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We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

T. S. Elliot





CONTENTS

Summary xi

Samenvatting xiii

Özet xv

Preface xvii

List of Figures xix

List of Tables xxiii

1 On Corrosion Inhibition 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Societal importance of finding novel corrosion inhibitors . . . . . . 2

1.1.2 Challenges of materials discovery with machine learning . . . . . . 4

1.2 Scientific Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Corrosion of aluminium alloys . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Corrosion inhibition . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Research Aim and Approach . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Causing Inhibition 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Inhibitors & electrolytes . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Electrochemical experiments . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Molecular descriptor generation, feature selection and evaluation
of random forest models . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Quantifying inhibitor performance . . . . . . . . . . . . . . . . . 28

2.3.3 Comparison of electrochemical techniques:
Inhibition Efficiency vs. Inhibition Power . . . . . . . . . . . . . . 29

2.3.4 Ranking of inhibitors. . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.5 Understanding and predicting inhibition: experimental
input features for the machine learning model. . . . . . . . . . . . 35

2.3.6 Exploring experimental descriptors for machine learning . . . . . . 37

vii



viii CONTENTS

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.2 Experiment feature correlations . . . . . . . . . . . . . . . . . . . 43
2.5.3 Electrochemical performance distributions . . . . . . . . . . . . . 45
2.5.4 Recursive feature selection. . . . . . . . . . . . . . . . . . . . . . 46

3 Evaluating Inhibition 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3 Electrochemical experiments . . . . . . . . . . . . . . . . . . . . 52

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Influence of inhibitor concentration . . . . . . . . . . . . . . . . . 54
3.3.2 Influence of time. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3 Influence of physicochemical stability . . . . . . . . . . . . . . . . 58
3.3.4 Influence of electrochemical stability . . . . . . . . . . . . . . . . 63

3.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Sustaining Inhibition 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Electrolyte exposure . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Electrochemical measurements . . . . . . . . . . . . . . . . . . . 70
4.2.4 Atomic force microscopy (AFM) / Scanning Kelvin probe

force microscopy (SKPFM) . . . . . . . . . . . . . . . . . . . . . . 70
4.2.5 X-ray photoelectron spectroscopy (XPS) . . . . . . . . . . . . . . . 71
4.2.6 Attenuated total reflectance Fourier transform

infrared spectroscopy (ATR-FTIR) . . . . . . . . . . . . . . . . . . 72
4.2.7 Shell-isolated nanoparticle-enhanced Raman

spectroscopy (SHINERS) . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.8 Time-of-flight secondary ion mass spectrometry

(ToF-SIMS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.9 Speciation calculations . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.10 Density functional theory (DFT) calculations . . . . . . . . . . . . 74

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 Electrochemical response to molecule presence

and subsequent absence . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Surface topography and potential distributions . . . . . . . . . . . 77
4.3.3 Persisting chemical signatures after molecule

withdrawal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.4 Temporal evolution of surface-bound species in the

subsequent absence of inhibitor molecules . . . . . . . . . . . . . 84



CONTENTS ix

4.3.5 Detection of persistent molecular fragments
on the surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.6 Theoretical insights into molecule stability and
chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.7 Mechanistic hypothesis for a quasi-sustained corrosion inhibition . 93

4.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1 X-ray photoelectron spectroscopy (XPS) . . . . . . . . . . . . . . . 98

4.5.2 Shell-isolated nanoparticle-enhanced Raman spectroscopy
(SHINERS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.3 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) . . . . 103

4.5.4 Density functional theory (DFT) calculations . . . . . . . . . . . . 106

5 Describing Inhibition 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Generation of electrochemical targets . . . . . . . . . . . . . . . . 109

5.2.2 Generation of fingerprints and physicochemical descriptors . . . . 110

5.2.3 Machine learning model training and comparison. . . . . . . . . . 110

5.2.4 Visualising fingerprints . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.5 Generating best pseudomolecules through Bayesian
Optimisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.6 Curating the toxicity dataset for pseudomolecule
similarity hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.7 SHAP (Shapley additive explanations) analysis. . . . . . . . . . . . 113

5.2.8 Validation experiments through electrochemical measurements . . 113

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Describing corrosion inhibition . . . . . . . . . . . . . . . . . . . 114

5.3.2 Gaining mechanistic insight through algorithmic feature selection . 118

5.3.3 Visualising algorithmically selected fingerprints for finding the cor-
rosion inhibition structural building blocks . . . . . . . . . . . . . 119

5.3.4 Bayesian Optimisation as a tool for understanding model decision-
making process . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.5 SHAP analysis for deciphering feature influence . . . . . . . . . . . 125

5.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5.1 Predictive performance of the machine learning models. . . . . . . 137

5.5.2 Distribution of predictive performance for different model config-
urations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Conclusions and Outlook 141
6.1 Key Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



x CONTENTS

A Visualising chemical space for azole and pyridine/pyrimidine derivative
molecules 147

B Mol-dex 151

C Python library for machine learning model training and analysis 167

Bibliography 191

List of Publications 217

List of Presentations 219

Acknowledgements 221

Biography 225



SUMMARY

C ORROSION inhibitors are vital for protecting metallic substrates, either as standalone
treatments present in surrounding electrolytes, or as leaching components in active

protective coatings. While organic molecules offer tremendous versatility due to their
nearly infinite structural tunability, their electrochemical performance still falls short of
traditional chromate-based systems, especially under dynamic environments present in
service conditions. This dissertation aims to analyse the potential of organic molecules
as corrosion inhibitors for aerospace alloys by applying a systematic and multidisci-
plinary approach to evaluate, understand, and ultimately improve the electrochemical
performance, stability, and long-term efficacy.

Chapter 1 establishes the societal relevance of corrosion inhibition and provides the
scientific background required to contextualise the findings presented in this work.

In Chapter 2, a robust experimental framework is developed to generate a high-
quality electrochemical library for surface-molecule interactions. AA2024-T3 substrates
were exposed to 0.1 M NaCl with more than 100 molecules in 1 mM concentrations,
where time-resolved data were created for 24 hours of electrolyte exposure using linear
polarisation resistance, electrochemical impedance spectroscopy and potentiodynamic
polarisation experiments. This consistent data collection paved the way for analysis of
trends across a broad molecular landscape. Extended testing (over six hours), the usage
of inhibition power rather than inhibition efficiency as the performance metric, and the
inclusion of experimental characteristics such as pH in machine learning models, were
found to be critical in more reliable differentiation of the top-performing inhibitors.

Chapter 3 discusses a perspective on the way forward for corrosion inhibitor dis-
covery and optimisation studies, by identifying the influence of key factors that can
lead to false positives when seeking to replace hexavalent chromium-based corrosion
inhibitors. The electrochemical corrosion inhibition performance of several promising
organic molecules in comparison to sodium dichromate was investigated, with a focus
on often-overlooked but essential parameters including inhibitor concentration, expo-
sure time, post-presence efficacy, and polarisation stability. Our electrochemical anal-
yses reveal that, although organic molecules can match chromates under certain con-
ditions, their protective performance may degrade significantly under realistic and dy-
namic environments, potentially leading to misleading conclusions when evaluated in
narrow contexts.

Chapter 4 focuses on the physicochemical stability previously determined to be
critical in corrosion protection during service conditions. A promising molecule was
investigated further to determine the root cause of the observed quasi-sustained
corrosion inhibition behaviour: remaining partial inhibition even when the molecule
is no longer sustained in the environment. The goal was to uncover the underlying
mechanisms that could eventually support the design of stable inhibition systems.
Through potentiodynamic polarisation, atomic force microscopy and scanning Kelvin

xi
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probe force microscopy, X-ray photoelectron spectroscopy, attenuated total reflectance
Fourier transform infrared spectroscopy, shell-isolated nanoparticle-enhanced Raman
spectroscopy, and time-of-flight secondary ion mass spectrometry complemented by
density functional theory calculations, the observed quasi-sustained corrosion inhibi-
tion was attributed to a sulfate-like adsorption developed between the Al-(hydr)oxide
and the thione S moiety of the molecule. Although intermetallics also had sustained
molecule adsorption, a change in bonding configuration diminished their corrosion
inhibition capabilities. The combined influence of matrix and intermetallic adsorption
phenomena resulted in sustained corrosion inhibition, albeit at a reduced efficacy
compared to when molecule is present in the environment.

Chapter 5 transitions into the use of machine learning to extract hidden patterns
and relationships from the experimental data, offering new insights that go beyond
conventional statistical analysis. This approach was designed to address the challenges
of working with small datasets, where traditional methods may lack interpretability
and fail to uncover the underlying mechanistic drivers of the studied scientific phe-
nomenon. By systematically evaluating over 12,000 model configurations across 29
molecular featurisation strategies and 9 target representations, and using algorithmic
feature elimination as a spectroscopy-like tool to understand decision-making process
of the most predictive representations, we integrate data-driven patterns with chemical
intuition, revealing robust structure-property relationships for corrosion inhibition
offered by organic molecules. This methodology emphasises the interpretability of the
model’s decision-making process, allowing for the identification of meaningful trends
that guide the design of novel, non-toxic corrosion inhibitors. Its example application
to a toxicity database led to the discovery of the novel non-toxic promising organic cor-
rosion inhibitor 2-thiobarbituric acid, which was validated via electrochemical testing.
Ultimately, the framework not only advances machine learning in low-data regimes
but also provides actionable insights that drive experimental validation, offering an
accelerated pathway for replacing hazardous materials like hexavalent chromium with
environmentally sustainable alternatives.

As a conclusion, Chapter 6 summarises the key findings of the dissertation and
outlines future research directions that could build upon this work to develop next-
generation corrosion inhibition strategies.



SAMENVATTING

C ORROSIE-INHIBITOREN zijn essentieel voor de bescherming van metalen substraten,
zowel als op zichzelf staande behandelingen in de omringende elektrolyt, als uit-

logende componenten in actieve beschermende coatings. Hoewel organische molecu-
len enorme veelzijdigheid bieden door hun bijna oneindige structurele mogelijkheden,
lopen hun elektrochemische prestaties achter op traditionele op chromaat gebaseerde
systemen, vooral in dynamische omgevingen die van toepassing zijn onder realistische
praktijkomstandigheden. Dit proefschrift beoogt het potentieel van organische molecu-
len als corrosie-inhibitoren voor luchtvaartlegeringen te analyseren door de toepassing
van een systematische en multidisciplinaire benadering om de elektrochemische pres-
taties, stabiliteit en langetermijneffectiviteit te evalueren, te begrijpen en uiteindelijk te
verbeteren.

Hoofdstuk 1 stelt de maatschappelijke relevantie van corrosie-inhibitie vast en biedt
de wetenschappelijke achtergrond die nodig is om de bevindingen in dit proefschrift te
duiden.

In Hoofdstuk 2 wordt een robuust experimenteel kader ontwikkeld om een hoog-
waardige elektrochemische database voor oppervlakte-molecuulinteracties te genere-
ren. AA2024-T3-substraten werden blootgesteld aan 0,1 M NaCl met meer dan 100 mole-
culen in concentraties van 1 mM. Met behulp van lineaire polarisatieweerstand, elektro-
chemische impedantiespectroscopie en potentiodynamische polarisatie-experimenten
werden hierbij gedurende 24 uur elektrolytblootstelling tijdsafhankelijke gegevens ver-
kregen. Deze consistente gegevensverzameling vormde de basis voor de analyse van
trends in een breed moleculair landschap. Uitgebreid testen (meer dan zes uur), het ge-
bruik van inhibitievermogen in plaats van inhibitie-efficiëntie als prestatiemaatstaf, en
de opname van experimentele kenmerken zoals pH in machinelearningmodellen wer-
den als cruciaal beschouwd voor een betrouwbaardere differentiatie van de best preste-
rende inhibitoren.

Hoofdstuk 3 bespreekt een perspectief op weg naar de ontdekking en optimalisatie
van corrosie-inhibitoren. Dit wordt gedaan door de invloed van belangrijke factoren te
identificeren die kunnen leiden tot valse positieven bij de uitdaging om op zeswaardig
chroom gebaseerde corrosie-inhibitoren te vervangen. De elektrochemische corrosie-
inhibitieprestaties van verschillende veelbelovende organische moleculen in vergelij-
king met natriumdichromaat werden onderzocht. Hierbij lag de nadruk op essentiële
parameters, die vaak over het hoofd worden gezien, zoals inhibitorvariëteit, blootstel-
lingstijd, effectiviteit na de aanwezigheid van inhibitoren en polarisatiestabiliteit. Hoe-
wel organische moleculen onder bepaalde omstandigheden chromaten kunnen evena-
ren, onthullen onze elektrochemische analyses dat hun beschermende prestaties aan-
zienlijk kunnen afnemen in realistische en dynamische omgevingen, wat kan leiden tot
misleidende conclusies bij een evaluatie in beperkte blootstellingscontext.

Hoofdstuk 4 richt zich op de fysisch-chemische stabiliteit, waarvan eerder al werd

xiii
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vastgesteld dat die cruciaal is bij corrosiebescherming onder realistische blootstellings-
omstandigheden. Een veelbelovend molecuul werd verder onderzocht om de oorzaak
van het waargenomen quasi-stabiele corrosie-inhibitiegedrag te bepalen: blijvende
gedeeltelijke inhibitie, zelfs wanneer het molecuul niet langer in de omgeving aanwezig
is. Het doel was om de onderliggende mechanismen te ontdekken die uiteindelijk het
ontwerp van stabiele inhibitiesystemen kunnen ondersteunen. Door gebruik te maken
van potentiodynamische polarisatie, atoomkrachtmicroscopie en scanning Kelvin-
probekrachtmicroscopie, röntgenfoto-elektronenspectroscopie, totaalreflectie-Fourier-
transformatie-infraroodspectroscopie, schil-geïsoleerde nanopartikel-versterkte
Raman-spectroscopie, en time-of-flight secundaire ionen-massaspectrometrie aange-
vuld met dichtheidsfunctionaaltheorieberekeningen, werd het waargenomen quasi-
stabiele corrosie-inhibitiegedrag toegeschreven aan een sulfaatachtige adsorptie die
zich ontwikkelde tussen de Al-(hydr)oxide en het thione S-gedeelte van het molecuul.
Hoewel intermetallische verbindingen ook duurzame molecuuladsorptie vertoon-
den, verminderde een verandering in de bindingsconfiguratie hun corrosiewerende
capaciteiten. De gecombineerde invloed van matrix- en intermetallische adsorptiefeno-
menen resulteerde in een duurzame corrosie-inhibitiereactie, zij het met verminderde
effectiviteit in vergelijking met een situatie waarin het molecuul aanwezig is in de
omgeving.

Hoofdstuk 5 maakt de overstap naar het gebruik van machine learning om ver-
borgen patronen en relaties uit de experimentele gegevens te halen, en biedt nieuwe
inzichten die verder gaan dan conventionele statistische analyses. Deze benadering
is ontwikkeld om de uitdagingen van werken met kleine datasets aan te pakken, waar
traditionele methoden mogelijk interpreteerbaarheid missen en er daarom niet in
slagen de onderliggende mechanistische drivers van het wetenschappelijke fenomeen
dat wordt bestudeerd te onthullen. Door voor 29 strategieën voor moleculaire kenmer-
ken en negen doelrepresentaties systematisch meer dan 12.000 modelconfiguraties te
evalueren en door gebruik te maken van algoritmische kenmerkverwijdering, als een
spectroscopie-achtig middel om het besluitvormingsproces van de meest voorspellende
representaties te begrijpen, integreren we datagedreven patronen met chemische intu-
ïtie, wat robuuste structuur-eigenschaprelaties voor corrosie-inhibitie door organische
moleculen laat zien. Deze methodologie benadrukt de interpreteerbaarheid van het
besluitvormingsproces van het model, waardoor het mogelijk wordt om betekenisvolle
trends te identificeren die het ontwerp van nieuwe, niet-giftige corrosie-inhibitoren
sturen. De toepassing van deze methodologie op een toxiciteitsdatabase leidde tot de
ontdekking van de veelbelovende nieuwe, niet-toxische organische corrosie-inhibitor
2-thiobarbituurzuur, die werd gevalideerd door middel van elektrochemisch testen.
Uiteindelijk bevordert dit kader niet alleen machine learning in lage-dataregimes, maar
biedt het ook bruikbare inzichten die experimentele validatie stimuleren. Tegelijkertijd
presenteert het een versneld traject voor het vervangen van gevaarlijke materialen zoals
zeswaardig chroom door milieuvriendelijke alternatieven.

Concluderend vat Hoofdstuk 6 de belangrijkste bevindingen van het proefschrift sa-
men en schetst toekomstige onderzoeksrichtingen die hierop voort kunnen bouwen om
strategieën te ontwikkelen voor een volgende generatie corrosie-inhibitoren.



ÖZET

K OROZYON inhibitörleri (yavaşlatıcıları), ister çevreleyen elektrolitte (örneğin, akü
ya da deniz suyu) tek başına bulunarak, isterse aktif koruyucu kaplamaların

yapısındaki çözünüp açığa çıkan bileşenler olarak, metalik yüzeylerin korunmasında
hayati öneme sahiptir. Organik moleküller, neredeyse sınırsız yapısal ayarlanabilir-
likleri sayesinde büyük esneklik sunsalar da, geleneksel kromat bazlı sistemler ile
karşılaştırıldıklarında değişken gerçek hayattaki koşullar altında elektrokimyasal per-
formansları hâlâ yetersiz kalmaktadır. Bu tez çalışması, organik moleküllerin havacılık
alaşımları için korozyon inhibitörü potansiyelini sistematik ve çok disiplinli bir yak-
laşımla değerlendirip anlamayı ve nihayetinde elektrokimyasal performans, korumanın
sabitliği ve uzun dönem etkinliği çerçevesinde iyileştirmeyi amaçlamaktadır.

Bölüm 1 korozyon inhibisyonunun iktisadi ve toplumsal maliyetini ortaya koyar ve
bu çalışmada sunulan bulguları ortak bir bağlam içine yerleştirmek için gerekli olan bil-
imsel temel arka planı sağlar.

Bölüm 2’de yüzey–molekül etkileşimlerine ilişkin kapsamlı bir elektrokimyasal veri
kütüphanesi oluşturmak üzere sağlam bir deneysel çerçeve geliştirilmiştir. AA2024-T3
alaşım yüzeyleri, 0.1 M NaCl çözeltisinde 1 mM konsantrasyonda 100’den fazla organik
moleküle maruz bırakılmış; 24 saatlik elektrolit teması süresince lineer polarizasyon
direnci, elektrokimyasal empedans spektroskopisi ve potensiyodinamik polarizasyon
deneyleri sayesinde zamana dayanan veriler toplanmıştır. Bu tutarlı veri toplama
yöntemi, geniş bir moleküler yelpazedeki eğilimlerin analizine olanak tanımıştır. Altı
saati aşan uzun süreli testler, performans metriği olarak inhibisyon verimliliği yerine
inhibisyon gücünün kullanılması, ve pH gibi deneysel özelliklerin makine öğrenmesi
modellerine dahil edilmesi, en yüksek performanslı inhibitörlerin daha güvenilir
biçimde tespit edilmesinde önemli bulunmuştur.

Bölüm 3 heksavalent kromat esaslı inhibitörlerin yerine geçebilecek adayları
araştırırken yanlış pozitif sonuçlara yol açabilecek temel etkenleri belirleyerek, ko-
rozyon inhibitörü keşif ve optimizasyon çalışmalarının nasıl ilerlemesi gerektiğine dair
bir perspektif sunar. İnhibitör i) konsantrasyonu, ii) maruz kalma süresi, iii) koruyucu
etkinliğinin çözelti ortamından uzaklaştırıldıktan sonraki kalıcılığı, ve iv) polarizasyon
kararlılığı, gibi sıklıkla göz ardı edilen ancak aslında hayati öneme sahip olan parame-
treler dikkatle incelenmiştir. Bu etkenler dikkate alınarak, bir dizi umut verici organik
molekülün korozyon inhibisyon performansı sodyum dikromatla karşılaştırilmistir.
Elektrokimyasal analizlerimiz, belirli koşullar altında organik moleküllerin kromatlarla
eşdeğer koruma sağlayabildiğini, ancak doğal değişken ortamlarda performanslarının
önemli ölçüde düşebileceğini göstermiş, ayrıca dar kapsamlı değerlendirmelerdeki
yanıltıcı sonuçlara varma riskine dikkat çekilmiştir.

Bölüm 4 bir önceki bölümde inhibitör keşfinde önemli olduğu belirlenen
fizikokimyasal sabitlik üzerine odaklanır. Ümit vadeden bir molekül, ortamdan
uzaklaştırıldıktan sonra bile kısmen devam eden inhibitör etkisinin kaynağını ortaya

xv



xvi ÖZET

çıkarmak amacıyla derinlemesine incelenmiştir. Potensiyodinamik polarizasyon,
atomik kuvvet mikroskobu, taramalı Kelvin sondası mikroskobu, X-ışını fotoelektron
spektroskopisi, azaltılmış toplam yansıma Fourier dönüşümlü kızılötesi spektroskopisi,
kabuk yalıtılmış nanoparçacık destekli Raman spektroskopisi, ve zaman uçuşlu ikincil
iyon kütle spektrometrisi gibi deneysel teknikler yoğunluk fonksiyonel teorisi hesapla-
malarıyla desteklenmiştir. Gözlenen kısmi-kalıcı korozyon inhibisyonunun aluminyum
(hidr)oksit yüzeyi ile molekülün tiyol S grubu arasında gelişen sülfat benzeri bir kalıcı
yüzeye tutunma sayesinde gerçekleştiği sonucuna varılmıştır. İntermetalik bölgelerde
de devam eden molekül yüzeye tutunması gözlenirken, bağlanma şeklindeki farklılıklar
korozyon korumasının yok olmasına neden olmuştur. Matris ve intermetalik yüzeye
tutunma etkileşimlerinin birleşik etkisi, molekülün ortamdan çekildikten sonra bile
belirli bir miktarda koruma sagladığını, ancak etkinliğin molekülün ortamda bulunduğu
zamanki kadar yüksek oranda olmadığını göstermiştir.

Bölüm 5 deneysel verilerde gözlemlenen ilişkileri ortaya çıkarmak için yapay zeka
kullanımına odaklanmaktadır. Burada geliştirilen metodoloji, küçük veri kümeleriyle
çalışmanın zorluklarına odaklanıp, geleneksel yöntemlerin anlaşılabilirlik eksikliği ve
mekanistik sebepleri ortaya çıkaramaması sorunlarına çözüm arar. 29 moleküler özellik
çıkarım stratejisi ile 9 hedef temsilini içeren 12.000’den fazla model konfigürasyonu
sistematik olarak değerlendirilmiştir. Algoritmik özellik eleme yönteminin spektroskopi-
benzeri bir araç olarak kullanımı sayesinde, organik moleküllerin yapısı ile korozyon
inhibitörlüğü özellikleri arasındaki ilişkiler ortaya çıkarılmıştır. Bu yöntem, modelin
karar verme sürecinin anlaşılabilirliğini vurgulayarak, inhibitörlük özelliğinde önemli
olan molekül yapı taşlarının belirlenmesini sağlar. Örnek bir zehirlilik veri tabanını
kullanan çalışmada, elektrokimyasal testlerle doğrulanan 2-tiyobarbitürik asit adlı yeni,
zehirsiz bir inhibitör keşfedilmiştir. Sonuç olarak, bu metod hem sınırlı veri şartlarında
makine öğrenmesini ilerletmekte, hem de halihazırda kullanılan tehlikeli maddeler yer-
ine sürdürülebilir alternatiflere geçiş için deneysel doğrulamayı sağlayan hızlandırılmış
bir yol sunmaktadır.

Bölüm 6 tezin temel bulgularını özetler, ve bu çalışmayı ilerletip gelecek nesil ko-
rozyon inhibisyon stratejilerinin geliştirilmesi için araştırma yönlerini ortaya koyar.



PREFACE

New directions in science are launched by new tools much more often than by new
concepts. The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to discover new things that have to be explained.

Freeman Dyson

M ATERIALS science is currently at an exciting crossroads, shaped by two powerful
forces.

On one hand, the urgency of the environmental crisis looms large. Climate change,
driven by greenhouse gas emissions, is causing rising temperatures that shrink habi-
tats, exacerbate food and water scarcity, and trigger extreme weather events. Global CO2

emissions reached a record high in 2024, a year that also marked the first time global
temperatures exceeding 1.5°C above pre-industrial levels. The consequences of climate
crisis are neither distant nor abstract; even as I am writing this in Delft, the Netherlands,
the sun has not emerged for over two consecutive weeks. This intensifying climate emer-
gency poses escalating threats to biodiversity, human health, and critical infrastructure,
creating an urgent demand for sustainable and cost-effective material solutions.

On the other hand, the rapid advancement of new technologies is opening exciting
new possibilities. Self-driving laboratories, which have revolutionized drug discovery by
identifying active small molecules, are now making their way into fields such as catal-
ysis, carbon capture, and corrosion inhibition. While new datasets are emerging, they
are often too small for traditional machine learning approaches. As a result, innovative
methods for applying machine learning to smaller science datasets are being developed,
paving the way for breakthroughs in the discovery of new materials.

This dissertation aims to strike a balance between these two forces — the pull of
environmental necessity and the push of technological advancement — in the hope of
contributing to a brighter, more sustainable future.

Can ÖZKAN
Delft, January 2025

xvii





LIST OF FIGURES

1.1 Graphical representation of an aircraft coating cross-section. . . . . . . . . 2
1.2 A comparison of the number of stars in the universe to the number of syn-

thesisable compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Most widely used aluminium alloy grades in an aeroplane. . . . . . . . . . 5
1.4 Pourbaix diagram of Al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Pitting of an Al alloy in chloride-containing aqueous environment. . . . . 10
1.6 Co-operative corrosion mechanism. . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Overview of corrosion time scale of various Al intermetallics. . . . . . . . . 13
1.8 A typical corrosion protection system used in the aerospace industry. . . . 14
1.9 Illustration of a corrosion inhibition concept analogous to the Sabatier

principle of heterogenous catalysis. . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 A2024-T3 samples exposed to 0.1 M NaCl solution in presence and absence
of 1 mM inhibitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The correlation between different electrochemical measurement tech-
niques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 The representation ofelectrochemical measurements converted into inhi-
bition power for best performing among the tested inhibitors. . . . . . . . 32

2.4 The inhibitor candidate ranking visualised as boxplots. . . . . . . . . . . . 33
2.5 The distribution of corrosion potentials Ecorr, pitting breakdown potentials

Ebr, and the differences between the two. . . . . . . . . . . . . . . . . . . . . 36
2.6 The correlation between inhibitor power and the passive range (Ecorr – Ebr). 37
2.7 Prediction results for random forest models with 5 input features that uses

the inhibition power as target. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 A visual summary of the electrochemical experiments. . . . . . . . . . . . . 42
2.9 The correlation between inhibitor power and molecular weight of the in-

hibitor candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.10 The correlation between inhibitor power and average pH of the electrolytes

before and after the experiments. . . . . . . . . . . . . . . . . . . . . . . . . 44
2.11 The correlation between inhibitor power and pH difference of the elec-

trolytes before and after the experiments. . . . . . . . . . . . . . . . . . . . . 44
2.12 Comparison of electrochemical response of small molecules in 0.1 and 1

mM concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.13 Comparison of the distribution of electrochemical data of time averaged

polarisation resistance converted into inhibition power and efficiency. . . 45

3.1 Potentiodynamic polarisation curves of AA2024-T3 exposed to 0.1M NaCl
electrolytes with varying inhibitor concentrations. . . . . . . . . . . . . . . 54

xix



xx LIST OF FIGURES

3.2 Influence of concentration on polarisation resistance and potential values
for ammonium pyrollidinedithiocarbamate and sodium dichromate. . . . 55

3.3 Influence of time on the linear polarisation resistance (RLPR) of AA2024-T3
in the presence (and absence) of 1 mM corrosion inhibitors. . . . . . . . . 57

3.4 Influence of presence and subsequent absence of corrosion inhibitors on
electrochemical behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Impedance modulus and phase angle plots with equivalent circuit fits
demonstrating the influence of presence and subsequent absence of
corrosion inhibitors on electrochemical impedance spectroscopy response. 61

3.6 Evolution of impedance modulus values measured at 10–2 Hz frequency. . 63
3.7 Cyclic voltammetry measurements of AA2024-T3 in the presence (and ab-

sence) of 1 mM corrosion inhibitors. . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Potentiodynamic polarisation curves of AA2024-T3 exposed to a 0.1M
NaCl electrolyte with 1mM 3-amino-1,2,4-triazole-5-thiol molecule for
one day, followed by three days in 0.1M NaCl without the molecule, and
sample exposed to 0.1M NaCl alone for four days (uninhibited). . . . . . . 76

4.2 AFM topography and corresponding surface potential maps, and associ-
ated line profiles for matrix and intermetallics. . . . . . . . . . . . . . . . . 79

4.3 High resolution XPS N1s and S2p spectra for inhibitor presence, and sub-
sequent inhibitor absence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 ATR-FTIR spectra related to the molecule adsorption. . . . . . . . . . . . . 83
4.5 SHINERS Raman spectra and heatmaps of in-situ molecule desorption

phenomena from Al, Cu, AA2024-T3 surfaces. . . . . . . . . . . . . . . . . . 85
4.6 Selected negative and positive ion spectra for Cu, AA2024-T3, Al samples;

and ion maps of the AA2024-T3 sample. . . . . . . . . . . . . . . . . . . . . . 87
4.7 Speciation analysis of 3-amino-1,2,4-triazole-5-thiol for different pH values. 89
4.8 Calculated quantum chemical parameters of different molecule species;

for thiol and thione species dipole moment and Mulliken charges, HOMO,
LUMO, Fukui function surface maps. . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Schematic illustration of the quasi-stable inhibition behaviour offered by
3-amino-1,2,4-triazole-5-thiol. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.10 Full survey XPS spectra of AA2024-T3 sample exposed to 1 mM 3-amino-
1,2,4-triazole-5-thiol dissolved in water for 24 hours. . . . . . . . . . . . . . 98

4.11 Full survey XPS spectra of AA2024-T3 sample exposed to 1 mM 3-amino-
1,2,4-triazole-5-thiol dissolved in water for 24 hours, followed by exposure
to only water for 2 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.12 Full survey XPS spectra of AA2024-T3 sample exposed to only water for 24
hours, followed by exposure to only water for 2 hours. . . . . . . . . . . . . 99

4.13 Remaining high-resolution XPS spectra for inhibitor presence, subsequent
inhibitor absence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.14 Raman spectra of 3-amino-1,2,4-triazole-5-thiol powder. . . . . . . . . . . 100
4.15 Raman spectra of 3-amino-1,2,4-triazole-5-thiol powder dissolved in water. 101
4.16 Raman spectra of AA2024-T3 surface without nanoparticles. . . . . . . . . 101
4.17 Raman spectra of AA2024-T3 surface with nanoparticles. . . . . . . . . . . 102



LIST OF FIGURES xxi

4.18 Raman spectra of AA2024-T3 with nanoparticles exposed to water. . . . . . 102
4.19 Negative ion spectra of AA2024-T3 exposed to 3-amino-1,2,4-triazole solu-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.20 Negative ion spectra of Al exposed to 3-amino-1,2,4-triazole solution. . . . 103
4.21 Negative ion spectra of Cu exposed to 3-amino-1,2,4-triazole solution. . . 104
4.22 Positive ion spectra of AA2024-T3 exposed to 3-amino-1,2,4-triazole solu-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.23 Positive ion spectra of Al exposed to 3-amino-1,2,4-triazole solution. . . . 104
4.24 Positive ion spectra of Cu exposed to 3-amino-1,2,4-triazole solution. . . . 105

5.1 Ranking of featurisation methods based on prediction performance for the
top four targets, and their mean. . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Example molecules that contain key features identified by the feature se-
lection algorithm, visualised as ’bits’. . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Creating counterfactual predictions for molecules with highest target val-
ues in the experimental dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Molecules most similar to the pseudomolecule for the similarity metric co-
sine similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 SHAP beeswarm plots displaying how features in a dataset impact model
output for featurisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6 Non-toxic molecules from the toxicity database that fit the trends observed
from different featurisation methods. . . . . . . . . . . . . . . . . . . . . . . 134

5.7 Electrochemical impedance spectroscopy of AA2024-T3 alloy exposed to
0.1M NaCl electrolytes with or without 2-thiobarbituric acid for 24 hours. 135

5.8 Prediction plots of training with cross-validation (in-blue) and set-aside
validation split (in-orange) for the highest ranked model with IE_EIS24h
target and atompair-count featurisation. . . . . . . . . . . . . . . . . . . . . 137

5.9 Learning curves for the highest ranked model with IE_EIS24h target and
atompair-count featurisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.10 Influence of feature scaling on the CV-RMSE distributions. . . . . . . . . . 138
5.11 Influence of feature selection method on the CV-RMSE distributions. . . . 139
5.12 Influence of model architecture on the CV-RMSE distributions. . . . . . . . 140

A.1 The distribution of some of the studied nitrogen heteroatom containing
6-ringed molecules in the chemical space with their inhibition power. . . . 148

A.2 The distribution of some of the studied nitrogen heteroatom containing 5-
ringed molecules (azoles) in the chemical space with their inhibition power.149

B.1 Card template and GHS chemical hazard pictogram explanations. . . . . . 152





LIST OF TABLES

2.1 Electrochemical information obtained from potentiodynamic polarisa-
tion, electrochemical impedance spectroscopy, and linear polarisation
resistance measurements of AA2024-T3 samples exposed to inhibitor
containing solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Results of one specific train test split. . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Results of 6-fold cross validation. . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Chemical composition (wt.%) of AA2024-T3. . . . . . . . . . . . . . . . . . . 42
2.5 Selected features for IE (single train test split). . . . . . . . . . . . . . . . . . 46
2.6 Selected features for IE (cross validation). . . . . . . . . . . . . . . . . . . . . 46
2.7 Selected features for IP (single train test split). . . . . . . . . . . . . . . . . . 47
2.8 Selected features for IP (cross validation). . . . . . . . . . . . . . . . . . . . . 47

4.1 Binding energy peaks of N1s and S2p for 3-amino-1,2,4-triazole-5-thiol in
the initial presence and subsequent absence from the environment. . . . . 81

4.2 Relevant calculated vibrational frequencies for thiol and thione tautomers
of 3-amino-1,2,4-triazole-5-thiol with their main contributions, and exper-
imental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xxiii





1
ON CORROSION INHIBITION

Iron which has been acted upon by fire is spoiled, unless it is forged with the hammer.
It is not in a fit state for being hammered when it is red-hot,

nor, indeed, until it has begun to assume a white heat.

By sprinkling vinegar or alum upon it, it acquires the appearance of copper.
It is protected from rust by an application of ceruse, gypsum, and tar;

a property of iron known by the Greeks as "antipathia".

Some say that this may be ensured by the performance of certain religious ceremonies,
and that there is in existence at the city of Zeugma, upon the Euphrates,

an iron chain,

by means of which Alexander the Great constructed a bridge across the river;
the links of which that have been replaced are infested with rust,

while the original links are totally exempt from it.

Pliny the Elder, Natural History Book 34 (AD 77)

Parts of this chapter have been published as Impact of inhibition mechanisms, automation, and computational
models on the discovery of organic corrosion inhibitors, Progress in Materials Science (2024) [1].
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1.1. CONTEXT

1.1.1. SOCIETAL IMPORTANCE OF FINDING NOVEL CORROSION INHIBITORS

C ORROSION is the reversal of metals to thermodynamically more stable states such as
their oxides or hydroxides [2]. Despite being a relatively slow process, it is one of the

leading causes of loss of integrity for metal products [3]. In fact, the economic impact
of corrosion surpasses that of all other natural disasters combined [4]. It is estimated
to eat away 3.4 % of the annual global gross domestic product (2.5 trillion U.S. dollars
in 2002, inflation corrected to be approximately €750 per person each year in 2025) by
causing catastrophic structural failures of engineered systems resulting in loss of life,
injury, and substantial economic damage across a wide range of industries [5]. Notably,
improvements in corrosion control could enhance the lifespan of metal components sig-
nificantly - according to a recent NACE report, implementing best practices for corrosion
prevention could save between 15% and 35% of these costs, potentially totaling up to 875
billion dollars [6].

One of the most efficient corrosion control approaches is corrosion inhibition. A
corrosion inhibitor is a substance that minimises metal degradation, reduces hydrogen
embrittlement, and/or prevents pitting when added in small concentrations to a given
environment. Small is relative for any industry, but in the context of aerospace, this
would mean concentrations on the order of mM. Corrosion inhibitors can either be used
as is, or added to protective coating formulations to act as active pigments in the event
of a coating damage. Figure 1.1 depicts this concept for an aircraft protection scheme.

Chromate compounds have been historically employed as universal corrosion in-
hibitors for a wide array of metals, but their extreme toxicity with their reprotoxic, mu-
tagenic, and carcinogenic properties [7, 8] (one estimate reported that workers exposed
to chromate residues during aircraft repainting had 250,000-fold higher risk of cancer

Figure 1.1: Graphical representation of a plane coating cross-section. In the case of a coating breach, inhibitor
material would leach out of from the primer coating and interact with the metallic substrate, inhibiting corro-
sion.
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Figure 1.2: A comparison of the number of stars in the universe to the number of synthesisable compounds.
There are approximately 1021 stars in the observable universe, and 1063 synthesisable compounds. Image by
courtesy of Tim Wuerger.

than the rest of the public [9, 10]), resulted in it being phased out in socially responsible
countries [8, 10, 11].

Despite progress in reducing chromate use, challenges remain with regard to the
availability and cost of effective replacements. While the substitution of chromates in
corrosion protection applications is possible, these alternatives must be equally cost-
effective and efficient, particularly in highly specialised fields such as aerospace.

To this end, organic molecules offer a broad range of potential corrosion inhibition
solutions due to their diversity, stability, and selectivity under operational conditions.
Small organic molecules typically function by adsorbing onto the surfaces of metal sub-
strates, displacing water, and forming protective thin films that inhibit the ingress of
corrosion inducing aggressive ions like chlorides. They can be completely safe to use, or
much less harmful than chromates, but they can also be quite toxic depending on their
structure. The balance between toxicity and corrosion inhibition performance should
serve as a key consideration in the pursuit of safer and more effective organic corrosion
inhibitors.

Unfortunately, no organic inhibitor currently matches the wide applicability and ef-
fectiveness of chromates. Finding an organic molecule replacement requires a struc-
tured search through potential small organic molecules. However, this is no trivial task.
Figure 1.2 highlights the potential chemical search space and its comparison to the cos-
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mic space. Space is vast. Chemical space, even more so, with estimated 1063 synthe-
sisable organic molecules [12–14]. Considering the size of such a large chemical search
space of organic molecules, the scale of an exhaustive search is daunting, but the op-
portunity of a bespoke solution for every surface science problem in need of an answer
equally exhilarating.

1.1.2. CHALLENGES OF MATERIALS DISCOVERY WITH MACHINE LEARNING

M ACHINE learning has emerged as one of the most suitable methods for screen-
ing vast chemical and material spaces to identify promising compounds [15–25].

However, fundamental research in molecular and materials science often grapples with
the challenge of smaller data sets, making it difficult to train predictive models effectively
and identify the most appropriate machine learning algorithms [26–28]. These smaller
data sets, frequently derived from human-conducted experiments or subjectively col-
lected information, present significant limitations for complex analyses that aim to un-
cover causal relationships. Despite advances in automated data acquisition techniques,
such as emerging self-driving labs [29, 30], a substantial portion of the natural science
data used in machine learning applications still qualifies as "small data". This issue is
particularly pronounced in fields such as corrosion inhibition studies, where the lack of
extensive, high-quality data sets persists [31–35].

In addition to limited data availability, inconsistencies between different studies fur-
ther complicate the process of selecting and training machine learning models. Small
data approaches are fraught with challenges such as data imbalance, as well as the risks
of model overfitting or underfitting, due to the limited scale of the data or the high di-
mensionality of features required by many machine learning models. These challenges
hinder the ability to draw reliable predictions and insights, slowing down progress in the
adoption of advanced computational methods.

The scarcity of large, chemically diverse, high-quality data sets (typically exceed-
ing 1000 compounds) is a significant barrier to the broader application of data-driven
machine learning. This limitation is particularly restrictive for state-of-the-art architec-
tures such as transformer models and graph neural networks, which rely on extensive
and diverse datasets in the order of millions, if not billions of datapoints. Promising ap-
proaches, such as transfer learning and active learning, offer potential workaround solu-
tions. However, their success hinges on the availability of either large, relevant datasets
or the integration of intelligent experimental designs to guide data collection. Over-
coming these obstacles is critical for unlocking the full potential of machine learning
in molecular and materials research.

1.2. SCIENTIFIC BACKGROUND

1.2.1. CORROSION OF ALUMINIUM ALLOYS

D ESPITE being the most abundant metallic element on Earth, aluminium (Al) was
mostly hidden away from the engineering stage until the invention of Hall-Heroult

process in 1886. Thanks to its lightness, high performance, and corrosion resistance, it
has grown to be one of the most important engineering materials.

During their first manned flight in 1903, the Wright brothers chose Al as their pre-
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Figure 1.3: Most widely used aluminium alloy grades in an aircraft [38].

ferred material to make the cylinder block and other engine parts. Since then, Al alloys
have been widely used in aerospace structures ranging from rocket fuel tanks to fuse-
lages thanks to their high specific strength, low density, good machinability and forma-
bility, good maintainability, and low cost. Despite the growing use of composites in
widebody aircraft, aluminium-copper 2xxx series alloys and aluminium-zinc 7xxx se-
ries alloys are still dominant in small aircraft [36]. Figure 1.3 displays the distribution of
aluminium alloys in such an aircraft.

For structural engineering applications, aluminium is alloyed with elements such as
magnesium, copper and silicon to improve the mechanical properties. Further strength-
ening of the aluminium alloy is achieved through thermal and mechanical processes. In
this way, the low strength of pure aluminium which is around 10 MPa can be increased
up to 800 MPa through alloying and age hardening processes [37]. The processing mod-
ifies the microstructural properties of the alloy such as the grain size, grain boundary
properties, secondary phase constituents, inclusions and texture. Besides being impor-
tant for the mechanical response, these microstructural features determine the electro-
chemical properties of the material.

MICROSTRUCTURE OF ALUMINIUM ALLOYS

The most important microstructural features are usually intermetallics that are formed
of Al and transition metals such as Cu, Cr, Mn, Fe, Zr, and other abundant alloying el-
ements such as Si, Li and Mg. The combination of different alloying mixtures with fur-
ther thermal and/or mechanical processing results in a plethora of microstructural fea-
tures with different scales: comparatively large irregularly shaped insoluble constituent
phases (0.5-10 μm) that are formed out of Fe, Mn and Si, dispersoids (0.1 - 0.5 μm) which
limit grain growth through pinning of the grain boundaries among others, and age-
hardening precipitates (< 0.2 μm) which provide strengthening primarily by impeding
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dislocation motion [39, 40]. The size and chemical compositions of these components
vary significantly, and equilibrium and non-equilibrium phases coexist together. As a
result, the microstructures display a complex behaviour that follows a quasi rather than
full thermodynamical equilibrium.

Unfortunately high-strength aluminium alloys are often susceptible to corrosion as a
direct result of their microstructure. The two high-strength Al alloys studied the most for
their corrosion related properties are the legacy alloys AA2024-T3 and AA7075-T6. This
work focuses on AA2024-T3, an alloy widely used in fuselage, wings, shear bars, webs,
and other structural parts that require high strength [36].

AA2024-T3
For decades AA2xxx alloys have been one of the top choices of the transportation indus-
try due to their mechanical properties. Despite their corrosion susceptibility, they are
widely used in aircraft fuselage manufacturing thanks to their high strength to weight
ratio, fracture toughness and good fatigue crack growth resistance.

AA2024-T3 is a wrought aluminium alloy. Main composition of AA2024 includes Cu
(3.5-5 wt.%) and Mg (1-2 wt.%); in less concentrations Mn, Si, Ti, Fe, Zr and other trace
elements. The microstructure undergoes an age-hardening tempering process named
T3 to further improve the mechanical properties. During the T3 tempering process, alloy
is solution heat-treated, cold worked, and naturally aged.

Due to its high alloying content and constituent particles with complex stoichiome-
tries, the microstructure of AA2024-T3 is one the most complicated among the Al alloys
[37]. Typical intermetallics recognised in the 2xxx series alloys are: precipitates Al2Cu (θ-
phase) and Al2CuMg (S-phase), dispersoid Al20Mn3Cu2, and constituents Al20Mn3Cu,
Al6(CuFeMnSi) and Al7Cu2Fe. 2.7% of the total surface area is covered by the S-phase,
which may occupy up to 60% of the total intermetallic surface [41, 42].

However, many intermetallics are not single phase but in fact of multiphase nature,
as they show heterogenous stoichiometries in one region [43]. On top of that, periphery
dispersoid-free regions were examined around intermetallic particles. The complicated
character of the AA2024-T3 microstructure directly influences the electrochemical prop-
erties, resulting in a bewitching corrosion behaviour.

CORROSION OF ALUMINIUM

Pure aluminium is a very electrochemically active metal with a standard reduction po-
tential of -1.66 V. Figure 1.4 presents the Pourbaix diagram of Al which demonstrates this
behaviour, as well as the stability regions of common phases. Despite its electrochemi-
cal activity, between pH values 4-9, the thermodynamically stable form of Al is a passive
oxide layer. Because of this thermodynamical tendency, when exposed to the environ-
ment the Al surface reacts with its surroundings and forms an amorphous (hydr)oxide
layer with a thickness on the order of magnitude of nanometers. This passive layer pro-
tects the underlying Al substrate against the ingress of corrosive species and decreases
the corrosion rate [44, 45].

Al corrosion consists of two electrochemical half-cell reactions that keep the elec-
troneutrality during corrosion. An anodic part where the aluminium loses electrons
through oxidation and becomes Al3+ cation:
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Figure 1.4: Pourbaix diagram of Al calculated through pymatgen package [46]. Pink regions display ionic
phases, cyan regions solid phases. Dashed lines show water stability lines.

Al → Al3+ + 3e– (1.1)

and a cathodic part where the excess electrons are consumed via oxygen reduction reac-
tion (ORR):

O2(aq) + 2H2O + 4e– → 4OH– (1.2)

or in acidic environment via hydrogen evolution reaction (HER):

2H+ + 2e– → H2 (1.3)

As the corrosion progresses anodic zones will become acidic and cathodic zones will
become caustic as the half-reactions proceed. Conversion of atomic Al to ionic Al occurs
very rapidly, at time-scales faster than 10–5 seconds. In about a microsecond, ionic Al
undergo hydration to form hexa-coordinated complexes [47]. It is hypothesised that a
variety of mono-nuclear:

Al3+ + H2O⇌Al(OH)2+ + H+ (1.4)

Al3+ + 2H2O⇌Al(OH)2+ + 2H+ (1.5)

Al3+ + 3H2O⇌Al(OH)2+ + 3H+ (1.6)

Al3+ + 4H2O⇌Al(OH)2+ + 4H+ (1.7)

and poly-nuclear:

2Al3+ + 2H2O⇌Al2(OH)4 + 2H+ (1.8)
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3Al3+ + 4H2O⇌Al3(OH)5+
4 + 4H+ (1.9)

13Al3+ + 28H2O⇌Al33O4(OH)7+
24 + 32H+ (1.10)

hydrolysis products are formed. In the case of passivation, released Al3+ ions react to the
surrounding environment with disassociation of water and form a protective (hydr)oxide
layer through:

2Al + 3H2O⇌Al2O3 + 6H+ + 6e– (1.11)

When aluminium does corrode, the required environmental conditions are often one
of the two cases. First case requires extreme pH environments, where thermodynami-
cally stable form of Al becomes Al3+ in acidic (pH < 4.5), and Al(OH)–

4 in alkaline (pH > 9)
environments. This results in uniform corrosion. Second case requires the presence of
halide ions such as Cl–, which can initiate localised corrosion through the breakdown of
the passive film. Cl– ions form highly soluble corrosion products:

Al3+ + Cl– ⇌AlCl2+/AlCl+2/AlCl3 (1.12)

AlCl3 + 3H2O⇌Al(OH)3 + 3HCl (1.13)

which promote the breakdown of passivation.
In most cases Al corrosion progresses in the form of localised corrosion pits and

crevices rather than the overall corrosion of the surface.

