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 A B S T R A C T

Physics-based hydrodynamic models are essential for accurate flood prediction but are computationally 
expensive, limiting their applicability for real-time forecasting and probabilistic analyses. Conversely, pure 
machine learning (ML) models offer both computational efficiency and accuracy but often lack interpretability. 
To address this gap, we propose SGUnet, a physics-informed ML model and a hybrid theory-guided data 
science approach, for rapid, high-resolution flood mapping. It utilizes a neural network with U-Net architecture 
and integrates subgrid-based coarse-grid hydrodynamic model predictions as initial estimates, upskilling them 
to achieve fine-grid model accuracy. Unlike traditional hydrodynamic models, the subgrid method embeds 
fine-scale topographic details within coarse-grid cells, enhancing both computational efficiency and predictive 
accuracy.

SGUnet processes flood depth raster patches (512 × 512 pixels) and corresponding digital elevation models 
as inputs. It functions as a deep learning-based corrector, refining flood predictions from numerical simulators. 
Trained through supervised learning, SGUnet learns to correct deviations in coarse-grid predictions using 
fine-grid model outputs as target values. The model is evaluated across three large Australian watersheds—
Wollombi, Chowilla, and Burnett River—using HEC-RAS flood simulations with subgrid formulation. SGUnet 
reduces root mean squared error by a factor of 4.5–5.3 compared to coarse-grid models, achieves a critical 
success index exceeding 0.9 for flood extent mapping, and delivers a 50x speed-up over fine-grid hydrodynamic 
models. Furthermore, SGUnet outperforms a state-of-the-art ML-based upskilling model in depth and extent 
predictions. By effectively correcting flood artifacts from coarse-grid models, SGUnet achieves near fine-grid 
accuracy with significantly reduced computational cost, demonstrating its potential for real-time flood risk 
assessment.
1. Introduction

According to records (World Health Organisation, 2024), floods are 
the most frequent natural disaster worldwide and, in Australia, they 
are also the most costly. The recent floods in 2022 caused AUD 6.3 
billion in insured damages (The Insurance Council of Australia, 2024). 
However, floods are also among the most manageable natural disasters.

Hydrodynamic modeling is a powerful tool for understanding and 
managing flood risks, simulating water movement using physical laws 
such as the Navier–Stokes equations and shallow water equations 
(SWE). Although high-resolution models offer accuracy, their high com-
putational cost makes them impractical for large-scale operational flood 
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modeling and probabilistic flood design, where numerous simulations 
are required (Fraehr et al., 2024).

Efforts to improve computational efficiency of hydrodynamic mod-
els include CPU/GPU-based parallel computations (Rak et al., 2024), 
the adoption of advanced modeling techniques such as subgrid sam-
pling (Stelling, 2022), and the implementation of faster solver schemes 
(Buwalda et al., 2023). Numerical advances in SWE solvers, particularly 
through the use of subgrid methods, have significantly accelerated 
simulations of pluvial and coastal flooding utilizing high-resolution 
topographic data (Stelling, 2022; Casulli, 2019). The subgrid approach 
facilitates coarse-grid simulations by assuming uniform water levels 
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Fig. 1. An example representation of bathymetry within a computational cell of a traditional model vs subgrid-based model.
within each coarse grid cell while allowing water depths to vary 
in response to microtopographic changes. This results in non-linear 
variations of volume within the computational coarse grids relative to 
water levels (Fig.  1), thereby providing accurate representations of flow 
processes in complex geometries compared to simulations without the 
subgrid formulation (Casulli and Stelling, 2011).

Despite its advantages, the subgrid model requires simplifications of 
the momentum balance within the coarse grid, as it relies on volume-
averaged velocities and integral friction forces (Kennedy et al., 2019). 
These simplifications can introduce inaccuracies in flow patterns com-
pared to fine-grid simulations, underscoring the need for grid con-
vergence tests to verify model performance. Efforts to rectify flow 
characteristics have included the application of random forest-based 
machine learning (ML) methods (Ye et al., 2021). However, when the 
grids are excessively coarse and partially wet, the flow connectivities 
within subgrid cells may be misrepresented, leading to artificial flow-
blocking effects. In scenarios where flow barriers, such as levees, must 
be accurately represented, it is essential to explicitly resolve fine grid 
topography to ensure proper flow blockage. To address these chal-
lenges, deterministic algorithms have been proposed (Casulli, 2019; 
Begmohammadi et al., 2021), but subgrid methods remain an active 
area of research.

Surrogate models provide a computationally efficient alternative to 
numerical hydrodynamic models by replicating their outputs using sta-
tistical or data-driven approaches. In flood mapping, they directly con-
vert raw input data into flood depth or inundation predictions (Löwe 
et al., 2021; Zhou et al., 2021).

ML models, including deep learning (DL) models—a subset of sur-
rogate models—are increasingly used in flood mapping for tasks such 
as susceptibility, inundation, and hazard mapping (Bentivoglio et al., 
2022). Although pure data science models are highly computationally 
efficient, they often suffer from a lack of interpretability (black-box 
models) and low generalizability (overfitting). Model explainability is 
essential, as it improves understanding of the results, supports diverse 
operational needs, and enables evaluation of the model for potential 
inaccuracies when applied to new conditions.

Physics-informed machine learning (PIML), or theory-guided data 
science (TGDS) (Karpatne et al., 2017), addresses the limitations of 
purely data-driven models by incorporating scientific knowledge into 
learning algorithms to govern them. Hybrid TGDS models, which 
combine theory-based and data-driven approaches, are popular for 
their conceptual simplicity. In these models, part of the problem is 
solved using a theory-based model and the rest through a data sci-
ence model (Karpatne et al., 2017). Additionally, interpretable physics 
informed neural networks (Ranasinghe et al., 2024) offer potential solu-
tions to extracting the representation of the physical system (including 
differential equations) learned by such models.
2 
Successful hybrid TGDS model applications can be found in many 
water resources applications, such as hydrological model building 
(Chadalawada et al., 2020; Herath et al., 2021a), rainfall runoff mod-
eling (Herath et al., 2021b; Kapoor et al., 2023), and flood map-
ping (Fraehr et al., 2023). A complete overview on hybrid ML models in 
flood prediction is provided in Zuhairi et al. (2022). In flood modeling, 
hybrid models aim to combine the computational efficiency of data 
driven models with the accuracy, generalizability, and explainability of 
theory-based models. In a recent study (Fraehr et al., 2023), a Gaussian 
process-based hybrid model called low-fidelity, spatial analysis, and 
Gaussian process learning (LSG) model was introduced to upskill coarse 
grid hydrodynamic model results. The LSG model was benchmarked 
against several other surrogate models in Fraehr et al. (2024), where 
it was found to be more accurate for flood mapping compared to 
purely ML-based surrogate models. Other statistical approaches (Fraehr 
et al., 2023; Bryant et al., 2024; Carreau and Guinot, 2021) have 
been developed to enhance (upskill) coarse grid hydrodynamic model 
outputs to match high-resolution model results (a process known as 
super-resolution). Although purely ML-based surrogate models are 
more computationally efficient since they do not require numerical 
model runs at all, super-resolution models seem to achieve greater 
accuracy in high-resolution flood mapping (Fraehr et al., 2024).

In recent years, U-Net based super-resolution models have demon-
strated success in upscaling coarse grid flooding simulations driven by 
rainfall in mountainous (He et al., 2023) and coastal tidal areas (Yin 
et al., 2024). However, this approach has yet to be tested in flow-rate-
dominant domains or large-scale catchments. Additionally, U-Net DL 
models have proven effective as surrogate models for hydraulic mod-
els (Shao et al., 2024). These models utilize fine-scale geomorphological 
features to enhance flood depth and flood velocities (He et al., 2023). 
To cover large catchment areas, researchers have successfully trained 
U-Net on overlapping patches (Shao et al., 2024).

