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Chapter 1

Introduction

J. Cramer

We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.

Correct a flip and phase - that will su�ce.
If in our code another error’s bred,
We simply measure it, then God plays dice,
Collapsing it to X or Y or Zed.

We start with noisy seven, nine, or five
And end with perfect one. To better spot
Those flaws we must avoid, we first must strive
To find which ones commute and which do not.

With group and eigenstate, we’ve learned to fix
Your quantum errors with our quantum tricks.

—Daniel Gottesman - Quantum Error Correction Sonnet

1 (1999)
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1. Introduction

The laws of quantum mechanics provide ways to develop computational systems that
promise to be incredibly more e�cient than any classical system. A major challenge
in quantum information technology however is the protection of quantum information
against inevitable errors. The Quantum Error Correction Sonnet points out important
aspects of quantum computation and error correction:

• We need to protect quantum information against errors, otherwise quantum
computations take too long and there is no advantage over classical computations.

• While we cannot clone quantum information, error correction based on ‘quantum
tricks’ can transform noisy quantum bits into perfect ones.

This thesis focusses on the experimental implementation of such ‘quantum tricks’,
quantum error correction, on a quantum register based on spins in diamond. In this
chapter I will give an introduction to quantum information processing and quantum
error correction. Additionally, I will introduce the nitrogen vacancy (NV) centre in
diamond, the experimental platform for the work presented in this thesis.

1.1 The future is quantum

The beginning of the 20th century is featured by a turning point in the physical
sciences. The laws of classical physics did not su�ce to describe the world of very
small particles such as atoms, electrons and photons. Under large debate, the laws
of quantum mechanics were developed, which predict that the state of these small
particles (quantum particles) can be described by a complex-valued wavefunction,
implying counter-intuitive particle-wave-like behavior. Quantum particles can be
in two states at the same time (superposition), share a single quantum state with
another quantum particle (entanglement) and their wavefunction is perturbed upon
measurement.

While the laws of quantum mechanics caused confusion among these physicists,
at the end of the century it was realized that quantum mechanics could be a game-
changer in future information technology. Quantum algorithms were developed that
predicted a great potential in computing power and first experiments based on the
laws of quantum mechanics were performed on quantum systems such as single
photons2, nuclear magnetic resonance3, atoms and ions4, superconducting systems5

and solid-state spins6.

Quantum information technology builds on the idea that the building blocks of
quantum computers, quantum bits (qubits), can replace classical bits to e�ciently
solve specific computational problems such as factorizing large numbers7. A quantum
bit of information follows the laws of quantum mechanics; where a classical bit can
take values of either ‘0’ or ‘1’, a quantum bit can be in any superposition of |0i and

2



1.2. A quantum register based on spins in diamond

|1i. This results in a scaling law8 for the number of degrees of freedom that can be
simultaneously represented in an N -qubit system following 2N .

Besides quantum computing, promising state-of-the-art research in quantum inform-
ation technology is focussed on the realization of quantum networks9,10, networks that
connect nodes by means of quantum entanglement. These networks can be used to
study both fundamental questions as well as future applications, such as fundamentally
secure communication11.

One of the main challenges in quantum information processing is the protection
of quantum information against errors12. Correcting errors in quantum states is
fundamentally challenging by three important consequences of the laws of quantum
mechanics. First of all, a quantum state can not be copied13, secondly, a measurement
irreversably projects a quantum state and finally, quantum errors are intrinsically
continuous14.

Nevertheless, in the last years of the 20th century, the first protocols on the
correction of errors were proposed by Peter Shor15 and Andrew Steane16. This thesis
will follow their steps from theory towards experimental implementations of quantum
error correction. Following the protocols, a quantum state is protected by redundant
encoding in multiple data qubits. Errors are detected by correlation measurements
(stabilizer measurements) on the data qubits via ancillary qubits, and subsequently
corrected. This thesis focusses on the experimental implementation of such quantum
error correction codes in a quantum system based on spins in diamond.

1.2 A quantum register based on spins in diamond

The work presented in this thesis is based on the nitrogen vacancy (NV) color centre in
diamond. This solid-state system with atomic-like properties is a promising building
block for the implementation of quantum technology17. It combines the long coherence
times of an isolated spin system18,19 with the opportunities of the semiconductor
industry20. The NV center supplies an electron spin system that can serve as an
optical interface, suitable for exploration of remote quantum communication21–23.
Moreover, the naturally available nuclear spins in the spin bath coupled to the NV
electron spin provide a local quantum register of long-lived nuclear spins19,24–36.

The NV electronic spin can be initialized and read out by optical means, even at
ambient temperatures37. Moreover, at cryogenic temperatures (⇠ 4 K), the resonant
excitation of spin-selective optical transitions can be used for high-fidelity single-shot
readout and initialization of the electron spin state38,39. These properties make the
NV centre a leading platform in remote quantum communication experiments.21–23.

The manipulation of the NV electron spin using magnetic resonance techniques
constitutes a robust control of the electron spin state as a quantum bit24,40,41. The
dominant source of decoherence of the electron spin is the slowly fluctuating nuclear

3



1. Introduction

spin bath. Dynamical decoupling techniques e↵ectively suppress this noise, resulting
in an improvement of the coherence times by orders of magnitude42–45.

Although nuclear spins in the environment of the NV center are the main source of
decoherence to the NV electron spin, recent work has shown detection and character-
ization of the long-lived nuclear spins via the NV center26,35,36,46,47. In Chs. 4,5 of
this thesis, we show complete coherent control of these nuclear spins, turning them
from a source of decoherence into a multi-qubit spin register. The control of such
nuclear spins that are naturally available in the diamond lattice allows for the control
of a long-lived spin register as a local node in diamond. In this thesis I present the
implementation of quantum error correction codes based on multiple nuclear spins
that are controlled as qubits via the NV electron spin.

out [1]: 
PC

Figure 1.1 — Quantum error correction and quantum networks based on spins in
diamond. Illustration of the envisioned implementation of quantum networks based on
spins in diamond10 with spin registers as local nodes. Each NV electron spin is surrounded
by nuclear spins that can be individually controlled by dynamical decoupling of the electron
spin26,36. The NV electron spin can be optically read out and classical feedback can be
applied. Entangled networking links between distant NV centres are generated via photon
interference and measurements48.

4



1.3. Thesis overview

1.3 Thesis overview

The structure of this thesis is as follows:

In chapter 2 I present the elements of quantum error correction that are relevant
for the results presented in this thesis. I will discuss quantum errors, quantum
error correction codes and requirements for fault-tolerant quantum error correction.
Furthermore, I will briefly discuss the experimental characterization of quantum error
correction experiments.

Chapter 3 focusses on the NV centre and the spin register based on nuclear spins
in the diamond lattice relevant for this thesis. I will discuss control, initialization
and readout of the NV electron spin. Furthermore, I will describe the detection and
control of nuclear spins as qubits. Finally, I will give an outline of the experimental
setups used for this thesis.

Chapter 4 covers the implementation of an error correction protocol with spins in
diamond at ambient temperatures. We show universal control over multiple nuclear
spins via the electron spin. A quantum state is encoded in the NV electron spin and
two nuclear spins. Errors are detected by reversing the encoding to the electron spin
and corrected via a doubly-controlled operation.

In chapter 5 we show the implementation of a repeated three-qubit quantum error
correction code by stabilizer measurements and active feedback on a continuously
encoded quantum state. An arbitrary quantum state is continuously encoded in three
nuclear spins and errors are detected and corrected via the NV electron spin. The
electron spin is used as ancilla qubit, enabled by its high-fidelity non-destructive
readout at cryogenic temperatures.

Chapter 6 proposes experiments on quantum error detection and correction codes
that can detect both bit-flip and phase-flip errors that will be feasible in the near
future, based on the developed spin register and control methods. I will discuss the
experimental implementation of a four-qubit quantum error detection scheme in which
two logical qubits are encoded to detect general single-qubit errors. Finally, I will
discuss a five-qubit quantum error correction scheme in which a general single-qubit
errors can be corrected.

Finally, in chapter 7 the main results of this thesis will be summarized and an
outlook towards the implementation of extended quantum error correction codes and
the exploration of quantum networks will be given.
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[30] A. Dréau, P. Spinicelli, J. R. Maze, J.-F. Roch and V. Jacques. Single-Shot
Readout of Multiple Nuclear Spin Qubits in Diamond under Ambient Conditions.
Physical Review Letters 110, 060502 (2013).

7



1. Introduction

[31] W. Pfa↵ et al. Unconditional quantum teleportation between distant solid-state
quantum bits. Science 345, 532 (2014).

[32] T. van der Sar et al. Decoherence-protected quantum gates for a hybrid solid-state
spin register. Nature 484, 82 (2012).

[33] G. Waldherr et al. Quantum error correction in a solid-state hybrid spin register.
Nature 506, 204 (2014).

[34] E. Kessler, I. Lovchinsky, A. Sushkov and M. Lukin. Quantum Error Correction
for Metrology. Physical Review Letters 112, 150802 (2014).

[35] A. Reiserer et al. Robust Quantum-Network Memory Using Decoherence-
Protected Subspaces of Nuclear Spins. Physical Review X 6, 021040 (2016).

[36] T. H. Taminiau, J. Cramer, T. v. d. Sar, V. V. Dobrovitski and R. Hanson.
Universal control and error correction in multi-qubit spin registers in diamond.
Nature Nanotechnology 9, 171 (2014).

[37] F. Jelezko, T. Gaebel, I. Popa, A. Gruber and J. Wrachtrup. Observation of
Coherent Oscillations in a Single Electron Spin. Physical Review Letters 92,
076401 (2004).