LOCALISED CORROSION

Unlike pure aluminium, the oxide layer of Al alloys is defective due to the diverse surface
microstructure. The diverse composition is a direct result of the alloying. An aluminium
matrix rich in intermetallics that range from nanometers to micrometers, forms a het-
erogenous oxide morphology which leads to an electrochemically active surface prone
to localised corrosion [48, 49].

Intermetallics interact by forming micro-galvanic cells among each other and with
the aluminium matrix due to their distinct corrosion potentials. It was commonly be-
lieved that intermetallics either take the role of the cathode and dissolve the surround-
ing Al matrix, or take the role of the anode and dissolve themselves based on their elec-
trochemical potential. However, a recent study combined OCP evaluation with high-
resolution optical microscopy and demonstrated that both anodic and cathodic inter-
metallics of AA2024-T3 show a similar degradation morphology [50]. It was suggested
that all intermetallics become active, go through rapid early-stage dealloying and pro-
ceed with an order of magnitude slower local trenching process around the intermetallic.
The driving force is the elemental composition dependent electrochemical properties.
As the composition of intermetallics change with time, the electrochemical properties
also change. This results in a dynamic anode/cathode nature of intermetallics with re-
spect to their surrounding surface.
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Electrochemical characteristics of a span of intermetallics of Al alloys have been doc-
umented previously [39, 40, 51]. With corrosion potentials that range in a span of 0.5 V
[41], Al intermetallics act as significant defect sites which result in micro-galvanic corro-
sion of the surface.

Such diversity of microstructure phases results in different modes of localised cor-
rosion. The main forms can be encapsulated under the classes of intergranular, pitting,
crevice, filiform corrosion; exfoliation and stress corrosion cracking. Out of these, pitting
and intergranular corrosion is especially important for Al with high alloying content.

In intergranular corrosion, active intermetallics with less noble corrosion potential
precipitate into the grain boundaries, making it anodic compared to the rest of the grain.
This attack on grain boundaries cause cracks to precipitate along the grain boundaries.
An example of this phenomena is seen after the heat treatment of AA2024-T3. Copper
depleted zones of Al2Cu and Al2CuMg intermetallics form at the grain boundaries, re-
sulting in severe intergranular corrosion through anodisation of the grain boundaries
[41, 52].

In pitting corrosion, deep tunnels form on the surface due to electrochemical activ-
ity. In chloride environments pitting is the main corrosion mechanism. Chloride ions
adsorb to the surface of the oxide film and initiate pitting through the breakdown of the
passive film. Pits develop through the surface via the dissolution of exposed Al matrix,
forming locally acidic conditions that exacerbate corrosion.

Figure 1.5 displays a schematic of the pitting process. The pit acts as the anode and
surrounding intermetallics undertake the cathodic reactions. Acidic conditions inside
the pit prevent repassivation. Surrounding larger cathodic area enables rapid anodic
dissolution and propagation of the pit. Released Al3+ ions electrostatically attract the Cl–

ions from the solution and hydrolyse the water inside the pit. This produces hydrochlo-
ric acid inside the pit, which is kept inside the pit as a result of the formed Al(OH)3 cap:

Al3+ + 3Cl– + 3H2O → Al(OH)3 + 3HCl (1.14)

This cap is impermeable enough to keep the inside of the pit extremely acidic, yet porous
enough to allow further Cl– transport inside the pit. The consequence is an autocatalytic
process that forms deep cracks propagating through the structure until a rapid and un-
foreseen mechanical failure [41].

It must be noted that although the potential difference between the phases is the
driving force of the corrosion process, the rate of corrosion is determined by the kinet-
ics. A larger potential difference of the micro-galvanic cell does not directly correspond
to a higher corrosion rate/current. This has been remarked on by the paper of Birbilis
and Bucheit [40], where electrochemical behaviour of intermetallic particles commonly
seen in Al alloy microstructures were analysed with a microcapillary electrochemical cell
setup. Largest anodic/cathodic currents were not observed in samples with least/most
noble corrosion potential values. It was argued that the magnitude of the current of
intermetallics at the corrosion potential of the Al alloy is more important than the dif-
ference in corrosion potentials of the intermetallics and Al alloy. Additionally, enhanced
corrosion is recognised in samples with higher copper content, which demonstrates that
simple more/less noble concepts are not enough to describe Al alloy corrosion. It was
also observed that size and distribution of the intermetallic particles through the Al ma-
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Figure 1.5: Pitting of an Al alloy in chloride-containing aqueous environment [41].

trix matter – for example, dispersoids appear to have a negligible effect on localised cor-
rosion due to their homogenous distribution and small size in comparison to larger con-
stituent particles.

LOCALISED CORROSION OF AA2024-T3
Two main corrosion mechanisms that affect AA2024-T3 in brine environments is
intergranular and pitting corrosion. Deaerated anodic polarisation measurements of
AA2024-T3 in 1M NaCl environments showed two breakdown potentials where anodic
current increases rapidly during polarisation: supported by electron microscope analy-
sis less noble increase in current was attributed to pitting by the transient dissolution of
Al2CuMg, and more noble one the intergranular corrosion attack [53].

In both corrosion mechanisms, intermetallics play an important role by creating mi-
cro/nanogalvanic electrochemical interactions among the different intermetallics and
Al matrix. Localised corrosion may start from the vicinity of an intermetallic and prop-
agate through the locally most corrosion-prone part of the Al matrix, the grain bound-
aries, only to continue dissolution of the matrix in the direction of intermetallic clusters
buried inside the matrix, potentially emerging from a different part of the alloy surface
again [54].

It is now understood that this interaction between different precipitate/constituent
intermetallics and grain boundaries is of high importance in explaining the full complex-
ity of the corrosion phenomena of AA2024-T3. A combination of studies that analyse the
corrosion of isolated [42, 55, 56] and clustered [51, 57–59] intermetallics demonstrated
that understanding of both systems is crucial in understanding the complete corrosion
mechanism.

Isolated corrosion attack on intermetallics happens in two different ways. In the case
of an anodic particle corrosion progresses with the self-dissolution of the intermetallic.
In the case of an initially cathodic particle, circumferential pits and trenching appear
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around the intermetallic due to dissolution of the surrounding Al matrix. These pits may
initiate as metastable pits and stop, or develop into stable pits. It is proposed that a sta-
ble pit can form under the condition that the product of pit depth and current density is
larger than 10–2 A/cm [39]. However, studies show that trenching around isolated parti-
cles do not fulfill this condition, and not lead to severe corrosion [37].

A dealloying driven local corrosion mechanism is observed with in/ex-situ analyti-
cal TEM for Al2CuMg and Al2Cu precipitates [55]. Local corrosion starts with a surface
initiation stage, where passive layer covering the alloy destabilises and locally dissolves
around the intermetallic. Mg/Al dissolve and hydrolyse from the intermetallics, mean-
while Cu diffuses to the surface rim of the pits. Al2Cu exhibits a relatively slower cor-
rosion initiation as a consequence of formed Al(OH)3. Nanogalvanic interactions form
inside the intermetallic, and Cu rich cathodic sites start producing OH–. This makes the
local surface top of the intermetallics basic. Due to faster dealloying, local chemistry
becomes more basic for Al2CuMg. Increase in pH locally dissolve the surrounding Al ox-
ide passive layer. This triggers trench initiation. Pits start to propagate in depth of the
matrix: cathodic ORR take place on the surface of the pits, while the Al matrix around
the intermetallic dissolves until the particle is undercut. When the remaining Cu rich
intermetallic remnant is undercut, Cu reaches its corrosion potential, dissolves into the
solution and gets redeposited on the Al matrix or other intermetallic surfaces. Cu plat-
ing can create more cathodic areas and promote further localised corrosion of the sur-
rounding Al matrix. Due to faster kinetics of the Al2CuMg, Cu ions liberated earlier from
its dissolution can be redeposited onto the Al2Cu precipitates and other intermetallics.

A follow-up TEM study [42] demonstrated similar degradation mechanisms for iso-
lated constituent particles Al76Cu6Fe7Mn5Si6, Al7Cu2Fe(Mn). Nano-pits initiate with
dealloying attack of active elements Al, Mg, Mn while Cu and Fe rich cathodic zones un-
dertake the reduction of oxygen. Local dissolution rate increases with increasing expo-
sure. Dealloyed zones of the intermetallic become more cathodic, and start the trench-
ing through dissolving surrounding Al matrix. Depth propagation occurs after trench
initiation at the area surrounding the intermetallic particles. It is seen that Si inhibits the
reaction through oxidising into stable SiO2, while Mn actively dissolves away. Due to the
higher electrochemical stability of constituent particles than the Al2CuMg precipitate,
copper ions released during the Al2CuMg corrosion may deposit onto the constituent
particles in vicinity. This would increase the cathodic activity of intermetallic particles
and increase local dissolution.

Figure 1.6 summarises the co-operative corrosion mechanism through intermetallic
clusters. As mentioned before, even the most active intermetallic Al2CuMg cannot reach
the stable pit formation current density of 10–2 A/cm while isolated. However, in the
presence of a cluster of intermetallics this can be supplied through a corrosion attack on
a larger scale. Boag et al. [51] have identified that more than a normal amount of inter-
metallic particles with opposite electrochemical activity were present around stable pits.
Study of Hughes et al. [57] supported these findings, and claimed that clustering results
in a co-operative corrosion process. During their experiments they have spotted rapidly
formed corrosion rings around clusters of intermetallics. They have identified center of
the rings to be electrochemically active domes with increased Cl– presence and H2 evo-
lution in the area. Furthermore, surface and subsurface attack to the grain boundaries
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Figure 1.6: Co-operative corrosion mechanism: (a) initiation, (b) trenching, (c) propagation [57].

was observed. Intergranular attack propagates through the active grain boundaries, and
at a later stage in the case of a surfaced intermetallic corrosion of the isolated intermetal-
lic takes place as described previously [55, 57]. Previous studies have observed a lateral
propagation tendency for this pitting and intergranular attack [37, 39].

Figure 1.7 presents an overview of Al intermetallic corrosion time scales. Dispersoid
particles Al20Mn3Cu2 exhibit a similar dealloying driven local corrosion behaviour to the
constituent particles, although on a slower time and a smaller length scale [42]. In fact,
a recent analysis of AA2024-T3 microstructure with open circuit potential and optical
microscopy measurements suggests that all intermetallic phases show similar micro/-
nanogalvanic activation, dealloying and trenching behaviour [50]. Main difference be-
tween the intermetallic particles was found in the dealloying step – trenching occurred
at similar rates independently from intermetallic composition. On the other hand, it is
reported that compared to Al-Cu-Mn-Fe phases, Al-Cu-Mg phases account for most of
the increase in ORR on AA2024-T3 relative to pure Al [60].

CORROSION PROTECTION OF ALUMINIUM ALLOYS

Corrosion protection is especially important in demanding environments such as the
service conditions of the aerospace industry. Different materials must be isolated to
prevent galvanic coupling among themselves, and corrosion protection system must
be designed with respect to external constraints. Protection must be sustained in vari-
ous chemical media such as chlorides and de-icing liquids, various humidity conditions
such as wet and dry cycles, in large temperature ranges from -50 to 100 °C, during the
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lifetime of the aircraft, for at least three decades [61].

One of the most widely used and economically viable corrosion protection solutions
is the application of functional coatings on the alloy substrate. In this way, surface ex-
posure to the aggressive outside environment is limited with the application of a thin
layer of coating. Coatings consist of a set of functional ingredients (anticorrosive pig-
ments, fillers, among others) spread over a host polymer binder. They are applied to the
substrate while liquid and after application transform into a solid layer with a thickness
comparable to the human hair.

Figure 1.8 shows an example multilayered corrosion protection coating system used
in the aerospace industry. A passive barrier protection provided by the polymer paint
and anodic oxide layer prevents the ingress of corrosive species to the metal substrate.
In the case of a breach this protection is obsolete, and protective properties are lost.
To counter that, an active protection is also employed through leaching of anticorro-
sive inhibitor species from the primer layer and preferential dissolution of the clad layer.
Inhibitor species decrease the rate of corrosion through suppression of anodic and ca-
thodic reactions, while clad layer acts as a sacrificial anode.

For the past century, both active and passive corrosion protection mechanisms have
heavily relied on hexavalent chromium. Despite significant research efforts since the
1980s, hexavalent chromium remains the benchmark for corrosion prevention, particu-
larly in the aerospace industry [62]. However, its severe health and environmental haz-
ards are now well-documented. Hexavalent chromium is not only highly carcinogenic
but also causes irreversible damage to the skin, nose, throat, eyes, and DNA. Its geno-
toxic effects extend to aquatic and plant life, making it an ecological threat. As a result,
there is an urgent need to develop novel, green alternatives for corrosion protection.

Figure 1.7: Overview of corrosion time scale of various Al intermetallics [56].
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Figure 1.8: A typical corrosion protection system used in the aerospace industry [61]. (a) Cross-section of
multiple protective layers, (b) detail of the anodised oxide layer features.

The selection of suitable inhibitors presents a multifaceted challenge influenced by
various factors including the pH of the corrosive environment, the presence of aggres-
sive species, the underlying corrosion mechanisms, and the application method of the
inhibitor. Depending on whether inhibitors are encapsulated or directly embedded, the
encapsulation system, polymer binder material, and other parameters critically shape
the final efficacy of the inhibitor.

Achieving superior corrosion protection performance while ensuring environmental
compatibility is key in developing next-generation corrosion inhibitors. Understanding
the intricate mechanisms by which inhibitors function is the first step in designing ef-
fective, sustainable replacements to hexavalent chromium.

1.2.2. CORROSION INHIBITION

ORGANIC MOLECULES AS CORROSION INHIBITORS

O RGANIC corrosion inhibitors primarily function by forming protective films on
metal surfaces or by inhibiting anodic or cathodic reactions, or a combination of

both. The mechanism of action often involves surface adsorption and the formation of
precipitate films [63]. Organic molecules with a high affinity for metals generally exhibit
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good corrosion inhibition.
Corrosion inhibitors are often categorised as anodic and cathodic inhibitors [64]. An-

odic inhibitors slow down the anodic metal dissolution process and produce sparingly
soluble reaction products that form protective films over anodic sites. This behaviour
can be determined from potentiodynamic polarisation plots. Based on the mixed po-
tential theory, the retarded anodic half-cell reactions would suppress measured anodic
curves to lower current densities. If cathodic reaction rates are not affected, the anodic
and cathodic curves would now intersect at higher potential values compared to the
original situation, shifting the corrosion potentials to more positive values. By modify-
ing the anodic reaction, these inhibitors effectively reduce the rate of metal degradation.
Cathodic inhibitors, on the other hand, disrupt cathodic oxygen reduction reactions and
promote the formation of reaction products that selectively precipitate at cathodic sites.
Polarisation curves of metals treated with cathodic inhibitors show a shift in the cor-
rosion potential to more negative values. Mixed inhibitors, which suppress both anodic
and cathodic reactions, maintain the corrosion potential while significantly reducing the
corrosion current.

MECHANISM OF INHIBITION

Organic molecules inhibit corrosion by adhering to the oxide or metal surface through
physisorption or chemisorption, often forming chelates. These adsorbed layers act as
protective barriers for metal surfaces. Physisorption occurs through electrostatic inter-
actions between partially charged regions of the molecules and the charged surface, as
well as through hydrogen bonding and Van der Waals forces. Chemisorption, on the
other hand, involves charge sharing or charge transfer from the molecule to the surface
or vice versa. In some cases, electrostatic interactions contribute significantly to the ad-
sorption energy, similar to chemisorption [65].

Although some inhibitors predominantly operate via a single mechanism, many or-
ganic inhibitors exhibit multiple modes of interaction with metal surfaces. The inclu-
sion of heteroatoms such as sulfur (S), nitrogen (N), and oxygen (O) into organic ring
structures and branching ligands enhances their binding capacity. These atoms, with
lone electron pairs, facilitate chemisorption through their interaction with the electronic
structure of the inhibitor molecule. The electron density around these heteroatoms and
overall electronic configuration of the molecular structure significantly influence the ad-
sorption behaviour [66].

The nature of chemisorption in metals differs based on their electron configuration.
Aluminium, with a vacant p-orbital, is electron-deficient and can act as a Lewis acid dur-
ing chemisorption. Lone pair donation from heteroatoms such as S and N can result in
strong covalent bonds between the Al surface and organic molecule [66]. S may form
stronger bonds with Al surfaces due to its higher atomic polarisability (S = 2.90, N = 1.10
[67]). In transition metals, the vacant d-band allows parallel chemisorption via strong π-
d orbital hybridisation or perpendicular chemisorption through theσ-molecular orbitals
of unsaturated heteroatoms. For copper, which has fully occupied d-orbitals, the ex-
pected bonding is a comparatively weaker chemisorption through σ-molecular orbitals
[68]. Chemisorption between inhibitors and Cu can be through donation of free electron
pairs from the inhibitor to unoccupied orbitals of Cu, or through π-backbonding where
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Figure 1.9: Illustration of a corrosion inhibition concept analogous to the Sabatier principle of heterogenous
catalysis [76]. If the interaction between the inhibitor and the surface is too weak, the inhibitor molecules
desorb quickly, failing to provide effective protection. Conversely, overly strong interactions can destabilise
adjacent metal–metal or metal–oxygen bonds, instead facilitating metal dissolution. Thus, the optimal in-
hibitor–surface interaction is a balanced one: neither too weak nor too strong.

filled d-orbitals of Cu can donate electrons to bond to the vacant orbitals on the adja-
cent molecule. Functional groups such as carbonyls and their analogues with C double
bonded heteroatoms can act as retrodonation ligands [69], which is a common struc-
tural trend in high performing inhibitors. Compared to Al, due to larger d-electron cloud
and therefore increased van der Waals forces of Cu, increased physisorption would be
expected. Considering not metallic surfaces but their (hydr)oxides, the nature of inter-
actions would change significantly due to the ionic/covalent nature of the oxides and the
availability of surface bonding sites. Surface hydroxyls can engage in hydrogen bonding
or proton exchange, and oxygen vacancies can act as active sites, enhancing adsorption
through charge redistribution [70–73]. One big difference is that Cu oxides are redox ac-
tive, but Al oxides are not (see Pourbaix diagrams of both [74, 75]). The redox activity
of Cu can facilitate oxidation or reduction reactions with adsorbed molecules through
Cu2+/Cu+ redox reactions. For example, in the presence of Cu2+ reduction, sulfur com-
pounds may oxidise to form sulfates, and nitrogen compounds may undergo oxidation
to form nitrates.

One key idea to highlight is that a stronger molecule–substrate bonding does not
automatically result in better inhibition - otherwise corrosion inducing species such
as chloride ions, which interact very strongly with metals, would act as corrosion in-
hibitors. The inhibitor should adsorb strongly enough to persist on the surface, but not
too strongly or else it can promote metal dissolution because too strong molecule–metal
interaction can weaken the neighbouring lattice metal–metal and/or metal–oxygen
bonds [76]. Figure 1.9 demonstrates this principle.

In aqueous environments, adsorption can be understood as a substitution reaction
involving competing interactions between molecules, water, metal/oxide, corrosive
ions, and contaminants. The adsorbed inhibitor layer physically blocks the metal sur-
face or increases ionic resistivity, preventing aggressive ions from initiating corrosion.
Additionally, this layer electrochemically inhibits corrosion by decelerating anodic
and/or cathodic reactions. Adsorption can result in a continuous anodic passivation
layer or selective coverage of cathodic zones, effectively mitigating corrosion processes.
A commonly proposed corrosion inhibition reaction mechanism for Cl– containing
environments progresses by the displacement of adsorbed Cl– from the surface of the
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inhibited metal. Metallic cation-adsorbed chloride complexes react with inhibitor
molecules present in the electrolyte to form metal-inhibitor complexes[47]:

M(Cl)nads + Inhsol → M-Inh + nCl–sol (1.15)

For high-performing inhibitor molecules, a compact water displacing barrier is formed
as a result of this reaction. The separation of metal surface from the aggressive environ-
ment inhibits further corrosion.

Environmental factors and inhibitor concentration play critical roles in determin-
ing the performance and mechanism of organic inhibitors. The pH of the environment
affects the speciation of ionisable organic molecules, with low pH conditions often hin-
dering adsorption due to protonation [68]. In contrast, higher pH values result in de-
protonated molecules, which results in stronger adsorption and improved protection
[77]. Inhibition efficiency typically increases with concentration up to a critical thresh-
old, beyond which it plateaus or in some cases may decline. This phenomenon is often
attributed to oligomerisation of the inhibitors in solution, reducing their availability for
adsorption, or the formation of oligomers that desorb from the surface [78]. Further-
more, exothermic adsorption reactions often result in decreased inhibition efficiencies
at elevated temperatures. Time-dependent changes in the environment-interface inter-
actions also influence the effectiveness of inhibitors [79].

For a more detailed analysis of various specific corrosion inhibition mechanisms,
please refer to our recent review.1

1.3. RESEARCH AIM AND APPROACH

A S discussed in the previous sections, we need a hexavalent chromium replacement,
and fast. The aim of this dissertation was to bring the fourth paradigm of science to

this quest of corrosion inhibition discovery. In these last four years I have worked with Li,
Ce, and Cr based systems as well, but the majority of my time was focused on the organic
compounds. I tried to understand why they work, the common structural motifs in the
compounds that do work, and tried to disentangle multiple free parameters from one
another.

I started by creating a molecule library, as there were inconsistencies between differ-
ent papers reporting the corrosion inhibition performance of organic molecules. Chap-
ter 2 presents the screening experiments, where I collected data on corrosion inhibi-
tion properties of more than 100 molecules (which are also visualised in the Mol-dex of
the appendix) on AA2024-T3 substrates, and quantified the inhibitor performance using
time-resolved electrochemical measurement methods of linear polarisation resistance
(LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarisa-
tion (PDP/LSV). After identifying the best electrochemical target for training machine
learning models on, a dummy model was trained (by my colleague) to show that predic-
tive features can be captured from a smaller piece of this dataset (around 50 molecules).

1Winkler, D.A., Hughes, A.E., Özkan, C., Mol, A., Würger, T., Feiler, C., Zhang, D. and Lamaka, S., 2024.
Impact of inhibition mechanisms, automation, and computational models on the discovery of organic corro-
sion inhibitors. Progress in Materials Science, p.101392. [1].
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The screening experiments were performed at identical conditions: same inhibitor
concentration, salt concentration, among other parameters. In Chapter 3, I wanted to
capture the most important inhibitor-related factors that can impact electrochemical
experiments. I believed this would increase trust in future corrosion inhibitor discovery
experiments of our field, as right now every week there is a new chromate-vanquisher
compound coming out that just doesn’t work - possibly because the researchers ignore
the effect of time, concentration, or other factors. I focused on five factors: influence
of inhibitor concentration, exposure time to inhibitors, differences in inhibitor perfor-
mance in the presence and following absence of inhibitors in the environment, inhibitor
performance change with changing external potentials, and synergy - the combined
corrosion inhibition effect of multiple molecules that surpass their individual perfor-
mance. A comparison of electrochemical performance of selected highly-inhibiting or-
ganic molecules with sodium dichromate turned out to be interesting, where at the end
a system that can rival the electrochemical performance is presented with a higher con-
fidence.

I diagnosed sustaining inhibition in the absence of organic molecules with Chapter
4, which focused on the molecule 3-amino-1,2,4-triazole-5-thiol, and its unique ability
of creating quasi-irreversible bonds. Attenuated total reflectance Fourier transform
spectroscopy (ATR-FTIR), shell-isolated nanoparticle-enhanced Raman spectroscopy
(SHINERS), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass
spectrometry (ToF-SIMS), atomic force microscopy (AFM), and scanning Kelvin probe
force microscopy (SKPFM) was combined to understand the root-cause of the sustained
inhibition behaviour during the absence of molecule in the environment. Through
combining the results from different spectroscopies I proposed a molecule mechanism
that might cause this behaviour, to be used as a molecular fragment that would enable
sustained inhibition.

With Chapter 5, I explored whether we can gain scientific insight from small data. Af-
ter training more than 12 thousand machine learning model configurations of different
feature and target representations based on the previous screening data, I identified dif-
ferent ways to extract scientific insight from algorithmic feature selection of the most
predictive models, by: (i) visualisation of selected features into molecule fragments,
(ii) using Bayesian optimisation as a tool to extract molecules "thought" to be best by
the model from the black-box model decision-making process, (iii) combining SHAP-
analysis on models with different featurisations to find common structural motifs, which
were used to come up with a corrosion inhibition template.

Chapter 6 combined the overall conclusions and outlook.
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Nature does not ‘know’ what experiment a scientist is trying to do.
God loves noise as much as the signal.

Lew Branscomb

Meten is weten.

Dutch proverb

Creating durable, eco-friendly coatings for long-term corrosion protection requires inno-
vative strategies to streamline design and development processes, conserve resources, and
decrease maintenance costs. In this pursuit, machine learning emerges as a promising
catalyst, despite the challenges presented by scarcity of high-quality datasets in the field
of corrosion inhibition research. To address this obstacle, we have created an extensive
electrochemical library of around 80 inhibitor candidates. The electrochemical behaviour
of inhibitor exposed AA2024-T3 substrates was captured using linear polarisation resis-
tance, electrochemical impedance spectroscopy, and potentiodynamic polarisation tech-
niques at different exposure times to obtain the most comprehensive electrochemical pic-
ture of the corrosion inhibition over a 24 hour period. The experimental results yield tar-
get parameters and additional input features that can be combined with computational
descriptors to develop quantitative structure-property relationship (QSPR) models aug-
mented by mechanistic input features.

This chapter has been published with some adjustments as Laying the experimental foundation for corrosion
inhibitor discovery through machine learning, npj Materials Degradation (2024) [80].
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2.1. INTRODUCTION

C ORROSION inhibition research has come far since Chyżewski and Evans first cate-
gorised sparingly soluble corrosion decreasing substances as anodic and cathodic

inhibitors [81]. Thanks to the advances in computational power and methods, we are
observing a paradigm shift in how science is done, and this is also affecting corrosion
inhibition research.

There are four contemporary paradigms of science [82, 83]. The first is empirical ev-
idence, leading to general laws through ‘trial and error’. The second involves theoretical
models based on those laws. The third is defined by computational power offered by
Moore’s law, application of theoratical models to more complex and specific problems.
This results in a data explosion, leading to the fourth paradigm: data-driven scientific
discovery - such as using machine learning for categorisation and prediction.

We see examples of this paradigm shift in corrosion inhibitor research in two broad
categories: mechanistic and statistical research. Lately, advances in surface analysis,
electrochemical characterisation and computational methods have been complement-
ing each other to facilitate the inhibitor discovery process for both of these categories.

On the mechanistic end, a deeper scientific understanding is obtained by con-
trolled experiments and computational models. The critical need for the protection
of aerospace aluminium alloys has driven the research that would uncover AA2024-T3
corrosion inhibition of many compounds. Throughout the years, AA2024-T3 corrosion
inhibition mechanisms were experimentally uncovered for inorganic compounds
such as chromates [62, 84–86], rare-earths [87–90], molybdate [91] and cobalt ions
[92], magnesium-based pigments [93–95], lithium salts [96–98], and a vast variety of
organic compounds such as imidazole [99, 100], triazole/thiazole[101, 102], quinoline
[103, 104], carbamate [105], thiosemicarbazone [106] derivatives, among others [103,
107–111]. In addition to uncovering the mechanisms for specific inhibitor species, the
physical features of inhibition mechanisms such as the importance of time [79, 112] and
irreversibility [113] have been investigated.

The pressing demand for novel chromate-free corrosion inhibitors has created
the need for high-throughput inhibitor screening methodologies. The approaches
inspired by pharmaceutical drug discovery research spanned optical image analysis
[114, 115], fluorometric detection [116], multi-electrode electrochemical evaluation
[114, 117–119], surface copper enrichment analysis [120], hydrogen evolution detection
[121, 122], weight-loss measurements [107, 123], and spectroscopic element analysis
through multi-channels [124]. These methods rapidly created large datasets, but with
the trade-off of losing mechanistic information.

The third paradigm supported the mechanistic understanding gained from exper-
iments with computational models that span continuum to atomistic scales. Finite
element method (FEM) models produced previously unattainable information - such as
mechanical strains observed for inhibitor dissolution and leaching from coatings [125],
local critical pH criteria for pit repassivation [126], and the effect of surface geometry
on electrochemical behaviour [127]. Density functional theory (DFT) and molecular
dynamics (MD) simulations have introduced a vast amount of quantum mechanical/-
chemical information that is not directly available from empirical methods, such as
density of states, band gap, and other physicochemical electronic properties [128]. The
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ease of investigation of atomistic properties offered by software/hardware advances
has allowed corrosion scientists to replace costly and time consuming experiments.
Molecular modelling was used as a computational microscope to expose the underlying
mechanisms of inhibitor structure-substrate sorption phenomena [71, 128–132]. Recent
papers [133–135] have reported on how experimental and computational methods are
catalysing one another to combine the strength of empirical and theoretical methods,
in which researchers have analysed the influence of type and length of backbone
chains and anchor groups on inhibitor performance by combining carefully controlled
experiments with DFT modelling.

The accumulated mechanistic understanding of inhibitors, high-throughput
methodologies and FEM/DFT-MD computational approaches generated previously
unavailable large datasets about mechanical and physicochemical behaviour of in-
hibitors, which paved the road for data-driven statistical investigations. This involved
classification and predictive analytics of inhibitors. Properties of inhibitor molecules
obtained from DFT calculations, and experimental inhibitor efficiencies gathered from
high-throughput methods have been combined to build correlations using machine
learning based quantitative structure-property relationships (QSPR). Winkler et al.
[136] used QSPR to reveal empirical molecular descriptors most relevant for AA2024
and AA7075 inhibition, and identified that chemical descriptors solely using input
features obtained from in vacuo DFT did not contain sufficient information to generate
predictive models. Würger et al. [32, 137] have demonstrated a data-driven inhibitor
prediction workflow for magnesium alloys, which combined the results of atomistic
simulations and high-throughput experiments with unsupervised machine learning
clustering algorithms and supervised learning approaches to predict the behaviour
of untested inhibitors. Feiler et al. [122] have demonstrated that the combination of
structural information with input features derived from DFT lead to robust predictive
models for corrosion inhibition responses of small organic molecules based on an
artificial neural network for pure magnesium, as well as Mg-based alloys [138]. The
optimisation of machine learning approaches is an ongoing process, whether it is
coming up with better methods of identifying the most relevant molecular descriptors
[138], or analysis of different inhibitor classification algorithms and creation of new
descriptors with intrinsic mechanistic meanings [139].

All in all, in silico inhibitor screening combined with smart high-throughput testing
has enabled overcoming physical limitations of previous paradigms. However, a com-
plete jump to the fourth paradigm will require a strong empirical foundation. A recent
review of Coelho et al. [35] has identified the main challenge of utilising machine learn-
ing for corrosion research as the lack of high-quality datasets. Corrosion datasets are
found to be typically noisy, rarely shared in a systematic machine-readable way, and
lacking in time-dependent multidimensional input, which was shown to increase the
accuracy of studied models. On the one hand, recent inhibitor data management ini-
tiatives such as CORDATA database [140] introduced open-source philosophies to the
inhibitor discovery and selection - however although database contains hundreds of en-
tries, inhomogeneous data is still a problem. The database contains data acquired on
different raw batches of alloys, different or poorly controlled ambient temperatures, and
different experimental methods and conditions. On the other hand, dedicated state-of-
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the-art high-throughput datasets for aluminium alloys have created data for hundreds
of organic compounds [107, 114, 136, 139]. However, lack of multidimensional input
is a distinctive shortcoming of high-throughput methods, where only one parameter is
collected to represent the inhibition performance. For an alloy prone to localised degra-
dation, such as pitting corrosion of AA2024-T3, a data creation procedure that obtains
information on both the open circuit state as well as behaviour under applied potentials
is crucial to get the full mechanistic picture.

We aim to address the need for a robust multidimensional time-dependent elec-
trochemical database with this study. We also show the best practices for applying
this multidimensional data to train a predictive machine learning model. AA2024-T3
samples exposed to around 80 small organic molecule containing electrolytes are
electrochemically characterised through linear polarisation resistance, electrochemical
impedance spectroscopy and potentiodynamic polarisation. The goal of this brute
force ‘high-throughput’ approach that combines proven electrochemical methods
is to demonstrate a methodology to create robust data that contains mechanistic
time-dependent information. Gained mechanistic information spans double layer
capacitance, charge transfer resistance, diffusion of corrosive ions through a protective
inhibitor layer from electrochemical impedance spectroscopy, time-resolved corrosion
resistance response from linear polarisation resistance, and corrosion rate, poten-
tial, breakdown potential, the kinetics of the electrochemical reactions and nature of
anodic and cathodic reactions at biased electrical potentials from potentiodynamic
polarisation. The obtained experimental parameters can be employed directly as target
parameters for training a machine learning model that is predictive of the performance
of untested compounds to create a shortlist of promising candidates. Moreover, the
experimental investigation yields additional input features that can be combined with
molecular descriptors derived from the molecular structure and atomistic simula-
tions. These input features exhibit great potential to develop augmented quantitative
structure-property relationships as they allow the direct inclusion of information of the
underlying mechanisms in the model training. The results of this study are expected to
support the development of faster inhibitor screening techniques in the future, which
can leverage the link between the molecular structure of the inhibitor and its corrosion
inhibition activity.

2.2. METHODS

2.2.1. SAMPLE PREPARATION

A LUMINUM alloy 2024 with a T3 temper (AA2024-T3) in the form of 2 mm thick sheets
is purchased (from Salomon’s Metalen B.V., the Netherlands) to perform the electro-

chemical experiments. The chemical composition of the alloy measured by the supplier
in accordance with the ASTM-E1251 standard is provided in Supplementary Table 2.4.

The sheets were cut with an automatic shearing machine to dimensions of 20 mm x
20 mm samples. The samples were mechanically ground on a rotating plate polisher un-
der a stream of water using Struers waterproof SiC sandpapers with progressively finer
grits of 320, 800, 1200, 2000 and 4000. Subsequently, the samples were polished using a
fine diamond suspension (Struers DiaDuo-2) with 3μ and 1μ particle sizes. After the pol-
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ishing procedure, samples were cleaned with isopropanol in an ultrasonic bath (EMAG-
EMMI 30HC) for 15 minutes and dried with compressed air. Sample preparation resulted
in a mirror-like surface finish.

2.2.2. INHIBITORS & ELECTROLYTES

T HE salt solutions without the addition of inhibitors (pH 5.9) were prepared with NaCl
powder with Milli-Q pure water (15.0 MΩ cm resistance at 25 °C). For inhibitor con-

taining solutions, inhibitors in quantities corresponding to 1 mM concentrations were
also added during the mixture step. No additional compounds were added to modify the
pH and/or increase the solubility of inhibitors. 78 small organic molecules were tested
as corrosion inhibitors, resulting in 0.1 M NaCl - 1 mM inhibitor electrolytes.

Initial organic molecule choice was based on previous inhibitor screening studies
[107, 136]. Tested organic molecules had both aromatic/aliphatic moieties of thiol,
amino, carboxyl and hydroxyl groups. CAS numbers and common names of the com-
pounds are presented in the section appendix B. All chemicals were purchased from
Sigma-Aldrich, with the exception of sodium chloride (J.T. Baker), 3-amino-5-mercapto-
1,2,4-triazole, lithium nitrate, cerium carbonate hydrate (Alfa Aesar), cerium chloride
heptahydrate, sodium acetate (Fluka), 2-mercaptobenzoate (Thermo Fisher Scientific),
5-mercapto-1-phenyl-1H-tetrazole (TCI Chemicals) and sodium mercaptobenzothia-
zole (Apollo Scientific). Almost all inhibitors dissolved fully in 1 mM concentrations,
with the exception of thiosalycylic acid, 2-mercaptobenzothiazole, α-benzoin oxime,
2,2’-dithiodibenzoic acid, 4-mercaptobenzoic acid, 2-(2-hydroxyphenyl)benzothiazole,
quercetin hydrate, berberine chloride hydrate and 2-(2-hydroxyphenyl)benzoxazole.
The solutions of these compounds were either murky, resulted in muddy suspen-
sions/emulsions or had visible undissolved particles in the solution. The pH of the
resulting solutions were measured with Metrohm 913 pH meter, before and after the
electrochemical experiments.

2.2.3. ELECTROCHEMICAL EXPERIMENTS

E LECTROCHEMICAL measurements were conducted at room temperature in open-to-
air 0.1M NaCl solutions, with (or without) the added 1mM inhibitor candidates. A

conventional three-electrode electrochemical cell (flat corrosion cell, Corrtest Instru-
ments, China) with the sample as the working electrode, platinum mesh as the counter
electrode, and Ag|AgCl (saturated KCl) as the reference electrode were used to perform
the experiments. The designated electrolyte volume was 300 ml and the exposed sur-
face area was 0.785 cm2 (1 cm diameter circle). Electrochemical measurements were
controlled with Biologic VSP-300 multichannel potentiostats through EC-Lab software
(version 11.33, Biologic, France).

The electrochemical measurements consisted of three different techniques com-
monly used in the field of corrosion science: linear polarisation resistance (LPR),
electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation
(PDP). The electrochemical investigations were initialised after observing the open
circuit potential (OCP) for 10 minutes. LPR was measured over a potential range of
±10 mV with a scan rate of 0.5 mV s–1 every 10 minutes for 24 hours. The polarisation
resistance (Rp) values were calculated by applying a linear fit to the observed linear
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region of potential vs. current density plots. EIS measurements were conducted at the
2nd and 24th hour. EIS measurements were conducted by applying a sinusoidal AC
perturbation with a peak-to-peak amplitude of 10 mV in the 10 kHz - 10 mHz frequency
range with 10 frequency point per logarithmic decade with 3 repetitions per frequency
point. OCP was observed in between LPR and EIS measurements. After the EIS at the
24th hour, potentiodynamic polarisation curves are recorded in a single sweep with a
scan rate of 0.5 mV s–1 from -250 mV cathodic to +250 mV anodic potentials with respect
to open circuit potential. Corrosion potentials and current densities were calculated
with Tafel extrapolation, by obtaining the intersection of tangents from linear parts of
anodic and cathodic curves of the log|current density|-potential polarisation curves.
Visual summary of electrochemical experiments is presented in Supplementary Figure
2.8.

All electrochemical experiments were repeated at least three times per inhibitor to
ensure the reproducibility of the experiments.

2.2.4. MOLECULAR DESCRIPTOR GENERATION, FEATURE SELECTION AND

EVALUATION OF RANDOM FOREST MODELS

T HE molecular descriptors based on the structure of the molecules for the input to the
random forest (RF) model, e.g. the molecular weight or the number of certain func-

tional groups, have been generated using the open source chemoinformatic software
package RDKit [141]. Additionally, DFT computations have been carried out to deter-
mine electronic key properties like frontier orbital energy levels using the commercial
software package Turbomole [142] resulting in a pool of 216 molecular descriptors (208
structural, 7 derived from DFT simulations and 1 experimental parameter (the average
pH, average of before and after electrochemical measurements). The aim of the recur-
sive feature elimination (RFE) was, to reduce this number to five or ten input features.
Furthermore, experimental parameters, especially the average pH, which were obtained
from the experiments, were used as additional input to the ML model. To determine
the influence of DFT and experimental parameters, the RF has been trained on different
sets of input features: on the structural features only, on the structural features compli-
mented by DFT or experimental parameters or both.

Prior to training, RFE, a sparse feature selection approach based on RF, has been car-
ried out to select the most pertinent input features. The purpose is to select n-tuples of
features that perform well together. Features that have low or no relevance to the mod-
elled property would degrade the model and using too many input features will ulti-
mately lead to overfitting on the training data. Therefore, the five and ten most relevant
features in each of the four groups have been determined with RFE and subsequently
used as the input to the RF model.

RF is a supervised learning method where the output is obtained by averaging the
results of a set of decision trees. The RF model can use both the IE and IP as targets.
Examining the data distribution for IE and IP (see Supplementary Figure 2.13), it can
be observed that there is no uniform distribution in either case which may lead to an
unintentional bias in the training data. Preprocessing step consisted of removal of mini-
mally varying and highly correlated features, and scaling the rest. Features with variance
lower than 0.1 have been removed with the VarianceThreshold function of scikit-learn.
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Features with correlations higher than 0.8 to rest of the features are dropped. All fea-
tures have been scaled using MinMaxScaler of scikit-learn. For the implementation of RF
models in this work, the default parameters provided by scikit-learn have been utilised.

To evaluate performance of the models, the coefficient of determination (R2) and the
root mean squared error (RMSE) have been employed. The first step was to divide the
data into a training and test set, with the test set containing ten molecules, or roughly 17
% of the total number of molecules in the dataset. To be more confident in the models
performance, in the next step a CV approach has been used to assess the models ro-
bustness. For this purpose, the dataset was split into six different folds using the KFold
function of sci-kit learn and all folds but one are used for training the models; this fold
is held back and used as the test set. Each fold also contained roughly 10 % of the total
number of molecules in the dataset. In total, the models are trained six times and the
average of the errors is calculated to assess their robustness.

Unless otherwise stated, the error bars and bracketed values (±e.g.) presented
throughout the study represent the standard error.

2.3. RESULTS AND DISCUSSION

2.3.1. EXPERIMENTAL RESULTS

F IGURE 2.1 plots the potentiodynamic polarisation (PDP), electrochemical impedance
spectroscopy (EIS), and linear polarisation resistance (LPR) measurements of

AA2024-T3 samples exposed to 0.1 M NaCl solution with and without the presence
of 1 mM inhibitor candidates of benzotriazole, 2,5-dimercapto-1,3,4-thiadiazole,
2-mercaptobenz-imidazole, 2-mercaptobenzoate, sodium acetate, sodium mercap-
toacetate, or ammonium pyrollidinedithiocarbamate. The summary of values obtained
from the experiments is presented in Table 2.1. In order to showcase the broad spectrum
of behaviours observed in the electrochemical experiments, inhibitor candidates with
contrasting characteristics were selected.

Figure 2.1 (a) presents polarisation curves of AA2024-T3 samples recorded after 24
hours of immersion in inhibitor containing solutions. Polarisation curves show that the
addition of small organic molecules results in corrosion current densities varying up
to 2 orders of magnitude . It is noteworthy that the best inhibitor candidates reduced
the corrosion current densities more than 10-fold compared to the uninhibited samples.
Analysis of corrosion potentials shows that inhibitors act as mixed or anodic inhibitors.
Anodic inhibitors reduce the current densities of partial oxidation reactions without af-
fecting the partial reduction reactions, causing the shift of the corrosion potential in the
positive direction (vice versa for cathodic inhibitors) [65]. Albeit small, addition of or-
ganic molecules shift the corrosion potentials to more positive values, with the excep-
tion of ammonium pyrollidinedithiocarbamate. However when breakdown potentials
(potentials where a sudden increase in current for the anodic curves) are observed it is
seen that the introduction of molecules resulted in negligible shifts with the exception of
2,5-dimercapto-1,3,4-thiadiazole. The distribution of electrochemical potentials among
all inhibitor candidates is analysed more deeply in section 2.3.5.

Figure 2.1 (b) shows the EIS impedance Bode modulus plots after 24 hours of immer-
sion in inhibitor-containing solutions. The impedance modulus |z| values observed at
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Figure 2.1: AA2024-T3 samples exposed to 0.1 M NaCl solution in presence and absence of 1 mM inhibitors.
(a) Potentiodynamic polarisation curves and (b) electrochemical impedance spectroscopy Bode modulus and
phase angle plots recorded after 24 hours of immersion, (c) linear polarisation resistance Rp values as functions
of exposure time.

10–2 Hz frequency are treated as the Rp values calculated from EIS, as it was shown that it
reflects the corrosion resistance of the inhibitor-substrate interface [143]. This approach
is based on a simplification, since the low frequency impedance modulus includes con-
tributions from the oxide film resistance, the charge transfer resistance, and often from
the diffusion controlled processes. Moreover in addition to the real component, it in-
cludes the imaginary part. |z| values show more than a 2-orders of magnitude range as it
was seen for corrosion current density measurements. Corrosion resistance with respect
to the uninhibited samples showed more than a 30-fold increase. A comparison of low
frequency impedance modulus values observed at 2nd and 24th hours presented in Table
2.1 show significant variation in inhibitor behaviour. This change from 2nd to 24th hour
is more clearly observed in LPR plots, which correspond well with EIS results.

Figure 2.1 (c) shows estimated Rp results calculated from the LPR measurements
conducted throughout 24 hours. The instantaneous corrosion resistance of a system
can be indirectly assessed by measuring the polarisation resistance Rp. A higher Rp in-
dicates a more resistive interface between the electrode and the electrolyte. The resis-
tive interface hinders the flow of electrons and ions, increasing the corrosion resistance
[144]. From the LPR measurements it is clear that the action of inhibitor species is highly
time- and species-dependent. In some cases such as sodium acetate, there is negligible
change in behaviour compared to the uninhibited solution. However in most cases, it



2.3. RESULTS AND DISCUSSION

2

27

Table 2.1: Electrochemical information obtained from potentiodynamic polarisation, electrochemical
impedance spectroscopy, and linear polarisation resistance measurements of AA2024-T3 samples exposed to
inhibitor containing solutions. Corrosion current density jcorr, corrosion Ecorr and breakdown Ebr potentials
vs. Ag|AgCl, impedance modulus values |z| observed at 10–2 Hz evaluated for 2 and 24 hours, linear polarisation
resistance Rp evaluated at 24 hours and the time-weighted average of the measurements

〈
Rp

〉
are presented.

Inhibitor jcorr Ecorr Ebr |z|2h |z|24h Rp|24h

〈
Rp

〉
(nA cm–2) (mV) (mV) (kΩ cm2) (kΩ cm2) (kΩ cm2) (kΩ cm2)

Uninhibited (0.1M NaCl) 604 (±108) -620 (±12) -486 (±2) 14 (±0) 14 (±3) 11 (±1) 11 (±1)

Benzotriazole 216 (±38) -500 (±3) -475 (±4) 79 (±31) 107 (±48) 100 (±44) 94 (±43)

2,5-dimercapto-1,3,4 thiadiazole 3822 (±399) -604 (±6) -479 (±6) 51 (±18) 3 (±0) 3 (±0) 16 (±4)

2-mercaptobenzimidazole 79 (±18) -523 (±6) -496 (±8) 80 (±30) 265 (±80) 253 (±85) 207 (±66)

2-mercaptobenzoate 261 (±65) -527 (±16) -472 (±19) 130 (±50) 38 (±16) 53 (±21) 135 (±7)

Sodium acetate 396 (±54) -563 (±14) -473 (±13) 16 (±2) 16 (±1) 13 (±2) 15 (±1)

Sodium mercaptoacetate 57 (±13) -572 (±25) -435 (±34) 203 (±47) 203 (±64) 561 (±191) 555 (±205)

Ammonium pyrollidinedithiocarbamate 38 (±4) -636 (±14) -488 (±14) 346 (±34) 480 (±106) 335 (±73) 356 (±173)

was observed that instead of having a constant behaviour, Rp values evolve with time. In
cases such as benzotriazole, 2-mercaptobenzimidazole, sodium mercaptoacetate and
ammonium pyrollidinedithiocarbamate, there is an initial increase in Rp, and further

development of corrosion protection until the 6th hour, and stable corrosion protection
after that. For 2-mercaptobenzoate it was seen that after an initial increase and a grad-
ual development of corrosion resistance, the protection started to decrease to lower than
initial values. For 2,5-dimercapto-1,3,4-thiadiazole it was seen that after the initial, more
than an order of magnitude increase in Rp, the protection starts to decrease. This decline

continues until the 6th hour and signifies stable active corrosion behaviour afterwards.
In the specific case of 2,5-dimercapto-1,3,4-thiadiazole, we conclude that this accel-

erated corrosion was caused by the pH change of the electrolyte after the introduction of
the inhibitor. Analysis of pH measurements of the electrolytes prior to the electrochemi-
cal experiments shows that compared to the pH value of 6 of the uninhibited 0.1 M NaCl
solution, 2,5-dimercapto-1,3,4-thiadiazole containing solution had an acidic pH value
of 3. This is at the boundary of the thermodynamically stable region of Al at 1M Al3+,
but in the region of preferential stability of Al3+ at lower than 1M contraception of Al3+

[145], which is expected for OCP corrosion of AA2024. Therefore the considerable de-
crease in pH must have disrupted the stable aluminium (hydr)oxide layer, and lead to
active corrosion of the samples.

