the operation optimization is carried
out locally under the premise of maximizing self-consumption. This
situation thus incurs additional costs and introduces economic in-
efficiencies (Schill et al., 2017; Rubino, 2018).

How can one incentivize prosumers to align their battery operation
to the scarcity signals from the wholesale market? For example, how
would one incentitize that prosumers feed electricity into the system
when electricity is scarce, or that storages are charged if electricity is
abundant energy-system wide? To the authors’ knowledge, an oper-
ationalization on how to measure “market alignment” of prosumers
with different system configurations is so far lacking, with the result
that the questions above cannot be answered conclusively yet.

To overcome these shortcomings, this article provides two con-
tributions to the current body of knowledge. Firstly, we offer a proposal
for quantifying and comparing the market alignment of different PV-
battery systems. For this purpose, we define a so-called market alignment
indicator (MAI ), which measures the relative economic efficiency of a
prosumer battery operation compared to an idealized benchmark case
that is completely aligned to wholesale market price signals. In contrast
to a welfare analysis in absolute numbers, the indicator MAI has the
advantage that different relative system sizes can be compared.

Secondly, we provide an evaluation of possible regulatory inter-
ventions to improve prosumer market alignment for a real-world case
study from Germany. We are examining three policy instruments whose
goal is to make self-consumption more “system-friendly” by providing
more efficient incentives for consumers and aligning them more closely
to the wholesale market. The policy instruments under consideration
are real-time retail electricity prices, time-varying feed-in remuneration
and an increase of fixed network charges. The policy instruments are
examined individually and in combination, i.e. form 2³=8 possible
“instrument mixes” (Rogge and Reichardt, 2016). As such, we show
that the indicator is useful for comparing the effectiveness of different
instrument mixes. The situation is analyzed from the perspective of the
system (via the indicator MAI ) and the prosumers themselves via sev-
eral economic indicators.

As a case study, we look at Germany. Here, the spread between the
solar LCOE and household electricity prices is high. Residential con-
sumers in Germany are not exposed to wholesale market prices. Instead,
the energy suppliers buy energy from the wholesale electricity market
and guarantee energy delivery to consumers at a fixed price. The
wholesale price of electricity acquisition makes a fraction of the con-
sumer electricity bill (19%), while the remaining constitutes network
charges (26%), the renewable energy feed-in (EEG) and other support
mechanism levies (23%), and sales, taxes and other charges (32%)
(BDEW, 2017). Apart from some (small) monthly fixed charges, the bill
components are all volume-based and can be in principle avoided by
self-generation. There is no net-metering of the generation fed into the
grid. Instead, PV-battery systems are subsidized – PV via feed-in re-
munerations, battery systems via a loan subsidization.2 It was estimated
that more than 80,000 PV-battery systems have been installed in Ger-
many up until late 2017 (Figgener et al., 2018). This indicates that

these systems are becoming increasingly relevant to the electricity
system as a whole, and the adverse effects described above might make
regulatory intervention necessary earlier than in other countries.

The remainder of the paper is structured as follows. Section 2 pre-
sents the methodology, i.e. the definition of the market alignment in-
dicator (MAI ), the techno-economic modeling of PV-battery systems
and the approach to determine their optimal charging pattern. We
present modeling assumptions and the data of the used case study.
Section 3 presents how the MAI performs for different instrument mixes
and system configurations and why it takes certain values and dis-
tributions. Additionally, we elaborate how the economic prospect of a
single prosumer would change per instrument mix. Possible short-
comings and extensions of the study are discussed in section 4. Section
5 concludes with policy recommendations.

2. Methodology

2.1. Market alignment indicator (MAI )

As described above, PV-battery systems do not necessarily operate
in the most system-friendly way, mainly due to the fact that the mar-
ket's scarcity signals do not reach the prosumers, as they are exposed to
a fixed retail electricity price in many countries. In order to find a proxy
for the “system-friendliness” of different system configurations, we here
develop a market alignment indicator (MAI ).

We define the MAI via the contribution to welfare W of the pro-
sumer battery, i.e. by the ratio of the welfare effect of the actual op-
eration of the prosumer battery over the welfare effect of a benchmark
system of the same size:

=MAI W
W

Actual

Benchmark (1)

In other words, a completely market aligned benchmark case is
defined and then compared to the actual state, i.e. the prosumer feed-in
and storage usage depending on the actual instrument mix.

The short-term welfare effect of consumption and generation for a
given instrument mix j is obtained by the delta of electricity fed into
(E G j, ) or withdrawn from the grid (EG j, ), multiplied by the wholesale
market price Pwholesale in that hour:

=W t E t E t P t( ) ( ( ) ( )) ( )j G j G j wholesale, , (2)

Assuming a frictionless power system with no network constraints,
the wholesale market price for electricity is a perfect scarcity signal,
and a completely efficient, market aligned storage system would act as
arbitrage storage: Buying electricity at comparatively low prices to
store it, and selling at high prices, discharging accordingly. Thus, the
benchmark case is an arbitrage battery directly connected to the grid,
being able to follow market price signals without distortions.

In comparison, the prosumer battery has a different dispatch profile
because its incentive structure is different. To isolate the effect of the
battery of the self-consumption system, we consider two self-con-
sumption systems, one PV-battery system and one PV system without
battery, with the same load and same rated solar power. We further
assume that the battery has the same size as the benchmark battery. The
additional welfare provided by the prosumer battery WProsumer Battery is
then given by:

= = +W W W WActual Prosumer Battery PV Battery System PV System (3)

A MAI of + 1 indicates a dispatch that is completely aligned to
market signals, i.e. efficient operation according to wholesale market
prices – the charging state of the actual case always corresponds to the
charging state of the benchmark case, which means it is charged when
electricity is comparatively highly available and discharged when
electricity is comparatively scarce. The indicator cannot be higher than
1, as this would mean the actual system would generate more welfare
than the benchmark case, which is impossible as the benchmark is by2 This support scheme is currently being phased out.
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definition already perfectly efficient and completely aligned to market
signals. A market alignment indicator of 0 denotes that the operation of
the prosumer battery neither increases nor decreases overall welfare.
Negative values indicate battery dispatch patterns that are not aligned
to market signals and that decrease overall welfare. For example, a
value of 1 indicates that for every Euro that could be saved with the
benchmark battery, one additional Euro would have to be expended
under the actual instrument mix. Negative values are possible as there
is no limit to inefficiency; the indicator can attain large negative values.
In real cases under investigation here, negative values do occur but
never exhibit values < < 0.