[38] L. Robledo, H. Bernien, I. van Weperen and R. Hanson. Control and Coherence of
the Optical Transition of Single Nitrogen Vacancy Centers in Diamond. Physical

Review Letters 105, 177403 (2010).

[39] L. Robledo, H. Bernien, T. v. d. Sar and R. Hanson. Spin dynamics in the optical
cycle of single nitrogen-vacancy centres in diamond. New Journal of Physics 13,
025013 (2011).

[40] G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans and D. D. Awschalom.
Gigahertz Dynamics of a Strongly Driven Single Quantum Spin. Science 326,
1520 (2009).

[41] M. W. Doherty et al. The nitrogen-vacancy colour centre in diamond. Physics

Reports 528, 1 (2013).

[42] G. de Lange. Quantum control and coherence of interacting spins in diamond.
PhD Thesis, Delft, University of Technology (2012).

[43] C. A. Ryan, J. S. Hodges and D. G. Cory. Robust Decoupling Techniques to
Extend Quantum Coherence in Diamond. Physical Review Letters 105, 200402
(2010).

[44] B. Naydenov et al. Dynamical decoupling of a single-electron spin at room
temperature. Physical Review B 83, 081201 (2011).

8



1.4. Bibliography

[45] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker and R. L. Walsworth. Solid-state
electronic spin coherence time approaching one second. Nature Communications

4, 1743 (2013).

[46] S. Kolkowitz, Q. P. Unterreithmeier, S. D. Bennett and M. D. Lukin. Sensing
Distant Nuclear Spins with a Single Electron Spin. Physical Review Letters 109,
137601 (2012).

[47] N. Zhao et al. Sensing single remote nuclear spins. Nature Nanotechnology 7,
657 (2012).

[48] H. Bernien et al. Heralded entanglement between solid-state qubits separated by
three metres. Nature 497, 86 (2013).

9



1. Introduction

10



Chapter 2

Elements of experimental

quantum error correction

J. Cramer

The protection of quantum states against errors is a major challenge on the road
towards large-scale quantum information processing. Quantum error correction codes
protect quantum information against errors by redundant encoding in multiple data
qubits. Errors are detected and corrected by stabilizer measurements and feedback.
In this chapter I will discuss elements of the remarkable concept of quantum error
correction that are relevant for the experiments presented in this thesis and for those
planned in the near future. After briefly discussing the quantum nature of errors
in quantum systems (Sec. 2.2), in Sec. 2.3 I will introduce the three-qubit bit-flip
code and the smallest general quantum error correction code, in which a quantum
state is encoded in five data qubits. I will discuss fault tolerance, a key requirement
for scalable quantum error correction (Sec. 2.4) and experimental characterization
methods for the implementation of quantum error correction codes in Sec. 2.5.
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2. Elements of experimental quantum error correction

2.1 Introduction

Correcting errors is essential for the feasibility of quantum information processing.
Quantum information is substantially influenced by its environment and both bit-flip
and phase-flip errors continuously grow. Error correction can be a matter of redund-
ancy, but the ‘no-cloning’-theorem complicates this for quantum states; a quantum
state can not simply be copied1. Furthermore, detecting errors by measurements of
individual quantum states would immediately project these quantum states. The
discovery of codes to correct errors in quantum states was therefore truly surprising2–5.

In 1995 Peter Shor2 and Andrew Steane3 independently found a way to work around
these seemingly deal-breaking obstacles. They came up with quantum error correction
(QEC) codes: detecting and correcting errors in quantum states. These codes can be
implemented such that the realization of (almost) noise-free quantum computations
can be realized at the cost of acceptable overhead6. In an error-corrected quantum
system, with an average error probability that is less than a critial value (the accuracy
threshold), arbitrary long quantum computations can be reliably performed7,8.

In this chapter, I will consider QEC codes based on stabilizer measurements and
ancilla qubits. A general example is given in Fig. 2.1; a logical qubit is protected by

Classical control layer

Qubits

Encode

Ancilla

Compute Detect Correct Compute Detect Correct

Figure 2.1 — General concept of quantum error correction based on stabilizer
measurements. A logical qubit is protected by encoding in an entangled state of multiple
data qubits. Errors occur on the data qubits due to uncontrolled interactions with the
environment and due to finite precision in control operations (‘compute’). Ancilla-based
stabilizer measurements on the data qubits project and thereby e↵ectively discretize the
errors. The measurement outcomes of the stabilizer measurements contain information on
the projected errors (the error syndrome), which is processed by a classical control layer to
apply the feedback required to correct the detected error where needed. Rounds of error
detection and correction can be repeated on the continuously encoded logical qubit.
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2.2. Quantum errors

redundantly encoding in multiple (physical) data qubits. The logical qubit is described
by the logical code space which is defined by a set of stabilizer operators, and a
logical operator defining the codewords, the logical eigenstates of the QEC code9. The
stabilizer operators and logical operators are Kronecker products of single-qubit Pauli
operators (X, Y , Z operations) and define the so-called ‘Pauli frame’10 of the logical
qubit.

Errors are repeatedly detected by measuring the stabilizer operators via ancilla
qubits. These stabilizer measurements project the continuous errors on the data
qubits to discrete Pauli (X, Y or Z) operations on the data qubits. The resulting
measurement outcomes form the error syndrome and are processed in a classical
control layer, where the most probable error is determined11. Succesfully detected
errors can be corrected where needed by adapting the Pauli frame or by single-qubit
Pauli operations.

The overview given in this chapter is not intended to be a complete review of the
theoretical foundations of QEC. Instead, this chapter gives an overview of relevant
elements for the implementation of QEC in our experiments. I will briefly point
out recent experimental considerations and will discuss the characterization of QEC
experiments.

2.2 Quantum errors

Before discussing QEC methods, I will briefly discuss sources and types of errors.
It is important to note that quantum errors can be continuous. For instance, in
experimental quantum information amplitudes and phases can fluctuate over time.
By the implementation of stabilizer measurements in QEC, all errors are discretized
to X, Y or Z (Pauli) errors.

The types of errors are highly dependent on the specific physical system. Sources of
errors such as imperfect measurement and initialization, loss and leakage eventually
can all be brought back to coherent and incoherent error models9. Errors can be
systematic and coherent, caused by imperfect knowledge of the experimental system.
To a large extent such errors can be prevented by a better characterization of the
full physical system and can finally be projected and corrected by QEC. Another
important source of errors is the decoherence caused by uncontrolled coupling to the
environment. This can be modeled as a qubit (partly) entangling to another, unknown,
quantum system, which is then traced out, such that a pure state eventually ends up
fully mixed.

2.3 Relevant error-correction codes

The work presented in this thesis covers experiments on the implementation of quantum
error correction protocols with spins in diamond. In Ch. 4 the experimental imple-
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2. Elements of experimental quantum error correction

mentation of a three-qubit measurement-free bit-flip code is presented, circumventing
the challenging implementation of stabilizer measurements. In these experiments the
encoding of the logical qubit is reversed to perform correction, to avoid the need for
extra ancilla qubits but leaving the quantum state unprotected. In Ch. 5 repeated
three-qubit phase-flip QEC by stabilizer measurements and real-time feedback is
implemented on a continuously encoded logical qubit. Ch. 6 gives an outlook on
general QEC codes, codes that correct for both single bit- and phase-flip errors. In
this section we will discuss the basic principles of all these codes.

2.3.1 Bit-flip code

The smallest quantum error correction code, the three-qubit repetition code, corrects
single-qubit errors around a single axis (X, Y or Z errors). This code relies on majority
voting without projecting the individual qubit states2. A logical qubit is encoded in
three data qubits. The code space is defined by two stabilizer operators and a third
operator defines the codeword.

For example, when protecting the logical qubit against single-qubit bit-flip (X) errors,
the data qubits are encoded in the logical qubit ↵ |0i

L

+ � |1i
L

= ↵ |000i + � |111i.
The codewords are defined by (for example) logical qubit operator ZII and the code
space is defined by stabilizer operators ZZI and IZZ. The error syndrome is based
on the outcomes of measurement of these stabilizer operators (Fig. 2.2a) and reveals
information on the majority of the quantum states along the z-axis, without learning

| i
L

|0i
a

a)

| i
in

Decode Correct

E

E

E

|0i

|0i
Encode

b)

Figure 2.2 — Three-qubit quantum error correction codes, correcting for bit-flip
errors. a, Detection of errors on a continuously encoded quantum state. Stabilizer
measurements via the ancilla qubit compare the data qubits in the encoding to obtain
the error syndrome. The measurement outcomes are classically processed to correct the
detected error if needed. b, Measurement-free error correction code. A quantum state is
encoded in three qubits. To correct for errors, the quantum state is decoded to a single
qubit, leaving the system unprotected. The two remaining qubits contain information on
the error. A doubly-controlled (To↵oli) gate corrects this error on the quantum state.
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2.3. Relevant error-correction codes

anything about the encoded nor the individual quantum states.

The three-qubit code does not protect a quantum state against errors around the
other axes. For example, the bit-flip code does not correct for Z or Y errors, which can
become logical errors. However, the experimental implementation of such a quantum
error correction code will provide insight in the working and implementation of larger
error-correction codes in similar systems.

2.3.2 Five-qubit quantum error correction

Protecting a qubit against general single-qubit errors (X, Y and Z errors) requires
a minimum of five data qubits12,13. The code space is defined by four stabilizer
operators and a fifth operator defines the codewords. In the five-qubit quantum error
correction code considered here, these four stabilizer operators are measured via an
ancilla qubit resulting in 16 possible error syndromes to be distinguished.

An example of a set of stabilizer operators defining the code space in the five-
qubit code is given by the operators IXZZX, XIXZZ, ZXIXZ and ZZXIX. Any
encoded logical quantum state is an eigenstate of these operators. Finally, a fifth
operator defines the logical eigenstates, the codewords |0i

L

and |1i
L

, for example the
operator ZZZZZ. In Ch. 6 we propose the experimental implementation of such
five-qubit QEC based on spins in diamond.