Due to this dynamic corrosion and inhibition behaviour, it is vital to capture the per-
formance during the whole time-span. One method to achieve this is to estimate the
mean value of Rp through a trapezoidal integration over time:

〈
Rp

〉
=

1

tf – t0

∫ tf

t0

Rp(t)dt (2.1)

≈ 1

tf – t0

N∑
k=1

Rp (tk–1) + Rp (tk)

2
(tk – tk–1) (2.2)

where tf is the final measurement time, t0 is the initial measurement time, and k is the



2

28 2. CAUSING INHIBITION

indice for the performed discrete measurements. The mean estimated this way can be
used as a screening metric that contains all time-dependent information in one number.
The power of this approach as an inhibitor screening tool was recently shown for pure
copper substrates exposed to small organic molecules [79].

2.3.2. QUANTIFYING INHIBITOR PERFORMANCE

T HE electrochemical information obtained from the techniques PDP, EIS and LPR can
be used to compare the performance of inhibitors. However, it is not possible to

directly compare the electrochemical information obtained from different measurement
techniques. To enable a more direct comparison between techniques, the results can be
converted into relative protection values by comparing the results obtained from the
inhibited solutions to the uninhibited ones.

The most widely used metric for comparing the inhibitor performance in the liter-
ature is the inhibition efficiency (IE). The inhibition efficiencies are calculated from po-
larisation resistances Rp obtained from LPR or EIS, the cases when the inhibitor value is
higher than blank:

η =
Rp

inh – Rp
blank

Rp
inh

= (1 –
Rp

blank

Rp
inh

)×100% (2.3)

and corrosion current densities jcorr obtained from PDP, the cases when the inhibitor
value is lower than blank:

η =
jcorr

blank – jcorr
inh

jcorr
blank

= (1 –
jcorr

inh

jcorr
blank

)×100% (2.4)

where superscripts inh and blank stand for inhibited and uninhibited samples, respec-
tively.

Inhibition efficiency is used widely because it is an easy to understand comparison
tool. For inhibition, it has values between 0 (no protection at all) to 100% (complete pre-
vention of corrosion). Negative values indicate acceleration of corrosion compared to
the uninhibited case. It is also favoured as under simplifying assumptions it can directly
be correlated to the surface coverage by the inhibitor molecules. However, this ease of
use obscures the fact that as a mathematical function this mapping introduces a math-
ematical bias and as a result is highly non-linear. Due to its form, (1 – a

b ), inhibition effi-
ciency introduces an arbitrary 1 next to the relative values ( a

b ) that is of actual interest. As
a result, minor differences in performance are seen as large jumps for the lower efficien-
cies (<90%), and major differences are hidden from view at higher efficiencies (>90%).
This also causes researchers to wrongly conclude that good-performing inhibitors would
also have lower standard deviations, since even major variations in electrochemical val-
ues are suppressed at the higher end of the inhibition efficiency metric. Therefore, it is
not an optimal metric to compare the protection performance of strong inhibitors.

An alternative metric, inhibition power (IP), has recently been proposed to address
the limitations of inhibition efficiency [130]. It is the ratio of inhibited and uninhibited
inhibition information presented in a logarithmic fashion. For polarisation resistance
Rp it is defined as:
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Figure 2.2: The correlation between different electrochemical measurement techniques: EIS performed at 2nd

and 24th hour |z|2h and |z|24h, potentiodynamic polarisation performed at 24th hour jcorr, LPR performed at

24th hour Rp|24h and the time-weighted average of LPR measurements
〈

Rp
〉

. (a) Example correlation between
|z|24h and

〈
Rp

〉
, values from electrochemical measurements converted into top: inhibition efficiency, bottom:

inhibition power. Each dot represents an individual measurement, categorised in colours with respect to their
inhibitor species. (b) Pearson correlation coefficients between different electrochemical measurements, con-
verted in top-right triangle: inhibition efficiency, bottom-left triangle: inhibition power metrics.

Pinh = 10log10(
Rp

inh

Rp
blank

) (2.5)

and for corrosion current densities jcorr it is defined as:

Pinh = 10log10(
jcorr

blank

jcorr
inh

) (2.6)

By taking only the ratio of electrochemical values into account, inhibitor power elim-
inates the influence of bias introduced by the arbitrary (1– a

b ) form of inhibitor efficiency
determination. In this form, an inhibition power increase of 10 from uninhibited con-
dition corresponds to a corrosion resistance increase by 10-fold, while an increase of 20
corresponds to a 100-fold corrosion resistance increase.

2.3.3. COMPARISON OF ELECTROCHEMICAL TECHNIQUES:
INHIBITION EFFICIENCY VS. INHIBITION POWER

T HE comparison of electrochemical results converted into inhibition efficiency and
inhibition power metrics is presented in Figure 2.2. Example correlations between
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EIS measured at 24th hour with time-weighted LPR average
〈

Rp
〉

for individual experi-
mental runs are visible in Figure 2.2 (a). Figure 2.2 (b) quantifies the correlation between
different electrochemical measurement techniques in the form of Pearson correlations.
P-values (value describing how likely it is that your data would have occurred under the
null hypothesis of your statistical test) of the Pearson statistical test correlations were
between 10–134 and 10–51, much lower than the commonly used criteria 10–6, indicating
statistical significance.

The differences between inhibitor efficiency and power correlations are vividly seen
in Figure 2.2 (a). For inhibition efficiency, the correlations are weak except for the top
right part, the best-performing inhibitors. This might falsely lead to the impression
that an increase in inhibitor performance results in a higher correlation between exper-
iments. This impression is misleading, and is an artifact of the mathematical function
used for converting raw electrochemical information into inhibition efficiency. When
the correlations are visualised in the form of inhibitor power, higher correlations be-
tween the good-performing inhibitors are lost. All compounds behave in a similar way
and cluster around the perfect correlation diagonal.

The only exceptions to the strong correlation seen for inhibitor power are the com-
pounds that change their corrosion protection behaviour throughout time. Given that
|z|24h measures the protective properties at the 24th hour, and

〈
Rp

〉
captures additional

time-dependent information, this behaviour is completely expected.
Apart from being more consistent, inhibitor power facilitates discerning between

better and best inhibitors. As more conceptually argued in previous section 2.3.2, inhibi-
tion efficiency metric squeezes the high-performing compounds together. This is clearly
visible from the clustering of experiments for the efficiency metric, versus individually
identifiable best-performing compounds for the power metric in Figure 2.2 (a).

The clustering seen for the inhibition efficiency metric also creates an issue for train-
ing a predictive model. Imbalanced data usually results in models that have poor predic-
tive performance, especially for the minority class [146]. The homogeneous distribution
of results is crucial in training an unbiased machine learning model, which is better pro-
vided with the inhibition power metric.

Figure 2.2 (b) presents the correlations between the electrochemical measurement
techniques more quantitatively in the form of Pearson correlations. The top-right trian-
gle shows the correlations between different electrochemical measurement technique
results converted into inhibition efficiency, and the bottom-left triangle shows the same
results converted into inhibition power.

Pearson’s bivariate sample correlations quantify linear correlations between two sets
of data with the following formula:

rx,y =

n∑
i=1

(xi – x̄)(yi – ȳ)√
n∑

i=1
(xi – x̄)2

n∑
i=1

(yi – ȳ)2

(2.7)

where n is the total number of experiments (in this work ∼300), i the index representing
different experiments, xi, yi individual sample points from two different electrochemical
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measurement methods, x̄, ȳ sample means obtained from the different electrochemi-
cal methods. The correlation coefficient rx,y can take values from -1 to 1. 1 indicates a
perfect linear relationship between x and y, where all data points lie on a line where x
increases as y increases, and vice versa for -1. A value of 0 indicates that there is no linear
relationship between the two variables. For time-invariant electrochemical behaviour, a
correlation coefficient of 1 is expected between the different electrochemical measure-
ment results [147].

A quick comparison of the inhibition efficiency and power correlation triangles
shows that the correlations between measurements are consistently lower for the
inhibition efficiency metric. For the inhibition efficiency, the correlations between
different techniques are all below 0.9, with the exception of LPR and EIS measurements
performed at the 24th hour. For the inhibition power, LPR and EIS measurements
carried out at the 24th hour and time-weighted LPR average

〈
Rp

〉
show very high

correlations. EIS performed at 2nd hour show the lowest correlations with the rest of
the measurements. Trustworthy EIS measurements require the electrochemical system
to be linear, causal, and time-invariant within the time-frame of the measurement
[79, 112]. However for dynamic systems similar to the ones shown on Figure 2.1 (c),
time-invariance would not be often observed at measurements done at 2nd hour, which
would explain the low correlations. The highest correlation of EIS performed at 2nd hour
was observed with a time-weighted parameter,

〈
Rp

〉
. This again emphasises the time-

variable inhibitor behaviour. For inhibition power, higher correlation was observed
between

〈
Rp

〉
and EIS performed at 24th hour, compared to

〈
Rp

〉
and EIS performed

at 2nd hour indicates that measurements at 24th hour were more representative of the
time-dependent corrosion inhibition behaviour. Surprisingly for inhibition efficiency,
the opposite is the case. This might be due to the volatility inherent to the inhibition
efficiency transformation.

PDP measurements show lower correlations with the rest. This is most likely due to
altered electrochemical behaviour caused by the high overpotentials (±250 mV) neces-
sary for the PDP experiments. Due to the high overpotentials encountered during the po-
tentiodynamic scans, the physicochemical properties of the surface are modified, poten-
tially leading to an altered substrate surface chemistry [79, 148]. Another reason could
be the increased user input during the Tafel slope analysis required for corrosion current
density calculations, which is much higher than required for EIS or LPR. Specifically for
the case of AA2024-T3, the use of Tafel approach is not straightforward. On one side,
the cathodic behaviour is significantly influenced by oxygen diffusion limitations. On
the other, the anodic processes are not solely governed by charge transfer, but rather oc-
cur at localised regions such as intermetallic particles and grain boundaries. Therefore,
the conventional Tafel approach cannot be employed since it is applicable only under
activation-controlled processes. Tafel analysis in such conditions is a very simplified ap-
proach, and can lead to deviations.

For the reasons presented above, we argue that inhibition power is a more ’efficient’
way in discerning between better and best inhibitors, and a better approach to training
an unbiased predictive machine learning model. Therefore, it is used to compare and
rank the inhibitor performance in the next section.
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Figure 2.3: The representation of PDP, EIS, and LPR measurements converted into inhibition power for best
performing among the tested inhibitors. Small line-scatter plots represent LPR, larger plots with black edges
represent EIS at 2nd and 24th hours, and the final larger scatter plots represent the PDP measurement results
converted into inhibition power. The solubility of inhibitors denoted with italics were less than 1 mM.

2.3.4. RANKING OF INHIBITORS

F IGURE 2.3 demonstrates the electrochemical measurement results converted into in-
hibition power for the best-performing inhibitors. LPR measurements are shown

with line-scatter, EIS with black framed scatter, and PDP with the final individual scatter
plots. The width of the EIS and PDP symbols were chosen so that it would convey the
time it takes to perform the measurements.

The presented inhibitors show stable behaviour after 6 hours, with the exception
of 2-mercaptobenzothiazole which develops inhibition until after 18 hour, and of
4-mercaptobenzoic acid which seems to show a minor decrease in inhibition perfor-
mance with time. LPR and EIS results correlate strongly with each other (except for
2-mercaptopyridine EIS around 2 hours), as expected from the analysis in the previous
section 2.3.3. PDP results demonstrated a lower inhibition power for all cases. This
systematic difference was attributed to the destructive nature of PDP measurements.

Although a qualitative analysis is possible through such plots, the quantitative rank-
ing of a high number of inhibitors is not feasible through such visualisations. To this
end, the time-weighted LPR average

〈
Rp

〉
is advantageous as it captures the complete

time-dependent behaviour in a single number. Additionally, it shows high correlation
with other electrochemical techniques as seen from Figure 2.2 (b).

Figure 2.4 presents the ranking of inhibitor candidates in the form of a box-plot, cre-
ated from the time-weighted LPR average

〈
Rp

〉
values converted into inhibition power

through Equation 2.5. Inhibitor candidates are ranked with respect to their mean inhi-
bition power values, and their medians are represented by horizontal bars. The box part
shows the main portion of the data, the interquartile range. The edges of the box show
the 25th and 75th percentile. Whiskers show the minimum and maximum measurement
results.

The importance of heteroatom presence, aromatic ring and π-bond containing
molecular structures on inhibitor performance have been consistently mentioned in
the literature [47, 109, 149, 150]. It has been argued that the availability of non-bonded



2.3. RESULTS AND DISCUSSION

2

33

Figure 2.4: The inhibitor candidate ranking visualised as boxplots. Colours indicate the nitrogen (N), oxy-
gen (O), sulphur (S) heteroatom content and presence/absence of aromatic ring structures. The solubility of
molecules denoted with italics were less than 1 mM.



2

34 2. CAUSING INHIBITION

lone pair electrons of heteroatoms and π-electrons of double/triple bonds facilitate
electron transfer from the inhibitor to the d-orbitals of the metal, acting as adsorption
centers during metal-inhibitor interactions. To identify such trends in this experimental
data set, the inhibitors have been categorised according to their molecular structures:
the presence of N,O,S heteroatoms and their aromatic vs. aliphatic bond structures.

Almost half of the inhibitor candidates behaved as corrosion accelerators. This was
in contrast to the findings of previous studies [107, 136], which was the basis of the
inhibitor selection procedure of our paper. Non-adjusted pH could be one reason for
this behaviour. 80% of sole O heteroatom containing compounds behaved as acceler-
ators, with the exception of sodium acetate and vanillin. On the other hand, N and S
heteroatom containing organic molecules performed consistently well. They had the
highest inhibition power values with none of them performing as corrosion accelerators.
Compounds that contained N, S and O together had in-between inhibition properties.
This leads us to suggest that N, S heteroatoms grant inhibitive properties to the organic
molecule, whereas O could potentially hinder inhibition. Specifically for AA2024-T3
corrosion inhibition, it was observed that functional groups with N and S heteroatoms
form coordination complexes with Cu containing intermetallics, reducing the corrosion
rate [151–153]. The heteroatom trend is generally in line with the previously suggested
heteroatom electronegativity - inhibition effect, where heteroatoms provided inhibition
with inverse order of their calculated individual electronegativity: P > S > N > O [149]. It is
proposed that lesser electronegativity results in increased charge transfer and provide in-
hibition. However the real situation in a small organic molecule is much more complex
as the electronegativities of the heteroatoms will change depending on the molecular
structure.

The discussion above addresses only one of the important molecular descriptors.
Trends are not clear for the rest. The comparison of aromatic and aliphatic behaviour
show no significant difference. This is most likely because the tested aliphatic molecules
already contain excess π-bonds in their linear chain. The behaviour of N and O, and S
and O containing molecules are most complex. The molecules are spread throughout
the inhibitor/accelerator spectrum, seemingly without an underlying order and act as
best and worst performing compounds, as seen in the behaviour of 4-mercaptobenzoic
acid and thiobenzoic acid.
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2.3.5. UNDERSTANDING AND PREDICTING INHIBITION: EXPERIMENTAL

INPUT FEATURES FOR THE MACHINE LEARNING MODEL

I T is clear that any predictive corrosion inhibition model requires a more compre-
hensive description of the system than the presence or absence of heteroatoms.

Compared to analysing individual properties like the presence of certain heteroatoms,
π-bonds and functional moieties, quantitative structure–property relationship (QSPR)
models have potential in exploring more complex physical phenomena [16, 34, 138,
154–161]. QSPR inhibition models relate predictor variables, which can be physico-
chemical properties and/or theoretical molecular descriptors of inhibitor compounds,
to the experimentally measured inhibition performance. Quantified physicochemical
properties or descriptors (obtained through theoretical calculations and molecular
modelling techniques such as density functional theory and molecular dynamics) ex-
pressed in a mathematical relationship, a quantitative structure-property relationship,
can be established to predict the performance of untested organic molecules.

The inclusion of experimental physicochemical descriptors is the next logical step
to supplement the input feature pool and to concomitantly improve the robustness of
the predicted values as well as the generalizability of QSPR models for small organic cor-
rosion inhibitors . Some important physical and chemical experimental input features
that are capable of increasing prediction quality are presented below.

Molecular Weight: Molecular weight - inhibitor power relationship can be found in
the Supplementary Figure 2.2. It seems that most organic molecules cluster in the range
of 100 to 200 g mol–1, and after around 250 g mol–1 there seems to be a decrease in the
inhibitor performance. This is most likely due to steric hindrance effects, where an in-
crease in the size of the molecule would hamper the adsorption reactions with the sub-
strate [162]. Based on this observation we suggest that as a rule of thumb, small organic
molecules with molecular weights lower than 250 g mol–1 can hold more promise to be
inhibitor candidates. This would limit the chemical space to be explored and facilitate
the efficiency of novel inhibitor discovery.

Inhibitor Concentration: The influence of concentration is certainly important for
inhibition behaviour. An exploratory comparison of 6 molecules at 0.1 and 1 mM con-
centrations show that with increasing concentration, inhibitor systems become more
protective and accelerator systems become more corrosive (provided in Supplementary
Figure 2.12). Typically as concentration increases, a corresponding increase in inhibi-
tion is observed until a critical concentration is reached. After this critical concentra-
tion the inhibition either reaches a plateau, or in certain cases it starts to decline [163].
It was previously argued that the decline in inhibition was related to the formation of
oligomers: either the molecule concentration higher than the critical value causes ad-
sorbed inhibitor molecules to desorb due to interaction with free molecules present in
the solution, forming oligomers, or oligomers that form in the solution beforehand re-
duce the concentration of inhibitor available for adsorption [78]. Any analysis of an in-
hibition system has to be aware of such a behaviour when comparing inhibition perfor-
mance at different conditions.

Electrochemical Potentials: Electrochemical information obtained from the experi-
ments can serve as target parameters to be predicted (such as previously calculated in-
hibition power), and also can be utilised as descriptors. This can augment the molec-
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Figure 2.5: The distribution of corrosion potentials Ecorr, pitting breakdown potentials Ebr where a sudden
jump in anodic current is observed, and the differences between the two. Histograms are shown as red bars,
kernel density estimates of the probability functions are shown as black curves. μ and σ represent the mean
and standard deviation, respectively.

ular descriptors of the model by adding mechanistic insights related to the electrolyte-
electrode system, which were otherwise lacking from the statistical nature of machine
learning models.

The dominant degradation mechanism of AA2024-T3 is pitting corrosion [42, 55].
Furthermore, the alloy is used in combination with composite structures in modern
aeroplanes which triggers galvanic corrosion. For this reason, parameters that represent
pitting and galvanic corrosion hold promise as either target parameters to be predicted,
or as additional descriptors that provide mechanistic information to the models.

Figure 2.5 presents the distribution of corrosion potentials Ecorr, pitting breakdown
potentials Ebr where an instantenous large increase in anodic current is observed [164],
and the differences between the two. It is seen that inhibitors can modify Ecorr signif-
icantly, as seen from the 200 mV range and high standard deviation of 72.8 mV. On the
other hand, Ebr values change negligibly, with a standard deviation of 17.6 mV, leading us
to believe that this is an intrinsic property of the substrate. This is in line with previous
dealloying studies, where an alloy dependent intrinsic critical potential was observed
for activating porosity formation in an otherwise passive surface [165]. Ebr acts as the
threshold potential for preferential dealloying of the active phases, which in the case
of AA2024-T3 is the potential for initiating stable pits resulting from active S (Al2CuMg)
and θ (Al2Cu) phase intermetallics [39]. The difference between potentials Ebr - Ecorr de-
scribes the overpotentials required to reach this threshold, which was shown to be highly
influenced by the introduction of inhibitors.

The influence of difference in potentials Ebr - Ecorr is denoted here as passive range,
and plotted with respect to inhibitor power in Figure 2.6 to see whether there is a cor-
relation between the two parameters. Different chemical groups are denoted with dif-
ferent colours. No significant correlation was observed between the passive range and
inhibition performance. It was observed that apart from NS aliphatic and OS aliphat-
ic/aromatic compounds, a weak negative correlation between the two parameters was
observed. However, this behaviour was not statistically significant because of the high
spread observed for the experiments. In any case, the seemingly unsystematic behaviour
with low correlation highlights the need for further study. As the key parameter for lo-
calised electrochemical activity, passive range holds promise either as a target to be pre-
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Figure 2.6: The correlation between inhibitor power and the passive range (Ecorr – Ebr).

dicted on its own, or as a descriptor to be used in combination with the molecular de-
scriptors.

Bulk pH : Apart from 4-mercaptobenzoic acid, sodium diethyldithiocarbamate, and
1,3,4-thiadiazole-2,5-dithiol-dipotassium salt, the pH did not change in the presence of
compounds with good inhibition performance (IP>10, IE>90%) and had neutral pH val-
ues around 6. On the other hand, IP was lower in the presence of compounds which
caused the initial pH of the electrolyte to be out of the 4.5 to 8.5 Al stability window
[166]. The clustering of lower pH values at the lower inhibition power segment suggests
that this results in active corrosion becoming the dominant degradation mechanism.

It was seen that there is no correlation of inhibition power with either the average
or the difference in pH (Supplementary Figures 2.10-2.11). It must be noticed that what
is measured as bulk electrolyte pH and what the actual pH observed on the substrate
surface can be very different, and bulk electrolyte measurements do not fully reflect lo-
cal behaviour such as concentration gradients at the electrolyte-substrate interface and
throughout the diffusion layer [167].

The lack of correlation does not mean that bulk pH information is useless as a ma-
chine learning model feature. It is very relevant for explaining the outlier behaviour, as
the pH difference caused by the inhibitor molecule is not captured directly with com-
putational descriptors. The addition of bulk pH as a feature can capture such pH-based
behaviour, and can be used as a forensic analysis tool to explain outliers of the model.

2.3.6. EXPLORING EXPERIMENTAL DESCRIPTORS FOR MACHINE LEARNING

E XPERIMENTALLY measured pH shows the power of descriptors obtained from experi-
ments. To produce a short list of compounds with possibly useful properties for fur-

ther experimental testing.The selection of relevant input features is a crucial step in the
development of QSPR models as features with low or no relevance to the target property
will degrade the model. The recursive feature elimination (RFE) was carried out for the
four distinct groups of input features: structural features only, structural features com-
bined with DFT, structural features combined with average pH, and structural features
combined with DFT and average pH. Feature elimination was performed for both IE and
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Table 2.2: Results of one specific train test split.

Target # Features RMSE RMSE RMSE RMSE R2 R2 R2 R2
structural structural + DFT structural + pH structural + DFT + pH structural structural + DFT structural + pH structural + DFT + pH

IE 10 0.24 0.23 0.18 0.18 0.17 0.19 0.49 0.51
5 0.22 0.24 0.2 0.19 0.27 0.13 0.42 0.43

IP 10 0.19 0.19 0.18 0.18 0.25 0.31 0.32 0.38
5 0.2 0.15 0.16 0.15 0.19 0.55 0.49 0.54

Table 2.3: Results of 6-fold cross validation.

Target # Features RMSE RMSE RMSE RMSE R2 R2 R2 R2
structural structural + DFT structural + pH structural + DFT + pH structural structural + DFT structural + pH structural + DFT + pH

IE 10 0.22 (± 0.03) 0.19 (± 0.02) 0.14 (± 0.02) 0.14 (± 0.02) -0.47 (± 0.33) -0.12 (± 0.18) 0.3 (± 0.21) 0.35 (± 0.21)
5 0.21 (± 0.03) 0.23 (± 0.02) 0.14 (± 0.02) 0.14 (± 0.02) -0.46 (± 0.38) -1.07 (± 0.67) 0.27 (± 0.22) 0.35 (± 0.22)

IP 10 0.2 (± 0.04) 0.19 (± 0.04) 0.2 (± 0.04) 0.18 (± 0.04) 0.3 (± 0.14) 0.35 (± 0.14) 0.31 (± 0.13) 0.41 (± 0.13)
5 0.21 (± 0.04) 0.2 (± 0.03) 0.2 (± 0.03) 0.18 (± 0.03) 0.28 (± 0.13) 0.33 (± 0.14) 0.35 (± 0.11) 0.41 (± 0.11)

IP targets. The whole feature selection process was repeated 100 times with different ran-
dom seeds and the n-tuples that were selected in the majority of the runs can be found
in the Supplementary Tables 2.5-2.8.To use the same technique for the QSPR step that
was employed for sparse feature selection, random forest (RF) models have been trained
using the experimental database. By algorithmically eliminating the weakest features, it
allows automatic feature selection without user bias or intervention [138]. Moreover, RF
is an ensemble model that builds multiple decision trees and combines their predictions.
Naturally, this ensemble approach helps reduce the risk of overfitting, which can be cru-
cial when dealing with small datasets. Another advantage is robustness against outliers:
outliers can have a significant impact on smaller datasets, whose influence again can be
mitigated by aggregating predictions from multiple trees.

RF regression models predicting the quantitative inhibition performance values were
trained to create an active material discovery loop to explore the vast chemical space for
promising compounds in an efficient manner. Out of the 78 organic molecules that were
tested, only 59 were fully dissolved in solutions. These molecules corresponded to a tar-
get concentration of 1 mM, and were used to train the ML models. As the input to these
models molecular descriptors (MDs) based on the structure of the molecules, descrip-
tors calculated by DFT as well as selected experimental parameters have been used. The
accuracy and robustness of the trained models is assessed using a cross-validation (CV)
approach.

In aqueous solutions, aluminium alloys have a protective passive (hydr)oxide layer
preventing it from corrosion at a pH range roughly between 4 and 10 [166]. In this pH
range, scratches or mechanical damage to the passive layer are quickly repaired but if
the pH drops below or rises above the stable range, aluminium starts to corrode actively.
As the oxide layer is no longer stable at such conditions, this influences the inhibitor-
substrate interaction. As a result, the pH makes for an effective feature in a ML model
because aluminum is typically more likely to corrode at very high or very low pH levels.
The pH is selected by the RFE routine every time it is part of the set of input features. This
demonstrates emphatically that the pH appears to be a key feature in the prediction of
inhibition performance of organic molecules.

In addition to pH, several properties derived from DFT calculations are also selected
by the RFE as soon as they are included to the set of input features. The DFT parameter
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Figure 2.7: Prediction results for random forest models with 5 input features that uses the IP as target. Feature
pool: (a) only structural features, (b) structural features and DFT parameters, (c) structural features and pH,
(d) structural features, pH and DFT parameters.

that was selected most frequently, was the highest occupied molecular orbital (HOMO).
Additionally, the lowest unoccupied molecular orbital (LUMO) and dipole were selected
in at least half of the cases, with n = 10 for the RFE step. This contrasts with recent works,
which have concluded that the correlation between DFT properties and the corrosion
inhibiting effect of small molecules seems absent [130, 168]. However, neither of these
works mixed the DFT features with molecular descriptors that encode the molecular
structure. It is noteworthy that the correlation between the HOMO energy levels and
IE/IP is essentially zero in this work as well, corroborating these prior works.

When examining the results for one specific train test split in Table 2.2, it is evident
that at least for most of the cases where the DFT parameters and/or pH value are added
to the set of input features, the R2 increases and the RMSE decreases. This indicates that
including these parameters enhances the prediction and increases the reliability and ro-
bustness of the models. The only case where this does not hold is the IE model with five
input features combining structural features and DFT. A closer examination reveals that
for IE ten input features allow for more accurate predictions than five, whereas for IP the
reverse is true. Lowest RMSE and highest R2 was achieved for the model that uses com-
bined descriptors and IP as the target. In Figure 2.7 the measured IP is plotted against
the IP predicted by the RF.

In order to perform CV, the dataset was divided into six folds and thus six RF mod-
els were trained. The average R2 and RMSE and the corresponding standard deviation
of these models are shown in Table 2.3. The evaluation of the models using different
classes of input features indicate that adding DFT parameters and/or the pH value in-
creases the prediction accuracy in most of the cases according to the determined mean
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values for R2 and RMSE. The models with the lowest RMSE and highest R2 include pH
and DFT parameters as input in addition to the structural features, further supporting
our claim that molecular descriptors derived from atomistic simulations can be helpful
to generate QSPR models that predict the corrosion inhibition responses of small or-
ganic molecules to lightweight engineering metals such as aluminium and magnesium
alloys. Unlike the specific train test split case, lowest RMSE was obtained for IE as tar-
get, and the highest R2 was achieved for IP as the target. Unfortunately high variation
among different folds makes it difficult to state with certainty whether IP or IE perform
better targets for such models. However, the comparably low R2 and RMSE values for all
considered models and the high standard deviations of these metrics indicate that more
training data is required to achieve better generalisation. Furthermore, they are highly
sensitive to outliers in the blind test set.

2.4. CONCLUSION

I N summary, we employed various standard electrochemical techniques at different
intervals to investigate the electrochemical behaviour of around 80 small organic

molecules. Our aim was to capture the most comprehensive electrochemical picture of
AA2024-T3 immersed in inhibitor containing electrolytes. The performance of inhibitor
candidates was quantified through statistical analysis of their electrochemical response.
This highlighted the need for complementary information from different techniques to
have a mechanistic understanding of an inhibition system. For initial inhibitor screen-
ing purposes, time-weighted LPR measurements showed very high correlations with
other techniques and are a good substitute for representing the protective behaviour of
the inhibitor. Time-dependent measurements showed that for the majority of organic
molecules electrochemical measurements performed in less than 6 hours varied in time
and were unstable. To understand the true inhibitive properties of inhibitor candidates,
electrochemical studies should analyse the inhibition performance at least after 6 hours
for more reliable results. Statistical analysis shows that inhibition efficiency is not
an ’efficient’ way to distinguish between good inhibitors. Inhibition power is a more
suitable metric for discerning between “better” and “best” inhibitors. Inhibition power
eliminates clustering of data observed in higher efficiency range (>90%), which is an
important condition for training an unbiased machine learning model. The need for
more complicated predictive models with advanced descriptors was clear by categoris-
ing molecules based on heteroatom content and the presence of aromatic moieties.
Compounds that contain both N and S heteroatoms performed consistently well, how-
ever the performance of compounds with other chemical structures was spread over a
large range. Electrochemical information coming from corrosion potential and passive
range bears no linear correlation to inhibition power and could be either a predictive
descriptor in combination with other features for predicting corrosion resistance, or can
be an important prediction target as it is a key parameter for localised corrosion. The
machine learning model augmented with mechanistic information is key in exploring
the complexity of corrosion phenomena, which was highlighted by the predictive power
of pH. No linear relationship between bulk pH and inhibitor performance was observed,
however information gained from pH assisted in describing the system better by in-
cluding information about the environment not necessarily found in computational
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descriptors, which increased the prediction rate and assisted in outlier analysis of the
random forest models.

At this stage rather than designing a final prediction system, we have explored the use
of machine learning models to create an active learning loop for more efficient experi-
mental discovery. The obtained experimental parameters can be employed directly as
target parameter for training of a machine learning model that is predictive of the perfor-
mance of untested compounds to create a shortlist of promising candidates. Moreover,
the experimental investigation yielded additional input features like pH that can be com-
bined with molecular descriptors derived from the molecular structure and atomistic
simulations. These input features exhibit great potential to develop augmented quan-
titative structure-activity relationships as they allow the direct inclusion of information
about the underlying mechanisms in training of the models. The results of this study are
expected to support the development of i) faster inhibitor screening techniques which
can capture the same high resolution electrochemical information on a shorter time-
scale, ii) more complex models that can leverage the link between the physicochemical
nature of the inhibitor and its protective performance.
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2.5. SUPPLEMENTARY INFORMATION

2.5.1. EXPERIMENTAL DETAILS

ALLOY COMPOSITION

Table 2.4: Chemical composition (wt.%) of AA2024-T3.

Element Al Si Fe Cu Mn Mg Cr Zn Ti V Zr Other

wt.% 93.1 0.08 0.19 4.6 0.56 1.3 0.01 0.11 0.02 0.01 0.00 0.05

GRAPHICAL SUMMARY OF EXPERIMENTS

Figure 2.8: A visual summary of the electrochemical experiments. Acronyms correspond to: OCP - open circuit
potential, LPR - linear polarisation resistance, EIS - electrochemical impedance spectroscopy, PDP - potentio-
dynamic polarisation. The provided times indicate when the respective measurements have been performed
during the duration of the experiment.
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2.5.2. EXPERIMENT FEATURE CORRELATIONS

Figure 2.9: The correlation between inhibitor power and molecular weight of the inhibitor candidates.

*Inorganic compounds correspond to chemicals not explicitly mentioned in this pa-
per. They were not the focus of the study as they cannot be used to train the statistical
model in the same way as organic molecules, due to their different protection mecha-
nisms among other reasons. They consist of Ce, Li, phosphate and sulphate salts.
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Figure 2.10: The correlation between inhibitor power and average pH of the electrolytes before and after the
experiments.

Figure 2.11: The correlation between inhibitor power and pH difference of the electrolytes before and after the
experiments.
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2.5.3. ELECTROCHEMICAL PERFORMANCE DISTRIBUTIONS

Figure 2.12: Comparison of electrochemical response of small molecules in 0.1 and 1 mM concentrations.

Figure 2.13: Comparison of the distribution of electrochemical data of
〈

Rp
〉

converted into inhibition power
and efficiency. Red: histograms with bin size 60, black kernel density estimates of the distribution.
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2.5.4. RECURSIVE FEATURE SELECTION

INHIBITION EFFICIENCY

Table 2.5: Selected features for IE (single train test split).

Type Num of Features Features

stuctural 5 MaxEStateIndex, MinAbsEStateIndex, BCUT2D_MWHI, Ipc, VSA_EState2
stuctural 10 MaxEStateIndex, MinAbsEStateIndex, BCUT2D_MWHI, BCUT2D_MRLOW,

Ipc, PEOE_VSA14, SMR_VSA10, TPSA, VSA_EState2, VSA_EState4
stuctural + DFT 5 MaxEStateIndex, BCUT2D_MWHI, VSA_EState2, HOMO(eV), LUMO(eV)
stuctural + DFT 10 MaxEStateIndex, MinAbsEStateIndex, BCUT2D_MWHI, BCUT2D_MRLOW,

Ipc, TPSA, VSA_EState2, VSA_EState4, HOMO(eV), LUMO(eV)
stuctural + pH 5 BCUT2D_MWHI, SMR_VSA10, TPSA, MolLogP, pH avg
stuctural + pH 10 MaxEStateIndex, MinAbsEStateIndex, BCUT2D_MWHI,

BCUT2D_MWLOW, SMR_VSA10, TPSA, EState_VSA2, VSA_EState4, Mol-
LogP, pH avg

stuctural + DFT + pH 5 SMR_VSA10, TPSA, MolLogP, HOMO(eV), pH avg
stuctural + DFT + pH 10 MaxEStateIndex, MinAbsEStateIndex, BCUT2D_MWHI, SMR_VSA10, TPSA,

EState_VSA2, VSA_EState4, MolLogP, HOMO(eV), pH avg

Table 2.6: Selected features for IE (cross validation).

Type Num of Features Features

stuctural 5 MaxEStateIndex, MinAbsEStateIndex, Ipc, EState_VSA5, VSA_EState2
stuctural 10 MaxEStateIndex, MinAbsEStateIndex, FpDensityMorgan1, Ipc,

PEOE_VSA14, SMR_VSA10, EState_VSA5, VSA_EState2, VSA_EState3,
VSA_EState4

stuctural + DFT 5 MaxEStateIndex, BCUT2D_MWHI, SMR_VSA10, VSA_EState2, HOMO(eV)
stuctural + DFT 10 MaxEStateIndex, MolWt, FpDensityMorgan1, BCUT2D_MWHI,

BCUT2D_MRLOW, SMR_VSA10, VSA_EState2, HOMO(eV), LUMO(eV),
dipole(debye)

stuctural + pH 5 MaxEStateIndex, MinAbsEStateIndex, BCUT2D_MWHI, SMR_VSA10, pH
avg

stuctural + pH 10 MaxEStateIndex, MinAbsEStateIndex, BCUT2D_MWHI,
BCUT2D_MWLOW, SMR_VSA10, VSA_EState2, VSA_EState3, VSA_EState4,
MolLogP, pH avg

stuctural + DFT + pH 5 MaxEStateIndex, MinAbsEStateIndex, SMR_VSA10, HOMO(eV), pH avg
stuctural + DFT + pH 10 MaxEStateIndex, MinAbsEStateIndex, BCUT2D_MWHI,

BCUT2D_MWLOW, SMR_VSA10, VSA_EState2, MolLogP, HOMO(eV),
LUMO(eV), pH avg
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INHIBITION POWER

Table 2.7: Selected features for IP (single train test split).

Type Num of Features Features

stuctural 5 MaxEStateIndex, FpDensityMorgan1, BCUT2D_MWHI, BCUT2D_MRLOW,
SMR_VSA10

stuctural 10 MaxEStateIndex, MinEStateIndex, FpDensityMorgan1, BCUT2D_MWHI,
BCUT2D_MRLOW, SMR_VSA10, SlogP_VSA4, TPSA, VSA_EState2, MolLogP

stuctural + DFT 5 MaxEStateIndex, BCUT2D_MWHI, SMR_VSA10, HOMO(eV), dipole(debye)
stuctural + DFT 10 MaxEStateIndex, FpDensityMorgan1, BCUT2D_MWHI,

BCUT2D_MWLOW, SMR_VSA10, TPSA, VSA_EState2, MolLogP, HOMO(eV),
dipole(debye)

stuctural + pH 5 MaxEStateIndex, BCUT2D_MWHI, SMR_VSA10, VSA_EState2, pH avg
stuctural + pH 10 MaxEStateIndex, FpDensityMorgan1, BCUT2D_MWHI, Ipc, SMR_VSA10,

SlogP_VSA4, TPSA, VSA_EState2, MolLogP, pH avg
stuctural + DFT + pH 5 MaxEStateIndex, BCUT2D_MWHI, SMR_VSA10, HOMO(eV), pH avg
stuctural + DFT + pH 10 MaxEStateIndex, FpDensityMorgan1, BCUT2D_MWHI, SMR_VSA10,

SlogP_VSA4, TPSA, VSA_EState2, HOMO(eV), dipole(debye), pH avg

Table 2.8: Selected features for IP (cross validation).

Type Num of Features Features

stuctural 5 MaxEStateIndex, MolWt, BCUT2D_MWHI, SMR_VSA10, VSA_EState2
stuctural 10 MaxEStateIndex, MinEStateIndex, MolWt, FpDensityMorgan1,

BCUT2D_MWHI, BCUT2D_MRLOW, BalabanJ, SMR_VSA10, VSA_EState2,
VSA_EState3

stuctural + DFT 5 MaxEStateIndex, BCUT2D_MWHI, SMR_VSA10, VSA_EState2, HOMO(eV)
stuctural + DFT 10 MaxEStateIndex, MolWt, FpDensityMorgan1, BCUT2D_MWHI,

BCUT2D_MRLOW, SMR_VSA10, VSA_EState2, HOMO(eV), LUMO(eV),
dipole(debye)

stuctural + pH 5 MaxEStateIndex, BCUT2D_MWHI, SMR_VSA10, VSA_EState2, pH avg
stuctural + pH 10 MaxEStateIndex, MinEStateIndex, MolWt, FpDensityMorgan1,

BCUT2D_MWHI, BCUT2D_MRLOW, SMR_VSA10, TPSA, VSA_EState2,
pH avg

stuctural + DFT + pH 5 MaxEStateIndex, BCUT2D_MWHI, SMR_VSA10, HOMO(eV), pH avg
stuctural + DFT + pH 10 MaxEStateIndex, MolWt, BCUT2D_MWHI, BCUT2D_MRLOW, SMR_VSA10,

VSA_EState2, HOMO(eV), LUMO(eV), dipole(debye), pH avg
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EVALUATING INHIBITION

For every complex problem there is an answer that is clear, simple and wrong.

H. L. Mencken

The search for non-toxic alternatives to hexavalent chromium based corrosion inhibitors
requires a comprehensive understanding of the factors critical to effective corrosion pro-
tection. Key considerations include the evolution of corrosion inhibition with inhibitor
concentrations and exposure times, the inhibition efficacy in the presence and following
absence of inhibitors, and the stability of inhibition upon polarisation. In our electro-
chemical comparison of promising organic molecules with sodium dichromate, we found
that even top-performing candidates can lead to premature conclusions if such critical
factors are overlooked. While organic molecules can match the inhibition performance
of chromates under specific conditions, this can be misleading when considering concen-
tration, time, and polarisation dependent behaviour. Initial high performance can also
be deceptive in dynamic environments, as we observed that the inhibition provided by
most organic molecules drastically decreases when the inhibitor is absent in the electrolyte.
These observations call for broader comprehensive inhibitor robustness studies that take
into account factors including time, concentration, stability, and polarisation effects in
inhibitor efficacy analysis.

This chapter has been published with some adjustments as Factors to consider in the quest for organic alterna-
tives to hexavalent chromium based corrosion inhibitors, Corrosion Science (2025) [169].
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3.1. INTRODUCTION

T HE use of chromates in corrosion protection for structural materials in aeronautics
has been strictly regulated internationally for many years due to health and safety

concerns. Despite significant advancements, academia and industry continue to explore
various environmentally-friendly and sustainable alternatives to hexavalent chromium
(Cr(VI)), which remains the benchmark corrosion inhibitor with a proven track record.
According to the EU REACH (Registration, Evaluation, Authorisation, and Restriction of
Chemicals) administered by the European Chemicals Agency (ECHA) [8], the use of most
chromates was banned in Europe from January 2019 [170], unless an authorisation has
been granted for a specific use by a specific chemical supply-chain or downstream user,
for a limited time period, and for the specific cases where no suitable alternatives can
be implemented. Given the substantial number of authorisation applications for the
use of Cr(VI) substances, ECHA is now moving from authorisation (Annex XIV [171])
to restriction (Annex XVII [172]) of the usage of such compounds since authorisation
is deemed no longer appropriate to control the risk to human health posed by these
substances [173–175].

The development of Cr(VI) alternative corrosion inhibitors is an active area of re-
search, with promising candidates including, but not limited to, lithium [113, 176, 177]
and rare-earth [87, 178, 179] based systems. However, a one-to-one replacement of
Cr(VI) pigments remains unlikely, as a recent review suggests [62]. This is due to the
Cr(VI) pigments’ unique ability to provide multi-functional corrosion protection, includ-
ing passivation, self-healing, and environmental stability, which is challenging to repli-
cate with a single non-toxic compound. Instead, synergistic systems combining multiple
compounds are more viable, with each targeting specific aspects of corrosion preven-
tion.

In this context, organic molecules have emerged as potentially suitable candidates
due to their diverse structures and properties. Recent research have highlighted the
potential of organic molecules as corrosion inhibitors, with significant progress in un-
derstanding structure-performance relationships through studies of related compounds
[107], high-throughput screening using optical [114, 115, 136], electrochemical [117,
119], and spectroscopic methods [114, 120, 124], and machine-learning models to de-
velop quantitative structure-property relationships [33, 114, 122, 136, 138, 180, 181].
Next to novel data generation, curation of open databases [1, 140, 181] and mining re-
search papers through natural language processing [182] have been utilised to effectively
search existing literature for potential Cr(VI) replacements.

Despite these advancements, many studies rely on single metrics such as inhibition
efficiency or power captured at one timestep and concentration to evaluate inhibition
performance. While convenient, this approach may not capture all the necessary aspects
for identifying next-generation materials. The robustness of the inhibition performance
under changing environmental conditions is necessary in transforming such molecules
into actual problem-solving products, so the understanding of factors resulting in robust
corrosion inhibition is most critical.

The influence of pH is historically the most well-studied environmental factor. Its ef-
fect is twofold: i) outside the stable pH window where the metal oxide is unstable, corro-
sion modes might change (e.g. from localised corrosion to a uniform one) and corrosion
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inhibitors with the right molecular structure and high inhibition efficacy at a mild pH
may stop working at a harsh one, ii) depending on the isoelectric point and pKa values
of the inhibitor molecule it might be positively/negatively charged and protonated/de-
protonated, changing the surface binding mode and hence its inhibition efficacy [77,
119, 183, 184]. Despite its critical role, we’ve highlighted its importance in our previous
work, so we focus on other factors in this one [80].

The influence of inhibitor concentration is also a relatively well-studied factor that
affects robustness, where until a critical molecule-dependent concentration (often in 1-
10 mM range) the inhibition increases, afterwards it plateaus or starts to decrease grad-
ually [65, 100, 109]. Manipulating this critical inhibitor concentration is essential for in-
corporating inhibitors into coatings - when inhibitors leach from a coating matrix onto
a defect of a specific size, they have to protect the largest defect area. This distance over
which an inhibitor is able to protect a defect effectively is known as the “chemical throw-
ing power", which is crucial in active protective coating design, but not studied for small
organic molecules [185].

The influence of time is more sinister, easy to measure but tedious, and most likely
for that reason often overlooked. Recent studies highlight that many corrosion inhibitors
require a stabilisation period (which can take more than ten hours of exposure) where
they gradually form protective layers or reach a stable state, impacting their effectiveness
[80, 186]. Their efficiency may decline or even reverse over time due to interactions with
environmental elements, leading to possible acceleration of corrosion at prolonged ex-
posure. Therefore, continuous or repeated evaluations of inhibitors over time are essen-
tial for accurately determining their long-term performance in corrosion control appli-
cations [79]. Inhibition performance can also fluctuate due to transient electrochemical
changes on metal surfaces, as revealed by Hilbert spectra analysis, where electrochem-
ical noise patterns reflect the evolution of corrosion processes. Time-resolved electro-
chemical noise measurements can detect early surface transients that indicate the pro-
gression from active corrosion to a more inhibited state, emphasising that inhibitors can
vary in effectiveness depending on the duration and characteristics of exposure [187].

There is scarcely any work either on influence of physicochemical or on electrochem-
ical stability. A comparison between the benzotriazole and 2-mercaptobenzothiazole
molecules with lithium carbonate has shown that all compounds result in effective cor-
rosion inhibition, but the withdrawal of organics from the environment reverses the cor-
rosion inhibition into an uninhibited case. This highlights the need to select the right or-
ganic molecules that can sustain inhibition in changing environmental conditions [113].
Polarisation is a widely used method also to analyse such phenomena, but not to under-
stand how inhibited and uninhibited layers change with respect to overpotentials.

In light of these developments, in this study we have analyzed key factors that
influence the effectiveness of corrosion inhibition, which are crucial for determining
whether a molecule is a potentially effective and robust corrosion inhibitor. Building
upon our previous work where we screened the electrochemical behaviour of AA2024-T3
substrate exposed to more than 100 organic molecules at 1 mM concentration through-
out 24 hours [80], we have selected the top-performing non-toxic inhibitors for further
study. To highlight the factors critical for corrosion inhibition, we have conducted
an electrochemical comparison of ammonium pyrollidinedithiocarbamate and other



3

52 3. EVALUATING INHIBITION

non-toxic organic molecules with sodium dichromate from different perspectives:
the influence of inhibitor concentration, the influence of inhibitor exposure time, the
influence of physicochemical stability (inhibitor withdrawal from the environment),
and the influence of electrochemical stability (polarisation of the substrate). The results
of this study are expected to steer inhibition efficiency and robustness studies and
facilitate the development of Cr(VI) replacement organic molecules by unveiling the
nature of corrosion inhibition at different and varying conditions.

3.2. METHODS

3.2.1. SAMPLE PREPARATION

2 mm thick AA2024-T3 sheets were purchased from Salomon’s Metalen B.V., the
Netherlands, to use as the substrates for the electrochemical experiments. After cut

into 20 mm x 20 mm samples with an automatic shear cutting machine, samples were
ground with progressively finer grits of 320, 800, 1200, 2000 and 4000 with a rotating
plate sander under a running water. The resulting ground samples were then ultrason-
ically cleaned in isopropanol for 15 minutes and subsequently dried with compressed
air.

3.2.2. ELECTROLYTES

I NITIAL organic molecule choice was based on our previous inhibitor screening
study [80]. The chosen inhibitors were the non-toxic molecules with the highest

corrosion inhibition efficiencies. Electrochemical measurements were conducted
at room temperature in open-to-air 0.1M NaCl solutions, with (or without) the
added 1mM inhibitor candidates: 3-amino-1,2,4-triazole-5-thiol, 2-mercaptopyridine,
2-mercaptopyrimidine, 4-mercaptobenzoic acid, ammonium pyrollidinedithiocar-
bamate, sodium diethyldithiocarbamate. Sodium dichromate dihydrate was used to
prepare a 10 mM stock solution, and this solution was diluted with pure water and mixed
with NaCl to prepare final solutions for electrochemical experiments. For concentration
experiments a range of 0.05 to 10 mM concentration electrolytes were prepared. The
basis salt solutions without the addition of inhibitors (pH 5.9) were prepared with NaCl
powder with Milli-Q pure water (15.0 MΩ cm resistance at 25 °C). For cyclic voltammetry
measurements, 0.1M Na2SO4 solution with 1 mM ammonium pyrollidinedithiocar-
bamate or 3-amino-1,2,4-triazole-5-thiol electrolytes were prepared.No additional
compounds were added to modify the pH and/or increase the solubility of inhibitors.
All chemicals were obtained from Sigma-Aldrich, except for sodium chloride (J.T. Baker)
and 3-amino-5-mercapto-1,2,4-triazole (Alfa-Aesar).