Another computationally efficient alternative to high-resolution nu-
merical flood models, particularly in data-scarce regions, has been 
introduced and tested in flood-prone basins in Iran (Solaimani et al., 
2023, 2024; Darvishi, 2025). These studies explore hybrid GIS-based 
and multi-criteria decision analysis approaches for flood hazard map-
ping, integrating spatial analysis, expert-driven decision models, and 
remote sensing data to assess flood risks across large areas. Unlike 
dynamic flood extent modeling, this methodology focuses on static 
flood hazard mapping based on spatial risk factors.

A coarse grid model with subgrid method operates significantly 
faster than a fine grid high-resolution model for the same study area, 
due to fewer computational cells and the ability to use larger compu-
tational time-steps. Despite these differences, the results of coarse grid 
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models are largely correlated with those of fine grid high-resolution 
models.

Building upon these advancements, this study introduces a novel 
hybrid TGDS U-Net model named SGUnet, designed for computation-
ally efficient high-resolution flood mapping. We present a predictor–
corrector formulation where initially, a subgrid hydrodynamic model 
is simulated with coarse grid configuration and its output is fed into a 
U-Net deep neural network. The U-Net enhances and corrects the initial 
flood depth estimates from the coarse grid model through a correction 
process, aligning them with the high-resolution fine grid flood model 
outputs. This approach achieves a balance between total computational 
speed – both during training and inference – and accuracy by leveraging 
the benefits of both numerical advancements such as subgrid and neural 
network architectures such as U-Net.

Compared to the flood mapping approaches discussed above, the 
SGUnet model offers several distinct advantages. Unlike methods that 
predict at fine grid mesh resolutions, SGUnet directly estimates flood 
depths at digital elevation model (DEM) resolution, eliminating the 
need for additional post-processing in flood mapping. Unlike previous 
U-Net-based super-resolution models that rely on interpolation to align 
resolutions, SGUnet directly incorporates high-resolution subgrid flood 
maps and DEMs from diverse catchments, simplifying data preparation 
and model training. Moreover, while purely ML-based approaches often 
lack interpretability, SGUnet is primarily driven by physics-based ini-
tial estimates from a coarse grid hydrodynamic model, enhancing its 
reliability and reducing overfitting. Unlike static flood hazard mapping 
techniques, SGUnet captures the full dynamic evolution of flood events. 
Additionally, a unique feature of SGUnet is its flexibility—it can gener-
ate a complete flood map for an entire basin or focus on specific local 
areas of interest, making it adaptable to different flood mapping needs.

The rest of the paper is organized as follows: Section 2 describes the 
workflow of the proposed SGUnet model. Section 3 discusses the appli-
cation of the SGUnet model to three Australian watersheds, including a 
benchmark study. Finally, Section 4 outlines future research directions 
and presents the conclusions of the current study.

2. Material and methods

2.1. SGUnet model

The SGUnet model employs a U-Net-based ML architecture to en-
hance coarse-grid hydrodynamic flood maps. Each input sample for 
the model includes a flood depth raster image and the corresponding 
DEM image. Additionally, other spatial explanatory variables, such as 
slope, aspect, curvature, and flow accumulation, can be included and 
concatenated with the flood depth raster images. This approach allows 
SGUnet to integrate more hydrological insights into the process of 
refining coarse-grid simulations to closely align with fine-grid outputs.

U-Net is a type of convolutional neural network (CNN) which 
was originally developed for biomedical image segmentation in Ron-
neberger et al. (2015). U-Net is named for its characteristic U-shape, 
which arises from its symmetric encoder–decoder structure. Since its 
invention in 2015, U-Net has been widely used in various computer 
vision applications (Thisanke et al., 2023). In flood mapping, U-Net-
based networks have been employed for tasks such as flood inundation 
mapping (Jamali et al., 2024), urban flood prediction (Löwe et al., 
2021; Shao et al., 2024), coastal and riverine flood mapping (El baida 
et al., 2024), flash flood detection (Tuyen et al., 2021), post-disaster 
damage assessment (Madake et al., 2024), super-resolution (He et al., 
2023; Yin et al., 2024), and uncertainty quantification (Li et al., 2024).

A U-Net requires both its input and output images to have the 
same resolution and be structured as arrays. However, most modern 
hydrodynamic models use unstructured computational meshes due to 
their flexibility in mesh generation. Additionally, fine-grid simulations, 
coarse-grid simulations, and spatial explanatory variables like DEM 
3 
often exist at different resolutions. Typically, spatial explanatory vari-
ables have the highest resolution, when compared to the computational 
grids. In previous flood mapping super-resolution applications (Fraehr 
et al., 2023; He et al., 2023; Yin et al., 2024), different interpolation 
techniques were used to align different resolutions with that of the 
high-resolution model simulations. However, resampling values from 
high-resolution images like DEMs to a much coarser computational grid 
tend to lose the finer details that the high-resolution data can provide.

In contrast, the SGUnet framework converts both coarse and fine 
grid simulations into DEM resolution using a simpler approach based on 
subgrid topography. Water level values simulated by the hydrodynamic 
model at mesh resolution are transformed into water depth values at 
DEM resolution using subgrid topography. Once mapped to the DEM 
resolution, these simulations become structured arrays, with exactly 
same dimensions as the DEM itself. This process allows U-Nets to work 
with both structured and unstructured mesh simulations. Moreover, 
the conversion inherently integrates high-resolution topographic details 
while aligning different resolutions, simplifying the ML-based upscaling 
process.

2.1.1. Model architecture
The specific U-Net architecture used in the SGUnet model is shown 

in Fig.  2. It is based on the original U-Net architecture described 
in Ronneberger et al. (2015), but enhanced with attention blocks and 
conditioned on external data (e.g. DEM). The ML code for the SGUnet 
model is written in Python programming language (Python Software 
Foundation, 2024) using the PyTorch library (Paszke et al., 2019).

The left half of the network, known as the encoder (or contracting 
path), progressively reduces the spatial dimensions while capturing 
high-level features through a series of convolutional layers followed 
by pooling operations. The network accepts input in the form of a 
512 × 512 flood depth raster, paired with a 512 × 512 DEM and 
optionally with other spatial layers. In the SGUnet model, the encoder 
consists of ten 3 × 3 convolutional layers with ReLU activations, dis-
tributed across five different feature map resolution levels (two layers 
at each resolution of 512 × 512, 256 × 256, 128 × 128, 64 × 64, and 
32 × 32). The deepest layer of the encoder has 1024 channels, and this 
represents the most compressed, abstract representation of the input 
data (known as the bottleneck of the network). Encoder employs 2 × 2 
max-pooling four times to down-sample feature maps, reducing their 
spatial dimensions from 512 × 512 to 32 × 32 and allowing the network 
to focus on important features.

The right half of the network, known as the decoder (or expanding 
path), mirrors the encoder, but focuses on upsampling the feature maps 
to recover spatial information. This part reconstructs the output by 
increasing the resolution and using convolutions to refine details. The 
decoder in the SGUnet model consists of eight 3 × 3 convolutional 
layers with ReLU activations, distributed across four feature map res-
olution levels (64 × 64, 128 × 128, 256 × 256, and 512 × 512). It 
employs 2 × 2 transposed convolutions four times to upsample the 
feature maps from 32 × 32 back to the original resolution of 512 × 512.

U-Net employs skip connections between corresponding layers in 
the encoder and decoder paths to transfer high-resolution feature maps 
from the contracting path to the expanding path. In the SGUnet model 
network, skip connections are used at each level of the decoder to pass 
high-resolution features from the encoder directly to the decoder. This 
helps recover spatial details lost during downsampling.

