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Development of a Simulation Model for Airline Cockpit Crew Rostering

M.F. van Amerongen (MSc Student)
Supervisors: Ir. drs. L. Scherp, Dr. ir. B.F. Lopes dos Santos

Section Air Transport & Operations, Department Control and Operations, Faculty of Aerospace Engineering,
Delft University of Technology, Delft, The Netherlands

Abstract— This paper presents the development of a simu-
lation model for airline cockpit crew rostering. The developed
simulation model supports airlines in performing comparative
analyses of different crew rostering scenarios. The model was
developed in collaboration with a major European airline,
leveraging actual historical pairing, crew and roster data
to accurately model the airline crew rostering process. The
simulation model is based on a novel solution method that is
based on the Hungarian assignment algorithm and that exploits
the resemblance of the weekly crew rostering problem to a
minimum-cost bipartite matching problem. An assessment of
the performance of the simulation model has shown that the
simulation model is able to construct rosters of near-optimal
solution quality in limited computational time. To test the
applicability of the developed model as a scenario analysis
tool, two experiments have been performed. The insights the
performed experiments have provided confirm the practical
value of the developed simulation model.

Index Terms— Airline Crew Rostering Problem, Personalized
Crew Rostering, Simulation Model

I. INTRODUCTION

Airline crew rostering is a sub-problem of the airline
crew scheduling problem and involves the assignment of
pairings, i.e. efficient sequences of flights, to individual crew
members. The main objective is to make sure that every
pairing is assigned to a crew member. Leaving pairings open
induces high costs for airlines since these open pairings need
to be resolved with expensive overtime payment, the hiring
of freelancers or by cancelling the flight (Kohl & Karisch,
2004). Other objectives in the rostering process include
constructing rosters with desirable working patterns, satis-
fying crew requests for activities or days-off and ensuring
an equal workload among crew members (Kohl & Karisch,
2004). These objectives are pursued within the boundaries of
rostering policies stemming from labour union agreements.
With the increasing number of flights that need to be assigned
and the growing number of labour union agreements to be
respected, efficiently solving the crew rostering problem has
become a major challenge for airlines (Eltoukhy, Chan, &
Chung, 2017; Maenhout & Vanhoucke, 2010).

Academic literature on airline crew rostering has been
focused on developing more efficient solution methods for
the crew rostering problem. Over the past thirty years,
important advancements have been made on developing
more efficient heuristics and mathematical programming
techniques to solve crew rostering problems of increasing
size and complexity (Gamache, Soumis, & Marquis, 1999;

Kasirzadeh, Saddoune, & Soumis, 2017; Ryan, 1992). How-
ever, besides actually solving the rostering problem, a major
challenge faced by airlines is to determine the appropriate
conditions in which the crew rostering problem is solved. In
academic literature, the conditions in which the airline crew
rostering problem is solved is considered a rigid framework,
taken into account as fixed input into a crew rostering model.
However, in reality, the crew composition, flight schedule
and rostering policies of an airline evolve over time due to
changes in airline policies and labour union agreements.

Changes in crew composition, flight schedule and labour
union agreements have a major impact on the efficiency of
the crew rostering process. Without a thorough understanding
of the impact of these changing rostering conditions, airlines
run the risk of agreeing to long-term commitments that
significantly deteriorate the roster efficiency, resulting in
increased personnel costs.

In order for airlines to make substantiated and data-
driven decisions on crew composition and rostering policies,
airlines require scenario analyses that quantify the impact
of changing rostering conditions. However, due to the sheer
size and complexity of the airline crew rostering problem, the
crew rostering software adopted by airlines often take several
hours to solve. Since a thorough scenario analysis may
require constructing hundreds of different rosters, performing
scenario analyses using commercial crew rostering software
is considered too time-consuming to be applied in practice.
Therefore, airlines could benefit from a supplementary sce-
nario analysis tool, providing detailed insights on the effect
of different crew rostering conditions on the constructed crew
rosters.

This paper presents the development of a simulation model
that can serve as a scenario analysis tool for airline cockpit
crew rostering. The paper is structured as follows. First,
Section II provides background information on the airline
crew rostering problem. Subsequently, Section III discusses
the development of the simulation model. Section IV ex-
plains the solution technique that is used in the simulation
model. Section V presents the results of the performance
analysis of the simulation model and of two scenario analyses
that have been performed with the developed simulation
model. Finally, Section VI reflects on the contributions
and the applicability of the simulation model. Additionally,
recommendations for future work are provided.



II. BACKGROUND

This section provides background information on the air-
line crew rostering problem, on different approaches to the
problem and on the various solution techniques used to solve
the problem.

A. Crew Rostering Problem

The airline crew rostering problem is a combinatorial op-
timization problem, and belongs to the class of NP-complete
problems (Deveci & Demirel, 2018) and therefore it is
also an NP-hard problem (Lucic & Teodorovic, 2007). The
airline crew rostering problem is a generalized assignment
problem, which is a special type of the minimum cost multi-
commodity flow problem (Hillier & Lieberman, 2015). The
minimum cost flow problem is the most general network
model and encompasses many other specific problems such
as the shortest path problem, the minimum spanning tree
problem and the assignment problem (Burke & Kendall,
2005). The minimum cost flow problem considers flow
through a network with limited arc capacities (Hillier &
Lieberman, 2015). The objective in the minimum cost flow
problem is to minimize the total cost of sending the available
commodities through the network to satisfy the given demand
(Hillier & Lieberman, 2015). The airline crew rostering
problem is a multi-commodity flow problem where each
crew member corresponds to a commodity and the demand
is determined by the flight schedule (Cappanera & Gallo,
2004).

B. Crew Rostering Approaches

Outside of North America, personalized rostering is the
most common approach for crew rostering (Kasirzadeh et al.,
2017). With personalized rostering approaches, personalized
rosters are constructed directly for each individual crew
member, considering pre-assigned personal activities such as
training days and vacations (Kasirzadeh et al., 2017). The
more advanced personalized rostering systems also take into
account individual crew preferences on certain activities or
roster attributes as soft constraints in the roster optimization
(Kohl & Karisch, 2004).

The bidlines approach is the approach that used to be
common practice in North American airlines. In the bidlines
approach, a set of anonymous monthly rosters (bidlines)
are constructed, whereafter crew members place bids on the
rosters they prefer (Jarrah & Diamond, 1997). Subsequently,
the rosters are assigned to specific crew members based on
seniority, meaning that if two or more crew members have
placed a bid on the same roster, the roster will be assigned to
the most senior crew member (Kohl & Karisch, 2004). After
assignment of the bidlines, numerous pairings conflict with
the individual pre-assigned activities of crew members such
as training activities or granted days-off. Those pairings that
are in conflict with pre-assigned activities are then removed
from these bidlines. The least senior crew members will then
be assigned to a combination of ’open pairings’, i.e. pairings
not covered by any of the generated bidlines (including those

due to conflicts with pre-assigned activities), and reserve
days (Campbell, Durfee, & Hines, 1997).

Nowadays, some large North American airlines have
adopted the Preferential Bidding System (PBS) as their
crew rostering approach (Achour, Gamache, Soumis, &
Desaulniers, 2007; Kasirzadeh et al., 2017). The Preferential
Bidding System is a special case of personalized rostering
where the satisfaction of the preferences of senior crew
members is prioritized over the satisfaction of those of junior
crew members.

C. Crew Rostering Solution Techniques

There are two main groups of solution methodologies
to the crew rostering problem: heuristics and mathematical
programming methods (Bergh, Belin, de Bruecker, Demeule-
meester, & de Boeck, 2013). However, certain researchers
adopt hybrid methods, combining mathematical program-
ming techniques with (meta-)heuristics to solve the problem.

Mathematical programming techniques are used to find
the optimal solution to a given optimization problem. Math-
ematical programming methods encountered in airline crew
rostering literature are based on integer programming and
formulate the crew rostering problem as a set-partitioning
problem (Deveci & Demirel, 2018; Kasirzadeh et al., 2017).
In the set-partitioning problem formulation, the goal is to
generate a roster for each crew member such that all pairings
that need to be flown are covered (Kasirzadeh et al., 2017).
Mathematical programming methods then may exploit var-
ious integer programming techniques such as branch-and-
bound and column generation to solve the set-partitioning
problem. An early influential crew rostering problem that
exploited column generation techniques was proposed by M.
Gamache, F. Soumis and G. Marquis (1999). A more recent
work that is based on similar mathematical programming
techniques is presented by A. Kasirzadeh, M. Saddoune and
F. Soumis (2017).

Heuristics on the other hand aim to find a feasible sub-
optimal solution in reasonable computational time (Burke &
Kendall, 2005). Problem specific knowledge is exploited in
order to define a set of rules that need to be followed to
construct a good feasible solution. In academic literature,
heuristics are often divided in constructive heuristics and
improvement heuristics (Bergh et al., 2013; Ernst, Jiang,
Krishnamoorthy, Owens, & Sier, 2004). R.D. Jones (1989)
presented an early heurstic procedure to solve the rostering
problem. First an initial roster is constructed, whereafter
moving and swapping opportunities are used to improve the
initial solution. Recent works on crew rostering heuristics
involve models that are based on meta-heuristics (Lucic
& Teodorovic, 2007; Maenhout & Vanhoucke, 2010) or
matheuristics (Doi, Nishi, & Voß, 2018), which can be
considered special types of techniques that combine different
basic heuristics in order to explore the search space more
efficiently (Blum & Roli, 2001; Burke & Kendall, 2005).



III. MODEL DEVELOPMENT

This section discusses the development of the simulation
model. First, Section III-A discusses the scope of the ros-
tering problems for which the simulation model is devel-
oped. In Section III-B, the mathematical model formulation
of the crew rostering problem is presented. Section III-C
then presents an overview of the main components of the
simulation model.

A. Scope

The simulation model is developed in collaboration
with a major European airline, leveraging actual historical
pairing, crew and roster data in order to accurately model
the cockpit crew rostering process. This section discusses
the crew rostering approach, the main assumptions and the
rostering objective considered in the development of the
simulation model.

1) Approach: The developed simulation model addresses
the personalized crew rostering problem with a weekly
rolling roster period of four weeks. The first three weeks
of the monthly roster are fixed and every week a new fourth
week is added to the monthly roster. Every week, an updated
roster for the coming four weeks is published to the pilots.
For example, at time t in Week 1 the roster for Week 5
is constructed, added to the previous published roster and
subsequently published to the pilots. Figure 1 illustrates the
evolution of the published roster over time.

Fig. 1. Published Roster over Time using a Rolling Horizon

In the rolling horizon approach, an airline has to construct
a weekly roster that covers all pairings and reserve blocks
that start in the fourth week of the roster. In personalized
crew rostering, the rostering of pairings is done under the
consideration of personal pre-assigned activities of pilots.
Certain personal activities are rostered with a longer roster
horizon than pairings, resulting in that at the moment of
pairing rostering these personal activities are already pre-
assigned. Pre-assigned activities may include granted flight
requests, training activities and vacations. For example, train-
ing activities might be rostered up to 10 weeks in advance
and vacation scheduling might be done up to 6 months in
advance.

Figure 2 illustrates an example crew rostering problem
instance involving five pilots and four pairings. In this
research, a pairing block consists of days of flying (F) and
days off, so-called travel leave (TL). Flying days include

days of actual flying, i.e. departure from and return to the
crew base, but also days spent on destination in between. Pre-
assigned activities include pairings rostered in the previous
roster period, requested flights (RF), requested leave (RL),
training activities (SIM), vacations (V), medical checks (M)
and office days (O).

Fig. 2. Example Crew Rostering Problem Instance

2) Assumptions: The main assumptions made in the
development of the simulation model are the following:

• Only one crew base is considered.
• Only one rank per problem instance is considered;

’flying below rank’ is not allowed.
• The length of travel leave in a pairing block is adjusted

for part-time pilots.
• There is no constraint on maximum flying hours per

pilot.
• Crew preferences are taken into account as pre-assigned

flight requests and leave requests.
• Route instruction flights are considered pre-assigned.
• Pre-assigned activities are fixed and cannot be resched-

uled or canceled.
• Roster efficiency is the only objective in the rostering

process.

3) Objective: For a given set of pairings, pilots and
pre-assigned activities, the roster inefficiency should be
minimized. In this research, roster inefficiency is defined
as unused labor potential and is expressed in number of
’premium days’. Premium days are considered a currency
between an airline and its crew members. Crew members
can earn premium days by performing additional tasks for
the airline, such as office tasks or doing overtime. Earned
premium days are added to the ’premium days budget’ of
the pilot and are remunerated to crew members as additional
days off somewhere in the future. The objective of the
airline is twofold: the build-up of premium days should be
minimized and the build-off of premium days should be
maximized.

B. Mathematical Model

The weekly personalized crew rostering problem is
modeled as a set-partitioning problem where the objective
is to find a roster for each pilot such that all pairings



are covered at minimum cost. The objective function
minimizes the sum of the cost of all individual rosters that
are assigned to pilots. The cost of an assigned roster is
a linear combination of four cost parameters, which are
expressed in number of days of inefficiency. The following
cost parameters are included in the model:

• Lost days: Rosters containing ’open days’, i.e days
without an activity, can be used to allocate premium
days off. However, if the considered pilot has a
zero premium days budget, the open day in its roster
becomes a ’lost day’. A lost day is a day of inefficiency
as it corresponds to a missed opportunity to allocate a
premium day off.

• Flexible Travel Leave (FTL): The last day of the
travel leave in a pairing block, i.e. the ’flexible travel
leave’ (FTL), can be removed from the pairing in order
to free up space in the roster. However, this comes at
a cost since pilots are compensated for the removal of
their travel leave in premium days. The compensation
in premium days corresponds to days of inefficiency
since these premium days need to be allocated as extra
days off in future rosters.

• Next week penalty: The objective function is penalized
for rosters that are expected to cause inefficiencies
in subsequent roster periods. Whether an individual
roster is expected to cause inefficiency is evaluated
according to the resulting gap in next week’s roster,
which spans up to the next pre-assigned activity. If this
gap is below a certain threshold, it is expected that
it will be hard to assign a subsequent pairing in that
gap in next week’s roster period, causing inefficiency.
In the simulation model, this threshold value depends
on the length of the pairings in the pairing set and is
adjusted for part-time pilots.

• Uncovered pairings: Pairings or reserve blocks that are
not assigned to any pilot become uncovered. Uncovered
pairings need to be recovered by convincing pilots to
do overtime, for which pilots receive compensation
in premium days. In the simulation model, uncovered
pairings get assigned to a fictitious (’slack’) pilot in
order to capture this cost parameter in the objective
function.

Below, the mathematical model formulation of the
set-partitioning problem can be found.

Sets

P Set of all pairings to be covered
M Set of all available pilots
Rm Set of all possible rosters for pilot m
s The slack pilot
Rs Set of all possible roster for slack pilot s

Parameters

cldr,m Lost days cost if roster r ∈ R is assigned to pilot m
cftlr,m Flexible Travel Leave cost if roster r ∈ R is assigned

to pilot m
cnwr,m Penalty cost for next week’s roster if roster r is

assigned to pilot m
cur,s Uncovered pairing cost if roster r ∈ R is assigned

to slack pilot s
lp Length of pairing p ∈ P for a full-time pilot

yp,r =

{
1 if pairing p is covered in roster r
0 otherwise (1)

Variables

xr,m =

{
1 if roster r is assigned to pilot m
0 otherwise (2)

xr,s =

{
1 if roster r is assigned to slack pilot s
0 otherwise (3)

Model formulation:

min
∑

m∈M

∑

r∈Rm

(cftlr,m + cldr,m + cnwr,m) · xr,m +
∑

r∈Rs

cur,s · xr,s

(4)

Subject to:

∑

m∈M

∑

r∈Rm

yp,r ·xr,m+
∑

r∈Rs

yp,r ·xr,s = 1, ∀p ∈ P (5)

∑

r∈Rm

xr,m = 1, ∀m ∈M (6)

Equation 4 presents the objective function used in the
simulation model. Below, in Equation 7, the incorporation of
the costs due to uncovered pairings is clarified. The number
of premium days compensation required to convince a pilot
to do overtime in order to recover an uncovered pairing
is approximated by the length of the uncovered pairing.
The value of this cost parameter has been determined in
consultation with operators of the collaborating airline and
is considered a close representation of the inefficiency costs
resulting from uncovered pairings.

cur,s =
∑

p∈P
lp · yp,r (7)

The set-partitioning problem formulation involves two
constraints: each pairing should be covered exactly once,
either by an actual pilot or by the slack pilot, (5) and each
pilot must have exactly one roster (6).



C. Computational Model

The simulation model is developed using Python 3.6.
Figure 3 presents a high-level overview of the components
of the simulation model. This section briefly addresses the
individual blocks of the simulation model. Afterwards, in
Section IV the developed solution technique is discussed into
more detail.

Fig. 3. Overview of the Computational Model

1) Problem Initialization: The model takes historical
’published rosters’ as input. From the published roster, the
roster as it was just before pairing assignment, i.e. the ’pre-
fixed roster’, and the set of pairings and reserves that should
be rostered in the considered week are obtained. Figure
4 presents the block diagram of the problem initialization
module.

Fig. 4. Module 1: Problem Initialization

2) Cost Matrix Construction: The cost matrix maps the
different cost parameters of each pilot-roster assignment
combination. Figure 5 presents the block diagram of the
cost matrix construction module. The construction of the cost
matrix is explained in Section IV.

Fig. 5. Module 2: Cost Matrix Construction

3) Pairing Assignment: Pairing assignment can be done
in various different ways, using different assignment algo-
rithms. Figure 6 depicts a constructive pairing assignment
algorithm, where the roster is gradually constructed through
the subsequent assignment of pairings to pilots. The specific

pairing assignment algorithm used in the simulation model
is discussed in detail in Section IV.

Fig. 6. Module 3: Pairing Assignment

4) Roster Evaluation: After all pairings have been as-
signed, the finished roster is evaluated and exported to
Microsoft Excel. To compare different pairing assignment
algorithms, the simulation model allows for the evaluation
and processing of multiple finished rosters. Figure 7 depicts
the evaluation module.

Fig. 7. Module 4: Roster Evaluation

IV. SOLUTION TECHNIQUE
The simulation model solves the formulated set-

partitioning problem using a novel solution method that is
based on the Hungarian assignment algorithm. This section
explains the novel solution method, called the ’Hungarian
Improvement’ algorithm. First, the Hungarian assignment
algorithm on which the developed solution method is based,
is explained. Afterwards, the Hungarian Improvement algo-
rithm is described.

A. Hungarian Assignment Algorithm
The Hungarian assignment algorithm is a classic

assignment algorithm that solves the weighted ’bipartite’
matching problem. The bipartite matching problem is the
problem of assigning ’jobs’ to ’workers’, where each job
can be assigned to at most one worker and every worker
can have at most one job assigned. When an individual cost
is associated with each possible assignment, the bipartite
matching problem becomes a ’weighted’ bipartite matching
problem (Frank, 2005).

1) Bipartite Reduction: For the Hungarian assignment
algorithm to be applied on the airline crew rostering
problem, the set-partitioning problem is reduced to a
minimum-cost weighted bipartite matching problem. In the
reduced problem, the set of rosters Rm for each pilot is
reduced to contain only rosters that contain just a single
pairing. The bipartite matching problem formulation then
implies that each pairing needs to be assigned to one pilot
and that each pilot can have at most one pairing assigned.



2) Cost Matrix Construction: The Hungarian assignment
algorithm requires the construction of the bipartite cost
matrix that maps all costs of the possible pilot-pairing
combinations. In the developed simulation model, the cost
matrix is computed by evaluating the four different cost
parameters in the objective function for all possible pilot-
pairing combinations.

To increase the computational efficiency of the cost matrix
construction process, first for every pilot the current ’gap’ in
the roster of the pilot is calculated, which spans from the end
of the last activity rostered in the previous roster period to
the first upcoming pre-assigned activity. Subsequently, based
on the start date and length of the gap, the set of candidate
pairings for every pilot is determined. Candidate pairings
that violate rostering constraints stemming from labour
union agreements are removed from the set of candidate
pairings. Consequently, only for these candidate pairings
the costs need to be calculated. All other pilot-pairing
combinations are infeasible, resulting in a Big M in the
constructed cost matrix.

3) Addition of Slack: To capture the costs of uncovered
pairings, a slack pilot is included in the cost matrix that maps
the uncovered pairing cost for all considered pairings. Also,
slack pairings that corresponds to an empty roster is added to
the cost matrix in order to account for the roster inefficiency
costs of empty rosters. These empty roster costs are pilot-
dependent since the ’lost days’ and ’next week penalty’ cost
parameters depend on the premium days budget and pre-
assigned activities of a pilot.

The number of slack pairings added to the cost matrix
is determined by computing the difference between the
number of pilots and the number of pairings in the
considered problem. The problem then is solved using
the Hungarian assignment algorithm. If the minimum-cost
bipartite solution involves uncovered pairings, a number
of slack pilots corresponding to the number of uncovered
pairings is added to the cost matrix. Subsequently, the same
number of slack pairings is added to the matrix, with a Big
M cost for the entries corresponding to an assignment of
a slack pairing to a slack pilot. Afterwards, the weighted
bipartite problem is solved again in order to compute the
minimum-cost bipartite solution to the given crew rostering
problem.

4) Solution Computation: The Hungarian assignment
algorithm solves the bipartite matching problem by
performing matrix operations (Munkres, 1957). The
Hungarian assignment algorithm first performs row
reduction and column reduction operations on the input cost
matrix. The optimal set of assignments is attained if the
minimum number of lines to cover all zero elements in the
resulting cost matrix equals the number of rows (Hillier &
Lieberman, 2015). If the minimum number of lines to cover
all zeros is less than the number of rows, the following steps
are performed iteratively until an optimal set of assignments
is obtained (Hillier & Lieberman, 2015):

• Cover all zeros in the reduced cost matrix using the
minimum possible number of horizontal and vertical
lines;

• Subtract the smallest uncovered number from every
other uncovered number;

• Add the smallest uncovered number to the numbers at
intersections of covering lines;

• Numbers crossed out but not at the intersections of
cross-out lines carry over unchanged to the next table.