3.2.3. ELECTROCHEMICAL EXPERIMENTS

T HE electrochemical measurements consisted of the following techniques: open
circuit potential (OCP) observation, linear polarisation resistance (LPR), electro-

chemical impedance spectroscopy (EIS) potentiodynamic polarisation (PDP), and
cyclic voltammetry (CV). The experiments were performed in a flat three-electrode
electrochemical cell (Corrtest Instruments, China) where the sample was the working,
platinum mesh was the counter, and Ag|AgCl (saturated KCl) was the reference elec-
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trode. The exposed surface area was 0.785 cm2, covered by a 250 ml electrolyte volume.
Biologic VSP-300 multichannel potentiostats were used to control the electrochemical
measurements through EC-Lab software (version 11.33, Biologic, France). Only for
sodium dichromate experiments Gamry E1010 potentiostats with Gamry software were
used. The electrochemical behaviour of background uninhibited cases were compared
to make sure the results between different potentiostats matched.

All electrochemical experiments were repeated at least three times per inhibitor to
confirm the reproducibility of the experiments. All potentials presented in this work
refer to the Ag|AgCl (saturated KCl) reference potentials unless mentioned differently.

INFLUENCE OF INHIBITOR CONCENTRATION

Inhibitor concentrations were varied from 0.05 to 10 mM for sodium dichromate or am-
monium pyrollidinedithiocarbamate dissolved in 0.1M NaCl electrolytes. To check the
influence of inhibitor concentration, separate anodic and cathodic potentiodynamic po-
larisation curves were recorded after 6 hours of OCP in a single sweep with a scan rate
of 0.5 mV/s from -(+) 10 mV to +(-) 500 mV potentials with respect to the OCP values.
Linear polarisation resistance values were calculated from the initial ∓ (±) 10 mV parts
of the scans.

INFLUENCE OF TIME

To check the influence of time, potentials were scanned from -10 mV vs. OCP to +10
mV vs. OCP at a rate of 0.5 mV/s every 10 minutes for 24 hours. OCP was observed in
between the scans. A linear fit was applied to the observed potential vs. current den-
sity plots to obtain the polarisation resistance (Rp) values. At the 2nd and 24th hour, EIS
measurements were conducted. A sinusoidal AC perturbation with a peak-to-peak am-
plitude of 10 mV was applied from 10 kHz to 10 mHz frequency range with 10 frequency
point per logarithmic decade. Measurement was repeated 3 times per frequency point.
10 minutes of OCP was observed between LPR and EIS experiments.

INFLUENCE OF PHYSICOCHEMICAL STABILITY

To check the influence of physicochemical stability, electrochemical experiments were
carried out in inhibitor-containing solutions for the first day, and inhibitor-absent so-
lutions for the last 3 days. The first 24 hours of electrochemical experiments were con-
ducted in 1 mM inhibitors dissolved in 0.1M NaCl solutions. Afterwards the electrolyte
was poured out, the electrochemical cell was rinsed, and a new electrolyte containing
only 0.1M NaCl solutions was used for the rest of the electrochemical experiments.

The electrochemical investigations were initialised after observing the OCP. LPR was
measured over a potential range of ±10 mV with a scan rate of 0.5 mV/s after 1, 2, 6 hours
and afterwards every 6 hours. OCP was observed in between LPR measurements. EIS
measurements were conducted directly after LPR measurements every 6 hours,in the
same manner as discussed previously. The selected data from EIS were quantified with
equivalent electrical circuit fitting with the Zview software (v3.5h, Charlottesville, USA).

INFLUENCE OF ELECTROCHEMICAL STABILITY

After observing OCP for 1 hour under exposure to 0.1M Na2SO4 with 1 mM ammo-
nium pyrollidinedithiocarbamate or 3-amino-1,2,4-triazole-5-thiol, samples were
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Figure 3.1: Potentiodynamic polarisation curves of AA2024-T3 exposed to 0.1M NaCl electrolytes with varying
inhibitor concentrations: (a) sodium dichromate anodic polarisation, (b) sodium dichromate cathodic polar-
isation, (c) ammonium pyrollidinedithiocarbamate anodic polarisation, (d) ammonium pyrollidinedithiocar-
bamate cathodic polarisation. Red stars indicate corrosion potentials and currents at 1 mM concentrations.

scanned with 10 mV/s scan rate in a cyclic voltammetry fashion from 0.7 to -1.2 V vs.
Ag/AgCl(saturated KCl). The scan was repeated 5 times, but only the first 2 are presented
here as the last 4 cycles resulted in the same behaviour.

3.3. RESULTS AND DISCUSSION

3.3.1. INFLUENCE OF INHIBITOR CONCENTRATION

F IGURE 3.1 plots the anodic and cathodic polarisation curves of AA2024-T3 exposed
to 0.1M NaCl electrolytes with sodium dichromate or ammonium pyrollidinedithio-

carbamate at different concentrations. Figure 3.2 summarises the linear polarisation re-
sistance (RLPR) and corrosion potential (Ecorr) values obtained from the scans of Figure
3.1.

From Figure 3.1 (a) and (b) and Figure 3.2 potential trends we observe that the ad-
dition of sodium dichromate, even as little as 0.05 mM, shifted corrosion potentials to
more negative potential values of -50 to -70 mVs. Further concentration increases did
not result in further changes in the corrosion potentials. As a result, active pitting be-
haviour (a rapid increase in anodic corrosion current densities at corrosion potentials) of
uninhibited case changed with dichromate additions. For dichromate additions of less
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Figure 3.2: Influence of concentration on polarisation resistance and potential values for ammonium pyrol-
lidinedithiocarbamate (APDC) and sodium dichromate (Na2Cr2O7). Linear polarisation resistance (RLPR) and
corrosion potential (Ecorr) values obtained from the initial parts of the anodic (cathodic) scans for ∓ (±) 10
mV range. Top markers correspond to the RLPR scale shown on the left axis, bottom lines correspond to the
Ecorr values shown on the right axis. Values corresponding to the bottom plot border (10 kΩ cm2 and -520 mV
Ag/AgCl) correspond to the mean uninhibited case.

than 1mM, even though pitting occurred at uninhibited corrosion potentials, shift of cor-
rosion potentials resulted in a larger stable potential range. For dichromate additions of
more than 1mM, an approximately 20 mV extra range of Tafel behaviour appeared, due
to the 20 mV positively shifted pitting potentials. This suggests further stabilisation of
pits higher than this 1 mM critical concentration. Figure 3.1 (a) shows that increased
dichromate concentrations decreased anodic current densities. 0.05 mM dichromate
addition decreased corrosion current by an order of magnitude, and this decrease only
continued with an increase in concentration. Cathodic curves of Figure 3.1 (b) showed
more than 2 orders of magnitude current density decrease with the addition of 0.05 mM
dichromate, however no additional decrease in current densities were observed with an
increase in dichromate concentration. Cathodic curves showed similar behaviour rather
independent of the dichromate concentration. This suggests cathodic inhibition was
complete starting from as little as 0.05 mM dichromate concentration. This behaviour
aligned with trends observed in RLPR values plotted in Figure 3.2. The addition of sodium
dichromate increased RLPR (in kΩ cm2) values to 256±210 for 0.05 mM, up to a maximum
of 428±32 for 5 mM concentration. The standard deviation of measurements decreased
with increasing concentrations with the exception of the maximum measured concen-
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tration 10 mM, and the mean values with their deviations overlapped between 0.1 - 10
mM concentrations.

Inhibition of corrosion by Cr(VI) compounds is due to their ability to adsorb onto
the metal/oxide surfaces irreversibly, subsequently get reduced to form inert hydropho-
bic Cr(III) oxide barrier films, with retained releasable Cr(VI) reservoirs. Non-reduced
Cr(VI) oxoanion adsorbtion on Al-oxides modifies the zeta potential, discouraging ad-
sorption of corrosive ions such as chlorides that promote dissolution and destabilisa-
tion of the protective oxide films, further inhibiting pitting [85, 188, 189]. A 0.05 mM
chromate concentration was found to be sufficient for the formation of such chemical
chromate conversion films: Cr(VI) - Cr(III) mixed oxides which primarily suppress the
cathodic oxygen reduction reaction (ORR) rate and inhibit localised corrosion initiation
[84, 190]. For AA2024-T3 specifically, the chemical conversion layer thoroughly reduces
corrosion activity at both the cathodic sites such as Cu-rich θ- and dealloyed S-phase
intermetallic particles, and the Al matrix with the anodic intermetallics within [39, 42].
Based on this literature, we can infer that in our experiments 0.05 mM dichromate con-
centration was sufficient to form a barrier film that suppresses cathodic reactions, which
did not change further with an increase in dichromate concentration. Meanwhile, fur-
ther increase in dichromate concentration increased available Cr(VI) oxoanion ready to
adsorb and suppress the localised pitting activity, which would explain the increased
potentials required for pitting initiation, and consistent decrease of anodic current den-
sities with increasing dichromate concentrations.

Addition of ammonium pyrollidinedithiocarbamate showed completely different
trends. Despite the constant pH values around 6.0-6.5 at all concentrations, the elec-
trochemical potentials changed significantly. Figures 3.1c and 3.1d show that corrosion
potentials systematically shifted to more negative potentials with increases in concen-
tration. This resulted in a passive range that became larger and larger with inhibitor
concentration, which is expected to limit the localised electrochemical activity. The cur-
rent densities of both anodic and cathodic curves decreased until 2 mM concentration,
after which they started to increase. This is consistent with RLPR values plotted in Figure
3.2, where ammonium pyrollidinedithiocarbamate addition increased RLPR (in kΩ cm2)
values to 102±50 for 0.1 mM, up to a maximum of 697±89 for 2mM, and decreased to
498±132 for 5 mM concentrations. This plateauing or decrease in performance after a
certain critical inhibitor concentration was likely due to more disordered self-assembled
monolayers [191], which has previously been attributed to surface saturation with ad-
sorbed molecules or self-micelle formation [109, 111, 192]. The decrease in current
densities of both anodic and cathodic curves suggests an inhibitive film formed both
on anodic Al matrix and anodic/cathodic intermetallics, the majority of which contain
Cu [43]. Inhibiting the dealloying of Cu-rich intermetallics is critical in limiting the
overall corrosion of AA2024-T3, as they are the main microgalvanic driving force for the
electrochemical reactions. Previous studies confirm that ammonium pyrollidinedithio-
carbamate can inhibit Cu by decreasing the active surface area and raising the charge
transfer resistance through formation of an amorphous inhibitive film [193].

Initial comparison of concentration influence of both inhibitors seems to suggest
that electrochemical performance of ammonium pyrollidinedithiocarbamate is on par
with sodium dichromate for the 1-10 mM concentration range. It would seem as if our
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Figure 3.3: Influence of time on the linear polarisation resistance (RLPR) of AA2024-T3 in the presence (and
absence) of 1 mM corrosion inhibitors.

research has finally found the replacement for hexavalent chromium compounds. How-
ever is that really the case? For this end, the next section explores the behaviour of time
on the electrochemical behaviour.

3.3.2. INFLUENCE OF TIME

F IGURE 3.3 plots the polarisation resistance (RLPR) values throughout time for the first
24 hours. In addition to ammonium pyrrolidinedithiocarbamate, we tested 5 other

non-toxic organic molecules that had shown promising corrosion inhibition properties
during our previous screening [80]. RLPR values of the uninhibited case were relatively
constant around 10±3 kΩ cm2 throughout the first day. The organic molecules increased
the RLPR values in the range of 78±9 to 325±10 kΩ cm2, but not immediately. It is ob-
served that organic molecules require some time to stabilise and reach their peak polar-
isation resistance RLPR values, which was around 6 hours. After that point, RLPR values
reached a plateau and did not change significantly anymore. On the other hand, polar-
isation resistance originating from the sodium dichromate kept increasing throughout
the whole day, up to 1479±431 kΩ cm2.

Looking back on the concentration experiments presented in the previous section,
we can explain the comparable behaviour of sodium dichromate with the organic
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molecules observed after 6 hours. Whereas the ratio of polarisation resistance values
of sodium dichromate and ammonium pyrollidinedithiocarbamate was around 2-3
around the 6-hour mark, which matches which trends from last section, this value
increases to 8-10 at the 24th hour. This corresponds to inhibition efficiencies of 87-97%
for organics, while sodium dichromate reached an inhibition efficiency of more than
99%. This shows that if we only look at the time-step of 6th hour, or any other single
time-step for that matter, we come to the wrong conclusion about the behaviour.
The gradual initial increase culminating in a plateau of polarisation resistance for
the adsorption of organic molecules, and continuous development of the protective
chromium oxide films highlight the time-sensitive nature of the corrosion inhibition,
and the critical need for time-resolved measurements. The importance of time-resolved
electrochemical measurements were highlighted before in a previous study [79]; here we
once again underline that without time-resolved measurements, it is unlikely to have a
correct efficacy assessment of the next-generation chromate replacement compounds.

3.3.3. INFLUENCE OF PHYSICOCHEMICAL STABILITY

S USTAINING corrosion inhibition in changing environments is as important as sus-
taining corrosion inhibition throughout time. It is critical to keep corrosion inhibi-

tion going in dynamic conditions, especially in the widely-changing conditions observed
for aerospace alloys: dry-wet cycles, temperature fluctuations, among others [194]. We
name the sustained inhibition in the changing environmental conditions physicochem-
ical stability of the inhibitor, which in previous papers were also called irreversibility of
the inhibition [113].

To check the behaviour of physicochemical stability we have observed electrochem-
ical impedance response of selected high performing organic corrosion inhibitors and
sodium dichromate at 1 mM concentrations. Electrochemical impedance spectroscopy
measurements were first performed in the presence of inhibitors after 12, 18 and 24
hours of exposure, afterwards substrates were exposed to electrolytes without any in-
hibitors and electrochemical impedance spectra were acquired for every 6 hours after
the 12th hour for 3 days.

Figure 3.4 (a) shows the resulting impedance modulus and phase angle plots for the
final measurements before and after electrolyte switch. Filled markers represent the case
in the presence of inhibitors, and empty markers represent the case of the following
absence of inhibitors. It is visible from the plots that the addition of inhibitors con-
sistently increases the impedance modulus values. Sodium dichromate results in the
largest impedance modulus increase. After changing the electrolytes, impedance modu-
lus of all systems decrease significantly: the impedance modulus of all organic inhibitor
systems except for 3-amino-1,2,4-triazole-5-thiol drop down to the uninhibited level,
while sodium dichromate shows significantly higher modulus values. Even after the
electrolyte exchange the impedance modulus values of sodium dichromate only drop
down to the levels of organic inhibitor present systems. Figure 3.4 (b) shows the mean
drop in impedance modulus values at 10-2 Hz converted into inhibition power. It is clear
that apart from 3-amino-1,2,4-triazole-5-thiol, all organic molecules stop providing cor-
rosion inhibition if they are not sustained in the environment. In this case 3-amino-
1,2,4-triazole-5-thiol loses most of its inhibition as well - 74% of the initial inhibition
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Figure 3.4: Influence of presence and subsequent absence of corrosion inhibitors on electrochemical be-
haviour. Filled markers represent the electrochemical impedance spectroscopy response before electrolyte
exchange, while empty markers indicate the response after exchange. (a) Impedance modulus spectra for or-
ganic inhibitors. (b) Comparison of the impedance modulus at 10-2 Hz, converted to inhibition power (Pinh),
before and after electrolyte exchange. The percentage reduction in original protection is indicated between
the markers. Both subplots share the same legends.
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power is lost - but it is not completely gone, resulting in a quasi-reversible corrosion in-
hibition behaviour. For comparison, sodium dichromate only loses 39% of its original
inhibition power.

Figure 3.5 focuses on sodium dichromate, ammonium pyrollidinedithiocarbamate,
and 3-amino-1,2,4-triazole-5-thiol. 3-amino-1,2,4-triazole-5-thiol still sustained some
impedance modulus increase after the electrolyte switch. This is a key quality for sta-
ble and irreversible corrosion inhibition, as the low-frequency impedance determines
the total retained corrosion resistance of the system [79]. As the frequency tends to-
wards infinity, the impedance modulus magnitude tends towards the resistance of the
electrolyte; as the frequency tends towards zero, capacitive contributions disappear and
the impedance modulus magnitude tends toward the total impedance coming from the
electrolyte, inhibitor, and charge transfer [195, 196]. Similar impedance behaviour be-
tween samples above 103 Hz stemmed from electrolyte impedances, resulting in similar
impedance modulus values. The phase angle values became more negative as the fre-
quency decreased: the more the corresponding impedance modulus, the steeper the
phase angle decrease. This was the result of the capacitive dielectric formed on the
substrate through oxide and/or adsorbed inhibitors. Related impedance modulus in-
crease and more capacitive behaviour between 10–1 - 103 Hz stemmed from the elec-
tron transfer processes of the inhibitor-oxide/metal surface [197]. The behaviour in fur-
ther lower frequencies corresponds to either resistive charge transfer processes where
phase angle approaches 0, or otherwise mass-transfer limited diffusion processes where
phase angle approaches -45 [195, 196]. The slowest time constant at lower frequencies
(ωchar ∼ 1/τ = 1/RC), which is the measure of how quickly the system responds to ex-
ternal changes in voltage and current [198], appeared at lower frequencies in the pres-
ence of inhibitors, which means the time constant has increased. This increase meant
slowing down the electrochemical system, either through an increase in resistance or
capacitance, through limiting charge transfer or diffusion. After the electrolyte switch
time constants decreased again for all systems. The low frequency phase angles of unin-
hibited and ammonium pyrollidinedithiocarbamate samples approached towards -45°
(also apparent as a high-frequency slope of 1 in Nyquist visualisation, not shown here),
which suggests a diffusion-limited response. For others that was not the case. These
suggest that a complete or quasi-reversal to the non-protected behaviour develops in
the absence of a sustained inhibitor in the environment. The difference most likely orig-
inates from the different surface bonding behaviour of organic molecules. The inhibitors
that maintained their effectiveness formed stable surface complexes or stabilised oxide
layers that resisted their removal and/or dissolution of the substrate after the electrolyte
switch.

To quantify inhibitors’ electrochemical response, a modified Randles circuit shown
in Figure 3.5 inset is used as an equivalent electrical circuit to fit the spectra. The cho-
sen circuit with two time constants was used to model the physics of the metal electrode
covered with an imperfect overlaying inhibitor layer. This is a widely used equivalent
circuit fit used for modeling the impedance of an electrode coated by a thick dielectric
layer with pores exposing the electrode to the electrolyte [98, 105, 195, 199]. In this fit
Rs, R1 and CPE1, R2, CPE2 corresponded to the electrolyte resistance, protective film
resistance (through adsorbed molecules and/or passive film) and its associated capac-
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Figure 3.5: Impedance modulus and phase angle plots with equivalent circuit fits demonstrating the influence
of presence and subsequent absence of corrosion inhibitors on electrochemical impedance spectroscopy re-
sponse. Selected equivalent circuit and fit values relevant to the inhibition shown in the inset.
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itance, charge transfer resistance and the double layer capacitance, respectively. Con-
stant phase elements (CPE) are employed instead of capacitors due to the deviation from
the ideal capacitive behaviour. Capacitance of the constant phase elements were calcu-
lated according to the Hsu-Mansfeld approach [200]:

C = R
1–n

n Q
1
n (3.1)

where C is the capacitance, R the resistance, Q is the magnitude of the CPE associ-
ated with its capacitance, and n an empirical constant, taking values between 0 and 1
(1 represents the case for the ideal capacitor, 0 the ideal resistor, and in between val-
ues the non-ideal capacitive responses). The calculated equivalent resistance and ca-
pacitance values related to the presence/absence of inhibitors are plotted as an inset of
figure 3.5. Resistance values increased up to 50-fold in the presence of inhibitors. The
capacitance values showed an order of magnitude decrease in the presence of inhibitors
as well. Through the relationship: [195]:

C =
ε0ε

d
(3.2)

where C is the capacitance, ε0 the vacuum permittivity, ε is the relative permittivity,
and d the thickness of the dielectric field responsible for capacitive behaviour, it can be
argued that corrosion inhibitors either created a steric hindrance through a thicker bar-
rier film, or decreased the relative permittivity of the surface. After the electrolyte change
the resistance values had a sharp decline: dichromate resistance dropped to half of its
original value but stayed strongly inhibitive, 3-amino-1,2,4-triazole-5-thiol dropped to
a fraction of its original gained inhibition and showed around 65% inhibition efficiency,
whereas ammonium pyrollidinedithiocarbamate lost all inhibition. Trends were simi-
lar for capacitance: capacitance of dichromate doubled, 3-amino-1,2,4-triazole-5-thiol
quadrupled, whereas ammonium pyrollidinedithiocarbamate returned to uninhibited
values. Doubling of capacitances for the uninhibited case is most likely resulting from
the growth of the Al-oxide under the 3-day electrolyte exposure.

Figure 3.6 plots the evolution of impedance modulus values measured at 10–2 Hz
frequency to understand the stability of inhibitor systems through time. Although being
based on a simplification since the low-frequency impedance modulus includes con-
tributions from the oxide film resistance, the charge transfer resistance, and often from
the diffusion-controlled processes - it has been shown that the impedance modulus val-
ues observed at 10–2 Hz frequency effectively represent the corrosion resistance of the
inhibitor–substrate interface [143].

It is observed that the electrochemical behaviour of almost all samples returns to the
uninhibited performance 60 hours after the inhibitor removal. 3-amino-1,2,4-triazole-
5-thiol sustains its -albeit decreased - protection at least for 3 days after the electrolyte
exchange, but all other organics completely lose their protection. Dichromate sustains
its original protection for a long time, and even after 3 days measured impedance mod-
ulus is more than 5-fold the impedance modulus of the best organic corrosion inhibitor.

These observations suggest that corrosion inhibition gained through organic
molecules is lost for almost every organic system if the molecule is not sustained in the
environment. Despite the initial inhibition, the majority of the tested organic molecules
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Figure 3.6: Evolution of impedance modulus values measured at 10–2 Hz frequency.

have reversible bonds that limit their inhibition performance and applicability in dy-
namic environments. Best-performing inhibitors were not necessarily more irreversible
or had a higher performance after electrolyte change. 3-amino-1,2,4-triazole-5-thiol
provides a quasi-reversible corrosion inhibition, possibly through more permanent
bonds formed with some of the intermetallics instead of the Al substrate. Sodium
dichromate showed the best inhibition performance before and after the electrolyte
exchange, but it also showed a significant decrease in inhibition. However, even when
the dichromate was absent afterwards, the inhibition was better than the best organic
inhibitor tested in this study.

3.3.4. INFLUENCE OF ELECTROCHEMICAL STABILITY

C ORROSION inhibition must be sustained in a wide range of electrochemical poten-
tials. In the vicinity of the localised galvanic couples, such as pitting corrosion cells

of AA2024-T3 [42], open circuit potential is different because as the electrochemical cor-
rosion reactions proceed anodic areas become more acidic while cathodic areas become
more basic, both destabilising the oxide of aluminium alloys. Ensuring corrosion inhibi-
tion in a wide range of potentials minimises such microgalvanic interactions, which we
here label as the electrochemical stability.

To check the behaviour of electrochemical stability we have performed cyclic voltam-
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Figure 3.7: Cyclic voltammetry measurements of AA2024-T3 in the presence (and absence) of 1 mM corrosion
inhibitors. Solid lines show the first, dashed lines show the second cycle. Inset figure is the close-up of the red
framed area in the cathodic overpotential region.

metry measurements. In total 5 cycles were recorded, but no significant change in elec-
trochemical behaviour is observed so only the first 2 cycles are plotted in figure 3.7. Cy-
cles are initiated from positive towards the negative potentials, with the hypothesis that
initially the inhibitors would form self-assembled monolayers in the first hour of expo-
sure, then they would be forcibly desorbed throughout the scan to the negative poten-
tials (assuming deprotonated negatively charged molecules, which is justified given the
low pKa trend of mercaptans [201]), then electrosorbed [202] again to the aluminium
surface with the positive scan. The first and second scan would show the difference be-
tween self assembled monolayer and electrosorption behaviour.

On the scan towards negative potentials, for the uninhibited case a peak appears
around -0.55 V, which shifts to -0.65 V for the second cycle. The onset values of these
peaks are typical for diffusion limited oxygen reduction reaction (ORR), which extend
up to around -1.1 V where hydrogen evolution reaction appears as a sharp increase in
cathodic current densities [203]. ORR is dependent on the surface properties and com-
position - because of the surface modifications to Al (hydr)oxide during the first scan,
the ORR onset shifts to more negative potentials and result in higher peak current den-
sities. Looking at the results for organic inhibitors during the first scan, ORR is partially
suppressed for ammonium pyrollidinedithiocarbamate, and completely suppressed for
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3-amino-1,2,4-triazole-5-thiol after the self-assembly process of the adsorbed organic
layers. After the second cycle, the current densities decrease even more and the peak of
ammonium pyrollidinedithiocarbamate present in the first scan disappears, suggesting
increased inhibition through the electrosorption.

On the scan back towards positive potentials, for the uninhibited case a peak appears
around -50 mV. The position and magnitude of this peak matches very well with litera-
ture where cyclic voltammetry and glow discharge mass spectrometry (GDMS) was used
on AA2024 [204], with which this peak was attributed to surface enrichment with Cu due
to the the anodic Cu oxidation reactions:

2Cu + H2O → Cu2O + 2H+ + 2e– (3.3)

Cu2O + H2O → 2CuO + 2H+ + 2e– (3.4)

For the uninhibited case both cycles had this peak, which was completely sup-
pressed in the presence of organic inhibitors. This would mean that organic inhibitors
are successful in preventing surface enrichment with Cu, in both self-assembled and
electrosorbed form, which is a critical corrosion initiation mechanism for Al-Cu alloys.
Both molecules conveyed stable inhibition in a wide potential range.

3.4. CONCLUSIONS

I N order to support the quest for promising non-toxic alternatives to hexavalent
chromium based inhibitors, we have to be aware of how the corrosion inhibition

evolves with inhibitor concentration and measurement time, and whether it is stable
in the presence/absence of the inhibitor molecule in a wide potential range. Here we
show that even after screening more than 100 organic molecules experimentally, the
best-performing molecules from the screening can tempt us to jump to premature
conclusions. When not taking different corrosion inhibition critical factors such as time,
concentration and physical/electrochemical stability into consideration, conclusive
remarks about final performance cannot be drawn. We have observed that at 1 mM
concentrations some organic compounds do offer comparable inhibition to sodium
dichromate around the 6-hour mark, but afterwards performance of chromate keeps
increasing throughout the first day whereas organics reach a stable plateau. Despite the
initial inhibition, the majority of the tested organic molecules have reversible bonds that
limit their inhibition performance and applicability in dynamic environments where
a constant inhibitor reservoir is not present. Compared to weaker inhibitors, best-
performing inhibitors were neither necessarily more physically stable and irreversible,
nor had a higher performance after removal from the electrolyte. On the other hand,
when the organic molecules are sustained in the environment they can offer corrosion
inhibition away from the open circuit potential for a wide potential range, and can
suppress both Cu oxidation and oxygen reduction reactions. Some minority molecules
show that quasi-stable corrosion inhibition is possible with small organic molecules
- meaning long-term (studied up to 3-days in this work) stable barrier properties are
possible even when the molecules are withdrawn from the environment, albeit at a
lower inhibition.
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Insight must precede application.

Max Planck

The dream corrosion inhibitor would work for every substrate-environment combina-
tion, and the protection would be sustained indefinitely with an irreversible barrier layer
when exposed to aggressive and changing environmental conditions. However our prior
electrochemical experiments on AA2024-T3 have shown that despite the initial inhibi-
tion, all of the tested molecules had reversible bonds that limit their inhibition perfor-
mance and applicability in dynamic environments, with the exception of 3-amino-1,2,4-
triazole-5-thiol, which still showed 42% inhibition efficiency after being exposed to 0.1M
NaCl only for three days. Potentiodynamic polarisation, atomic force microscopy and
scanning Kelvin probe force microscopy (AFM/SKPFM), X-ray photoelectron spectroscopy
(XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR),
shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and time-of-flight
secondary ion mass spectrometry (ToF-SIMS) complemented by density functional the-
ory (DFT) calculations were used to identify the molecular mechanism responsible for the
quasi-stable adsorption provided by 3-amino-1,2,4-triazole-5-thiol. Our findings suggest
that a sulphatisation of the Al-(hydr)oxide is the key contributor to the quasi-sustained
corrosion inhibition. Sustained molecule adsorption over intermetallics in trace amounts
was also observed, but their presence was insufficient to inhibit corrosion.

This chapter has been published with some adjustments as Quasi-stable adsorption as a stepping stone to stable
corrosion inhibition, Applied Surface Science (2025) [205].
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4.1. INTRODUCTION

A corrosion inhibitor is a compound that reduces the corrosion rate of a metallic sub-
strate exposed to an aggressive environment, when it is present in the environment

in sufficient but minute amount [65]. By prolonging the service life of materials, corro-
sion inhibitors reduce maintenance costs and minimise process downtime in various in-
dustries. Over their service lifetime of about 30 years, aerospace components face harsh
humidity, salt and temperature fluctuations - which in the absence of inhibitors may
cause catastrophic failure through stress corrosion cracking and fatigue [194]. Without
the application of corrosion inhibitors, metal contacts of photovoltaic solar cell elements
degrade, heat exchanger piping severely corrode, energy storage capabilities of batteries
decrease due to electrode materials interacting with highly conductive and aggressive
electrolytes. The ubiquitous need for corrosion protection is becoming even more crit-
ical in an era where sustainable computation and renewable energy are predisposed to
replace the traditional oil and gas-based economy. This transition drives the emergence
of new industries and technologies in the areas of nuclear energy, carbon capture sys-
tems, and lightweight vehicle design - all of which introduce fresh demands for advanced
corrosion protection which will only further fuel the growth of a corrosion inhibitor mar-
ket already valued at over US$ 8 billion [206].

The ideal corrosion inhibitor would be universal: it would work in all aggressive me-
dia and substrates to be protected; and perpetual: it would keep working in changing
environmental conditions. Organic molecules have demonstrated significant efficacy
as corrosion inhibitors across various substrates [1, 109, 110, 207–212] - their endless
structural versatility inspires optimism for one day identifying a universal approach that
would inhibit corrosion in all electrode - electrolyte systems. Recent works have been
conducting searches in chemical spaces for a limited version of this dream for optimis-
ing inhibitors for specific alloy - environment systems, many of which capitalising on
the recent developments in machine learning [31, 34, 35, 80, 136, 139, 168, 180, 181, 213–
217]. However, the search for the perpetual molecule is a solemn affair, as far as the au-
thors’ knowledge goes no work has been done to systematically evaluate the potential of
sustained corrosion inhibition of organic molecules in changing and dynamic environ-
ments.

Regrettably on the contrary, previous studies have shown that corrosion inhibition
provided by an organic molecule is often compromised when its continuous presence
in the environment cannot be maintained. For an AA2024-T3 substrate, a complete
loss of previously gained corrosion inhibition in the subsequent absence of molecules
in the environment has been shown for 2-mercaptobenzothiazole, 1,2,4-triazole,
3-amino-1,2,4-triazole, benzotriazole, 4-mercaptobenzoic acid, 2-mercaptopyridine,
2-mercapto- pyrimidine, ammonium pyrollidinedithiocarbamate, and sodium di-
ethyldithiocarbamate [101, 102, 113, 169, 218]. Ideally, a one-time corrosion inhibitor
application should provide prolonged protection under dynamic and often harsh
conditions. This requirement is especially important for ensuring the longevity and
reliability of materials used in environments where maintenance or inhibitor reappli-
cation is challenging or impractical. The fact that many inhibitors rely on a persistent
supply to sustain their protective properties is disconcerting, which calls for a deeper
understanding of how organic inhibitors can form stable, long-lasting layers without
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the need for constant replenishment.

In this work, we tackle this question of corrosion inhibition stability offered by or-
ganic molecules. Organic molecules mainly inhibit surfaces by forming an insoluble
complex or polymeric film via physisorption or chemisorption, providing a steric and/or
potential barrier for corrosive species [76, 113]. During our previous studies we have ob-
served that this sort of interaction is often transient, and organic molecules lose previ-
ously gained corrosion inhibition efficacy when they are no longer sustained in the envi-
ronment [169]. The only exception we identified previously was the particular molecule
3-amino-1,2,4-triazole-5-thiol, which continues to inhibit corrosion, albeit at a reduced
efficacy when it is no longer supplied in the environment. In this work, we aimed to il-
luminate this phenomenon. We begin by characterising the electrochemical behaviour
of AA2024-T3 substrate in the presence and subsequent absence of the molecule, estab-
lishing a foundation for understanding its interaction with the substrate. Subsequent
local electrochemical analyses using AFM/SKPFM reveal that the protection is not con-
fined solely to intermetallic zones but is rather uniformly distributed. To pinpoint the
molecular features responsible for this quasi-stable adsorption, we employ surface spec-
troscopy techniques of XPS, ATR-FTIR, SHINERS, and ToF-SIMS. Complementing our
experimental observations, molecular speciation and DFT calculations provide a theo-
retical framework to rationalise these findings. Ultimately, by deciphering the source of
the quasi-sustained corrosion protection, our work aims to inform the design of more
robust and enduring corrosion inhibition systems.

4.2. MATERIALS AND METHODS

4.2.1. SAMPLE PREPARATION

2 mm thick AA2024-T3 sheets, 1mm thick pure Cu, and 3mm thick AA1050 alloys were
used as the substrates for the experiments. The samples were first cut into 20mm ×

20mm pieces using an automatic shear cutting machine. They were then ground with
sandpapers (Struers waterproof SiC) with increasingly finer grits of 320, 800, 1200, 2000,
and 4000 using a rotating plate sander under running water. After grinding, the samples
underwent ultrasonic cleaning in isopropanol for 15 minutes and were then dried with
compressed air.

4.2.2. ELECTROLYTE EXPOSURE

3 -AMINO-1,2,4-TRIAZOLE-5-THIOL was selected to be the corrosion inhibitor to be
analysed based on the results from our previous work [169], which demonstrated

a quasi-stable corrosion inhibition behaviour in the subsequent absence of inhibitor in
the environment. The molecule was purchased from Alfa Aesar, which had >98% purity.

1mM molecule containing solutions were prepared with Milli-Q pure water
(15.0MΩcm resistance at 25°C). Samples are first exposed to the molecule-containing
solution for 24 hours, and afterwards exposed to only water-containing solutions.
For the electrochemical measurements solutions also contained 0.1M NaCl. For the
subsequent molecule absence experiments the exposure environment conditions
varied depending on the experimental technique. AFM/SKPFM, XPS, and ATR-FTIR
experiment samples were exposed to 2 hours of only water exposure. For samples
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analysed with SHINERS the process of water exposure was followed in-situ. Further-
more, to check the influence of solvent the experiments were also repeated for THF
instead of water as solvent, which resulted in no significant differences. For ToF-SIMS
measurements, after 24 hours of molecule exposure the samples are rinsed briefly (∼1
min) or extensively (∼1 hr), and dried under a nitrogen stream.

4.2.3. ELECTROCHEMICAL MEASUREMENTS

T HE experiments were conducted in a flat three-electrode electrochemical cell (Cor-
rtest Instruments, China), where the sample served as the working electrode, a plat-

inum mesh was used as the counter electrode, and an Ag–AgCl (saturated KCl) elec-
trode was used as the reference. The working electrode had an exposed surface area of
0.785cm2 and was immersed in 250mL of electrolyte. Electrochemical measurements
were controlled using Biologic VSP-300 multichannel potentiostats with EC-Lab soft-
ware (version 11.33, Biologic, France).

To assess corrosion inhibition stability, experiments were performed on samples that
were first exposed to inhibitor-containing solutions for one day, followed by exposure to
inhibitor-free solutions for three days. For the inhibitor-containing experiments, 1mM
inhibitors were dissolved in 0.1M NaCl. For the inhibitor-free experiments, after the
initial one-day exposure to the inhibitor-containing electrolyte, the initial solution was
poured out, the cell was rinsed, and a fresh 0.1M NaCl solution (without inhibitor) was
used for the subsequent three-day period. Potentiodynamic polarisation experiments
were then conducted at the end of exposures with polarisation curves recorded in a sin-
gle sweep at a scan rate of 0.5mVs-1, covering a potential range from -250mV (cathodic)
to +250mV (anodic) relative to the open circuit potential. Corrosion potentials and cur-
rent densities were calculated using Tafel extrapolation by finding the intersection of the
potential where the lowest current density observed with the tangents from the linear
portions of the anodic and cathodic sections of the log|current density|-potential curves.

All electrochemical experiments were repeated at least three times per inhibitor to
ensure reproducibility. Unless stated otherwise, all potentials reported in this work are
referenced to the Ag–AgCl (saturated KCl) electrode.

The inhibition efficiencies were calculated from corrosion current densities of inhib-
ited and uninhibited samples with the equation:

η =
jcorr

uninh – jcorr
inh

jcorr
uninh

= (1 –
jcorr

inh

jcorr
uninh

)×100% (4.1)

where superscripts uninh and inh stand for uninhibited and inhibited samples, respec-
tively.

4.2.4. ATOMIC FORCE MICROSCOPY (AFM) / SCANNING KELVIN PROBE

FORCE MICROSCOPY (SKPFM)

T O gain a comprehensive understanding of the topographical features and electrical
surface potential/charge distribution of the adsorbed layer of an organic molecule

on the aluminium alloy surface, atomic force microscopy (AFM) and high-surface sen-
sitive scanning Kelvin probe force microscopy (SKPFM) were performed. Each sam-
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ple was half-submerged in an inhibitor-containing solution for 24 hours, so that one
part of the alloy remained untreated. The sample in this state was referred to as the
“molecule-present" case, where the boundary between the bare alloy and the region ex-
posed to the inhibitor was analyzed. Following this exposure to inhibitor-containing so-
lutions, the samples were half-submerged in a second solution without any inhibitor for
2 hours. The sample in this state was referred to as the “molecule-absent" case, where
the boundary between the bare alloy and the region first exposed to the inhibitor and
subsequently exposed to the inhibitor-free solution was analyzed.

AFM and SKPFM mappings were carried out using a Bruker Dimension Edge instru-
ment, equipped with an antimony (n)-doped silicon pyramid single-crystal tip coated
with PtIr5 (SCM-Pit-V2 probe). The probe featured a tip radius of 25nm and a height
of 10–15µm. The surface potential/charge was mapped using a dual-scan approach.
During the first scan, topographical data were recorded in dynamic (tapping) mode.
In the subsequent scan, the tip was elevated by 50nm to measure the surface poten-
tial, maintaining alignment with the topographical contour captured in the initial scan.
All measurements were conducted ex-situ under controlled conditions (ambient air at
22°C, relative humidity ∼ 40%). All AFM/SKPFM measurements were performed with a
resolution of 512 × 512 pixels, a zero-DC bias voltage, and a scan frequency of 0.3Hz. An
AC voltage of 6V was applied to the tip. To ensure accuracy and eliminate variability due
to probe sensitivity, the same tip was used consistently for all measurements conducted
within the same day.

4.2.5. X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

T HE AA2024-T3 surfaces exposed to inhibitor-containing and subsequent inhibitor-
absent solutions were studied using PHI 5400 ESCA system supplied by Physical

Electronic, Inc. This system is equipped with a non-monochromatised aluminium
(Al) Kα X-ray source (hv = 1486.7eV), operated at 200W power and 13.5kV accelerating
voltage, with an analyzer work function of 4.25eV. During measurements, the pressure
within the sample (analysis) chamber was maintained at 10-9 mbar.

For the full survey acquisition of the samples, the pass energy of the analyser was set
at 89.45 eV (with 0.5eV resolution), whereas during the high resolution scans, the pass
energy was set at 71.55eV (0.1eV resolution for N1s and S2p, 0.2eV for the rest). Impor-
tantly, the take-off angle during both the high-resolution and full-survey measurements
was maintained at 45°. All specimens were studied on a circular scanning area with a
diameter of 0.4mm, and their theoretical depth of analysis was 3-5nm. In order to com-
pensate for the charging of the specimens during the XPS analysis, the high-resolution
spectra were peak adjusted through the adventitious carbon shift, during which the ref-
erence C-C peak of the C1s spectrum was set to 284.8eV, and other spectra were offset
accordingly. All the processing of the XPS spectra was carried out using the MultiPak
version 8.0 software from Physical Electronics, Inc. The curve fitting and decomposi-
tion were done by Shirley-type background removal. A constrained fitting procedure
was used in which the mixed Gauss–Lorentz shapes for the different fit components in
the peaks were allowed to change in the 80–100% region. Only small variations in peak
position and full widths at half-maximum (FWHM) were permitted.
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4.2.6. ATTENUATED TOTAL REFLECTANCE FOURIER TRANSFORM

INFRARED SPECTROSCOPY (ATR-FTIR)

A TR-FTIR was performed using a Thermo Nicolet Nexus 470 FTIR spectrometer
equipped with a liquid nitrogen-cooled mercury cadmium telluride (MCT) detector.

A Smart Golden Gate ATR accessory with a diamond crystal was employed for sample
analysis. Prior to measurements, the stability of the MCT detector was monitored by
checking background stability over time.

Samples were prepared by directly placing them onto the diamond ATR crys-
tal, where a gentle pressure was applied using the built-in clamp to ensure optimal
contact with the crystal. Prior to the exposure of samples to inhibitor-containing
and subsequent inhibitor-absent solutions, background spectra were acquired from
freshly prepared samples not exposed to any molecules to account for atmospheric,
instrumental, and substrate related interferences.

Infrared spectra were collected in the mid-infrared region (4000–650cm-1) with a res-
olution of 4cm-1 by reflection of a p-polarised incident beam at an angle of incidence of
45°. Each spectrum was averaged over 128 scans to improve the signal-to-noise ratio.

Spectral data were processed using Thermo Fisher Scientific OMNIC software. Base-
line correction was applied to minimise spectral artifacts. Peak identification was per-
formed by comparing obtained spectra with reference databases and DFT calculated vi-
brational spectra for thiol and thione tautomers.

4.2.7. SHELL-ISOLATED NANOPARTICLE-ENHANCED RAMAN

SPECTROSCOPY (SHINERS)

R AMAN spectroscopy was performed using a WiTec alpha300R Raman Imaging Mi-
croscope. To enhance the Raman signal at the interface, shell-isolated nanoparticle-

enhanced Raman spectroscopy (SHINERS) was employed. Gold nanospheres (40nm
in diameter, OD20) in aqueous sodium citrate solution were purchased (AUCR40,
NanoComposix) and diluted 20 times prior to use.

The Au shell-isolated nanoparticles (Au-SHINs) were prepared following the method
described [219]. Specifically, 0.4mL of (3-aminopropyl) trimethoxysilane (APTMS) solu-
tion (1mM) was mixed with 30mL of the as-prepared gold colloid. Subsequently, 3.2mL
of sodium silicate solution (0.54wt%) with a pH of ∼10 was added. The mixture was then
transferred to a water bath at 95°C and stirred for approximately 30 minutes to facilitate
the formation of a 2nm silica shell. The synthesised Au-SHINs were centrifuged twice
and washed with ultrapure water. Finally, the concentrated solution was diluted with
ultra pure water before application.

The prepared Au-SHINs were drop-cast onto the sample surface and dried on a
hot plate at 60°C. The sample was subsequently exposed to an inhibitor solution for
24 hours. For ex-situ measurements, after exposure the sample was removed, and
dried prior to Raman spectroscopy measurements. For in situ inhibitor desorption
measurements, samples were immersed in only ultra pure water containing solutions
after the first measurement.

For ex situ Raman measurements, a 633nm wavelength laser was employed with a
50× Zeiss objective (working distance: 9.1mm) and a laser power of 1mW to prevent
damage.
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For in situ measurements, the same 633nm laser was used with a 63× Zeiss water-
dipping objective (working distance: 2.4mm) and a laser power of 5mW. Raman spectra
were collected every 10 minutes with an integration time of 20 seconds and 10 accumu-
lations per measurement.

4.2.8. TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMETRY

( TOF-SIMS)

T HE samples were examined using an ION-ToF (GmbH) ToF-SIMS IV equipped with
a Bi cluster liquid metal ion source using a BiMn emitter. A pulsed 25keV Bi3+ clus-

ter primary ion beam was used to bombard the sample surface to generate secondary
ions. Positive or negative secondary ions were extracted from the sample surface, mass
separated and detected via a reflectron-type of time-of-flight analyser, allowing paral-
lel detection of ion fragments having a mass/charge ratio (m/z) up to 900 within each
cycle (100μs). A pulsed, low energy electron flood was used to neutralise sample charg-
ing. This technique is extremely surface sensitive, probing only the top 1–3nm of the
sample. The detection limits are believed to be in the range of ppb - ppm, depending
upon the ion yield of different elements or species. Note that ToF-SIMS is not a quan-
titative analytical technique because ion yields for different elements are very different
and dependent on the chemical environment in which the elements exist (matrix effect).

At least three areas of 300µm × 300µm were measured on each of the samples. The
positive secondary ion mass spectra were calibrated using NH+, C3H+ and Cu+, while
the negative spectra were calibrated using CH-, CN- and SH-. The mass resolutions
of C3H5

+, C4H9
+, C2H- and CSN- are 5100, 6200, 3400 and 4500, respectively. Frag-

ments were assigned with respect to the theoretical reference values of H (1.0073amu), C
(11.9995amu), N (14.0025amu), O (15.9944amu), Al (26.9815amu), S (31.9715amu), Cu
(62.9291amu), 65Cu (64.9272amu). Normalisation of spectra was performed by dividing
the spectra by total counts for any given measurement.

As the secondary ion mass spectra were collected at 128 x 128 pixels over the scanned
area, ions can be mapped by plotting their intensities against each pixel. The ion images
are represented by a false colour scale, where a brighter colour corresponds to a stronger
ion intensity.

4.2.9. SPECIATION CALCULATIONS

S PECIATION calculations and prediction of pKa values were performed through the
Chemicalize Instant Cheminformatics Solution software package of ChemAxon [220,

221]. The Chemaxon pKa calculator employs a computational methodology based on
the analysis of partial charge distributions across molecular structures to predict ioni-
sation constants. The algorithm calculates the partial charge of atoms, which are sen-
sitive to protonation and deprotonation events, to determine the acidic and basic dis-
sociation constants (pKa values) of ionisable functional groups. For multiprotic com-
pounds, the tool distinguishes between micro and macro dissociation constants: micro
constants derive from equilibrium concentrations of conjugated acid-base pairs, while
macro constants are calculated using global mass and charge conservation principles,
enabling prediction of complex ionisation equilibria [222].
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4.2.10. DENSITY FUNCTIONAL THEORY (DFT) CALCULATIONS

A LL quantum chemical calculations were performed using the ORCA 6.0 software
package [223, 224]. The electronic structures of the molecules were optimised using

the hybrid B3LYP functional, which combines the Becke three-parameter exchange and
the Lee-Yang-Parr correlation [225–228]. To account for dispersion interactions critical
in non-covalent and adsorption phenomena, the Grimme’s D3(BJ) empirical dispersion
correction with Becke-Johnson damping was included [229]. Geometry optimisations
were carried out with the def2-TZVPD basis set[230], a triple-ζ valence polarised basis
with diffuse functions. Convergence criteria for the self-consistent field (SCF) procedure
were tightened to ensure stringent convergence thresholds for geometry optimisation
(max SCF energy changeΔE < 10–8 Eh).The RIJCOSX approximation (resolution of iden-
tity for Coulomb integrals (RI-J) and chain-of-spheres exchange (COSX)) was employed
to accelerate computations without significant loss of accuracy [231].

Solvent effects were incorporated using the conductor-like polarisable continuum
model (CPCM) [232] with the solvation model based on density (SMD) parameterisation
[233] to simulate aqueous environments. The SMD model employs a universal solvation
approach based on solute electron density and solvent-specific parameters (dielectric
constant, surface tension, etc.), to cost-effectively predict solvation free energies in wa-
ter. The solvent was defined as water (ε = 78.36).