To improve predictive accuracy, SGUnet incorporates attention 
blocks at critical locations in both encoder and decoder paths, enabling 
the model to focus on the most relevant spatial features. Attention 
mechanisms are applied at 256 × 256 and 128 × 128 resolutions 
in the encoder and at 256 × 256 and 512 × 512 resolutions in the 
decoder. Each attention block consists of three convolution layers. In 
the network output layer, a final convolution layer is applied to reduce 
the number of channels from 64 to 1. Overall, the network consists 
of 31 convolutional layers and approximately 31 million trainable 
parameters.
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Fig. 2. U-Net-based machine learning architecture of the SGUnet model.
2.1.2. Model training
The SGUnet model is trained using a supervised learning approach 

to optimize its trainable parameters. The primary input to the SGUnet 
model is the coarse grid based flood depth images. At the input layer, 
these images are concatenated with spatial explanatory variables of 
the study area. In this study, the SGUnet model is tested with single 
and multiple spatial explanatory variables. When a single variable is 
used, the DEM images are concatenated with the coarse grid flood 
depth images, resulting in two input channels. The DEM image is also 
clipped to match the pixel size of 512 × 512. Each flood depth map, 
representing different locations and time steps, is combined with the 
corresponding DEM image along the channel dimension before being 
passed through the network.

When the SGUnet model is tested with multiple explanatory vari-
ables, two additional images, flow accumulation and height above 
the nearest drainage (HAND) (Nobre et al., 2011), are concatenated 
with the coarse grid based flood depth images and the DEM images, 
resulting in a total of four input channels. Flow accumulation quan-
tifies the number of upstream cells flowing into a particular pixel. 
It indicates the potential for depressions to become inundated, with 
significantly high accumulation values typically associated with natural 
watercourses (Löwe et al., 2021). HAND is computed by measuring the 
vertical distance from each point in a landscape to the nearest drainage 
or stream. This involves identifying the nearest drainage line for each 
point and calculating the elevation difference between the point and 
the drainage. HAND helps to assess how high or low a location is 
relative to nearby water flow paths, which is crucial for assessing flood 
potential (Nobre et al., 2011).

Pixel values of all input images, including flood depth maps and 
spatial explanatory variables, are normalized to a range between 0 
and 1 using min–max normalization. For flow accumulation images, an 
upper cutoff value of 10,000 is applied, and a cube-root transformation 
is performed before scaling to the [0, 1] range (Löwe et al., 2021). 
During model training, batches of images are passed through the U-Net 
to generate predictions. The batch size is determined by the available 
computational resources, such as GPU memory. The performance of 
the predictions is evaluated against high-resolution flood depth images 
using mean squared error (MSE) as the objective function. The SGUnet 
model uses the Adam optimizer (Kingma and Ba, 2014) to back-
propagate the error and adjust the model’s weights and biases. Adam 
optimizer automatically adjusts the learning rate for each parameter, 
making it effective in handling sparse gradients and noisy data. By in-
corporating momentum, Adam optimizer accelerates convergence and 
reduces oscillations (Kapoor et al., 2023). Training continues through 
multiple epochs until no significant improvement in fitness is observed. 
After every five epochs, the model is evaluated on a test dataset to 
detect signs of overfitting, indicated by increasing training fitness while 
test fitness deteriorates.
4 
2.1.3. Model inference
The overall workflow diagram of the SGUnet model is presented in 

Fig.  3. The inference process is streamlined as follows.

• Setup the coarse grid hydrodynamic model: The coarse grid model 
can be setup by making the computational grid of the high-
resolution fine grid model coarser. Only the computational mesh 
differs between the two models, while all other parameters, such 
as boundary conditions, roughness values remain the same.

• Run the coarse grid hydrodynamic model: Due to the lower number 
of computation cells and large computational time steps, the 
coarse grid model can be run within a few minutes.

• Load coarse grid hydrodynamic model results into Python environ-
ment: Although, most of the hydrodynamic modeling software 
facilitate generating flood maps within the modeling software’s 
user interface, the SGUnet model processes raw result files in 
the Python environment, enhancing computational efficiency and 
flexibility.

• Rasterize water surface elevation (WSE) values: Raw result files 
store simulations as arrays of WSE values for each computa-
tional cell at every time step. At this stage, the geometry of the 
computational mesh is used to rasterize each WSE value to its cor-
responding computational cell, aligning it with the resolution of 
the DEM. Each point in the DEM that falls within a computational 
cell receives the same WSE value calculated for that cell. This 
process converts the unstructured WSE values into a structured 
array that mirrors the dimensions of the DEM.

• Convert WSE values into water depths: With each pixel assigned a 
WSE value from the previous step, water depth values for each 
DEM point can now be calculated by subtracting the surface 
elevation from the WSE. Pixels with a positive difference are 
considered wet or flooded, with water depth values equal to the 
difference. Conversely, pixels with no difference or a negative 
difference are labeled as dry, with water depth values set to zero. 
An example of this process, converting WSE values from mesh 
resolution to water depth values at DEM resolution, is shown in 
Fig.  4, where the mesh resolution is 25 m × 25 m, and the DEM 
resolution is 5 m × 5 m.

• Thresholding: To account for numerical errors, a small threshold of 
5 cm is applied to distinguish between dry and wet pixels (Löwe 
et al., 2021). Pixels with water depth values less than 5 cm are 
considered dry, with their water depth values set to zero.

• Clip water depth maps: Given that flood depth maps at DEM 
resolution may contain millions of pixels, it is impractical to load 
them as a single image into the ML algorithm. Therefore, the 
flood maps are clipped into manageable-sized images using a 
predefined polygon shapefile of square boxes, covering only the 
flood-prone area of the model domain (hereinafter referred to as 
clipped area). A pixel size of 512 × 512 is chosen to balance 



H.M.V.V. Herath et al. Journal of Hydrology 660 (2025) 133329 
Fig. 3. Workflow diagram of the SGUnet model.
Fig. 4. An example conversion of water surface elevation (WSE) values (above Australian height datum - AHD) into water depth values using subgrid topography. a: WSE value 
at computational mesh resolution (25 m × 25 m), b: rasterized WSE values at DEM resolution (5 m × 5 m), c: DEM elevations (5 m × 5 m), d: WSE - DEM (5 m × 5 m), e: water 
depth values at DEM resolution (5 m × 5 m).
computational resources with the physical area captured by each 
box.

• Save images: The water depth maps are saved in the GeoTIFF file 
format. To reduce file sizes, the water depth arrays are converted 
to centimeters and saved as integers.

• Create data loader: A data loader is created by concatenating 
coarse grid flood depth images (512 × 512 pixels) with the 
corresponding spatial explanatory variable images. When a sin-
gle explanatory variable is used, only the DEM is concatenated 
with the flood depth images (DEM is also clipped to 512 × 512 
images using the same polygon shapefile). When multiple spatial 
explanatory variables are included, the DEM, flow accumulation, 
and HAND images are concatenated with the flood depth images. 
All pixel values are normalized to a range between zero and one.

• Model inference: In the final stage, the trained SGUnet model is 
used to upscale the initial coarse grid flood depth estimates, en-
hancing their accuracy in a computationally efficient manner. The 
model’s predictions are de-normalized, and the 5 cm threshold is 
applied again. Users can choose to generate flood depth maps for 
all time steps across the entire clipped area or focus on a specific 
area and time interval based on the coarse grid simulation results. 
The latter option is particularly beneficial for operational flood 
models, as it provides greater computational efficiency.