2.3.3 Unencoding the logical quantum state

Circumventing the experimentally challenging stabilizer measurements and the need for
extra ancilla qubits, first experiments implemented quantum error correction protocols
based on reversing the encoding of (unencoding) the logical qubit14–20 (Fig. 2.2b).
A logical qubit is encoded in data qubits and ancilla qubits. After unencoding, the
ancilla qubits contain information about the error on the data qubits. Errors can be
corrected either in a measurement-free manner by a double-controlled gate (To↵oli
gate), or by measuring the ancilla qubits and applying feedback to correct potential
errors on the data qubits. Interestingly, in a measurement-free protocol, the quantum
error is not discretized.

For example, using three qubits in total, two ancilla qubits and a single data qubit,
one can correct for single-qubit bit-flip or phase-flip errors (Fig. 2.2b). The logical
state is encoded in the three qubits and unencoded to the data qubit to detect and
correct errors. The experimental implementation of this code is presented in Ch. 4.
Expanding the system to a minumum of five qubits allows for the detection and
correction of both bit- and phase-flip errors12.

While such schemes are able to correct for errors on the encoded qubit, thus for
errors that occur in between encoding and unencoding, the unencoded data qubit
is unprotected during detection and correction of errors8,21,22. In physical systems,
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2. Elements of experimental quantum error correction

errors can occur on all qubits (data and ancilla qubits) and at any time around any
axis. Reversing the encoding of the logical quantum state to a single qubit to detect
and correct errors leaves the quantum state unprotected: an error on the unencoded
qubit results in uncorrectable errors.

2.3.4 Logical qubit operations

Universal control over the logical encoded qubit requires universal operations on the
logical qubit. In the next section we will discuss the implementation of specific fault-
tolerant logical operations. However, the implementation of fault-tolerant arbitrary
operations on a logical qubit is a complex and challenging task which requires long
gate sequences23.

Arbitrary logical operations can be implemented in a not fault-tolerant manner via
the ancilla qubit. Arbitrary rotations on the ancilla qubit can be tranferred to the
logical qubit either via measurement of the ancilla qubit or by a unitary two-qubit
circuit. Such operations are fundamentally not fault-tolerant as a single error on the
ancilla qubit can propagate to the logical qubit, introducing incorrectable errors. In
Fig. 2.3 examples of such logical operations are given.

2.4 Fault-tolerant quantum computing

The principle of fault tolerance states that information can be processed while pre-
venting information loss. A practical and useful quantum information system tolerates
(small) errors, which do not lead to computational errors. Such a system is a fault-

tolerant system

22.
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Figure 2.3 — Implementations of universal logical qubit operations. a, Determ-
inistic arbitrary rotation around the x-axis. The operation R✓

x

on the ancilla qubit, a
rotation around the x-axis with angle ✓, is transferred onto the logical qubit. b, c, A
chosen rotation R✓

X

(b) or R✓

Y

(c) is transferred from the ancilla qubit onto the logical
qubit when the ancilla qubit is projected in ‘0’. For measurement outcome ‘1’ the opposite
rotation (R�✓

X,Y

) is performed on the logical qubit. Arbitrary rotations around the z-axis
can be constructed in a similar way.
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2.4. Fault-tolerant quantum computing

In quantum circuits, errors can cascade, either by propagation through multi-qubit
gates or by a faulty operation. Furthermore, errors can occur in measurements: an
error on an ancilla qubit or a stabilizer measurement can result in errors in the classical
data. This requires quantum error correction and operations to be designed such that
errors do not evolve to logical errors: a single error remains a single error thoughout
a circuit, which is then corrected by QEC. A fault-tolerant quantum computation
consists of logical gates that do not spread errors21,22.

A consequence of the fault-tolerance theory is the threshold theorem: if the error
rates in quantum gates in a fault-torant quantum circuit are below the accuracy
threshold an arbitrarily long quantum computation can be processed without significant
information loss. To allow for a scalable quantum information system a strict threshold
on the error-rate on the data qubits should be met8. Besides limitations on the system
architecture, this threshold is a trade-o↵ between the failure rate of a qubit (p) and the
number of possible two-qubit error combinations (c) that can occur in a single-error
correction cycle. For the codes discussed in this thesis, that correct for single-qubit
errors, meeting the condition cp < 1 indicates that the failure rate of an encoded qubit
can be made arbitrarily small by concatenation4,6,8,9.

2.4.1 Fault-tolerant quantum operations

The most intuitive fault-tolerant operations that do not require any overhead are
transversal operations. An intuitive example of such logical operations is available for
the encoding in seven qubits (Steane code). A transversal single-qubit operation can
be the logical X-gate: X

L

= XXXXXXX, a sequence of elementary operations on
the data qubits. Similarly a transversal logical two-qubit gate in this code such as
the CNOT-operation can be constructed by bit-wise CNOT-operations between the
data qubits of two logical qubits. A complete gate set in a fault-tolerant universal
quantum computation will contain at least one non-transversal operation24.

Two types of operations can be distinguished in quantum information processing.
The first group of operations is the Cli↵ord group, that maps Pauli operators to Pauli
operators4. The set of Cli↵ord operations is for example spanned by {H, S, CNOT},
with S2 = Z a phase gate. If a quantum circuit only consists of operations from the
Cli↵ord group, the computation can be e�ciently simulated by a classical computer25.
For universal quantum computation, one extra operation in the gate set is required,
e.g. the T -gate (⇡/8 phase rotation).

2.4.2 Error correction and feedback

The distinction between Cli↵ord operations and non-Cli↵ord operations in logical
quantum systems is particularly important when considering the correction of detected
errors6,26,27. Cli↵ord operations map Pauli operators to Pauli operators. In QEC
by stabilizer measurements, errors on the data qubits are projected to single Pauli
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2. Elements of experimental quantum error correction

operations on the data qubits or the logical qubit. Therefore, in a quantum circuit
containing only Cli↵ord gates projected errors only toggle the classical interpretation
of the final measurement outcome6. The classical information on the detected errors
does not need to be available during the execution of the circuit as all information
can be retrieved classically afterwards, according to the Gottesmann-Knill theorem25.

This is not the case when considering universal fault-tolerant quantum computations.
Non-Cli↵ord operations map Pauli operations to Cli↵ord operations6,28. If a quantum
circuit contains non-Cli↵ord operations, as required for universal quantum compu-
tations, detected errors propagate to Cli↵ord operations that can not be classically
corrected afterwards. Feedback is required to anticipate the detected errors, updating
the Pauli frame. If an error is not corrected, future quantum operations can be a↵ected
and the error can propagate to complicated multi-qubit errors6,26.

The process of the collection and interpretation of the error syndrome by stabilizer
measurements may only be delayed by a constant amount of time6,29. If the processing
to determine the updated Pauli frame is relatively slow, due to ancilla measurements
and classical processing, one can continue performing stabilizer measurements pro-
tecting the qubits29. The delay should not result in a lower rate in error processing
than the error detection rate as this leads to an increasing delay with respect to the
computation6.

2.5 Characterization of QEC

The goal of QEC is to realize a quantum processor that enables scalable universal
quantum computing30. Reaching a break-even point for which a quantum processor
with QEC realizes longer life times than any of the individual components is challen-
ging as it requires a high level of performance in all elements. To characterize the
performance of a quantum error correction protocol, figures of merit can be determined.
Here, we will discuss the figures of merit that are used in the following chapters of
this thesis.

2.5.1 Process fidelity

In QEC an arbitrary unknown quantum state should be protected during quantum
computations. To succesfully protect such arbitrary quantum information, the process
of a full QEC cycle should preserve the quantum state. Taking into account anticipated
rotations of the Pauli frame, the process fidelity to the identity process �

00

on the
expected final state is an important figure of merit. This is a measure of how well an
arbitrary quantum state is protected against errors.

Following the definition of process tomography by Nielsen and Chuang4, the process
fidelity to the identity process is a function of the state fidelities of the six eigenstates
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of the (logical) Pauli operators (X, Y and Z):

�
00
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where F
↵

is the state fidelity to the state |↵i. When encoded in a logical quantum
state, F

↵

is the logical state fidelity.

When characterizing the full QEC protocol by the process fidelity, it is di�cult to
separate state preparation and measurement (SPAM) errors from the actual process.
To do so, other methods of characterization are required. The characterization of
individual gate performances can for example be done by means of randomized bench-
marking31 or gate-set tomography32,33. The reliability of the stabilizer measurements
in the detection of errors can be verified by the error syndrome detection as discussed
in the next section.

2.5.2 Error syndrome detection

In the experimental implementation of QEC, the error syndrome detection and
stabilizer measurement outcomes can be analyzed as function of error probability to
verify the reliability of the error correction protocol. In this section we will discuss the
characterization of stabilizer measurements on logical encoded states in three, four
and five qubits, their expected dependency on the error probability and consequences
of deviation from the theoretical expectations.

Errors on the data qubits are detected by measurement of a stabilizer operator that
does not commute with the error operation: the measurement outcome switches sign
(‘clicks’). The stabilizer measurement outcomes can be characterized by analyzing
the detection probability as a function of the error probability p

e

. If only a single
data qubit is a↵ected by errors, the error detection probability of a non-commuting
stabilizer measurement is theoretically linear in the error probability p

e

. When errors
occur simultaneously and with equal probability on all data qubits, protocol-dependent
characteristics are obtained.

Theoretically, any stabilizer measurement outcome should be symmetric around
p
e

= 0.5. At p
e

= 0.5 the encoded information is fully mixed, all information is erased
and each stabilizer measurement can give both outcomes with equal probability. The
probability that no error is detected (‘no click’) by any of the stabilizer measurements
is therefore 1 over the number of possible error syndromes, e.g. for five qubits that is
1/16.