Harmonic vibrational frequency calculations were performed to confirm that the op-
timised geometries correspond to true minima (no imaginary frequencies) and to com-
pute thermal corrections to the Gibbs free energy. Base electronic and thermal con-
tributions (enthalpy, entropy) were extracted from the frequency output to calculate
temperature-dependent thermodynamic Gibbs free energy values at 298.15K.

Simulated vibrational spectra were generated by representing each computed vibra-
tional mode as a Gaussian peak centered at its corresponding frequency. The intensity
of each peak was determined by the computed vibrational intensity, while the broaden-
ing was controlled by a fixed width parameter. The overall spectrum was constructed by
summing these individual peaks over the relevant frequency range, producing a smooth
vibrational profile. An empirical wavenumber scaling factor of 0.99 was applied to cor-
rect for systematic over/underestimations inherent to the chosen functional and basis
set.

Calculations were performed on a desktop computer with an AMD Ryzen 7 7800X3D
processor, which were parallelised over 8 cores to increase computational efficiency.

Dipole moment magnitude, EHOMO and ELUMO values were extracted from the simu-
lations, and were used to calculate properties of the HOMO-LUMO bandgap, electroneg-
ativity, chemical hardness, and electrophilicity. The HOMO-LUMO gapΔE is calculated
as:

ΔE = ELUMO – EHOMO (4.2)

and is directly related to the reactivity of the molecule, where a smaller gap enhances
electron transfer. The electronegativity χ of a molecule can be approximated by:

χ = –
EHOMO + ELUMO

2
(4.3)
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which is related to the charge transfer tendency of molecules. Chemical hardness η is
calculated as:

η =
EHOMO – ELUMO

2
(4.4)

which measures resistance to electron cloud deformation. The electrophilicity index ω
is derived as:

ω =
χ

2

η
(4.5)

which is a measure of how susceptible a molecule is to electrophilic attack [234].
To evaluate the site-specific reactivity of the molecule, the electronic structure was

further analyzed by computing the atomic Mulliken charges and by performing Fukui
analysis. Atomic Mulliken charges are calculated by partitioning the electron density
among atoms based on molecular orbital coefficients, which provides insight into the
charge distribution and reactivity of a molecule. Fukui analysis allows prediction of the
most electrophilic and nucleophilic sites of a molecule by quantifying the changes in
electron density at specific positions in a molecule during a chemical reaction involving
electron transfer, which is calculated as:

f(r) =
∂ρ(r)

∂Nelectron
(4.6)

where ∂ρ(r) is the electron density. By adding or removing an electron from an opti-
mised DFT calculation, and taking the difference between anion-neutral and neutral-
cation electron density distributions, finite-difference approximations of the electron
density response to changes in electron population can be obtained. Fukui functions
are these finite-difference approximations to changes in electron densities, which can
inform about the sites susceptible to an electrophilic or nucleophilic attack, which can
be calculated using:

f+(r) = ρN+1(r) –ρN(r) (4.7)

f–(r) = ρN(r) –ρN–1(r) (4.8)

where f+(r) is the Fukui function for the addition of an electron to a molecule, and f–(r)
the Fukui function for the removal of one electron from the molecule.

Chemcraft software was used to visualise Fukui functions, HOMO and LUMO to
identify the most reactive sites for electrophilic and nucleophilic interactions.

4.3. RESULTS AND DISCUSSION

4.3.1. ELECTROCHEMICAL RESPONSE TO MOLECULE PRESENCE

AND SUBSEQUENT ABSENCE

F IGURE 4.1 presents the potentiodynamic polarisation curves of AA2024-T3 in inhib-
ited and uninhibited conditions. In the uninhibited case, where the samples were
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Figure 4.1: Potentiodynamic polarisation curves of AA2024-T3 exposed to a 0.1M NaCl electrolyte with 1mM
3-amino-1,2,4-triazole-5-thiol molecule for one day (inhibitor present), followed by three days in 0.1M NaCl
without the molecule (inhibitor absent), and sample exposed to 0.1M NaCl alone for four days (uninhibited).
Thione tautomer of the molecule shown as an inset. Potentials measured with respect to Ag–AgCl (saturated
KCl) references.

exposed to only 0.1M NaCl for four days, the resulting corrosion potential values were
–668±40mV vs. Ag–AgCl (saturated KCl), and corrosion current densities were 36.82±
3.60×10-5 mAcm-2. With the addition of 1mM 3-amino-1,2,4-triazole-5-thiol molecule
and exposure to this inhibitor present corrosive environment for one day, the corrosion
potential values resulted in values of –485±8mV, and corrosion current densities were
3.82±1.99×10-5 mAcm-2, which corresponded to inhibition efficiencies 91.50±4.42%.
With the subsequent exposure of three days in the absence of molecule and only 0.1M
NaCl, corrosion potential values were –613±35mV, and corrosion current densities were
25.94±3.08×10-5 mAcm-2, which corresponded to inhibition efficiencies 42.30±6.85%.

The initial exposure to the molecule caused the mean corrosion potential values to
shift to 183mV more positive potentials, and subsequent exposure to a molecule absent
environment decreased this positive potential shift. However, at the end of the exposure
the corrosion potential of the inhibitor absent samples were still 128mV more positive
than the completely uninhibited case. In a similar manner, corrosion current densities
also dropped an order of magnitude in the presence of the molecule, which climbed back
up to the uninhibited values for inhibitor absent case, but not completely: from 91% to
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42% inhibition efficiency. This is the sustained quasi-inhibition behaviour offered by
the molecule 3-amino-1,2,4-triazole-5-thiol: whereas other molecules lose their gained
corrosion inhibition completely if the molecule is not sustained in the environment, this
particular molecule somehow still sustains corrosion inhibition, albeit with a reduced
efficacy.

Based on mixed potential theory, if the cathodic half reactions remain the same
while the corrosion potential shifts to more positive values and corrosion current
densities drop to lower values, the cause of this shift must be the inhibition of anodic
half-reactions. In light of the cathodic parts of the plots, which seem to be com-
pletely unaffected by the molecule presence and overlap in all conditions, and the
pitting potentials which overlap in the inhibitor absent and uninhibited cases, the
primary mechanism that causes quasi-stable corrosion inhibition has to be through the
suppression of anodic reactions.

4.3.2. SURFACE TOPOGRAPHY AND POTENTIAL DISTRIBUTIONS

T O determine whether this sustained inhibition occurs across the entire sample sur-
face or is primarily due to molecule interaction with the intermetallics, the self-

assembly of the molecules were analyzed through the topography and surface poten-
tial investigations. The AFM coupled with SKPFM was utilised to examine the influence
of the adsorbing layer of inhibitor molecules on the nanoscale surface morphology and
electrical potential distribution of the aluminium alloy matrix and its intermetallic par-
ticles. Special emphasis was placed on variations in the electrical surface potential of
the layer, particularly after exposure to an inhibitor-free electrolyte. It is important to
note that the physicochemical interactions between these inhibitor molecules and in-
termetallic particles - whether relative to the matrix anodic (leading to their own disso-
lution) or cathodic (accelerating matrix dissolution through micro-galvanic interactions)
[42, 43] - play a crucial role in controlling or inhibiting corrosion processes.

The presence of a thin overlayer of organic and inorganic materials on the sample
surface can alter the work function (WF) due to electron transfer and structural relax-
ation at the interface [235]. Similarly, in doped semiconductors, band bending in the
subsurface depletion layer can induce comparable changes [236]. It is important to note
that, in SKPFM analysis, the electrical forces between the AFM tip and the substrate can
be categorised into two main components: capacitance forces, which arise from sur-
face potential and dielectric screening, and Coulombic forces, which result from static
charges and multiples [236]. For self-assembled monolayers (SAMs) adsorbed on metal-
lic surfaces, a new energy level arrangement forms at the SAM/oxide film interface (here,
aluminium native oxide film). SAM adsorption on an aluminium oxide film affects elec-
trostatic interactions and capacitance by modifying the local WF or contact potential dif-
ference (ΔCPD) between the AFM tip-apex and the SAM-covered Al oxide layer. These
changes arise from band bending (Δbb), the perpendicular SAM dipole moment (μSAM),
and interfacial bonding (Δbond), leading to a new local surface potential (SPSAM) on the
SAM-covered aluminium oxide [237]:

SPSAM = SPAloxide +μSAM/e +Δbond (4.9)

where e is the elementary charge.
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Figure 4.2 presents the results of the surface examination of topography and poten-
tials. The left side of each map represents surfaces initially exposed to the inhibitor
molecules, while the right side shows the bare surfaces used as control. The top row
(Figures 4.2 (a) – 4.2 (d) depicts surface segments exposed to the molecule-containing
electrolyte. In contrast, the bottom row (Figures 4.2 (a’) –4.2 (d’) ) illustrates surface seg-
ments initially exposed to the inhibitor molecule-containing electrolyte, followed by ex-
posure to an inhibitor-free electrolyte. Topography maps in Figures 4.2 (a) and 4.2 (a’)
clearly reveal a morphological transformation of the adsorbed inhibitor nanolayer, shift-
ing from a finely agglomerated structure to a larger domain-agglomerated form after ex-
posure to the inhibitor-free electrolyte. Moreover, in both conditions, the topography
maps indicate a sustained surface coverage by the organic molecules.

As observed in the AFM line scans in Figures 4.2 (c) and 4.2 (c’), the topographical
values decline relative to the bare surface was approximately 50nm for the inhibitor-
exposed surface and around 10–20nm for the subsequent inhibitor-absent surface. This
suggests thinning of the previously formed film due to the desorption of weak bonds and
other less stable adsorption configurations in the absence of the inhibitor molecules.
The SKPFM map in Figure 4.2 (b) and line scans in Figure 4.2 (c) indicate that the pres-
ence of the inhibitor molecules increased the electrical surface potential and charge by
approximately 60mV compared to the bare surface, resulting in a significantly higher
value. However, after the removal of the inhibitor molecules (Figures 4.2 (b’) and 4.2
(c’) ), the surface potential and charge dropped to values lower than those of the bare
surface, with a significantly larger potential difference of approximately 140mV.

Considering the complementary spectroscopy findings discussed in the following
sections, this phenomenon can be attributed to the orientation and dipole moment of
the stabilised molecules on the surface. The reduction in organic layer thickness indi-
cates partial desorption of the adsorbed molecules when they are no longer sustained in
the environment. This implies that certain bonding interactions or adsorption config-
urations exhibit greater stability than others, which may correlate with the quasi-stable
corrosion inhibition behaviour. According to the previous studies, the self-assembled
monolayers of molecules oriented with the positive pole upwards decrease the work
function of the surface, whereas monolayers oriented with the negative pole upward in-
crease it [238, 239]. Assuming a single dominant stable bonding configuration for the
surface, a decrease in surface potential and charge should result from the molecule in
thione form with the sulfur functional group adjacent to the surface, or in thiol form
with amino group adjacent to the surface (see section 4.3.6 - the strong dipole moment
of thione bonded to surface through sulfur supports this).

The opposite trends seen in molecule-present case could be due to the other addi-
tional, less stable bonding configurations of the molecule, which bonds to the surface
with dipole moments in opposite direction (e.g. through electron donation via amino
groups in thione form). The formation of a thicker electrically insulating multilayer in-
hibits electron transfer, acting as a barrier and increasing the measured surface poten-
tial. Additionally, the presence of the inhibitor layer can raise the work function by al-
tering the local electrostatic interactions, depending on the molecular orientation and
dipole interactions [236]. This behaviour is consistent with the formation of a multi-
layer, where the initial monolayer induces a dipole via Pauli repulsion, compressing the
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Figure 4.2: (a) AFM topography and corresponding (b) surface potential maps, and associated line profiles
for (c) matrix and (d) intermetallics. Subfigures above the dashed line denote the molecule-present case, and
below the subsequent molecule-absent case. “Inhibitor" represented the regions initially exposed to the in-
hibitors, as opposed to the “bare surface" side that experienced no electrolyte exposure.
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surface electron cloud and lowering the vacuum level. Additional layers contribute min-
imally due to their lack of direct interaction with the substrate and partial cancellation of
molecular dipoles. These results align with previously reported studies of metal–organic
interfaces, where the electronic structure and dipole formation are governed by the na-
ture of bonding at the interface rather than bulk molecular properties alone [240].

The surface potential line profiles of the intermetallic particles are shown in Figures
4.2 (d) and 4.2 (d’). The particles were determined based on their shapes and surface
potentials, which were clearly different than those for the matrix [239, 241]. Given the
resolution of the scans, larger intermetallics were chosen for the line scans for a more
accurate interpretation. The trends between smaller and larger intermetallics were sim-
ilar, as seen by the same colour contrast (z-scale bar) with the matrix.

The predominant intermetallic phases on the AA2024-T3 alloy surface are Cu-rich
θ-phase and S-phase, which play a crucial role in localised dissolution and pitting cor-
rosion in the presence of chloride ions. This corrosion susceptibility arises from the in-
strinsic dealloying behaviour of intermetallic particles [42, 55], and the surface potential
differences between the intermetallic particles and the surrounding aluminium matrix
[43, 242, 243]. The presence of inhibitor molecules reduced the surface potential dif-
ference between the matrix and intermetallic particles from approximately 250mV to
180mV, thereby mitigating the driving force for localised corrosion. However, upon the
subsequent absence of the inhibitor, this effect is lost, as the surface potential of both the
bare alloy and the inhibitor-covered surface converge to similar values (approximately
200mV and 220mV, respectively), increasing the driving force for galvanic coupling in
comparison to the inhibited molecule-present case. This suggests that corrosion pro-
tection of the intermetallics is not sustained in the absence of the inhibitor. This finding
is further supported by the pitting potentials shown in Figure 4.1, where, as compared to
reference, the inhibitor presence shifts the potential around 20mV positive values, but
the subsequent absence of the inhibitor deprives the sample of this effect.

4.3.3. PERSISTING CHEMICAL SIGNATURES AFTER MOLECULE

WITHDRAWAL

T O understand the chemical states responsible for the stable bonding configurations,
AA2024-T3 surfaces were observed with XPS in the presence and subsequent ab-

sence of the inhibitor molecule. Figure 4.3 presents the N1s (4.3 (a) -4.3 (a’) ) and S2p
(4.3 (b) - 4.3 (b’) ) high resolution XPS spectra. The rest of the high resolution and survey
spectra can be found in supplementary information. The binding energy peaks for the N
and S atoms in different chemical environments of adsorbed molecules corresponding
to the red, blue and green fits are collected in Table 4.1. No peaks for the values presented
herein were observed for the control measurements with pristine samples.

The N1s spectrum was best fitted with three components in the presence of the in-
hibitor molecule, and two components in the subsequent absence of the molecule, as
visible in Figure 4.3 (a) and 4.3 (a’), respectively. The peak at 399.4eV was attributed to
the amino functional group, and 400.6eV the triazole, which was based on the previous
spectra obtained for 3-amino-1,2,4-triazole and 1,2,4-triazole [244]. The peak at 401.6eV
was assigned for protonated N. These assigned values were in line with the reference
spectra and other studies in which amino groups and aromatic azoles were studied [245–
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Figure 4.3: High resolution XPS N1s and S2p spectra for (a) - (b) inhibitor presence, (a’) - (b’) subsequent
inhibitor absence.

Binding Energy (eV)

Molecule -NH2 N-ring N-protonated · · ·S-C · · ·S=C O=S=

Presence 399.4 400.6 401.6 162.0 164.0 169.2
Absence 399.2 400.6 169.3

Table 4.1: Binding energy peaks of N1s and S2p for 3-amino-1,2,4-triazole-5-thiol in the initial presence and
subsequent absence from the environment.

248]. The signals that would result from nitride- and nitrite/nitrate-like bonds to metal
and oxides were missing from either spectra, which would appear below 397.5eV above
404eV [248, 249]. The stability of the 400.6eV peak suggests the triazole ring remains
intact during adsorption/desorption. The 0.2eV decrease in the amino group binding
energy could be related to an increase in the electron density around the nitrogen, but is
hard to say for certain due to low signal-to-noise ratio and multiple possible peaks shift-
ing at the same time. If that is the case, this might indicate that amino nitrogen, which
was previously weakly bonded, has desorbed and returned to its normal, less electron-
deficient state.



4

82 4. SUSTAINING INHIBITION

The S2p spectrum was best fitted with three components in the presence of the in-
hibitor molecule, out of which only one remained in the subsequent absence of the
molecule, as visible in Figures 4.3 (b) and 4.3 (b’), respectively. The S2p spectrum was fit-
ted as a single peak model neglecting spin-orbit coupling effects, due to peak broadening
from complex interactions between the alloy surface and the adsorbing/desorbing or-
ganic molecule, making accurate spin-orbit resolution challenging. The peak at 162.0eV
was attributed to the thiol, 164.0eV the thione form of the molecule, and 169.2eV to the
oxidised sulphate-like structure. The assignment was based on the reference work [248],
and prior study on the adsorption of 3-amino-1,2,4-triazole-5-thiol molecules on Ag and
Au surfaces [250].

The thiol and thione signals demonstrate that both tautomers interact with the sur-
face when the molecule is present in the environment. Thione seems to be the dominant
tautomer, (this is further validated in section 4.3.6). There appears to be a transient inter-
action, likely through physisorption of the molecule to the surface through protonated
nitrogen, and the sulfur atoms of thiol and thione. However, when the inhibitor is no
longer present in the environment, all these peaks disappear. Instead, the sulfate-like
peak becomes more intense in the absence of the inhibitor. This is likely due to the re-
moval of excess weakly-bonded molecules, which would otherwise shield the interface
signal more, which is also in line with decreasing carbon and nitrogen signals in the sub-
sequent absence of the molecule.

This implies sulfate signal coming from the interface. The persistence of nitrogen
signals, and the increased sulfate-like peak suggest surface functionalisation via sulfur.
This sort of functionalisation of aluminium (hydr)oxide surfaces by thiols have been ob-
served before [251]. In this stable state, triazole nitrogen does not protonate or depro-
tonate, as indicated by unchanged nitrogen binding energies. This implies that thione
complexation with aluminium (hydr)oxide is key to quasi-stable corrosion inhibition.

A similar behaviour is also observed from the ATR-FTIR spectra of the molecule-
surface interactions. Figure 4.4 presents the ATR-FTIR spectra of the AA2024-T3 sur-
face (a) exposed to the inhibitor molecule, (b) spectra when the same surface is shortly
rinsed-off with ultra-pure water, (c) following exposure to inhibitor absent environment,
and simulated vibrational spectra of (d) thione and (e) thiol tautomers through DFT
computations. The vibrational modes that might be relevant for analyzing the experi-
mental results are summarised in Table 4.2.

A comparison of Figures 4.4 (a) and 4.4 (d), and calculated peaks closest to the ex-
perimentally measured spectra shows that simulated thione spectrum better overlaps
with the experimental spectrum, once again showing that majority of the molecules are
present in the environment in their thione tautomers. The -SH peak was missing (noth-
ing at 2640cm-1), indicating either thiol form of molecule is in trace amount or all thiol
tautomers are found in deprotonated mercapto forms. However it seems that there in-
deed might be lesser contributions coming from the thiol vibrations when molecule is
present in the environment, as seen in Figure 4.4 (a) and Figure 4.4 (e) partial peak over-
lap around 1600cm-1.

The simulations reveal that experimentally observed peaks around 1645, 1484, 1346
and 1278cm-1 were related to the various stretching and rocking vibrations of amino
and triazole protons. All these vibrations disappeared with absence of molecule in the
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Figure 4.4: ATR-FTIR spectra related to the molecule adsorption. ATR-FTIR experiments of (a) inhibitor pres-
ence, (b) rinsed-off, (c) subsequent absence, and vibrational spectra of the molecule calculated with DFT in
(d) thione, and (e) thiol tautomers.

environment. Weak but consistent peaks at 1200 and 1115cm-1 were present in all con-
ditions, which corresponded to the vibrations for C-NH stretch for NH near sulfur, and
NH-NH stretch, respectively. These peaks may suggest a stable bonding configuration
via the thione tautomer, where the NH group nearest to the sulfur atom does not depro-
tonate. A new broad weak peak appeared at 3520-3560cm-1, with possible contributions
from -NH2 or proton stretch for NH near S. If indeed it is originating from the amino
group (which is likely, as the signal for proton group from NH near S should have been
present for all conditions, but it was not), it might be related to a bonding configura-
tion where a hydrogen bonding between -NH2 and the surface is released. This would
also agree with the 0.2eV binding energy decrease observed for N2s -NH2 peak. A very
weak peak with increased presence for subsequent molecule absence was observed for
1071cm-1, calculated to be related to C=N stretch. This might be related to a type of
original π-bonding state recovered from a transient surface interactions.

The main prominent consistent peak observed between 1170-1090cm-1 was present
through all conditions, and was not observed throughout the vibration calculations.
The peak displays quite an interesting behaviour, becoming only more prominent and
sharper in the absence of the molecule in the environment. The values for this peak
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Table 4.2: Relevant calculated vibrational frequencies for thiol and thione tautomers of 3-amino-1,2,4-triazole-
5-thiol with their main contributions, and experimental results. Peaks close to the experimental results (<10
cm-1 difference) indicated in bold. Peaks ↑ : increase, ◦ : constant, ↓ : decrease when environment is changed
from inhibitor-containing to inhibitor-absent environment.

Thiol Thione Experiment

Wavenumber (cm–1) Main Contribution Wavenumber (cm–1) Main Contribution Wavenumber (cm–1)

3686 Asymmetric -NH2 stretch 3652 Asymmetric -NH2 stretch
↑ 3520 – 35603578 Proton stretch (NH near S) 3536 Symmetric -NH2 stretch

3565 Symmetric -NH2 stretch 3528 Proton stretch (NH near S)
1597 C-NH2 stretch 1646 C-NH2 stretch ↓ 1650 – 1590
1495 Proton rocking (N near S) 1481 Proton rocking (NH near S) ↓ 1484
1346 C=N stretch (N near S) 1344 Asymmetric proton rocking (triazole) ↓ 1346
1255 Proton rocking (NH near S) 1268 C-N stretch (N near S) ↓ 1278

1205 C-NH stretch (NH near S) ◦ 1200
↑ 1170 – 1090

1126 N-NH stretch 1113 NH-NH stretch ◦ 1115
1077 C=N stretch ↑ 1071

corresponded to the the S=O vibrations observed for asymmetric and symmetric sulfate
stretch [252–256]. The fact that the measurement background was the original sample
prior to molecule treatment, suggests that this is a newly formed sulfate-like layer on
the surface. Supported by the previous XPS analysis, the fact that this peak is absent in
the simulated spectra based only on the molecule, but strongly present in experimental
spectra calls attention to the role of sulfatisation on the quasi-stable corrosion inhibition
behaviour.

4.3.4. TEMPORAL EVOLUTION OF SURFACE-BOUND SPECIES IN THE

SUBSEQUENT ABSENCE OF INHIBITOR MOLECULES

T O elucidate the evolution of stable bonding mechanisms through time and untan-
gle the effect of intermetallic and the Al matrix, in-situ molecule desorption ex-

periments were performed for pure aluminium, copper, and AA2024-T3 surfaces. Af-
ter exposing surfaces to inhibitor molecule for one day, their desorption is followed in-
situ with SHINERS spectroscopy. Additionally, ex-situ Raman spectra were collected for
molecule in powder form, molecule in aqueous solution, AA2024-T3 alloy surface with-
out nanoparticles, alloy surface only exposed to water, and alloy, pure aluminium, pure
copper surfaces exposed to inhibitor-containing solutions. The collected information
was used for analyzing in-situ spectra, and can be found in supplementary information.

Figure 4.5 presents the results of the in-situ Raman experiments. Figures 4.5 (a) -
4.5 (b) correspond to aluminium, 4.5 (c) - 4.5 (d) correspond to copper, 4.5 (e) - 4.5 (f)
correspond to alloy spectra and heatmaps, respectively. Heatmaps present the square
root of the intensities to help with the identification of weaker signal trends. Upon initial
observation it is clear that pure Al and AA2024-T3 heatmaps are more similar to one
another.

The weak peaks present at lower wavenumber 200-300cm-1 likely result from a
mixed contribution of the signals from the substrate (measured peaks around 290cm-1),
aqueous molecule (measured peaks around 273 and 360cm-1), and metal sulphide
bonds [257], and disappear in the first 30 minutes. The shoulders at 430-450 and
650cm-1, and peaks at 700-800cm-1) range correspond to the signals associated with
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Figure 4.5: SHINERS Raman spectra and heatmaps of in-situ molecule desorption phenomena from (a)-(b) Al,
(c)-(d) Cu, (e)-(f) AA2024-T3 surfaces.

the 3-amino-1,2,4-triazole fragment stretch, bend and torsion modes [258]. These
signals were more much present with pure Al and alloy substrates and their signals
decreased with time. Copper nitride-like peaks are potentially contributing to the
signals observed for 610-640cm-1 [259, 260], but it is difficult to isolate their effect from
the signals originating from Cu2O and Cu(OH)2 as their previously observed peaks
correspond to 523 and 623cm-1, and 490cm-1, respectively [261]. However, in the case
of a copper oxide growth, corresponding peak signals should increase or stay the same.
This, in addition to the faster signal decrease at higher wavenumbers of ∼630cm-1

makes us believe that they are related to the bonding between N of the molecule and
Cu surface, which depreciate through time. For the molecule in aqueous solution, a
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sharp strong peak at 500cm-1 was observed, which was previously attributed to C=S
vibrations [250]. This peak shifted to lower values in the 480-500 range for Al and alloy,
and to higher values of 510-520cm-1) for Cu - but again it is difficult to disentangle this
from the overlapping potential signals from Cu2O.

In the ex-situ spectra of the molecule dissolved in aqueous solution, no peaks are
present between 550-740 and 800-960cm-1 range. In the ex-situ spectra of the alloy, no
peaks are present between 320-910cm-1 range. However, peaks appear for molecule ex-
posed surfaces in these ranges. Aluminium nitride-like peaks were observed between
610-660cm-1 for Al and alloy surfaces [262], which appeared at later exposure times
for Al and was relatively constant, but disappeared almost immediately from the alloy
surfaces. The peak around 840 cm-1 that developed with time for Al and weak but al-
most constant for Cu, was previously attributed to C-H out-of-plane bending [263] and
a vibration at 829cm-1 was previously calculated to be related to 3-amino-1,2,4-triazole
molecule coupled out-of-plane rocking of the amino group with triazole ring torsion
[258]. The strongest peak for Al and alloy however was the one observed at 936cm-1,
which was attributed to the symmetric sulfate stretch [264–266].

For the Cu and alloy substrates, all observed peaks exhibited a periodic decrease in
intensity over time. Despite this decline, in the case of the alloy a significant signal re-
mained for the molecule related peaks at 492 and 744cm-1, as well as the sulfate peak
at 940cm-1. This persistence suggests that the formation of a sulfate-functionalised sur-
face is associated with the quasi-stable corrosion inhibition behaviour. This behaviour
was evident for Al and the alloy, but was not present for Cu.

On the Cu surface, peaks corresponding to Cu-nitride Raman shift values were ob-
served. While nitride-related features also emerged on the Al surface at later stages, they
were absent for the alloy. In fact the peak at 630cm-1, which is potentially linked to
metal-nitride formation, disappeared within the first 20 minutes for the alloy substrate.

These findings highlight significant differences in adsorption mechanisms, and in
comparison to the transient nature of sulfide- and nitride-like peaks, the sulfate bond-
ing configuration developed on aluminium oxide appears to provide a more robust and
stable molecule-substrate interaction on the alloy surface.

4.3.5. DETECTION OF PERSISTENT MOLECULAR FRAGMENTS

ON THE SURFACE

T OF-SIMS was used to analyze the strongly-bound surface molecular fragments. The
positive and negative ion spectra of 3-amino-1,2,4-triazole-5-thiol, with its formula

M = C2H4N4S, was collected after drying from its aqueous solution on an aluminium
weighing boat, which can be found in supplementary information. The major posi-
tive ions included the hydrogenated molecular ion [M+H]+, and fragment ions CH3N2

+,
CH6N3

+ and C2H5N4
+. The major negative ions included molecular ion M-, dehydro-

genated molecular ion [M-H]- and fragment ions CN-, S-, CHN2
-, CSN- and C2N3

-.
The inhibitor-treated substrates of AA2024-T3, Cu, and Al were rinsed briefly (∼1

min) and extensively (∼1 h). No significant differences in ToF-SIMS spectra were ob-
served between rinsing conditions, suggesting that the inhibitor forms a robust layer
on the substrates. Therefore, only the inhibitor-treated samples that received an exten-
sive rinse are elaborated further to focus on rather strongly adsorbed species. Figure 4.6
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Figure 4.6: Selected (a) negative and (b) positive ion spectra for Cu, AA2024-T3, Al samples; and (c) ion maps
of the AA2024-T3 sample. One tick distance on x-axis denotes 0.1m/z.

shows some selected peaks relevant for analysis. For the complete spectra of the samples
refer to the supplementary information.

While no aluminium was detected on the treated Cu sample, Cu was detected for all
three samples, with a greatly reduced Cu+ intensity detected on AA2024-T3 sample and
an even weaker Cu+ intensity on sample Al. No Al-containing fragments (e.g. Al-S, Al-N
or Al-CN) were observed for AA2024-T3 and Al samples. As seen in Figure 4.6 (a) SO-,
SO2

-, and SO3
- peaks were present for all samples, with a stronger SO3

- signal observed
for AA2024-T3. However SO2

- peaks were also present for the control pristine surfaces
(without molecule application) as well, which makes a conclusive analysis about sulfur-
oxygen not possible using ToF-SIMS. Thus, the following text focused on the Cu-related
phenomena.
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Copper-inhibitor complexes CuC2H4N4S+ and 65CuC2H4N4S+, are detected on the
Cu sample, confirming direct copper-inhibitor bonding. The complex, CuC2H4N4S+, is
also detected on AA2024-T3 sample but with a greatly reduced abundance. There were
even weaker CuC2H4N4S+ signals detected on the Al reference sample (most likely origi-
nating from Cu impurities). The reduced complex signal in AA2024-T3 and Al correlated
with Cu abundance in these samples.

On the other hand, no 65CuC2H4N4S+ (180.946amu) could be confirmed for
samples AA2024-T3 and Al since there is another peak at the very similar m/z value
(180.941amu). It was confirmed that there is a peak at this m/z value, which may be
assigned to Al4F2O2H3

+ by mass matching (it is worth mentioning that decent F- signals
were detected on the AA2024-T3 and Al samples). This peak thus covers the rather
weaker 65CuC2H4N4S+ signals of samples AA2024-T3 and Al. By contrast, there was no
such interfering peak at this m/z value for the pristine Cu sample.

This observation that the copper-inhibitor complex ion is too weak for AA2024-T3
and Al samples, and the fact that the detection of CuC2H4N4S+ does not clarify whether
copper interacts with the amine, the thione, or both, calls for examining the copper-
containing fragment ions. It was confirmed that there are various, rather abundant
copper-containing ions indicating interactions between copper and the inhibitor.

Shown in Figure 4.6 (b) are the positive spectra for CuCNH+, CuCN2H2
+, CuCS+ and

Cu3S+. The first two ions and the last two ions are interpreted to represent the interaction
of copper with the inhibitor at the amine site and the thione site, respectively. Other
copper-containing positive ions include Cu2S+, Cu2SH+, Cu2CN+ and Cu2CNS+. These
ions further corroborate affinity of copper for both amine and thione sites.

As seen in Figure 4.6 (b), the copper-inhibitor complexation signals for AA2024-T3
are scaled with its copper content compared to those for the pure copper substrate. This
is evident in the images of Cu+ and Cu2CN+, where stronger Cu+ and Cu2CN+ signals are
observed over the aggregates (10-20 µm across) compared to the more homogeneously
distributed background of these ions. These aggregates are most likely Cu-containing in-
termetallics, such as the commonly found Al2Cu and Al2CuMg, or the larger AlFeCuMn
constituents. Figure 4.6 (c) also shows the image of Cu2S+, which is less abundant than
Cu2CN+. The Al+ image presenting the substrate shows contrast corresponding to the
copper-rich aggregates. The image of the aluminium oxide cluster ion Al2O4H3

+ also
shows this trend, though to a lesser degree due to its weaker signals compared to Al+.
Therefore, as evidenced by the ToF-SIMS results, the inhibitor molecules displayed sta-
ble bonding to the intermetallics, with a greater portion through their nitrogen sites and
a smaller portion through their sulfur sites.

4.3.6. THEORETICAL INSIGHTS INTO MOLECULE STABILITY AND

CHEMISTRY

F IGURE 4.7 illustrates the speciation analysis of the inhibitor molecule at various pH
values. Under the electrochemical conditions studied (1mM 3-amino-1,2,4-triazole-

5-thiol in 0.1M NaCl), the pH is approximately 5.8. Around such pH values, the molecule
is expected to predominantly exist in a mixture of its protonated, zwitterionic, and neu-
tral thione forms, with neutral form being the majority species.

To study how such a species distribution might result in different forms with dif-
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Figure 4.7: Speciation analysis of 3-amino-1,2,4-triazole-5-thiol for different pH values.

ferent adsorption-related properties of the molecule, deprotonated, neutral, zwitteri-
onic and protonated forms of the molecule in thiol and thione tautomers were stud-
ied through DFT. Figure 4.8 visualises the key quantum chemical properties of these
different species. Figure 4.8 (a) summarises the calculated quantum chemical param-
eters potentially relevant to the stable bonding configurations. Figures 4.8 (b) through
4.8 (e) present the dipole moment and Mulliken charges, highest occupied molecular
orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and Fukui function sur-
face maps, respectively. It is important to note that DFT analysis is undertaken here only
to give an idea of where bonds might form. Adsorption of the molecule is not the only
factor that determines corrosion inhibition, and other effects, such as intermolecular
forces between inhibitor molecules, how well the formed organic film blocks corrosive
species, and changes in the surface’s electronic properties due to the adsorbed inhibitor,
can be just as or more important in influencing the overall inhibition process [71].

The electronic properties of the HOMO, LUMO, and the HOMO-LUMO gap are
helpful for understanding how a molecule interacts with a surface. The HOMO energy
(EHOMO) reflects the molecule’s ability to donate electrons, with higher EHOMO values
indicating a greater likelihood of donating electrons to a surface with lower-energy
empty orbitals. Similarly, the LUMO energy (ELUMO) shows the molecule’s ability to
accept electrons, with a lower ELUMO making it easier to accept electrons from donors.
While the HOMO-LUMO gap provides insight into a molecule’s reactivity, it is not
directly correlated to corrosion inhibition or adsorption, as previously discussed [130].
More important for adsorption behaviour is the alignment of the molecule’s HOMO
and LUMO energies with the Fermi energy (and effective Fermi energy of the localised
d-orbitals) of the surface [71, 267]. The Fermi energy represents the highest occupied
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Figure 4.8: (a) Calculated quantum chemical parameters of different molecule species; for thiol and thione
species (b) dipole moment and Mulliken charges, (c) HOMO, (d) LUMO, (e) Fukui function surface maps (lime
electrophilic, pink nucleophilic attack sites).

electron state on the surface, and effective electron transfer during adsorption depends
on the overlap of the molecule’s electronic states with the surface’s Fermi energy. A
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higher EHOMO typically leads to an emptier anti-bonding state, while a lower ELUMO
results in a fuller bonding state, both of which enhance molecule-surface interactions.
These interactions determine the strength and nature of adsorption. However, while
strong molecule-surface bonding is important for corrosion inhibition, it is not suf-
ficient on its own. Inhibitors must adsorb strongly enough to remain on the surface,
but not excessively, as too strong bonding can weaken metal-lattice interactions and
promote corrosion [76]. In summary, while the HOMO-LUMO gap indicates overall
reactivity, and the alignment of the molecule’s HOMO and LUMO with the surface’s
Fermi energy plays a central role in governing adsorption strength and electron transfer,
they do not directly determine the corrosion inhibition effectiveness of the chemisorbed
layer.

In addition to these electronic properties, the dipole moment informs about the
molecule’s polarity. A larger dipole moment generally means stronger interactions with
polar surfaces which can help the molecule adsorb to a surface, whereas a smaller dipole
moment may enhance molecular accumulation on the surface [71]. The molecule’s elec-
tronegativity also plays a role, as more electronegative molecules tend to have stronger
interactions with surfaces, especially those that are electron-deficient. Lastly, the elec-
trophilicity index quantifies the molecule electron acceptance tendency, providing ex-
tra insight into its reactivity. Whereas state-of-the-art simplified DFT calculations fail
to predict reasonable values, especially for quantities based on accurate HOMO-LUMO
gap values, the approximation was proven to be still useful to ascertain trends of similar
molecules [71].

These trends of the aforementioned quantum chemical properties dipole moment,
EHOMO, ELUMO, molecular orbital energy gap ELUMO - EHOMO, electronegativity and
electrophilicity index for the zwitterionic, deprotonated, protonated and neutral tria-
zole forms can be observed in Figure 4.8 (a). In all forms, thione tautomer had a larger
dipole moment than the thiol. The difference was on average around three times, and
specifically for the neutral forms more than an order of magnitude. This huge differ-
ence between neutral thiol and thione forms, combined with their dipole moment vec-
tor pointing at opposite directions as visible on Figure 4.8 (b) would definitely influence
the adsorption mechanisms. For both tautomers dipole moment values increased in the
order of forms: neutral<protonated<deprotonated<zwitterionic.

Similar common trends for both tautomers were observed for EHOMO, ELUMO, ELUMO
- EHOMO: protonated<neutral<zwitterionic<deprotonated, with thione having almost
always larger values. One notable exception was the neutral case for ELUMO, which was
much lower for the thione tautomer. Protonation decreased EHOMO, and deprotonation
increased it, which suggest in the case of deprotonation molecule-surface interactions
would increase through molecule electron donation to the surface. Similar trends for
ELUMO meant bonding interactions in the opposite direction - charge transfer from the
surface to the molecule was favored in the case of molecule protonation. A significantly
lower ELUMO value for the neutral thione tautomer also suggested that such electron
donation from surface to molecule LUMO type of interactions would occur more easily
for it. The molecular orbital gaps ELUMO - EHOMO were always larger for thiol, except
for the protonated form. The electronegativity and electrophilicity index trends for pro-
tonated, neutral, and deprotonated forms of a molecule show opposite trends. As the
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molecule transitions from deprotonated to neutral to protonated, its electronegativity
increases due to the electron-deficient nature of the protonated form, which attracts
electrons more strongly. Conversely, the electrophilicity index decreases in the same or-
der, as deprotonation creates an electron-rich species less prone to accept electrons. The
protonated form, being electron-deficient, is more electrophilic - the index decreases as
the molecule becomes more likely to accept electrons.

Experimental work in previous sections pointed towards having thione tautomer as
the stable configuration. This can be also estimated from the thermochemistry of the
molecules. To compare the relative stabilities of the thiol and thione tautomers of the
molecule, the ratio of their concentrations at equilibrium can be derived from the Gibbs
free energy difference between thiol and thione tautomers:

ΔG =ΔH – TΔS (4.10)

where ΔH is the difference in enthalpy, ΔS is the difference in entropy, and T is the
temperature in Kelvin. The relationship between calculated Gibbs free energy difference
ΔG of the tautomers and their equilibrium constant K can be utilised as:

K =
Nthiol

Nthione
= e–ΔG

RT (4.11)

where Nthiol and Nthione represent the number of molecules of the thiol and thione tau-
tomers, respectively,ΔG is the Gibbs free energy difference between the two tautomers,
R is the universal gas constant, and T is the temperature in Kelvin. From these calcula-
tions, the ratio of the thiol to thione tautomer was found to be approximately 1 to 130,
indicating that there is a strong thermodynamical preference towards the thione tau-
tomer.

The conditions in solutions would not necessarily enforce the same conditions in
the vicinity of the surface, yet this finding agrees with the results observed in previous
sections towards stable bonding configuration involving the thione form. However most
likely both forms take part in transient bonding configurations observed in previous ex-
perimental analysis.

Previously discussed quantum chemical trends can be summarised for thiol and
thione tautomers, which seem to indicate different bonding configurations, specifically
for the thione: i) a much bigger dipole moment in the opposite direction (partial nega-
tive charge pointing away from the sulfur in thione vs. from the amino group in thiol),
ii) similar EHOMO yet much lower ELUMO value, iii) a higher electronegativity and lower
electrophilicity index. From this it is likely that both tautomers take part in electron
donation to the surface, but especially the thione tautomer also is likely to be involved
in electron donation from surface to the molecule LUMO, and possibly retrodonation.

The specific potential bonding sites can be analyzed with the help of Figures 4.8 (b)
to 4.8 (e). Mulliken charges in Figure 4.8 (b) show lowest values for the triazole ring nitro-
gen with double bonds and sulfur atoms. Thione has a much lower value for the sulfur,
indicating a more electron-rich environment, whereas a similar case is observed for the
double bonded triazole nitrogen for the thiol. Rest of the atoms have similar charges.
This suggests a surface bonding through the triazole ring for the thiol, and a bidentate-
like bonding that involves both nitrogen and sulfur for thione tautomer.
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Figures 4.8 (c) and Figure 4.8 (d) show HOMO and LUMO orbitals. Thiol HOMO
shows activity over the whole molecule, whereas thione surfaces are more prominent on
sulfur and double bonded nitrogen. Thiol LUMO isosurfaces are concentrated around
sulfur, in contrast thione LUMO is spread over the whole structure. We once again need
to remark that HOMO-LUMO interactions is an indication rather than a rule, as it was
shown that even a molecule as small as simple triazole can interact with surfaces with
orbitals other than HOMO and LUMO [71].

Figure 4.8 (e) plot the Fukui analysis. The lime colour indicate areas with excess
negative Fukui charge, corresponding to sites prone to electrophilic attack, while purple
highlights regions with excess positive Fukui charge, suggesting nucleophilic reactivity.
For the thiol tautomer, the potential electron donation sites were the amino group and
neighbouring double bond nitrogen, and the electron-withdrawal site was the carbon
bonded to sulfur. For the thione tautomer, the potential electron donation sites were the
sulfur and nitrogen with proton closest to sulfur, and the electron-withdrawal sites were
the carbon atoms.

4.3.7. MECHANISTIC HYPOTHESIS FOR A QUASI-SUSTAINED CORROSION

INHIBITION

3 -AMINO-1,2,4-TRIAZOLE-5-THIOL is a good corrosion inhibitor for NaCl containing
environments, previously exhibiting corrosion inhibition behaviour for alloys of

magnesium [268], copper [269–271], iron [272, 273], and aluminium [80, 109, 136, 274–
276]. However what makes it unique among other good organic corrosion inhibitors is
that it displays a remnant of its original corrosion inhibition activity even when it is no
longer sustained in the environment.

The literature hints at a hypothesis for the reason behind this behaviour. Previously it
was observed that the adsorption of the molecule on aluminium surfaces increased the
stability of the aluminium oxide and assisted the formation of Al-O bonds by prevent-
ing aluminium chloride and oxychloride complexes [276]. For AA2024-T3 substrates,
molecules covered the whole surface with a film, where adsorption on Al-matrix resulted
in anodic inhibition, while a concurrent adsorption on Cu-rich intermetallics led to ca-
thodic inhibition [275]. Similar molecule structures with a triazole-ligand also provided
hydrophobicity to the adsorbed surfaces [277]. Periodic DFT and molecular dynamics
calculations of 3-amino-1,2,4-triazole-5-thiol on copper surfaces showed that main ad-
sorption took place through the 1,2,4-triazole ring nitrogen, where coordination bonds
with copper d-orbitals are formed, resulting in a bonding configuration where molecules
lie flat on the triazole ring [271]. One work on Al/Cu galvanic model systems inhibited
by Ce/3-amino-1,2,4-triazole-5-thiol found that whereas the molecule interacted with
both surfaces and prevented ingress of chloride ions to reduce galvanic coupling, during
sputtering nitrogen XPS signal was more present for the Al surface [274].

Adsorption studies of 3-amino-1,2,4-triazole-5-thiol on Ag and Au surfaces revealed
that in solutions exceeding 0.1mM molecule concentrations, the molecule primarily ad-
sorbs onto the surfaces by forming a metal–thiolate bond (with also a minor thione con-
tribution on Ag). In this configuration, molecule adopts an approximately perpendicular
orientation that is stabilised by π–π stacking between adjacent triazole rings, as well as
hydrogen bonding involving either neighbouring amine groups or surrounding solvated
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species. In contrast, for conditions of limited adsorbate availability at the surface, the
molecule can alternatively bind through nitrogen atoms of the triazole ring in a depro-
tonated form, resulting in a flat-lying orientation. These two distinct binding configu-
rations can reversibly interconvert by adjusting solution concentration, pH, or applied
electrode potential, which would have a profound implication on the electron transfer
properties of the resulting surface [250]. This reversible adsorption behaviour was also
observed for Ag ions reversibly adsorbing on a chelating polymer derived from 3-amino-
1,2,4-triazole-5-thiol [278].

Building on these past findings and results presented in this work, we propose that
the sustained corrosion inhibition arises from differences in the adsorption strength and
configuration of the molecule on the matrix compared to the intermetallics. Our elec-
trochemical results indicate that the dominant corrosion inhibition effect is through the
inhibition of the anodic reactions, with a minor influence on localised corrosion. In the
presence of the molecule in sufficient amount, an insulating film is created by molecule-
surface complexes formed on both the matrix and the intermetallics. As visible from the
SKPFM measurements, this film is on the order of tens of nanometers thick, and cov-
ers the complete sample surface. Intermetallics seem to be covered with a thicker layer,
which was similar to the previously observed behaviour for when pure copper was acting
as cathode in an Al-Cu galvanic couple [274]. Compared to pristine surfaces, molecule
adsorption resulted in higher surface potentials of the matrix, and decreased surface po-
tential differences between the matrix and the intermetallics, which is in line with sur-
faces covered with insulating multilayers. In the subsequent absence of the molecule,
a thinner layer was still sustained on the matrix, but this layer became even thinner on
the intermetallics. The thinning layer and matrix-intermetallic surface potential differ-
ences comparable to the pristine surfaces indicate a reversible sort of interaction on in-
termetallics as compared to the matrix.

It has been previously argued that low molecular weight amines tend to desorb, and
fail to exhibit a protective thin film effect on Fe or Zn, and even initiate Cu corrosion
when used as volatile corrosion inhibitors - thus their presence in the corrosive medium
must be sustained for corrosion protection; whereas heteroalkylated amines exhibited
stable adsorption [279, 280]. Our experiments seem to show a similar behaviour, where
a bonding through sulfur and oxide seems to be the dominant mechanism, and respon-
sible for the quasi-sustained corrosion inhibition. When the molecule is found in suffi-
cient concentration in the environment, a thicker multilayer of the molecule in different
forms are adsorbed on the whole surface, but when the molecule drops below the critical
concentration most of this bonding is washed away and only a sort of sulfate bond re-
mains on the surface. Al(OH)3 was calculated to be the most stable Al product between
pH 4-12 [274], and our results suggest that the S moiety of the molecule forms a bond
with this matrix (hydr)oxide, resulting in a molecule-oxide sulfate-like structure. When
the molecule is washed away from the environment, this chemisorbed bonding config-
uration remains on the matrix. For adsorption on the intermetallics, the situation seems
to be similar to the behaviour previously observed for Ag and Au [250], where approx-
imately perpendicular bonding converts into a flat configuration with the triazole ring
parallel to the surface. This mechanism is depicted as a schematic in Figure 4.9.

A strong molecule–surface interaction involved in chemisorption should leave sig-
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Figure 4.9: Schematic illustration of the quasi-stable inhibition behaviour offered by 3-amino-1,2,4-triazole-5-
thiol.

natures detectable by spectroscopy [76]. Only the sulfate-like signals remained for var-
ious used spectroscopies, with the exception of ToF-SIMS. Assuming a majority thione
tautomer of the molecule, the considerable reduction in surface potentials in the sub-
sequent absence of the molecule suggests a perpendicular adsorption configuration,
driven by significant dipole moment with sulfur oriented toward the surface, supported
by the absence of parallel bonding evidence. XPS, Raman, and FTIR confirm bonding
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primarily through sulfur (as stable sulfate species post-washing) and transient nitro-
gen interactions. Cu surfaces favored nitrogen bonding, and Al/Al-OH surfaces showed
chemisorbed S–O bonds. TOF-SIMS indicated bonding fragments by both S and N,
which was higher for Cu surfaces and AA2024-T3 intermetallics - this suggests either
coexistence of multiple major bonding configurations, or a dominant flat configuration
where molecule is bonded through all active moieties of amino, triazole ring and thio-
carbonyl/mercapto group.