B. Hungarian Improvement Algorithm

The Hungarian assignment algorithm is a very efficient
solution method for the bipartite matching problem.
However, in the airline crew rostering problem pilots
can have two pairings and with very short pairings even
three pairings assigned in a single weekly roster period.
Therefore, a novel solution method has been developed that
is based on the Hungarian assignment algorithm, called
the ’Hungarian Improvement’ algorithm. The Hungarian
Improvement algorithm exploits the resemblance of the
weekly crew rostering problem to a minimum-cost weighted
bipartite matching problem. This Subsection presents the
characteristics of the Hungarian Improvement algorithm.

1) Pairing Assignment Reformulation: In the Hungarian
Improvement algorithm two different cost matrices are con-
structed, the first of which is the bipartite cost matrix as
explained in the previous subsection. The second cost matrix
is based on a reformulation of the set-partitioning roster
assignment problem to a pairing assignment problem.

In the pairing assignment reformulation, the decision
variables do not correspond to the assignment of a roster to
a pilot, but to the assignment of a single pairing to a pilot. In
the pairing assignment reformulation, the costs of a pairing
assignment are calculated taking into consideration that a
subsequent pairing can be assigned to the same pilot in the
same roster period. This reformulation changes the ’lost
days’ cost parameter of the objective function. Also, the
’next week penalty’ cost parameter changes and is referred
to as the ’next assignment penalty’ in the reformulation.
The assignment reformulation of the crew rostering problem
reformulates the set-partitioning problem as an integer
programming formulation where each pairing needs to be
assigned to exactly one pilot.

2) Roster Construction: The developed Hungarian Im-
provement algorithm can be compared to a greedy tree
search improvement heuristic. The initial solution in the
tree search is the minimum-cost bipartite solution, which
is calculated using the Hungarian assignment algorithm as
explained in Subsection IV-A. The Hungarian Improvement
algorithm then aims to improve the initial solution by iden-
tifying specific pilot-pairing assignments with an improved
remaining bipartite solution. The remaining bipartite solution
is defined as the solution to the crew rostering problem
if the remaining pairings after this specific pilot-pairing



assignment are assigned using a minimum-cost weighted
bipartite matching.

The Hungarian improvement algorithm is an iterative
procedure where in every step the pilot-pairing assignment is
selected that is associated with the highest improvement in
remaining bipartite solution compared to the bipartite solu-
tion in the previous iteration. If no pilot-pairing assignments
with an improved remaining bipartite solution are found, the
iterative search for Hungarian improving assignments stops
and the remaining pairings are assigned according to the
remaining bipartite solution as computed by the Hungarian
assignment algorithm.

Below, the pseudo-code of the Hungarian Improvement
algorithm can be found. The search for Hungarian improving
assignments is further explained in the next subsection.

Algorithm 1: Roster Construction using the Hungarian
Improvement Algorithm

Data: Pilots, pairings, prefixed roster, bipartite cost
matrix, assignment cost matrix, tree-parameter

Result: Roster with pairings assigned and premium
days off allocated

initialization ;
while True do

Algorithm 2: search for Hungarian improving
assignments ;

if no Hungarian improving assignment found then
break

else
select Hungarian improving assignment with
greatest improvement ;

assign selected pairing to selected pilot ;
update cost matrices of selected pilot ;
remove selected pairing from cost matrices ;

end
end
solve remaining bipartite cost matrix using Hungarian
assignment algorithm ;

for assignments ∈ remaining bipartite solution do
select assignment ;
assign selected pairing to selected pilot ;

end
allocate premium days or add lost days;
return Finished roster

3) Search for Hungarian improving assignments: In the
search for ’Hungarian improving assignments’, nodes cor-
respond to individual pilot-pairing assignments. Each node
is evaluated on the remaining bipartite solution plus the
assignment cost of the corresponding pilot-pairing assign-
ment. The pairing assignment reformulation as explained in
the previous subsection is used in the search for Hungarian
improving assignments to calculate the costs of the individual
pilot-pairing assignments. Also, each node has a remaining
bipartite cost matrix associated to it that maps the remaining
weighted bipartite matching problem if the corresponding

pilot-pairing assignment is selected. During the traversal of
the tree search, the bipartite and assignment cost matrices are
updated dynamically in order to account for changing costs
due to pairings that are assigned in previous iterations.

The ’tree-parameter’ governs the number of nodes, i.e.
pilot-pairing combinations, that is considered during each
iteration. The larger this tree-parameter is, the more pilot-
pairing assignments are evaluated in each iteration of the
greedy tree search. A larger tree-parameter thus results in
crew rosters of potentially higher solution quality at the cost
of computational time.

By adjusting the tree-parameter value in the Hungarian
Improvement algorithm, multiple configurations of the de-
veloped simulation model can be constructed. The simula-
tion model therefore is considered ’adaptable’, being able
to adapt its performance in terms of solution quality and
computational time to the needs of the operator.

Below, the pseudo-code of the search for Hungarian
improving assignments can be found.

Algorithm 2: Search for Hungarian Improving Assign-
ments

Data: Pilots, pairings, prefixed roster, bipartite cost
matrix, assignment cost matrix, tree-parameter

Result: Dictionary with Hungarian improving
assignments

initialization;
calculate initial remaining bipartite solution using
Hungarian method ;

determine set of ’pilot options’ that can have multiple
pairings assigned ;

for pilots ∈ pilot options do
determine set of ’pairing options’ that can be
assigned ;

select a number of pairing options to be evaluated,
using the ’tree-parameter’;

for pairings ∈ selected pairings do
temporarily assign selected pairing to selected

pilot ;
temporarily update bipartite cost matrix ;
solve remaining bipartite cost matrix using

Hungarian assignment algorithm ;
calculate improvement of cost of selected

pairing assignment and remaining bipartite
solution over cost of initial remaining bipartite
solution;

if improvement > 0 then
save Hungarian improving assignment to
dictionary

end
end

end
return Dictionary with Hungarian improving
assignments



4) Graphic Representation: Figures 8 and 9 provide a
graphical representation of the Hungarian Improvement algo-
rithm. The nodes (H0, H1, H2 ... Hn) correspond to specific
pilot-pairing assignments, where the value of n depends
on the input tree-parameter. Each node has a cost matrix
associated to it, representing the cost matrix of the remaining
rostering problem. Using this cost matrix, the remaining
bipartite solution for each node is calculated.

Fig. 8. The first iteration of the Hungarian Improvement Algorithm

The pilot-pairing assignment with the lowest sum of
remaining bipartite solution cost and pilot-pairing assignment
cost (depicted along the arrows in the figures) is selected.
Figure 9 shows the next iteration in the Hungarian Improve-
ment procedure after one of the pilot-pairing assignments
(H2) has been chosen. If none of the nodes provide an
improvement in total cost, the improvement procedure is
stopped and the remaining bipartite solution is accepted for
the assignment of the remaining pairings.

Fig. 9. The second iteration of the Hungarian Improvement Algorithm

V. EXPERIMENTS
The developed simulation model has been tested in three

experiments. The first experiment evaluates the performance
of the simulation model and compares it to two benchmark
models. Afterwards, two experiments have been performed
that test the applicability of the simulation model as a
scenario analysis tool. This section presents the results of
the performed experiments.

A. Performance Analysis
The performance of various configurations of the

developed simulation model has been assessed and
compared to two benchmarks: a model based on the
Hungarian assignment algorithm and a model based on
linear programming. The experiments have been conducted
on a HP Elitebook 8570w with an Intel(R) Core(TM)
processor running at a rate of 2.40 GHz. This subsection
first introduces the benchmark algorithms. Subsequently,
the performance of the simulation model is compared and
assessed on solution quality versus computational time.
Afterwards, the sensitivity of the simulation model to
problems of increasing size is assessed and compared to the
benchmark algorithms.

1) Benchmark Algorithms: The simulation model is
compared to two benchmark algorithms: the Hungarian
assignment algorithm and a linear programming (LP)
algorithm.

• Hungarian assignment algorithm (H): The Hungarian
assignment algorithm can be considered the baseline
configuration of the developed Hungarian Improvement
algorithm with a tree-parameter of 0. The Hungarian
assignment algorithm finds the minimum-cost bipartite
solution to a given crew rostering problem. The
characteristics of the Hungarian assignment algorithm
are explained in Subsection IV-A.

• Linear Programming algorithm (LP): The linear pro-
gramming model solves the complete set-partitioning
problem as formulated in Subsection III-B. The bipartite
cost matrix, as explained in Section IV, is used to
identify which combinations of pairings need to be
added as rosters to the bipartite cost matrix to form
the ’complete cost matrix’. Subsequently, the set of all
possible rosters are added as decision variables to the
LP model. The cost parameters in the objective function
then follow from the complete cost matrix. Finally,
constraints on pairing coverage and pilot availability
constraints are added to the model.
The resulting LP model is solved using version 8.1 of
the Gurobi Optimizer. The solution produced by the
LP model serves as the reference for solution quality
and the solution quality of the simulation model is
assessed in terms of percentage gap from this optimal
solution.



2) Solution Quality vs. Computational Time: The perfor-
mance of the simulation model has been tested using a set
of 44 problem instances, corresponding to 22 weeks of the
Captain (CP) and First Officer (FO) rosters of a small long-
haul aircraft division. The problems of the considered crew
divisions involve around 150 pilots and 100 pairings. The
simulation model has been tested using various configura-
tion settings, corresponding to different values of the tree-
parameter as explained in Subsection IV.

Rosters produced using the various configurations of the
simulation model are evaluated and compared to the rosters
that are produced by the benchmark models. Solution quality
is expressed in percentage from the optimal solution as
produced by the LP model. Figure 10 presents the average
solution quality obtained for various configurations of the
simulation model against the average required computational
time. Configurations of the simulation model are depicted by
a C and the corresponding tree-parameter (1, 2, 5 etc.). The
C∞ configuration is the simulation model with the Hungar-
ian Improvement algorithm that considers all pilot-pairing
options in the search for Hungarian improving assignments.

Fig. 10. Performance of various simulation model configurations

Below, in Table I a more detailed overview of the perfor-
mance of the simulation model configurations is provided.
From the performance analysis, it can be concluded that
on average the developed Hungarian Improvement algorithm
constructs rosters of near-optimal solution quality in around
just 20% of the computational time required by the LP
algorithm. Also, the performance analysis confirms that
increasing the tree-parameter in the Hungarian Improvement
algorithm improves the solution quality of the constructed
roster at the expense of computational time.

TABLE I
PERFORMANCE OF VARIOUS SIMULATION MODEL CONFIGURATIONS

Optimality
Gap (%)

Computational
Time (sec)

Mean Std. Dev. Mean Std. Dev.
H 79,8 106 69,3 20,3
C1 15,0 32,2 84,6 30,7
C2 10,9 31,5 95,6 37,8
C5 3,95 15,7 116 51,9

C10 1,02 4,72 142 80,5
C∞ 1,02 4,72 154 98,5
LP 0 0 528 268

3) Computational Time vs. Problem Size: The scalability
of the simulation model has been tested using a set of
10 problem instances, involving around 450 pilots and 270
pairings. From these problem instances, artificial problem
instances have been constructed by considering parts of
the set of pilots, pairings and pre-assigned activities and
taking these artificially created roster conditions as input.
By doing so, problem instances of varying problem sizes
have been created. The scalability of various configurations
of the simulation model have been tested and compared to the
two benchmarks algorithms (H and LP). Figure 11 presents
the average computational time required for the different
simulation model configurations to solve problems of varying
problem sizes.

Fig. 11. Computational time growth per simulation model configuration

The results show that the computational time required
by the simulation model is less sensitive to increases in
problem size compared to the LP algorithm. Whereas the
LP algorithm seems to be increasing exponentially with
increasing problem size, the simulation model configurations
seem to have a quadratic order of growth. Furthermore, the
computational time growth of the simulation model depends
on the configuration of the simulation model. This charac-
teristic makes the developed simulation model specifically
suitable for its purpose: to serve as a scenario testing tool.
Depending on the design and requirements of a scenario
analysis, a suitable configuration of the simulation model
can be selected.

A specific scenario analysis may involve the construction
of multiple rosters using the same input roster conditions. In
such an analysis, the problem can be initialized once before
performing multiple runs on the same initialized problem.
Therefore, the growth of the required pre- and postprocessing
time and that of the actual computational time required for
solving the problem, have also been assessed separately.
Figures 12 and 13, the growth of the computational time
for these different components of the simulation model are
presented separately.



Fig. 12. Pre- and postprocessing time growth of the simulation model

Fig. 13. Solution time growth of various simulation model configurations

B. Scenario Analysis I: Flexible Travel Leave

In tight and difficult rosters, the considered airline has
the possibility to remove the last day of certain pairings, in
order to free up space in the roster. This last day of the
pairing block is called the ’Flexible Travel Leave (FTL)’.
To compensate for the removal of the FTL, pilots receive
this removed rest day as a day off somewhere in the coming
weeks plus an extra day off as compensation.

Although the removal of FTL comes at a cost in terms of
compensated days off, the additional flexibility as a result
of the possibility to remove FTL is expected to increase the
roster efficiency. The experiment that has been performed
assesses the benefit of having pilots that allow for the
removal of their FTL, from here on called ’FTL pilots’.

1) Scenario Analysis Design: The FTL experiment has
been performed on 44 problem instances corresponding to 22
different weeks of the Captain (CP) and First Officer (FO)
rosters of a small long-haul aircraft division. The problem
instances involve around 150 pilots and 100 pairings.

The simulation model was used to test the solution quality
of the produced rosters using varying numbers of FTL pilots.
The number of FTL pilots was varied in steps of 5%, ranging
from having no FTL pilots to being able to remove the
FTL for every pilot. In each run, based on the input FTL
percentage, random pilots were selected as FTL pilots.

With 44 problem instances and 21 runs per problem
instance, a total of 924 rosters were to be constructed
in the scenario analysis. For the total scenario analysis a
requirement on computational time was set to be a maximum

of 16 hours, corresponding to running the experiment for
the two different ranks, CP and FO, separately overnight.

2) Configuration Selection: The scenario analysis as ex-
plained in the previous subsection required the construction
of 924 rosters in 16 hours for problem instances with an
average size of around 150 pilots. Pre-processing, taking on
average around 60 seconds for problems with 150 pilots,
only had to be done once for every of the 44 considered
roster weeks. This left around 15 hours of actual solution
time for the construction of 924 rosters, resulting in a
maximum average solution time of around 60 seconds for
roster construction. Adding the 60 seconds of pre-processing,
a maximum of 120 seconds of average solution time per
constructed roster was set for the scenario analysis.

From the performance analysis as discussed in Subsection
V-A.2 and presented in Table I, the best performing
simulation model configuration for this problem size within
the maximum computational time is the C5 configuration.
Therefore, the C5 configuration of the simulation model has
been selected for the FTL scenario analysis experiment.

3) Results: For a consistent evaluation of the benefit of
having FTL pilots over varying roster weeks, the results are
normalized. For every week, the objective function value of
the constructed roster using 100% FTL pilots was taken as
the reference. For every roster week, 21 rosters have been
constructed by varying the number of FTL pilots from 0 to
100% in steps of 5%. The objective function value of the
constructed rosters are normalized to the objective function
value of the constructed roster using 100% FTL pilots.
Figure 14 presents the results of the FTL scenario analysis
experiment. The three blue lines in the graph depict the first
quartile, median and third quartile value of the aggregated
results. The orange line is the average normalized objective
function value over varying percentages of FTL pilots.

Fig. 14. The impact of having FTL pilots on roster efficiency (1)

The result shows that the number of FTL pilots has a
major impact on the resulting efficiency of the constructed
rosters. With the possibility to remove the FTL for all pilots,
the inefficiency in number of days is four times as low as the
rosters that are constructed without having the possibility to
remove the FTL for any pilot.



The trend between the objective function value and the
number of FTL pilots seems to be linear. However, from the
graph it can be seen that especially the first 30% to 35% of
FTL pilots are crucial, having a higher impact on the average
solution quality of the constructed rosters as compared to
adding FTL pilots above that threshold. Figure 15 presents
the same graph as Figure 14 but showing two separate linear
trends that intersect at 30% of FTL pilots. From this scenario
analysis, a possible conclusion for an airline could be that a
minimum of 30% of FTL pilots should be pursued.

Fig. 15. The impact of having FTL pilots on roster efficiency (2)

C. Scenario Analysis II: Dual Pilots

The second scenario analysis focuses on the rostering
problem of a ’combined aircraft division’. A combined
aircraft division is an aircraft division where pilots can be
qualified to operate two different aircraft types. As a result,
the crew rostering problems of these different aircraft types
become an integrated rostering problem, where pilots that
are qualified to fly on both aircraft types, from here on
called dual pilots, are important resources. An example of a
combined crew rostering problem could be the Airbus A330
and A350 rostering problems or the Boeing B777 and B787
rostering problems.

The aim of the second scenario analysis experiment is
to evaluate the benefit of having dual pilots. Dual pilots
provide airlines with the flexibility to spread the workload
of two aircraft divisions over the combined group of pilots.
Overall, this therefore leads to rosters with less inefficiency
costs. However, this increase in roster flexibility comes at a
cost since dual pilots need to be trained and need to stay
current on both aircraft types. Therefore, in order to make
a well-grounded trade-off between the benefits and costs of
having dual pilots, it is important to have a clear evaluation
of the benefit of dual pilots.

1) Scenario Analysis Design: The second scenario anal-
ysis experiment was performed on 44 problem instances
corresponding to 22 different weeks of the Captain (CP)
and First Officer (FO) rosters of a medium size combined
long-haul aircraft division. The considered problem instances
involved around 450 pilots and 270 pairings.

In the scenario analysis, pilots are either ’single pilots’ or
’dual pilots’. Dual pilots can fly on both of the aircraft types
and the benefit of having these dual pilots is assessed by

constructing rosters for different percentages of dual pilots.
The number of dual pilots was varied in steps of 5%,

ranging from having 30% to 60% dual pilots. Due to the
large size of the considered problems, not the full range
between 0% and 100% of dual pilots was assessed. The
30% and 60% limits were based on the pairing composition
in the considered problem sets and the scenarios between
30% and 60% were considered to be the most interesting for
evaluation.

In each run of the dual pilots scenario analysis, random
pilots were selected as dual pilots. With 44 problem
instances and 7 runs per problem instance, the dual pilots
scenario analysis required the construction of 308 crew
rosters for problems involving around 450 pilots.

2) Configuration Selection: The scenario analysis ex-
plained in the previous subsections requires the construction
of 308 rosters for problem instances with an average size
of around 450 pilots. From the performance analysis as dis-
cussed in Subsection V-A.3, the expected computational time
is estimated for the various configurations of the simulation
model.

Even for configurations of the simulation model with low
tree-parameters, the total computational time of the scenario
analysis is estimated to be over 30 hours. The Hungarian
algorithm has a lower estimated total computational time of
around 24 hours, but its inferior performance in terms of
solution quality makes it less reliable as a scenario analysis
model. Therefore, the configuration of the simulation model
with the lowest tree-parameter, the C1 configuration, is
selected for the considered scenario analysis.

3) Results: For a consistent evaluation of the benefit
of dual pilots over varying roster weeks, the results are
normalized. For every week, the objective function value of
the constructed roster using 60% dual pilots was taken as the
reference. Per week, the constructed rosters using other dual
pilots percentages are normalized to the objective function
value of the constructed roster using 60% dual pilots. Figure
16 presents the results of the dual pilots scenario anlaysis.
The three blue lines in the graph depict the first quartile,
median and third quartile value of the aggregated results.
The orange line is the average normalized objective function
value over varying percentages of dual pilots.

Fig. 16. Benefit of Dual Pilots



The performed scenario analysis indicates that a minimum
of around 45% dual pilots is needed to construct rosters of
acceptable solution quality. However, a detailed assessment
of the results shows that even with 55% of dual pilots, the
average inefficiency is almost 20% higher than the average
inefficiency in rosters with 60% dual pilots. The outcome
of this scenario analysis therefore suggests that a follow-up
scenario analysis experiment should be performed, assessing
the impact on roster efficiency if the percentage of dual
pilots is increased above 60%. However, the results of this
initial scenario analysis experiment indicate that with more
extensive scenario analysis testing, the benefit of having dual
pilots can be quantified.

VI. DISCUSSION

The purpose of the simulation model was to serve as a
scenario analysis tool, providing detailed insights in the ef-
fect of changing crew rostering conditions on the constructed
crew rosters. The developed solution technique has been
found to be particularly suitable for the purpose of scenario
analysis. Depending on the design and requirements of
scenario analysis experiments, a suitable configuration of the
simulation model can be selected, allowing airline operators
to make the trade-off between scenario analysis accuracy and
computational time. The viability of the simulation model as
a scenario analysis tool has been tested by means of two
initial scenario analysis experiments. The two experiments
have confirmed the practical value of the simulation model,
proving it to be capable of constructing and evaluating
hundreds of different rosters in limited time.

Besides the development of the simulation model itself,
an important contribution of this research is the problem
definition. From extensive literature study it was concluded
that there is a mismatch between the focus of academic liter-
ature and industry needs. While academic literature on airline
crew rostering focuses on developing more efficient solution
methods for the crew rostering problem, the main challenge
at airlines is to determine the appropriate set of pilots,
pairings and rostering policies that allow for an efficient and
favorable operation. Without a thorough understanding of the
impact of the changes in crew composition, flight schedule
and labour union agreements, airlines run the risk of agreeing
to long-term commitments that significantly deteriorate the
roster efficiency.

This research has confirmed that changing rostering con-
ditions can have a major impact on the efficiency of the
constructed rosters. Moreover, this research has demonstrated
that this impact can be quantified and can therefore be
considered a stepping stone for future research on the impact
of crew rostering conditions.

The applicability of the developed simulation model has
been tested through two scenario analysis experiments. How-
ever, the possible applications of a scenario analysis tool
reach way beyond these two initial experiments. Besides
assessing the impact of changing rostering policies, the
simulation model could be used to evaluate changes in crew
composition, flight schedule changes and also the impact of

pre-assigned activities. For example, the simulation model
could be used for identifying bottlenecks in tight and diffi-
cult rosters through constructing, evaluating and comparing
rosters with different pre-assigned activities rescheduled or
canceled.

There are also a couple of considerations regarding the
applicability of the model that should be noted. Firstly,
the simulation model takes historical rosters as input. The
simulation model can be adjusted such that it is also able
to produce rosters for future roster periods. However, this is
under the condition that all activities other than pairings and
reserve blocks are pre-assigned. If this is not the case, the
simulation model should be extended to include the rostering
of ancillary activities such as training activities.