Assymmetry in the error-detection probability around p
e

= 0.5 implies extra coherent
rotations on the logical state. These rotations complicate the interpretation of the
fidelity of the QEC code, and should be taken into account in the analysis. Assymmetry
in the ancilla readout as well as initial errors in the logical state transform the error-
detection curves symmetrically around p

e

= 0.5. These values can be characterized in
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2. Elements of experimental quantum error correction

initialization experiments and taken into account in simulating expected error-detection
dependence for verification (Ch. 5).

In three-qubit QEC (Sec. 2.3.1), each stabilizer measurement is expected to detect
an error (‘click’) with probability:

p
click

=2p
one error

+ 2p
two errors

(2.2)

=2(p
e

� p2
e

), (2.3)

while the probability that none of the stabilizers detects an error (‘no click’) is

p
no click

=p
no error

+ p
three errors

(2.4)

=1 � 3(p
e

� p2
e

). (2.5)

Both curves are shown in Fig. 2.4a.

In the four-qubit error detection protocol (discussed in detail in Ch. 6) the probability
that a stabilizer measurement ‘clicks’ (Fig 2.4b) becomes:

p
click

=2p
one error

+ 2p
three errors

(2.6)

=4p
e

� 12p2
e

+ 16p3
e

� 8p4
e

. (2.7)
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Figure 2.4 — Theoretical probability for a stabilizer measurement to detect an
error (‘click’), or for no detected errors (‘no click’) in three protocols for equal
error probability on all data qubits in the encoding. For all protocols, at p

e

= 0.5
the states are fully mixed, all information is erased and the probability that no error is
detected is 1 over the number of possible syndromes. The probability for a stabilizer
measurement to ‘click’ is 0.5, corresponding to a fully mixed state. Note that the curves do
not nescessarily add up to one as we characterize detection curves for individual stabilizer
measurements. a, For a three-qubit QEC protocol. b, For a four-qubit error-detection
protocol. c, For a five-qubit QEC protocol.
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2.6. Conclusion

Finally, for the five-qubit QEC protocol, the probability that a stabilizer measure-
ment ‘clicks’ is (Fig 2.4c):

p
click

=2p
one error

+ 6p
two errors

+ 6p
three errors

+ 2p
four errors

(2.8)

=2p
e

+ 4p2
e

� 18p3
e

+ 18p4
e

� 6p5
e

. (2.9)

Experimental analysis of such error detection probability gives insight in the error
detection fidelity34,35 and possible assymmetries in the stabilizer measurements (Ch. 5).
Furthermore, these curves can serve as verification to the behaviour expected by the
initialization and detection fidelities. However, such experiments do not take into
account the fidelity of the projected state after such stabilizer measturements, which
can be characterized by process tomography or other characterization methods.

2.6 Conclusion

In this chapter I have given an overview of quantum error correction that is relevant
to the work presented in this thesis. In the error-correction protocols I discussed, a
logical qubit is protected by redundant encoding in multiple data qubits. Errors are
detected and corrected by stabilizer measurements. Inevitable quantum errors are
continous and are discretized to single-qubit rotations around the X, Y and Z-axes
by these stabilizer measurements.

The smallest code to detect and correct for quantum errors is the three-qubit code.
The experimental implementation of this code based on spins in diamond at room-
temperature is presented in Ch. 4, where stabilizer measurements and extra ancilla
qubits are circumvented by decoding the logical qubit to a single data qubit, which
leaves the quantum state unprotected during the error correction. In Ch. 5 we present
the experimental implementation of multiple rounds of quantum error correction by
stabilizer measurements and real-time feedback, facilitated by non-destructive single-
shot readout and long coherence times of the ancilla qubit at cryogenic temperatures.

In the three-qubit code, single-qubit errors around a single axis on the data qubits
in the encoding are corrected and detected. To correct for general errors, a mimimum
of five data qubits is required. A scalable quantum system requires fault-tolerance:
a gate design in which errors do not cascade. In Ch. 6 a detailed proposal for the
implementation of such a protocol with spins in diamond is given.
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Chapter 3

The Nitrogen-Vacancy centre as

quantum node

J. Cramer

In this chapter I will outline the relevant physical principles of the NV centre and
its nuclear spin environment as well as the relevant building blocks of the experiments
described in this thesis. First, I introduce the NV centre, focussing on its electronic
and optical properties (Sec. 3.1). Next, I discuss the spin bath surrounding the
NV centre. I introduce detection and control of single 13C nuclear spins as qubits
in Sec. 3.4. Finally I describe the relevant experimental methods that are applied
throughout this thesis (Sec 3.5).
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3. The Nitrogen-Vacancy centre as quantum node

3.1 The NV centre in diamond

The Nitrogen Vacancy (NV) centre (Fig. 3.1) is a lattice defect in the diamond crystal
lattice. A nitrogen atom (N) and a vacancy (V) substitute two adjacent diamond
lattice sites (Fig. 3.2). In its neutral charge state (NV0) this results in five unbound
valence electrons (three from the carbon atoms, two from the nitrogen atom). The
work in this thesis is based on the negatively charged NV� state (for simplicity further
denoted as NV), capturing one extra electron from the environment.

The NV centre is a promising platform for numerous applications including quantum
information1. Its optical properties as single emitter have been applied in a wide
range of quantum communication implementations such as quantum entanglement2

and quantum teleportation3 over macroscopic distances. The magnetic coupling of
nuclear spins in the diamond lattice to the electron spin of the NV centre, allows to
control these spins as individual quantum bits with long coherence times4–7. In this
thesis I will mainly focus on this quantum register of nuclear spins.

>0.5 nm
1.1% abundant 

13

C

14

N

e

-

Figure 3.1 — Schematic image of the NV centre in diamond. The NV centre
consists of a nitrogen atom (green) and an adjacent vacancy in the diamond lattice,
resulting in a S = 1 electronic spin state (purple). The NV centre is mainly surrounded by
spinless 12C isotopes (black) in the diamond lattice. There is a 1.1% natural abundance of
13C spins in the diamond lattice, which can be individually addressed via the NV electron
spin.
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3.2. Optical properties of the NV electron spin

3.2 Optical properties of the NV electron spin

The six valence electrons of the NV ground state occupy the molecular orbital levels as
shown in Fig 3.2b. Spin-spin interactions lift the degeneracy of the electronic ground
and excited state to a spin-triplet (S = 1) ground state (a02

1

a2

1

e2, 3A
2

) and excited
state (a02

1

a1

1

e3, 3E) and multiple intermediate singlet levels. Upon optical excitation
an electron can be transferred from the a

1

orbital to one of the e orbitals. The 3A
2

to
3E transitions lie in the optical regime (1.945 eV, ⇠ 637 nm) and are well within the
diamond bandgap (5.5 eV, Fig. 3.2c).

An externally applied magnetic field along the NV axis introduces spin-dependent
energy-level splittings in the optical ground and excited states. The E0

m

s

=±1

levels
and the A

1,2

split according to their m
s

= ±1 spin character while the E
x,y

(m
s

= 0)
are insensitive to the magnetic field, see Fig. 3.3b. The fine-structure of the energy
levels in the optically excited state (3E) are sensitive to strain8,9 and magnetic field9.
To first order, an externally applied electric field can induce crystal strain, splitting
the levels as shown in Fig. 3.3c. For a more detailed review I refer to Doherty et al.

9

and Hensen8.
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Figure 3.2 — Diamond crystal structure, electronic and optical properties of the
NV centre. a, The NV centre is a defect in diamond, formed by a nitrogen atom (green)
and an adjacent vacancy in the diamond lattice. This configuration results in 5 valance
electrons. For the NV� electronic ground state an extra electron is captured from the
environment, resulting in a spin-1 system. There is a natural abundance (1.1%) of 13C
spins (orange) in the diamond lattice. b, The valence electrons in the NV� ground state
occupy the molecular orbitals in the electronic ground state of NV�, following Pauli’s
exclusion principle. c, Electronic and optical properties of the NV centre. The electronic
ground state is the spin-triplet with 3A symmetry (triple degeneracy) and can be optically
excited to the six excited states (3E). Excitation and relaxation occur either resonantly or
via the phonon-sideband (PSB), direct or via the singlet states, relaxation can go directly
or via the singlet state. Figures adapted from Hensen10, Gali11 and Bernien12.
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3. The Nitrogen-Vacancy centre as quantum node

3.2.1 Room-temperature optical addressing of the NV centre

At ambient conditions, the spin-triplet ground- and excited states of the NV centre
are addressed o↵-resonantly (with laser light of � ⇡ 532 nm) via the phonon-sideband.
The NV centre either decays via 3E to 3A

2

by emission of a photon, or (primarily
non-radiatively) via one of the singlet-states between the ground and excited state
(Fig. 3.3b).

The metastable spin-singlet states equally decay to all spin-levels13, while the
passage into the singlet-state is strongly spin-dependent: the coupling to the singlet
states is stronger for the m

s

= ±1 energy levels. Optical excitation into the phonon-
sideband thus results in a spin-dependent photon-emission rate. The spin state of the
NV centre can therefore be detected through the spin-dependent photo-luminescence
rate9,14 and will eventually result in initialization in the m

s

= 0 spin state.
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Figure 3.3 — The optical ground and excited state of the NV centre. a, The
optical transitions used to resonantly read out and initialize (reset) the NV electron
spin state. Solid lines indicate spin-preserving optical cycling, dashed arrows indicate
non-spin-conserving decay. An AC current (MW) is used to control the electron spin
state. b, O↵-axis strain (E?) dependence of the (3E) excited state of the NV centre for
B

z

= 20 G. c, Magnetic-field dependence of the (3E) excited state of the NV centre for
1 GHz strain. The energy-levels split conform their spin-character.
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3.2. Optical properties of the NV electron spin

3.2.2 Fine-structure optically excited state

At cryogenic temperatures (⇠ 4 K) the optical transitions of the NV centre can be
resonantly addressed13,15. The transitions from the three 3A

2

ground state levels to
the six energy levels in the 3E optically excited state can be resolved (Fig. 3.3), and
spin-selectively addressed. These optical transitions are addressed in multiple ways in
our experiments:

• Charge and resonance check: to verify if the NV centre is in the negative charge
state NV� and to verify if the laser frequencies are in resonance with the desired
optical transitions.