The MAI can be evaluated for time durations of arbitrary length. In
this evaluation, welfare values are evaluated on an hourly basis and are
aggregated over all time steps = =W T W t( )t 1 with T as the total
evaluated duration.

This approach neglects additional possible sources of welfare that
battery systems can provide. These include, but are not limited to, the
provision of ancillary services, distribution grid relief and increased
resilience of the system in times of unforeseen events like disasters or
blackouts. These potential benefits are notoriously hard to monetize
and are therefore not part of the operationalization of the MAI .
Conversely, we use market-alignment only as a proxy indicator for the
“system-friendliness” of solar self-consumption at large.

2.2. Other indicators

Additionally, an evaluation of individual merits from the perspec-
tive of the single prosumer per instrument mix is performed. As an
indicator of economic attractiveness, we preform an internal rate of
return (IRR) evaluation of each PV-battery system and instrument mix
in question. The formulation can be found in the annex in subsection
Appendix B.1. As Engelken et al. (2018) have shown, independence
from the grid is a decisive factor for the perceived utility of PV-battery
systems for many prosumers. Therefore, the autarky (the share of self-
consumed electricity relative to the total consumption) and self-con-
sumption rates (the share of consumed electricity relative to the total
PV generation) per instrument mix are considered. Formulas are found
in the annex in subsection Appendix B.2.

2.3. Investigated instrument mixes

Ideally, electricity prices would better align the distributed deci-
sions made by individuals with the efficient operation and planning of
the power system (Pérez-Arriaga et al., 2017). Three policy instruments
that aim to improve the current electricity market design are in-
vestigated, individually and in combination, making up for 2³= 8
different instrument mixes. The policy instruments under consideration
are:

• Real-time vs. fixed retail electricity prices: Real-time electricity prices
represent cases where the household consumer is exposed to time-
varying retail prices proportional3 or parallel4 to the electricity
wholesale market price. These schemes have been considered to be
most representative of efficient energy prices and most reflective to
actual systems costs (Hogan, 2014), and should therefore incentivize
the efficient operation of prosumer storages, as they would reveal to
consumers how scarce electricity is at the moment.
• Time-varying vs. fixed feed-in remuneration: Time-varying feed-in re-
muneration denotes remuneration for generators proportional or
parallel to the wholesale market price. For example, Ossenbrink
(2017) evaluated the effects of feed-in remuneration designs on the
economics of PV-systems in several countries and suggests that

exposing PV prosumers to market price signals through feed-in re-
muneration would allow for a smoothed integration of distributed
solar into new electricity market designs.
• Fixed vs. volumetric network charges: Fixed network charges represent
cases where consumers pay a fixed (comparatively high) amount of
network charges, which is not proportional to their energy con-
sumption, but to their peak usage of the grid or simply fixed per
connection (Borenstein, 2016). The main purpose is to reflect fair
cost allocation and provide security to network cost recovery
(Rubino, 2018). An increased fixed network charge component
comparatively lowers the attractiveness of solar self-consumption,
as the difference between a marginal unit of retail electricity and the
LCOE of PV would decrease. The network charge investigated here
is fixed in a sense that it would not take into account the consumer's
peak capacity requirement, but rather that all investigated con-
sumers pay the same charge.

For the instrument mix naming convention, refer to Table D1. For
example, the instrument mix which would exhibit real-time pricing
(RTP), time-varying feed-in remuneration (VFIT) and volumetric network
charges (the business-as-usual case) would be called ‘RTP + VFIT’.

The cases are designed so that their cumulative monetary effect over
the course of a year is zero, meaning that a non-PV owner would be
paying the same amount of money for electricity per year. This has been
done by adding a constant per kWh to the wholesale electricity prices in
the real-time pricing scheme, and by multiplying proportionality factors
to the wholesale market prices for time-varying remuneration schemes.
The details of this parametrization are shown in section Appendix C in
the annex.

2.4. Technical modeling and dispatch optimization

2.4.1. Overview
In order to assess the effect of different policy instruments on

market alignment for many possible situations, the optimal operation of
PV-battery systems from the perspective of the prosumer is simulated.
The optimization of the battery dispatch is formulated as a mixed in-
teger linear programming (MILP) problem. The most important tech-
nical parameters defining the PV-battery system are the charging and
discharging efficiency of the battery, the self-discharge and the max-
imum charge and discharge capacity of the battery (defined by the
energy to power (E P/ ) ratio). Further inputs in the form of time-series
are the solar feed-in, the household load and the electricity wholesale
prices.

The next subsections will present how the dispatch optimization is
carried out. The dispatch algorithm has an optimization interval of

=N 24 hours and ensures that the net prosumer cash flow from elec-
tricity sales and expenditures on electricity purchases is maximized.
The result is the dispatch of the battery, the state of charge of the
battery, and the flows of electricity to and from the grid.

2.4.2. Dispatch optimization of the benchmark case
As mentioned before, the benchmark case is designed to resemble a

battery operation pattern that is completely aligned to wholesale
market signals. The battery is connected directly to the grid, see Fig. .1.
This pure arbitrage mode of operation serves as an idealized reference
for the other cases.5 The optimization criterion is the maximization of
the income from trading per time slot T, i.e. that the battery is charged
at times of comparatively low prices and discharged at times of com-
paratively high prices.

On these grounds, the dispatch is obtained by maximizing the

3 Read as: Wholesale market price times a constant.
4 Read as: Wholesale market price plus a constant.

5 Batteries are not operated with this pattern under current market condi-
tions, as other components of real-world electricity prices (taxes, levies, etc.)
would have to be factored in.
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revenue for each optimization interval:

rmaximize z

rz is the revenue at the zth period:

=
= +

+

r P t E t E t( ) ( ( ) ( ))z
t z N

z N

wholesale B G G B
1

( 1)

(4)

where N is the optimization interval, t is a single time step and z is an
element of the total amount of optimization periods Z, where Z is:

= = =Z T
N

8760
24

365 (5)

P t( )wholesale is the price of the electricity at time t on the wholesale
market, E t( )B G is the energy from the battery into the grid at time t
and E t( )G B is the energy from the grid to the battery at time t. T is, in
hours, the total evaluated duration. Consequently, the total revenue R
for each year is:

=
=

R r
z

Z

z
1 (6)

To summarize the objectives of the arbitrage dispatch pattern:

1. Technology: Battery storage only.
2. Focal economic parameters:
• Charging cost: wholesale market price.
• Discharging revenues: wholesale market price.