Furthermore, the implemented pairing assignment algo-
rithm, the Hungarian Improvement algorithm, is considered
to be specifically suitable for the weekly rostering problem
as defined in this research. The Hungarian Improvement
algorithm exploits the fact that the stated problem resem-
bles a bipartite matching problem. If the roster horizon is
extended or if the average length of the pairings decrease,
the performance of the Hungarian Improvement algorithm
may deteriorate.

Additionally, the Hungarian assignment algorithm used in
the Hungarian Improvement algorithm, finds the bipartite
solution to a given pilot-pairing cost matrix by performing
a set of matrix operations. While constraints concerning a
single pilot can be included in such a cost matrix, the Hun-
garian assignment algorithm cannot cope with constraints
that concern multiple pilots.

Three recommendations for future work have been iden-
tified. First of all, the developed simulation model can be
extended and further improved. For the simulation model to
be applicable for a broader variety of scenario analyses, the
simulation model can be extended to include the rostering of
ancillary activities such as vacations and training activities.

Secondly, future research could focus on improving the
efficiency of the solution method implemented in the sim-
ulation model, the Hungarian Improvement algorithm. An
interesting direction for future research could be to investi-
gate the possibility of applying machine learning techniques
to identify which pilot-pairing assignments are expected to
improve the remaining bipartite solution and therefore should
be evaluated by the Hungarian Improvement algorithm.

Finally, the practical value of the simulation model to
airline operators can be increased through the development
of a user interface. Especially when the simulation model
is extended and includes more and more features, a user
interface would facilitate an effective operation of the
simulation model.
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Executive Summary

After an airline has determined which flights to fly and what aircraft to operate, the final stage in airline

schedule planning is to decide which crew members should be assigned to the scheduled flights. This

problem is called the ’crew scheduling problem’. Due to the sheer size and complexity of the crew schedul-

ing problem, airlines usually divide the problem into two phases: the ’crew pairing problem’ and the

’crew rostering problem’. The crew pairing problem is aimed to construct efficient sequences of flights,

i.e. ’pairings’, that can be flown by a single crew member. Subsequently, in the crew rostering phase

crew members get assigned to these pairings and by doing so a roster for each individual crew member

is constructed. This latter phase, the airline crew rostering problem, is the focus of this literature study.

This literature study provides an overview of the academic literature on airline crew rostering. The state-

of-the-art is discussed for each of the three general approaches to the airline crew rostering problem: the

bidlines approach, the equitability-based personalized rostering approach and the Preferential Bidding

System. It has been found that these approaches have been studied mostly independently in academic

literature. Academic literature on airline crew rostering has been focused on developing more efficient

solution methods within the framework of a certain crew rostering approach and the associated rules

and regulations. Future studies should have a broader view on the airline crew rostering problem and

could assess the impact of various aspects of a crew rostering approach, i.e. crew rostering elements, on

the efficiency and quality of the generated rosters. In this regard, the following research gaps have been

identified:

1. Integration of the rostering process - the assignment of pairings, vacations, training activities

and reserve blocks could be integrated into one rostering process. It can be investigated whether the

integration of the rostering process of these different activities results in increased roster efficiency;

2. Impact of equitability and seniority measures - equitability and seniority considerations can

be taken into account as constraints or objective function coefficients in the crew rostering model.

The impact of these different measures on the cost and the quality of the generated roster can be

evaluated;

3. Simulation of the dynamic rostering process - the rolling horzion procedure can be simulated.

With a dynamic roster model, global constraint consistency, the influx of crew requests and the

effect of disturbances can be investigated;

4. Consistent evaluation of crew rosters - a method for the consistent evaluation of rosters can

be developed. This method should take the generated rosters as input and should be independent

of the approach and method adopted in the generation of the rosters.

The identified research gaps require the simulation and testing of different crew rostering approaches.

This literature study provides an overview of the modelling techniques that could be used to develop an

airline crew rostering model. Especially for the research purposes identified in this literature study, the

adaptivity and computational efficiency of the crew rostering model are essential. The research objective

therefore is the following:

Research objective: to provide insight into the impact of crew rostering elements on the efficiency

and quality of the generated rosters, by developing a fast and adaptive crew rostering model, simulating

different rostering approaches and evaluating the generated crew rosters.
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The assessment of the impact of crew rostering elements can provide airlines with insights on how the

efficiency of their adopted rostering approach could be improved or how they can improve the quality-

of-life aspects of their crew schedules. Moreover, a fast and adaptive crew rostering model could serve

as a simulation tool for airlines during Collective Labour Agreement (CLA) negotiations with labour

unions. Such a simulation model can quantify the impact of new rules and regulations on the efficiency

and quality of the crew rostering process. This is considered a major asset for airlines during CLA

negotiations, assisting airlines in efficiently picking their battles.
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Definitions

Bidlines: an airline crew rostering approach where anonymous monthly rosters are constructed and

assigned to crew members based on crew bids.

Crew rostering approach: an approach to the crew rostering problem itself, i.e. a specific problem

formulation.

Crew rostering elements: the aspects of a crew rostering model that constitute a crew rostering

approach.

Crew rostering method: an approach to solving the crew rostering problem, i.e. a specific solution

technique.

Equitability-based personalized rostering: a personalized crew rostering approach where equitabil-

ity among crew members is pursued, for example in the number of flying hours or in the satisfaction of

crew preferences.

Equitability: even balance in roster characteristics among crew members, i.e. similar levels of workload

and number of assigned preferred activities.

Equitability measure: a method to ensure equitability among crew members in a crew rostering model.

Personalized rostering: a crew rostering approach that considers pre-assigned personal activities of

crew members.

Preferential Bidding System: a personalized crew rostering approach where the satisfaction of the

preferences of senior crew members is prioritized over those of junior crew members.

Roster horizon: the number of days or weeks before operation for which a crew roster is generated.

Roster period: the number of days or weeks of the period that is rostered.

Seniority measure: a method to prioritize the satisfaction of senior crew members over the satisfaction

of junior crew members in a crew rostering model.

Strict seniority: a way to differentiate in crew preference satisfaction by maximizing crew preference

satisfaction sequentially in order of seniority.

Weighted bids: a way to differentiate in crew preference satisfaction by assigning seniority-based weight

factors to the crew satisfaction components in the objective function.
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1. Introduction

The airline industry is confronted with some of the largest scheduling problems of any industry and

the size and complexity of these problems are only growing (Gopalakrishnan and Johnson, 2005). One

of these scheduling problems of particular interest is the crew scheduling problem because of its high

associated costs. Crew costs is the second largest operating cost component of an airline, only after

the expenses for fuel (Barnhart and Cohn, 2004; Belobaba et al., 2009). Even a small increase in the

efficiency of the crew scheduling process can therefore induce significant cost savings (Kasirzadeh et al.,

2017).

Crew rostering is a sub-problem of the crew scheduling problem and involves the assignment of pairings,

i.e. efficient sequences of flights, to individual crew members (Eltoukhy et al., 2017). The main objective

is to ’cover’ all pairings, i.e. to make sure that every pairing has a crew member assigned. Leaving

pairings ’open’ induces high costs for airlines since these open pairings need to be resolved with expen-

sive overtime payment, the hiring of freelancers or by cancelling the flight (Kohl and Karisch, 2004).

Other objectives in the rostering process include constructing rosters with desirable working patterns,

satisfying crew requests for activities or days-off and ensuring equitability among crew members (Kohl

and Karisch, 2004). These objectives are pursued within the boundaries of governmental and labour

union regulations. With increasing number of flights that need to be assigned and the accumulation of

labour union regulations, efficiently solving the crew rostering problem has become a major challenge for

airlines (Eltoukhy et al., 2017; Maenhout and Vanhoucke, 2010).

The purpose of this literature study is threefold: to provide an overview of the academic literature on

airline crew rostering, to identify potential subjects for future studies and to identify modelling tech-

niques that can be used to address the identified research gaps.

The literature study is structured as follows. First, the academic literature on the airline crew rostering

problem is discussed. Afterwards, in Chapter 3 the identified research gaps are introduced and explained.

Then, in Chapter 4 a broader view on the personnel rostering problem is provided by investigating

rostering approaches in other industries. Chapter 5 is focused on providing background information on

methods that can be used in addressing the research gaps. Afterwards, Chapter 6 contains a concise

overview of the literature that is considered in this literature study. Finally, some of the main insights

obtained in this literature study are discussed in the conclusion.
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2. Scope: Airline Crew Rostering Approaches

Crew rostering can be done in various ways following different ’approaches’. In the airline industry, a dis-

tinction is made between three general crew rostering approaches (Deveci and Demirel, 2018; Kasirzadeh

et al., 2017):

• the bidlines approach;

• the equitability-based personalized rostering approach;

• the Preferential Bidding System (PBS).

Outside of North America, equitability-based personalized rostering is the most common approach for

crew rostering (Kasirzadeh et al., 2017). The bidlines approach is the approach that used to be com-

mon practice in North American airlines. However, nowadays some large North American airlines have

adopted the Preferential Bidding System (PBS) as their crew rostering approach (Achour et al., 2007;

Kasirzadeh et al., 2017).

The state-of-the-art in crew rostering for each of the three different rostering approaches is discussed

separately in the following sections. In this literature study, in order to differentiate between how the

crew rostering problem is formulated and how the crew rostering problem is solved, the following defini-

tions are adopted:

Definition: A crew rostering approach is defined as an approach to the crew rostering problem itself,

i.e. a specific problem formulation.

Definition: A crew rostering method is defined as an approach to solving the crew rostering problem,

i.e. a specific solution technique.

2.1 Bidlines Approach

In the bidlines approach, a set of anonymous monthly rosters (bidlines) are constructed, where after crew

members place bids on the rosters they prefer (Jarrah and Diamond, 1997). Subsequently, the rosters

are assigned to specific crew members based on seniority, meaning that if two or more crew members

have placed a bid on the same roster the roster will be assigned to the most senior crew member (Kohl

and Karisch, 2004). After assignment of the bidlines, numerous pairings conflict with the individual

pre-assigned activities of crew members such as training activities or granted days-off. Those pairings

that are in conflict with pre-assigned activities are then removed from these bidlines. The least senior

crew members will then be assigned to a combination of ’open pairings’, i.e. pairings not covered by any

of the generated bidlines (including those due to conflicts with pre-assigned activities), and reserve days

(Campbell et al., 1997).

Definition: fhe bidlines approach is defined as an airline crew rostering approach where anonymous

monthly rosters are constructed and assigned to crew members based on crew bids.
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An early successful application of operations research (OR) techniques for the bidline assignment prob-

lem is a case study by Marsten et al. (1979) at Flying Tiger Line, a former United States cargo airline.

Larger airlines such as United, Air France and Air Canada had already tried to implement automated

scheduling, but with the computers and OR techniques then available their fleets were found to be too

large and the results were disappointing. Marsten et al. (1979) solve the pairing selection and bidline

assignment problems for a roster horizon of one week, because the monthly problem is deemed to be

intractable. The outcomes of four consecutive weekly problems are then put together to form a set of

monthly bidlines. The bidline selection program exploits a branch-and-bound algorithm and use the

dual simplex method. The bidline selection process is based on two bidline cost components, as also

reported in a later paper on the same case study by Marsten and Shepardson (1981): the variance from

an ideal number of flying hours and the closeness to 08:00 AM arrivals (quoting: ”8:00 AM arrivals are

undesirable because days off must start at 8:OO AM so a delay could mean a lost day”). The model of

Marsten and Shepardson (1981) was limited to constructing a monthly bidline by combining four identical

weekly rosters. Therefore, the model could not solve problems for flight schedules that vary week by week.

Ten years later, Jones (1989) describes the development of an automated bidline generation system at

a major airline with a much bigger fleet, flight schedule and crew pool: American Airlines. The bidline

generation system of Jones (1989) consist of two heuristic processes. First, the DEAL section generates

an initial set of bidlines directly from the pairings with the constraint on monthly flying time relaxed.

Then, the SWAP section takes these initial set of bidlines as input and tries to exploit moving and

swapping opportunities to adjust the bidlines such that the flying time for each bidline is within the

minimum and maximum allowable limits. The results of the described bidline generation system show

that it was capable of producing 60 bidlines per hour, in contrast to a manual construction rate of 10

bidlines per hour, therefore hugely increasing the efficiency of the crew scheduling process of American

Airlines (Jones, 1989).

Incorporation of quality parameters

Another important step in solving the bidline generation problem was made by Jarrah and Diamond

(1997). Jarrah and Diamond (1997) are the first who incorporate ’quality parameters’ in the bidline

generation process. Where previous bidline generation systems only aim for the minimization of crew

costs, the model of Jarrah and Diamond (1997) also takes into account the quality of the bidlines from the

crew’s perspective. For example, bidlines with long stretches of off-days in between blocks of pairings are

more desirable than bidlines with the pairings uniformly dispersed over the roster. These ’quality-of-life’

parameters are modeled as constraints in the bidline generation model, and can be adjusted to the airline’s

specific demands. The bidline generation problem is then modeled as a set-partitioning problem with

the objective function to maximize the covered flying time while using the least possible bidlines. The

model then uses column generation to generate new bidlines as long as the objective function improves

with every bidline added to the Restricted Master Problem (RMP) (Hillier and Lieberman, 2015; Jarrah

and Diamond, 1997). The column generation is governed by a greedy heuristic and an improvement

heuristic. The greedy heuristic prioritizes the rostering of ’open pairings’, i.e. pairings still not covered

by any of the generated bidlines, in the next bildine generation iteration. The improvement heuristic

on the other hand prioritizes the rostering of pairings that appeared in earlier generated ’good bidlines’

in terms of their objective function value. The results of the bidline generation system show enormous

benefit in terms of scheduling productivity: the most complex problem in their case study at a major

US airline (1649 pairings and 223 bidlines) was solved in just 11 minutes, whereas it took 15 man-days

to solve the problem manually (Jarrah and Diamond, 1997). The results also show that too ’greedy’

quality-of-life parameter settings can result in a problem that is over-constrained, in one of their case

studies resulting in an unacceptable percentage of uncovered flying time (10.82 percent). However, after
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readjusting the parameters the program produced satisfactory results. This shows that the usability of

the model relied on the capability of the scheduler to manually tune the quality-of-life parameters, which

is considered a limitation of the model of Jarrah and Diamond (1997).

Introduction of meta-heuristics

At the end of the 1990’s the state-of-the-art in bidline generation involved the use of meta-heuristics.

Campbell et al. (1997) propose a solution methodology for the bidline generation problem based on simu-

lated annealing. The simulated annealing algorithm is used to generate as many valid bidlines as possible.

Afterwards, a greedy heuristic takes the remaining open pairings and generates additional bidlines with

these remaining pairings. The objective function of the model of Campbell et al. (1997) contains three

elements: minimization of open time, minimization of the number of bidlines and the maximization of

bidline ’purity ’. Bidline purity is a measure of how well certain roster quality-of-life considerations are

accommodated in the bidlines. One of the identified limitations of the model is the transition between

the simulated annealing algorithm and the greedy algorithm. The model of Campbell et al. (1997) runs

the simulated annealing process for a set number of maximum steps. After these set number of steps, the

program continues with the greedy algorithm that produces additional bidlines based on the remaining

uncovered pairings.

Christou et al. (1999) developed a bidline generation model based on another meta-heuristic: the genetic

algorithm. This model has improved computational efficiency over the model of Campbell et al. (1997)

because the model of Christou et al. (1999) exploits a-priori knowledge about what constitutes a ’good’

bidline before the meta-heuristic bidline generation technique is initiated. The model is partitioned into

two phases: the ’purity phase’ and the ’GA phase’. During the purity phase, high-quality bidline patterns

are generated with this a-priori knowledge. For example, bidlines with pairings departing on the same

day of the week in multiple weeks of the bidline is said to be ’day-pure’. Similarly, a bidline is called

’trip-pure’ if it contains multiples of the same pairings, departing on different days of the roster. After

the purity phase, the model contains a set of incomplete bidlines with high quality pairing patterns.

These incomplete bidlines are then completed in the GA-phase through the use of a genetic algorithm.

The genetic algorithm is considered particularly useful in this regard, because of its capability to quickly

locate promising search regions (Christou et al., 1999). The model developed by Christou et al. (1999)

is tested and implemented at Delta Air Lines. The results show slight improvements in bidline costs in

terms of covered flying time compared to the semiautomatic approach adopted originally by Delta. How-

ever, the main benefits of the proposed model are found to be in the increased computational efficiency

and the construction of bidlines with higher ’purity’, i.e. better quality-of-life characteristics.

Weir and Johnson (2004) partition the bidline generation problem into three separate phases. The first

phase aims to develop efficient patterns of pairings. The second phase then builds bidlines from these

generated patterns. The third phase then constructs additional bidlines to account for pairings still not

covered after phase 2. In contrast to previous research, Weir and Johnson (2004) adopt classical Mixed

Integer Programming (MIP) techniques in the development of their bidline generation model. The MIP’s

in the three phases are relaxed to an LP and solved using column generation, branch-and-bound and

interior point method techniques. Weir and Johnson (2004) test their model for problems with up to

150 bidlines to be generated. The longest run time reported was 2 hours and 16 minutes. However,

the model is significantly less efficient in terms of computational time compared to the meta-heuristic

techniques of Campbell et al. (1997) and Christou et al. (1999).
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Incorporation of equitability

Whereas previous research focused on producing efficient and high-quality bidlines, Boubaker et al.

(2010) incorporate equitability into the bidline generation problem. The model of Boubaker et al. (2010)

minimizes the variances in quality or purity between the generated bidlines. In order to do so, the ob-

jective function is to minimize the weighed sum of the squared deviations of the number of flying hours

and number of days off from the mean. The number of available crew members are considered a fixed

input parameter rather than that the model minimizes the number of crew members required to cover all

pairings. Boubaker et al. (2010) model the bidline problem with equitability as a set-partitioning prob-

lem. First, a standard branch-and-price heuristic based on a network representation of the problem was

used to solve the problem. Afterwards, the branch-and-price heuristic has been enhanced by adding the

dynamic constraint aggregation heuristic as introduced by Elhallaoui et al. (2005). The model is tested

on eight problem instances, both with just the branch-and-price heuristic and with the branch-and-price

heuristic enhanced by the dynamic constraint heuristic. The addition of the dynamic constraint aggrega-

tion heuristic shows spectacular results. First of all, the computational time reduces by a factor of 30 and

remains within an hour for all problem instances including the largest with 2924 pairings and 564 crew

members. Furthermore, the enhancement with the dynamic constraint aggregation heuristics also yields

significantly better results, reducing the variances in flying hours and days off by 50-60% on average.

Based on the results discussed above, it can be stated that the solution methodology of Boubaker et al.

(2010) shows huge potential for solving these kinds of massive bidline generation problems.

Two years later, Saddoune et al. (2012) have use this same dynamic constraint aggregation heuristic

to solve the integrated airline scheduling problem in the bidline context. The integrated bidline crew

scheduling problem integrates the crew pairing and the bidline generation problem into one complex

combinatorial problem. This highly complex problem requires a lot of computational power and highly

efficient solution algorithms (Saddoune et al., 2012). However, the results of Saddoune et al. (2012)

have shown that the integrated approach outperforms the sequential approach in terms of cost savings.

On average, the integrated bidline crew scheduling problem requires 5.54% fewer crew members and

yields a 3.37% reduction in total costs. However, the integrated bidline scheduling problem takes on

average 6.8 times longer to solve compared to solving the crew pairing and bidline generation problem

sequentially. Consequently, the biggest tested problem instance involving 7527 flights to be scheduled

took the integrated model more than 44 hours to solve. The need for the development of more efficient

algorithms for the integrated bidline crew scheduling problem is therefore acknowledged by Saddoune

et al. (2012).

Synthesis

Academic literature on the bidline generation problem focuses on three research efforts: making the

bidline generation computationally more efficient such that larger problems can be solved in a shorter

amount of time, incorporating quality-of-life considerations within individual bidlines and ensuring an

equitable qualtiy-of-life distribution among the generated bidlines. However, what is not considered in

literature, is the process after the bidlines are assigned to crew members and pairings are found to be

conflicting with the pre-assigned activities of these crew members. Campbell et al. (1997) states that

these open pairings resulting from these conflicts will be allocated to the least junior members along with

a number of reserve blocks. However, this additional problem is not addressed in literature.
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2.2 Equitability-based Personalized Rostering

With personalized rostering approaches personalized rosters are constructed for each individual crew

member, considering pre-assigned personal activities such as training days and vacations (Kasirzadeh

et al., 2017). The more advanced personalized rostering systems also take into account individual crew

preferences on certain activities or roster attributes in the roster optimization (Kohl and Karisch, 2004).

Two types of personalized rostering can be distinguished: the equitability-based personalized rostering

approach and the seniority-based personalized rostering approach, also called the Preferential Bidding

System (PBS). Equitability-based personalized rostering involves constructing equitable rosters for all

crew members whereas in a Preferential Bidding System the satisfaction of the preferences of senior crew

members is prioritized over the satisfaction of those of junior crew members. This subsection discusses

the equitability-based personalized rostering approach. The Preferential Bidding System is the subject

of Section 2.3. The following definitions are adopted:

Definition: a personalized rostering approach is defined as a rostering approach that considers the pre-

assigned activities of crew members.

Defintion: equitability is defined as an even balance in roster characteristics among crew members, i.e.

similar levels of workload and satisfaction of crew preferences.

Definition: An equitability-based personalized rostering approach is defined as a personalized crew ros-

tering approach where equitability among crew members is pursued.

Nicoletti (1975) introduced operations research (OR) techniques in the literature on equitability-based

personalized crew rostering. Nicoletti (1975) stated that due to the high complexity of the airline crew

rostering problem, the problem needed to be separated into pieces and solved using heuristics. Two

approaches to do so are considered, being either crew member-by-crew member or day-by-day roster

construction. Nicoletti (1975) argued that equitability among crew members can be better achieved by

approaching the rostering problem day-by-day, which is why that approach is used in his model. The

model is formulated on a network and it is solved using the ’out-of-kilter ’ algorithm to compute the

minimum cost flow in the network (Ford and Fulkerson, 1962). The model was tested on a small test

case involving 103 crew members and rosters were assessed on their equitability in terms of the balance in

number of flight hours. Although results are reported ambiguously, it can be seen that the computerized

model was found to outperform manual roster construction in terms of equitability.