In the presence of the molecule, S and π-bonds possibly work together in a bidentate
sort of configuration where π-bonds most likely have weak interactions with Al or Al-OH,
and S chemically bonds with O. Possibly amino group also assists this bonding, or does
its own weak physisorption. Amino groups likely facilitate hydrogen bonding to the sur-
face, as hinted by appearing symmetric and absent asymmetric -NH2 FTIR stretches in
the subsequent absence of the molecule, suggesting restricted amino motion. In con-
trast, modes such as the NH-NH stretch and S=C-NH stretch remain unchanged, im-
plying these vibrations are less involved in surface interactions or that the molecule re-
tains flexibility in these regions. The increase in C=N stretch suggests that the molecule
regains this vibration mode which was possibly used for a transient bidentate configu-
ration of S and N, where potentially S is chemisorbed to oxygen and N is physisorbed
to Al. Tentative out of plane bending for N-H and time-dependent Al–N peak evolution
on pure Al could indicate dynamic reorientation from perpendicular to parallel adsorp-
tion, consistent with Raman selectivity for perpendicular bonds [250], though absence
of Raman nitride signals on AA2024-T3 points to a stable bonding relying on sulfatised
Al-oxide rather than nitrogen based interactions. Upon inhibitor removal, S remains
on the surface via sulfate bonds, while NH groups retain protonation, ruling out strong
chemisorption via the triazole ring. Therefore the data points to triazole ring and amino
group interactions on alloy matrix being transient, and sulphur being the central figure
behind quasi-stable corrosion inhibition, which would be boosted by the low LUMO of
the thione tautomer that would facilitate electron exchange.

Even when present on the surface after the molecule withdrawal from the environ-
ment, the thinner molecule-intermetallic bonding would not be enough to act as a bar-
rier to chloride ingress in saline media. A recent DFT study on Al/Al-oxide surfaces has
shown that although chloride penetration barrier increases with the thickness of the
self-assembled monolayer, steric hindrance alone is insufficient to effectively prevent
chloride penetration, as structural inhomogeneities within the monolayer exert a signif-
icantly greater influence [281]. With a parallel adsorption configuration, intermetallics
would both have a lower penetration barrier, and more structural inhomogeneities for
chloride penetration. This seems to be resulting in an adsorbed layer that is not effective
in corrosion inhibition. The remaining bonding only from sulfur (as opposed to a po-
tential bidentate configuration with π-π stacking, or a surface fully covered with a mul-
tilayer) reduces quality of the self-assembly layer as well, more easily allowing chloride-
like corrosive species to the interface. This would cause a decrease in corrosion inhibi-
tion efficacy, but still be superior to a surface unexposed to the molecule.
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4.4. CONCLUSIONS

T HIS research was conducted to understand the quasi-sustained corrosion inhibition
behaviour observed for AA2024-T3 exposed to saline media as a result of the pres-

ence of 3-amino-1,2,4-triazole-5-thiol. When the molecule was present in 0.1M NaCl in
1mM concentrations, it resulted in an inhibition efficiency of 91%. In its subsequent
withdrawal from the environment, the molecule exhibited a quasi-sustained inhibition
behaviour, and after three days of exposure to only 0.1M NaCl, the molecule still pro-
vided 42% inhibition efficiency.

The spectroscopy measurements and quantum chemical calculations performed
to unveil this phenomena suggest that when present in the environment in sufficient
amounts, the molecule covers the surface completely. A sort of sulphate-like bonds
to the Al-(hydr)oxide matrix, and intermetallic-molecule interactions with N and S
moieties were observed, both of which most likely adsorbed approximately perpendic-
ular to the surface. When the molecule was no longer supplied in the environment,
most adsorbed molecules on the matrix and intermetallics desorbed. The remaining
molecules on the intermetallics changed their orientation to a flat configuration, de-
creasing their corrosion inhibition likelihood. Meanwhile, a sulphatised Al-(hydr)oxide
kept stabilising the oxide film through hindering the ingress of aggressive ions, thus
sustaining the corrosion inhibition, albeit at a reduced efficacy.
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4.5. SUPPLEMENTARY INFORMATION

4.5.1. X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)
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Figure 4.10: Full survey XPS spectra of AA2024-T3 sample exposed to 1 mM 3-amino-1,2,4-triazole-5-thiol
dissolved in water for 24 hours.
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Figure 4.11: Full survey XPS spectra of AA2024-T3 sample exposed to 1 mM 3-amino-1,2,4-triazole-5-thiol
dissolved in water for 24 hours, followed by exposure to only water for 2 hours.
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Figure 4.12: Full survey XPS spectra of AA2024-T3 sample exposed to only water for 24 hours, followed by
exposure to only water for 2 hours.
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Figure 4.13: Remaining high-resolution XPS spectra for (a) inhibitor presence, (b) subsequent inhibitor ab-
sence.
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4.5.2. SHELL-ISOLATED NANOPARTICLE-ENHANCED RAMAN SPEC-
TROSCOPY

(SHINERS)

Figure 4.14: Raman spectra of 3-amino-1,2,4-triazole-5-thiol powder.
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Figure 4.15: Raman spectra of 3-amino-1,2,4-triazole-5-thiol powder dissolved in water.

Figure 4.16: Raman spectra of AA2024-T3 surface without nanoparticles.
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Figure 4.17: Raman spectra of AA2024-T3 surface with nanoparticles.

Figure 4.18: Raman spectra of AA2024-T3 with nanoparticles exposed to water.
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4.5.3. TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMETRY ( TOF-
SIMS)

Figure 4.19: Negative ion spectra of AA2024-T3 exposed to 3-amino-1,2,4-triazole solution.

Figure 4.20: Negative ion spectra of Al exposed to 3-amino-1,2,4-triazole solution.
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Figure 4.21: Negative ion spectra of Cu exposed to 3-amino-1,2,4-triazole solution.

Figure 4.22: Positive ion spectra of AA2024-T3 exposed to 3-amino-1,2,4-triazole solution.

Figure 4.23: Positive ion spectra of Al exposed to 3-amino-1,2,4-triazole solution.
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Figure 4.24: Positive ion spectra of Cu exposed to 3-amino-1,2,4-triazole solution.
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4.5.4. DENSITY FUNCTIONAL THEORY (DFT) CALCULATIONS
An example ORCA 6.0 input file for the thione tautomer of 3-amino-1,2,4-triazole-5-thiol
in its neutral form is presented below.

1 # thione-neutral
2

3 ! B3LYP D3BJ OPT FREQ RIJCOSX def2-TZVPD TightSCF CPCM PAL8
4 %cpcm
5 smd true
6 SMDsolvent "WATER"
7 end
8 ! LargePrint PrintBasis PrintMOs
9

10 * xyz 0 1
11 S -2.51783 1.87005 0.12780
12 C -1.37229 0.66709 0.11623
13 N -0.00169 0.78971 0.05579
14 C 0.42091 -0.42487 -0.12458
15 N -0.54238 -1.39186 -0.21701
16 N -1.70947 -0.67617 0.10310
17 N 1.70968 -0.79406 -0.24729
18 H 2.35181 -0.03966 -0.02451
19 H 1.98173 -1.67614 0.16238
20 H -0.38007 -2.20139 0.37446
21 H -2.58944 -0.94072 -0.32637
22 *
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All models are wrong, some are useful.

George Box

If you want to understand function,
study structure!

Francis H. Crick

Despite the remarkable success of machine learning in materials science, challenges
persist in gaining mechanistic insights, especially in low-data regimes where dataset
sizes limit the precise applicability of machine learning. The prevailing reliance on
high-confidence predictions from the models often leaves the underlying decision-making
mechanisms opaque, limiting scientific understanding. This study presents an alterna-
tive approach that emphasises understanding the model decision-making process over
individual predictions, enabling the extraction of scientifically meaningful insights from
small datasets. We reveal common trends by reverse engineering the best-performing
models based on featurisation methods of physicochemical descriptors, hashed fin-
gerprints, and structural keys, which we integrate with domain knowledge to create a
molecular substructure template for candidate molecules. Using this template, we filter a
toxicity database to identify non-toxic corrosion inhibitors, aiming to replace the de facto
but hazardous corrosion inhibitor hexavalent chromium. The resulting candidate’s effi-
cacy is validated through electrochemical testing, illustrating the feasibility of achieving
mechanistic insights from statistical models in data-scarce environments.

This chapter has been published with some adjustments as Gaining scientific understanding with small data
machine learning: explainable molecule representations and their consensus, npj Materials Degradation (2025)
[282].
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5.1. INTRODUCTION

I N Douglas Adams’ Hitchhikers Guide to the Galaxy an alien race seeks the “Answer to
the Ultimate Question of Life, the Universe, and Everything”. A planet-sized computer,

Deep Thought, is tasked with calculating the answer. After seven and a half million years,
it finally reveals the answer: 42. This result baffles the programmers, as they realise they
don’t actually know what the “Ultimate Question" is. Deep Thought explains that with-
out understanding the true nature of the question, the answer has no real meaning.

We face a similar challenge today in machine learning applications to materials sci-
ence. On the one hand, machine learning models have been widely successful in materi-
als sciences for autonomous experimentation, materials property interpolations, struc-
ture optimisation, and chemical space exploration [283–288]. Recent advances, such
as creating continuous material property representations through generative autoen-
coder approaches [289, 290], and utilising the inherent graph structure of molecules
through graph neural network architectures [291, 292], allowed researchers to investi-
gate previously unexplored chemical spaces. On the other hand, training such meth-
ods is resource-intensive, requiring substantial computational power and large datasets
— more than ten thousand, in some cases tens of millions of data points for predictive
accuracy. Data scarcity and expensive target generation prevent cutting-edge architec-
tures to be used with experimental datasets, and limits the use of such models to simpli-
fied DFT simulation predictions. Yet, even with high benchmark scores, a recent study
showed that model predictions may not generalise well to new materials spaces [293].
Most importantly, generalised or not, the scientific insights within these models remain
largely opaque, meaning that even when models make accurate predictions, the mech-
anisms behind these "answers" are not transferred to scientists [294, 295]. Like Deep
Thought’s answer, these predictions are limited in their impact without a deeper under-
standing of the “questions" they are addressing.

The materials science community has already made significant progress in building
the foundation for explainable and interpretable models [296–300]. However, most of
the published literature on explainability focuses on bigger models, despite most ma-
terials discovery problems happening in low- to no-data regime. For this reason, with
this paper we intend to go in the opposite direction of the present mainstream deep-
learning focus and ask: Is it possible to gain scientific insights from predictive models
with lower prediction metrics based on small datasets? The answer, we believe, is yes.
We see that representation is key; with the right representation and reverse engineering
machine learning models based on different data representations we can identify com-
mon trends - which combined with domain expertise can allow the scientist to see new
trends that were previously unattainable.

Here we present an unorthodox framework to transform statistical models into sci-
entific insight. Instead of relying on low-confidence individual predictions of models
trained with scarce data, we train and then reverse engineer multiple models at once to
understand their decision-making mechanism. We combine the resulting insights with
the scientific intuition of the domain expert. Our work is performed on small organic
molecules and their corrosion inhibition properties, but it can principally be applied to
any materials discovery task.

Although approaches to interpret machine learning models such as permutation fea-
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ture importance [301], local interpretable model agnostic explanations [302], and Shap-
ley additive explanations [303] have been widely used in other scientific fields, specifi-
cally in the domain of corrosion and inhibition prediction there have been limited works
[1, 304]. Compared to neighbouring scientific fields more often than not two points
plagued the corrosion inhibition researchers (i) the features most important in predic-
tive performance were identified, but no scientific reasoning were built on top of the
models to reason why the model predictions were improving when they were present
in the prediction process due to the complex multi-scale nature of corrosion phenom-
ena, and (ii) the limited size of the datasets (often around 20 samples or so) caused eager
but early conclusions to be drawn, such as the debated correlations between quantum
chemical descriptors and corrosion inhibition performance [1, 130]. We aimed to instil
more trustworthy conclusion to be drawn from predictive models by coming up with
a method of reasoning of how different model representations can be aligned to solve
the same problem, hypothesize for potential influences of the features, and validate our
hypothesis experimentally.

For gaining scientific insights from statistical investigations, achieving the best rep-
resentation is important. Here we converge to the best representation for our dataset
by systematically analyzing 29 widespread open-access methods that convert molecules
into a set of features (hereinafter referred to as “featurisation"), and 9 different target rep-
resentations of experimentally acquired electrochemical data on around 100 molecules
(for details see our previous work [80]), to be used as model targets. After settling on the
optimum description by looking at different feature-target combinations (which results
in more than 12 thousand model configurations), we can use complementary descrip-
tions with lowest root mean squared error (RMSE) together to capture common trends
existing in all. We use such trends to come up with a searchable template molecule that
can be used to filter existing larger databases. In our case we use a toxicity database, as
our goal is to find a non-toxic molecule with the potential to replace the currently in-use
domineering hexavalent chromium: a highly inhibitive but deadly corrosion inhibitor
prohibited by the EU REACH (Registration, Evaluation, Authorisation, and Restriction
of Chemicals) regulation [8]. We validate the insight gained from this approach by per-
forming electrochemical measurements of the recommended molecule, showing that
gaining mechanistic insight with statistical models is possible for small datasets. The
result of this work is expected not only to assist in developing green and sustainable al-
ternative inhibition approaches to corrosion which eats away 3.1% of the global GDP
[206], but also expected to serve as a guiding framework for other data-scarce materials
discovery problems.

5.2. METHODS

5.2.1. GENERATION OF ELECTROCHEMICAL TARGETS

T ARGET generation experiments are discussed in a detailed manner in our previous
publications [80]. This work is based on 107 organic molecules tested as corrosion

inhibitors for the same substrate AA2024-T3, which are provided in Supplementary In-
formation. The targets corresponded to three different electrochemical experiments:
electrochemical impedance spectroscopy performed at 24th hour (_EIS24h), linear po-
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larisation resistance experiments performed at 24th hour (_24h) and linear polarisation
resistance values averaged through time (_avg) with trapezoidal integration [79]:

〈
Rp

〉
=

1

tf – t0

∫ tf

t0

Rp(t)dt (5.1)

≈ 1

tf – t0

N∑
k=1

Rp (tk–1) + Rp (tk)

2
(tk – tk–1) (5.2)

where tf is the final measurement time, t0 is the initial measurement time, and k is the
index for the performed discrete measurements. The results from these experiments are
represented in three different forms: raw electrochemical polarisation resistance values
Rp, Rp values converted into inhibition efficiencies (IE) with:

IE =
Rinh

p – Rblank
p

Rinh
p

(5.3)

and into inhibition power (IP) with

IP = 10log10

Rinh
p

Rblank
p

(5.4)

where superscripts "inh" and "blank" stand for samples exposed to organic molecules
or only to NaCl, respectively. These three different experimental approaches with three
different representations resulted in nine different potential target values.

5.2.2. GENERATION OF FINGERPRINTS AND PHYSICOCHEMICAL DESCRIP-
TORS

T HE SMILES strings of 107 small organic molecules are first desalted (removal of ionic
metal parts from the strings) for correct descriptor calculation, then converted into

structural fingerprints and physicochemical descriptors with the open-source python
cheminformatics packages RDKit (v. 2023.03.3) [141] and molfeat (v. 0.9.2) [305] to use
as features of the machine learning models. Using these packages, 29 different methods
were chosen for converting molecules into tabular numeric features. These represented
the most popular cheminformatics tools for digitising molecules. Every feature dataset
was supplemented with pH-based experimental features: pHbefore (pH measurement
before the experiments), pHafter (pH measurement after the experiments), pHaverage (av-
erage of before and after values), and pHbef–aft (difference between before and after val-
ues). The resulting datasets contained between 18 and 2052 features.

5.2.3. MACHINE LEARNING MODEL TRAINING AND COMPARISON

TARGETS

T HE 107 samples are split into two sets: a training set with 95 samples, and a set-aside
validation set with 12 samples. This was achieved through the verstack (v. 3.9.2)

[306] package using a continuous stratified split so that the target data distributions in
both sets are statistically similar.
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FEATURES

The feature datasets for training samples are cleaned with the help of scikit-learn
package (v. 1.5.0) [307]. If the training datasets had missing values for any samples,
these are filled with the median of that feature. To eliminate redundancies found in the
molecular representation, the model features with variances lower than 0.1, and features
correlated to others with a Pearson correlation value of more than 0.8 are removed. Af-
terwards, features are scaled with three different scikit-learn scaler functions to as-
sist the model learning process: MinMaxScaler, StandardScaler, PowerTransformer.
Features with and without scaling are algorithmically selected with two different sparse
feature selection methods: one based on the recursive feature elimination method of
scikit-learn which uses impurity-based feature importance on RF estimators (RFE),
and the other based on recursive feature elimination of the Probatus package (v. 3.0.0)
[308] which uses SHAP-based feature importance (RFESHAP). RFE was repeated 1000
times with random seeds, RFESHAP used 5-fold randomised cross validation search. Fea-
ture selection was carried out to prevent flooding the model with irrelevant features, as
high-dimensionality of the feature space would result in fitting the noise rather than the
signal, commonly known as overfitting. Another reason was to capture only the features
most relevant to the mechanism of corrosion inhibition, which is expected from highly
predictive features. The top ten selected features from RFE, or the optimum number of
selected features revealed from RFESHAP were used for the actual models.

MODELS

After scaling and feature selection, different featurisation schemes are combined
with different target representations to be modeled with four different regression
architectures, three implemented in scikit-learn: random forest [309], support
vector machine [310], k-nearest neighbours [311], and xgboost implemented
in the xgboost package (v. 1.7.6) [312]. The optimisation scoring function used was
negative root mean squared error. Bayesian optimisation was employed using the
bayes-opt package (v. 1.4.3) [313] to find the optimal hyperparameters based on a
10-fold cross-validation score, where the data is divided into 10 random subsets. In each
iteration, 9 subsets are used for training and the remaining 1 subset is used for testing,
allowing the model’s generalisation performance to be evaluated across different train
test splits. Optimised hyperparameters and their ranges were:

• Random forest: number of trees (10, 1000), maximum tree depth (1, 50), minimum
number of samples required to split (2, 25), maximum ratio of used features: (0.1,
1)

• Support vector machine: regularisation parameter C (0.001, 1000), the margin of
tolerance ε (0.001, 10), kernel coefficient γ (0.001, 100), radial basis function kernel

• K-nearest neighbours: number of neighbours (1, 10), weighing for the neighbours
(uniform or distance-weighed), the distance metric to be used for calculating
’neighbourhood’ (Euclidean, Manhattan or Minkowski)

• XGBoost: number of trees (100, 1000), maximum tree depth (2, 10), learning rate
(0.01, 0.1), fraction of the training data to be randomly sampled for tree construc-
tion (0.1, 1.0), fraction of features randomly sampled for tree construction (0.1,
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1.0), minimum loss reduction gamma required for further leaf node partition (0.1,
1.0), L1 regularisation (0.001, 100), L2 regularisation (0.001, 100)

Detailed explanation of hyperparameters can be found in the scikit-learn documen-
tation and textbooks [314]. Learning curves and prediction plots are recorded for further
analysis. Regression performance was quantified with R2, RMSE and MAE. After quan-
tification, models are retrained with all training set with optimised hyperparameters and
saved as pickle files for further experiments.

5.2.4. VISUALISING FINGERPRINTS

A TOMPAIR-COUNT, rdkit-fp and ECFP fingerprints are analyzed to identify which
molecular fragments the features correspond to, and further visualised through the

code provided.

5.2.5. GENERATING BEST PSEUDOMOLECULES THROUGH BAYESIAN

OPTIMISATION

T HE retrained models are optimised with Bayesian optimisation. Now, the optimised
parameters were not the model hyperparameters, but the model input values of al-

gorithmically selected features and the predictions of the selected model. The acquisi-
tion function used was upper confidence bound with the default implemented hyperpa-
rameters. The bounds for optimisation for each feature were set based on the minimum
and maximum values observed in the original database, ensuring interpolation rather
than extrapolation. On top of all initial real molecule samples, 2000 random samples
were used to initialise the optimisation, and 1000 iterations were performed for opti-
mising the pseudomolecule. Pseudomolecule feature scaling is inverted for further use
for similarity analysis. The resulting features represent the optimal artificial molecule
parameters according to the model, leading to the best target property and creating an
ideal pseudomolecule.

5.2.6. CURATING THE TOXICITY DATASET FOR PSEUDOMOLECULE

SIMILARITY HITS

T O find the molecules most similar to the pseudomolecule, a query molecule database
is necessary. A database with a large collection of SMILES strings and experimen-

tal toxicity values was chosen as the candidate database [315]. The choice of select-
ing a toxicity database was deliberate. Aside from predictions from our model, such a
database would provide information on the toxicity of compounds. The training and
evaluation sets from Supplementary Table 2 of the original study were combined, and
the SMILES strings along with their experimentally determined U.S. Environmental Pro-
tection Agency (EPA) toxicity hazard classifications were extracted. The EPA classifica-
tions corresponded to: I highly toxic, II moderately toxic, III slightly toxic, IV practically
non-toxic [316]. After desalting the molecules, generating descriptors, and cleaning the
dataset, this process yielded over 10,000 candidate molecules. The similarity between
molecules was calculated with cosine similarity Scos, where the similarity between two
vectors is calculated as:
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Scos(M,P) =
M ·P

||M||||P||
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√
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P2
i

, (5.5)

where Mi and Pi are the ith components of vectors M and P, respectively, correspond-
ing to the vector of query molecule and optimised pseudomolecule, respectively. The
resulting cosine similarity values span from 1 to -1, from 1 meaning the vectors are ori-
ented in the same direction (complete similarity), to -1 meaning vectors are oriented
in the opposite direction (complete dissimilarity), and 0 indicating orthogonal vectors
(decorrelation). In-between values indicate intermediate similarity/dissimilarity.

5.2.7. SHAP (SHAPLEY ADDITIVE EXPLANATIONS) ANALYSIS

S HAP values are a concept from cooperative game theory used to fairly distribute the
payout among players based on their contributions. In machine learning, each fea-

ture value of the instance is a player in a game where the prediction is the payout. SHAP
values are applied to interpret complex models by attributing the contribution of each
feature to the model’s prediction for a specific instance. SHAP package (v. 0.42.1) [317]
was used to create SHAP beeswarm plots for optimised models based on 3 different fea-
turisation methods: atompair-count, PaDEL and MACCS.

5.2.8. VALIDATION EXPERIMENTS THROUGH ELECTROCHEMICAL MEA-
SUREMENTS

AA2024-T3 sheets with a thickness of 2 mm (Salomon’s Metalen B.V., the Netherlands)
were cut into 20 x 20 mm specimens using an automatic shear cutter. The samples
were then sequentially ground with 320, 800, 1200, 2000, and 4000 grit papers on a
rotating plate sander under running water, followed by cleaning in isopropanol for 15
minutes and drying with compressed air. The resulting specimens were used for elec-
trochemical measurements. The electrochemical investigations consisted of observ-
ing the open circuit potentials (OCP) for 24 hours, where a linear polarization resis-
tance (LPR) measurement was performed every hour to observe the time-dependent
behaviour. For LPR measurements the potentials were scanned from -10 to +10 mV vs.
OCP at a rate of 0.5 mV/s. After concluding the 24-hour observation, electrochemical
impedance spectroscopy (EIS) measurements were performed, where a 10 mV peak-
to-peak amplitude sinusoidal AC perturbation was applied from 10 kHz to 10 mHz fre-
quency range with 10 frequency point per logarithmic decade. Flat three-electrode elec-
trochemical cells (Corrtest Instruments, China) were used to perform the experiments
at room temperature. The sample was used as the working electrode, platinum mesh
was used as the counter electrode, and Ag|AgCl (saturated KCl) was used as the reference
electrode. The exposed surface area was 0.785 cm2, exposed to a 250 ml 0.1 M NaCl 1 mM
2-thiobarbituric acid electrolyte. The pH of the electrolyte was adjusted to 7.0 with an
adequate amount of NaOH, by analysing the solution pH with a Metrohm 913 pH meter.
All chemicals were purchased from Sigma-Aldrich. The electrochemical measurements
were controlled with Biologic VSP-300 multichannel potentiostats with the help of EC-
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Lab software. The electrochemical experiments were repeated three times to confirm
the reproducibility of the experiments.

5.3. RESULTS AND DISCUSSION

5.3.1. DESCRIBING CORROSION INHIBITION

T HE description of the problem is key for the machine learning models to extract all
possible information from the signal present in the data. This involves not only se-

lecting the appropriate set of features (the set of numbers used for prediction) but also
choosing the correct form for both the features and targets (the set of numbers to pre-
dict). This is not only a factor to consider when improving the prediction performance of
models. It becomes even more important when models are used for gaining mechanistic
insights similar to various spectroscopies, as demonstrated in this paper.

To reveal the best description of corrosion inhibition, we have set up a large span
of target and feature representations: 9 targets, 29 featurisation methods, 3 feature se-
lection approaches (include all, recursive feature elimination (RFE), SHAP-based), com-
bined with 4 different feature scaling methods (no-scaling, minmax, standard, power)
and 4 different regression model architectures (random forest (RF), XGBoost (XGB), sup-
port vector machine (SVR), k-nearest neighbours (KNN)). This search space of the op-
timal description consisted of more than 12,000 configurations. The models based on
these configurations were trained with 95 small organic molecules with 10-fold cross
validation, and validated with a left-out validation set of 12 other molecules. Target val-
ues were obtained from time-resolved electrochemical experiments of electrochemical
impedance spectroscopy and linear polarisation resistance, discussed in more detail in
our previous publication [80]. After training, the best models are identified by compar-
ing cross-validation root mean squared (CV-RMSE) values (all converted into the scale
of inhibition power IP). Afterwards, the models’ hyperparameters are optimised with
Bayesian optimisation, and the left-out validation set was used to check the prediction
performance of the models. The ranking of the predictive performances of the models
can be found in the Supplementary Figure 1-2.

Figure 5.1 presents the ranking of different featurisation methods for the best 4 tar-
gets, and their mean. In this case “best" means the ranking of models with the lowest CV-
RMSE error for a given representation. The inset shows the CV-RMSE performance dis-
tribution of models with different featurisations, feature selection methods, feature scal-
ing, model architectures; pooled for different targets. For the best target (IE_EIS24h), a
similar pooling for all other configurations but the featurisation methods resulted in the
performance distribution of different featurisation schemes unfolded on the right, with
featurisation schemes corresponding to same labels as featurisation ranking for differ-
ent targets on the left. This results in featurisation methods ordered from best to worst
for target IE_EIS24h. Lowercase labels correspond to hashed fingerprints or structural
keys (also highlighted with _fp suffix), capitalised labels correspond to physicochemical
descriptors.

TARGETS

The 9 targets are the combination of data coming from 3 different electrochemical exper-
imental methods, denoted with respective suffixes (Bode modulus at 10-2 Hz measured
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Figure 5.1: Ranking of featurisation methods based on prediction performance for the top four targets, and
their mean. The y-axis lists featurisation methods, ordered from best to worst for the target IE_EIS24h, which
resulted in models with the lowest cross-validation root mean square error (CV-RMSE). Physicochemical de-
scriptors are capitalised, whereas structural keys/fingerprints are denoted with suffix _fp in case of absence/p-
resence based encoding, and _fp_count for count based encoding. The inset displays CV-RMSE distributions
for models across all targets, incorporating variations in featurisation methods, feature selection approaches,
feature scaling, and model architectures. For the target IE_EIS24h, the distribution of prediction performance
for each featurisation method is shown on the right, aligned with the corresponding rankings on the left.

at 24th hour through electrochemical impedance spectroscopy, _EIS24h; linear polari-
sation resistance measured at 24th hour, _24h; linear polarisation resistances averaged
through the first 24 hours, _avg), represented in 3 different forms (raw electrochemical
data, Rp; inhibition efficiency, IE; inhibition power, IP).

Compared to the rest of the factors, target representation by far had the most impact
on the predictive performance of the models. Looking at the CV-RMSE distributions for
the different targets, the best model for the best target IE_EIS24h resulted in a CV-RMSE
of 2.73, whereas the best model for the worst target Rp_avg resulted in a CV-RMSE of
6.87, an increase of 152%.

Models based on time-averaged experiments (_avg) performed worse than others,
indicating that prediction of time-dependent phenomena might be more difficult than
prediction of a stabilised reaction after a given time, in this case after 24 hours. Rp mod-
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els also showed poorer prediction performance compared to IE and IP models.
It was observed that although the best models were in the form of IE, the prediction

performance from IP models was more consistent. IE_avg and IE_24h had very large
distributions of predictive performance. It is hard to say with certainty whether con-
sistent behaviour from IP models is dataset-independent – if that is the case this would
mean that the logarithmic form of IP (clog10(Rp)), in comparison to the hyperbolic form
of IE (c R–1

p ) stabilises the model prediction performance, which would make sense for
finding edge cases such as good corrosion inhibitors. Rp models had lesser distribution,
but their performances were consistently worse. Worst IP and IE_EIS24h models were
almost always better than the best Rp models. This underlines the importance of target
representation – it seems that normalisation offered by IE and IP transformations allows
models to capture corrosion inhibition in a more accurate manner.

FEATURES

The 29 different featurisation methods create a wide span of features in a different man-
ner, consisting of 0D (bulk properties and physicochemical descriptors that contain no
information about molecule geometry or atom connectivity, e.g., molecular weight, logP
octanol-water partition coefficient, contained atom presence and counts), 1D (represen-
tations that include information on bonding or bonding fragments, e.g., presence/ab-
sence of molecular fragments, hydrogen bond donor or acceptor counts, number of
rings, number of functional groups), 2D (molecule graph invariant properties, e.g., topo-
logical polar surface area, autocorrelation descriptors), and 3D (topographical molecule
shape information, e.g., geometrical, three-dimensional distances and connectivities)
descriptors. The featurisation methods can broadly be split into three different cat-
egories: physicochemical descriptors (e.g., PaDEL [318]), structural keys (e.g., MACCS
[319]), and hashed fingerprints (e.g., atompair-count [320]).

Physicochemical calculators generate information about the physical and chemical
properties of the whole molecule, such as the surface area occupied by polar atoms and
their attached hydrogens, the number of electronegative atoms that can act as hydro-
gen bond donor/acceptor, the molecule Van der Waals radii surface area of its atoms, or
even more obscure and derivative properties such as the topological Balaban index that
measures the branching and connectivity of a molecular graph, among many others.
The combination of these types of features holds promise in highlighting the properties
most relevant for the target molecule behaviour we are interested in.

Structural keys encode the molecule structure into a binary bit value (0 or 1) where
each bit corresponds to a pre-defined structural feature, such as the presence/absence of
a benzene ring. If the molecule has the pre-defined feature, the bit position correspond-
ing to this feature is set to 1, otherwise it is set to 0. It is important to realise that structural
keys cannot encode structural features not pre-defined in their fragment library.

Hashed fingerprints solve this problem by not requiring a pre-defined fragment li-
brary, where all possible molecular fragments smaller than the specified size are con-
verted into numeric values using various algorithms. A data of arbitrary size can then be
converted into a fixed size vector using a hash function. The size of this vector is often
chosen to be a power of two, default option used being 1024 or 2048. The values of such
a vector correspond to the absence/presence of particular molecular fragments, which
are denoted as "bits".
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One such molecular fragment generation approach would be path-based finger-
prints (e.g., Daylight fingerprint based rdkit_fp [321]), where branching paths in
the molecular graph are analyzed for a given length and hashed in a fixed vector. A
different path-based approach would be atom pairs [320], where pairs of atoms with
the shortest path connecting them would form substructures to be hashed. Circular
fingerprints offer another option, where the circular environments of each atom up to
a given radius are used to construct molecular fragments (e.g., extended-connectivity
ECFP, functional-class FCFP fingerprints [322]). Such fingerprints can be encoded in
binary to indicate the presence/absence of a given molecular fragment, or can specify
the number of occurrences of that molecular fragment by taking integer values for the
count-based fingerprinting approach. The flexibility offered by hashing might also
cause problems in interpretability, however, since a molecular database may contain
a very large amount of molecular fragments and hashing them into a fixed range can
result in "bit collisions", where different molecule fragments would be converted into
the same hashed bit value.

For the best target IE_EIS24h, the top three featurisation methods were all based on
hashed fingerprints: atompair_fp-count, rdkit_fp and pattern_fp. Looking at the
mean ranking of the best four targets, atompair_fp-count, rdkit_fp, pattern_fp,
avalon_fp, avalon_fp-count, layered_fp hashed fingerprints, and PaDEL, RdKit3D,
Mordred physicochemical descriptors resulted in average rankings of less than 10, on
average producing more predictive models than other featurisation approaches. Com-
pared to alternatives, ECFP and pharmacophore featurisation methods commonly used
in many drug discovery problems were inferior in describing corrosion inhibition.

The distribution of the ranking for different targets shows that the choice of the fea-
turisation method is heavily dependent on the target. For all IP target representations,
however, it was remarkable that avalon_fp consistently resulted in models with lowest
CV-RMSE values. The trends of using fingerprints based on presence/absence compared
to counts were also dependent on the featurisation method: atompair performed better
for counts, but rdkit, fcfp and avalon fingerprints performed better in presence/ab-
sence binary form. Addition of 3D descriptors to the RDKit2D improved ranking con-
sistently, highlighting the importance of 3D molecule effects for corrosion inhibition.
Whereas for pharmacophore descriptors ranking of 2D seem better but both are quite
similar in CV-RMSE values, indicating models do not take advantage of additional 3D
descriptors offered by this featurisation method. Given that pharmacophore descriptors
were created to work with molecule interactions with a specific biological target such as
a protein or an enzyme, it is normal that the important 3D features do not directly trans-
fer to other problem domains.

Looking at the best target (IE_EIS24h) CV-RMSE distributions for the featurisation
methods, the best model for the best featurisation method atompair_fp-count resulted
in a CV-RMSE of 2.73, whereas the best model for the worst featurisation method re-
sulted in a CV-RMSE of 4.06, an increase of 49%. The distribution for every featurisation
method was a result of scaling, feature selection, and model architecture.

There was no one best method for choosing any of these details for model configura-
tions, as they all result in similar distributions for CV-RMSE (see Supplementary Figure
3-6). However, by examining the ranking of all models based on CV-RMSE (see Sup-
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plementary Excel file), we can qualitatively identify trends among the top-performing
models.

Out of the ten models with lowest CV-RMSE, all had IE_EIS24h as target. For featur-
isation methods two were based on atompair_fp-count, six on rdkit_fp, one was
pattern_fp and one on RdKit3D descriptors. It is interesting to note that only one
model was based on physicochemical descriptors, and the rest were based on hashed
fingerprints. Feature scaling showed a mix of methods, with the key takeaway being that
any scaling is beneficial compared to none: only one model did not use scaling (which
was based on RF architecture, which is a scale-independent model), while the others
were evenly split with three models each using minmax, power, and standard scaling.

For feature selection nine out of ten models used RFE, suggesting it may be a better
choice for standardised use despite the drawback of requiring manual selection of the
number of features beforehand. The rest of the analysis in this paper used RFE-based
feature selection to refine the feature set, ultimately selecting down to the top 10 features
of every configuration.

For model architectures, seven models used SVR, two RF and one XGB. This indicates
that SVR architecture’s robustness to outliers and noisy data may be particularly valuable
when working with real-world experimental data.

5.3.2. GAINING MECHANISTIC INSIGHT THROUGH ALGORITHMIC FEATURE

SELECTION

H AVING established an optimal model description, we now shift focus to our primary
objective: leveraging this refined description to uncover novel mechanistic insights.

The premise is that the features that make a model more predictive are also likely to be
those most relevant to the underlying physicochemical mechanisms of corrosion inhi-
bition. This makes feature selection methods in machine learning not only a routine for
improving model prediction performance, but also a tool for extracting scientific insight
hidden in the data statistics.

After identifying key features through algorithmic selection, it is essential to develop
an intuition about their relevance to the system. Our goal was to identify whether and
how the algorithmically chosen features can be used as a tool to gain mechanistic in-
sight about corrosion inhibition. With that goal in mind we selected one featurisation
method from each category for further experimentation: PaDEL for physicochemical de-
scriptors, maccs_fp for predefined structural keys, and atompair_fp-count for hashed
fingerprints. The selection was based on the highest predictive performance of each cat-
egory.

The choice of MACCS (Molecular ACCess System) over a potentially more predictive
featurisation method is based on two key reasons. First, given the narrow range of
IE_EIS24h CV-RMSE distributions, explainability takes precedence over pure predictive
performance. While accurately predicting the behaviour of individual molecules may
be challenging for such small-scale models, the primary objective is to predict general
mechanistic trends based on the selected features, a task that is comparatively more
feasible. MACCS is ideal for this, as due to its predefined nature it is extremely clear what
each feature corresponds to. Second, not every featurisation method allows explainabil-
ity in the first place. In our preliminary experiments with visualising rdkit_fp features,
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we have observed considerable amount of bit collision — where different molecule
substructures are mapped to the same feature column bit. This not only most likely
reduces predictive performance, but also complicates explainability, as it becomes
unclear which substructure is driving the prediction. Other fingerprints such as Avalon
does not allow visualisation in the first place, preventing explainability.

The next sections first analyze the interpretation of hashed atompair_fp-count fin-
gerprints through bit visualisation. We show that by making artificial changes in the
prediction queries we can gauge the response of a given feature. Since visualisation
into substructures is not possible for physicochemical descriptors and other featuri-
sation methods, in the following section we show how to use Bayesian optimisation
as a tool for understanding model decision-making process with PaDEL featurisation.
Finally, we use SHAP analysis for deciphering feature influence for best models based
on atompair-count, PaDEL, and MACCS, and we demonstrate how we can use models
based on different featurisation methods to gain a united mechanistic insight.

5.3.3. VISUALISING ALGORITHMICALLY SELECTED FINGERPRINTS FOR

FINDING THE CORROSION INHIBITION STRUCTURAL BUILDING

BLOCKS

F IGURE 5.2 demonstrates the algorithmically selected features from the best
atompair-count featurisation visualised as corresponding molecular substruc-

tures, here denoted as ’bits’. The substructures are recorded at the time the fingerprints
are generated. Later, these substructures are used to map the features back to the
corresponding parts of each molecule. As mentioned before, atompair featurisation
describes the molecular substructures as two atoms and the number of atoms between
them. For example the bit corresponding to feature 478 is a sulfur and nitrogen with
two atoms in between, and can be written in a SMILES-like format as S-(2x)-n, where x
corresponds to any atom, and uppercase/lowercase denotes aliphaticity/aromaticity. In
the same manner, bit 479 would be S-(2X)-C, bit 576 S=C, and so on.

Based on the selected features we can see that the model "thinks" that substructures
involving triplets of aromatic (bit 200, bit 311) and aliphatic carbons (bit 1295), nitrogen-
nitrogen couples (bit 1016), sulfur directly attached to carbon (bit 576), sulfur attached to
nitrogen with two atoms in between (bit 478), sulfur attached to carbon with two atoms
in between (bit 479), and aliphatic carbon attached to aromatic carbon with three atoms
in between (bit 453) are important in predicting corrosion inhibition. Feature selection
identifies these substructures as corrosion inhibition-critical substructures.

These substructures align with the mainstream literature conclusions, which high-
light that sulfur and nitrogen atoms often serve as anchoring points to the surface. Ad-
ditionally, aromatic groups may contribute not only through steric effects that help re-
pel detrimental chloride ions but also through their electron-donating or -withdrawing
properties, which can influence direct interactions with the metallic surface or modu-
late electron density redistribution within attached functional groups. Meanwhile, long
aliphatic chains further enhance steric hindrance, both factors being critical for effective
corrosion inhibition [1]. Especially the fact that sulfur, critical for inhibition of copper
intermetallics of AA2024-T3 [105, 106], was identified as important solely by the model,
with no prior domain expertise or previous scientific insight, shows that models can cap-
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c-n-c c-c-c c-4x-O S-2x-n

S-2x-C S-c n-n C-C-C

Figure 5.2: Example molecules that contain key features identified by the feature selection algorithm, visu-
alised as ’bits’. The SMILES-like strings corresponding to the bit are presented in top left, and the correspond-
ing structures are highlighted in yellow and gray on the molecules. Aliphatic atoms are highlighted in gray and
in uppercase letters, aromatic atoms in yellow and in lowercase letters.

ture physicochemical insights. This shows promise in reverse engineering statistics into
mechanisms, and for that understanding the model decision-making process is key.

The visualised molecule substructures already give mechanistic tips, but to under-
stand how every feature contributes to the model in a detailed manner, and to explore
what would’ve happened if only that particular feature had a different value, we have
produced counterfactual predictions. To form counterfactuals, we have kept every other
feature constant while changing only the analyzed feature to its maximum or minimum
value found in the dataset, and then examined how predictions of the model changed.

Figure 5.3 presents examples from the counterfactual predictions for top-performing
molecules for the selected features and their corresponding visualised bits. For a coun-
terfactual prediction, the feature to be analyzed is modified to its maximum and min-
imum value found in the dataset, while keeping all the other features at their original
values. In this way, the effect of every feature on a set of given molecules can be analyzed
independently from other features.

Here we present the influence of feature 478 vs. 479, and feature 576 vs. 1016 as
they capture interesting interpretable trends. Feature 576 is directly related to the sur-
face bonding opportunity offered by the sulfur atom, where the predicted efficiency in-
creases with an increase in number of thione bonds. The only cases where the maximum
does not correspond to an increase are the two derivatives of 1,2,4 triazoles. This makes
sense structurally, as the maximum sulfur amount found in the dataset is four, which in
the case of the smaller five-ring structures might hinder bonding instead of supporting.
Therefore, depending on the ring size, excess sulfur not contributing to bonding might
not be beneficial for inhibition.
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n/c-(2x)-/=S

c/C-(2x/X)-/=S

C=S

n-n
Other selected bits:  c-(C/S)=O, c-(3x)-N, c-(c/n)-n, c-(2x)-N/n, 
n-(c)=S, C/c-(1x)-c, c-(c)-c, c-(4x/X)=O, C-(1X)-C

Featurization: atompair_fp-count bit value modified: min, actual, max

n/c-(2x)-/=S

c/C-(2x/X)-/=S

C=S

n-n
Other selected bits:  c-(C/S)=O, c-(3x)-N, c-(c/n)-n, c-(2x)-N/n, 
n-(c)=S, C/c-(1x)-c, c-(c)-c, c-(4x/X)=O, C-(1X)-C

Featurization: atompair_fp-count bit value modified: min, actual, max

Figure 5.3: Creating counterfactual predictions for molecules with highest target values in the experimental
dataset. The x-axis shows the molecules, and the y-axis shows the predictions. For actual predictions, the
atompair-count model with lowest CV-RMSE is used for predictions, for min/max only the value for the
corresponding feature is changed to the min/max found in the original featurisation dataset, and then the
same model is used for predictions. Visualisation of the features as bits on example molecules is shown at the
bottom right of the plots, and corresponding SMILES-like strings are shown on bottom left.
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Feature 478 and 479 are also connected to the sulfur behaviour. Feature 478 and
479 correspond to very similar substructure bits with the only difference being the end
atom: bit 478 is a sulfur atom connected to a nitrogen atom with two atoms in between
(S-2x-n), bit 479 is a sulfur atom connected to a carbon atom with two atoms in between
(S-2x-c). Despite their similar structures, an increase of feat 478 resulted in a decrease of
predicted inhibition efficiency for all molecules, whereas an increase of feat 479 on the
contrary increased predictions.

Clearly there is something important about this bond distance to be present in 20% of
the features. In cyclic structures made up of five or six atoms, in either case where sulfur
is in the ring or attached as a branching functional group, this sulfur-nitrogen distance
would put sulfur and nitrogen on opposite sites of the ring. If the molecule benefits
from sulfur and nitrogen being close to one another for corrosion inhibition – such as
the formation of bidentate chelates – this position would prevent nitrogen from working
together with sulfur in bonding, and highly electronegative nitrogen would draw excess
electrons necessary for bonding away from the sulfur donation centers. In combination
with trends of feature 1016, where maximum nitrogen-nitrogen pairs cause a decrease in
predicted corrosion efficiency, it is clear that the position of nitrogen is very important
for maximising corrosion inhibition performance.

This can also be used as a design principle: (i) as the atompair distance at a topo-
logical distance of 4 between C-S increases relative to N-S, and (ii) as the presence of
neighbouring nitrogen atoms that do not contribute to surface binding decreases, the
corrosion inhibition performance increases.

From these results, we argue that the potential of counterfactuals for gaining mech-
anistic insight is promising. Before diving deeper into mechanistic insights, we would
like to also demonstrate a way of analyzing the physicochemical features, and afterwards
combine both with a more complete analysis in the section on SHAP analysis.

5.3.4. BAYESIAN OPTIMISATION AS A TOOL FOR UNDERSTANDING MODEL

DECISION-MAKING PROCESS

B AYESIAN optimisation is a statistical method for optimising any black-box objective
function that lacks an analytical form and is expensive to evaluate. Instead of the

true objective function, Bayesian optimisation uses a surrogate model that is an approx-
imation of the objective function. This cheaper-to-analyze alternative is used to extrapo-
late the function with a measure of uncertainty. An acquisition function is used to select
the next point to sample. This selection can be a combination of exploration (searching
areas of the n-dimensional search space where the surrogate model is uncertain, active
learning) and exploitation (searching areas where the surrogate model predicts high ob-
jective function values, Bayesian optimisation). In a sequential manner, the objective
function is evaluated at the selected point, the surrogate is updated based on the gained
information, and the acquisition function decides on the next point to be evaluated. This
process is repeated iteratively, while with every step the global optimum of the surrogate
model converges towards the global optimum of the objective function.

Bayesian optimisation can also assist in illuminating the black-box function of corro-
sion inhibition. The advantage of using physicochemical descriptors as model features
is the clarity of the features – every feature is defined clearly, whether it is heteroatom
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content, ring number, electronegativity or any other interesting physicochemical qual-
ity. However, the disadvantage is often that the calculated descriptors are quite arcane,
therefore it is difficult to have an intuitive understanding of what kind of molecule struc-
ture would result in the quantitative value of a descriptor. This can potentially make
interpretation difficult. The reversed problem is even more difficult: given multiple such
features, a molecular chemist or a materials scientist would have a hard time converting
these quantitative parameters into an actual molecule. Bayesian optimisation offers a
way out of this thorny reverse-design problem.

In our case, the black-box function to be optimised was the best model based on
PaDEL featurisation. We were looking for the selected feature values that would result in
the highest inhibition efficiency. After initialising the optimisation with samples in our
dataset combined with 2000 samples with randomised features to be analyzed, Bayesian
optimisation was run for 1000 iterations. The features that resulted in the optimised
maximum were the optimal molecule parameters that the model predicts will lead to the
best inhibition efficiency. We call this artificial creation an optimised "pseudomolecule".

This ideal ’pseudomolecule’ can be used as a template for finding real molecules
that are similar. We can compare the pseudomolecule with molecules from any given
database, and find the molecules most similar to it. For this, we used a previously
published toxicity database [315] that contains over 10,000 molecules. The choice of
selecting a toxicity database was deliberate – aside from predictions from our model, the
database would also provide information on the toxicity of compounds. We calculated
similarity between our candidate pseudomolecule and the molecules in the toxicity
database with the cosine similarity metric. The most similar 20 molecules are presented
in Figure 5.4 in descending order in similarity. The EPA toxicity classifications of the
molecules are also presented with the molecules, which correspond to: 1 highly toxic, 2
moderately toxic, 3 slightly toxic, and 4 practically non-toxic [316].

What we see from this figure is a complementary picture to the results from the pre-
vious model with atompair-count featurisation. The most similar real molecule in the
dataset to our pseudomolecule is 2-mercaptobenzimidazole, which is a known, good
corrosion inhibitor and already present in our training dataset (measured IE 94.6%).
Other molecules are not present in our dataset. One common theme across all molecules
was the presence of bulky benzene groups. Most benzene groups were without any
heteroatoms, but some molecules had pyridine, pyrimidine, or dioxolane rings. Con-
nected to the benzene groups, most of the molecules had hydrocarbon chains with sec-
ondary/tertiary amines, ketone or carboxylic acid functional groups. Some molecules
had sulfur, always in close presence to nitrogen. Similar to the atompair-count case,
S-N at four-atom distance was not present in the molecules.

This type of analysis is particularly useful for gaining a mechanistic understanding
with greater confidence when working with limited data. One key advantage is its ability
to serve as a tool for interpolation rather than extrapolation. Since optimisation focuses
on feature value boundaries already present in the dataset, the model operates within
familiar territory, enabling more reliable interpolation within those boundaries. The ad-
dition of toxicity values also gives the choice of selecting non-toxic molecules for further
experimentation.