• Initialization: the NV electron spin is initialized in the m
s

= 0 state by resonantly
exciting the m

s

= ±1 optical levels to spin pump the population to the m
s

= 0
spin state.

• Single-shot readout: Resonant excitation to readout the NV electron spin state in
a single shot. The single-shot readout is similar to the initialization, resonantly
exciting either the m

s

= 0 or m
s

= ±1 optical transitions. Due to optical
cycling, photons are detected when the excited spin state is occupied. To avoid
uncontrolled spin-flips due to spin mixing in the optically excited state, the
readout can be stopped right after the detection of a photon.

Charge and resonance check

Before each experiment based on resonant excitation of the NV centre, it is verified
if the NV centre is in the correct charge state (NV�) and if the lasers used for
initialization and readout are in resonance with the desired transitions (Fig. 3.4).
During this charge and resonance (CR) check two red lasers are simultaneously turned
on while the fluorescence is monitored. The number of detected photons is highest
when one laser frequency is in resonance with a transition of the m

s

= 0 ground
state to an optically excited state, and one laser with a transition of the m

s

= ±1
states to an optically excited state. Due to slight spin-mixing in the excited state, the
NV electron spin would polarize in the opposite state if only one of the lasers is in
resonance (Fig. 3.3a) and fluorescence would only be observed for the (NV�) charge
state.

When the number of detected photons is below a set threshold, two methods can
be used to optimize the settings:

• When the CR check fails during an experimental run, a green (⇠ 532 nm) laser
can repump the NV centre to its negatively charged state NV� by exciting
trapped charges in the environment. The green excitation furthermore induces
spectral di↵usion (variation in the optical energy transitions) as it a↵ects the
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3. The Nitrogen-Vacancy centre as quantum node
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Figure 3.4 — Charge and resonance check, prior to experiment. a, Before each
experimental sequence the charge and resonance check determines if the lasers are in
resonance with the readout (RO) and spin pumping (SP) transitions as well as if the NV
centre is in the negative (NV�) charge state. b, Example of a photon number distribution
during the CR check verification stage, conditioned on passing the previous CR check.
Figure from Blok16.

charge configuration in the NV environment, which causes a variation in the
local electric field. If this e↵ect is undesired, a 575 nm laser could be used to
resonantly excite to the NV� state10.

• The laser frequencies can be adapted to find the optimal configuration (highest
photo-luminescence rate) and thus the exact resonances. This is usually done
before starting a set of experimental runs, to fine-tune to the optimal configura-
tion.

Single-shot readout and initialization

We use the m
s

= 0 optical transition to the optical excited level E
x

or E
y

(Fig. 3.3) to
read out the electronic spin state. Due to spin-mixing in the excited state, continuous
optical cycling causes uncontrolled spin-flips in the excited state, eventually pumping
the spin-population to the m

s

= ±1 spin states. To minimize this mechanism, for
non-destructive readout of the electron spin, we can use a weak readout pulse and
switch o↵ the laser within ⇡ 2 µs after a photon is detected6.

The spin-mixing mechanism in the excited state is used to our advantage in ini-
tializing to the m

s

= 0 state. By exciting the m
s

= ±1 optical transition to E0
x,y

uncontrolled spin-flips in the excited state eventually pump the spin-population to
the m

s

= 0 spin state and thus initialize the electron spin in a well-defined state.
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3.3. Properties of the ground state NV electronic spin state
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Figure 3.5 — NV electron spin manipulation. a, The ground state spin levels of the
electron are split by the ground state splitting D

GS

and the degeneracy of m
s

= ±1 is
lifted by an external magnetic field along the z-axis of the NV centre. The interaction
of the NV electron spin to its nitrogen spin further splits the energy levels according to
Eq. 3.2. b, Continuous-wave (CW) electron spin resonance experiment. Integrated photon
detection obtained for CW green excitation, varying the frequency of CW AC current. The
two observed dips correspond to the m

s

= 0 $ m
s

= �1 and the m
s

= 0 $ m
s

= +1
transitions. c, Coherent control of the electron spin as qubit is realized by varying the
length of a microwave pulse in resonance with the desired electron spin transition. The
solid line is a fit from which the Rabi frequency is determined (7.67 ± 0.02 MHz). d,
Pulsed electron spin resonance experiment on the m

s

= 0 $ m
s

= �1 transition. The
transition energy is dependent on the host nitrogen spin state. The nitrogen spin can be
initialized in a defined spin state by a conditional rotation of the electron spin, followed
by a measurement of the electron spin. Here, the red data-points show a pulsed electron
spin resonance experiment after initialization of the nitrogen spin in m

I,N

= �1. Figure
adapted from De Lange17 and Blok16.

31



3. The Nitrogen-Vacancy centre as quantum node

3.3 Properties of the ground state NV electronic spin state

In the orbital ground state of the NV centre, the m
s

= 0 and m
s

= ±1 spin levels are
separated by the zero-field splitting D

GS

⇡ 2.88 GHz. The m
s

= ±1 level degeneracy
is lifted by an externally applied magnetic field B = B

x

x̂+ B
y

ŷ + B
z

ẑ via the Zeeman
interaction, see Fig. 3.5. The resulting Hamiltonian, neglecting strain-interaction and
second-order spin-orbit interactions, is given by9,18,19:

H
e

= D
GS

S2

z

+ �
e

B · S, (3.1)

with S = S
x

x̂ + S
y

ŷ + S
z

ẑ the Pauli spin matrices for a spin-1 system and �
e

=
2.8025 MHz/G the gyromagnetic ratio.

The electron spin levels in the orbital ground state are manipulated using electron
spin resonance techniques9,20,21. To control the NV electron spin as a qubit, we choose
two out of the three electron spin levels as our qubit states (|0i , |1i). An AC current
at a frequency resonant with the energy di↵erence between the addressed spin levels
causes an oscillating magnetic field, resulting in coherent oscillations between these
qubit states (Fig. 3.5a,c). Qubit rotation angles are chosen by calibrating amplitude
and length of the applied microwave (MW) pulse.

3.3.1 The nitrogen host spin

The NV centres used in the experiments discussed in this thesis are based on a
nitrogen atom of the most common isotope 14N (natural abundance 99.64%), a spin-1
system9,22. The Hamiltonian for the electron-nitrogen system in the orbital ground
state is19:

H
e,N

= H
e

� QI2
N

z

+ �
n

B · IN � AkSz

I
N

z

� A?(S
x

I
N

x

+ S
y

I
N

y

), (3.2)

with S
i

, I
N

i

the i-component of the spin-1 operators of the electron (S
i

) and nitrogen
(I

N

i

) spins, Q = 4.98 MHz the quadrupolar splitting of the nitrogen spin, �
n

= 0.3077
kHz/G the nitrogen spin gyromagnetic ratio and Ak = 2.16 MHz (A? = 2.1 MHz) the
parallel (perpendicular) component of the hyperfine interaction. As the electronic spin
transitions are far o↵-resonant from the nuclear spin transitions in our experimental
settings, we apply the secular approximation and the flip-flop terms (containing S

x

I
x

and S
y

I
y

) can be neglected.

The hyperfine interaction Ak introduces a splitting of the electron spin transitions,
that can be resolved in electron spin resonance experiments (Fig. 3.5d). In previous
work, the nitrogen spin has been successfully used as a qubit, that can be initialized,
controlled and read out4. In the work of this thesis the nitrogen spin is initialized by
mapping its spin state on the electron spin and subsequent readout of the electron
(Fig. 3.5d).
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3.3. Properties of the ground state NV electronic spin state

3.3.2 Electron spin coherence

The NV electron spin is a long-lived quantum system, with its dominant source
of errors caused by dephasing21,23. The phase-coherence is strongly dependent on
the microscopic environment of the NV centre. In bulk diamond, where the defect
is relatively far from the diamond surface, the dominant source of decoherence for
the electron spin are the nuclear spins in the spin bath21,24. These spins cause a
fluctuating magnetic field, a↵ecting the energy level splitting of the electron spin and
thus leading to dephasing on a timescale T ⇤

2

. The dephasing time T ⇤
2

is measured
through a Ramsey experiment as shown in Fig. 3.6a. The dephasing time is, depending
on the studied NV centre and its environment, typically in the order of several µs and
can be extended by isotopically purifying the diamond sample7,16,25.