Exact solution techniques

Where the previously discussed model used a sequential day-by-day heuristic to solve the rostering

problem, Ryan (1992) proposed an exact mathematical optimization technique to solve the personalized

rostering problem by modelling it as a generalized set-partitioning problem. In the model of Ryan (1992)

first for each crew member all possible legal monthly rosters are generated, taking pre-assigned other

activities into account. Two filtering techniques are used to speed up this process and to generate overall

better rosters. Afterwards, for each crew member one of his or her generated rosters need to be selected,

which is the set-partitioning problem. The objective function used for the selection of the rosters contains

both the minimization of crew members and the maximization of equitability. Although the model of

Ryan (1992) itself does not contain crew preferences, Ryan (1992) does discuss two ways to include crew

preferences into the model. First, it can be included in the generation of all possible legal rosters by

influencing the filters and secondly, they can be included in the objective function during the selection

of the rosters. The LP-relaxation of the set-partitioning problem is solved with integer programming
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techniques, using the simplex method and a branch-and-bound procedure. The model is tested on nu-

merous problem instances ranging from around 50 to 475 pilots and from 100 to 200 pairings. The largest

problem, with 461 pilots and 200 pairings can still be solved in under two hours. Also, Ryan (1992)

states that the advantage of mathematical optimization techniques over heuristics is that infeasibility

can be identified with certainty and can also pinpoint which days or trips cause the infeasibility. This is

crucial information in an operational crew scheduling environment. For example, training activities on

tight schedule days can be rescheduled to ”free” additional crew resources on these days.

A subsequent influential contribution to the literature on equitability-based personalized rostering was

made by Gamache et al. (1999). Gamache et al. (1999) also formulate the rostering problem as a set-

partitioning problem and solves it also using a branch-and-bound procedure. However, whereas the

branch-an-bound procedure of Ryan (1992) is based on exhaustive enumeration with some filtering tech-

niques, Gamache et al. (1999) proposes a column generation scheme for the branch-and-bound procedure.

With the column generation scheme, the master problem is the generalized set-partitioning problem and

the subproblems (one for each crew member) are represented on a network. The network of each crew

member is personalized, containing crew-specific arcs for pre-assigned activities. The objective function

consists of maximizing the duration of the pairings covered by regular crew members. As such it is

equivalent to minimizing the duration of open pairings. The LP-relaxation of the set-partitioning master

problem is solved using the simplex method and the dual variables are used for the pricing problem in

the column generation scheme. For each crew member there is a constrained shortest-path subproblem

and these subproblems add columns to the master problem (Gamache et al., 1999). The shortest-path

subproblem is solved using a dynamic programming procedure based on Desrosiers et al. (1995). The

model showed to be capable of solving very large-scale problems in limited computational time. One

problem instance, involving 386 subproblems (crew members) was solved in 45 minutes.

Fahle et al. (2002) also follow the ”generate-and-optimize” principle, but solve the column generation

subproblem using Constraint Programming (CP) techniques. The CP algorithm is used to solve the

pricing problem in the column generation scheme. A shortest path constraint and a negative reduced cost

constraint are programmed dynamically, meaning that in every iteration the size of the problem is reduced

using updated dual information of the master problem. The CP algorithm is used in order to identify

illegal choices of the shortest-path algorithm as early as possible, which increases the computational

efficiency of the column generation algorithm. The results show that the computational time of the

column generation scheme enhanced with CP techniques can be reduced significantly compared to the

traditional column generation approach.

Crew rostering in an operational context

Cappanera and Gallo (2004) formulate the rostering problem as a 0-1 multicommodity flow problem,

where each crew member corresponds to a commodity. The monthly roster of a crewmember can then be

seen as a path over the graph where each arc represents either an activity (pairings, training etc.) or a

compatibility (travel leave, day-off etc.). As such, the objective is to minimize the number of uncovered

pairings. Cappanera and Gallo (2004) also acknowledge equitability as an important objective during

the rostering process. However, Cappanera and Gallo (2004) state that because equitability concerns

are more and more integrated in collective labour agreements, these equitability concerns are treated

as constraints rather than an additional objective in the modelling of the problem. Therefore, the ob-

jective function is solely focused on minimizing costs. A remarkable feature of the model of Cappanera

and Gallo (2004) is the fact that it considers the rostering problem in the operational context rather

than seeing it as a static problem solved at one instance in time. The model of Cappanera and Gallo

(2004) takes the previous roster period into account, by fixing for each commodity (crew member) the
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beginning of its path along the activity arcs that resulted from the previous roster period. The model is

tested using two variations of the objective function: the max cardinality case consists of maximizing the

number of covered activities and the max length case consists of maximizing the total length of covered

activities. The model is tested for both cases on small-scale problems of about 50 crew members using

the IBM CPLEX software. The results show that the max cardinality case outperforms the max length

case both in terms of roster quality and computational time. In terms of computational time, the model

of Cappanera and Gallo (2004) shows remarkable results. Although the different test problems have

similar sizes of around 50 crew members and 270 pairings, the time required for the model to solve the

problems varies significantly, ranging from minutes to multiple hours.

Kohl and Karisch (2004) provide an overview of the personalized rostering problem and present a model

that is used in the commercial Carmen software, which is employed in various airline such as British

Airways, Alitalia and KLM. The model of Kohl and Karisch (2004) is based on the earlier discussed

’generate-and-optimize’ principle. First, a construction method is used to construct an initial feasible

roster solution. The construction method is based on an iteratively applied 1-matching in a bipartite

graph. In every iteration, one activity is assigned to one crew member sequentially and the individual

rosters are updated for the next iteration. This phase stops when either all activities are assigned or

no more activities can be legally assigned. After this initial solution has been constructed, column

generation is used to generate rosters that would improve the overall solution. Equitability of rosters

is also discussed in the paper of Kohl and Karisch (2004). One of the insights provided by Kohl and

Karisch (2004) is the fact that equitability within one roster period is not the main issue, but it is

equitability over the whole year what airlines and crew members are most interested in. This notion

would provide more flexibility to the roster model, but would also require additional complex rules that

take previous rosters into account during the rostering process. Moreover, Kohl and Karisch (2004)

notices that equitability is a nonlinear function, since a few large deviations are deemed to be worse than

many small deviations. The Carmen system is capable of solving huge problems, the largest problem

instance with 1600 crew members and 5000 activities to be assigned was solved by the Carmen system

in around 10 hours. Another insight provided by Kohl and Karisch (2004) is that besides problem size

the complexity of the rules and objectives also have a major impact on solution run times.

Introduction of meta-heuristics

Just as with the bidline problem, around the year 2000 meta-heuristics were introduced to the field of

personalized crew rostering. Lucic and Teodorovic (2007) test three different meta-heuristics as solution

techniques for the personalized rostering problem: simulated annealing, the genetic algorithm and tabu

search. Simulated annealing and tabu search are so-called local search techniques, meaning that they are

focused on the solution space in the neighborhood of the current solution. The genetic algorithm on the

other hand is based on population search, evaluating whole groups of solutions simultaneously and then

attempting to generate a new improved generation of solutions. For all three meta-heuristic models first

an initial solution needs to be provided. Lucic and Teodorovic (2007) exploit a standard pilot-by-pilot

greedy heuristic to generate an initial feasible solution. Thereafter, the meta-heuristic is used to improve

the current solution. The objective function consists of three different elements such that equitability is

pursued on three roster attributes: the deviations from the ideal in flight time, duty days spent in foreign

areas and number of weekend days on duty are all minimized. The three different models are tested on

five problem instances, ranging from 27 to 65 pilots and 221 to 580 pairings to be rostered. A remarkable

insight provided by the results is that all three models provide better results for larger problem instances.

This can be explained by the fact that all three objective function elements are equitability-based. In

larger problems there is more flexibility in the roster to establish equitable rosters, resulting in ’bet-

ter’ rosters measured in terms of equitability. Lucic and Teodorovic (2007) state that the best results
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were obtained by the simulated annealing meta-heuristic. However, the results also show that the simu-

lated annealing algorithm requires more computational time to solve relative to the other meta-heuristics.

Maenhout and Vanhoucke (2010) propose the use of another meta-heuristic to solve the personalized

rostering problem: the scatter search meta-heuristic. Scatter search is a population-based meta-heuristic

and as such similar to the genetic algorithm. The objective function adopted by Maenhout and Vanhoucke

(2010) consists of three components: minimization of costs in terms of duration of open pairings, the

maximization of equitability by penalizing deviations from certain standard or ideal roster attribute

values and the maximization of preference satisfaction of employees. The model is formulated as a set-

partitioning problem. First, a constructive heuristic is used to generate an initial solution and afterwards,

the scatter search meta-heuristic tries to improve this initial solution. The results of their new solution

methodology are compared to the exact branch-and-price procedure of Gamache et al. (1999) and to a

variable neighborhood search procedure based on Hansen and Mladenovic (2001). The different models

were tested on 50 generated artificial problems based on a real-life problem instance provided by Brussels

Airlines. The problem instances involved 100 crew members and 700 activities and rosters were needed

to be created for a 2-week period. Vacation days, pre-assigned activities and crew preferences were

randomly generated for the crew members. The hybrid scatter search heuristic shows promising results.

In an average computational time of only 127 seconds the hybrid scatter search heuristic obtains results

that deviate an average of 1.30% from the result obtained by the branch-and-price algorithm with an

average run time of over 20 hours. In 60% of the problem instances, the branch-and-price algorithm solves

to optimality, and the deviation in terms of solution quality of the hybrid scatter search heuristic then

amount to only 1.67%. Also, the hybrid scatter search heuristic outperforms the variable neighborhood

search procedure by 3.20% at the cost of just a couple of seconds of average computational time. Because

of its capability of obtaining near-optimal results in just two minutes of run time, the model of Maenhout

and Vanhoucke (2010) was used as a simulation tool in the negotiations between Brussels Airlines and

the pilot union. This simulation tool was considered to be very valuable in the process of determining

the appropriate configuration of rostering rules such as the ratio of working days versus idle days and

the minimum rest between pairings.

Recent contributions

Kasirzadeh et al. (2017) use the traditional solution methodology based on a branch-and-bound procedure

using column generation to solve the monthly personalized rostering problem. The pricing problem in

the column generation scheme is solved using a multi-label shortest path algorithm taken from Desrosiers

et al. (1995). Two types of preferences are included in the objective function, being preferred air legs and

preferred vacations. Both these preferences are included in the cost function by penalizing for preferences

that are not satisfied. The cost parameters for the penalization of unsatisfied preferences are determined

based on trial and error, tuning the costs and checking the preference satisfaction results. As a baseline,

the cost of covering a scheduled flight is 0. The penalty cost of not covering a scheduled flight is then

set to 10,000. The penalty cost of failing to satisfy a vacation preference is then set to 1000 and a nega-

tive cost of -100 is given to any flight preference that is satisfied. In addition, Kasirzadeh et al. (2017)

include preference satisfaction constraints in order to ensure the satisfaction of a minimum number of

preferred vacations and preferred flights. The model of Kasirzadeh et al. (2017) can be considered to

be a good reference for constructing a basic rostering model. However, the model could be improved by

implementing a data-driven process to compute the cost parameters in the objective function.

Armas et al. (2017) develop a multi-start randomized heuristic that was aimed at providing multiple

feasible solutions in short computational time. Beneficial characteristics of the multi-start randomized

heuristics are considered their flexibility, computational efficiency and simplicity. The airline for which
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the model was developed used commercial software during the rostering process, but a number of con-

straints were not implemented in the software resulting in hours of manual post-processing before the

rosters could be assigned to crew members. The model of Armas et al. (2017) was therefore tasked

to avoid this need for manual adjustment, by incorporating these additional constraints into one roster

model. The model of Armas et al. (2017) has resulted in significant improvements over the commercial

software of the airline. The model provided better results in under 1 minute than the rosters that were

produced using the commercial software and manual post-processing. However, the problem sizes of the

tested problem instances are very small, ranging to a maximum of 20 crew members and 17 pairings to be

scheduled in a monthly roster. Two somewhat larger problem instances of around 40 crew members and

around 20 pairings are also considered, but the solution quality of the multi-start randomized heuristic

is not compared to any benchmark. As such, the test cases are not a realistic reflection of the crew

rostering problems encountered in larger airlines.

The latest contribution to equitability-based personalized crew rostering literature considered in this

literature review is a study by Doi et al. (2018). Their model is exploits a ’matheuristic’, which is a

combination of mathematical programming techniques and a meta-heuristic. The matheuristic used in

the model is called ’POPMUSIC’, which is an acronym for ’Partial Optimization Metaheuristic Under

Special Intensification Conditions’. The POPMUSIC matheuristic tries to improve the initial solution by

locally optimizing subparts of the solution. Just like other meta-heuristics, the POPMUSIC matheuristic

is an improvement technique and thus requires an initial solution as input. Similar to previous research

efforts, Doi et al. (2018) use a pilot-by-pilot greedy heuristic to develop an initial roster solution. The

objective function used for improving this initial solution is aimed at pursuing equitability by minimizing

the deviations per crew member from the standard working time. Although the model thus is aimed

at equitability, the model of Doi et al. (2018) also considers seniority in their model. The complete

crew pool is divided into groups according to crew seniority and qualifications, since in their model the

maximum total working time of junior crew members is greater than that for a senior crew member.

Three types of objective function penalties were tested: linear penalty, quadratic penalty and min-

max penalty. These types of penalties refer to how the objective function considers and aggregates the

separate deviations from the standard of all crew members. The study has shown that a linear penalty

was the most effective measure to pursue equitability in working time. The model has been compared to

the mathematical approach of IBM CPLEX and to a Constraint Programming (CP) solver. Tests were

performed on 7 problem instances. The matheuristic model of Doi et al. (2018) has shown to outperform

both CPLEX and CP, both in solution quality and computational time. In turn, CPLEX is found to be

superior to CP for all problem instances, also both in terms of solution quality and computational time.

Synthesis

The personalized rostering problem is considered to be much more difficult to solve than the bidlines

problem, because of its increased combinatorial complexity and additional constraints (Grosche, 2009;

Ryan, 1992). The majority of the research focuses on developing efficient solution methodologies to

solve problems of realistic problem sizes in reasonable computational time. The management of crew

preferences is another focus in recent research efforts. Crew preferences can be either included in the

pre-assignment of activites, as soft constraints in the objective function or as a hard constraint, for ex-

ample to ensure that a minimum number of preferences are satisfied.
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2.3 Preferential Bidding System

The third airline crew rostering approach is also a personalized rostering approach, but can be distin-

guished from the equitability-based personalized rostering approach by the fact that it is seniority-based

(Kasirzadeh et al., 2017). In a Preferential Bidding System (PBS) the satisfaction of preferences of senior

crew members is prioritized over the satisfaction of the preferences of junior crew members. In literature,

two ways to do so are considered: weighted bids and strict seniority.

Definition: a personalized rostering approach is defined as a rostering approach that considers the pre-

assigned activities of crew members.

Definition: a Preferential Bidding System (PBS) is defined as a personalized rostering approach where

the satisfaction of the preferences of senior crew members is prioritized over those of junior crew members.

Definition: weighted bids is defined as a way to differentiate in crew preference satisfaction by assigning

seniority-based weight factors to the crew satisfaction components in the objective function.

Definition: strict seniority is defined as a way to differentiate in crew preference satisfaction by maxi-

mizing crew preference satisfaction sequentially in order of seniority.

PBS with weighted bids

The introduction of the Preferential Bidding System is described in a paper of Gamache and Soumis

(1998). The model as proposed by Gamache and Soumis (1998) addresses the personalized rostering

problem with preferences, referred to as desiderata in the paper. What differentiates the model of

Gamache and Soumis (1998) from equitability-based models, is that the incentive in the model for

granting preferences to crew members varies with the priority ranking of the considered crew member. As

such, crew members with higher priority have higher chance of getting their preferred pairings or days off.

The model is formulated as a generalized set partitioning problem which is solved using column generation

and a branch-and-bound procedure. Within the column generation scheme, there is one subproblem for

every crew member which is represented on a personalized network. The priority ranking function then

is implemented in the cost values of the arcs in each personalized network. The model is tested on small

problem instances of 10 to 20 crew members and 70 to 100 pairings to be rostered over a two-week period.

These problems are solved in approximately one hour. This is considered quite a long computational

time for such a limited problem, compared to the equitability-based personalized rostering approach

using a similar solution methodology as described in Gamache et al. (1999). Since these two studies are

comparable, being conducted by the same researchers and using similar solution methodologies, it can

be concluded that including a priority ranking in personalized rostering further complicates the rostering

problem. Gamache and Soumis (1998) compare their approach to crew preference satisfaction with two

other approaches: minimum staff size and pre-assignment. The approach of Gamache and Soumis (1998)

as described above is considered a compromise between the two other approaches, where in ’minimum

staff size’ only those crew preferences are satisfied that do not come at any cost and in ’pre-assignment’

preferences are granted and pre-assigned as long there remains a feasible solution. Figure 2.1 shows the

trade-off between roster efficiency and crew preference satisfaction. The results show that the compromise

of including preferences in the rostering model can provide a significant increase in crew satisfaction at

just a small cost in terms of roster efficiency.
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Figure 2.1: The impact of different approaches to crew preference management on roster efficiency and

crew preference satisfaction (Gamache and Soumis, 1998)

PBS with strict seniority

In a subsequent paper, Gamache et al. (1998) explicitly refer to their rostering approach as a Preferential

Bidding System. The solution methodology is based on sequential pilot-by-pilot assignment based on

seniority order. Each subproblem is a residual problem which is solved such that an optimal roster is

constructed while also ensuring a feasible solution for the remaining (less senior) crew members. For

each residual problem, the objective is to maximize crew preference satisfaction. The approach taken

in Gamache et al. (1998) differs from the previous study Gamache and Soumis (1998) in the fact that

Gamache et al. (1998) adopt ’strict seniority ’ restrictions instead of the ’weighted bids’ adopted by

Gamache and Soumis (1998). The strict seniority restrictions govern that a maximum score in terms

of preference satisfaction is pursued for every crew member, as long as this maximization is never done

at the expense of a more senior crew member. As such, even a minor increase in roster quality of a

senior member is prioritized over significantly increasing the quality of multiple junior crew members.

The model is tested on 24 problem instances. The problems range from 18 to 108 crew members and 103

to 602 pairings to be rostered over a month. Most smaller problems up to 50 crew members are solved

within half an hour. However, larger problems take several hours, with the largest run time reported to

be 8 hours. Desaulniers et al. (1998) confirms that the computational times reported in Gamache et al.

(1998) are significantly larger than those reported in the personalized rostering problems as discussed in

Gamache et al. (1999). Desaulniers et al. (1998) explain this notion by the fact that in a Preferential

Bidding System with strict seniority restrictions a set-partitioning problem needs to be solved for each

crew member, in order to check whether a feasible solution can still be obtained for the remaining crew

members. This significantly increases the complexity of the problem.

Achour et al. (2007) build upon previous research of Gamache et al. (1998) and also considers the PBS

with strict seniority restrictions. However, as opposed to the pilot-by-pilot sequential method as used in

Gamache et al. (1998), the model of Achour et al. (2007) delays the selection of the roster of a senior

crew member in the case where a senior crew member has multiple feasible rosters with a maximum
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bidding score, i.e. maximum preference satisfaction. So although the model of Achour et al. (2007)

also considers crew members sequentially, the rosters are not necessarily fixed in seniority order. The

approach of Achour et al. (2007) delays the roster selection process until there is a unique best-score for

the considered crew member that yields the best rosters for subsequent junior crew members. The model

of Achour et al. (2007) was tested on eight problem instances, involving 17 to 91 crew members, and

compared to the model of Gamache et al. (1998). For small problem instances, the model of Achour et al.

(2007) took longer to solve but provided better results in terms of overall crew preference satisfaction.

Larger problems are also improved in terms of solution quality with the new approach. Moreover, for

these larger problems the model of Achour et al. (2007) requires less computational time to solve than the

baseline model of Gamache et al. (1998). However, despite these improvements, the computational time

of the model is still considered unsatisfactory. Although most problems are solved within 10 minutes,

certain problems of the same size give rise to significant issues in the roster model. In these specific

problems, the model is confronted with infeasibility and ’backtracking’ is evoked, i.e. the model reverses

and returns to previous problems in the pilot-by-pilot sequential method. When backtracking occurs,

run times are shown to be greatly increased, up to a longest reported run time of 127 hours.

Avoiding backtracking

Where previous research solved the Preferential Bidding System problem using mathematical program-

ming techniques, Gamache et al. (2007) propose a model using graph coloring techniques and the tabu

search meta-heuristic. Gamache et al. (2007) use a pilot-by-pilot sequential approach and consider strict

seniority restrictions in their model formulation. Additionally, the model of Gamache et al. (2007) in-

cludes a feasibility test that is used in the roster selection process. The feasibility test enables the program

to test if there is a feasible solution to the remaining residual problem before fixing the selected roster for

the considered crew member. While previous models required backtracking in the case of an encountered

infeasible residual problem, with this feasibility test backtracking can be avoided. This feasiblity test

is formulated as a graph coloring problem and solved using the tabu search algorithm. Gamache et al.

(2007) state that the feasiblity test costs just a few minutes of computational time and that it potentially

saves hours of computational time by avoiding computationally expensive backtracking. However, the

model is tested on just two problem instances and even for these two instances the results are not clearly

reported.

Synthesis

The Preferential Bidding System differs from equitability-based personalized rostering approaches in the

way crew preferences are managed. In the Preferential Bidding System either weighted bids are taken

into account in a priority ranking function to promote the preference satisfaction of senior crew members

or strict seniority restrictions are adopted. Strict seniority restrictions govern that the maximization of

the bidding score of a crew member can never go at the expense of the bidding score of a more senior crew

member. Therefore, PBS systems under strict seniority are based on a pilot-by-pilot sequential roster

assignment. Desaulniers et al. (1998) state that the Preferential Bidding System problem is even more

complex than the equitability-based personalized rostering problem. Desaulniers et al. (1998) explain

this notion by the fact that the Preferential Bidding System requires to solve a set-partitioning problem

for each crew member in order to check whether a feasible solution can still be obtained for the remaining

crew members. This significantly increases the complexity of the problem.
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3. Research Gap: Impact of Airline Crew

Rostering Elements

Academic literature on airline crew rostering has been focused on developing more efficient solution

methods within a certain specific crew rostering approach. Often, research is commissioned by airlines

which are interested in improving their rostering process within the framework of their rostering ap-

proach and the associated rules and regulations. Collective Labour Agreement (CLA) regulations are

taken as fixed input and researchers attempt to decrease crew costs, increase crew satisfaction or increase

computational efficiency within this set of prescribed constraints. However, in reality, CLA rules and

regulations evolve over time through negotiations between airlines and labor unions. Besides these CLA

regulations, other strategic decisions of airlines concerning the rostering process include how crew pref-

erences are managed and what objectives are pursued. As such, a crew rostering approach should not be

considered a fixed and rigid framework. Research could play an important role in providing insights on

how certain elements of a crew rostering approach affect the efficiency and quality of the rostering process.