2.2. Hydrodynamic modeling

Three large Australian watersheds, namely the Wollombi, Chowilla, 
and Burnett River, are selected to evaluate the SGUnet model’s capabil-
ity in high-resolution flood mapping. These study areas exhibit distinct 
flood behaviors in terms of flood type and event duration. For each 
watershed, both coarse grid and fine grid flood models are established 
to generate flood depth maps at regular intervals, which are then used 
5 
for training and testing the SGUnet model. The primary difference 
between the coarse and fine grid models is the number of computation 
cells: the fine grid model uses a significantly greater number of cells. 
However, all other modeling parameters, except for the computation 
time step (which is larger in the coarse grid model due to its larger cell 
sizes), remain the same across both models.

In this study, high-resolution fine grid model predictions serve as 
the target model predictions (i.e., ground truth data). Therefore, a 
proper calibration with the observed data is not necessary for each 
flood model. However, to ensure the high-resolution fine grid models’ 
predictions are reliable, simulations were compared with observed 
data from gauging stations (including both water levels and discharge) 
during setup. Relevant measured data were obtained from the Bureau 
of Meteorology, Australia website (Bureau of Meteorology, 2024). Once 
the high-resolution fine grid model is set up for the catchment of 
interest, the coarse grid model is generated by simply coarsening the 
computational mesh. No calibration with observed data was performed 
for the coarse grid model simulations.

The workflow of the SGUnet model is applicable to any subgrid 
enabled hydrodynamic modeling software, such as HEC-RAS (US Army 
Corps of Engineers, 2024b), TUFLOW (BMT Group, 2024), and 3Di (Ne-
len & Schuurmans, 2024). In this study, the U.S. Army Corps of En-
gineers’ River Analysis System (HEC-RAS) software (version 6.5 for 
Windows) (US Army Corps of Engineers, 2024a) is utilized to set up 
both fine and coarse grid flood models for the three study areas. 
HEC-RAS supports the development of one-dimensional (1D), two-
dimensional (2D) and coupled 1D/2D flood models, using both struc-
tured grids (with uniform cell spacing) and unstructured grids (with 
variable cell spacing) (US Army Corps of Engineers, 2024c). Depending 
on the modeling needs, users can choose between the faster Diffusion 
Wave Equations (DWE) or the more accurate SWE for 2D unsteady 
flow routing. For the study areas examined in this research, 2D flood 
models are set up using unstructured grids. Starting with version 5.0, 
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HEC-RAS software employs the subgrid technique (Casulli and Stelling, 
2011; Casulli, 2009) in flood modeling, which enables a detailed rep-
resentation of fine-scale topography and flow patterns without the full 
computational burden of using a highly refined grid. Consequently, the 
subgrid technique used in HEC-RAS allows for much coarser (and thus 
faster) coarse grid models in this study.

Sections 2.2.1, 2.2.2, and 2.2.3 provide more details on the flood 
models developed for the Wollombi, Chowilla, and Burnett Rivers, 
respectively. Fig.  5 presents the DEMs, while Table  1 summarizes the 
HEC-RAS model parameters for each catchment.

2.2.1. Wollombi
The Wollombi catchment, located in the Hunter Valley, New South 

Wales, covers 1870 km2, and this study focuses on the 814 km2 down-
stream subcatchments from Paynes Crossing. Wollombi Creek meets 
the Hunter River at the catchment outlet. This area is prone to river 
flooding, with events that typically last only a few days due to the 
steep topography. More details on the catchment and flood history are 
available in Singleton Council (2016).

For the high-resolution fine grid HEC-RAS model, three different 
cell sizes were used, while the coarse grid model employed a uniform 
cell size. Within the clipped area, the high-resolution fine grid model 
contained 27.4 times more cells than the coarse grid model. The 
boundary conditions include one upstream inflow boundary and two 
downstream water level boundaries. The DWE were deemed sufficient 
for the Wollombi model, as negligible differences were observed when 
switching from DWE to SWE.

2.2.2. Chowilla
The Chowilla floodplain, which covers 760 km2 is another flood-

prone riverine area located toward the lower end of the Murray–Darling 
Basin. The very mild gradient of the topography makes the Chowilla 
floodplain’s flood dynamics to be distinctly different from the other two 
study areas. Due to its large upstream basin and gentle gradient, flood 
events in Chowilla can last weeks to months (Fraehr et al., 2023). This 
area has also been studied in previous research (Fraehr et al., 2024, 
2023).

Chowilla flood models have three upstream inflow boundaries and 
one downstream water level boundary. In the high-resolution fine grid 
model, two distinct cell sizes were applied, whereas the coarse grid 
model employed a uniform cell size. Within the clipped area, the high-
resolution fine grid model contains 27.7 times more computation cells 
than the coarse grid model. The DWE proved to be adequate for the 
Chowilla flood models.

2.2.3. Burnett River
The selected Burnett River study area encompasses the downstream 

catchment (1197 km2) from the Paradise Dam, located in the large 
Burnett Basin (38370 km2) on the southern Queensland coast, Australia. 
This region features steep topography, leading to flood events that 
typically last from several days to weeks due to the fast flow dynamics. 
The downstream boundary is influenced by tidal effects, making the 
area prone to compound flooding. Additional details about the study 
area can be found in Fraehr et al. (2024) and Zhou et al. (2021).

The Burnett River flood models include two upstream inflow bound-
ary conditions and a one-tidal boundary condition downstream. The 
SWE (full momentum-based equation set) is used to perform flow 
routing as the DWE is not able to model wave propagation (back water 
effect) due to tidal influence (US Army Corps of Engineers, 2024c). 
Both the coarse and fine grid models use uniform cell sizes throughout. 
Within the clipped area, the high-resolution model contains 86 times 
more cells than the coarse grid model.
6 
2.3. SGUnet model training

In the current study, the SGUnet model is trained individually for 
each study area. As described in Section 2.1, after the simulations of 
the model are generated, flood depth maps are produced at regular 
intervals. For each study area, the flood-prone regions are identified, 
and their corresponding flood depth maps are clipped into 512 × 512 
pixel images. Fig.  5(d) shows the distribution of clipping boxes for each 
study area, covering the respective flood-prone areas. The number of 
training and testing samples varies between study areas due to differ-
ences in flood-prone area extents, DEM resolutions (which determine 
the physical dimensions of the clipping boxes), the number of flood 
events, their durations, and the intervals at which flood mapping is 
performed. Additionally, a spin-up period is applied to each flood event 
during which the flood maps are excluded from the SGUnet model’s 
training and testing datasets.

In this study, model training was conducted on the Gadi platform, 
part of the supercomputing facility provided by the National Computa-
tional Infrastructure (NCI) Australia (NCI Australia, 2024). The Gadi 
platform operates on the Linux operating system, and the gpuvolta 
queue, equipped with four Nvidia Tesla Volta V100-SXM2-32 GB GPUs, 
was used to train the SGUnet model. A batch size of 48 was achievable 
without exceeding the allocated GPU memory. A low learning rate was 
necessary for stable model training with 512 × 512 pixel-sized images. 
Specific details regarding model training are summarized in Table  2.

2.4. Performance evaluation

The upskilling capability of the proposed SGUnet model is assessed 
in terms of both flood depth prediction accuracy and flood extent 
(inundation) prediction accuracy. Both SGUnet model and coarse grid 
model predictions are compared against the high-resolution fine grid 
model predictions.

2.4.1. Flood depth
Pixel to pixel water depth predictions between the target image 

(high-resolution fine grid model predictions) and predicted image (ei-
ther coarse grid model or SGUnet model predictions) are evaluated 
using the root mean squared error (RMSE). RMSE is calculated for each 
flood mapping time step during the test events using the Eq. (1) while 
an average RMSE value for an event is calculated using the Eq. (2). 
Similarly, an average mean absolute error per event is derived using 
the Eq. (3). 
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where 𝑦𝑖𝑡 and �̂�𝑖𝑡 are the water depths at pixel 𝑖 at time 𝑡 of the target 
image and the predicted image, respectively. 𝑇  is the total number of 
flood mapping time steps during the event and 𝑁 is the total number 
of pixels in each water depth map.