3. Storage application: Arbitrage dispatch.

The constraints of the formulation can be found in the annex
Appendix A.1.

2.4.3. Dispatch optimization of the business as usual instrument mix
In the business as usual (BAU) case, a PV-system is connected to a

battery. For a schematic depiction of the technical layout, see Fig. 2. The
electricity consumer can obtain electricity from the grid and, depending on
generation and state of charge, from the PV system and the battery.
Conversely, the generation from the solar system can be consumed di-
rectly, stored in the battery or fed into the grid. Solar power fed directly
into the grid is compensated via a feed-in remuneration. Electricity pur-
chased from the grid must be paid at the household electricity price. For
the sake of completeness, the battery may also be charged and discharged
directly via the grid. Electricity fed into the grid from the battery is
compensated with the wholesale price. For this reason, feeding-in from the
battery to the grid is unattractive under current circumstances, since the
wholesale price is usually lower than the feed-in remuneration for solar
energy. However, this could change in principle if solar module prices and
hence feed-in remunerations continue to fall.

Table 1
Naming convention of the instrument mixes under investigation

Instrument mix Fixed network
charges

Real-time
electricity prices

Time-varying feed-in
remuneration

BAU × × ×
F ✓ × ×
RTP × ✓ ×
RTP + F ✓ ✓ ×
VFIT × × ✓
VFIT + F ✓ × ✓
RTP + VFIT × ✓ ✓
RTP + VFIT + F ✓ ✓ ✓

Fig. 1. Schematic sketch of the benchmark case (arbitrage battery directly
connected to the grid).

Fig. 2. Schematic sketch of the PV-battery system responding to dynamic prices.
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In the BAU case, the dispatch optimization can be formalized in a
straightforward way. Since the household electricity price is assumed to
be constant and there are no other charging or load flow restrictions,6

and the wholesale electricity price is always lower than the retail
electricity price, and the retail prices always exceed the level of feed-in
remuneration, the following simple dispatch pattern corresponds to the
optimum: If there is excess power (i.e. solar generation >
consumption), energy is stored in the battery as long as the battery is
not yet fully charged. As soon as the battery is fully charged, the gen-
eration surpluses are fed into the grid. Conversely, if generation is low
(i.e. solar generation < consumption), the battery is discharged until
empty, then electricity is drawn from the grid.

To summarize:

1. Technology: PV-battery system.
2. Focal economic parameters:
• Charging cost: 0 (from PV).
• Discharging revenues: Avoided retail electricity price.

3. Storage application: Minimization of expenditures for electricity, i.e.
maximization of self-consumption.

The constraints of the optimization, which is a special case of the
following setting, can be found in the annex Appendix A.2.

2.4.4. Dispatch optimization for alternative instrument mixes
For the alternative cases, the battery is also connected to a PV

system, the same technical layout as before applies (see Fig. 2). De-
pending on the instrument mix, the prices for generation and/or con-
sumption now vary per hour, so the simplifications from the previous
case do not hold true at all time steps. Net cash flows stem from elec-
tricity sales via the feed-in remuneration in the case of feed-in of solar
electricity or via the wholesale market price in the case of feed-in of
electricity from the battery, and from expenditures on retail electricity
purchases. The dispatch algorithm chooses the best option of the trade-
off between feeding in electricity and thus generating income from
sales, and storing or using electricity directly to cover the local load,
thus minimizing the expenditures to be paid for grid electricity. For
each optimization interval, the wholesale market prices, generated
solar power and the household consumption are known with perfect
foresight. The revenue maximizing objective function for each optimi-
zation period z is:

rmaximize z

with rz as the revenue over an interval N per optimization period z:

= += +
+r FIT t E t P t E t

P t E t P t E t
( ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ))
z n z N

z N
PV G wholesale B G

retail G L retail G B

1
( 1)

(7)

To summarize:

1. Technology: PV-battery system.
2. Focal economic parameters:
• Charging cost: 0 (from PV), retail electricity price (from grid).
• Discharging revenues: Avoided retail electricity price (from PV),
wholesale market price (from grid).

3. Storage application: Minimization of expenditures for electricity, i.e.
optimization of battery dispatch to maximize avoided retail elec-
tricity (primary) and wholesale market revenues (secondary).

The constraints of the formulation can be found in the annex
Appendix A.3.

2.5. System sizing

Investment and system sizing decisions are to a large degree de-
pendent on the instrument mix consumers are governed by
(Ossenbrink, 2017). However, a dynamic adjustment of the system size
according to the instrument mix is not considered in this analysis; the
size of the battery or the PV modules is not determined within the MILP
economic optimization, but instead set heuristically. Numerous drivers
determine when households invest in PV and/or battery systems
(Klingler, 2017; Frey et al., 2019), so system size optimization ac-
cording to mere economic indicators would neglect other important
investment and sizing variables. For example, prosumers also strive to
increase autarky and self-consumption rates, among others (Engelken
et al., 2018). As a complete investment model for PV-battery systems
was outside the scope of the analysis, we take current literature values
for the relative size of the battery and PV modules compared to the
household load and leave these relative sizes constant per instrument
mix.

The size of the battery sB in kWh is chosen relatively to the yearly
load in MWh of each household:

=s sˆ /B B (8)

with ŝ B as the relative battery size. We define the relative size of the PV
modules as =s s hˆ /PV PV in the same way with sPV in kW and h as a
unit of time so that ŝ PV is dimensionless. Additionally, one can de-
termine the PV size in comparison to the size of the battery as

= s sh/PV B.

2.6. Data and input parameters

Concerning these sizing parameters, Figgener et al. (2018) report a
value of =ŝ 1.6B for 2017, so a household with a load of

=5 MWh 5000 kWh would install a battery of =5 1.6 8 kWh in this
analysis. κ is found to be 1 (Figgener et al., 2018), i.e. ŝ PV is also 1.6.