Definition: a crew rostering approach is defined as an approach to the crew rostering problem itself,

i.e. a specific problem formulation.

Definition: crew rostering elements are defined as the aspects of a crew rostering model that constitute

a crew rostering approach, such as:

(a) Pre-assigned activities - pre-scheduled activities such as vacations and training days;

(b) Crew preferences - pairings or days off preferred by crew members;

(c) Equitability measures - measures to create an even balance in roster characteristics;

(d) Seniority measures - measures to prioritize the satisfaction of senior crew members;

(e) Roster horizon - the number of days or weeks before operation for which a crew roster is generated;

(f) Roster period - the number of days or weeks of the period that is rostered.

Related research

In academic literature, just one study has been found that addresses the effect of a certain crew rostering

element on the airline crew rostering process. In Gamache and Soumis (1998) three different ways of

handling crew preferences have been investigated. Gamache and Soumis (1998) include crew preferences

as soft constraints in the roster optimization process and compare their approach to crew preference sat-

isfaction with two other approaches: minimum staff size and pre-assignment. The approach of Gamache

and Soumis (1998) as described above is considered a compromise between the two other approaches,

where in ’minimum staff size’ only those crew preferences are satisfied that do not come at any cost and

in ’pre-assignment’ preferences are granted and pre-assigned as long there remains a feasible solution.

Gamache and Soumis (1998) have shown that the compromise of including preferences in the rostering

model can provide a significant increase in crew satisfaction at just a small cost in terms of roster effi-

ciency (as shown in Figure 2.1 in Section 2.3).

A second study that can be related to the assessment of different crew rostering approaches is the paper

of Maenhout and Vanhoucke (2010). The model of Maenhout and Vanhoucke (2010) was used as a
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simulation tool in negotiations between Brussels Airlines and the pilot union. The simulation tool was

considered to be a valuable asset in the process of determining the appropriate configuration of rostering

rules such as the ratio of working days versus idle days and the minimum rest between pairings. However,

the results obtained in these simulation experiments have not been reported. So although no tangible

insights on the effect of certain rostering rules have been presented, the research of Maenhout and

Vanhoucke (2010) has confirmed that there is a demand for insights on how airlines should approach the

crew rostering problem.

Research gaps

Besides addressing the impact of different approaches to handling crew preferences, Gamache and Soumis

(1998) state that their approach of including preferences as soft constraints in the roster optimization

model can be also be adopted for other activities, such as medical appointments, training periods and

reserve blocks. These activities are usually considered pre-assigned. The integration of the rostering of

these different activities into the crew rostering process is considered an interesting subject for future

studies. This research gap not only concerns crew rostering elements (a) pre-assigned activities and (b)

crew preferences, but should also include the (e) roster horizon and (f) roster period elements. Impor-

tant questions in such a study are: when should specific type of activities be rostered and what set of

activities should be rostered simultaneously?

(1) Integration of the rostering process - the assignment of pairings, vacations, training activities

and reserve blocks could be integrated into one rostering process. It can be investigated whether the

integration of the rostering process of these different activities results in increased roster efficiency.

Besides approaches regarding crew preferences as yet studied by Gamache and Soumis (1998), other

considerations concerning crew satisfaction are (c) equitability measures and (d) seniority measures. Eq-

uitability among crew members is considered a desirable roster characteristic and many studies have

included equitability measures in the development of their roster model. Similarly, many airlines prior-

itize the satisfaction of senior crew members over the satisfaction of junior crew members by including

seniority measures in the crew rostering model. However, how these equitability and seniority measures

affect the efficiency of the rostering process has not been addressed in academic literature. The future

study should also include considerations on (e) roster horzion and (f) roster period, since the time horizon

for which equitability or seniority is pursued is expected to have a major influence on the associated costs.

In academic literature, equitability within the considered roster period is pursued. However, Kohl and

Karisch (2004) state that equitability within one roster period is not the main issue, but it is equitability

over the whole year what airlines and crew members are most interested in.

(2) Impact of equitability and seniority measures - equitability and seniority considerations can

be taken into account as constraints or objective function coefficients in the crew rostering model. The

impact of these different measures on the cost and the quality of the generated roster can be evaluated.

A third identified subject for future studies on airline crew rostering is considered to be the dynamic

simulation of the rostering process. In academic literature, the airline crew rostering problem is mostly

represented as a static problem that is solved at one instance in time. However, in reality the rostering

process is a continuous operational process where the current roster period is influenced by previous roster

periods. The model of Cappanera and Gallo (2004) has captured this effect by fixing the beginning of the

roster for each crew member with the activities that resulted from the previous roster period. However,

the roster process itself is still a static process in the model of Cappanera and Gallo (2004). A dynamic

roster model would simulate the ’rolling horizon’ or ’stepping horzion’ procedure. For example, with
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a roster horizon of four weeks and a roster period of one week, the rolling horizon procedure would

mean that every week a new ’fourth week’ is added to the roster. The simulation of the rolling horzion

procedure could provide insights on the following dynamic effects in the rostering process:

• Global constraint consistency - the capability of the rostering model to cope with constraints span-

ning over multiple roster periods;

• Influx of crew requests - crew requests come in over time and decisions on whether they should be

granted depend on the rostering process;

• Disturbances - disturbances in crew demand and crew availability can be taken into account in the

rostering process.

(3) Simulation of the dynamic rostering process - the rolling horzion procedure can be simulated.

With a dynamic roster model, global constraint consistency, the influx of crew requests and the effect of

disturbances can be investigated.

A final subject that is considered suitable for future studies, is the evaluation of crew rosters. Results

reported in literature are often limited to the assessment of the generated rosters on the quality in terms

of the objective function used in the development of the rosters. However, for the evaluation of different

crew rostering approaches and methods, a way to evaluate rosters consistently and independent of the

adopted objective function is required.

(4) Consistent evaluation of crew rosters - a method for the consistent evaluation of rosters can

be developed. This method should take the generated rosters as input and should be independent of the

approach and method adopted in the generation of the rosters.

Synthesis

Academic literature lacks a consistent evaluation of the impact of crew rostering elements on the efficiency

and quality of the generated rosters. The following research gaps concerning these crew rostering elements

have been identified:

1. Integration of the rostering process - the assignment of pairings, vacations, training activities

and reserve blocks could be integrated into one rostering process. It can be investigated whether the

integration of the rostering process of these different activities results in increased roster efficiency;

2. Impact of equitability and seniority measures - equitability and seniority considerations can

be taken into account as constraints or objective function coefficients in the crew rostering model.

The impact of these different measures on the cost and the quality of the generated roster can be

evaluated;

3. Simulation of the dynamic rostering process - the rolling horzion procedure can be simulated.

With a dynamic roster model, global constraint consistency, the influx of crew requests and the

effect of disturbances can be investigated;

4. Consistent evaluation of crew rosters - a method for the consistent evaluation of rosters can

be developed. This method should take the generated rosters as input and should be independent

of the approach and method adopted in the generation of the rosters.
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4. Benchmark: Approaches to Crew Ros-

tering in Other Industries

The airline crew rostering problem belongs to the general class of problems called personnel scheduling

(Jarrah and Diamond, 1997). In order to have a deeper understanding of the airline crew rostering

problem, a benchmark on personnel scheduling approaches in other industries is performed. First, an

overview of the generic personnel scheduling problem and its characteristics is presented. Afterwards,

the literature on personnel scheduling related to the most relevant industries is discussed separately.

The public transit industry is chosen for its comparability with the airline crew rostering problem.

The healthcare industry is considered because the nurse rostering problem is the most studied personnel

scheduling problem in academic literature (Bergh et al., 2013). Finally, the personnel scheduling problem

in the call centre industry is discussed.

4.1 Generic Personnel Scheduling

In order to give some context to the airline crew scheduling problem, some generic concepts in personnel

scheduling will be discussed. First, various classifications of types of personnel scheduling problems will

be discussed. Afterwards, the components of the personnel scheduling problem will be presented. Lastly,

a generic mathematical model for the personnel scheduling problem will be presented. Each section will

also briefly discuss the application of these general personnel scheduling concepts to the airline crew

scheduling problem.

Types of Personnel Scheduling Problems

An early classification of personnel scheduling problems was proposed by Baker (1976). Three types of

scheduling problems can be distinguished:

• Shift scheduling;

• Days-off scheduling;

• Tour scheduling.

The shift scheduling problem arises in organizations where operations run longer than the regular eight-

hour workday. The shift scheduling problem is a daily problem and addresses which eight-hour shift

should be assigned to each employee. In organizations that run for the regular five working days of the

week, i.e. Monday to Friday, the shift scheduling problem is the only problem that needs to be solved

(Morris and Showalter, 1983). For organizations running a different workweek, e.g. seven days a week,

the days-off scheduling problem needs to be solved in order to determine which days of the week each

employee will be working. If both the shift scheduling and the days-off scheduling problems arise, the

combined integrated problem is called the tour scheduling problem. The tour scheduling problem often

addresses operations that run seven days a week and having more than one shift a day. A typical simpli-

fied problem is presented by Morris and Showalter (1983), where each employee shall be assigned a tour

of five consecutive work days with a daily shift beginning at the same time each day. They considered

shift starting times to be any hour of the day. As such, 168 possible tours could be constructed, i.e. 24

times 7 tour starting times. Each employee then has to be assigned one of these 168 tours such that the

demand is covered.
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A second classification found in literature, is the following distinction:

• Cyclic or cyclical scheduling;

• Non-cyclic or non-cyclical scheduling.

There are two aspects of the scheduling problem that can be cyclic or cyclical (considered synonyms).

Warner (1976) defines the cyclical approach as the effort to construct an initial high-quality schedule,

consisting of a roster for each employee for the complete roster period, which is then repeated period

after period. A different interpretation of cyclicity is adopted in a comprehensive review of personnel

scheduling problems of Ernst et al. (2004b). Ernst et al. (2004b) considers a cyclic schedule to be a

schedule in which every employee essentially has the same roster, but with different starting times for

the first shift or duty. Because of of its inflexibility to changing environments such as changing demands,

the cyclical scheduling problem as considered by Warner (1976) has become obsolete. However, cyclic

personnel scheduling as considered by Ernst et al. (2004b) is still being adopted and studied in academic

literature (Musliu et al., 2002; Rocha et al., 2013; Xie and Suhl, 2014). In this literature study, cyclic

scheduling or rostering will therefore refer to cyclic schedules with employees having the same rosters

only lagged in time (Xie and Suhl, 2014).

De Causmaecker et al. (2004) propose a different classification of personnel scheduling problems which

focuses more on the demand profile for which the personnel scheduling problem is solved. Four different

types of personnel scheduling problems are identified:

• Permanence centred planning;

• Mobility centred planning;

• Fluctuation centred planning;

• Project centred planning.

The permanence centred planning problem appears in police services and in hospitals. The number

of personnel that is needed is known beforehand, except for emergency cases. Nurse rostering, which

will be discussed into more detail in Section 4.3, is a typical example of permanence centred planning.

Mobility centred planning appear in companies that involve transportation for the duties to be carried

out. These problems occur in for example home health care organizations. Pure transportation problems

are excluded in the analysis of De Causmaecker et al. (2004). However, in a later paper, Brucker et al.

(2011) explicitly classify the crew scheduling problem faced by transportation companies like airlines and

public transit companies as a mobility centred planning problem. Fluctuation centred planning problems

appear in industries that are faced with fluctuating demand. The call centre industry is the most typical

example of an industry with fluctuation centred planning problems. Finally, there are companies that

adopt project centred planning, by dividing the work into projects that need to be assigned to different

groups of employees.

Relating the above analysis to the airline crew scheduling problem, it can be stated that the airline crew

scheduling problem is a mobility centred tour scheduling problem. Furthermore, airline crew scheduling

should be approached as a non-cyclic scheduling problem. Cyclic scheduling is considered inappropriate

for airline crew scheduling problems, since the demand fluctuates over time and the ”shifts”, i.e. the

pairings, have different lengths and starting times (Ernst et al., 2004b). Moreover, cyclic schedules can-

not take individual personalized restrictions or preferences into account (Bourdais et al., 2003).
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Stages in Personnel Scheduling

Besides context of different types of personnel scheduling problems, academic literature also provides

frameworks for how to approach the personnel scheduling problem. Tien and Kamiyama (1982) proposed

a first decomposition of the generic personnel scheduling problem into five separate subproblems. Ernst

et al. (2004b) provided a comparable but more comprehensive framework. This framework, consisting of

six separate modules:

1. Demand modelling is aimed to determine how many employees are needed at different times across

the rostering horizon;

2. Days-off scheduling is done to determine, based on the modeled demand and the available employ-

ees, how many employees should have a day-off at any day in the roster period;

3. Shift scheduling concerns the timing of the shifts and the number of required workers per shift;

4. Line of work construction is the process of constructing roster lines consisting of shifts and days-off

for the complete roster horizon;

5. Task assignment is sometimes necessary to determine which tasks need to be carried out during

certain shifts since certain tasks may require particular staff qualifications which have to be taken

into account in the final module;

6. Staff assignment is the last step of the process and involves the assignment of a roster to each

employee.

Ernst et al. (2004b) distinguish three types of demand: task based demand, flexible demand and shift

based demand. Crew scheduling problems in the transportation industry are examples of problems that

are subject to task based demand. The demand modelling, shift scheduling and task assignment modules

are then integrated as a duty generation module, which involves the aggregation of individual tasks into

larger pieces of work (Ernst et al., 2004b). The crew pairing problem as appearing in the airline industry

is a typical example of duty generation (Brucker et al., 2011; Ernst et al., 2004b). The other subproblem

of the airline scheduling problem, the crew rostering problem, then can be considered to be integrating

the days-off scheduling, lines of work construction and staff assignment modules. More specifically, with

the bidlines approach the lines of work are constructed first and then assigned to the staff whereas with

personalized rostering approaches these two final modules are completely integrated.

Generic Mathematical Model for Personnel Scheduling

Brucker et al. (2011) provide a generic mathematical model for personnel scheduling. Brucker et al.

(2011) model the problem as a binary linear program:

min
∑

e∈E

∑

π∈Pe

ceπxeπ (4.1)

∑

π∈Pe

xeπ ≤ 1, e ∈ E (4.2)

∑

e∈E

∑

π∈Pe

π(j, t) · xeπ ≥ Dj(t), ∀(j, t) (4.3)

xeπ ∈ {0, 1} ∀e ∈ E and π ∈ Pe (4.4)
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• The planning horizon [0, T ] is divided into periods [t, t + 1] for t = 0, 1, ..., T − 1 for which tasks

j = 1, ...,m must be performed.

• The demand profile for task j,Dj(t), is the number of employees needed to perform task j in time

period [t, t+ 1](t = 0, 1, ..., T − 1).

• Associated with each employee e ∈ E is a subset Qe of tasks for which e is qualified, i.e. e can be

assigned to tasks in Qe only.

• A working pattern is defined as π = (π(j, t)), where π(j, t) = 1 if and only if [t, t+ 1] is a working

period in which task j has to be performed.

• xeπ is a binary decision variable which is one if and only if the working pattern π is assigned to

employee e.

• ceπ is the costs associated with the assignment of employee e to working pattern π.

The objective function aims to minimize the total cost of all working patterns. Constraint 4.2 makes sure

that at most one working pattern is assigned to each employee. If each employee must be assigned a work-

ing pattern, the inequality ≤ should be replaced by an equality sign. Constraint 4.3 forces the number of

employees assigned to task j per period [t, t+1] to be at least equal to the demand of j in period [t, t+1].

Finally, 4.4 is the expression for the requirement of having binary decision variables in the model solution.

The mathematical model of Brucker et al. (2011) is a basic model that can be applied to various dif-

ferent personnel rostering problems and appended with additional objective function components and

constraints. Bergh et al. (2013) provides an extensive overview of the different types of hard and soft

constraints that can be found in the academic literature on personnel scheduling. As can be seen in

the generic model presented above, the model implies that the input contains a set of working patterns

π(j, t), i.e. a sequence of tasks. The roster optimization model thus concerns the roster selection process.

However, the generation of the working patterns that takes place before the actual roster selection is also

an important part of the personnel rostering process. When applying this generic model to the airline

industry, a task can be considered a flight and a working pattern then relates to the sequence of pairings

that constitutes a crew roster. The demand profile Dj(t) then is the demand for pilots per flight segment

j which follows directly from the flight schedule for the considered roster period.

4.2 Public Transit Industry

The crew scheduling problem encountered in the public transit industry, i.e the railway, urban mass

transit and bus industries, is very comparable to the airline scheduling problem. Both are mobility

centred planning problems, in which the demand follows directly from a given timetable and tasks

involve both temporal and spatial features (De Causmaecker et al., 2004; Ernst et al., 2004b). Similar to

what is observed in the airline industry, North American and European approaches to the public transit

crew rostering problem are completely different (Carraresi and Gallo, 1984; Desaulniers and Hickman,

2007). In North America, the rostering process is left to the drivers themselves and selection is made on

the basis of seniority. In Europe on the other hand, union conventions prescribe that an even balance of

workload should be ensured over a certain time horizon. Since in North America crew members build

their own rosters in order of seniority, there is no actual crew rostering optimization. Therefore, literature

on public transit crew rostering is focused on the European problem of optimizing for minimum cost and

for equitability.
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Heuristic solution techniques

Two surveys on public transit crew rostering, of Odoni et al. (1994) and Desaulniers and Hickman (2007),

state that the common practice for the transit crew rostering problem is using a constructive heuristic

to develop an initial feasible solution and then improving this initial solution by using an improvement

heuristic. The initial solution is constructed by formulating an assignment problem for each day of the

horizon, in order to assign the duties of the corresponding day to the partial rosters that were built by

the previous assignment problems (Desaulniers and Hickman, 2007). The improvement heuristic used

afterwards is mostly based on exchange procedures (Odoni et al., 1994). An example of such a solution

methodology was proposed by Carraresi and Gallo (1984). They formulate the bus drivers rostering

problem as a Multi-level Bottleneck Assignment (MBA) problem, which is aimed at maximizing the

quality of the roster that is the worst from the drivers’ perspective. In order to do so, each shift is

given a ”weight” which represents the workload of the shift for the drivers and encompasses factors such

as the length and timing of the shift. The objective function then is to minimize the maximum total

weight of the shifts assigned to a single driver. Carraresi and Gallo (1984) solve the bus drivers rostering

problem using a so-called ’asymptotically optimal algorithm’, which first constructs a feasible solution

where after this initial feasible solution is improved. The algorithm is developed to seek successive im-

provement by identifying ’bottleneck arcs’, i.e. shift assignments with unsatisfactory high weights. For

such a bottleneck arc the algorithm tries to find an alternative assignment by searching for a ’decreasing

alternating chain’ of arcs that does not contain the bottleneck arc. By doing so, the overall weight of the

roster is decreased. Bianco et al. (1992) continue the work of Carraresi and Gallo (1984) by proposing

an improved version of this Multi-level Bottleneck heuristic algorithm. This new algorithm of Bianco

et al. (1992) was found to outperform the algorithm of Carraresi and Gallo (1984) in terms of solution

quality. However, since the new algorithm required significantly more computational time, Bianco et al.

(1992) conclude that their algorithm should just be used for problems with a roster period of up to 10

days.

Caprara et al. (1998) also adopt a heuristic approach to the public transit crew rostering problem. How-

ever, the heuristic as described in Caprara et al. (1998) constructs the crew rosters directly. As such,

the solution method of Caprara et al. (1998) is a constructive heuristic. A refinement procedure is in-

cluded afterwards to further improve the outcome, but this refinement procedure is based on the same

constructive heuristic algorithm which is applied on a number of duties. The constructive heuristic of

Caprara et al. (1998) constructs rosters sequentially for each crew member, as opposed to the day-by-day

approach adopted by Carraresi and Gallo (1984) and Bianco et al. (1992).

Desaulniers and Hickman (2007) state that these heuristic approaches to the public transit crew rostering

problem are still in use because of their computational speed and flexibility in dealing with constraints

following from union regulations. This is in contrast to solution methods adopted in airline crew rostering,

which are mostly based on mathematical programming solution techniques. Desaulniers and Hickman

(2007) explain this difference by stating that public transit crew rostering problems are even larger than

the airline crew rostering problem. The transit problems are not separable per vehicle type, since drivers

are often allowed to drive all vehicle types. Also, in airline crew rostering the roster blocks correspond

to pairings that span several days while in public transit the crew rostering problem involves rostering

individual duties. Desaulniers and Hickman (2007) therefore argues that the combinatorial complexity

of the public transit crew rostering problem is too large for mathematical programming methods and

that heuristic approaches are preferred.
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Alternative solution techniques

However, probably due to advances in computer processing capabilities, in recent years Lin Xie and Leena

Suhl have developed crew rostering models based on different solution methods than the traditional

constructive and improvement heuristics. The paper of Xie and Suhl (2014) describes a mathematical

programming model based on a multi-commodity flow network. The model of Xie and Suhl (2014)

solves both the cyclic and the non-cyclic crew rostering problem. Moreover, the paper of Xie and Suhl

(2014) was the first to include crew preferences in the non-cyclic crew rostering model. The personalized

model of Xie and Suhl (2014) for the non-cyclic problem aims for minimum cost, for equitability among

drivers and for crew preference satisfaction. The multi-commodity flow problem is solved using the IBM

CPLEX optimizer. Although most problems are solved within acceptable run times, some larger problem

instances could not be solved in 24 hours. Because of these unsatisfactory run times, in Xie et al. (2017)

a solution method based on meta-heuristics is proposed. Three meta-heuristics, ant colony optimization,

simulated annealing, and tabu search methods, are modeled and their outcomes are compared. The

simulated annealing meta-heuristic was found to be superior to the other meta-heuristics. Moreover, for

large problem instances the simulated annealing algorithm also outperforms the IBM CPLEX solver.