In the next section, we show how the combination of this sort of reverse engineering
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Figure 5.4: Molecules most similar to the pseudomolecule for the similarity metric cosine similarity. EPA toxi-
city classification shown next to the molecules: 1 highly toxic, 2 moderately toxic, 3 slightly toxic, and 4 prac-
tically non-toxic. Molecular featurisation was done with PaDEL, and the dataset used was a toxicity database
curated from previously published work [315].
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and SHAP analysis helps to understand what the ’perfect’ molecule for corrosion inhibi-
tion would be according to statistical models.

5.3.5. SHAP ANALYSIS FOR DECIPHERING FEATURE INFLUENCE

S HAP (SHapley Additive exPlanations) analysis is a method originating from game
theory [303]. The SHAP value in the context of a machine learning model is the ex-

pected individual contribution of a feature to the model prediction. The SHAP value for
any given feature i is calculated as:

φi(v) =
∑

C⊆N–i

|C|! (n – |C| – 1)!

n!
{v(C∪ {i}) – v(C)}, (5.6)

where v is a characteristic function that maps every coalition of n features to a prediction.
Here, v is the machine learning model, and C, is such a coalition – a group of features
working together. |C| is the number of features in coalition C. |C|! is the number of ways
coalition C can form. (n – |C| – 1)! is the number of ways the rest of the features can join
to the coalition after feature i joins. n! gives the number of ways to form a coalition from

n features. The resulting term |C|! (n–|C|–1)!
n! is the weight for marginal contribution, or the

probability of feature i making a contribution to coalition C. The term v(C∪ {i}) – v(C) is
the marginal contribution of feature i to the coalition C. All the marginal contributions of
a feature with their probability of making those contributions are weighed with respect
to the weights for marginal contribution, then summed over all coalitions that feature
can make a marginal contribution to. This gives the expected marginal contribution,
in other terms, the SHAP value. In this way, all the possible coalitions that a feature
can contribute to are considered, and a feature’s individual contribution as well as the
interactions between features are evaluated.

Figure 5.5 presents SHAP beeswarm plots for (a) atompair-count, (b) PaDEL and (c)
MACCS featurisation methods. The beeswarm plot represents the distribution of fea-
ture impact of SHAP values across a dataset. Each point in the plot represents the SHAP
value of a feature for a specific instance, with colour indicating feature value. Beeswarm
plots can identify which features influence the model’s predictions the most, through
the direction (positive or negative) and magnitude of these influences across the dataset.
Positive SHAP value contributions mean that the value of that feature is expected to in-
crease the corrosion inhibition efficiency of a given instance, and vice versa. This helps
in interpreting the model, uncovering feature importance, and detecting patterns in the
predictions.

The importance of pH has been identified in our previous work [80], and it is also
present as a feature in all of the presented model featurisations. A detailed analysis will
not be repeated here, however, we would like to highlight that pH was always chosen as
one of the most important features of the models, despite having no linear correlation
with targets. Based on SHAP dependency plots in our previous works and the beeswarm
plots here, we observe that models have very negative SHAP values for very large and
very small feature values. The reason becomes clear when one observes the Pourbaix
diagram of Al, where aluminium oxide is stable and protective in the pH range of 4 to 9,
but starts to disintegrate below and above this range. The models capture that behaviour
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Figure 5.5: SHAP beeswarm plots displaying how features in a dataset impact model output for featurisation (a)
atom pair-count, (b) PaDEL, (c) MACCS. Each dot represents an individual model instance (molecule), which
pile up along each feature row to show density. Each row corresponds to one feature, which are sorted by the
mean of absolute SHAP values. Colour is used to display the original value of a feature, whereas the SHAP value
is the impact of a given feature value on the model output. Large values correspond to larger expected model
impact.
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quite well, proving that given the right features, mechanistic behaviour resulting from
the environment-substrate interactions can be captured.

ATOMPAIR-COUNT FINGERPRINTS

Figure 5.5 (a) shows SHAP beeswarm plots for atompair-count fingerprints. The visu-
alisation of the molecule substructures as bits as seen in the previous section allows us to
explain the feature SHAP behaviour. The notation used in this section is used as before:
uppercase for aliphatic, lowercase for aromatic atoms, / for denoting structures corre-
sponding to multiple atoms or bonds and nx for the number n of any atoms in between.

Feature 576 corresponds to substructure bit c/C=S, a carbon-sulfur double bond. The
presence of sulfur is expected to increase the inhibition efficiency predictions, and it has
the biggest impact on model predictions. This is in line with trends seen from literature
which mention the high tendency of sulfur to bond with copper [1, 323], which would
also allow the organic molecules to bond with Cu-based intermetallics of the AA2024-T3
substrate, which are root cause for localised corrosion [39, 42, 55]. If the intermetallics
are protected, it would greatly decrease the microgalvanic driving forces that cause lo-
calised corrosion of the alloy. For this reason, it is not surprising that sulfur presence is
the most important feature, but it is nonetheless remarkable that the model has learned
the importance of bonding with such a clear tendency. Analysis of other model SHAP
values shows that this is not a coincidence.

Feature 453 corresponds to substructure bit c/C-4x=O. High values have a positive
impact on the model, whereas low values expect to have a minor negative one. Analysis
of molecules that contain this bit reveal that the majority had a ccccC=O substructure.
That corresponds to an aromatic ring with alcohol, ketone or carboxylic acid functional
groups. Assuming that they are not near the substrate anchoring sulfur/nitrogen groups,
such structures would indeed push away the corrosive Cl- ions through steric hindrance.

Feature 1295 corresponds to substructure bit C-X-C. Higher feature values result in a
sharp decrease of SHAP values, low values of it result in minor positive values. The ma-
jority of molecules containing this feature include CCC and CNC substructures, which
are characteristic of aliphatic hydrocarbon chains. These chains exhibit low reactiv-
ity, limiting their interaction with both the surface and the surrounding environment.
The prevalence of these groups is a characteristic quality of surfactants, where a long
aliphatic tail is typically attached to a carboxylic or amino group. Such surfactants are
recognised as effective inhibitors under specific conditions for substrates like carbon
steels [324, 325]. In these cases, the presence of long tails likely contributes to corrosion
inhibition by providing steric hindrance. However this was not the case for this alloy sys-
tem. An excessive presence of such chains can lead to a bulky structure with decreased
molecule solubility without contributing to surface bonding, which must have been the
dominant negative effect.

Feature 479 corresponds to substructure bit c/C-2x-S, sulfur bonded to any two
atoms bonded to a carbon atom. Whereas feature 576 contained information on
double-bonded sulfur, this one contains information on single-bonded sulfur. Analo-
gous to feature 576, higher values correspond to significantly increased SHAP values.
It seems that sulfur with this topological distance to carbon is predicted to contribute
significantly to corrosion inhibition. As previously discussed through counterfactual
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analysis, this sulfur-carbon distance is notably peculiar. For cyclic structures composed
of five- or six-membered rings, where sulfur is incorporated within the ring or attached
as a functional group, this distance positions sulfur and carbon farther apart, on the
opposite sides of the ring. This means that this feature value can be maximised through
dithiocarbamate-like structures, or S attached to ring structures. This observation
suggests a structural configuration in which sulfur is either bonded as a functional
group to one of the ring’s vertices or directly integrated into the ring structure.

Trends for the rest of the features are less straightforward to analyze. Feature 1016
corresponds to n-n, aromatic nitrogen connected together. It seems that a high n-n pres-
ence results in more activity, expected to push the predictions more to higher and lower
values. Feature 200 corresponds to c-x-c/C, where higher values decrease the SHAP val-
ues, which might be related to aromaticity degree. Feature 478 corresponds to n-2x-/=S,
where the presence of it is making a molecule take more extreme SHAP values. Feature
311 corresponds to ccc, which again is related to the aromaticity degree and influence
on the model is low.

Based on these observations it seems that the correct combination of c/C=S, c/C-
4x=O, c/C-2x-S and n-2x-/=S might result in ideal model predictions.

PADEL DESCRIPTORS

Figure 5.5 (b) shows SHAP beeswarm plots for PaDEL descriptors. The descriptions of
the computationally generated descriptors are quite often not adequately documented,
which requires double-checking multiple sources. Analysis of the descriptors below are
primarily based on the book Molecular descriptors for chemoinformatics [326], and the
documentation pages of numerous descriptor calculator packages.

nS represents the number of sulfur atoms in the molecule. An increase in number
of sulfur is expected to increase model predictions. It is the descriptor with the highest
impact, and presence or absence of sulfur is predicted to be critical in the inhibition
property of the molecule. It is directly related to feature 576 and 479 of the atompair-
count fingerprints.

ATSC stands for Centered Autocorrelation of a Topological Structure (also known as
Moreau-Broto autocorrelation). Autocorrelation descriptors calculate the correlation
between a specific atomic property, such as atomic mass, at a defined topological dis-
tance within the molecule. They capture how a property is distributed across the molec-
ular structure. The property values are "centered" by subtracting the mean property
value across the molecule.

ATSC3m reflects how the atomic mass is distributed and correlated across atoms that
are three bonds apart in a molecule. 3 refers to the "lag", which indicates the topological
distance between atoms being considered in the molecule, in this case, three bonds. m
denotes that the descriptor is weighted by atomic mass. A higher ATSC3m value suggests
significant variation in atomic masses at this specific distance, indicating that heavier
and lighter atoms are more differently positioned in relation to each other. A lower value
indicates that there is little variation in the atomic masses of atoms that are three bonds
apart. Since high ATSC3m values are expected to result in a significant drop in the major-
ity of prediction values, neighbours that are two atoms apart and similar to one another
in atomic mass could be more suitable for inhibitor molecule structures.
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AATSC4v quantifies the autocorrelation of atomic van der Waals volumes within a
molecule at a topological distance of four bonds, further normalised with respect to
molecule size before calculating the autocorrelation. Higher values did not markedly
improve prediction performance, but lower values certainly hindered it. This can be
observed for straight-chain structures larger than butane. However, for higher values,
individual or fused ring systems exhibit greater topological distances and hence greater
potential. Examples include carbon atoms in aromatic rings such as benzene, benzimi-
dazole, benzotriazole, or cyclopentanes. Additionally, the presence of two neighbouring
heteroatoms, such as nitrogen in five-membered rings like imidazoles, can also con-
tribute to these increased distances.

The behaviour of VR1_DzZ was difficult to analyze. Dz are a modification of ATSC de-
scriptors that use topological distance in conjunction with properties of atoms (see DzK

pg.33 [326]). Official PaDEL documentation describes VR1_DzZ as a "Randic-like indices
eigenvector-based index from Barysz matrix / weighted by atomic number" (see Randic-
like pg.164 , VRA1 pg.717 [326], calculation of Barysz distance matrix [327]), which is de-
fined by coefficients of the eigenvector associated with the largest negative eigenvalue. It
is related to local vertex invariants able to provide discrimination among graph vertices.
However, its non-linear complicated effect is difficult to analyze in isolation, where high
values seem to hinder the inhibition efficiency, therefore it is not further discussed as
tying it to the molecular structure is not accessible.

GATS stands for Geary Autocorrelation of Topological Structure. Like ATSC, GATS de-
scriptors are used to quantify the autocorrelation of a specific atomic property over a
defined topological distance in a molecule. GATS differs from other types of autocorre-
lation by including a normalisation factor, which adjusts for the number of atoms and
bonds considered, providing a scale-independent measure. A strong positive correlation
produces low GATS values between 0 and 1, negative autocorrelation produces values
larger than 1, whereas no correlation corresponds to a value of 1 (pg.32 [326]).

GATS3s provides a measure of how the Sanderson electronegativity varies across the
molecule at a topological distance of three bonds. 3 again refers to the lag. s denotes
that the descriptor is weighted by atomic Sanderson electronegativity, which is a specific
measure of electronegativity that describes the ability of an atom to attract electrons in a
chemical bond. High GATS3s values indicate a significant variation in electronegativity
values among atoms that are three bonds apart. This might occur in molecules with a
mix of atoms that have widely differing electronegativities, as for heteroatoms (e.g., sul-
fur, nitrogen, oxygen) in an organic molecule. Low GATS3s values suggest uniformity
in electronegativity at this distance. Similar electronegativities would indicate less vari-
ation in the ability to attract electrons across the molecule. The SHAP values seem to
increase with increasing GATS3s values, suggesting that for ideal inhibitors atoms at 3-
bond distance should have a higher electronegativity difference.

GATS2s is similar to GATS3s with the only difference being the topological distance,
which is 2 in this case. This suggests molecules with atoms at 2-bond distance with
differing electronegativities would result in higher target values. Unlike GATS3s, high
GATS2s values decrease the model performance for two outliers.

GATS1p is also similar to GATS3, but in this case the topological distance is 1, so it
considers neighbouring atoms. p indicates that the descriptor is weighted by atomic
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polarisability. GATS1p therefore is a measure of how the property of atomic polarisabil-
ity varies over the structure of the molecule for neighbouring atoms. Polarisability is a
measure of how easily the electron cloud around an atom can be distorted by an electric
field, which is related to the size of the atom and its electron density distribution. Lower
GATS1p values seem to increase the model predictions. A low GATS1p value suggests
that the atomic polarisability of adjacent atoms are quite similar. This would occur in
molecules where atoms have similar sizes and electronic environments, leading to little
variation in how easily their electron clouds can be distorted.

The BCUTp-1l descriptor reflects the distribution of polarisable atoms in a molecule.
BCUT stands for Burden - CAS - University of Texas eigenvalues. It refers to a set of
molecular descriptors derived from the Burden matrix, a matrix which captures a desired
property correlation between every atom in a molecule. p indicates that the descriptor
is weighted by atomic polarisability. 1l signifies the lowest eigenvalue obtained from
the Burden matrix. A low eigenvalue typically indicates that the molecule’s polarisability
is relatively evenly distributed or that there are no extreme variations in polarisability
across the molecule. Conversely, a higher eigenvalue suggests more significant varia-
tions, possibly indicating regions of the molecule with high and low polarisability. In
the case for this model its effect was not straightforward to analyze, but it was observed
that higher values corresponded to more limited absolute impact, suggesting less active
molecules, which may not be desirable for inhibitor molecule design.

minHBa refers to the calculated minimum hydrogen bond acceptor strength in a
molecule. A hydrogen bond is the electrostatic attraction between a hydrogen atom
covalently bonded to a more electronegative atom or group, the "donor", and another
electronegative atom that has a lone pair of electrons, the "acceptor". Main hydrogen
bond donors and acceptors are electronegative atoms like N and O, which have lone
pairs of electrons that can attract the hydrogen atom. The minHBa descriptor specif-
ically focuses on identifying the weakest hydrogen bond acceptor within the molecule
– a high minHBa value would mean that even the least effective hydrogen bond accep-
tor in the molecule has a relatively high hydrogen bonding potential. A high minHBa
seemed to increase the prediction values. This suggests that C atoms with higher hydro-
gen bond acceptor values would assist in improving predictions. This might be related
to the aromaticity: as it was found that aromatic rings act as hydrogen bond acceptors
[328], therefore compared to aliphatic C chains the presence of aromatic rings might
increase the minHBa values. A high hydrogen bonding capacity would help in the self-
assembly process by creating more intact monolayers as the organic molecules adsorb
to the surface with one part, and attach with one another through hydrogen bonding.
[329, 330] A tighter bonding between adsorbed molecules would hinder chlorides from
penetrating in between. However, the influence of the descriptor on the model is weaker
than the rest of the features.

Summarising the strongest interpretable influences that would result in a higher pre-
dicted inhibition efficiency for AA2024-T3 alloy:

1. High number of sulfur atoms.

The molecule likely contains multiple sulfur atoms. Sulfur is relatively electroneg-
ative (though less so than oxygen and nitrogen) and can participate in various
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chemical environments, such as thiols (-SH), thioethers (R-S-R’), or disulfides (R-
S-S-R’).

2. High GATS3s and GATS2s: high variation in electronegativity at a three- and two-
bond distance.

This suggests that at a distance of three- and two-bonds, there is a significant dif-
ference in the Sanderson electronegativity values. This could mean that there are
alternating patterns of atoms with high and low electronegativities. The presence
of highly electronegative heteroatoms such as sulfur, nitrogen and oxygen, com-
bined with less electronegative atoms such as carbon at three- and two-bonds dis-
tance, would result in higher descriptor values.

3. Low ATSC3m: low variation in atomic mass at a three-bond distance.

The low ATSC3m value indicates minimal variation in atomic mass at a distance
of three-bonds. This implies that the atoms in the molecule, despite the different
types, have similar masses. Since sulfur has a relatively high atomic mass com-
pared to carbon, oxygen, nitrogen, or hydrogen, this would result from structures
with only a small amount of sulfur at the periphery of the structure, leading to a
more uniform mass distribution.

4. Low GATS1p: low variation in polarisability at a one-bond distance.

The low GATS1p value indicates uniformity in atomic polarisability for neighbour-
ing atoms. This suggests that the atoms connected directly to each other do not
vary much in their polarisability, which could be the case if they are similar types
of atoms or atoms with similar electronic environments.

Molecular structures corresponding to such trends would include several sulfur
atoms, either in a linear arrangement or part of cyclic structures. Alternating electroneg-
ativities of N/O with carbon at two/three-bonds distance (structures of -S/N/O-X-C-
/ -S/N/O-X-X-C-) would result in high GATS2s/GATS3s. Sanderson electronegativities
increase in order of C<S<N<O (2.75<2.96<3.19<3.65, in Pauling units), therefore N/O
coupled with C would contribute more to the increase in GATS2s and GATS3s. This also
coincides with feature 478 and 479 bits c/C-2x-S and n-2x-/=S from atompair-count
fingerprints. Despite the presence of heavy sulfur, the molecule’s structure would need
to consist mainly of atoms of similar mass, meaning structures with long carbon chains
or multiple cyclic structures are necessary to give rise to low ATSC3m. In addition,
adjacent atoms should have similar polarisability values, indicating a lack of highly
polarisable atoms directly bonded to less polarisable ones, again pointing towards long
carbon chains or cyclic structures. Derivatives of larger thiols (R-SH) and thioethers
(R1-S-R2) as well as cyclic thiophene and benzothiophene-like molecules would satisfy
such criteria.

MACCS KEYS

Figure 5.5 (c) shows SHAP beeswarm plots for MACCS keys. Despite lower predic-
tion performance MACCS was added to the previously studied featurisation methods
because MACCS features are completely predetermined and very interpretable. The
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MACCS keys were interpreted based on the Mayachemtools MACCS keys documenta-
tion [331].

The MACCS 47 key corresponds to the S-/=x/X-n/N substructure. The presence of
such a substructure is expected to increase the inhibition efficiency predictions for al-
most all molecules. This matches with the GATS2s requirements from PaDEL featurisa-
tion, as the S-X-N structure would have a higher electronegativity difference at two-bond
distance.

The MACCS 73 key corresponds to the S=X substructure, which matches the bit 576
from atompair-count featurisation. The presence of a double bond with sulfur, along
with the S-X-N substructure, has the largest impact on higher inhibition value predic-
tions. The rest of the features influence the model significantly less. As discussed before,
sulfur presence is critical for inhibition, and multiple models consistently using related
features underline this.

The MACCS 158 key corresponds to the C-N substructure. Nitrogen presence is ex-
pected to decrease the model predictions. This was counterintuitive, as S-X-N presence
was expected to increase the predictions. One explanation might be that in the pres-
ence of sulfur the model overshoots the predictions, and this feature decreases it to the
expected values. This was actually observed for counterfactual predictions (Figure 5.3),
where when feature 576 (corresponding to C=S) is artificially replaced with the maxi-
mum values found in the dataset, the predictions went above the theoretical maximum
of 100% for the majority of well-performing molecules. Meanwhile, if there’s no sulfur
present, the molecules are often just not expected to work as corrosion inhibitors for the
selected AA2024-T3 substrate.

The MACCS 59 key corresponds to the S-x-x substructure (sulfur bonded to any atom
with a non-aromatic bond, whereas that atom is bonded to another with an aromatic
bond). For structures where sulfur is bonded to an aromatic ring structure, its presence
often can be correlated with an increase in the model predictions, although the underly-
ing relationship seems to be complex.

The MACCS 139 key corresponds to the OH substructure. This would be present in
carboxylic acids and alcohols, and its presence is expected to increase the model predic-
tions. MACCS 139 shows similarity to feature 453 from atompair-count featurisation.

The MACCS 162 key corresponds to presence of an aromatic substructure. Its pres-
ence is expected to slightly decrease the model predictions. This could be working with
MACCS 59, where the aromaticity effect in combination with sulfur presence determines
the complete effect of the ring structures.

The MACCS 146 key corresponds to condition where O < 2. This would act as a car-
boxylic acid detector, as one acid group would need at least two oxygen atoms. When this
condition is true, and there are no acid groups on the molecule, the predictions of the
model are expected to decrease. In combination with MACCS 139 this would determine
the influence of single carboxylic acid functional groups.

The MACCS 65 key corresponds to the c-n substructure. Its influence on the model
is very weak and mixed.

Taken together, the combined information of all keys suggest that molecules con-
taining S=C/C–N substructures, coupled with carboxylic acid groups and limited C–N
bonding, may exhibit strong corrosion inhibition potential.
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THE COMMON TRENDS

Combining the insights from all three featurisations, we deduce that presence of S=C
would improve the model predictions. S=C can form in sulfur analogues of carbonyl
and carboxyl group thiocarbonyl and dithiocarboxyl groups, and would act as the an-
chor binding the molecule to the substrate. This substructure would ideally have N as its
neighbour to C, which seems to have a positive influence on the inhibition. This might
potentially be a result of N assisting with the bonding through the S, or through its elec-
tronegativity stabilise the hydrogen bonding formed between the molecules during the
self-assembly process. This gives us a molecular structure template for an ideal corro-
sion inhibitor:

R1

C

S

NH

R2

where R1 can be S for dithiocarboxylic acids, or a longer chain that starts with S for
dithiocarbamate structures. R1 and R2 can contain and/or be merged together into sin-
gle or fused ring structures. This in combination with carboxyl presence would fulfill the
criteria from different featurisations.

These patterns are found in structure of the commonly used corrosion inhibitors
such as 2-mercaptopyrimidine, ammonium pyrrolidinedithiocarbamate, and 3-amino-
1,2-4-triazole-5-thiol [80]. Literature suggests that S and N heteroatom containing
organic molecules can stabilize AA2024-T3 aluminium oxide by covering the surface
through sulfatization, or can adsorb on the copper-rich intermetallics, suppressing the
cathodic reactions which often is the driving force of corrosion in the surrounding area
[205]. Notably, even without any expert-guided feature selection, through obserbing the
trends hidden in the dataset statistics alone, the results of this methodology corroborate
the previous spectrostroscopy results that aimed to uncover mechanisms responsible
for structures responsible for corrosion inhibition of various organic molecules [1].

The C(=S)N (and also c(=S)N, C(=S)n, c(=S)n for aromaticity variants) SMILES string
can be converted into a SMARTS pattern, with which molecule databases can searched
for this substructure. For the toxicity database we have used in this study (which con-
tains more than 10,000 molecules), this search ends up in 123 hits of this database, which
can be used as lead candidates for exploring potential, yet untested, corrosion inhibitors.
These resulting lead molecules can be further constrained to include the trend coming
from atompair-count featurisation of feature 453 c/C-4x=O, where its presence is ex-
pected to increase model predictions. The presence of c/C-4x=O molecular fragment
further decreases the lead molecules to 10.

Among these, the molecules with EPA classification 3 and 4 are displayed in
figure 5.6: 5-ethyl-5-(1-(ethylthio)ethyl)-2-thiobarbituric acid, sulfocarbathione,2-
thiobarbituric acid and 5-methyl-2-thiohydantoin.

Out of the displayed four molecules, only 2-thiobarbituric acid (figure 5.6 lower-left)
was available to purchase off the shelf. To show the validity of our gained insight, we have
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Figure 5.6: Non-toxic molecules from the toxicity database that fit the trends observed from different featuri-
sation methods.

conducted electrochemical experiments using the same methodology used to acquire
previous targets to curate the original training dataset [80]. We have tested 1 mM 2-
thiobarbituric acid and adjusted its pH to 7.0, as the original solution had a pH of 2.3,
much lower than the thermodynamic stability window of Al2O3, which is between 4 to
8.5 [145].

Figure 5.7 displays the results of the electrochemical measurements. Electrochem-
ical impedance measurements performed after 24 hours of electrolyte exposure show
that 2-thiobarbituric acid is indeed a promising molecule for corrosion inhibition. A
comparison of the diameters of the suppressed semicircles shown in the Nyquist plot
of figure 5.7 (a) show that the addition of thiobarbituric acid enlarges the diameter sig-
nificantly, which is related to an increase in the polarisation resistance and overall cor-
rosion inhibition of the surface. Bode plots of figure 5.7 (b) demonstrate that the addi-
tion of thiobarbituric acid increased the impedance modulus values measured at 10-2

Hz, which represents the corrosion resistance of the inhibitor-surface interface [143].
Impedance modulus values were raised to 64.2±14.5 kOhm cm2 in the presence of thio-
barbituric acid, which corresponded to an inhibition efficiency of 84.1± 3.5%. An inter-
esting observation consistent throughout samples was that while the open circuit po-
tential values were constant around -520 mV vs. Ag∥AgCl throughout the first 24 hours
(similar to initial uninhibited values), the linear polarisation resistance values kept in-
creasing throughout time, without showing any signs of slowing down. These observa-
tions indicate that thiobarbituric acid can work as a strong corrosion inhibitor, and other
corrosion inhibitor candidate molecules presented at Figure 5.6 should also be tested for
their potential.

5.4. CONCLUSIONS

T HIS paper demonstrates that mechanistic insights can be derived from machine
learning models to design novel functional molecules. Rather than focusing on

predicting individual molecule performance from small datasets—a task that is inher-
ently limited by dataset size—we can reverse-engineer statistical models to understand
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Figure 5.7: Electrochemical impedance spectroscopy of AA2024-T3 alloy exposed to 0.1M NaCl electrolytes
with or without 2-thiobarbituric acid for 24 hours - (a) Nyquist, (b) Bode modulus and phase angle plots. Inset
shows a zoom in of lower resistance values. Filled markers in the presence, empty markers in the subsequent
absence of inhibitor.
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their decision-making processes. By representing molecules using various featurisation
methods and applying feature elimination techniques to identify the most important
features, we gain insight into which feature combinations represent the problem best.
These insights can then be integrated with the domain knowledge of scientists to utilise
machine learning models beyond their typical "black-box" functionality.

However, it is crucial to remain aware of the limitations of different molecular rep-
resentations. For example, while hashing-based methods are more generalisable, they
may lead to bit collisions, making models volatile and less interpretable. Fingerprint
techniques, though useful, may overlook subtle molecular changes if these do not al-
ter the structural fragments being represented, whereas physicochemical descriptors
may be more suitable for capturing such nuances. Nevertheless, fingerprints can effec-
tively capture broader trends, as they are closely tied to molecular structure, and their
interpretation is often more straightforward since they represent visualisable substruc-
tures—provided there are no bit collisions.

The combination of diverse molecular representations holds significant, largely
untapped potential for scientific discovery via statistical models. Agreement across
models with different featurisation methods can allow feature selection to be used
as a tool akin to using various spectroscopic tools in materials science. Additionally,
SHAP (SHapley Additive exPlanations) analysis offers promise in isolating the effects
of complex trends, and it is highly effective in creating controlled variables within
a materials research framework. Insights gained from different representations can
complement one another, forming the basis for testable hypotheses, as illustrated here
in the discovery of a novel corrosion inhibitor 2-thiobarbituric acid for AA2024-T3.

Next to what has been studied in this work, further insights can be gained by manip-
ulating molecular structures—such as adding or removing fragments—at no additional
cost after the model has been trained, allowing for the testing of trends in the material
properties of interest. If these insights can then be integrated into generative chemical
foundation models, it would enable the rapid design of new molecules at a fraction of
the original cost.
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5.5. SUPPLEMENTARY INFORMATION

5.5.1. PREDICTIVE PERFORMANCE OF THE MACHINE LEARNING MODELS

Figure 5.8: Prediction plots of training with cross-validation (in-blue) and set-aside validation split (in-orange)
for the highest ranked model with IE_EIS24h target and atompair-count featurisation.

Figure 5.9: Learning curves for the highest ranked model with IE_EIS24h target and atompair-count featurisa-
tion.
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5.5.2. DISTRIBUTION OF PREDICTIVE PERFORMANCE FOR DIFFERENT

MODEL CONFIGURATIONS
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Figure 5.10: Influence of feature scaling on the CV-RMSE distributions.
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Figure 5.11: Influence of feature selection method on the CV-RMSE distributions.
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Figure 5.12: Influence of model architecture on the CV-RMSE distributions.
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The numbers have no way of speaking for themselves.
We speak for them. We imbue them with meaning.

Nate Silver
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6.1. KEY SCIENTIFIC CONTRIBUTIONS

T HE ultimate aspiration of this dissertation was to explore how the structure of or-
ganic molecules influences the electrochemical behaviour related to the corrosion

of aerospace alloys, and if possible find new ways to capitalise on gained knowledge to
develop better self-healing corrosion inhibition systems. Following the zeitgeist of the
fourth paradigm of science, a data-driven approach laid the groundwork for the identi-
fication of trends arising from diverse molecule-surface interactions, aiming to evaluate
the potential of organic molecules as environmentally friendly alternatives to hexavalent
chromium. Rather than relying on simplified model alloys, the study focused directly on
the AA2024-T3 with its complex microstructure to allow the results of this research to be
directly transferable to real-world applications.

As the first step, the correct way of collecting corrosion inhibition data was needed
to be determined. The aim was to simulate the conditions relevant to aerospace alloys
- the corrosion inhibition behaviour arising from low organic molecule concentrations
achievable through leaching from organic coatings, without dealing with the complexi-
ties of coating - molecule interactions. As the reported electrochemical corrosion inhi-
bition performance of organic molecules varied inconsistently across the literature [107,
136], a time-resolved data generation process that combined linear polarisation resis-
tance, electrochemical impedance spectroscopy, and potentiodynamic polarisation was
designed. This methodology was used to create the first outcome of this dissertation: an
electrochemical dataset of AA2024-T3 surfaces exposed to 0.1M NaCl in the presence of
more than 100 small organic molecules in 1 mM concentrations.

This methodology allowed complete control over the experimental details: know-
ing exactly where the compounds came from, their concentrations, how surfaces-to-be-
studied were prepared, whether any treatments were applied to the electrolytes, access
to solubility and pH information before and after the electrochemical experiments, and
even the influence of the electrochemical cell and potentiostat setup. Many of these
critical details are often missing from published methodologies so by keeping all these
free variables constant, the true analysis goal can be brought into focus: how molecular
structure affects corrosion inhibition for the given substrate.

Prior to decisively connecting the molecular structure to electrochemical behaviour,
some key critical factors influencing the corrosion inhibition behaviour was identified.
Our findings show that it is not possible to draw definitive conclusions about the long-
term corrosion inhibition performance of organic molecules without considering key
variables such as exposure time, molecule concentration, environmental conditions, the
physicochemical/electrochemical stability of molecules in dynamic systems, and poten-
tial synergies between multiple molecules interacting with each other and the surface.

While some organic inhibitors initially provided corrosion protection comparable to
sodium dichromate at 1 mM concentrations within the first six hours, their effectiveness
tended to stabilise with time, while chromate-based inhibition continued to improve
with longer exposure. Increasing the concentration of organic inhibitors generally en-
hanced their performance, but only up to a critical concentration (typically 2–5 mM for
the studied molecules), beyond which the inhibition either plateaued or even declined.
Environmental conditions also played a crucial role. At extreme pH values (below 4.0
or above 8.5) some molecules that otherwise showed promise instead accelerated corro-
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sion. This effect was linked to the electrolyte pH shifting the aluminium surface outside
the thermodynamically stable Al2O3 window, making it more vulnerable to degradation.

It was observed that for most of the tested organic molecules, supplied corrosion
inhibition was reversible. This limited their long-term effectiveness, particularly in dy-
namic environments where a constant inhibitor reservoir was not present. The best-
performing inhibitors were not necessarily the most physically stable or irreversible -
they did not always maintain higher inhibition after being removed from the electrolyte.
However, when these organic molecules remained in the environment, they provided
corrosion protection across a broad potential range. A small subset of molecules demon-
strated quasi-stable corrosion inhibition, meaning they maintained corrosion inhibition
properties even after their subsequent absence in the electrolyte, albeit at a reduced
level. This behaviour suggests that long-term corrosion protection is possible with the
right small organic molecules, even in the absence of a continuous inhibitor supply.

The observed quasi-sustained corrosion inhibition effect was further investigated
and attributed primarily to dominant anodic protection. The prevailing hypothesis sug-
gests that in the presence of the 3-amino-1,2,4-triazole-5-thiol, the molecule completely
covers the surface in multilayers: it interacts with the Al-(hydr)oxide matrix to form a
sulfate-like structure, while also adsorbing to intermetallic sites to suppress their sus-
ceptibility to corrosion initiation. In the subsequent absence of the molecule weakly
bonded molecules desorb, corrosion inhibition on intermetallics decreases due to rear-
rangement of preferred bonding configuration which no longer is sufficient as a barrier
to corrosive ions such as chloride; whereas sulfate-like structure keeps its presence over
the Al-(hydr)oxide matrix further stabilising it, resulting in quasi-sustained corrosion in-
hibition. This understanding serves as a model for designing future systems capable of
achieving fully corrosion-inhibited surfaces.

Inhibitor synergy offered by presence of multiple molecules proved to be powerful. It
was shown that two organic molecules with individually unremarkable electrochemical
performance could work together to produce significantly stronger and more stable cor-
rosion inhibition. In some cases, these synergistic effects led to electrochemical perfor-
mance surpassing that of state-of-the-art chromate inhibitors, even in the subsequent
absence of the molecules in the environment.

The structural analysis of the molecules and their inhibition power distribution
showed that simplistic correlations such as the presence of N/O/S heteroatoms, with-
out considering where and how they are structured is not enough to gain insight on
corrosion inhibition phenomena. This is also made clear in Figures A.1-A.3, which
include example molecules with pyridine, pyrimidine, and azole-derivative structures
visualised in a 2D projection of their chemical space, where molecules close to one
another are chemically similar. Small changes such as the addition of a functional group
in different positions, or the same addition for different previous skeleton structures
can result in wildly different corrosion inhibition behaviour, implying a chemical space
abundant in “activity cliffs”. These molecular structural relationships showed the need
for advanced statistical models based on machine learning to capture the trends found
in the experimental data.

A systematic analysis of the representation of the molecule and the target to be pre-
dicted revealed that the combination of diverse molecular representations holds signif-
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icant, largely untapped potential for scientific discovery via statistical models. The in-
clusion of the mechanistic insights in machine learning models proved crucial, with ex-
perimentally obtained parameters like pH providing invaluable contextual information
about the system. A methodology that focuses on reverse-engineering statistical models
to understand their decision-making processes was created to integrate insights com-
ing from the models with the domain-expert. The combinations that best represent the
problem from complementary fingerprint- and physicochemical descriptor-based fea-
turisation methods allowed the identification of the most critical fragments for corrosion
inhibition. The fragments related to C(=S)N and C-4x=O were used to identify promising
compounds from a toxicity database, which allowed 2-thiobarbituric acid to be discov-
ered as a novel corrosion inhibitor.

In summary, this work has made several key contributions to the scientific corpus:

• Developed a methodology for creating a robust corrosion inhibitor database
through electrochemical experiments. This resulted in a database with the single
largest number of molecules measured for corrosion inhibition for a given state.

• Identified the most critical factors governing corrosion inhibition in the presence
(and subsequent absence) of small organic molecules. Demonstrated that failing
to account for parameters such as pH, exposure time, molecule concentration, and
the continuous versus interrupted presence of the molecule can lead to incorrect
conclusions about a compound’s corrosion inhibition performance.

• Investigated the mechanisms underlying the rarely observed phenomenon of
quasi-sustained corrosion inhibition. Built a hypothesis for the mechanisms that
would sustain the inhibition, which will assist researchers in creating molecules
that sustain their corrosion protection in the changing environmental conditions
found in industry applications.

• Established a machine learning framework for extracting meaningful scientific in-
sights from small datasets, enabling the discovery of novel functional molecules.
Through the framework, a novel inhibitor molecule never before used as a cor-
rosion inhibitor for aluminium alloys was found, and further validated through
electrochemical experiments, showing the potential of such a method.

• Invented a patent-pending corrosion protection system based on molecule syn-
ergy. This system shows a never-before-seen corrosion inhibition performance
superior even to the chromate both in the presence, and the subsequent absence
of molecules in the environment.
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6.2. OUTLOOK

A S with any project, this research was also limited in scope by finite manpower, lack
of infinite time, known, and unknown unknowns. Based on the experience gained

while conducting this body of work, a few suggestions that can be realised in the short
and long term are presented below.

The next step in corrosion inhibition research lies in an integrated approach that
combines: (i) a clear mechanistic understanding of corrosion inhibition, (ii) a strong ex-
perimental foundation to reveal underlying processes, (iii) high-throughput methodolo-
gies to accelerate material screening, (iv) statistical models that guide both experiments
and simulations through active learning, and (v) robust in-silico screening powered by
machine learning to navigate the vast chemical spaces.

For this end, universities should capitalise more on learning from adjacent fields,
and not fear cannibalising the already-available methods developed in industries such
as pharmaceuticals and semiconductors. One highly relevant advancement is the high-
throughput screening and automated experimentation setups based on self-driving labs.
Such systems can be easily adapted to electrochemical sciences working on electrolyte-
surface interactions, which make them ideal in kickstarting the materials discovery rev-
olution for corrosion inhibitors. These automated platforms can reinvent materials dis-
covery for corrosion inhibitors, rendering currently intractable problems, such as test-
ing inhibitor systems with ternary or more complex compositions, or evaluating coatings
with spatial gradients, both feasible and efficiently solvable [332, 333]. Such setups based
on collecting quantitative electrochemical data can generate transdisciplinary datasets
that can assist in various electrode-electrolyte based problems. By facilitating the gener-
ation of high-quality large-scale datasets, such systems are poised to enable a fully closed
materials discovery loop encompassing materials characterisation, prediction, and syn-
thesis. The resultant acceleration in knowledge acquisition could unlock vast potentials
within molecular chemistry.

A critical next step is to leverage machine learning not merely as a black-box pre-
dictive tool, but as an integrated and interpretive component of scientific discovery. As
shown in this work, with the right methodology, machine learning can serve as a charac-
terisation tool that parallels established spectroscopy techniques. Future development
along this research line should aim at enhancing the interpretability of models, which
would extend their utility beyond prediction and toward facilitating nuanced insights
into molecular behaviours and interactions.

Another route for future work is the standardisation of material data and metadata
generation. A machine-readable experimental measurement and material representa-
tion are needed to amplify the scientist with the algorithmic insight. Given that the opti-
mal representation of a material is inherently problem-specific, one pressing need is to
develop novel descriptors that accurately capture surface–molecule interactions. These
descriptors are not only critical for understanding corrosion inhibition but also relevant
to a wide range of surface-related phenomena, including electrochemical sensors, car-
bon conversion, battery performance, and heterogeneous catalysis, among others. Es-
tablishing universal surface descriptors could enable the integration of diverse datasets
that combine both organic and inorganic chemistries into combined foundational mod-
els. Such models would bridge domain-specific gaps and foster a more unified view of



6

146 6. CONCLUSIONS AND OUTLOOK

catalytic and inhibitory processes linked by consistent physicochemical principles.
The ultimate advantage of robust, working models lies in their capacity to rapidly

and cost-effectively traverse the chemical space. Once properly trained, these models
would become virtual laboratories where molecular structures can be systematically
manipulated by adding or removing molecular fragments, and in this way allow
analysing trends in material properties without incurring additional experimental costs.
This approach would not only broaden understanding of material behaviour, but also
would lay the groundwork for generative chemical models capable of designing entirely
new molecules. Such models could revolutionise the rate and cost-effectiveness of
chemical innovation, fundamentally altering the materials design norms.

Of course all these developments depend on whether the measurements mea-
sure, and data is generated for the right phenomena. Unfortunately, a recent study
highlighted that accelerated tests often apply extreme conditions that may trigger
degradation mechanisms not dominant in service, leading to inaccurate material
lifetime predictions [334]. The lack of correlation between accelerated testing methods
and material degradation under real service conditions is a clarion call for bridging
the lab to real-world applications, which requires a deep involvement from both sides
of the academia-industry complex. Integrating in-situ and operando techniques with
the prevalent methods can prove key in revealing service-relevant mechanisms, while
data-driven approaches can link lab and field data more reliably. Bridging this gap will
prove foundational in converting science into societal developments.

Finally, the societal implications of these advancements should not be underesti-
mated. The principles and methodologies developed here could extend well beyond
corrosion inhibition of aerospace materials, or corrosion inhibition altogether. For ex-
ample, the generated electrochemical dataset and explored sustained inhibition mecha-
nism could directly be applied to the development of aluminium-based battery anodes,
whereas developed machine learning methodologies can be directly applied to materi-
als discovery problems related to heterogenous catalysis or carbon capture, contributing
directly to the rapidly growing field of sustainable energy. By fostering interdisciplinary
collaboration and technological innovation, the integration of automated experimenta-
tion, machine learning, and advanced data standardisation has the potential to make
significant contributions to both scientific progress and societal well-being.
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MOLECULES

Figure A.1: The distribution of some of the studied nitrogen heteroatom containing 6-ringed molecules in
the chemical space with their inhibition power (measured by EIS after 24 exposure to 1 mM concentration
molecule and 0.1M NaCl). Distances between molecules correspond to their Tanimoto similarities. Molecules
that are closer to one another are more chemically similar. Inhibition power is marked above each molecule,
red marked font indicates pH values below or around 4.0.

The effect of addition or removal of functional groups can be visualised through
chemical space networks. In the Figures A.1 - A.3, chemical space of azole and
pyridine/pyrimidine derivative molecules are visualised as a case study, based on
the methodology explored previously [335]. Linear relationships are often difficult to
discern, as identical functional group additions can yield opposite outcomes. This
complexity arises from several interrelated factors, including changes in the molecule’s
influence on the surface work potential, variations in adsorption properties, differences
in steric and repulsive effects on corrosive ions (such as chloride), and molecule-
induced pH shifts. Together, these factors underscore the intricate nature of even the
simplest small molecules and their consequent corrosion inhibition efficacy.
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Figure A.2: The distribution of some of the studied nitrogen heteroatom containing 5-ringed molecules
(azoles) in the chemical space with their inhibition power (measured by EIS after 24 exposure to 1 mM con-
centration molecule and 0.1M NaCl). Distances between molecules correspond to their Tanimoto similarities.
Molecules that are closer to one another are more chemically similar. Inhibition power is marked above each
molecule, red marked font indicates pH values below or around 4.0, N and arrow corresponding to addition
of ring nitrogen and moving of a methyl bond to neighbouring position, respectively. Marked regions are
zoomed-in in Figure A.3.
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Figure A.3: Zoom in of chemical distributions of the molecules in marked regions found in Figure A.2.
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Figure B.1: Card template and GHS chemical hazard pictogram explanations.

This section collects all the studied molecules as cards designed as a visual aid to
assist identification of trends, which were collected together in the form of a molecule
index Mol-Dex.

The categorisation of molecules are performed based on the structure of the
molecule. Each card collects information on the structure of the molecule, its corrosion
inhibition performance, its common and IUPAC names and other chemical identifiers,
experimental details such as the solubility of the molecule at 1 mM concentrations and
resulting pH of the solution.

Each card contains information on:

• Molecule Name: purchase name of the molecule.

• IP Inhibition Power: Inhibition power calculated from the low frequency (10-1

Hz) impedance measurements performed with electrochemical impedance spec-
troscopy after 24 hour exposure to the 1 mM molecule in 0.1M NaCl.

• Molecular formula: closed formula of the molecule.

• 2D structure: depiction of the molecule as a 2D figure.

• Noteworth use of the molecule.

• Synonyms or IUPAC name.

• International Chemical Identifier InChI key: a textual identifier for chemical sub-
stances, created to standardise the encoding of molecular information and sim-
plify the process of searching for this information in databases.
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• SMILES (Simplified Molecular Input Line Entry System): a notation system that
represents the structure of chemical molecules using short, ASCII text strings.

• CAS number: a unique identification number, assigned by the Chemical Abstracts
Service (CAS) to index every chemical substance described in the open scientific
literature.

• Chemical Hazard Pictograms: graphical symbols used to identify and communi-
cate specific hazards associated with chemical substances and mixtures, as de-
fined by the Globally Harmonised System of Classification and Labelling of Chem-
icals (GHS).

• Molecular weight.

• pH Before - After: pH of the solutions prepared at 1 mM molecule concentra-
tions in 0.1M NaCl measured before and after the electrochemical screening ex-
periments.

• Solubility: whether the molecule was fully soluble at 1 mM concentration.

Cards were assigned colors according to their ring structures, the presence of het-
eroatoms in the rings, and functional groups. The assignment was done in the following
descending order:

• Green (leaf): fused benzene and 5-membered ring structures that contain nitrogen
or sulfur.

• Blue (droplet): thiazole structures that contain both nitrogen and sulfur in a 5-
membered ring.

• Yellow (thunder): triazole structures with 3 nitrogens in a 5-membered ring.

• Red (flame): imidazole or pyrole structures that contain at least 2 nitrogen in a
5-membered ring.

• Purple (eye): 6-membered heterocycles that contain at least 1 nitrogen or sulfur.

• Brown (fist): organic acids that contain carboxyl group.

• White (star): linear hydrocarbons with or without nitrogen or sulfur.

• Black (inverted triangle): rest of the molecules.
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The library created for the machine learning methodology of Chapter 5 is presented
below.

1 import os
2 import pandas as pd
3 import datamol as dm
4 import numpy as np
5 import pandas as pd
6 import warnings
7 import os
8 import seaborn as sns
9 from collections import Counter

10 import ast
11 import time
12 import pickle
13

14 #rdkit
15 from rdkit import Chem
16 from rdkit.Chem import Descriptors
17 from rdkit.ML.Descriptors import MoleculeDescriptors
18

19 #sci-kit learn
20 from sklearn.feature_selection import RFE
21 from sklearn.ensemble import RandomForestRegressor
22 from sklearn.neighbors import KNeighborsRegressor
23 from sklearn.feature_selection import VarianceThreshold
24 from sklearn.preprocessing import StandardScaler, MinMaxScaler,

,→ PowerTransformer
25 from sklearn.model_selection import RandomizedSearchCV, cross_val_score,

,→ KFold
26 from sklearn.decomposition import PCA
27 from sklearn.metrics import mean_squared_error, mean_absolute_error,

,→ r2_score
28 from sklearn.svm import SVR
29 from sklearn.model_selection import learning_curve
30

31 # matplotlib
32 import matplotlib.pyplot as plt
33 from mpl_toolkits.mplot3d import Axes3D
34 import seaborn as sns
35 import umap
36

37 # other specific imports
38 from probatus.feature_elimination import ShapRFECV
39 from verstack.stratified_continuous_split import scsplit
40 from bayes_opt import BayesianOptimization
41 from xgboost import XGBRegressor
42

43
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44

45 def process_string(input_string):
46 # Split a string by backslash and return the last item without its

,→ last 4 characters.
47 parts = input_string.split(’\\’)
48

49 # Extract the last item and remove its last 4 characters
50 last_item = parts[-1]
51 processed_string = last_item[:-4]
52

53 return processed_string
54

55 def combine_strings_with_underscore(string_a, string_b):
56 # Combine two strings with an underscore between them.
57

58 combined_string = f"{string_a}_WITH_{string_b}"
59 return combined_string
60

61 def preprocessing(df, fill_nan = True, var_drop = True, corr_drop = True,
,→ scale = False, scaler = ’min_max’):

62 # Extract the "SMILES" column
63 smiles_column = df[’SMILES’]
64

65 # Drop the "SMILES" column for further processing
66 df = df.drop(’SMILES’, axis=1)
67

68 if fill_nan is True:
69 # Fill missing values with column medians
70 df = df.fillna(df.median())
71

72 if var_drop is True:
73 # Drop features with low variance, < 0.1
74 vt = VarianceThreshold(threshold=0.1)
75 df = pd.DataFrame(vt.fit_transform(df), columns=df.columns[vt.