Load time series with a high temporal resolution are necessary in
order to depict the variance of self-consumption. Beck et al. (2016),
among others, have shown that the shape of the household load profile
has a higher impact on attainable self-consumption and autarky rates
than the generation profile. Here, 74 profiles by Tjaden et al. (2015) in
hourly resolution are considered.7 On aggregate, these profiles yield
roughly the shape of the standard load profile, i.e. the load profile of an
average household (Tjaden et al., 2015). The mean yearly load is
4685 kWh (see Table 5), so the mean size of the analyzed PV modules

Table 2
Mean values for self-consumption and autarky rate and avoided network
charges for all considered cases (74 households)

Instrument mix Self-Consumption
Rate

Autarky Rate Avoided Network
Charges in Euro/a

BAU 0.501 0.711 189.49
F 0.501 0.711 0.00
RTP 0.442 0.636 149.99
RTP + F 0.440 0.631 0.00
VFIT 0.445 0.640 149.99
VFIT + F 0.436 0.629 0.00
RTP + VFIT 0.446 0.628 144.70
RTP + VFIT + F 0.442 0.619 0.00

6 If a subsidized loan for solar battery storage is used, the output of the PV-
battery system is restricted to ¡50% of the nominal power of the PV panels
(Figgener et al., 2018). This restriction is neglected here, since it only occurs in
the special case if the support scheme is used. The support scheme is phased
out, and only about 20% of new installations have made use of the scheme and
are therefore subject to the restriction (Figgener et al., 2018).

7 For higher modeling accuracy, a sub-hourly time resolution of generation
and load is preferable in sole PV self-consumption systems (Beck et al., 2016).
Modeling in hourly resolution yields satisfactory accuracy if a battery is used
(like in our case), as Quoilin et al. (2016) and others have shown.
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and batteries are =s 7.5 kWPV and =s 7.5 kWhB , respectively.
The feed-in time series is based on the average solar generation in

Germany of the year 2016, data is taken from (Open Power System
Data, 2017; Wiese et al., 2019). The data source also includes the day
ahead wholesale electricity market prices of 2016 for Germany (see
Table 5 for descriptive statistics). Further techno-economic parameters
and their sources are listed in Table 3.

3. Results

3.1. Market alignment for different instrument mixes

As described above, the market alignment indicator MAI is mea-
sured by comparing the short-term welfare effect of a prosumer battery
with an optimal benchmark case. In the following, we present how well

this operationalization is able to assess the market alignment of PV-
battery systems for different instrument mixes.

Fig. 3 shows the distribution of the MAI for each instrument mix
under investigation. The variation among each individual instrument
mix stems from the variance of the 74 household load profiles. The
business-as-usual (BAU) case and its fixed network charge counterpart
case (F) exhibit the lowest MAI values, in fact slightly negative ones.8

The closer the price signals for the PV-battery system match those of
the wholesale market, the closer the dispatch profiles should be to the
theoretical benchmark. The highest MAI values are therefore attained
by the two cases which combine real-time prices and a time-varying
feed-in remuneration (RTP + VFIT and RTP + VFIT + F), with mean values
of 0.25 and maximum values of 0.4. As an example, see the two dis-
patch examples for a sunny and cloudy day (Fig. 4 and 5). These cases
transmit both signals for consumption (real-time retail electricity
prices) and generation (a time-varying feed-in remuneration). As more
scarcity information is revealed to the prosumer, there is a higher in-
centive and flexibility to shift the charging of the battery. As outlined in
the figure captions, the charging of the battery is shifted to the after-
noon in the sunny example (Fig. 4) when retail prices are lower. In the
cloudy example (Fig. 5), the battery is not used at all in the BAU case,
whereas deltas in retail prices are utilized to charge and discharge the
battery in the RTP + VFIT + F case.

In the middle of the MAI spectrum are the instrument mixes with
sole time-varying feed-in tariffs or real-time pricing schemes (Fig. 3),
realizing mean MAI values of ca. 0.1–0.2. With the RTP instrument
present, the instrument mixes with fixed network charges exhibit sig-
nificantly higher values of market alignment, as the overall retail price
signal shape and therefore the incentive structure is different. With less
constant “offset” by volumetric network charges, the wholesale market
signals can be transmitted more directly.9 Hence the fixed network
component has an effect on market alignment.

Table 3
Parameters and Assumptions

Input Parameter Symbol Unit Value Derived From

Project Lifetime Y Years 20 Model Assumption
PV Specific Investment I PV

0 Euro/kWp 1280 PV Magazine (2019)
PV Cost Scaling Factor γ – −0.063 Feldman et al. (2012)
PV Operation & Maintenance Co m

PV
& % 1 Model Assumption

Relative PV size ŝ PV – 1.6 Figgener et al. (2018)
Relative battery size ŝ B – 1.6 Figgener et al. (2018)
Battery Specific Investment I B

0 Euro/kWh 1300 Figgener et al. (2018)
Battery Cost Scaling Factor ν – −0.154 Figgener et al. (2017)
Battery Operation & Maintenance Co m

B
& % 1 Model Assumption

Battery Lifetime L Number of Cycles 8000 Model Assumption
Discharge Efficiency d % 95 Model Assumption
Charge Efficiency c % 95 Model Assumption
Self-discharge s %/h 0.2 Model Assumption
Optimization Interval N h 24 Model Assumption
Total Evaluated Duration T h 8760 Model Assumption
Energy to power ratio E P/ – 2 Model Assumption
Value added tax VAT % 19 –
Feed-in Remuneration FIT cent/kWh 12.3 Bundesverband Solarwirtschaft eV (2017)
Mean Cost of Acquiring Electricity PelectricityAcq cent/kWh 5.63 BDEW (2017)
EEG and other support levies Plevies cent/kWh 7.68 BDEW (2017)
Taxes Ptaxes cent/kWh 3.71 BDEW (2017)
Volumetric Network Charge PvolNC cent/kWh 5.69 BDEW (2017)
Fixed network charge (baseline) PfixedNC Euro/a 66 BDEW (2017)
Fixed network charge (policy instrument F) PfixedNC Euro/a 204 Model Assumption

Table 4
Intermediate factors derived from model calculations

Input Parameter Symbol Unit Value

Optimization Periods Z – 365
Account Balancing Constant c cent/kWh 2.59
Scaling Factor for Time Varying Levy α – 1.36
Scaling Factor for Time Varying Feed-in

Remuneration
β – 2.32

Table 5
Descriptive statistics of main time series

Descriptor Spot prices Pwholesale [EUR/MWh] Yearly Household Load [kWh]

Mean 28.95 4685.0
Median 28.21 4561.9
Min 130.09 1398.9
Max 104.96 8635.0
SD 12.49 1414.3

8 The bau and f case exhibit the same dispatch pattern, as the optimization
logic of the business as usual case described above also applies to f.
9 As an example, see Figs E4 and E.5 where the mean retail price level is lower

in RTP + VFIT + F compared to bau as the network charges are already paid
for.
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3.2. Market alignment for different relative system sizes

The relative sizing of the PV-battery system plays an important role
for the MAI . Fig. 6 depicts the MAI for a relative battery of size of 1.6
(mean absolute size: 7.5 kWh) and different PV sizes.