Synthesis

In public transit crew rostering three approaches can be distinguished. First there is a distinction between

cyclic and non-cyclic crew rostering (see Subsection 4.1 for explanation). Two non-cyclic approaches

are then found in literature, being the North American approach and the European approach. In

North America crew members select their own rosters in order of seniority so there is no actual roster

optimization. In Europe, the crew rostering approach in the public transit industry is very comparable to

the equitability-based personalized rostering approach in the airline industry. The objective is not only

to minimize costs but also to ensure an even balance in roster characteristics among crew members. In

terms of solution techniques, most models are based on a combination of constructive and improvement

heuristics.

4.3 Health Care Industry

In academic literature on crew rostering in the health care industry, the main crew rostering problem

that is addressed is the nurse rostering problem (Ernst et al., 2004b). It is a permanence centred planning

problem and having appropriate levels of staff in the different medical wards is essential (De Causmaecker

et al., 2004; Ernst et al., 2004b). Other crew rostering problems encountered in the health care industry

are the rostering of home health care personnel and the rostering of personnel for the handling of hospital

call arrivals (Ernst et al., 2004b). However, this section of the literature study specifically addresses the

nurse rostering problem, since academic research on this subject is well developed and the related best

practices could provide valuable insights for future studies into airline crew rostering.

Nurse rostering approaches

In an early influential work, Warner (1976) distinguishes two generic scheduling approaches: the tradi-

tional approach and the cyclical approach. In the cyclical approach one schedule is constructed for an

initial rostering period and this schedule is then repeated period after period. The traditional approach

on the other hand can be called non-cyclical since every rostering period is considered independently

and resources are spent without pursuing repeating patterns. Millar and Kiragu (1998) propose a model

based on network programming that can accommodate both approaches, called cyclic and non-cyclic

scheduling by Millar and Kiragu (1998). Cyclic schedules are considered to be more stable and perceived

as more fair by the nurses according to Millar and Kiragu (1998). Also, the cyclic problem is simpler
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than the non-cyclic problem, resulting in less scheduling effort and required computational power. How-

ever, the disadvantages of cyclic schedules are their rigidity, resulting in difficulties when adapting cyclic

schedules to changing circumstances.

Silvestro and Silvestro (2000) make a similar distinction in nurse rostering approaches, but use a different

terminology: fixed rostering and flexible rostering. Fixed (cyclic) rostering is considered inappropriate

for the nurse rostering problem and the paper thus focuses on flexible (non-cyclic) rostering. Silvestro

and Silvestro state that flexible rostering can be further subdivided into three approaches based on the

degree of self-control a nurse has about his or her roster. The following flexible rostering approaches are

distinguished: departmental rostering, team rostering and self-rostering (Silvestro and Silvestro, 2000).

Departmental rostering is the approach where the rostering is conducted by a manager and as such can

be considered centralized. Team rostering on the other hand divides the complete pool of staff into teams,

where each team has the responsibility for the rostering of the staff members in their team. Finally, self

rostering is done by the staff members themselves. The three nurse rostering approaches are extensively

discussed and compared in their paper. However, their evaluation of the rostering approaches are based

on a qualitative and empirical study, consisting of telephone interviews and practical case studies. Al-

though their study does present a good overview of benefits and limitations of the three approaches, the

outcomes are limited to qualitative statements rather than quantitative results and comparisons. Still,

it can be concluded from the comparative study of Silvestro and Silvestro (2000), that for large ward

sizes with many nurses (>70 staff) self-rostering and team rostering are ineffective and departmental

rostering is the most suitable nurse rostering approach.

Cheang et al. (2003) also recognize the two basic types of scheduling, calling them cyclic and non-cyclic

scheduling. Furthermore, they consider three different views of the nurse rostering problem; a nurse-day

view, a nurse-task view and a nurse-shift pattern view (Cheang et al., 2003; Santos et al., 2016). These

different views result in different kinds of decision variables as illustrated by equations 4.5, 4.6 and 4.7

respectively.

vijk =

{
1 nurse i works shift k on day j

0 otherwise
(4.5)

vis =

{
1 nurse i receives task s

0 otherwise
(4.6)

vip =

{
1 nurse i works shift pattern p

0 otherwise
(4.7)

Valouxis et al. (2012) adopted an approach that can be considered to be a hybrid form of two of the

approaches discussed by Cheang et al. (2003). Valouxis et al. (2012) decompose the problem into two

parts. First, all nurses are assigned to specific days of the schedule, based on the demand per day and

the availability of the nurses. Afterwards, on each specific day the actual shifts are divided among the

nurses that were appointed to that day in the first phase.

Another set of nurse rostering approaches is found in the paper of Bard and Purnomo (2005). Bard

and Purnomo (2005) distinguish three nurse rostering approaches: traditional or cyclical scheduling, self-

scheduling and preference scheduling. Preference scheduling is considered a combination of the traditional

approach and the self-scheduling approach since the rostering process itself is centralized but individual

nurse members can express their preferences for certain aspects of the roster. As such, it is a personalized

departmental rostering approach and similar to the personalized rostering approaches encountered in the

airline industry. Interestingly, whereas in an early work of Warner (1976) non-cyclical rostering is called
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the traditional approach, about thirty years later it is the cyclical approach that is called traditional.

Bard and Purnomo (2005) reject the cyclical approach and self-scheduling approach for their rigidity

and impracticality respectively. They therefore consider preference scheduling to be the most promising

approach. In two related papers, Asgeirsson explores the possibility of combining two of the rostering

approaches of Bard and Purnomo (2005): self-scheduling and preference scheduling (Asgeirsson, 2014;

Asgeirsson and Sigurdardottir, 2016). In this approach, each nurse is responsible for creating a good

preliminary schedule, which is then considered input for the preference scheduling as done by a personnel

manager.

Solution techniques

In terms of solution methodologies, academic literature provides an extensive range of possibilities. In a

comprehensive literature review, Burke et al. (2004) discusses nurse rostering studies with the following

solution methods: mathematical programming, goal programming, artificial intelligence methods, heuris-

tics and meta-heuristics. Burke et al. (2004) evaluate that mathematical programming methods cannot

cope with the enormous problem sizes encountered in real problems. However, heuristics cannot cope

with the dynamic and uncertain nature of realistic problems according to Burke et al. (2004). Therefore,

Burke et al. (2004) argue that hybrid methods between exact methods and heuristics are the only real-

istic way to solve such big combinatorial problems. The state-of-the-art in nurse rostering therefore is

focused on complex hybrid solution methods, combining mathematical programming and heuristics with

other search methods such as meta-heuristics and constraint programming (Burke et al., 2004).

Recent contributions

Current research is focused on making nurse rostering models more realistic by incorporating practi-

cal operational characteristics of the nurse rostering problem. Previous research has considered the

nurse rostering problem in a static horizon, considering only the roster period for which the roster was

generated. Salassa and Vanden Berghe (2012) however proposed a different approach, addressing the

nurse rostering problem in a stepping horizon context, where rosters from preceding roster periods are

taken into account during the rostering process. The Second International Nurse Rostering Competition

(INRC-II) was aimed to challenge researchers to develop nurse rostering models with a stepping horizon.

Smet et al. (2016) evaluate the stepping horizon model and compare it to the traditional approach of

using a static horizon. Smet et al. (2016) explicitly advocate the use of a stepping horizon and provide

guidelines on how to ensure global consistency in constraints over the different roster periods. Further-

more, Smet et al. (2016) propose that future research efforts should aim at developing models that can

also take future roster periods into account, by modelling uncertainty through stochastic programming

or by taking a-priori known future events into account in the current rostering period.

A recent contribution made by Mihaylov et al. (2016) concerned the learning of preference soft constraint

weights from historical data. With preference scheduling, like with personalized rostering approaches

in the airline industry, nurses express preferences on certain tasks or shifts. These preferences can be

taken into account as hard constraints, but most models deal with preferences as soft constraints, by

either rewarding the satisfaction of preferences or by penalizing for not doing so. However, the weights

of these rewards or penalties in the objective function often are based on trial-and-error and as such are

considered quite naive. Mihaylov et al. (2016) propose an alternative methodology to construct these

soft constraint weights, by automatically extracting these weights from previous rosters.
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Synthesis

Various nurse rostering approaches have been found in academic literature. For larger complex problems

that are more comparable with problems encountered in the airline industry, non-cyclic departmental

rostering is considered the only realistic rostering approach. Preference scheduling is considered a spe-

cific type of departmental rostering approach, where nurses can express their preferences but where the

actual rostering process is still a centralized process. Researchers adopt various solution methodologies

in their models, but hybrid combinations between exact methods, heuristics and meta-heuristics are con-

sidered to be most promising. Finally, recent advances have made nurse rostering models more realistic

by considering the problem in the context of a stepping horizon and by leveraging historical data in the

development of the model.

4.4 Call Centre Industry

Gans et al. (2003) provide an overview of call centre operations and one of the discussed aspects is the

call centre personnel scheduling problem. Gans et al. (2003) state that the call centre personnel schedul-

ing problem is divided into two separate problems: a scheduling problem and an assignment problem.

Basically, the scheduling problem aims at constructing a set of anonymous rosters that cover all shifts.

Then, the assignment problems deals with assigning these rosters to individual employees. As such, this

approach can be compared to the bidline scheduling approach in the airline industry.

Aksin et al. (2007) state that the objective of the shift scheduling and rostering problem in the call centre

industry is to minimize personnel costs while achieving service levels or other labour requirements. The

service levels constraints follow from the staffing problem, which deals with the problem of translating

the stochastic demand to the number of personnel required per shift. Aksin et al. (2007) discusses the

issues of solving the call centre rostering problem using mathematical programming, explaining why

most researchers propose call centre models are based on heuristics (Avramidis et al., 2009; Cezik and

L’Ecuyer, 2008; Fukunaga et al., 2002). In terms of rostering approaches, Aksin et al. (2007) state that

the call centre personnel scheduling problem is usually divided between a scheduling problem and an

assignment problem. However, a major issue with this sequential approach is discussed, being its inflex-

ibility to disturbances and updates in call forecasts. Therefore, it is stated that many large call centres

adopt a different approach, called ”shift bidding”. This approach is very comparable to the Preferential

Bidding System (PBS) encountered in the airline industry. In shift bidding, call centre employees can

bid on particular shifts sequentially, with the order of bidding based not only on seniority but also on

previous quality of service delivered by the employee (Aksin et al., 2007).

An example of a model that adopts such a shift bidding approach is presented in Hojati (2010). In their

model, employees can express their preferences for the shifts they would want to work. The deviation

of the starting time of the assigned shift from the starting time of the preferred shift is then minimized.

However, the personnel scheduling problem in call centres is considered to be less complicated than

the crew scheduling problem encountered in airline industry, since only one shift per day needs to be

assigned to the available staff. Also, there are far less regulations and constraints that need to be

taken into account in the rostering process. Similar to with the Preferential Bidding System for airline

scheduling, there is an integer linear program that needs to be solved for every employee, in order of

seniority. Hojati (2010) state that these separate ILP problems are too complicated to be solved with

an exact method and therefore uses a constructive heuristic based on sequential assignment of shifts to

employees.
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5. Methodology: Crew Rostering Solution

Methods

This chapter will discuss various modelling techniques that can be used in future studies on airline crew

rostering. The first step in constructing a model is translating the actual problem to a mathemati-

cal model. The different variations encountered in airline crew rostering literature will be discussed in

Subsection 5.1. To capture the time-space constraints associated with the activities in a roster model,

researchers often represent the model on a network. Some important aspects of this network represen-

tation will be discussed in Subsection 5.2. There are various techniques that can be used to solve an

airline crew rostering problem. Some important solution techniques will be explained in Subsection 5.3.

5.1 Model Formulation

The airline crew rostering problem is a combinatorial optimization problem, and belongs to the class

of NP-complete problems (Deveci and Demirel, 2018) and as such also an NP-hard problem (Lucic

and Teodorovic, 2007). In essence, there are two main groups of solution methodologies to the crew

rostering problem: heuristics and mathematical programming methods (Bergh et al., 2013). However,

many researchers adopt hybrid methods, combining mathematical programming techniques with (meta-

)heuristics to solve the problem. Mathematical programming methods encountered in literature are based

on integer programming and often adopt a set-partitioning problem formulation (Deveci and Demirel,

2018; Kasirzadeh et al., 2017). Furthermore, some research papers address the crew rostering problem in

an operational and dynamic context, and as such include stochastic elements in the model formulation.

This subsection will provide some background on these various mathematical programming methods, in

order to give insight into how the crew rostering problem could be modelled.

Integer Linear Programming (ILP)

An Integer Linear Programming (ILP) model is the linear programming model with the additional

restriction that the decision variables must have integer values (Hillier and Lieberman, 2015). In a crew

rostering model the decision variable values often are restricted even more and the model is in the form

of a Binary Integer Programming (BIP) model, meaning that decision variables must be either a 0 or

a 1. In the case of the airline crew rostering problem, the decision variables then become (Deveci and

Demirel, 2018):

xir =

{
1 if crew member i receives roster r

0 otherwise
(5.1)

Set-partitioning problem

The set-partitioning problem is a special type of integer programming problem that is formulated as

follows (quoting Balas and Padberg (1976)):
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”Given:

• a finite set M ;

• a constraint set defining a family F of ’acceptable’ subsets of M ; and

• a cost (real number) associated with each member of F ;

find a minimum-cost collection of members of F which is a partition of M”

In an airline crew rostering problem, the goal is to generate a roster for each crew member such that

all pairings that need to be flown are covered (Kasirzadeh et al., 2017). As such, the problem can be

considered a set-partitioning problem, since the set of pairings need to be covered by a set of rosters. For

the airline crew rostering the set-partitioning problem can be expressed mathematically as follows:

R∑

j=r

apr · xir = 1, ∀j ∈ P (5.2)

apr =

{
1 if pairing p is covered by roster r

0 otherwise
(5.3)

Stochastic programming

Traditional airline crew scheduling models consider the deterministic problem without considering po-

tential disruptions (Deveci and Demirel, 2018). Some recent papers do address these stochastic factors

and aim to generate robust crew schedules, capable of withstanding these disruptions. Rosenberger

et al. (2002) developed a stochastic model for airline operations based on a discrete event semi-Markov

process and simulates disturbances using Monte Carlo sampling. The considered operational recovery

instruments are delays, cancellations, deadheads, plane ferries, reserve crews, reconstructed pairings and

rerouting passenger itineraries. Ionescu and Kliewer (2011) present a stochastic crew scheduling model

that incorporates crew swap opportunities between pairings during the crew scheduling process. Ingels

and Maenhout (2018) evaluate the impact of proactively scheduling of overtime as a buffer in the crew

scheduling problem.

An important distinction is made between stochastic programming and robust optimization. In stochastic

programming, the goal is to optimize the expected value of the objective function and as such aims at

providing solutions that perform well on average (Hillier and Lieberman, 2015). Robust optimization on

the other hand avoids using probability distributions and focuses on providing a conservative solution

that can handle the worst possible scenario (Hillier and Lieberman, 2015). Hillier and Lieberman (2015)

state that stochastic programming is more appropriate for problems with soft constraints while robust

optimization is better suited for problems with hard constraints.

In stochastic programming, models can be developed that addresses problems in a dynamic context,

where certain decisions can be delayed until later in the process. This is called stochastic programming

with recourse, and with such a model decisions can be delayed such that some or all of the uncertainties in

the problem are eliminated (Hillier and Lieberman, 2015). Also, corrective actions can be made later in

the process in the case that initial decisions show to have undesirable consequences. A two-stage problem

for example is a stochastic programming with recourse problem where decisions are made in two stages.

Multistage problems consider multiple stages where decisions are made as uncertainty is eliminated from

the model over time (Hillier and Lieberman, 2015).
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Dynamic modelling

While current state-of-the-art airline crew rostering models only consider the problem in a static context,

recently Smet et al. (2014) proposed a dynamic crew rostering model for the nurse rostering problem.

The dynamic crew rostering model has a stepping horizon instead of a fixed roster horizon. With a

roster horizon of four weeks and a roster period of one week, the stepping horizon procedure entails that

every week a new ’fourth week’ is added to the roster. As such, rostered activities from preceding roster

periods are taken into account as restrictions for the current roster period. An observation made by

Smet et al. (2014) concerns the fact that in the operational environment a-priori known future events

could also be incorporated in the crew rostering process. For example, there might be pre-assigned crew

activities such as holidays or training activities already rostered to take place in future roster periods

which could be taken into account in the current roster period.

5.2 Network Representation

In the modelling of the airline crew rostering problem, researchers often use network flow models (Ernst

et al., 2004a; Kasirzadeh et al., 2017). The airline crew rostering problem is very suitable for such a

network flow model since the activities that need to be rostered are described in time and space. Also,

crew members can be seen as resources or commodities that need to be distributed over the network of

pairings (Cappanera and Gallo, 2004). This section discusses the main concepts of network flow models.

Minimum cost multi-commodity flow problem

The airline crew rostering problem is an example of the general assignment problem, and as such is a

special type of the minimum cost multi-commodity flow problem (Hillier and Lieberman, 2015). The

minimum cost flow problem is the most general network model and encompasses many other specific

problems such as the shortest path problem, the minimum spanning tree problem and the assignment

problem. The minimum cost flow problem considers flow through a network with limited arc capacities

(Hillier and Lieberman, 2015). The objective in the minimum cost flow problem is to minimize the total

cost of sending the available commodities through the network to satisfy the given demand (Hillier and

Lieberman, 2015). The airline crew rostering problem is a multi-commodity flow problem and each crew

member corresponds to a commodity (Cappanera and Gallo, 2004).

Time-space network

A roster of a crew member can be represented on a path along a set of pairings defined on a directed

acyclic time-space network. For every crew member, a resource constrained shortest-path needs to be

found, alternating between activity arcs such as pairing arcs and compatibility arcs that link together pairs

of activities that can be assigned consecutively (Cappanera and Gallo, 2004; Kasirzadeh et al., 2017). The

resource constrained shortest-path problem then can be solved using various solution algorithms such as

dynamic programming, labelling algorithms and constraint programming (Irnich and Desaulniers, 2005).

In Figure 5.1, an example of a time-space network representation can be found.
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Figure 5.1: Example of a directed acyclic time-space network representation of a personalized crew

rostering subproblem (based on Saddoune et al. (2012) and Kasirzadeh et al. (2017)).

5.3 Solution Techniques

In academic literature, many different solution methodologies are adopted in the modelling of the airline

crew rostering problem. A distinction can be made between mathematical programming techniques

and heuristic techniques, where mathematical programming focuses on finding the optimal solution and

heuristics aim for finding a feasible sub-optimal solution in reasonable computational time (Burke and

Kendall, 2005). This subsection addresses some of the main solution techniques that are used to solve

the airline crew rostering problem.

Mathematical Programming

Mathematical programming techniques are aimed to find the optimal solution to a given optimization

problem. This section discusses some important mathematical programming techniques that are often

used in airline crew rostering.

Linear Programming relaxation

Integer Linear Programming (ILP) and Binary Integer Programming (BIP) models may seem ’easier’ to

solve than general Linear Programming (LP) models, since only the integer or binary solutions have to

be considered. However, the opposite is true (Hillier and Lieberman, 2015). The linear characteristics

of LP models can be exploited very efficiently by LP algorithms such as the simplex method. Therefore,

large ILPs and BIPs are often solved by relating the ILP problem to the corresponding LP problem.

This corresponding LP problem is called the Linear Programming (LP) relaxation of the considered ILP

problem. The LP relaxation is the same problem as the ILP problem, except that the restriction for

integer solutions is removed (Hillier and Lieberman, 2015). The solution to the LP relaxation of the

problem then provides an upper bound to the solution of the actual ILP problem. However, for some

special types of ILP problems it is guaranteed that the solution of the LP relaxation is integer and thus

the optimal integer solution.
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Lagrangian relaxation

Another type of relaxation of a mathematical programming problem is the Lagrangian relaxation. The

Lagrangian relaxation of an LP (or ILP or BIP) problem removes the functional constraints from the

model and adds them in the objective function with a Lagrange multiplier that penalizes if a constraint

cannot be satisfied (Hillier and Lieberman, 2015). The Lagrangian relaxation of an LP problem can be

solved extremely efficiently, but similar to the LP relaxation only provides a tight upper bound to the

optimal solution value.

Branch-and-bound

Since the airline crew rostering problem is a bounded integer problem, there are only a finite number of

feasible solutions. Therefore, mathematical programming methods used to find the optimal solution are

often based on an enumeration procedure (Hillier and Lieberman, 2015). However, for large problems

enumerating all possible solutions can be very computationally expensive. Therefore, mathematical pro-

gramming techniques are used to guide which solutions are considered in the enumeration procedure.

An efficient way to structure such an enumeration procedure is by dividing the problem into smaller

sub-problems and then discarding some of the sub-problems that have sub-optimal solution sets. This

procedure is called the branch-and-bound technique.

The branch-and-bound scheme can be represented by a solution tree, where the overall problem is

subdivided into smaller and smaller sub-problems. Sub-problems or branches are explored and the

bounds on the optimal solution within such a sub-problem is determined. Lagrangian relaxation is often

used in this bounding procedure, since it can quickly provide an estimation of the bounds of the optimal

solution within the sub-problem (Hillier and Lieberman, 2015). These bounds are then compared to the

optimal solution found by the algorithm so far in another sub-problem. If the current optimal solution

is better than the bounds of the sub-problem under consideration, it can be concluded that no better

solution can be found in the entire sub-problem. As such, the sub-problem can be discarded and the

complete enumeration of all possible solutions within the sub-problem is avoided.

Column generation

Another method to structure and reduce the mathematical enumeration procedure is by using column

generation. In column generation, the model starts with an initial subset of variables that permits an

initial feasible solution. Afterwards, this initial feasible solution is improved by identifying additional

variables that have reduced costs such that an improved LP solution can be achieved (Hooker and van

Hoeve, 2018). This process is iterated until there are no variables left that when added to the model

would improve the solution. Then, it can be concluded that the current solution is optimal. This pro-

cedure is called column generation since variables correspond to columns in the matrix representation

of an LP model (Hooker and van Hoeve, 2018). At any point in the iterative process, the current LP

model with the current set of variables is called the Restricted Master Problem (RMP). The procedure

of identifying the variables that need to be added to the RMP is called the pricing problem.