The electron spin phase coherence can be protected by making it insensitive to
quasi-static fluctuations of the spin bath by dynamical decoupling techniques21. The
spin state is periodically inverted by regularly spaced ⇡-pulses, resulting in a repeated
sequence of the form ⌧ � ⇡ � 2⌧ � ⇡ � ⌧ . The signal revives for ⌧ = k⌧

L

with k an
integer, ⌧

L

= 2⇡/!
L

and !
L

the Larmor frequency of the nuclear 13C spins. Using
decoupling pulses with symmetrized alternating phases (e.g. XY 8) we correct for
pulse errors21,26. Figure 3.6b shows that, by increasing the number of pulses up to
2048, a coherence time of T

DD

= 0.37(1) s can be obtained24. These long coherence
times allow for high fidelity control in the work presented in this thesis.
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Figure 3.6 — Electron coherence in Ramsey type experiment and under dynamical
decoupling. a, The electron dephasing time T ⇤

2

is measured in a Ramsey experiment
where a superposition state freely precesses for time t. The dephasing time of this NV
centre is T ⇤

2

= 4.6(2) µs. The beating in the signal is caused by the coupling to a close-by
13C nuclear spin with a hyperfine coupling strength of 191(5) kHz. The host nitrogen spin
is initialized in this experiment. b, Figure from Bakker24. Dynamical decoupling of the
NV electron spin, fidelity versus free evolution time t with number of decoupling pulses
varied from 1 to 2048. Solid lines are fits to F = 0.5 + Aexp[�(t/T

DD

)n].
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3. The Nitrogen-Vacancy centre as quantum node

3.4 Weakly coupled spins as qubits in a quantum register

While the NV electron spin is mainly surrounded by spinless 12C atoms, there are
nuclear 13C spins in its environment. In the diamond samples used in the presented
work, there is a 1.1% natural abundance of 13C spin- 1

2

nuclear spins (Fig. 3.1). Each
NV centre is therefore surrounded by a unique spin bath, which is mainly responsible
for the dephasing of the electron spin (Sec. 3.3.2). The implementation of dynamical
decoupling on the electron spin extends the electron spin coherence time21 and is the
basis of the detection and control of individual 13C nuclear spins in the spin bath.
These nuclear spins have long coherence times7,18,24 and can be individually controlled
as quantum bits4,27.

The work presented in this thesis is based on a quantum register of weakly coupled
13C spins in the environment of the NV centre. The detection and control methods are
based on the work by Taminiau et al.5. Here, I will discuss the interaction Hamiltonian,
the detection, characterization and control of these 13C nuclear spins as individual
qubits.

3.4.1 Interaction Hamiltonian

The 13C spins considered here are not resolved in spin-resonance experiments on
the NV electron spin; the linewidth of an ESR experiment is much larger than the
hyperfine interaction between the electron and 13C spin (

p
2/(⇡T ⇤

2

) ⌧ |A|). Due to
the relatively large distance between the NV electron spin and the nuclear spins, we
neglect the contact hyperfine interaction19 such that only the dipolar coupling plays
a role in the interaction between the NV electron spin and a single 13C spin, which
with appropriate basis rotation becomes:

H
e,N,C

= H
e,N

+ �
c

B · IC +
µ
0

�
e

�
c

h̄

4⇡r3
[S · I

C

� 3(S · r̂)(I · r̂)], (3.3)

where µ
0

= 4⇡ ⇥ 10�7 N/A2 is the vacuum permeability, �
C

= 1.0705 kHz/G the
gyromagnetic ratio of 13C nuclear spins and r the relative position of the nuclear spin
with respect to the NV centre.

Following the secular approximation and choosing the xz-plane such that r =
sin(✓)x̂ + cos(✓)ẑ, we obtain:

H
e,N,C

= H
e,N

+ �
c

B · IC +
µ
0

�
e

�
c

h̄

4⇡r3
[(1 � 3

z2

r2
)S

z

I
z

� 3
|x|z
r2

S
z

I
x

]

= H
e,N

+ !
L

I
z

+ AkSz

I
z

+ A?S
z

I
x

(3.4)

where !
L

is the Larmor frequency of the 13C nuclear spin in the applied magnetic
field (assumed in z-direction) and A = A?x̂ + Akẑ the hyperfine interaction between
the nuclear spin and the NV electron spin. The 13C spin Hamiltonian can now be
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3.4. Weakly coupled spins as qubits in a quantum register
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Figure 3.7 — E↵ect of hyperfine interaction between NV electron spin (purple)
and 13C nuclear spin (orange). a, When the electron spin state is m
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spin precesses around an axis parallel with the magnetic field with precession frequency
!
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B
z

, the dipolar interaction is e↵ectively turned o↵. b, When the electron spin
state is m
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= �1, the hyperfine interaction between the electron spin and the nuclear
spin e↵ectively tilts the 13C rotation axis to ! = !
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+A and thus changes the frequency

(!̃ =
q

(!
L

� Ak)2 + A2

?). (For the electron spin in m
s

= +1, the parallel component

of the hyperfine interaction (Ak) switches sign.)

written as:

H
C

= |m
s

= 0i hm
s

= 0|H
0

+ |m
s

= �1i hm
s

= �1|H�1

+ |m
s

= +1i hm
s

= +1|H
+1

(3.5)
with m

s

the electron spin state and

H
0

= !
L

I
z

, (3.6)

H±1

= (!
L

± Ak)Iz ± A?I
x

. (3.7)

The Hamiltonian H
0

is only dependent on the externally applied magnetic field, while
H±1

are dependent on the parallel and perpendicular terms of the hyperfine interaction,
as follows from Eq. 3.4 (see Fig. 3.7).

3.4.2 Detection and characterization of nuclear spins

Nuclear spins in the spin bath of a NV centre are detected and characterized by
dynamical decoupling of the NV electron spin. Each NV centre in diamond is
surrounded by a unique local environment of 13C spins because each nuclear spin is
probabilistically located in the diamond lattice, resulting in a 13C-dependent hyperfine
interaction A.

The spin-dependent hyperfine interaction results in spin-dependent resonant in-
teraction to the NV electron spin under dynamical decoupling. When decoupling
the electron spin between the m

s

= 0 $ m
s

= �1 spin states, the 13C nuclear spin
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3. The Nitrogen-Vacancy centre as quantum node

evolution operators corresponding to a NV decoupling unit (⌧ � ⇡ � 2⌧ � ⇡ � ⌧) that
are conditional on the initial electron input state can be described by:

V
0

=exp[�iH
0

⌧ ]exp[�iH�1

2⌧ ]exp[�iH
0

⌧ ], (3.8)

V
1

=exp[�iH�1

⌧ ]exp[�iH
0

2⌧ ]exp[�iH�1

⌧ ]. (3.9)

These evolution operators can be written as single-qubit rotations:

V
0

=exp[�i�(I · n̂0)],

V
1

=exp[�i�(I · n̂�1)], (3.10)

where n̂ms is the rotation axis dependent on the initial spin state of the electron spin
(m

s

). These rotation axes are dependent on the decoupling time ⌧ (Fig. 3.8) allowing
us to design desired operations on the nuclear spins by choosing appropriate ⌧, N for
the decoupling sequences.

The local environment of 13C spins is first detected by dynamical decoupling while
sweeping ⌧ 5,28,29. We prepare the NV electron spin in an equal superposition of two
spin states, e.g. in |xi = 1p

2

(|0i + |1i) with |0i = |m
s

= 0i and |1i = |m
s

= �1i. The

electron is then decoupled by N/2 repetitions of a decoupling unit (⌧ �⇡� 2⌧ �⇡� ⌧)
and finally the x-component of the electron spin qubit is measured, see Fig. 3.9b.
Sharp periodic resonances in the obtained signal correspond to coherent interaction
between the electron spin and individual 13C spins in the spin bath (Fig. 3.9b).

The interaction of the NV electron spin with a single nuclear spin results in a
dynamical decoupling spectroscopy signal given by:

S(⌧, N) = Re{Tr[U
0

U�1

]} (3.11)

with U
m

s

= V
N/2

m

s

. Taking n 13C nuclear spins into account, only assuming interaction
to the electron spin, the signal results in5:

S(⌧, N) =
nY

j=0

S
j

(⌧, N) (3.12)

where S
j

(⌧, N) is the signal if spin j would be the only 13C spin in the environment
of the NV electron spin.

The decoupling signal S for varying ⌧ and N reveals information on the hyperfine
coupling parameters A

j

for individual nuclear spins. The experimentally obtained sig-
nal can be reconstructed by simulations to estimate the hyperfine coupling parameters
of nuclear spins in the NV electron spin environment (see Fig. 3.10).

For |A?| ⌧ !
L

the X and Z components of the rotation axes n̂0 and n̂1 show
sharp resonances in ⌧ , where the nuclear spin undergoes an X-rotation which can be
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Figure 3.8 — Example of nuclear dynamics for a single 13C spin interaction with
the electron spin. The X and Z projections of the net rotation axes n0 (n�1) of the
nuclear spin for dynamical decoupling on the NV electron spin, initially starting in m

s

= 0
(m

s

= �1). The first dashed section and connected Bloch spheres show an e↵ective
conditional rotation of the nuclear spin. The second dashed section indicates a ⌧ -value for
which the nuclear spin undergoes a simple Z-rotation independent on the electron spin
state.
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Figure 3.9 — Detection and control of single 13C spins in the spin bath of the NV
electron spin. a, Decoupling the electron spin at specific decoupling times ⌧ results in
e↵ective dynamical decoupling of the NV electron spin from the spin bath, while enhancing
the interaction to a single 13C in the bath, allowing for selective operations on individual
nuclear spins. b, Data for varying ⌧ in a decoupling experiment with N = 32 pulses on
the electron state |xi. The sharp resonances indicate interaction to a single 13C spin (3
spins are pointed out here). c, Example of a gate on a single 13C spin, implemented via
the NV electron spin. For repeated decoupling elements with ⌧ in resonance with the
hyperfine interaction to the addressed nuclear spin, a controlled operation on this spin is
performed: a ⇡/2 rotation around the ±x axis dependent on the initial electron spin state.
d, Varying the number of pulses (N) on the electron spin on such a resonance results in
coherent oscillations of the nuclear spin, indicated by coherent oscillations of hXi of the
electron spin.
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3.4. Weakly coupled spins as qubits in a quantum register

conditional or unconditional on the initial state of the electron spin. In dynamical
decoupling spectroscopy, at such resonance, the signal S for a single nuclear spin
coherently oscillates dependent on N (Eq. 3.11). At other values of ⌧ the nuclear spin
undergoes a simple unconditional Z-rotation (Fig. 3.8).