For small PV sizes, RTP attains comparatively higher values and vice
versa for VFIT schemes. RTP + VFIT performs the best for all combinations;

BAU always exhibits the lowest MAI values (ca. −0.1).
RTP shows higher MAI values for smaller PV sizes, as such a system is

more grid-consumption driven, because the amount of self-produced
energy is comparatively small. Hence RTP can regulate the system more,
as this is a consumption price signal. Conversely, a large PV-system has
many hours of high generation, and a time-varying generation signal
will reveal scarcity signals on that side of the chain, leading to a

Fig. 3. Distribution of the market alignment indicator (MAI ) for different instrument mixes. The uncertainty in the values per instrument mix stems from a variation
of the household load profiles.

Fig. 4. Dispatch example for a sunny day for the instrument mixes BAU and RTP + VFIT + F. In the latter, the retail price (blue curve, right axis of both plots) is not fixed,
incentivizing to shift battery charging to the afternoon. In the BAU case, there is no such incentive and the battery is charged as soon as a local surplus is generated.
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changed battery usage and thus a higher comparative MAI for VFIT for
larger PV-systems. The RTP + VFIT instrument mix is able to exploit both
signals, in the figure RTP + VFIT is the superposition of the shape of the
two MAI curves of RTP and VFIT.

The relative size of the battery has an equally important impact on
the market alignment: Fig. 7 depicts the MAI for a fixed relative PV size
of 1.6 (mean size: 7.5 kW) and varying relative battery sizes. Again, the
BAU case always exhibits lowest MAI values, less than −0.1 for larger
batteries sizes. As opposed to the PV size variation, the MAI mono-
tonically decreases for all instrument mixes (but the BAU case) for in-
creasing system sizes. A larger battery gives the prosumer more scope of

action for the optimization exercise. It thus becomes possible to exploit
asymmetries in incentives over longer time-scales. This is true for all
instrument mixes under investigation as all of the proposed ones cannot
reduce distortions completely (and hence do not attain MAI values
close to 1, as seen in Fig. 3).

The BAU case is comparatively good for relatively small PV-systems
(or comparatively larger batteries) by mere ‘coincidence’. For small PV
systems, not much solar generation is fed into the grid; the battery
undergoes one cycle per day, loading in the morning and the afternoon,
discharging in the evening, roughly matching the arbitrage case. This
cannot be guaranteed for larger PV systems (or smaller batteries),

Fig. 5. Dispatch example for a cloudy day for the
instrument mixes BAU and RTP + VFIT + F. The local
generation cannot cover the load. In the BAU case, the
battery is not used at all. For the RTP + VFIT + F in-
strument mix, the battery is charged in low demand
hours at night and discharged when electricity is
comparatively scarce system-wide (in the evening).
Moreover, the battery uses retail price dips during
the day to recharge. For this particular case, the RTP

+ VFIT + F instrument mix reduces the yearly self-
consumption rate to 0.44 compared to 0.50 in the BAU

case, reduces the autarky rate from 0.68 to 0.58, but
raises MAI from −0.12 to 0.33.

Fig. 6. Mean market alignment indicator MAI for different PV sizes and various instrument mixes for a mean battery size of 7.5 kWh.
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which tend to feed-in their surplus electricity during peak times at
noon, when prices are low, lowering their MAI considerably.

As outlined above, the instrument mixes including fixed network
charges exhibit higher MAI values if combined with real-time prices.
However, the general shape of the sizing curve in Fig. 6 and 7 would
look the same. For visual clarity, we therefore neglected them in both
examples.

3.3. MAI - A useful operationalization?

The previous two subsections revealed that one can evaluate the
market alignment of PV-battery systems by merely looking at the sto-
rage component and not at the solar feed-in profile. This is possible as
the two are interrelated via the household load. Hypothetically, if there
would be no distinction between ‘before the meter’ and ‘behind the
meter’, i.e. if generation/consumption would be remunerated/billed
with the same time-varying price, the economic signal should be sym-
metrical, and the market alignment indicator MAI should converge to
1. This is indeed true: if the PV generation gets remunerated with the
wholesale price, and the retail electricity price seen by the prosumer is
also the wholesale price without any extras, MAI takes a value of ex-
actly 1. In such an ideal system, it would not matter if the PV modules
or battery were located before or behind the meter. In reality, we just
showed that market distortions like levies (such as the renewable en-
ergy support levy) and taxes (tax on electricity and value-added tax)
will prevent the indicator from becoming close to 1.

The MAI formulation has the advantage that it is relatively parsi-
monious and can be normalized in a simple way. It thus conveniently
summarizes an important dimension of the integration challenge of
distributed energy sources. A MAI of 1 means that in all cases, the
charging states point in the same direction, and vice versa a MAI of low
to negative values that the operation of the battery is inefficient in
terms of alignment to wholesale market signals. With this simple nor-
malization, different systems at different sizes can be compared.

3.4. Other indicators

How would the proposed instrument mixes affect the individual

prosumer? Fig. 8 shows the mean IRR for all households per instrument
mix. The rates do not change considerably between BAU and RTP, VFIT and
RTP + VFIT, because the proportionality factors of the consumption and
generation real-time signals were set to resemble current consumer
price levels on average. For the fixed network charge cases, con-
siderably lower IRR (ca. 2% lower) are attained, as a significant share of
the retail price cannot be circumvented with self-generation anymore.