In the airline crew rostering problem, the decision variables in the set-partitioning problem formulation

correspond to a roster for a crew member (Deveci and Demirel, 2018). As such, in the column generation

scheme finding a new column to be added to the RMP corresponds to finding a resource-constrained

shortest path with reduced cost (Kasirzadeh et al., 2017). Often, the column generation technique is

embedded in a branch-and-bound tree. As such, every sub-problem in the brand-and-bound tree is solved

using a column generation procedure (Ernst et al., 2004a). This technique that combines branch-and-

bound with column generation is called branch-and-price (Hooker and van Hoeve, 2018).
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Heuristics

A heuristic is defined as an ”intuitively designed procedure that does not guarantee an optimal solution”

(Hillier and Lieberman, 2015). As such, problem specific knowledge is exploited in order to define a set

of rules that need to be followed in order to construct a good feasible solution. In academic literature,

heuristics are often divided in constructive heuristics and improvement heuristics (Bergh et al., 2013;

Ernst et al., 2004a). Meta-heuristics and hyper-heuristics can be considered special types of heuristics

that combine different basic heuristics in order to explore the search space more efficiently (Blum and

Roli, 2001; Burke and Kendall, 2005).

Constructive heuristic

A constructive heuristic is a heuristic method that is used to produce a solution from scratch. Since

constructive heuristics are considered to be the fastest methods to construct near-optimal feasible so-

lutions from scratch (Abobaker et al., 2011), they are often used for very large and complex problems

such as the airline crew rostering problem (Ernst et al., 2004a; Bergh et al., 2013; Blum and Roli, 2001).

Constructive heuristic methods include constructing rosters day-by-day, pilot-by-pilot or by assigning

high priority activities first (Gamache and Soumis, 1998).

An example of a constructive heuristic is provided in Caprara et al. (1998). The constructive heuristic

of Caprara et al. (1998) constructs rosters sequentially for each crew member. For each roster, an initial

activity is selected and afterwards, sequential activities are chosen to be added to the roster. Once a

roster is completed, the activities in the roster are eliminated from the problem and the next roster

will be constructed. In these kinds of constructive heuristics, the challenge is to develop sophisticated

algorithms that govern the selection of the consecutive activities to be assigned to the roster.

The main advantages of constructive heuristics are considered their computational efficiency and the

transparency in how the rosters are constructed. However, the quality of the solutions produced are

highly dependent on the quality of the construction rules where the algorithm is based on. Although a

sophisticated constructive heuristic could produce very good or even optimal solutions, a constructive

heuristic lacks a global view on the problem and as such the gap between the constructed solution and

the optimal solution cannot be quantified (Cappanera and Gallo, 2004).

Improvement heuristics

Improvement heuristics are intuitively designed procedures to improve a solution. An improvement

heuristic requires to have an initial solution as input. A common solution method therefore is to first

use a constructive heuristic to quickly produce a good initial solution and then exploit improvement

heuristic to further improve this initial solution. Improvement heuristics are often iterative procedures,

where each iteration tries to further improve the solution.

There are various different kinds of improvement heuristics. Local search procedures try to improve the

current solution by searching in the neighborhood of the current solution (Hillier and Lieberman, 2015).

A local search heuristic is therefore also called a hill-climbing procedure (Hillier and Lieberman, 2015).

An example of such a local search heuristic is the gradient search procedure which aims to find the direc-

tion in the solution space in which the solution could be best improved. The gradient search procedure

is also referred to as the steepest descent or steepest ascent method, depending on whether the problem

is a minimization or maximization problem. A major drawback of local search methods is that they tend

to get stuck in local optima (Hillier and Lieberman, 2015).
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For assignment problems such as the airline crew rostering problem, an intuitive improvement procedure

is to swap activities of crew members. Jones (1989) for example explores swapping opportunities in

order to improve the initially constructed bidlines. The swapping algorithm of Jones (1989) identifies

swapping opportunities based on two parameters: the difference in starting date and the difference

in pairing length of two candidate pairings. Another swapping procedure proposed by Bianco et al.

(1992) identifies ”bottlenecks”, i.e. assignments with high associated costs, and then seeks a ”decreasing

alternating chain” to reduce the overall cost of the schedule. This decreasing alternating chain is a

rearrangement of assignments among a number of crew members in order to circumvent the bottleneck

arc, i.e. an assignment or chain of assignments that induces high costs.

Meta-heuristics

A meta-heuristic is defined as a ”general solution method that provides both a general structure and

strategy guidelines for developing a specific heuristic method to fit a particular kind of problem” (Hillier

and Lieberman, 2015). A meta-heuristic algorithm is characterized by its ability to escape from local

optima and as such provides a more robust search method than local search heuristics (Hillier and

Lieberman, 2015). In academic literature, airline crew rostering models based on the following meta-

heuristics have been considered (Lucic and Teodorovic, 2007; Maenhout and Vanhoucke, 2010):

• Simulated Annealing

• Genetic Algorithm

• Tabu Search

• Scatter Search

Lucic and Teodorovic (2007) investigated the use of Simulated Annealing, the Genetic Algorithm and

Tabu Search for the airline crew rostering problem, and concluded that the Simulated Annealing algo-

rithm produced the best results. Maenhout and Vanhoucke (2010) proposed a model based on the Scatter

Search meta-heuristic, which showed to be capable of producing near-optimal results in fractions of the

computational time required by models based on mathematical programming techniques. However, it

should be noted that each meta-heuristic has its own characteristics and advantages. Therefore, hybrid

methods could for example exploit the global search characteristics of the Genetic Algorithm and the

local search capabilities of Tabu Search (Hillier and Lieberman, 2015).

Hyper-heuristics

Hyper-heuristics operate at a higher level of abstraction than (meta-)heuristics and manage which lower

level heuristics should be applied at any given time, depending upon the characteristics of the region of

the solution space currently under exploration (Cowling et al., 2001). As such, hyper-heuristics can be

seen as ”heuristics to choose heuristics” (Ross, 2005).

There has been no research into the application of hyper-heuristics to the airline crew rostering problem.

However, hyper-heuristics have been used to model and solve personnel scheduling problems in other in-

dustries. Cowling et al. (2002) and Smet et al. (2014) adopt a hyper-heuristic method to tackle the nurse

rostering problem. Misir et al. (2011) take a hyper-heuristic approach to the security personnel routing

and rostering problem. In these scheduling problems. the low-level heuristics are for example heuristics

that govern the change, swap, addition and dropping of shift assignments (Cowling et al., 2002). The

hyper-heuristic as developed by Smet et al. (2014) then employs a ”tournament strategy”, where these

low-level heuristics are competing for the next solution step and the best performing procedure is selected.
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Due to the generic nature of a hyper-heuristic algorithm, it enables the modelling of problems with

variable characteristics (Cowling et al., 2001; Smet et al., 2014). Also, hyper-heuristics are considered to

be cheaper to implement and easier to use than problem specific (meta-)heuristics (Burke et al., 2003;

Cowling et al., 2001). In terms of performance, hyper-heuristics are unlikely to outperform exact or well-

developed problem-specific methods (Ross, 2005). However, when it is unknown what specific heuristic

could be used best for a certain problem, developing a hyper-heuristic could be a good alternative (Ross,

2005).

Artificial Intelligence

Artificial Intelligence (AI) methods solve problems by simulating certain human intelligence processes.

Examples of these intelligent processes are learning, reasoning and self-correction (Ernst et al., 2004a).

In this section some artificial intelligence techniques will be discussed that can be applied to the personnel

rostering problem.

Expert systems

An expert system is aimed to mimic the decision process of a human expert (Ernst et al., 2004a; Jones,

1989). In literature, expert system are also referred to as ’knowledge-based systems’ (Chow and Hui,

1993; Kwok et al., 1995). Also, ’case-based reasoning (CBR)’ is considered closely related. In case-based

reasoning, the system stores observed expert decisions on how to repair certain violations in the solution

as provided by the case-based reasoning program. This stored knowledge on expert decisions can then

be exploited by the program whenever a similar violation is encountered again (Burke et al., 2008).

Problem-specific heuristics, both constructive and improvement heuristics, can be considered expert

systems if the rules exploited by the heuristics are developed using expert knowledge. However, expert

systems are often interactive and provide decision support rather than being completely automated

(Burke et al., 2004; Jones, 1989). Advantages of expert systems over operational research (OR) techniques

are considered to be their efficiency in dealing with constraints and their expressiveness in providing

explanations when infeasibility is encountered (Kwok et al., 1995). However, the development of an

expert system is an intricate process and heavily depends on the availability and quality of expert

knowledge (Kwok et al., 1995).

Constraint logic programming

Constraint logic programming (CLP) methods describe complex combinatorial problems using ’domain

variables’, i.e. variables with a prescribed set of potentially feasible values (Ernst et al., 2004a). CLP

methods are exact methods and as such guarantee to provide an optimal solution to optimization prob-

lems (Bergh et al., 2013). CLP methods are considered to be efficient techniques to reduce the domain

of large combinatorial problems and as such decrease the solution time of the algorithm (Sellmann et al.,

2002).

Fahle et al. (2002) exploit CLP for the crew rostering problem in the column generation subproblems in

a set-partitioning problem. By doing so, the resource-constrained shortest path problem can be modelled

as a constraint and efficiently solved through domain reduction (Fahle et al., 2002). By reducing the

domain in the column generation subproblems, the unnecessary generation of numerous infeasible rosters

is avoided and the computational efficiency is increased significantly (Sellmann et al., 2002). However,

while CLP is considered to be very efficient in finding feasible solutions, CLP is considered less suitable

for optimization problems where there are many feasible solutions (Ernst et al., 2004b). As such, CLP is
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considered particularly useful for highly constrained problems where finding any feasible solution is the

main goal (Ernst et al., 2004a).

Machine learning

The concept of ’machine learning’ refers to the ability of a computer program to improve its performance

based previously generated results (Burke and Kendall, 2005). Three types of machine learning can be

distinguished: supervised, unsupervised and reinforcement learning (Burke and Kendall, 2005). With

supervised learning an algorithm is trained on a set of input-output pairs, i.e. the algorithm learns to

formulate a function that best describes the relations between the input-output pairs. In unsupervised

learning the output is not specified, but the algorithm ’learns’ to discover statistical patterns within the

data set in order to classify the data set. In reinforcement learning, in an iterative process the algorithm

receives feedback on the quality of its output where after it adjusts accordingly. Below, the tasks for

which machine learning algorithms are mainly applied for are listed (Burke and Kendall, 2005):

• Classification - assigning an input to a particular class;

• Regression - inferring a function in order to predict values for future input data;

• Sequence of actions - finding strategies to choose optimal actions based on the problem state;

• Data mining - discovering regularities and patterns in input data.

In the context of airline crew rostering, machine learning could involve learning to improve the rostering

process based on an assessment of previously generated rosters. In academic literature no model has

been found that incorporates such a learning process. However, Suraweera et al. (2013) developed a

model that used machine learning to infer crew rostering constraints from historical crew rosters.

In the broader context of personnel scheduling, two case studies have been found in academic literature.

Hao et al. (2004) developed a neural network for solving an airport ground staff scheduling problem.

Neural networks simulate the human brain by connecting various ’processing units’ that are connected

with each other (Burke and Kendall, 2005). Each connection between two processing units has a weight

factor that represents the relation between the two units. The model of Hao et al. (2004) contains

’assignment units’, ’day-off units’, ’demand units, ’validation units’ and ’work-time units’. The neural

network then is aimed to learn the values of the weight factors between these processing units that

yield the best solutions. Hao et al. (2004) compare the performance of the developed neural network to

three meta-heuristics algorithms: simulated annealing, tabu search and the genetic algorithm. Simulated

annealing has been shown to outperform the neural network, both in computational time and solution

quality. However, the neural network yields better results than the two other meta-heuristics, again both

in computational time and solution quality.

The second case study exploits pattern recognition to classify the quality of nurse rosters. The goal of

the model of Li et al. (2012) is to exploit pattern recognition to classify the quality of roster solutions on

the structure of the rosters rather than on the objective function cost value. The pattern recognition is

performed by a neural network where each neuron corresponds to a ’day-employee’ slot in the schedule.

Each neuron then can have five values, corresponding to an early shift, a day shift, a late shift, a night

shift or a day-off. The neural network then is aimed to classify input rosters as being either ’good’ or

’bad’ rosters, dependent on whether the objective function value is lower or higher than a threshold value.

The model has shown to classify rosters correctly in approximately 85% of the cases. The model of Li

et al. (2012) can be considered an alternative method to evaluate the quality of rosters without having

to calculate the exact value of the objective function. This evaluation model is problem-independent and

can be applied to rosters constructed using different approaches and solution methods.
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6. Synthesis

This chapter synthesizes the knowledge obtained from the literature study. First, an overview of the aca-

demic literature on airline crew rostering and the identified research gaps will be presented. Afterwards,

the main insights from the benchmark on crew rostering in other industries will be discussed. Finally,

an overview of the relevant solution methods and their characteristics will be presented.

6.1 Airline Crew Rostering

In academic literature on airline crew rostering, a distinction is made between three general approaches:

bidlines, equitability-based personalized rostering and the Preferential Bidding System (PBS). Equitaility-

based personalized rostering can be further divided in approaches that include preferences and approaches

that do not. Similarly, two types of Preferential Bidding Systems have been encountered in academic

literature. With weighted bids a priority factor is assigned to the preferences of crew members according to

their seniority level. In approaches that adopt strict seniority restrictions, the satisfaction of preferences

of a senior crew member is always prioritized over the satisfaction of one or more preferences of more

junior crew members. A taxonomy of the different airline crew rostering approaches can be seen in Figure

6.1.

Figure 6.1: Taxonomy of airline crew rostering approaches

Bidlines

The bidlines approach is the approach that used to be common practice in North American airlines

(Kasirzadeh et al., 2017). The advantage of bidlines over personalized approaches is that crew members

bid for entire rosters. As a result, crew members know exactly how their roster will look like (Kohl

and Karisch, 2004). However, after assignment of bidlines, certain pairings conflict with the individual

pre-assigned activities of crew members. Those conflicting pairings are then removed from these bidlines

and assigned to reserve crew (Campbell et al., 1997). This process is considered less efficient in terms of

crew costs than the direct construction of crew rosters as adopted in the personalized approaches (Kohl

and Karisch, 2004).

Academic literature on the bidline generation problem focuses on three research efforts: making the

bidline generation computationally more efficient such that larger problems can be solved in a shorter

amount of time, incorporating quality-of-life considerations within individual bidlines and ensuring an
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equitable qualtiy-of-life distribution among the generated bidlines. Table 6.1 gives an overview of the

bidline models discussed in this literature study.

Table 6.1: Overview of airline crew rostering literature on the bidlines approach (SPP = set-partitioning

problem, ES = expert system, ILP = integer linear programming, MCNF = multi-commodity network

flow)

Paper Obj. Function
Model

Formulation

Solution

Method

Roster

Horizon

Indication of

run time

Marsten et al. (1979) Equitability SPP
Dual simplex method,

branch-and-bound
Week

120 bidlines

in 20 hours

Jones (1989) Costs & Equitability ES
Constructive heuristic,

improvement heuristic
Month

60 bidlines

in 1 hour

Jarrah and Diamond (1997) Costs & Quality SPP

Column generation,

greedy heursitic,

improvement heuristic

Month
220 bidlines

in 10 minutes

Campbell et al. (1997) Costs & Quality ILP
Simulated annealing,

greedy heuristic
Month

220 bidlines

in 10 hours

Christou et al. (1999) Costs & Quality MCNF
Constructive heuristic,

genetic algorithm
Month

310 bidlines

in 4.5 hours

Weir and Johnson (2004) Costs & Quality ILP
Branch-and-price

interior point method
Month

150 bidlines

in 2 hours

Boubaker et al. (2010) Equitability SPP
Branch-and-price,

DCA heuristic
Month

560 bidlines

in 1 hour

Saddoune et al. (2010) Costs SPP
Branch-and-price,

DCA heuristic
Month

7500 flights

in 44 hours*

* Problem size is in number of flights since the model is an integrated bidline scheduling model

Equitability-based personalized rostering

Outside of North America, equitability-based personalized rostering is the most common approach to

the airline crew rostering problem (Kasirzadeh et al., 2017). Equitability-based personalized rostering

involves constructing equitable rosters for all crew members directly, taking pre-assigned activities into

account. Equitability-based personalized rostering. The personalized rostering problem is considered to

be much more difficult to solve than the bidlines problem, because of its increased combinatorial com-

plexity and additional constraints (Grosche, 2009; Ryan, 1992). However, taking pre-assigned activities

into account during the rostering process avoids conflicting activities and thus is considered to be more

efficient in terms of costs (Kohl and Karisch, 2004).

The majority of the research on equitability-based personalized rostering focuses on developing efficient

solution methodologies to solve problems of realistic problem sizes in reasonable computational time.

The management of crew preferences is another focus in recent research efforts. Crew preferences can

be either included in the pre-assignment of activites, as soft constraints in the objective function or as

a hard constraint, for example to ensure that a minimum number of preferences are satisfied. Table 6.2

presents some important characteristic of equitability-based personalized rostering models encountered

in academic literature. As a note, if the objective function of a model involves the maximization of the

satisfaction of crew preferences this is considered to be a ’quality’ component.
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Table 6.2: Overview of airline crew rostering literature on equitability-based personalized rostering (SPP

= set-partitioning problem, ES = expert system, ILP = integer linear programming, MCNF = multi-

commodity network flow)

Paper Obj. Function
Model

Formulation

Solution

Method

Roster

Horizon

Indication of

run time

Nicoletti (1975) Equitability MCNF
Day-by-day heuristic,

out-of-kilter algorithm
Week

100 crew membres

in 4 minutes

Ryan (1992) Costs SPP
Enumeration,

filtering techniques
Month

450 crew members

in 2 hours

Gamache et al. (1999) Costs SPP Column generation Month
380 crew members

in 45 minutes

Fahle et al. (2002) Costs SPP
Column generation,

Constraint programming
Month

70 crew members

in 50 minutes

Cappanera and

Gallo (2004)
Costs MCNF

Graph theory,

CPLEX
Month

50 crew members

in 4 hours

Kohl and

Karisch (2004)

Costs &

Quality
SPP

Column generation,

constructive heuristic,

improvement heuristic

Month
1600 crew members

in 10 hours

Lucic and

Teodorovic (2007)
Equitability ILP

Greedy heuristic,

simulated annealing,

genetic algorithm,

tabu search

Month

50 crew members in

SA: 20 minutes

GA: 12 minutes

TS: 4 minutes

Maenhout and

Vanhoucke (2010)

Costs, Quality

& Equitability
SPP

Hybrid scatter search

meta-heuristic
2 Weeks

100 crew members

in 2 minutes

Kasirzadeh (2017) Costs & Quality SPP Column generation Month
300 crew members

in 3 hours

Armas et al. (2017)
Costs &

Equitability
SPP

Multi-start

randomized heuristic
Month

20 crew members

in 1 minute

Doi et al. (2018) Equitability SPP
Greedy heuristic,

POPMUSIC matheuristic
Month

300 crew members

in 20 minutes

Preferential Bidding System

In a Preferential Bidding System (PBS) the satisfaction of preferences of senior crew members is priori-

tized over the satisfaction of the preferences of junior crew members. In literature, two ways to do so are

considered: weighted bids and strict seniority. With weighted bids, a priority ranking function is used

to promote the preference satisfaction of crew members based on their seniority level as expressed in a

weight factor. With strict seniority restrictions, the maximization of the bidding score of a crew member

can never go at the expense of the bidding score of a more senior crew member.

The academic literature on the Preferential Bidding System (PBS) is limited. A reason could be that the

differentiation in seniority between crew members severely complicates the rostering problem. The PBS

problem is considered even more complex than the equitability-based personalized rostering problem,

since a set-partitioning problem needs to be solved for each crew member in order to check whether a

feasible solution can still be obtained for the remaining crew members (Desaulniers et al., 1998). This

significantly increases the complexity of the problem. The computationally expensive backtracking pro-

cess can result in over 100 hours of run time required to solve a PBS problem of just 90 crew members

(Achour et al., 2007). In order to avoid this expensive backtracking process, Gamache et al. (2007)

have developed a feasibility test for the PBS with strict seniority restrictions. However, their paper only

reported results on the computational time required to perform the feasibility test rather than testing

the PBS model with the feasibility test included on the actual crew rostering problem.
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Table 6.3: Overview of airline crew rostering literature on the Preferential Bidding System (SPP =

set-partitioning problem, ES = expert system, ILP = integer linear programming, MCNF = multi-

commodity network flow)

Paper Obj. Function
Model

Formulation

Solution

Method

Roster

Horizon

Indication of

run time

Gamache and

Soumis (1998)
Quality SPP

Greedy heuristic,

column generation
2 Weeks

20 crew members

in 10 minutes

Gamache et al. (1998) Quality SPP
Greedy heuristic,

Column generation
Month

100 crew members

in 5 hours

Achour et al.

(2007)
Quality SPP Column generation Month highly variable

Gamache et al. (2007) Quality SPP

Column generation,

graph coloring,

tabu search

Month not reported

6.2 Research gaps

Academic literature on airline crew rostering has been focused on developing more efficient solution

methods within a certain specific crew rostering approach. However, a crew rostering approach should

not be considered a fixed and rigid framework. A consistent evaluation of the impact of crew rostering

elements on the efficiency and quality of the generated rosters could provide insights into how airlines

should formulate their crew rostering approach. The following research gaps concerning these crew

rostering elements have been identified:

1. Integration of the rostering process - the assignment of pairings, vacations, training activities

and reserve blocks could be integrated into one rostering process. It can be investigated whether the

integration of the rostering process of these different activities results in increased roster efficiency;

2. Impact of equitability and seniority measures - equitability and seniority considerations can

be taken into account as constraints or objective function coefficients in the crew rostering model.

The impact of these different measures on the cost and the quality of the generated roster can be

evaluated;

3. Simulation of the dynamic rostering process - the rolling horzion procedure can be simulated.

With a dynamic roster model, global constraint consistency, the influx of crew requests and the

effect of disturbances can be investigated;

4. Consistent evaluation of crew rosters - a method for the consistent evaluation of rosters can

be developed. This method should take the generated rosters as input and should be independent

of the approach and method adopted in the generation of the rosters.