,→ get_support()])
76

77 if corr_drop is True:
78 # Drop features with highly correlated features, > 0.8
79 correlated_features = set()
80 correlation_matrix = df.corr()
81 for i in range(len(correlation_matrix.columns)):
82 for j in range(i):
83 if abs(correlation_matrix.iloc[i, j]) > 0.8:
84 colname = correlation_matrix.columns[i]
85 correlated_features.add(colname)
86 df = df.drop(correlated_features, axis=1)
87

88 if scale is True:
89 # # Scale features:
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90 if scaler == ’min_max’:
91 scaler_func = MinMaxScaler()
92 elif scaler == ’standard’:
93 scaler_func = StandardScaler()
94 elif scaler == ’power’:
95 scaler_func = PowerTransformer()
96 df[:] = scaler_func.fit_transform(df).tolist()
97

98 # Add the "SMILES" column back to the left side of the DataFrame
99 df = pd.concat([smiles_column, df], axis=1)

100

101 return df
102

103 def stratified_split(df, target_column, test_size=0.11, random_state=42,
,→ return_dataset = False):

104 df_stratified = df.copy()
105 train, test = scsplit(df_stratified, stratify = df_stratified[

,→ target_column],
106 test_size=test_size,
107 train_size = 1-test_size,
108 random_state=42)
109

110 # add a column to the original dataframe to indicate whether the row
,→ is in the train or test set

111 df_stratified[’split’] = ’validation’
112 df_stratified.loc[df_stratified.index.isin(train.index), ’split’] = ’

,→ train’
113

114 df_stratified.groupby(by="split")[target_column].plot.density(legend=
,→ True)

115

116 # record the indices of the train and test sets
117 train_idx = df_stratified[df_stratified[’split’] == ’train’].index
118 test_idx = df_stratified[df_stratified[’split’] == ’validation’].index
119

120 print(f’Train set size: {len(train_idx)}’)
121 print(f’Validation set size: {len(test_idx)}’)
122

123 # sanity check to make sure no items are shared between the train and
,→ test sets

124 common_elements = train_idx.intersection(test_idx)
125 if len(common_elements) == 0:
126 print("No common elements between train and validation sets.")
127 else:
128 print("There are common elements between train and validation sets

,→ .")
129

130 if return_dataset:
131 return df_stratified, train_idx, test_idx
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132 else:
133 return train_idx, test_idx
134

135 def visualize_chemspace(df_target: pd.DataFrame, df_features: pd.DataFrame
,→ , split_names, target_column, mol_col = "SMILES", size_col=None,
,→ output_file=None):

136 features = df_features.copy().drop(columns=[mol_col])
137 target = df_target.copy()
138

139 # embedding of the feature space into 2 UMAP dimensions
140 embedding = umap.UMAP(random_state=42).fit_transform(features)
141 target["UMAP_0"], target["UMAP_1"] = embedding[:, 0], embedding[:, 1]
142

143 # Save each plot as a separate file
144 for i, split_name in enumerate(split_names):
145 plt.figure()
146 sns.scatterplot(data=target, x="UMAP_0", y="UMAP_1", style=

,→ split_name, hue=target_column, alpha=0.7, palette="viridis", legend
,→ ="brief")

147 plt.title(f"UMAP Embedding of compounds for {split_name}")
148 plt.legend(loc=’upper left’, bbox_to_anchor=(1, 1))
149 plt.tight_layout()
150 if output_file:
151 plt.savefig(output_file)
152 plt.close()
153

154 def recursive_feature_elimination(descriptor_df, target_df, num_features
,→ =10, selection_steps=100, random_seed=42):

155 """
156 Perform Recursive Feature Elimination (RFE) using a Random Forest

,→ Regressor for feature selection.
157

158 Parameters:
159 - descriptor_df (pd.DataFrame): DataFrame containing molecular

,→ descriptors, including the "SMILES" column.
160 - target_df (pd.DataFrame): DataFrame containing the target variable

,→ for regression.
161 - num_features (int): Number of features to select.
162 - selection_steps (int): Number of random selections to perform for

,→ stability.
163 - random_seed (int): Seed for reproducibility.
164

165 Returns:
166 - selected_df (pd.DataFrame): DataFrame containing the selected

,→ features along with the "SMILES" column.
167 """
168

169 # Extract the "SMILES" column
170 smiles_column = descriptor_df[’SMILES’]
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172 # Exclude the first column with SMILES from calculations
173 descriptor_df = descriptor_df.iloc[:, 1:]
174 target_df = target_df.iloc[:, 1:]
175

176 selected_features = []
177

178 np.random.seed(random_seed)
179 random_ints = np.random.randint(low=1000, size=selection_steps)
180

181 for i in random_ints:
182 rfe = RFE(estimator=RandomForestRegressor(random_state=i, n_jobs

,→ =-1), n_features_to_select=num_features)
183 rfe.fit_transform(descriptor_df, target_df.values.ravel())
184 selected_features.append(str(list(rfe.get_support(indices=True))))
185

186 data = Counter(selected_features)
187 features = data.most_common(1)[0][0]
188 selected_features = ast.literal_eval(features)
189

190 selected_df = descriptor_df.iloc[:, selected_features]
191 selected_df = pd.concat([smiles_column, selected_df], axis=1)
192

193 print(’The following descriptors have been selected:’, list(
,→ selected_df.columns)[1:])

194 return selected_df
195

196 def shapley_feature_elimination(descriptor_df, target_df, disp_fig = True,
,→ reporting = False):

197

198 # Extract the "SMILES" column
199 smiles_column = descriptor_df[’SMILES’]
200

201 # Exclude the first column with SMILES from calculations
202 descriptor_df = descriptor_df.iloc[:, 1:]
203 target_df = target_df.iloc[:, 1:]
204

205 # Prepare model and parameter search space
206 clf = RandomForestRegressor(random_state=42)
207

208 param_grid = {
209 ’n_estimators’: [10, 100, 1000],
210 ’max_depth’: [None, 2, 5, 10, 20],
211 ’min_samples_split’: [2, 5, 10],
212 ’min_samples_leaf’: [1, 2, 4, 8],
213 }
214

215 search = RandomizedSearchCV(clf, param_grid)
216
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217 # Run feature elimination
218 shap_elimination = ShapRFECV(
219 clf=search, step=0.1, cv=5, scoring=’neg_root_mean_squared_error’,

,→ n_jobs=-1, random_state=42)
220 report = shap_elimination.fit_compute(descriptor_df, target_df.

,→ to_numpy().ravel(), check_additivity=False)
221

222 # Get features with best performance, no matter how many features
223 best_features = list(shap_elimination.get_reduced_features_set(

,→ num_features="best", return_type="feature_names"))
224 print(f"The selected {len(best_features)} best features are: {

,→ best_features}")
225

226 if disp_fig is True:
227 performance_plot = shap_elimination.plot()
228

229 # save
230 selected_df = descriptor_df[best_features]
231 df_best_features = pd.concat([smiles_column, selected_df], axis=1)
232

233 if reporting is True:
234 return df_best_features, report
235 return df_best_features
236

237 # Analyze correlations between features and target
238

239 def pearson_correlations(descriptor_df, target_df):
240 merged_df = pd.merge(descriptor_df, target_df, on=’SMILES’)
241

242 # Extract features and target values
243 X = merged_df.iloc[:, 1:-1] # Assuming features start from the second

,→ column
244 y = merged_df.iloc[:, -1]
245

246 corr_matrix = merged_df.corr(numeric_only=True)
247 top_10 = corr_matrix.iloc[:, -1].sort_values(ascending=False)[1:11]
248 bottom_10 = corr_matrix.iloc[:, -1].sort_values(ascending=True)[0:10]
249

250 print("Pearson Correlations")
251 print("Top 10:")
252 print(top_10)
253 print(" ")
254 print("Bottom 10:")
255 print(bottom_10)
256

257 return corr_matrix
258

259 from sklearn.preprocessing import MinMaxScaler, StandardScaler
260 from sklearn.decomposition import PCA
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261

262 def perform_pca(target_df, feature_df, scale=False):
263 """
264 Perform PCA analysis on feature dataset and generate relevant plots.
265

266 Parameters:
267 - target_df: DataFrame with ’SMILES’ and target column
268 - feature_df: DataFrame with ’SMILES’ and feature columns
269

270 Returns:
271 - pca_result: DataFrame containing PCA results
272 """
273

274 # Merge the target and feature datasets on ’SMILES’
275 merged_df = pd.merge(target_df, feature_df, on=’SMILES’, how=’inner’)
276

277 # Extract the target column for separate analysis
278 target_column = merged_df.columns[1]
279

280 # Extract feature columns for PCA
281 feature_columns = merged_df.columns[2:]
282

283 if scale is True:
284 # Scale the feature columns
285 feature_data = MinMaxScaler().fit_transform(merged_df[

,→ feature_columns])
286 else:
287 feature_data = merged_df[feature_columns]
288

289 # Perform PCA
290 pca = PCA()
291 principal_components = pca.fit_transform(feature_data)
292

293 # Create a DataFrame with PCA results
294 pca_result = pd.DataFrame(data=principal_components, columns=[f’PC{i}’

,→ for i in range(1, pca.n_components_ + 1)])
295 pca_result[’SMILES’] = merged_df[’SMILES’]
296 pca_result[target_column] = merged_df[target_column]
297

298 return pca_result, pca
299

300 def plot_pca_results(fig_type, pca_result, pca, target_column, directory,
,→ threshold=0.):

301 # Plot Explained Variance Ratio, 2D PCA, and 3D PCA in the same
,→ subplot

302 fig = plt.figure(figsize=(15, 18))
303

304 # Explained Variance Ratio
305 plt.subplot(3, 2, (1,2))
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306 plt.bar(range(1, len(pca.explained_variance_ratio_) + 1), pca.
,→ explained_variance_ratio_)

307 plt.xlabel(’Principal Components’)
308 plt.ylabel(’Explained Variance Ratio’)
309 plt.title(’Explained Variance Ratio’)
310

311 # 2D PCA
312 plt.subplot(3, 2, 3)
313 plt.scatter(pca_result[’PC1’], pca_result[’PC2’], c=pca_result[

,→ target_column], cmap=’viridis’)
314 plt.title(’2D PCA Continous Target’)
315

316 plt.subplot(3, 2, 4)
317 plt.scatter(pca_result[’PC1’][pca_result[target_column] > threshold],
318 pca_result[’PC2’][pca_result[target_column] > threshold],

,→ c=’red’, label=f’{target_column} > {threshold}’)
319 plt.scatter(pca_result[’PC1’][pca_result[target_column] <= threshold],
320 pca_result[’PC2’][pca_result[target_column] <= threshold],

,→ c=’blue’, label=f’{target_column} <= {threshold}’)
321 plt.legend()
322 plt.title(f’2D PCA Categorical Target’)
323

324 # 3D PCA
325 ax1 = fig.add_subplot(3, 2, 5, projection=’3d’)
326 scatter_3d = ax1.scatter(pca_result[’PC1’], pca_result[’PC2’],

,→ pca_result[’PC3’], c=pca_result[target_column], cmap=’viridis’)
327 cbar = plt.colorbar(scatter_3d, ax=plt.gca())
328 cbar.set_label(target_column)
329 ax1.set_title(’3D PCA Continous Target’)
330

331 ax2 = fig.add_subplot(3, 2, 6, projection=’3d’)
332 ax2.scatter(pca_result[’PC1’][pca_result[target_column] > threshold],
333 pca_result[’PC2’][pca_result[target_column] > threshold],
334 pca_result[’PC3’][pca_result[target_column] > threshold],

,→ c=’red’, label=f’{target_column} > {threshold}’)
335 ax2.scatter(pca_result[’PC1’][pca_result[target_column] <= threshold],
336 pca_result[’PC2’][pca_result[target_column] <= threshold],
337 pca_result[’PC3’][pca_result[target_column] <= threshold],

,→ c=’blue’, label=f’{target_column} <= {threshold}’)
338 ax2.legend()
339 ax2.set_title(f’3D PCA Categorical Target’)
340

341 # save figure
342 fig_name = os.path.join(directory, fig_type)
343 plt.savefig(f’{fig_name}_PCA.png’)
344 # plt.show()
345

346 def process_pca(fig_type, target_df, feature_df, target_column,
,→ save_directory, threshold=0.):



C

176 C. PYTHON LIBRARY FOR MACHINE LEARNING MODEL TRAINING AND ANALYSIS

347 result, pca = perform_pca(target_df, feature_df)
348

349 plot_pca_results(fig_type, result, pca, target_column, directory =
,→ save_directory,

350 threshold=threshold # change this as needed
351 )
352 return result, pca
353

354 def plot_histograms(df, save_directory):
355

356 # Identify numeric columns
357 numeric_cols = df.select_dtypes(include=[’number’]).columns
358

359 # Set the number of subplot rows and columns
360 n_rows = len(numeric_cols) // 2 + len(numeric_cols) % 2
361 n_cols = 5 if len(numeric_cols) > 1 else 1
362

363 # Create a figure to hold the subplots
364 fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols*5, n_rows*5))
365

366 # Flatten axes array if more than one subplot
367 if len(numeric_cols) > 1:
368 axes = axes.flatten()
369 else:
370 axes = [axes]
371

372 # Generate histograms
373 for ax, col in zip(axes, numeric_cols):
374 df[col].hist(ax=ax, bins=10, grid=False)
375 # ax.set_title(f’Histogram of {col}’)
376 ax.set_xlabel(col)
377 ax.set_ylabel(’Frequency’)
378

379 # Hide unused subplots
380 for ax in axes[len(numeric_cols):]:
381 ax.set_visible(False)
382

383 # Adjust layout
384 plt.tight_layout()
385

386 # Save the figure
387 plt.savefig(os.path.join(save_directory, ’feature_histograms.png’))
388

389 def learning_curves(estimator, X, y, scoring = ’
,→ neg_root_mean_squared_error’):

390 train_sizes, train_scores, test_scores = learning_curve(
391 estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 40), cv=10,
392 scoring=scoring, shuffle=True, n_jobs=-1)
393 return train_sizes, train_scores, test_scores
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394

395 def optimized_random_forest_model(X_train, y_train, X_test, y_test, shuffl
,→ =False):

396 # Define the model
397 def init_model(params):
398 model = RandomForestRegressor(n_estimators=int(params[’

,→ n_estimators’]),
399 max_depth=int(params[’max_depth’]),
400 min_samples_split=int(params[’

,→ min_samples_split’]),
401 max_features=params[’max_features’],
402 random_state=42,
403 n_jobs=-1)
404 return model
405

406 start = time.time()
407 # Define the objective function for optimization
408 def rf_bo(n_estimators, max_depth, min_samples_split, max_features):
409 params = {’n_estimators’: n_estimators, ’max_depth’: max_depth,
410 ’min_samples_split’: min_samples_split, ’max_features’:

,→ max_features}
411 model = init_model(params)
412 cv = KFold(n_splits=10, shuffle=shuffl, random_state=42 if shuffl

,→ else None)
413 return cross_val_score(model, X_train, y_train, cv=cv, scoring="

,→ neg_root_mean_squared_error", n_jobs=-1).mean()
414

415 # Define the bounds for hyperparameters
416 param_bounds = {’n_estimators’: (10, 1000), ’max_depth’: (1, 50), ’

,→ min_samples_split’: (2, 25), ’max_features’: (0.1, 0.999)}
417

418 # Run Bayesian Optimization
419 optimizer = BayesianOptimization(f=rf_bo, pbounds=param_bounds,

,→ random_state=42, verbose=0, allow_duplicate_points=True)
420 optimizer.maximize(init_points=40, n_iter=60)
421

422 # Train and test for the best hyperparameters
423 best_hyp_model = init_model(optimizer.max[’params’])
424 train_sizes, train_scores, test_scores = learning_curves(

,→ best_hyp_model, X_train, y_train)
425 learning_curve_metrics = {’train_sizes’: train_sizes, ’train_scores’:

,→ train_scores, ’test_scores’: test_scores}
426

427 # Fit model for validation predictions
428 final_model = best_hyp_model.fit(X_train, y_train)
429

430 # Predictions
431 y_fit = final_model.predict(X_train)
432 y_pred = final_model.predict(X_test)
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433

434 # Metrics from the final model
435 metrics = {
436 ’r2_train’: r2_score(y_train, y_fit),
437 ’rmse_train’: mean_squared_error(y_train, y_fit, squared=False),
438 ’mae_train’: mean_absolute_error(y_train, y_fit),
439 ’r2_test’: r2_score(y_test, y_pred),
440 ’rmse_test’: mean_squared_error(y_test, y_pred, squared=False),
441 ’mae_test’: mean_absolute_error(y_test, y_pred),
442 ’q2_test’: 1 - mean_squared_error(y_test, y_pred) / np.var(y_test)
443 }
444

445 # Print metrics
446 for metric, value in metrics.items():
447 print(f"{metric}: {round(value, 2)}")
448

449 print(f’\nOptimization took {round((time.time() - start)/60, 1)}
,→ minutes’)

450

451 return final_model, metrics, learning_curve_metrics
452

453 def optimized_svm_model(X_train, y_train, X_test, y_test, shuffl=False):
454 def init_model(params):
455 # Exponentiate parameters to transform them back from log scale to

,→ original scale
456 # log is necessary for searches in parameter spaces more evenly

,→ across vastly different scales, such as between 0.01-0.1 and 1-100
457 model = SVR(C=np.exp(params[’log_C’]), epsilon=np.exp(params[’

,→ log_epsilon’]), gamma=np.exp(params[’log_gamma’]))
458 return model
459

460 start = time.time()
461 # Define the objective function for optimization using transformed

,→ parameters
462 def svm_bo(log_C, log_epsilon, log_gamma):
463 params = {’log_C’: log_C, ’log_epsilon’: log_epsilon, ’log_gamma’:

,→ log_gamma}
464 model = init_model(params)
465 cv = KFold(n_splits=10, shuffle=shuffl, random_state=42 if shuffl

,→ else None)
466 return cross_val_score(model, X_train, y_train, cv=cv, scoring="

,→ neg_root_mean_squared_error", n_jobs=-1).mean()
467

468 # Bounds for hyperparameters, now on a log scale
469 param_bounds = {
470 ’log_C’: (np.log(0.001), np.log(1000)),
471 ’log_epsilon’: (np.log(0.001), np.log(10)),
472 ’log_gamma’: (np.log(0.0001), np.log(100))
473 }
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474

475 # Run Bayesian Optimization
476 optimizer = BayesianOptimization(f=svm_bo, pbounds=param_bounds,

,→ random_state=42, verbose=0, allow_duplicate_points=True)
477 optimizer.maximize(init_points=40, n_iter=60)
478

479 # Train and test for the best hyperparameters
480 best_hyp_model = init_model(optimizer.max[’params’])
481 train_sizes, train_scores, test_scores = learning_curves(

,→ best_hyp_model, X_train, y_train)
482 learning_curve_metrics = {’train_sizes’: train_sizes, ’train_scores’:

,→ train_scores, ’test_scores’: test_scores}
483

484 # Fit model for validation predictions
485 final_model = best_hyp_model.fit(X_train, y_train)
486

487 # Predictions
488 y_fit = final_model.predict(X_train)
489 y_pred = final_model.predict(X_test)
490

491 # Metrics from the final model
492 metrics = {
493 ’r2_train’: r2_score(y_train, y_fit),
494 ’rmse_train’: mean_squared_error(y_train, y_fit, squared=False),
495 ’mae_train’: mean_absolute_error(y_train, y_fit),
496 ’r2_test’: r2_score(y_test, y_pred),
497 ’rmse_test’: mean_squared_error(y_test, y_pred, squared=False),
498 ’mae_test’: mean_absolute_error(y_test, y_pred),
499 ’q2_test’: 1 - mean_squared_error(y_test, y_pred) / np.var(y_test)
500 }
501

502 # Print metrics
503 for metric, value in metrics.items():
504 print(f"{metric}: {round(value, 2)}")
505

506 print(f’\nOptimization took {round((time.time() - start)/60, 1)}
,→ minutes’)

507

508 return final_model, metrics, learning_curve_metrics
509

510 from sklearn.pipeline import Pipeline
511 from sklearn.preprocessing import PolynomialFeatures
512

513 def optimized_knn_model(X_train, y_train, X_test, y_test, shuffl=False):
514 def init_model(params):
515 # Create a pipeline with polynomial features, and KNN
516 model = Pipeline([
517 (’poly’, PolynomialFeatures(degree=2, include_bias=False)),
518 (’knn’, KNeighborsRegressor(n_neighbors=int(params[’
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,→ n_neighbors’]),
519 weights=params[’weights’],
520 metric=params[’metric’]))
521 ])
522 return model
523

524 start = time.time()
525

526 # Define the objective function for optimization
527 def knn_bo(n_neighbors, weights, metric):
528 # Map continuous weights to discrete values
529 weights_options = [’uniform’, ’distance’]
530 metric_options = [’euclidean’, ’manhattan’, ’minkowski’]
531 weights_mapped = weights_options[int(weights)]
532 metric_mapped = metric_options[int(metric)]
533

534 params = {’n_neighbors’: n_neighbors, ’weights’: weights_mapped, ’
,→ metric’: metric_mapped}

535 model = init_model(params)
536 cv = KFold(n_splits=10, shuffle=shuffl, random_state=42 if shuffl

,→ else None)
537 return cross_val_score(model, X_train, y_train, cv=cv, scoring="

,→ neg_root_mean_squared_error", n_jobs=-1).mean()
538

539 # Bounds for hyperparameters
540 param_bounds = {
541 ’n_neighbors’: (1, 10), # Assuming a reasonable max number of

,→ neighbors
542 ’weights’: (0, 1), # 0 for ’uniform’, 1 for ’distance’
543 ’metric’: (0, 1) # 0 for ’euclidean’, 1 for ’manhattan’
544 }
545

546 # Run Bayesian Optimization
547 optimizer = BayesianOptimization(f=knn_bo, pbounds=param_bounds,

,→ random_state=42, verbose=0, allow_duplicate_points=True)
548 optimizer.maximize(init_points=40, n_iter=60)
549

550 # Map optimized parameters back to their discrete values
551 optimized_params = optimizer.max[’params’]
552 optimized_params[’weights’] = [’uniform’, ’distance’][int(

,→ optimized_params[’weights’])]
553 optimized_params[’metric’] = [’euclidean’, ’manhattan’, ’minkowski’][

,→ int(optimized_params[’metric’])]
554

555 # Train and test for the best hyperparameters
556 best_hyp_model = init_model(optimized_params)
557 train_sizes, train_scores, test_scores = learning_curves(

,→ best_hyp_model, X_train, y_train)
558 learning_curve_metrics = {’train_sizes’: train_sizes, ’train_scores’:
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,→ train_scores, ’test_scores’: test_scores}
559

560 # Fit model for validation predictions
561 final_model = best_hyp_model.fit(X_train, y_train)
562

563 # Predictions
564 y_fit = final_model.predict(X_train)
565 y_pred = final_model.predict(X_test)
566

567 # Metrics from the final model
568 metrics = {
569 ’r2_train’: r2_score(y_train, y_fit),
570 ’rmse_train’: mean_squared_error(y_train, y_fit, squared=False),
571 ’mae_train’: mean_absolute_error(y_train, y_fit),
572 ’r2_test’: r2_score(y_test, y_pred),
573 ’rmse_test’: mean_squared_error(y_test, y_pred, squared=False),
574 ’mae_test’: mean_absolute_error(y_test, y_pred),
575 ’q2_test’: 1 - mean_squared_error(y_test, y_pred) / np.var(y_test)
576 }
577

578 # Print metrics
579 for metric, value in metrics.items():
580 print(f"{metric}: {round(value, 2)}")
581

582 print(f’\nOptimization took {round((time.time() - start)/60, 1)}
,→ minutes’)

583

584 return final_model, metrics, learning_curve_metrics
585

586 def optimized_xgb_model(X_train, y_train, X_test, y_test, shuffl=False):
587 def init_model(params):
588 model = XGBRegressor(
589 n_estimators=int(params[’n_estimators’]),
590 max_depth=int(params[’max_depth’]),
591 learning_rate=params[’learning_rate’],
592 subsample=params[’subsample’],
593 colsample_bytree=params[’colsample_bytree’],
594 gamma=params[’gamma’],
595 reg_alpha=np.exp(params[’log_reg_alpha’]),
596 reg_lambda=np.exp(params[’log_reg_lambda’]),
597 random_state=42,
598 n_jobs=-1
599 )
600 return model
601

602 start = time.time()
603

604 # Define the objective function for optimization
605 def xgb_bo(n_estimators, max_depth, learning_rate, subsample,
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,→ colsample_bytree, gamma, log_reg_alpha, log_reg_lambda):
606 params = {
607 ’n_estimators’: n_estimators,
608 ’max_depth’: max_depth,
609 ’learning_rate’: learning_rate,
610 ’subsample’: subsample,
611 ’colsample_bytree’: colsample_bytree,
612 ’gamma’: gamma,
613 ’log_reg_alpha’: log_reg_alpha,
614 ’log_reg_lambda’: log_reg_lambda
615 }
616 model = init_model(params)
617 cv = KFold(n_splits=10, shuffle=shuffl, random_state=42 if shuffl

,→ else None)
618 return cross_val_score(model, X_train, y_train, cv=cv, scoring="

,→ neg_root_mean_squared_error", n_jobs=-1).mean()
619

620 # Bounds for hyperparameters
621 param_bounds = {
622 ’n_estimators’: (100, 1000),
623 ’max_depth’: (2, 10),
624 ’learning_rate’: (0.01, 0.1),
625 ’subsample’: (0.1, 1.0),
626 ’colsample_bytree’: (0.1, 1.0),
627 ’gamma’: (0.1, 1.0),
628 ’log_reg_alpha’: (-3, 2),
629 ’log_reg_lambda’: (-3, 2)
630 }
631

632 # Run Bayesian Optimization
633 optimizer = BayesianOptimization(f=xgb_bo, pbounds=param_bounds,

,→ random_state=42, verbose=0, allow_duplicate_points=True)
634 optimizer.maximize(init_points=40, n_iter=60)
635

636 # Train and test for the best hyperparameters
637 best_hyp_model = init_model(optimizer.max[’params’])
638 train_sizes, train_scores, test_scores = learning_curves(

,→ best_hyp_model, X_train, y_train)
639 learning_curve_metrics = {’train_sizes’: train_sizes, ’train_scores’:

,→ train_scores, ’test_scores’: test_scores}
640

641 # Fit model for validation predictions
642 final_model = best_hyp_model.fit(X_train, y_train,
643 early_stopping_rounds=10, eval_set=[(

,→ X_test, y_test)], verbose=False)
644

645 # Predictions
646 y_fit = final_model.predict(X_train)
647 y_pred = final_model.predict(X_test)
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648

649 # Metrics from the final model
650 metrics = {
651 ’r2_train’: r2_score(y_train, y_fit),
652 ’rmse_train’: mean_squared_error(y_train, y_fit, squared=False),
653 ’mae_train’: mean_absolute_error(y_train, y_fit),
654 ’r2_test’: r2_score(y_test, y_pred),
655 ’rmse_test’: mean_squared_error(y_test, y_pred, squared=False),
656 ’mae_test’: mean_absolute_error(y_test, y_pred),
657 ’q2_test’: 1 - mean_squared_error(y_test, y_pred) / np.var(y_test)
658 }
659

660 # Print metrics
661 for metric, value in metrics.items():
662 print(f"{metric}: {round(value, 2)}")
663

664 print(f’\nOptimization took {round((time.time() - start)/60, 1)}
,→ minutes’)

665

666 return final_model, metrics, learning_curve_metrics
667

668 def save_model_and_metrics(model, metrics, save_directory, model_name):
669 # Save the model with pickle
670 model_path = os.path.join(save_directory, f’{model_name}.pkl’)
671 with open(model_path, ’wb’) as file:
672 pickle.dump(model, file)
673 print(f"Model saved to {model_path}")
674

675 # Convert metrics dictionary to a pandas DataFrame
676 metrics_df = pd.DataFrame([metrics])
677

678 # Save the metrics DataFrame to an Excel file
679 metrics_file_path = os.path.join(save_directory, f’{model_name}

,→ _metrics.xlsx’)
680 metrics_df.to_excel(metrics_file_path, index=False)
681 print(f"Optimized model and metrics for {model_name} saved to {

,→ metrics_file_path}")
682

683 def save_learning_curves(learning_curve_metrics, save_directory,
,→ model_name):

684 # Convert the learning curve metrics to a pandas DataFrame
685 train_sizes, train_scores, test_scores = learning_curve_metrics.values

,→ ()
686 # Convert the results into a DataFrame
687 learning_curve_df = pd.DataFrame({
688 ’Train Sizes’: train_sizes,
689 ’Train Scores’: train_scores.mean(axis=1),
690 ’Test Scores’: test_scores.mean(axis=1)
691 })
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692 # Save the learning curve DataFrame to an Excel file
693 learning_curve_file_path = os.path.join(save_directory, f’{model_name}

,→ _learning_curves.xlsx’)
694 learning_curve_df.to_excel(learning_curve_file_path, index=False)
695 print(f"Learning curve for {model_name} saved to {

,→ learning_curve_file_path}")
696

697 def plot_learning_curves(learning_curve_metrics, save_directory,
,→ model_name, error=True):

698 train_sizes, train_scores, test_scores = learning_curve_metrics.values
,→ ()

699 # Calculate means and standard deviations
700 train_scores_mean = -train_scores.mean(axis=1)
701 train_scores_std = train_scores.std(axis=1)
702 test_scores_mean = -test_scores.mean(axis=1)
703 test_scores_std = test_scores.std(axis=1)
704

705 # Create plot
706 plt.figure()
707 if error is True:
708 plt.fill_between(train_sizes, train_scores_mean - train_scores_std

,→ ,
709 train_scores_mean + train_scores_std, alpha=0.1,

,→ color=’r’)
710 plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
711 test_scores_mean + test_scores_std, alpha=0.1,

,→ color=’b’)
712 plt.plot(train_sizes, train_scores_mean, ’o-’, color=’r’, label=’Train

,→ ’)
713 plt.plot(train_sizes, test_scores_mean, ’o-’, color=’b’, label=’Test’)
714 plt.xlabel(’Training set size’)
715 plt.ylabel(’RMSE’)
716 plt.legend(loc=’best’)
717

718 # Save the plot
719 plt.savefig(os.path.join(save_directory, f’{model_name}

,→ _learning_curves.png’))
720 # Display the plot
721 # plt.show()
722

723 def prediction_plot(model, metrics, X_train, y_train, X_test, y_test,
,→ save_directory, model_name):

724 plt.figure()
725 # Getting predictions
726 train_predictions = model.predict(X_train)
727 test_predictions = model.predict(X_test)
728

729 # Plotting train and validation data
730 train_scatter = plt.scatter(y_train, train_predictions, label=’Train’)
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731 train_color = train_scatter.get_facecolor()[0] # Get color of the
,→ first trace

732 plt.scatter(y_test, test_predictions, label=’Validation’)
733

734 # Determine the range for the diagonal line
735 combined_values = np.concatenate([y_train.to_numpy().ravel(),

,→ train_predictions.ravel(), y_test.to_numpy().ravel(),
,→ test_predictions.ravel()])

736 min_val, max_val = combined_values.min(), combined_values.max()
737

738 # Diagonal line indicating perfect predictions
739 plt.plot([min_val, max_val], [min_val, max_val], ls="--", c="gray",

,→ alpha=0.5)
740

741 # Labels and legend
742 plt.xlabel(’Actual’)
743 plt.ylabel(’Predicted’)
744 plt.legend()
745

746 # Adjust the limits and aspect ratio to make x and y axes have equal
,→ units

747 plt.xlim(min_val, max_val)
748 plt.ylim(min_val, max_val)
749 # plt.axis(’equal’)
750

751 # Add R^2 and MAE metrics to the plot
752 textstr = ’\n’.join((
753 f’R2: {metrics["r2_train"]:.2f}’,
754 f’MAE: {metrics["mae_train"]:.2f}’,
755 ))
756 # Position the text on the plot; adjust the position as necessary
757 plt.gca().text(0.85, 0.1, textstr, transform=plt.gca().transAxes,

,→ fontsize=10, verticalalignment=’top’, color=train_color)
758

759 # Ensure the save_directory exists
760 os.makedirs(save_directory, exist_ok=True)
761

762 plt.savefig(os.path.join(save_directory, f’{model_name}
,→ _prediction_plot.png’))

763 # Display the plot
764 # plt.show()
765

766 def summarise_learning_curves(root_dir):
767 # DataFrame to collect all summary data
768 summary_df = [[’scaling’, ’features’, ’model’, ’cross_validation_rmse’

,→ ]]
769

770 # Define the directory structure
771 scalings = [’minmax’, ’noscale’, ’power’, ’standard’]
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772 features = [’all_features’, ’RFE_selected_10’, ’shap_selected_best’]
773 models = [’RF_learning_curves’, ’SVR_learning_curves’, ’

,→ KNN_learning_curves’, ’XGB_learning_curves’]
774

775 # Traverse the directory structure
776 for scaling in scalings:
777 for feature in features:
778 for model in models:
779 file_path = os.path.join(root_dir, scaling, feature, model

,→ + ’.xlsx’)
780 if os.path.exists(file_path):
781 # Load the Excel file
782 data = pd.read_excel(file_path)
783 # Extract the last value from the ’Test Scores’ column
784 last_test_score = data[’Test Scores’].iloc[-1]
785 # Append the data to the DataFrame
786 summary_df.append([scaling, feature, model.replace(’

,→ _learning_curves’, ’’), last_test_score])
787

788 # Save the summary DataFrame to a new Excel file
789 summary_df = pd.DataFrame(summary_df[1:], columns=summary_df[0])
790 summary_df.to_excel(os.path.join(root_dir, ’cv_summary.xlsx’), index=

,→ False)
791 sorted_summary_df = summary_df.sort_values(by=’cross_validation_rmse’,

,→ ascending=False)
792 sorted_summary_df.to_excel(os.path.join(root_dir, ’sorted_cv_summary.

,→ xlsx’), index=False)
793

794 return sorted_summary_df
795

796

797

798 def compare_models(df_target_location, df_descriptors_location):
799 # target generated from experiments
800 df_target = pd.read_csv(df_target_location)
801 # descriptors calculated with cheminformatics tools
802 df_descriptors = pd.read_csv(df_descriptors_location)
803 # descriptors determined experimentally, to be added to

,→ computationally generated descriptor datasets
804 exp_descriptors = pd.read_csv(r’C:\Users\black\Projects\Molecule-

,→ Discovery\data\features\ph_sol_exp_features.csv’)
805

806 # merge computational descriptors with experimentally measured
,→ features

807 merged_descriptors = pd.merge(df_descriptors, exp_descriptors, on=’
,→ SMILES’, how=’inner’)

808

809 # save directory and titles
810 saved_directory = r"C:\Users\black\Projects\Molecule-Discovery\
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,→ notebooks\feature_selection\feature-target_comparisons"
811

812 # specify the target column based on the file name
813 head, tail = os.path.split(df_target_location)
814 # dictionary mapping file names to target columns
815 file_to_column = {
816 ’Rp_24h.csv’: ’<Rp> (kOhm cm2)’,
817 ’Rp_avg.csv’: ’<Rp> (kOhm cm2)’,
818 ’Rp_EIS24h.csv’: ’|Z| (kOhm cm2)’,
819 ’IP_24h.csv’: ’IP (dB)’,
820 ’IP_avg.csv’: ’IP (dB)’,
821 ’IP_EIS24h.csv’: ’|Z| (kOhm cm2)’,
822 ’IE_24h.csv’: ’IE (%)’,
823 ’IE_avg.csv’: ’IE (%)’,
824 ’IE_EIS24h.csv’: ’|Z| (kOhm cm2)’
825 }
826 # mapping
827 if tail in file_to_column:
828 target_column = file_to_column[tail]
829

830 # later for use as threshold in PCA and others
831 if target_column == ’<Rp> (kOhm cm2)’:
832 threshold = 30000.
833 elif target_column == ’IP (dB)’:
834 threshold = 3.
835 elif target_column == ’IE (%)’:
836 threshold = 50.
837 elif target_column == ’|Z| (kOhm cm2)’:
838 threshold = 0.
839

840 # target-feature combined directory for automatic saving
841 feature_target_combination = combine_strings_with_underscore(

,→ process_string(df_descriptors_location),process_string(
,→ df_target_location))

842 directory = os.path.join(saved_directory, feature_target_combination)
843 os.makedirs(directory, exist_ok=True)
844

845 # feature prepreprocessing with different scaling
846 noscale_descriptors = preprocessing(merged_descriptors ,scale=False)
847 minmax_scaled_descriptors = preprocessing(merged_descriptors ,scale=

,→ True, scaler=’min_max’)
848 standard_scaled_descriptors = preprocessing(merged_descriptors ,scale=

,→ True, scaler=’standard’)
849 power_scaled_descriptors = preprocessing(merged_descriptors ,scale=

,→ True, scaler=’power’)
850

851 print(r’Total features after preprocessing:’, noscale_descriptors.
,→ shape[1]-1)

852
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853 # make directories for each scaling
854 noscale_directory = os.path.join(directory, ’noscale’)
855 minmax_directory = os.path.join(directory, ’minmax’)
856 standard_directory = os.path.join(directory, ’standard’)
857 power_directory = os.path.join(directory, ’power’)
858 os.makedirs(noscale_directory, exist_ok=True)
859 os.makedirs(minmax_directory, exist_ok=True)
860 os.makedirs(standard_directory, exist_ok=True)
861 os.makedirs(power_directory, exist_ok=True)
862

863 # read previously performed stratified split for consistent train/
,→ validation split

864 df_stratified = pd.read_csv(os.path.join(saved_directory, ’
,→ stratified_split.csv’))

865 df_stratified = pd.merge(df_target, df_stratified, on=’SMILES’)
866

867 # saving UMAP visualizations for each scaling
868 visualize_chemspace(df_stratified, noscale_descriptors, split_names=["

,→ split"], target_column=target_column, output_file=os.path.join(
,→ noscale_directory, ’UMAP_chemspace.png’))

869 visualize_chemspace(df_stratified, minmax_scaled_descriptors,
,→ split_names=["split"], target_column=target_column, output_file=os.
,→ path.join(minmax_directory, ’UMAP_chemspace.png’))

870 visualize_chemspace(df_stratified, standard_scaled_descriptors,
,→ split_names=["split"], target_column=target_column, output_file=os.
,→ path.join(standard_directory, ’UMAP_chemspace.png’))

871 visualize_chemspace(df_stratified, power_scaled_descriptors,
,→ split_names=["split"], target_column=target_column, output_file=os.
,→ path.join(power_directory, ’UMAP_chemspace.png’))

872

873 # pearson correlations between selected features and target
874 pearson_correlations(noscale_descriptors, df_target).to_excel(os.path.

,→ join(noscale_directory, ’pearson_correlations.xlsx’))
875 pearson_correlations(minmax_scaled_descriptors, df_target).to_excel(os

,→ .path.join(minmax_directory, ’pearson_correlations.xlsx’))
876 pearson_correlations(standard_scaled_descriptors, df_target).to_excel(

,→ os.path.join(standard_directory, ’pearson_correlations.xlsx’))
877 pearson_correlations(power_scaled_descriptors, df_target).to_excel(os.

,→ path.join(power_directory, ’pearson_correlations.xlsx’))
878

879 # feature selection with RFE and Shapley
880 descriptor_list = [noscale_descriptors, minmax_scaled_descriptors,

,→ standard_scaled_descriptors, power_scaled_descriptors]
881 directory_list = [noscale_directory, minmax_directory,

,→ standard_directory, power_directory]
882

883 selected_features_10_list = []
884 shap_best_list = []
885 for descriptor, directory in zip(descriptor_list, directory_list):
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886 # RFE
887 selected_features_10 = recursive_feature_elimination(descriptor,

,→ df_target, num_features=10)
888 selected_features_10.to_excel(os.path.join(directory, ’

,→ RFE_selected_features.xlsx’))
889 selected_features_10_list.append(selected_features_10)
890 # Shapley
891 shap_best, report = shapley_feature_elimination(descriptor,

,→ df_target, reporting=True)
892 shap_best.to_excel(os.path.join(directory, ’

,→ shapley_selected_features.xlsx’))
893 report.to_excel(os.path.join(directory, ’shapley_report.xlsx’))
894 shap_best_list.append(shap_best)
895

896 feature_lists = [descriptor_list, selected_features_10_list,
,→ shap_best_list]

897

898 # PCA analysis for each scaling
899 for descriptor_lists, save_names in zip([descriptor_list,

,→ selected_features_10_list], ["all_features", "10_RFE-features"]):
900 for descriptor, directory in zip(descriptor_lists, directory_list)

,→ :
901 if len(perform_pca(df_target, descriptor)[0].columns) > 3:
902 process_pca(save_names, df_target, descriptor,

,→ target_column, save_directory=directory, threshold=threshold)
903

904 # plotting histograms for selected features
905 for descriptor, directory_item in zip(selected_features_10_list,

,→ directory_list):
906 plot_histograms(descriptor, directory_item)
907

908 # model training and evaluation
909

910 i = -1
911 for feature_list in feature_lists:
912 for descriptor, feature_directory in zip(feature_list,

,→ directory_list):
913 i = i+1
914 print(f"***Training set {i+1} out of 12***")
915 # stratified test and validation split
916 X_train = descriptor[df_stratified[’split’]==’train’].drop(

,→ columns=[’SMILES’], inplace=False)
917 y_train = df_target[df_stratified[’split’]==’train’].drop(

,→ columns=[’SMILES’], inplace=False)
918 X_test = descriptor[df_stratified[’split’]==’validation’].drop

,→ (columns=[’SMILES’], inplace=False)
919 y_test = df_target[df_stratified[’split’]==’validation’].drop(

,→ columns=[’SMILES’], inplace=False)
920
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921 # Defining regression models and their corresponding names
922 models = {
923 ’RF’: optimized_random_forest_model,
924 ’SVR’: optimized_svm_model,
925 ’KNN’: optimized_knn_model,
926 ’XGB’: optimized_xgb_model
927 }
928

929 # Iterating through models, training, saving metrics, and
,→ plotting predictions

930 for model_name, model_func in models.items():
931 print(f"{model_name} model: {[’all_features’, ’

,→ RFE_selected_10’, ’shap_selected_best’][(i) // 4]}-{[’noscale’, ’
,→ minmax’, ’standard’, ’power’][i % 4]}")

932 # create directories for model saving
933 feat_directory = os.path.join(feature_directory, [’

,→ all_features’, ’RFE_selected_10’, ’shap_selected_best’][(i) // 4])
934 os.makedirs(feat_directory, exist_ok=True)
935 # model training
936 model, metrics, learning_curve_metrics = model_func(

,→ X_train, y_train, X_test, y_test, shuffl=True)
937 # saving metrics and plots
938 save_model_and_metrics(model, metrics, feat_directory,

,→ model_name=model_name)
939 prediction_plot(model, metrics, X_train, y_train, X_test,

,→ y_test, feat_directory, model_name=model_name)
940 save_learning_curves(learning_curve_metrics,

,→ feat_directory, model_name)
941 plot_learning_curves(learning_curve_metrics,

,→ feat_directory, model_name=model_name)
942

943 # summarise learning curves
944 directory = os.path.join(saved_directory, feature_target_combination)
945 summarise_learning_curves(directory)
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tinued his education in materials science with a master’s in Materials Science & Engi-
neering (2020) from TU Delft, Delft, the Netherlands. His master thesis studied the rela-
tionship between the microstructure and corrosion/passivation behavior of multi-phase
high strength low alloy steels. After a brief period of working as a materials scientist in
the industry on thermoelectric and battery anode materials development, he joined the
Corrosion Technology and Electrochemistry group in May 2021 as a PhD candidate.

For the last 4 years, Can has been working on corrosion inhibitor discovery as an ex-
perimental scientist under the supervision of Dr. Peyman Taheri and Dr. Arjan Mol. His
research aimed to improve the understanding of corrosion inhibition and self-healing
mechanisms of coatings. He analyzed inorganic conversion layers and organic self-
assembled thin films with surface analytical and electrochemical experiments at micro
to nano-scale, density functional theory simulations, and predictive machine-learning
relationships.

Next to his scientific work, he volunteered to be the PhD liaison of TUBalkain, stu-
dent society of the Materials Science and Engineering Department of TU Delft, to pro-
mote the rights of graduate students. He was scientific communications officer and
board member for yEFC, the youth branch of the European Federation of Corrosion. He
assisted with the organization of AETOC24 (Application of Electrochemical Techniques
to Organic Coatings Conference) as the scientific secretary, and created the 4TU.HTM -
TU Delft joint workshop on the Role of Machine Learning in Molecular Discovery and
Scientific Understanding.

Lately, he is slowly becoming better at scuba-diving and tennis. When he is not work-
ing he uses his experimentation skills to brew the perfect cup of coffee.

225



CORROSION INHIBITION 
OF AEROSPACE ALLOYS
THROUGH ORGANIC MOLECULES
AN END-TO-END MATERIALS DISCOVERY APPROACH
FROM SURFACE ANALYTICAL AND ELECTROCHEMICAL EXPERIMENTS 
TO PREDICTIVE MACHINE LEARNING RELATIONSHIPS

CAN ÖZKAN

C
O

RRO
SIO

N
 IN

H
IBITIO

N
 O

F A
ERO

SPA
C

E A
LLO

YS TH
RO

U
G

H
 O

RG
A

N
IC

 M
O

LEC
U

LES      C
A

N
 Ö

ZK
A

N


	Summary
	Samenvatting
	Özet
	Preface
	List of Figures
	List of Tables
	On Corrosion Inhibition
	Context 
	Societal importance of finding novel corrosion inhibitors
	Challenges of materials discovery with machine learning

	Scientific Background
	Corrosion of aluminium alloys
	Corrosion inhibition

	Research Aim and Approach

	Causing Inhibition
	Introduction
	Methods
	Sample preparation
	Inhibitors & electrolytes
	Electrochemical experiments
	Molecular descriptor generation, feature selection and evaluation of random forest models

	Results and Discussion
	Experimental results
	Quantifying inhibitor performance
	Comparison of electrochemical techniques: Inhibition Efficiency vs. Inhibition Power
	Ranking of inhibitors
	Understanding and predicting inhibition: experimental input features for the machine learning model
	Exploring experimental descriptors for machine learning

	Conclusion
	Supplementary Information
	Experimental details
	Experiment feature correlations
	Electrochemical performance distributions
	Recursive feature selection


	Evaluating Inhibition
	Introduction
	Methods
	Sample preparation
	Electrolytes
	Electrochemical experiments

	Results and Discussion
	Influence of inhibitor concentration
	Influence of time
	Influence of physicochemical stability
	Influence of electrochemical stability

	Conclusions

	Sustaining Inhibition
	Introduction
	Materials and Methods
	Sample preparation
	Electrolyte exposure
	Electrochemical measurements
	Atomic force microscopy (AFM) / Scanning Kelvin probe force microscopy (SKPFM)
	X-ray photoelectron spectroscopy (XPS)
	Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR)
	Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)
	Time-of-flight secondary ion mass spectrometry (ToF-SIMS)
	Speciation calculations
	Density functional theory (DFT) calculations

	Results and Discussion
	Electrochemical response to molecule presence and subsequent absence
	Surface topography and potential distributions
	Persisting chemical signatures after molecule withdrawal
	Temporal evolution of surface-bound species in the subsequent absence of inhibitor molecules
	Detection of persistent molecular fragments on the surface
	Theoretical insights into molecule stability and chemistry
	Mechanistic hypothesis for a quasi-sustained corrosion inhibition

	Conclusions
	Supplementary Information
	X-ray photoelectron spectroscopy (XPS)
	Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)
	Time-of-flight secondary ion mass spectrometry (ToF-SIMS)
	Density functional theory (DFT) calculations


	Describing Inhibition
	Introduction
	Methods
	Generation of electrochemical targets
	Generation of fingerprints and physicochemical descriptors
	Machine learning model training and comparison
	Visualising fingerprints
	Generating best pseudomolecules through Bayesian Optimisation
	Curating the toxicity dataset for pseudomolecule similarity hits
	SHAP (Shapley additive explanations) analysis
	Validation experiments through electrochemical measurements

	Results and Discussion
	Describing corrosion inhibition
	Gaining mechanistic insight through algorithmic feature selection
	Visualising algorithmically selected fingerprints for finding the corrosion inhibition structural building blocks
	Bayesian Optimisation as a tool for understanding model decision-making process
	SHAP analysis for deciphering feature influence

	Conclusions
	Supplementary Information
	Predictive performance of the machine learning models
	Distribution of predictive performance for different model configurations


	Conclusions and Outlook
	Key Scientific Contributions
	Outlook

	Visualising chemical space for azole and pyridine/pyrimidine derivative molecules
	Mol-dex
	Python library for machine learning model training and analysis
	Bibliography
	List of Publications
	List of Presentations
	Acknowledgements
	Biography