The calculated IRR are considerably lower than in other similar
studies like that of Bertsch et al. (2017). These differences are mostly
attributable to other capital expenditure assumptions. What if batteries
were cheaper? To test this sensitivity, Fig. 9 shows the mean IRR for
different specific battery costs in the RTP case. Positive returns can be
achieved for all system configurations under consideration at specific
battery prices of 500 Euro/kWh, (compared to around 1300 Euro/kWh
as of 2017, but falling rapidly (Figgener et al., 2018)). We did not test
for a PV cost sensitivity, as the feed-in remuneration is dynamically
adjusted to account for changes in the LCOE of solar in Germany, hence
similar levels of profitability should be attained in a feed-in tariff
scheme like the one at hand.

Autarky and self-consumption rates are slightly lower for all alter-
native cases. The avoided network charges are by definition 0 for the
fixed network charge cases, as they are covered as a lump-sum per
accounting period. See Table 2 for a summary. The other alternative
instrument mixes (RTP, VFIT, RTP + VFIT) exhibit slightly lower avoided
network charges, but are for themselves likely not sufficient to com-
pensate fully for the network charge attribution problem outlined in the
introduction.

4. Discussion

4.1. External validity: transferability to other (real-world) cases

Our evaluation did not assess the practical implementation of the
possible instrument mixes in detail. The following aspects are pointers
to further necessary research.

Concerning the technical implementation, an agency question arises
about who would execute the optimization of the prosumer system, i.e.
who would forecast, optimize and take dispatch decisions. It could well

Fig. 7. Mean market alignment indicator MAI for different battery sizes and various instrument mixes for a mean PV system size of 7.5 kWp.
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be that optimization algorithms such as the ones described here would
be automated and act rather autonomously. Another possibility is that
aggregators would pool the flexibility of the prosumer systems and
control and market them in lieu of their costumers. In any case, de-
pending on the local level of sophistication, the measuring and calcu-
lation equipment would come at a cost (which is not considered in this

evaluation). Further research should elaborate on how economic and
technical scarcity signals could be transmitted efficiently and securely
to the relevant stakeholders. If the exponential price decline of com-
putation, communication and storage devices continues (Kurzweil,
2005), at least the cost aspect might not be a significant obstacle.

The evaluation has shown that technical parameters like the system

Fig. 8. Distribution of the internal rate of return (IRR) for different instrument mixes. The uncertainty in the values per instrument mix stems from variation of the
household load profiles.

Fig. 9. IRR variation for different battery sizes and prices for the RTP instrument mix and a mean PV system size of 7.5 kWp. The current (2018) value is around 1250
Euro/kWh.
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size have a significant impact on the level of market alignment. The
current approach only evaluates “statically” the optimal dispatch of
already built systems. If an instrument mix favors a particular sizing
(for example: comparatively larger batteries), this could have a sub-
stantial effect on the market alignment, as relative size plays an im-
portant role (see Fig. 6 and 7). In order to model this “dynamic”
market alignment, investment models for PV-battery systems are
needed to depict the sizing dependence of the particular instrument
mix.

The higher the relative market value of solar energy, the more im-
portant a well-aligned battery dispatch to wholesale market signals
would become. High market values for solar, e.g. during noon hours
due to high system-wide demand of air-conditioning, could render it
important that solar energy is available for all consumers and not stored
locally at those times. General conclusions about the instrument mixes
outside the German case study should be made with caution.
Nevertheless, the study is transferable to other cases insofar as the
general approach – comparing an ideal benchmark to a proposed policy
instrument – can be applied to any instrument mix, any technology and
any local setting.

Implications on internal validity are listed in the online model
documentation.10

4.2. Market alignment indicator revisited

One important constraint of the current approach is the fact that we
neglect a price influence of the prosumers on the system at large.
Currently, the market alignment indicator is only properly defined if
the aggregated dispatch of PV-battery systems does not have a sig-
nificant impact on the wholesale market price.

All cases are simulated using perfect foresight of demand, PV gen-
eration and wholesale market prices. While this is a reasonable as-
sumption for the wholesale market prices (in real world cases, day-
ahead wholesale price information would be available; this is the
reason why an optimization interval of 24 h was chosen), the other two
components are to be predicted. The simulated values for the MAI and
the other economic indicators therefore correspond to a best case es-
timate that is likely not attainable in reality. The effect of uncertainty
on the market alignment indicator could be random in nature, but we
expect that it would systematically shift the indicator downwards (it
would be an unlikely coincidence if the dispatch would align system-
atically better to the benchmark, to the contrary, it would likely be
worse aligned to market signals especially when the perfect-foresight
market alignment was very high in the first place). Follow-up studies
should look at the effect of uncertainty on the market alignment in-
dicator.

The definition of the MAI used here is limited insofar as no con-
sideration about the grid, especially the distribution grid, is made. As
Moshövel et al. (2015) have shown, the usage of PV-battery systems can
help to alleviate stress from distribution networks under the right
conditions. This cannot be captured with the current approach and is
not part of the market alignment definition here. Furthermore, note
that storage can provide many other system services (ancillary services,
etc.). Therefore, the market alignment is only a proxy about how
“system-friendly” prosumer storages are towards the electricity system
at large. If market signals would reflect the constraints of the additional
components that allow for the system's functioning, the
market alignment would correspond to overall system-friendliness.
Future work could, for example, study other forms of capacity or fixed
tariffs which take into account the contribution of grid-usage at peak
times.

4.3. Policy interpretation

The assessment in this paper shows that the current retail electricity
price and solar remuneration structures in Germany provide inefficient
incentives for household PV-battery system operation. This fact is re-
presented by a MAI that is less than zero, which means that the op-
eration of these plants is misaligned to market signals and induces on
average additional costs. For example, prosumer storages can be idle
even if there would be system-wide storage demand, or they can store
energy while electricity is relatively scarce.

This inefficiency can be alleviated by transmitting scarcity signals to
prosumers. Both time-varying prices for generation (time-varying feed-
in remuneration) and consumption (real-time electricity prices) can
improve the market alignment. The introduction of real-time electricity
prices is the biggest individual lever to align distributed energy to the
wholesale market.