For visual comparison, water depth difference maps and scatter 
plots are generated, comparing predicted values against the target 
values. In this analysis, two key flood maps are used: the peak flood 
depth map and the maximum flood depth map. The peak flood depth 
map represents flood depths when the total flood volume across the 
entire model domain reaches its maximum at a specific time during the 
event. In contrast, the maximum flood depth map shows the highest 
flood depth reached by each pixel during the event, with different 
pixels potentially reaching their maximum depths at different times.
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Fig. 5. Digital elevation models of (a) Wollombi, (b) Chowilla, (c) Burnett River, and (d) clip boxes distribution of each catchment.
2.4.2. Flood extent
Flood extents or inundation maps are binary representations of flood 

depth maps and are crucial for allocating flood mitigation resources 
during a flood event (Fraehr et al., 2024). In these maps, pixels with 
water depth values above a certain threshold are marked as flooded 
cells (value = 1), while pixels below this threshold are marked as 
dry cells (value = 0). After converting flood maps (maps generated 
from coarse grid model, high-resolution fine grid model and SGUnet 
model) into inundation maps, three metrics are calculated: probability 
of detection (POD), rate of false alarms (RFA), and critical success index 
(CSI) (Schaefer, 1990).

POD (Eq. (4)) reflects the model’s ability to detect true positives 
(pixels correctly identified as flooded). A POD of 1 indicates a perfect 
detection (i.e., all flooded pixels in the high-resolution flood map are 
captured by the prediction model). RFA (Eq. (5)) measures the portion 
of predicted floods that did not actually occur. The optimum RFA 
value is zero where there are no false alarms. POD and RFA should 
be interpreted together. For example, a model predicting everywhere 
flooded has a perfect POD value but with a high RFA value. Therefore, 
a model with a high POD and a low RFA is considered as a good 
prediction model.

CSI (Eq. (6)) measures the overall accuracy of the model in predict-
ing inundation extents by considering both false alarms and misses. It 
combines aspects of POD and RFA, making it a commonly used metric 
for evaluating flood inundation models. CSI ranges from 0 to 1, with 1 
indicating perfect forecasts. It balances between the sensitivity of the 
model (POD) and its tendency to give false alarms (RFA). 
Probability of detection (POD) = 𝑇𝑃 (4)
𝑇𝑃 + 𝐹𝑁

7 
Rate of false alarms (RFA) = 𝐹𝑃
𝑇𝑃 + 𝐹𝑃

(5)

Critical success index (CSI) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(6)

Where true positives (𝑇𝑃 ) refer to the number of pixels that are 
marked as flooded in both the predicted image and the target image. 
False positives (𝐹𝑃 ) are the number of pixels that are marked as 
flooded in the predicted image, but are dry in the target image. False 
negatives (𝐹𝑁) indicate the number of pixels that are marked as dry 
in the predicted image but are flooded in the target image.

3. Results and discussion

3.1. Single vs multiple spatial explanatory variables

For the three study areas, first, the SGUnet model is trained with 
both single (coarse grid flood depth image + DEM) and multiple 
(coarse grid flood depth image + DEM + HAND + flow accumula-
tion) spatial explanatory variables. The goal of this exercise was to 
determine whether incorporating additional hydrological knowledge 
explicitly (through multiple spatial explanatory variables) would offer 
any benefit. Both HAND and flow accumulation images were derived 
from the DEM of each study area. For each catchment, all training 
parameters were kept constant except for the number of input channels, 
and the model was trained for a specified number of epochs: 75 epochs 
for Wollombi, 15 epochs for Chowilla, and 50 epochs for Burnett River. 
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Table 1
Parameter details of the HEC-RAS models (BC: boundary condition, stn no: station number).
 Parameter Wollombi Chowilla Burnett River  
 Model area (km2) 814 760 1197  
 Model type 2D 2D 2D  
 DEM resolution (m) 5 × 5 5 × 5 10 × 10  
 DEM source Commonwealth of 

Australia 
(Geoscience 
Australia) (2021)

Fraehr (2023) Commonwealth 
of Australia 
(Geoscience 
Australia) (2021)

 

 No of cells: Domain  
  Coarse grid 21,715 4622 8704  
  Fine grid 204,862 130,621 488,080  
 No of cells: Clipped area  
  Coarse grid 2612 3421 4601  
  Fine grid 71,487 94,780 395,792  
 Cell size: Fine grid  
  Near streams (m) 25 × 25 25 × 25 40 × 40  
  Floodplain (m) 40 × 40 100 × 100 40 × 40  
  Other (m) 200 × 200 100 × 100 40 × 40  
 Cell size: Coarse grid  
  Entire domain (m) 200 × 200 400 × 400 400 × 400  
 Average cell size (m2)  
  Coarse grid 40,397 164,320 162,574  
  Fine grid 4282 5814 2899  
 Break line usage used only in fine grid models for all three catchments
 Equation set DWE DWE SWE  
 Rain on grid Yes No No  
 Rainfall interpolation IDW – –  
 Roughness spatially varying based on land use for all three catchments
 Inflow BC: stn no 210135 (Bureau of 

Meteorology, 2024)
426200, 414211, 
414212 (Fraehr, 
2023)

136007A, 
136011A 
(Bureau of 
Meteorology, 
2024)

 

 Downstream BC: stn no 210127, 210134 
(Bureau of 
Meteorology, 2024)

A4260512 
(Fraehr, 2023)

Bundaberg 
(Maritime Safety 
Queensland, 
2024)

 

 Evaporation No No No  
 Infiltration No No No  
 No of events 4 6 4  
 Event duration several days weeks to months days to weeks  
 Mapping interval (hours) 0.5 6.0 0.5  
 Computation time step controlled based on the Courant number
Table 2
SGUnet model training details of the three case studies.
 Parameter Wollombi Chowilla Burnett River 
 No of clip boxes (512 × 512) 21 100 40  
 Clip box size (km) 2.56 2.56 5.12  
 Clipped area (km2) 95.3 513.2 684.2  
 Spin-up period (days) 1 12 1  
 No of samples (train/test) 35280/6048 160200/49400 83520/15360 
 No of epochs 75 15 200  
 Batch size 48 48 48  
 Learning rate 0.00002 0.00002 0.00002  

Following the training phase, the models were evaluated using the 
testing data.

Fig.  6 displays the training loss curves for each study area, illus-
trating the variation in training MSE values throughout the training 
epochs. Additionally, Table  3 presents the final MSE values for both 
the training and testing phases, comparing models that utilized single 
and multiple spatial explanatory variables. Incorporating more input 
images significantly increased the training time; the SGUnet model with 
multiple spatial explanatory variables required 20% more training time 
compared to the single-variable case. However, as shown in Fig.  6, 
adding more explanatory variables did not yield any notable improve-
ment in terms of training or testing accuracy, nor in the convergence 
speed.

Thus, it would be safe to assume that, when the SGUnet model is 
trained for each catchment individually, incorporating more explicit 
8 
Table 3
Mean squared error (MSE) values from training and testing of models with single and 
multiple spatial explanatory variables.
 Parameter Wollombi Chowilla Burnett River 
 No of epochs after 75 after 15 after 50  
 Training MSE (cm2)  
  Single spatial explanatory variable 13.44 7.51 490.30  
  Multiple spatial explanatory variables 12.84 7.97 500.22  
 Testing MSE (cm2)  
  Single spatial explanatory variable 17.02 7.16 770.54  
  Multiple spatial explanatory variables 17.75 6.58 788.14  

hydrological information adds little or no advantage. However, it is 
important to highlight that only hydrological information derived from 
the DEM was used in this experiment. The deep network layers of 
the SGUnet model may be capable of extracting this information from 
the DEM alone when used as the sole spatial explanatory variable. 
Therefore, all subsequent results in this paper are based on using the 
DEM as the only spatial explanatory variable.