3.4.3 Control and operations

The resonant interaction between the NV electron spin and single 13C nuclear spins
is employed to control these nuclear spins individually as qubits. This requires for
initialization, control and readout of the individual nuclear spins.

Operations on nuclear spins are obtained by dynamical decoupling of the NV electron
spin. In most (⌧, N)-configurations, dynamical decoupling results in an unconditional
Z-rotation of the nuclear spins (Fig. 3.8). The rotation frequency is calibrated and
tracked throughout experiments for each individual spin. When the rotation axes
(Eq. 3.10) of a single nuclear spin n̂

m

s

= n
x

x̂ + n
z

ẑ fulfill the condition n
x

> n
z

,
(un)conditional rotations of this nuclear spin to the equator plane can be obtained.
The exact resonance condition (n

z

= 0) occurs periodically. The nuclear spin evolution
is approximated by the rotation matrix:

R
n̂

(✓) =


cos(✓/2) � i sin(✓/2)n

z

⌥i sin(✓/2)n
x

⌥i sin(✓/2)n
x

cos(✓/2) + i sin(✓/2)n
z

�
, (3.13)
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Figure 3.10 — Detection of single 13C spins by dynamical decoupling spectroscopy.
Data (black lines and datapoints) for varying ⌧ in a decoupling experiment with N = 32
pulses on the electron state |xi. The sharp resonances indicate interaction to a single 13C
spin. The 13 colored lines are estimated signals for the interaction between a single 13C
spin and the NV electron spin. The estimated hyperfine interactions are based on a larger
dataset than shown here.
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3. The Nitrogen-Vacancy centre as quantum node

with ✓ dependent on the number of pulses N . A universal set of gates on a nuclear
spin requires rotations around the Z-axis and operations that take the computational
states |0i and |1i to two orthogonal states in the equator plane. Following Eq. 3.13,
this requires |n

x

| > 1/
p

2.

Initialization and readout of the nuclear spin state, as well as correlation measure-
ments on multiple 13C states are obtained by employing controlled operations between
the electron and nuclear spins. The evolution of nuclear spins is dependent on the
electron spin state, but insensitive to optical excitation of the NV electron (Ch. 4),
as long as the NV electron spin state is known throughout the full experiment. This
allows for preservation of the nuclear spin state under non-destructive readout of the
NV electron spin state. In Chs. 4,5 initialization and readout of the nuclear spins will
be discussed in detail.

3.5 Experimental methods

The experimental work presented in this thesis covers both experiments at room-
temperature and cryogenic temperature. In the confocal microscope setup at room-
temperature (Fig. 3.12), diamond samples are characterized12,16 and experiments as
discussed in Ch. 4 are performed. At liquid helium temperatures (⇠ 4 K), the NV
electron spin can be non-destructively read out in a single-shot, a key ingredient for
the experiments discussed in Ch. 5. In Fig. 3.13 the experimental setup for such
experiments is shown.

3.5.1 Diamond samples

The work in this thesis is based on NV centres in high-purity type IIa CVD-grown
diamond. The sample used in the experiments described in Ch. 4 has a h100i crystal
orientation, while the experiments of Ch. 5 are performed on a h111i crystal oriented
diamond, with the advantage that an NV centre with the N-V axis perpendicular to
the diamond surface plane can be selected. The diamond samples are supplied by
Element Six. An example image of such a sample, processed for our experimental
purposes, is shown in Fig. 3.11.

Fabrication on the diamond samples is required for our experimental purposes. A
detailed description of the processing is given by Bernien12. After detecting and
selecting 6-10 NV centres in a characterization setup, solid-immersion lenses (SILs)
are fabricated around the NV locations, by milling away diamond by a focussed ion
beam (FIB, Fig. 3.11a). This enhances the collection e�ciency of the NV emission by
reducing the total internal reflection (Fig. 3.11b). To further enhance the collection
e�ciency an anti-reflective coating3 is deposited on the surface of the sample used in
Ch. 5.

By electron-beam lithography, a gold stripline is fabricated over the surface of the
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3.5. Experimental methods

diamond sample, closely passing the fabricated SILs. Via this stripline, AC currents
to control the electron spin state are applied. Gold gate-electrodes are fabricated
near the NV centres to apply static electric fields, allowing to tune the strain in the
NV-centre, fine-tuning the NV optical resonances10,12. These gates are not used in
this work.

3.5.2 Experimental spin control

The NV electron spin state is controlled by AC currents applied in resonance with the
electron spin level transitions (m

s

= 0 $ m
s

= +1 and m
s

= 0 $ m
s

= �1) both in
pulsed and continuous-wave experiments (Fig. 3.5). The AC currents are generated by
(Rohde and Schwartz SMBV100A) vector sources. Pulse sequences are generated on
an arbitrary waveform generator (AWG, Tektronix AWG5014 ), controlling frequency,
amplitude and phase of the pulses by IQ- and pulse-modulation. Electron Rabi
frequencies in the order of MHz are typically obtained (Fig. 3.5).

In the experiments described in this thesis a moderate magnetic field of a few hundred
Gauss is applied along the NV z-axis. For a sample with h100i crystal orientation a
three-coil water-cooled vector magnet is used, allowing for tilted magnetic fields. A
sample with h111i crystal orientation is used in experiments at cryogenic temperatures.
A permanent magnet placed on Attocube ANPxyz101-steppers (range ⇠ 5 ⇥ 5 ⇥ 5
mm3) is used to align the required magnetic field.

3.5.3 Resonant readout and initialization - cryogenic
temperatures

At cryogenic temperatures the electron spin levels can be resonantly addressed, allowing
for high-fidelity (non-destructive) single-shot readout of the electron spin state. The
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Figure 3.11 — Electron and confocal microscope image of the surface of a dia-
mond sample after fabrication for experimental purposes. a, Scanning electron-
microscope image of a solid-immersion lens (SIL) in the diamond surface. Close to the
SIL there are a gold stripline for applying AC pulses to control the NV electron spin state
and gold gates to apply DC voltages. b, Scanning confocal microscope image of the SIL
with green laser light. The bright spot shows the emission of the NV centre in the PSB.
Figure taken from Bernien12.
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3. The Nitrogen-Vacancy centre as quantum node

readout, initialization and charge-resonance check require two red lasers (⇠ 637 nm)
in resonance with optical transitions of the electron spin. A green laser (⇠ 532 nm) is
used to initialize the NV centre in the NV� state. A schematic of the setup is shown
in Fig. 3.13.

In the Janis bath cryostat used for the low-temperature experiments described in
this thesis, the sample is placed on Attocube ANPxyz101-steppers (range ⇠ 5 ⇥ 5 ⇥ 5
mm3) and the objective on Attocube ANSxyz50-scanners (range ⇠ 30 ⇥ 30 ⇥ 4.3 µm3),
allowing for precision alignment of the NV centre in the optical path.

3.5.4 Real-time feedback

In experiments with sequential measurements such as quantum error correction, real-
time updates of the experimental sequence are desired. Dependent on a measurement
outcome, the upcoming gates can be adapted, for example to correct for detected
errors. This e↵ectively branches the experiment in multiple paths.

In the experiments presented in this thesis, such branching and real-time updates
are implemented employing the AWG and ADwin. The pulse-sequences are pre-
programmed in the AWG, including specific elements corresponding to di↵erent
branches. After a measurement, the ADwin analyses the measurement outcome (‘click’
or ‘no click’) and sends a ‘event-jump’ trigger to the AWG for one of the outcomes.
The AWG continues to its next sequence element when no trigger was received, or
‘jumps’ to the preprogrammed corresponding sequence element.
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Figure 3.12 — Schematic of confocal microscope setup and electronics to control
spins in diamond at room temperature. A green (532 nm) laser modulated by an
acousto optical modulator (AOM), is used to excite the NV centre, emitted light in the
phonon-sideband (PSB, red) is detected via an avalanche photo diode (APD) and a fast
counter (P7889). The AWG provides the IQ and digital modulation of the microwave
source, whose output is amplified before the signal is sent to the sample. A vector magnet
allows for flexibility in the orientation of the magnetic field. Figure adapted from De
Lange17 and Pfa↵30.
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Figure 3.13 — Schematic of measurement and control setup at cryogenic tem-
peratures. A PC programs the control loop on a integrated micro-controller (ADwin)
and pulse sequences on an arbitrary waveform generator (AWG; Tektronix AWG 5014).
Sequences on the AWG are triggered from the ADwin, and the AWG notifies the ADwin
when sequences are completed. The ADwin generates laser pulses for charge re-pumping
(repump), electron spin pumping (SP), and electron spin readout (RO) via accousto-optical
modulators. Laser frequencies are monitored with a wave meter (WM, Highfinesse WS6),
and controlled using DAC modules on the frequency modulation inputs of the lasers.
Laser power is modulated using acousto optical modulators (AOMs). Microwave pulses
are generated by a vector source (Rohde & Schwarz SMBV100A). The AWG controls
frequency and timing of these pulses via IQ- and pulse modulation. Spin manipulation
signals are amplified (Amplifier Research 20S1G4 or 40S1G4) before feeding to the sample.
Phonon-sideband (PSB) is detected with an avalanche photodiode (APD). Detection
events are registered by the counting module of the ADwin. Figure adapted from Pfa↵30.
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Chapter 4

Universal control and error

correction in multi-qubit spin

registers in diamond

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski and R. Hanson

Quantum registers of nuclear spins coupled to electron spins of individual solid-state
defects are a promising platform for quantum information processing1–13. Pioneering
experiments selected defects with favourably located nuclear spins having particularly
strong hyperfine couplings4–10. For progress towards large-scale applications, larger
and deterministically available nuclear registers are highly desirable. Here we realize
universal control over multi-qubit spin registers by harnessing abundant weakly coupled
nuclear spins. We use the electron spin of a nitrogen-vacancy centre in diamond to
selectively initialize, control and read out carbon-13 spins in the surrounding spin
bath and construct high-fidelity single- and two-qubit gates. We exploit these new
capabilities to implement a three-qubit quantum-error-correction protocol14–17 and
demonstrate the robustness of the encoded state against applied errors. These results
transform weakly coupled nuclear spins from a source of decoherence into a reliable
resource, paving the way towards extended quantum networks and surface-code
quantum computing based on multi-qubit nodes11,18,19.