The parameters of real-time electricity prices and feed-in tariffs can
be chosen so that other indicators such as profitability and self-con-
sumption rates are left virtually untouched. Conversely, this means that
these measures can be implemented without affecting individual in-
vestment incentives. The situation is different for fixed network
charges, which do affect the business case of self-consumption, as it is
no longer possible to circumvent network charges (the main motivation
to implement them in the first place).

The effectiveness of the particular instrument mix depends on the
relative levels of the feed-in tariff, the grid consumption to be saved and
the solar LCOE. For example, increasing fixed network charges have a
positive impact on the MAI if combined with RTP, as the missing net-
work charges alter the overall retail price signal shape. With less con-
stant offset, the wholesale market signals can be transmitted “more
directly” and can sometimes be even be lower than the feed-in re-
muneration. Hence, fixed network charges send scarcity signals and
have an effect on market alignment under such circumstances. In con-
trast the VFIT + F case: Here, fixed network charges have no influence on
the MAI . This is specific to the German case, where retail electricity
prices are comparatively high. Even if the network charge is not part of
the retail price, the price is still higher than the time-varying feed-in
tariff, transmitting no different signal to prosumers as in the VFIT case
(Fig. 3).

The economic analysis revealed that a larger number of PV-battery
system configurations will become attractive if batteries become
cheaper (Fig. 9). If current PV and battery price trends continue, more
systems will probably be built in the future. Novel business models such
as leasing, new forms of trading platforms or community energy storage
could further increase profitability. If many households invest in PV-
batter systems under the assumption that the current retail price and
remuneration scheme will remain as it is, future revenue expectations
are created. It could thus become politically more and more difficult to
change the retail price structure. In order not to delay investments in
distributed energy systems or to jeopardize refinancing of already built
systems, it seems advisable to implement regulatory changes as soon as
possible to avoid such situations.

This paper has shown that an improved regulatory framework
concerning the market alignment of distributed energy sources offers
enormous potential for value creation and the measures to be taken
appear relatively straightforward. Other trends in the energy system
such as the introduction of heat pumps and electric cars are likely to
point in a similar direction: If many consumers are to participate ac-
tively and efficiently in the energy system, scarcity signals or other
incentives must be given, or else the flexibility potential of these
technologies will remain untapped.

5. Conclusion and policy implications

Many operation modes of distributed energy sources are currently
not optimal from an overall electricity system perspective because its

10 The open-source model and its documentation can be found at https://
gitlab.com/energy-systems-analysis/prosumerpolicy/.
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scarcity signals do not reach the end consumer. For example, solar self-
consumption and battery operation in Germany is currently optimized
locally under the premise of maximizing self-consumption, as prosu-
mers are generally exposed to fixed retail prices and feed-in tariffs. The
article has therefore argued that robust indicators of what constitutes
“system-friendly” operating patterns of distributed prosumer storages
of different configurations are needed to assess potential alternative
market designs that could better align the distributed actors with the
operation of the electricity system at large. We presented a so-called
market alignment indicator (MAI ) that measures how close the dispatch
of a prosumer storage resembles that of a battery which acts solely on
market scarcity signals. By comparing the relative economic efficiency
of a prosumer battery to such a benchmark case that is completely re-
sponsive to wholesale market signals, the indicator MAI has the ad-
vantage that different system sizes and different policy instrument
mixes can be conveniently compared.

While the perceived fairness of dynamic prices is debatable
(Neuteleers et al., 2017), we find for the German case that such pricing
schemes can have a significant impact on the dispatch of PV-battery
systems. Remaining distortions like levies and taxes will prevent a
complete alignment with wholesale market prices – our study has
shown that the dispatch of prosumer batteries never reaches the ideal
benchmark even if all alternative policy instruments under investiga-
tion were regarded in combination. However, we showed that the
parameters of retail electricity prices can be tweaked in such a way that
the operation patterns of distributed energy sources are better aligned
to the scarcity signals of the wholesale market. With the right para-
metrization of proportionality factors, both real-time prices and time-

varying feed-in remuneration do not significantly influence the eco-
nomic indicators (internal rate of return, self-consumption and autarky
rates) of the PV-battery systems, meaning that they are neutral for the
single prosumer concerning investment incentives compared to the
business-as-usual case. Moreover, the paper has argued that incentive
asymmetries should be alleviated before a large number of systems
requiring the current electricity rate scheme to refinance have been
built.

The proposed indicator can assess the effectiveness of such adjust-
ments. More and more actors are already participating as active con-
sumers and producers in the electricity system with devices and mea-
sures such as heat pumps, electric vehicle charging, demand response
and community and prosumer storages. Given any instrument mix, any
technology or any local setting, the presented market alignment in-
dicator approach can be used to analyze situations where the syn-
chronization of many distributed actors with the overall system is in
question.
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Appendix A. Dispatch Optimization

The following section describes the constraints of the dispatch optimization in subsection 2.4.

Appendix A.1. . Constraints of benchmark case

For the benchmark case, the objective function is subject to the following energy constraints:

=

=

+
E t

E t
E t

E t
( )

if 0
( 1)

( )
otherwisestorage

initial

storage s

G B c
E t( )B G
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where E t( )Storage is the energy in the storage at time t (also know as state of charge (SoC)) and Einitial is the initial energy present in the battery. Battery
losses are taken into account by a discharge and charge efficiency, d and c, respectively, and an hourly battery self discharge s. The upper and
lower bounds of the optimization variables are:

E t K0 ( )G B
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charge (A.2)

E t K0 ( )B G Max discharge (A.3)

E t E0 ( )Storage MaxCapacity (A.4)

where KMax represents the maximum battery charge and discharge capacity11, and EMaxCapacity is the maximum storage capacity.

Appendix A.2. Constraints of business as usual case

The dispatch optimization for the BAU case is subject to the following energy constraints:
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11 In this work, the terms charge capacity and battery capacity refer to the energy capacity and not the power capacity.
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Appendix A.3. Constraints of dispatch optimization responding to dynamic prices

The dispatch optimization for the time-varying cases is subject to the following energy constraints:
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= + +E t E t E t E t( ) ( ) ( ) ( )PV PV L PV B PV G (A.8)

= + +E t E t E t E t( ) ( ) ( ) ( )Load G L B L PV L (A.9)

E KB G max discharge (A.10)

E K(1 )G B
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charge (A.11)

E t E t E t( ), ( ), ( ) 0PV L PV G G L (A.12)

E t E0 ( )Storage MaxCapacity (A.13)

Equations A.7, A.8 and A.9 represent the energy balance for the storage, the solar generation and the household load, respectively. Equations
A.10 and A.11 represent the upper bound of the variables EB G and EG B. In these equations, δ is a binary variable that can be either 1 or 0. By
introducing this variable, EB G and EG B can not co-exist and the battery is prevented from withdrawing and feeding into the grid at the same time
step t.