It was also observed that most fitness improvements occurred within 
the first few epochs of training, indicating that the SGUnet model can 
quickly learn the underlying upscaling patterns with minimal training 
effort.

3.2. Water depths

The top three graphs in Fig.  7, show the RMSE of the coarse grid 
model’s depth predictions and the SGUnet model’s depth predictions 



H.M.V.V. Herath et al. Journal of Hydrology 660 (2025) 133329 
Fig. 6. Training period mean squared error (MSE) values: single vs. multiple spatial explanatory variables.
Fig. 7. Root mean square error (RMSE) and flood volume for each time step during testing events of Wollombi, Chowilla, and Burnett River.
compared to the high-resolution fine grid model’s depth predictions 
at each time step of the testing events for the three study areas. The 
three bottom plots represent the flood volume distribution of the high-
resolution fine grid, coarse grid, and SGUnet models during the testing 
event for each model domain. The averaged RMSE and MAE values 
for the coarse grid and SGUnet models during the testing periods 
are provided in Table  4. Here, for each model, at each time step, a 
flood depth map is created for the clipped area by merging the depth 
predictions of each clip box (average value is used for overlapping 
pixels).

As shown in Fig.  7, for each study area and at each time step of 
the testing event, the RMSE between the water depth estimates of the 
SGUnet model and those of the high-resolution fine grid model (green 
line) is significantly lower than the RMSE between the estimates of 
the coarse grid based model and the estimates of the high-resolution 
fine grid model (blue line). Among the coarse-grid models, the smallest 
discrepancy with the flood depths of the high-resolution fine-grid model 
is observed in the Chowilla floodplain, while the largest discrepancy is 
seen in the Burnett River basin.

The Burnett River basin is the most complex hydrodynamic model of 
the three domains, due to its steep terrain and the backwater effect from 
tidal influence. Therefore, when the cell sizes are coarsened, the depth 
estimates tend to deviate more from the target values. Additionally, 
the difference in the number of computation cells between the coarse-
grid and high-resolution fine-grid models is greatest for the Burnett 
River basin, further explaining why the coarse-grid depth estimates 
9 
differ significantly from the high-resolution fine-grid model estimates 
compared to the other two cases.

The Chowilla floodplain has the simplest hydrological model con-
figuration. The difference in the number of computation cells between 
the coarse and fine grid models is also smaller compared to that of the 
Burnett River basin, similar to the Wollombi models. Due to flat terrain, 
increasing the computation cell sizes causes smaller variations in depth 
estimates compared to steep terrain. This explains why the difference 
in flood estimates between the coarse and fine grid models is relatively 
smaller for the Chowilla floodplain.

In terms of complexity, the Wollombi flood dynamics fall between 
the Chowilla and Burnett River models. As expected, the difference 
in flood depth estimates between the coarse and fine grid models for 
Wollombi lies between those of the other two cases. This pattern is also 
reflected in the number of epochs required for SGUnet model training, 
with the Burnett River requiring the most (200 epochs), the Chowilla 
floodplain the least (15 epochs), and Wollombi falling in between (75 
epochs).

The ratio of the averaged RMSE between the coarse grid model and 
the SGUnet model for Wollombi, Chowilla, and Burnett River is 4.5, 
5.3, and 4.9, respectively. So, regardless of the model complexities and 
computation mesh differences between coarse and fine grid models, the 
trained SGUnet model for each domain has achieved a similar level of 
improvement in flood depth estimates.

A general trend is noticeable in the flood volume plots. At each 
occasion, coarse grid model (blue line) over predicts the actual flood-
ing. This may be due to the prediction of more flooded areas and 
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Table 4
Performance metrics for water depth and inundation predictions.
 Metric Wollombi Chowilla Burnett River
 Low-res SGUnet Low-res SGUnet Low-res SGUnet 
 AvgRMSE (cm) 17.8 4.0 13.3 2.5 72.1 14.8  
 AvgMAE (cm) 5.5 1.1 7.7 1.0 24.5 3.7  
 𝑃𝑂𝐷5cm 0.837 0.910 0.985 0.990 0.969 0.969  
 𝑃𝑂𝐷30cm 0.900 0.961 0.980 0.995 0.971 0.965  
 𝑅𝐹𝐴5cm 0.118 0.035 0.068 0.010 0.165 0.034  
 𝑅𝐹𝐴30cm 0.107 0.011 0.078 0.007 0.173 0.022  
 𝐶𝑆𝐼5cm 0.753 0.881 0.918 0.981 0.814 0.937  
 𝐶𝑆𝐼30cm 0.812 0.950 0.905 0.988 0.807 0.945  

high flood depths. However, more importantly, the SGUnet model 
significantly reduces this volume error in all three cases, as the green 
line closely follows the brown line (representing the high-resolution 
fine-grid model).

The SGUnet model’s ability to improve coarse grid based simulated 
flood depth estimates can be visually observed in the absolute flood 
depth difference maps shown in Fig.  8. For each study area, the absolute 
flood depth differences are plotted between the coarse grid and high-
resolution fine-grid model estimates (left side) and the SGUnet and 
high-resolution fine grid model estimates (right side). These maps are 
generated for both peak flood depth (blue outlines) and maximum flood 
depth (red outlines) in each domain, using the same depth scale across 
all maps of the same catchment for easy comparison.

As clearly shown, once the SGUnet model is applied, the predictions 
become much closer to those of the high-resolution fine grid model, 
with the differences approaching zero. This behavior is consistent for 
both peak flood depth maps and maximum flood depth maps. As noted 
with RMSE values, the largest discrepancies in flood depth estimates are 
observed in the Burnett River, while the smallest occur in the Chowilla 
floodplain.

In the Burnett River flood maps, the improvement in flood depth 
prediction is more pronounced in the upstream areas compared to the 
regions near the tidal boundary. However, even with coarse grid model, 
the flood depth differences are smaller close to the tidal boundary as 
hydrodynamic models force cells in the vicinity of the boundary to 
respond to the boundary signal (known as the effect of the boundary 
conditions). Additionally, in some localized areas, the SGUnet model 
does not perform as well as in other regions. This could potentially 
be improved by adjusting the coarse grid model configuration in those 
specific areas, such as adding a refinement zone.

Fig.  9 presents scatter plots that compare flood depth predictions 
from the high-resolution fine grid model with those from the coarse 
grid model (blue dots) and the SGUnet model (green dots). The left-
hand side shows plots for peak depth maps, while the right-hand side 
displays plots for maximum depth maps. It is evident that the SGUnet 
model’s flood depth estimates, in both peak and maximum flood maps, 
are much closer to the high-resolution fine grid model’s values. This is 
illustrated by the green dots clustering closer to the 45-degree line (red 
dotted line) in each model domain.

Accurately distinguishing between overestimation and underestima-
tion in model predictions relative to target values is crucial in any 
flood study. Fig.  10 illustrates five categories of flood depth differences 
identified for each catchment by comparing the coarse-grid model and 
SGUnet model against fine-grid model simulations (target values). The 
flood depth difference is computed by subtracting model predictions 
from the target values, where negative differences indicate overestima-
tion and positive differences indicate underestimation. The identified 
categories are as follows: differences less than −30 cm are classified as 
overestimated, between −5 cm and −30 cm as slightly overestimated, 
between −5 cm and 5 cm as matched, between 5 cm and 30 cm as 
slightly underestimated, and greater than 30 cm as underestimated. 
We consider differences within the range of −30 cm to 30 cm as the 
10 
comparable zone with the target values, since vertical accuracies of 
DEMs range within this limits.