6.3 Benchmark

A benchmark was performed to get a better understanding of the generic personnel rostering problem

and its application in different contexts. Following different classifications, the airline crew rostering

problem could be considered a tour scheduling problem, a non-cyclic scheduling problem and a mo-

bility centred planning problem. Also, the airline crew rostering problem could be seen as integrating

the days-off scheduling, lines of work construction and staff assignment modules of personnel scheduling.

Also, the literature on personnel rostering in the public transit, health care and call centre industries was

assessed. In these other domains of personnel rostering, the dissonance in researchers’ opinions on the

best solution methodology for the rostering problem was considerably smaller. In the airline industry,
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researchers consider both mathematical programming methods and (meta-)heuristic methods. In the

other industries however, the overall consensus was that large rostering problems are too complex to be

solved by mathematical programming methods and that heuristics are needed in order to refrain the

model from becoming intractable.

6.4 Solution Methods

The crew rostering problem is a combinatorial optimization problem. Researchers have adopted different

ways of representing the problem mathematically and different computational techniques to solve the

problem. Table 6.4 provides an overview of the main solution methods encountered in academic literature.

Table 6.4: An overview of the main solution methods for crew rostering problems

Model

Formulation

Network

Representation

Solution

Techniques:

Math. Program.

Solution

Techniques:

Heuristics

Solution

Techniques:

AI

Integer Linear

Programming

Multi-commodity

network flow
LP relaxation

Constructive

heuristics
Expert systems

Set-Partitioning

Problem

Time-space

network

Lagrangian

relaxation

Improvement

heuristics

Constraint

programming

Stochastic

programming
Branch-and-bound Meta-heuristics

Machine

learning

Dynamic

modelling
Column generation Hyper-heuristics

Mathematical programming methods for the crew rostering problem are exact methods that solve for

optimality using branch-and-bound and column generation. Numerous researchers have pointed out that

realistic, large crew rostering problems are too complex for mathematical programming methods (De-

saulniers and Hickman, 2007; Hojati, 2010; Maenhout and Vanhoucke, 2010; Xie et al., 2017). Especially

for research purposes, hours of running times induced by mathematical programming methods are con-

sidered inadequate. Heuristics on the other hand exploit problem-specific knowledge which significantly

speeds up the rostering process. The most striking example is the model of Maenhout and Vanhoucke

(2010). In an average computational time of only 127 seconds the hybrid scatter search heuristic obtains

results that deviate an average of 1.30% from the result obtained by the exact branch-and-price algorithm

with an average run time of over 20 hours.

Heuristic methods for the crew rostering problem often approach the problem in two phases. First,

using a constructive heuristic an initial solution is produced from scratch. Afterwards, an improvement

heuristic or meta-heuristic is used to improve this initial solution. In academic literature, no research has

been found that used hyper-heuristics or machine learning for the airline crew rostering problem. There

have been some research studies using these techniques for other personnel scheduling problems, but also

in this broader context the potential of using these novel solution methods for the personnel scheduling

problem is yet to be explored. Hyper-heuristics show promising results when the aim is to develop a

fast and generic research model. Also, hyper-heuristics allow for the incorporation of machine learning

techniques, learning to select the appropriate low-level heuristic from historical data (Burke et al., 2010).
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7. Conclusion

The purpose of this literature study was threefold: to provide an overview of the academic literature

on airline crew rostering, to identify potential subjects for future studies and to identify modelling tech-

niques that can be used to address the identified research gaps.

Regarding the first objective, it has been found that airline crew rostering can be done in various

ways following different approaches. North American airlines traditionally adopt the bidlines approach,

where anonymous rosters are made on which the crew members place their bids. In the rest of the

world, personalized rostering approaches are more common. Academic literature on crew rostering has

followed separated paths for these different approaches, each of which focused on developing efficient

solution methods to solve the crew rostering problem within the framework associated with a specific

crew rostering approach. However, in reality, CLA rules and regulations evolve over time through

negotiations between airlines and labor unions. Besides these CLA regulations, other strategic decisions

of airlines concerning the rostering process include how crew preferences are managed and what objectives

are pursued. As such, a crew rostering approach should not be considered a fixed and rigid framework.

Future studies therefore should provide insights on how certain elements of a crew rostering approach

affect the efficiency and quality of the rostering process. The following crew rostering elements have been

identified:

(a) Pre-assigned activities - pre-scheduled activities such as vacations and training days;

(b) Crew preferences - pairings or days off preferred by crew members;

(c) Equitability measures - measures to create an even balance in roster characteristics;

(d) Seniority measures - measures to prioritize the satisfaction of senior crew members;

(e) Roster horizon - the number of days or weeks before operation for which a crew roster is generated;

(f) Roster period - the number of days or weeks of the period that is rostered.

Four different research gaps have been identified, each of which deals with certain crew rostering elements:

1. Integration of the rostering process - the assignment of pairings, vacations, training activities

and reserve blocks could be integrated into one rostering process. It can be investigated whether the

integration of the rostering process of these different activities results in increased roster efficiency;

2. Impact of equitability and seniority measures - equitability and seniority considerations can

be taken into account as constraints or objective function coefficients in the crew rostering model.

The impact of these different measures on the cost and the quality of the generated roster can be

evaluated;

3. Simulation of the dynamic rostering process - the rolling horzion procedure can be simulated.

With a dynamic roster model, global constraint consistency, the influx of crew requests and the

effect of disturbances can be investigated;

4. Consistent evaluation of crew rosters - a method for the consistent evaluation of rosters can

be developed. This method should take the generated rosters as input and should be independent

of the approach and method adopted in the generation of the rosters.
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From the academic literature on personnel rostering, an overview was made on what modelling techniques

could be used for the assessment of the identified research gaps. The mathematical model formulation of

the problem, its network representation and possible solution techniques were discussed. Numerous re-

searchers have pointed out that realistic, large crew rostering problems are too complex for mathematical

programming methods. Especially for research purposes, computational speed might be considered more

important than proven optimality. Heuristics exploit problem-specific knowledge which can significantly

speed up the rostering process. In academic literature on airline crew rostering, most heuristic methods

combine constructive heuristic with improvement (meta-)heuristics. In a benchmark on personnel ros-

tering in other industries, two alternative solution methods were found: hyper-heuristics and machine

learning. Future studies could test the viability of using these novel methods for the airline crew rostering

problem.

The identified research gaps require the simulation and testing of different crew rostering approaches.

Adaptivity and computational efficiency are therefore considered essential requirements for the crew ros-

tering model that should be developed. The research objective therefore is the following:

Research objective: to provide insight into the impact of crew rostering elements on the efficiency

and quality of the generated rosters, by developing a fast and adaptive crew rostering model, simulating

different rostering approaches and evaluating the generated crew rosters.

The assessment of the impact of crew rostering elements can provide airlines with insights on how the

efficiency of their adopted rostering approach could be improved or how they can improve the quality-

of-life aspects of their crew schedules. Moreover, a fast and adaptive crew rostering model could serve

as a simulation tool for airlines during Collective Labour Agreement (CLA) negotiations with labour

unions. Such a simulation model can quantify the impact of new rules and regulations on the efficiency

and quality of the crew rostering process. This is considered a major asset for airlines during CLA

negotiations, assisting airlines in efficiently picking their battles.
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APPENDIX A: ALGORITHM SELECTION

Ten different algorithms have been tested for the pairing
assignment module of the simulation model. This section
discusses the algorithms, their compared performance and
finally the selection of the algorithm adopted in the simula-
tion model.

A. Algorithms

Below, a short explanation of each of the ten tested
pairing assignment algorithms can be found.

1) Random: The random algorithm is a constructive
algorithm where at every step a random pairing is selected.
Pilots are then filtered based on whether the selected pairing
fits in the roster of the pilot, after which the pairing is
assigned to a random available pilot.

2) Heuristic 1: Based on the assignment relaxation of
the mathematical model, the first of the two constructive
heuristics first selects a pilot and then selects the pairing
that should be assigned to that pilot. The pilot selection
heuristic selects the pilot with the highest cost if no pairing
would be assigned to that pilot, i.e. either cost due to lost
days or due to a penalty for next week’s roster. If multiple
pilots have the same cost if no pairing is assigned, the
pilot with the minimum number of assignment options is
selected. After the pilot is selected, the pairing heuristic
first filters on those pairings that can be assigned to the
selected pilot. The pairing with the minimum assignment
cost then is selected to be assigned to the selected
pilot. If multiple pairings have the same assignment cost,
the pairing with the minimum assignment options is selected.

3) Heuristic 2: Based on the assignment relaxation of the
mathematical model, the second constructive heuristic first
selects a pairing and then selects a pilot that will get that
pairing assigned. The pairing with the minimum number of
assignment options is selected. After the pairing is selected,
the pilot heuristic first filters on those pilots that can have
the selected pairing assigned. Afterwards, the pilot that has
the minimum number of assignment options is selected.

4) LP-bipartite: The Linear Programming (LP) bipartite
algorithm is based on the bipartite relaxation of the
mathematical model. The LP-bipartite algorithm exploits
the Gurobi Optimizer in order to find the minimum cost
bipartite solution, i.e. the minimum cost solution with each
pilot having at most one pairing assigned.

5) LP-complete: The Linear Programming (LP) complete
algorithm exploits the Gurobi Optimizer in order to find
the minimum cost solution to the complete set-partitioning
problem. The solution of the LP-complete algorithm is
considered the optimal solution and serves as the reference
for solution quality for the other algorithms.

6) Hungarian: This pairing assignment algorithm uses
the Hungarian algorithm in order to find the minimum cost
bipartite solution. The Hungarian algorithm is a classic
assignment algorithm that solves the weighted bipartite
matching problem by performing a set of matrix operations
on the bipartite cost matrix that encompasses the roster
cost of each pilot-pairing assignment (Hillier & Lieberman,
2015).

7) Hungarian Heuristic: The Hungarian Heuristic
algorithm is a constructive algorithm where the Hungarian
algorithm is applied iteratively. The complete set of pairings
is split up in two sets, split up by starting date of the
pairing. The split is made such that each set has no two
pairings that could potentially be assigned to a single pilot.
Afterwards, the problem is solved by first assigning the first
set of pairings using the Hungarian bipartite algorithm and
then doing the same for the second set of pairings.

8) Hungarian Improvement All: The Hungarian
Improvement algorithm can be considered an improvement
heuristic with the Hungarian bipartite solution as the initial
solution. This initial solution then is improved by searching
for assignments that improve the remaining bipartite
solution. As such, the algorithm exploits the resemblance
of the weekly crew rostering problem to a minimum-cost
bipartite matching problem.

9) Hungarian Improvement 5: This algorithm follows the
same method as the Hungarian Improvement All algorithm.
The difference is that this configuration considers just five
pairings per pilot in the search for assignments that would
improve the remaining bipartite solution.

10) Hungarian Improvement 1: This algorithm follows
the same method as the Hungarian Improvement All algo-
rithm. The difference is that this configuration considers just
one pairing per pilot in the search for assignments that would
improve the remaining bipartite solution.

B. Algorithm Comparison

The algorithms have been tested on 44 problem instances
that correspond to different roster weeks of a small long-haul
aircraft division. The experiments have been conducted on a
HP Elitebook 8570w with an Intel(R) Core(TM) processor
running at a rate of 2.40 GHz. The algorithms are coded
in Python. For the Linear Programming (LP) algorithms,
version 8.1 of the Gurobi Optimizer is used.

The algorithms have been compared on three performance
criteria: solution quality, computational time and adaptability.

1) Solution Quality: The LP-complete algorithm finds the
minimum cost solution to the complete problem and serves
as a reference for algorithm comparison on solution quality.
The median values of the different algorithms have been
compared to the median optimal solution as produced by
the LP-complete algorithm. In the evaluation, per algorithm



the deviation of the median from optimal is averaged over
the two problem sets. The results, depicted in box plots, can
be found in Figures 17 and 18.

Fig. 17. Algorithm Comparison: Objective Function (1)

Fig. 18. Algorithm Comparison: Objective Function (2)

2) Computational Time: The added value of the de-
veloped simulation model over commercial software is its
adaptability and speed. Therefore, besides solution quality,
computational time was the second major evaluation criteria
during algorithm selection. Figures 19 and 20 present the
box plot comparison in computational time of the different
algorithms. Important to state is that the computational time
as reported in this subsection and on which the algorithms
are compared is the computational time required solely
for pairing assignment. Pre-processing and post-processing,
which takes around 90 seconds these problem instances, is
not included in the algorithm evaluation and comparison.

Fig. 19. Algorithm Comparison: Computational Time (1)

Fig. 20. Algorithm Comparison: Computational Time (2)

3) Adaptability: Besides having high solution quality and
low computational time, an additional requirement for the
pairing assignment algorithm in the simulation model is that
it should be ’adaptable’. In this study, the adaptability of the
algorithms is assessed on two aspects. Firstly, the algorithm
should be capable of handling changing rostering rules.
Secondly, the algorithm should perform well for varying
problem sizes.

The first aspect of these two is assessed qualitatively. Over-
all, the algorithms that exploit problem-specific knowledge
to make pilot-pairing assignment decisions are expected to
have difficulties in adapting to changing rostering rules. The
algorithms that fall into this category are the constructive
heuristics, Heuristic 1 and Heuristic 2. These algorithms
therefore are considered to be less adaptable than the al-
gorithms that rely solely on a pilot-pairing cost matrix,
the construction of which is easily adaptable to changing
rostering rules.

Regarding the second aspect, the adaptability to varying
problem sizes, the pairing assignment algorithms have been
tested on a number of problem instances that correspond to
roster weeks of a medium size long-haul aircraft division.
These problem involve a significant increase in problem
size, having around 450 pilots and 270 pairings compared



to around 150 pilots and 100 pairings for the small long-
haul aircraft division used for the other evaluation criteria.
Considering that the simulation model should also be able
to solve these larger problems efficiently, the computational
time required by the algorithms to solve these large problems
has been tested.

From the results as presented in Table II it becomes clear
that the computational time of the linear programming algo-
rithms and specifically the LP-complete algorithm greatly
increases for larger rostering problems. The constructive
heuristics and the Hungarian algorithm on the other hand
seem to be barely affected by the increase in problem
size. The Hungarian Improvement algorithm is considered
particularly adaptable to variations in problem sizes, since its
configuration can be adjusted to the size of the considered
problem instance. For large problems, the search for assign-
ments that improve the remaining bipartite solution can be
limited in order to gain computational efficiency at a small
cost of solution quality.

TABLE II
ALGORITHM COMPARISON: ADAPTABILITY

Problem Instance 1 Problem Instance 2
Random 27s 30s
Heuristic 1 27s 25s
Heuristic 2 33s 31s
LP-complete 8h 03m 9h 19m
LP-bipartite 1h 06m 1h 26m
Hungarian 5s 5s
Hung-Heur 3m 08s 3m 28s
Hung-Imp-All 31m 21s 22m 09s
Hung-Imp-5 16m 32s 12m 04s
Hung-Imp-1 4m 52s 3m 34s

C. Algorithm Selection
The algorithms are compared on three performance crite-

ria: solution quality, computational time and adaptability. All
three criteria are considered equally important and therefore
the total score of an algorithm in the trade-off is the sum of
the scores on each individual criterion. A five-point grading
scale is adopted, ranging from -2 (−−) to +2 (++).

Table III presents the compared performance of the differ-
ent algorithms. As illustrated in the table, the random algo-
rithm and the constructive heuristics are considered inferior
because of their low solution quality. Moreover, the construc-
tive heuristics have a low score on adaptability due to the
expected difficulties in adjusting the algorithm to changing
rostering rules. The Linear Programming (LP) algorithms on
the other hand are discarded for their inferior computational
efficiency. Also, the computational time required by the LP
algorithms is presumed to aggravate as problems increase in
size, resulting in a low score on algorithm adaptability.

The Hungarian-based algorithms have been found to out-
perform the other algorithms. In particular the Hungarian
Improvement algorithm is considered superior to the other
algorithms for the specific problem as formulated in this
research. The Hungarian Improvement algorithm succeeds
in providing rosters of near-optimal solution quality, within
acceptable computational time. Moreover, the Hungarian

Improvement algorithm is considered particularly adaptable,
as it is both adaptable to changing rostering rules and as
it allows for the adjustment of its configuration in order to
adapt to problems of varying sizes. Therefore, the Hungarian
Improvement algorithm has been selected as the pairing
assignment algorithm in the simulation model.

TABLE III
ALGORITHM SELECTION: TRADE-OFF TABLE

Solution
Quality

Computational
Time Adaptability Total

Random - - ++ + +
Heuristic 1 - ++ - +/-
Heuristic 2 - - ++ - -
LP-complete ++ - - - - - -
LP-bipartite +/- - - - -
Hungarian +/- ++ + +++
Hung-Heur +/- + + ++
Hung-Imp-All ++ - ++ +++
Hung-Imp-5 ++ +/- ++ ++++
Hung-Imp-1 + + ++ ++++



APPENDIX B: MODEL VALIDATION

The developed simulation model is validated using actual
historical rosters from the collaborating airline. For model
validation, the ’LP-complete’ algorithm is used, since it
is the Linear Programming (LP) algorithm that solves the
crew rostering problem optimally in terms of the objective
function adopted in the simulation model. The LP-complete
algorithm is used to validate whether the optimal solutions of
the simulation model resemble the actual rosters as produced
by the airline, i.e. the published rosters.

The simulation model is validated using the two problem
sets of a small size long-haul aircraft division, each contain-
ing 22 different historical rosters. The cost function used for
validation, i.e. the ’Validation Function’, only considers two
cost parameters of the complete objective function: flexible
travel leave (FTL) cost and uncovered pairing cost.

Figures 21 and 22 show the compared results of the rosters
as produced using the LP-complete algorithm and the rosters
as published by the airline. While the results show that the
assignment cost of the rosters produced by the simulation
model deviate from those as produced by the airline, the
shapes of the two curves are similar. This demonstrates that
while the assumptions made in the rostering problem affect
the cost of the solution, the behaviour of the simulation
model to changing roster environments is comparable to
the commercial software program used at the collaborating
airline.

Fig. 21. Model Validation (1)

Fig. 22. Model Validation (2)

APPENDIX C: PERFORMANCE ANALYSIS

This appendix provides a more detailed overview of the
performance analysis performed on the various developed
algorithms.

Solution Quality vs. Computational Time: Figure 23 shows
the solution quality and computational time of various
configurations of the simulation model compared to two
benchmarks: the Hungarian assignment algorithm and an LP
algorithm.

Figures 24 and 25 include a couple of other pairing
assignment algorithms that have been assessed during this
research. Appendix VI provides a description of the con-
sidered algorithms. Figure 25 plots the performance of the
different algorithms on logarithmic axes in order to include
all considered pairing assignment algorithms.

Fig. 23. Performance of simulation model configurations

Fig. 24. Performance of various pairing assignment algorithms

Fig. 25. Performance of all considered assignment algorithms



Computational Time vs. Problem Size: Figure 26 shows
the computational time growth for problems of increasing
size. In Tabel IV an estimation is made for the order of
growth of the different simulation model configurations and
benchmarks. Also, the growth function and the R-squared
value of the trend lines are presented. Afterwards, several
figures present the computational time growth for the various
sub-components of the developed simulation model.

Fig. 26. Computational time growth per simulation model configuration

TABLE IV
COMPUTATIONAL TIME GROWTH OF SIMULATION MODEL

CONFIGURATIONS

Order of
Growth Growth Function R2

H O(n2) 0, 0015x2 + 0, 0865x+ 30, 732 0,9805
C1 O(n2) 0, 0026x2 − 0, 1039x+ 40, 224 0,9916
C2 O(n2) 0, 0038x2 − 0, 3353x+ 50, 265 0,9929
C5 O(n2) 0, 0064x2 − 1, 0279x+ 89, 226 0,9888

C10 O(n3)
0.00004x3 − 0, 0142x2+

1, 9979x− 35, 522
0,9909

C∞ O(n3)
0, 00005x3 − 0, 0158x2+

2, 221x− 44, 121
0,9912

LP O(en) 14, 024e0,0216x 0,9453

Fig. 27. Pre- and postprocessing time growth over problem size

Fig. 28. Solution time growth over problem size

Fig. 29. Cost matrix construction time growth over problem size

Fig. 30. Pairing assignment time growth over problem size



APPENDIX D: FTL SCENARIO ANALYSIS
INTERPRETATION

This appendix presents how the results of the scenario
analysis on flexible travel leave (FTL) can be interpreted in
order to define the benefit of having FTL pilots, i.e. pilots
with the possibility to remove the last day of their travel
leave. Below, the results of the FTL scenario analysis can be
found.

Fig. 31. The impact of having FTL pilots on roster efficiency

From the results of the scenario analysis, the following
insights have been obtained:

TABLE V
RESULTS OF THE FTL SCENARIO ANALYSIS EXPERIMENT

No. of Pilots 140
Average No. of
Days of Inefficiency
@ 100% FTL Pilots

8,1

Linear Trend 0-30% y = -0,2544x + 4,357
R of Trend 0-30% 0,995
Linear Trend 30-100% y = -0,1182x + 3,445
R of Trend 30-100% 0,9443

From the results, an estimation has been made of the
actual benefit in terms of cost of having FTL pilots. In this
calculation, the average pilot salary cost has been estimated
to be around e200.000 and a pilot is expected to have 5
working days per week on average over a year. Using these
figures, below a step-by-step calculation of the benefit per
extra FTL pilot is calculated for the two ranges, 0-30% and
30-100%.

TABLE VI
EXAMPLE CALCULATION OF THE BENEFIT OF FTL PILOTS

0-30% FTL Pilots 30-100% FTL Pilots
Delta Norm. Obj F per
Delta 5% of FTL Pilots -0.25 -0.12

Average No. of
Days of Inefficiency
@100% FTL Pilots

8,1 8,1

Delta No. of Days
of Inefficiency per
Delta 5% of FTL Pilots

2,03 0,96

Number of Pilots 140 140
Delta No. of Days
of Inefficiency per
7 extra FTL Pilots

2,03 0,96

Delta No. of Days
of Inefficiency per
extra FTL Pilot
(per week)

0,29 0,14

Delta No. of Days
of Inefficiency per
extra FTL Pilot
(per year)

15,1 7,3

Salary cost of Pilot
(per working day) e767 e767

Benefit of extra FTL Pilot
(per year) e11.500 e5.600
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