Appendix B. Other indicators

In this section, the formulation of all other indicators besides the MAI are presented.

Appendix B.1. . NPV and IRR

The NPV is calculated as

= +
+=

NPV r C C y C y
r

( ) ( ) ( )
(1 )y

Y
act baseline

y0
1 (B.1)

where C0, Cact, Cbaseline denote initial investment and actual and baseline case cash flows, respectively, in the yth year. r is the discount rate, Y the
project lifetime. The baseline is that no PV-battery system is built, i.e. the consumer only obtains electricity from the grid and must therefore pay the
household electricity price for all consumption.

The initial investment in the net present value calculation is defined as:

= + +C s I s I VAT( ) (1 )PV PV B B
0 (B.2)

where sPV denotes the PV size in kWp, I PV the PV cost per kWp, sB the battery system size in kWh and I B the specific initial investment cost of a battery
system per kWh and VAT the purchase tax.

Initial PV specific investment is:
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(B.3)

where I PV
0 is the specific investment cost of PV and γ is a scaling parameter that accounts for the higher specific costs of smaller PV-systems.

Similarly, the initial battery specific investment cost is:
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where ν is similarly a scaling parameter and I y( )B
0 is the specific investment cost of the battery at year y.

The yearly actual cost C y( )act is:
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R y( ) represents the total revenue R per year y defined as:
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where z is the total number of optimization intervals.
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& are the yearly maintenance cost of PV and battery respectively and C y( )repl

B is the cost of replacing a battery defined as follows:
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L is the battery cycle lifetime. When the added yearly cycle counts i exceed the lifetime, at the given year y the battery is replaced to a cost dependent
on the year y. On the other hand, C y( )baseline , the baseline case at each year y, is considered to be that of a normal consumer without a PV or a storage
system. This implies that the consumer will satisfy all her load λ from the grid as follows:

=
=

C y P t t( ) ( ) ( )baseline
t

T

retail
1 (B.7)

The internal rate of return (IRR) is defined by the discount rate r for which the NPV becomes exactly 0:
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Appendix B.2. Self-consumption and autarky rate

The self-consumption rate SC is defined as the share of consumed electricity relative to the total PV generation (Luthander et al., 2016).
Consequently, SC is found:

= =SC self Consumed PV
Total PV generated

1 Fed In
Total PV generated (B.9)

where Fed-In is the total energy fed into the grid. The autarky rate A is given via:

=A self Consumed PV
Total Consumption (B.10)

In order to assess the influence on the distribution of network charges and the distribution of costs and thus the ‘death spiral’ problem of the
investigated instrument mixes, the lost or avoided network charges are accounted for. Depending on the instrument mix, the network charge
prosumers avoid NCavoid can vary. The NCavoid is:

=NC self Consumed PV volumetric Network Charges / kWhavoid (B.11)

Appendix C. Market Constants

The following section will present the determination of certain constants that will allow to parametrize the individual instrument mixes in such a
way that their cumulative monetary effect over the course of a year is, by design, zero, meaning that a consumer without PV system would pay same
amount of money for electricity per year for each instrument mix.

The retail electricity price the prosumer pays at time t for each kWh consumed from the grid is made up of the following components:

= + + + +P P P P P VAT( ) (1 )retail electricity volNC levies taxes (C.1)

where Pelectricity is the cost of acquiring electricity, PvolNC is the volumetric network charge, Plevies is the renewable energy feed-in (EEG) and other
support mechanism levies, Ptaxes are associated taxes and VAT is the sales tax. Consequently, what a customer pays to the utility each year is:

= + +
=

P P E t P VAT( ( )) (1 )year
t

T

retail G L fixedNC
1 (C.2)

which is the sum of the product of the retail price and the total energy consumption from the grid, plus and additional PfixedNC that represents a fixed
network charge along with a VAT tax.

AppendixC.0.1. Real-time electricity pricing

In cases involving real pricing schemes, the Pelectricity at each time t is:

= +P t P t c( ) ( )electricity wholesale (C.3)

where P t( )wholesale is the spot market price and c is a constant that accounts for the additional administrative and service fees associated with acquiring
electricity. The constant c can be calculated through the following equation:

= =

=

c
P t P t t

t
( ) ( ) ( )

( )
electricityAcq t

T
wholesale

t
T

1

1 (C.4)

where PelectricityAcq is the component of the electricity bill allocated for electricity acquisition and λ is the hourly load. By adding the constant c, the
average consumer without a PV system will pay the same amount of money for electricity, see Table 4 for numerical values.

AppendixC.0.2. Feed-in Remuneration

Feed-in remuneration can be either fixed or time varying. In case of fixed feed-in remuneration, the prosumer receives a constant level of
remuneration fit regardless of the time of the feed-in. The retail electricity bill, as shown in equation (C.1), has a levy component that is directly
related to the feed-in remuneration FIT . Consequently, in cases of a fixed feed-in remuneration, the levy will also be a constant as shown in the
following equations:
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=FIT t fit( )

=P t eeg( )levies

On the other hand, in cases of time-varying FIT , prosumer will receive a variable remuneration depending on the time of feeding in. The value of
the FIT is:

=FIT t P t( ) ( )electricity (C.5)

= =fit E t
P t E t

( )
( ) ( )

t
T

PV G

electricity PV G

1

(C.6)

where fit is the fixed feed-in remuneration and β represents the scaling factor to ensure a conservation of the total payments of the FIT between the
instrument mixes. In cases where the retail electricity prices are also varying, the levy component in equation (C.1) will also be time-varying and can
similarly be found:

=P t P t( ) ( )levies electricity (C.7)

= =eeg t
P t t

( )
( ) ( )

t
T

electricity

1

(C.8)

where eeg is the constant levy, λ is the hourly load and α is the scaling factor that ensures the conservation of paid levies across the various evaluated
instrument mixes.

Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.enpol.2019.110901.
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