As shown in the depth difference histograms in Fig.  10 for each 
catchment, the SGUnet model effectively corrects both the overesti-
mated and underestimated regions of the coarse grid model, shifting 
them into the comparable zone. The coarse-grid model simulations for 
the Wollombi catchment exhibit a significant number of overestimated 
and underestimated regions (pixels). In contrast, the SGUnet model 
significantly reduces the underestimated regions and eliminates the 
overestimated regions. The percentage of matched areas in the SGUnet 
model is 17.8% higher than that of the coarse grid model.

For the Chowilla catchment, most of the coarse grid model simu-
lations already fall within the comparable zone. However, the SGUnet 
model further refines these predictions, shifting them almost entirely 
into the matched category (98.8% compared to 50% in the coarse grid 
model). This highlights how the upskilling process benefits from more 
accurate coarse grid estimates.

In contrast, the coarse-grid model simulations for the Burnett River 
basin show the largest deviation from the fine-grid model simulations, 
with a significant overestimation of flood depth values. However, the 
SGUnet model effectively reduces this overestimation, shifting most of 
the overestimated regions into the comparable zone (with the overesti-
mated area decreasing from 23.4% in the coarse grid model to just 2.2% 
in the SGUnet model). Notably, while the SGUnet model introduces a 
slight underestimation in 0.4% of the area, the coarse grid model had 
no underestimated regions.

Neither DEM correction steps, such as DEM smoothing or sink 
filling, nor local refinements of the coarse grid model mesh based 
on upscaling results were applied. However, since the accuracy of 
the initial coarse-grid estimates significantly influences the upscaling 
performance of the SGUnet model, incorporating such approaches may 
further enhance its capabilities. Therefore, exploring these refinements 
in future research would be worthwhile.

3.3. Inundation

Fig.  11 illustrates three metrics used to evaluate the flood extent 
prediction capability of the SGUnet model (green lines) during the 
testing events of each case study. For comparison, the same metrics 
are calculated for the coarse grid model predictions (blue lines). A 
low threshold of 5 cm (dotted lines) and a high threshold of 30 cm 
(solid lines) are used separately to identify dry and wet cells. Table 
4 summarizes the average metric values for both the coarse grid and 
SGUnet models with these two thresholds. Generally, the performance 
of each metric for both models improves as the flood detection thresh-
old increases. With the only exception of 𝑃𝑂𝐷30𝑐𝑚 value for the Burnett 
River (difference is only 0.006), the SGUnet model performs better than 
the coarse grid model in flood inundation predictions across all metrics.

As noted previously, coarse grid models tend to overpredict flooding 
in terms of both area and depth. In doing so, coarse-grid models capture 
most of the true flooding areas as well. Hence, coarse-grid models 
also have higher POD values. However, except in some instances in 
the Burnett River basin, the SGUnet model achieves even higher POD 
values than the coarse grid models. This suggests that the SGUnet 
model is better at identifying true flooding areas that the coarse grid 
models may miss.

As shown in the RFA plots (middle three plots of Fig.  11), coarse 
grid models typically exhibit a high rate of false alarms. This issue 
is where coarse grid models lose most of their prediction accuracy 
compared to high-resolution fine grid models in flood extent prediction. 
Consequently, it is crucial for the SGUnet model to significantly reduce 
RFA values during the upskilling process. Notably, for each study 
domain, the SGUnet models effectively reduce the RFA values to levels 
closer to zero at each time step of the testing events.

However, the CSI value provides a more comprehensive measure 
of overall inundation prediction capability, as it combines both POD 
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Fig. 8. Absolute water depth differences in peak and max flood depth maps between fine grid model & coarse grid model (|𝐹𝐺 − 𝐶𝐺|), and between fine grid model & SGUnet 
model (|𝐹𝐺 − 𝑆𝐺𝑈𝑛𝑒𝑡|).
and RFA values. As illustrated in the CSI plots (bottom three plots of 
Fig.  11), the SGUnet models consistently achieve considerably higher 
CSI values than the coarse grid models for all three watersheds at each 
time step. This clearly highlights the superior flood inundation mapping 
capability of the SGUnet model, with CSI values exceeding 0.9 for most 
of the event duration.

3.4. Computational efficiency

The speed-up ratios achieved by the trained SGUnet models vary 
across the three case studies due to differences in the configurations 
of the fine and coarse grid models, the duration of the test event, 
and the number of clip boxes used. It is true that a pure ML based 
surrogate model might achieve a higher speed-up ratio compared to 
the SGUnet model. This is because, by being a hybrid model, SGUnet 
model requires the initial flood depth estimates from a coarse grid flood 
11 
model. Thus, there is an upper bound for the speed-up ratio that the 
model can achieve.

For example, in the Wollombi case study, the coarse grid model took 
5 min and 12 s to complete the simulation on an average computer 
(Intel i5 1.90 GHz processor, 16 GB RAM, 12 solver cores), while the 
high-resolution fine grid model required 7 h, 46 min, and 18 s. The 
pre-processing steps of the SGUnet model, which convert raw HEC-RAS 
model results from the coarse grid model into input samples for the 
learning algorithm, took 2 min and 53 s. The SGUnet model inference 
was completed in 1 min and 12 s, with the SGUnet model running 
on the NCI Gadi platform (details provided in Section 2.3). Thus, the 
SGUnet model achieves a speed-up ratio of approximately 50 for the 
Wollombi case study.

This speed-up ratio does not include the time required to setup and 
train the SGUnet model, which is a one-time task performed before 
the model can be used repeatedly in an operational setting. For the 
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Fig. 9. Water depth scatter plots of peak flood and max flood maps between coarse grid model & fine grid model, and between SGUnet model & fine grid model.
Wollombi model, training with 35,280 input samples and a batch size 
of 48 over 75 epochs took 13 h and 25 min. However, the model 
converged to a value close to its final fitness within the first few epochs, 
indicating that most of the progress was made early in the training 
process.

While model inference is critical in an operational flood model, 
development time is also important for the model’s practicality and 
scalability. Reducing development time allows for faster deployment, 
continuous updates, and easier adaptation to new regions or changing 
environmental conditions. As a result, future research on SGUnet will 
focus on developing a more generalized model that can be applied 
to different flood-prone areas with minimal additional training, rather 
than building a new model from scratch for each region. Developing 
a more generalized model with pretrained weights would reduce the 
training effort needed when applying SGUnet to new domains.

The timing details mentioned above encompass the generation of 
all flood depth maps for the clipped area throughout the test event, 
totaling 6048 images (21 clip boxes and 288 time steps). However, 
since the SGUnet model uses coarse grid model estimates at a specific 
time step to generate high-resolution fine grid predictions for the same 
time step, it is possible to apply the SGUnet model to generate flood 
maps for a specific local area within the clipped region and for a 
particular time period within the event. This approach could yield even 
higher speed-up ratios, making it more suitable for operational flood 
modeling.

3.5. LSG model vs SGUnet model

The LSG model (Fraehr et al., 2023) is an advanced hybrid flood 
modeling framework that integrates a low-fidelity hydrodynamic
model with ML to predict both flood extent and water depth. It 
leverages Empirical Orthogonal Functions analysis to reduce the dimen-
sionality of spatial–temporal flood data and employs Sparse Gaussian 
Process models to map low-fidelity simulations to high-fidelity outputs. 
By efficiently upscaling coarse grid flood predictions to fine grid 
12 
resolution, the LSG model achieves high prediction accuracy while 
maintaining computational efficiency.

More importantly, a recent benchmark study (Fraehr et al., 2024) 
demonstrated that the LSG model outperformed four other state-of-the-
art ML-based surrogate models in predicting flood extent and depth 
across multiple basins, including the Burnett River basin used in this 
study. Consequently, the LSG model is trained using Burnett River 
catchment data, and its flood depth and extent predictions are com-
pared against those of the SGUnet model. Since the LSG model produces 
water level predictions at the fine grid mesh resolution, these are 
converted to DEM-resolution water depths using subgrid topography 
to enable a direct comparison with the SGUnet model.

The average RMSE for the test event, relative to the simulations of 
the fine grid model, is 72.1 cm for the coarse grid model, 17.0 cm 
for the LSG model and 14.8 cm for the SGUnet model. During the 
critical six-hour period near the peak flood depth, the average RMSE 
increases to 82.6 cm for the coarse grid model and slightly decreases 
to 16.9 cm for the LSG model and drops to 11.4 cm for the SGUnet 
model. Both the LSG and SGUnet models significantly improve flood 
depth predictions of the coarse grid model, with SGUnet achieving the 
highest accuracy. Notably, SGUnet considerably outperforms LSG near 
the peak flood depth, the most critical period in flood modeling. Fig. 
12 (left) illustrates the variation in RMSE during this six-hour window, 
showing that SGUnet maintains consistent performance, while the LSG 
model exhibits greater variability.

A similar pattern is observed in the accuracy of the prediction of 
flood extent between the two models. Fig.  12 (right) illustrates the CSI 
variation during the six-hour window. Across both threshold values, 
the SGUnet model achieves higher CSI values than the LSG model and 
exhibits less variability. In contrast, the LSG model reaches its lowest 
CSI value at peak flood depth but improves as it moves away from 
the peak. The average CSI values over the entire event for the LSG 
and SGUnet models are both 0.937 with a 5 cm threshold, and 0.940 
and 0.945, respectively, with a 30 cm threshold. During the critical 
six-hour window, these values increase to 0.952 and 0.967 (5 cm 
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Fig. 10. Water depth difference categories of max flood depth maps between fine grid model & coarse grid model (FG - CG), and between fine grid model & SGUnet model (FG 
- SGUnet).
threshold) and 0.949 and 0.971 (30 cm threshold). However, compared 
to the coarse grid model (event-averaged CSI and six-hour window 
CSI of 0.814 and 0.807 for the 5 cm threshold, and 0.842 and 0.839 
for the 30 cm threshold), both the LSG and SGUnet models provide 
significantly improved flood extent predictions.

Although the SGUnet model achieves higher accuracy in both flood 
depth and extent predictions for the Burnett River basin, it is equally 
important to compare the model development and inference times of 
the two models. A direct timing comparison is not provided here, as 
the models were executed on different hardware platforms—LSG on a 
multi-CPU system and SGUnet on a multi-GPU system.
13 
Model development time includes both data preparation and ML 
training. Although the LSG model requires significantly less training 
time, achieving the same accuracy as SGUnet may require several 
additional training events, necessitating multiple fine-grid model runs. 
As a result, the overall data preparation time for LSG is higher, making 
the total development effort for both models comparable.

In terms of inference, the SGUnet model directly outputs predictions 
at DEM resolution, whereas the LSG model produces results at fine-grid 
mesh resolution. Because LSG predicts at a significantly lower number 
of points than SGUnet, its inference speed is higher. However, SGUnet 
does not require post-processing, while LSG necessitates an additional 
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Fig. 11. Probability of detection (POD), rate of false alarm (RFA), and critical success index (CSI) for each time step during testing events of Wollombi, Chowilla, and Burnett 
River.
Fig. 12. Comparison of root mean square error (RMSE) and critical success index (CSI) between the LSG model and SGUnet model near the peak flood for the Burnett River.
step to map predictions to DEM resolution, which offsets some of its 
inference speed advantage. Consequently, the total inference times of 
both models are comparable.

3.6. Role of subgrid based coarse grid initial estimates

Subgrid-based coarse grid models, such as HEC-RAS in this study, 
can produce results that are highly correlated with high-resolution fine-
grid models. This makes them valuable as initial estimates to guide 
learning algorithms while maintaining computational efficiency, a key 
principle underlying the development of SGUnet.

SGUnet is a hybrid upscaling framework for coarse grid, subgrid-
based flood models. The subgrid technique is a purely numerical upscal-
ing method that generates high-resolution flood maps at the underlying 
terrain resolution, independent of the computational grid resolution. 
However, when coarse-grid flood models generate flood depth maps 
at DEM resolution, they often introduce incorrect flooding patterns 
compared to maps created by high-resolution fine-grid models due to 
limitations of momentum descriptions at coarse grid levels. Hence, the 
primary role of the SGUnet model is to correct the predictions in the 
flood depth maps by the coarse grid model.

Importantly, the subgrid modeling approach used in the coarse-grid 
hydrodynamic model simplifies the ML-based upscaling process. This 
is because the coarse grid model already incorporates high-resolution 
14 
terrain data for flood routing calculations, and the terrain data is 
used again during the conversion from water level elevations at com-
putational grid resolution to water depths at DEM resolution. This 
simplification is evident in the early convergence observed with each 
SGUnet model trained in this study. Furthermore, each model was able 
to learn the upscaling patterns using a relatively small number of flood 
events.

Although a purely ML-based surrogate model might offer greater 
computational efficiency than the SGUnet hybrid model, the latter 
provides more reliable predictions. This is because SGUnet starts with 
robust initial estimates based on physics, making it easier to understand 
the predictions of the model compared to the opaque nature of pure 
ML models. Additionally, the SGUnet model requires less training 
compared to a pure ML model, benefiting from good initial guesses.

In this study, coarse grid models were created by coarsening the 
computational grid of the high-resolution fine grid model without fine-
tuning or calibrating against observed data. In operational settings, a 
one-time setup could include some rough calibration or fine-tuning of 
the coarse grid model, which would further improve the performance of 
the SGUnet model in high-resolution flood mapping. Since the perfor-
mance of the coarse grid model significantly influences both accuracy 
and computational efficiency, these adjustments could lead to even 
better results.
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4. Conclusions

High-resolution fine-grid hydrodynamic models are computation-
ally expensive and often require hours or days to complete simulations. 
In contrast, coarse-grid models can deliver results in minutes, but at the 
cost of reduced accuracy. SGUnet addresses this trade-off by leveraging 
physics-based coarse-grid hydrodynamic simulations as initial estimates 
and refining them using a U-Net-based upscaling model. The improved 
accuracy of the SGUnet model stems from the subgrid approach and 
supervised learning approach, where a U-Net architecture is trained to 
correct coarse grid model predictions at subgrid levels, where subgrid 
resolution is the same as the DEM, by learning their relationship with 
fine grid model outputs, also at DEM resolution.

SGUnet significantly enhances flood depth and extent predictions, 
reducing RMSE by a factor of 4.5–5.3 compared to coarse-grid mod-
els, achieving a CSI values above 0.9 for flood extent mapping, and 
delivering a 50× speed-up over fine-grid hydrodynamic models. It also 
outperforms the state-of-the-art ML-based upscaling model, LSG. Unlike 
purely data-driven approaches, SGUnet benefits from physics-based 
initial estimates, improving reliability and interpretability.

Tested in multiple study areas, SGUnet demonstrated robust per-
formance in learning upscaling patterns, even with limited training 
data. The use of subgrid hydrodynamic models simplifies data pre-
processing, allowing for efficient and early convergence. Although the 
current implementation conditions SGUnet on DEM data, future ver-
sions could incorporate additional spatial variables to further enhance 
generalizability.

SGUnet model is just a beginning of applying super-resolution net-
works to upscale coarse-grid flood depth simulations for rapid high-
resolution flood mapping. Using a U-Net architecture with attention 
mechanisms, it effectively reconstructs high-resolution flood maps from 
sparse hydrodynamic simulations. Future research will focus on extend-
ing SGUnet’s spatial and temporal extrapolation capabilities, bench-
marking it against other surrogate models, and integrating advanced 
generative artificial intelligence techniques such as diffusion models.
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