The results in this chapter have been published in Nature Nanotechnology 9, 171-176 (2014).
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4. Universal control and error correction in multi-qubit spin registers in diamond

4.1 Introduction

Electron and nuclear spins associated with defects in solids provide natural hybrid
quantum registers3–12. Fully-controlled registers of multiple spins hold great promise
as building blocks for quantum networks18 and fault-tolerant quantum computing19.
The defect electron spin enables initialization and readout of the register and coupling
to other (distant) electron spins11,18, whereas the nuclear spins provide well-isolated
qubits and memories with long coherence times8,9,11. Previous experiments relied on
selected defects having nuclear spins with strong hyperfine couplings that exceed the
inverse of the electron spin dephasing time (1/T ⇤

2

). With these strongly coupled spins,
single-shot readout9,10,20–22 and entanglement9,11 were demonstrated. However, the
number of strongly coupled spins varies per defect and is intrinsically limited, so that
universal control has so far been restricted to two-qubit registers4,7 and the required
control of multi-qubit registers has remained an open challenge.

Here we overcome this challenge by demonstrating universal control of weakly coupled

nuclear spins (unresolved hyperfine coupling ⌧ 1/T ⇤
2

). We use the electron spin of
single nitrogen-vacancy (NV) centres in room-temperature diamond to selectively
control multiple carbon-13 (13C) nuclear spins in the surrounding spin bath (Fig. 4.1a).
With this new level of control we realize multi-qubit registers by constructing high-
fidelity unconditional and electron-controlled gates, implementing initialization and
readout, and creating nuclear-nuclear entangling gates through the electron spin.
Finally, we demonstrate the power of this approach by implementing the first quantum-
error-correction protocol with individual solid-state spins.

4.2 Detection and control of weakly coupled nuclear spins in

diamond

We have used dynamical decoupling spectroscopy23–25 to characterize the nuclear
spin environment of a total of three NV centres, including one with an additional
strongly coupled 13C spin (Fig. 4.5). To demonstrate the generality of our approach
to create multi-qubit registers, we have realized initialization, control and readout of
three weakly coupled 13C spins for each NV centre studied (Figs. 4.6-4.8). Below we
consider one of these NV centres in detail and use two of its weakly coupled 13C spins
to form a three-qubit register for quantum error correction (Fig. 4.1a).

Our control method exploits the dependence of the nuclear spin quantization axis
on the electron spin state due to the anisotropic hyperfine interaction (see 4.5.2
for hyperfine parameters), so that no radio-frequency driving of the nuclear spins is
required7,23–28 (see Ch. 3). All nuclear gates are implemented by pulse sequences of the
form (⌧ �⇡�2⌧ �⇡�⌧)N/2 where ⇡ is a microwave pi-pulse on the electron spin, 2⌧ is
the inter-pulse delay and N is the total number of pulses in the sequence. Each nuclear
spin is controlled by precisely choosing ⌧ in resonance with that spin’s particular
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Figure 4.1 — Definition and initialization of the quantum registers. a, Quantum
register formed by the nitrogen-vacancy (NV) electron spin (S = 1; |0i = |m

s

= 0i , |1i =
|m

s

= �1i) and weakly coupled 13C nuclear spins (I = 1/2; state | i
i

and hyperfine
interaction A

i

for nuclear spin i, see Sec. 4.5.1 for values). All gates on nuclear spins
are implemented by sequences of N pi-pulses on the electron spin spaced by a time 2⌧
(Sec. 4.5.2). b, The electronic coherence as a function of the total sequence length. The
number of pi-pulses N is increased for fixed ⌧ = 2⇡/!

L

, which is representative for our
gates. !

L

= 2⇡ · 431 kHz is the 13C Larmor frequency. The 1/e time is T
coh

= 2.86(4)
ms. c, Nuclear spin initialization by swapping the electron state, |0/1i = |0i or |1i, onto
the nuclear spin. The controlled gates (R⇡/2

±X

) are X-rotations by ⇡/2 with a direction
conditional on the electron spin state (Sec. 4.5.2). The final electron spin re-initialization
by a 2 µs laser pulse (labelled “Init.”) preserves the nuclear spin polarization (T

1

values
under illumination: 2.5(3) ms for nuclear spin 1 and 1.2(2) ms for nuclear spin 2, Fig. 4.25).
d, Electron Ramsey measurements without nuclear spin initialization and with nuclear spin
1 initialized in |0i

1

or |1i
1

, and e, with nuclear spin 1 initialized in |1i
1

and nuclear spin 2
in |0i

2

or |1i
2

. All error bars and uncertainties in this work are 1 s.d.
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4. Universal control and error correction in multi-qubit spin registers in diamond

hyperfine interaction. The target spin, the type of gate (conditional or unconditional)
and the rotation axis (X- or Z-rotation) are determined by the value of ⌧ ; the total
rotation angle is determined by N (Sec. 4.5.2). Crucially, these sequences at the same
time decouple the electron from the other nuclear qubits and the environment7; these
decoherence-protected gates are selective and allow the full electron coherence time
T
coh

to be exploited (T
coh

= 2.86(4) ms, Fig. 4.1b). The gates are thus not limited by
the electron spin dephasing time T ⇤

2

= 3.3(1) µs or Hahn echo time T
2

and do not
require strong coupling.

To initialize the nuclear spins we first prepare the electron spin in m
s

= 0 by optical
pumping (Sec. 4.6.2), then swap the electron state onto the nuclear spin, and finally
re-initialize the electron spin (Fig. 4.1c). We characterize the nuclear initialization by
preparing the electron spin in a superposition state and letting it evolve in a Ramsey-
type experiment. Without initialization a single-frequency oscillation with a Gaussian
decaying envelope is observed, confirming that the NV centre feels a decohering bath
of weakly coupled spins (Fig. 4.1d). Initializing the nuclear spins in the |0i(|1i) state
(Fig. 4.1d and e), we increase (decrease) the oscillation frequency because the magnetic
field at the electron is enhanced (reduced) due to the hyperfine interaction. The
oscillations also persist longer as quasistatic fluctuations of the two nuclear spins are
suppressed29, increasing the electronic dephasing time to T ⇤

2

= 4.0(2) µs. Initializing
spin 1 has a more pronounced e↵ect because spin 1 has a larger parallel component of
the hyperfine interaction (A1

k = 2⇡ · 78.2(8) kHz) than spin 2 (A2

k = 2⇡ · 32(3) kHz).

From such measurements, we obtain state initialization fidelities of F
1

= 0.91(2) and
F
2

= 0.88(5) for nuclear spin 1 and 2 respectively (see 4.5.1).

We next demonstrate the measurement of the individual nuclear spin states and
verify that we observe two distinct 13C spins by performing nuclear free-evolution
experiments (Fig. 4.2a-d). The oscillations in the expectation values for the X and Y
Pauli operators hXi and hY i show that the nuclear spins states are successfully read
out. The precession frequencies, !̄ = 2⇡ · 470(1) kHz for nuclear spin 1 (Fig. 4.2c)
and !̄ = 2⇡ · 449(2) kHz for nuclear spin 2 (Fig. 4.2d), are di↵erent and agree with
the average of !

0

= !
L

(for m
s

= 0) and !
1

⇡ !
L

+ Ak (for m
s

= �1), as expected
because the electron spin is continuously flipped. !

L

= 2⇡ ·431 kHz is the bare nuclear
Larmor frequency. These results confirm that we selectively address the two targeted
weakly coupled 13C spins.

Universal control requires both conditional and unconditional gates, while main-
taining a high degree of coherence for all qubits in the register. To characterize our
gates, we initialize the nuclear spins, prepare the electron spin either in m

s

= 0 or
in m

s

= �1 and apply a gate with a variable number of pulses. For the conditional
gate, hY i oscillates in anti-phase for the two electron states: the nuclear spin rotates
around the X–axis in a direction that depends on the initial electron state (Fig. 4.2e).
In contrast, for the unconditional gate the rotation direction is independent of the
electron state (Fig. 4.2f). The slow decay of the oscillations indicates that high control
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Figure 4.2 — Individual nuclear spin control and readout. a, Sequence for nuclear-
spin free-precession experiments. The Z-rotation is implemented by a pulse sequence
with o↵-resonant inter-pulse delay (⌧=0.12 µs) with a variable number of pulses N . b,
Nuclear spin state tomography is performed by mapping the expectation values of the Pauli
operators hXi, hY i and hZi onto the electron spin and reading out the electron (shaded
gates are optional basis rotations). Note that the signs of the first controlled operation
and the phase gate are corrected with respect to the publication. c-d, Measurement of
hXi, hY i and hZi as function of the free-evolution time. The oscillations in hXi and hY i
confirm the selective control and readout of the targeted nuclear spins. The amplitude
yields a combined readout and initialization fidelity of 0.82(1) for spin 1 in c and 0.72(1)
for spin 2 in d. Curves are sinusoidal fits. See Figs. 4.6-4.8 for a complete data set with
three nuclear spins for each of the three NV centres studied, demonstrating the generality
of the control method. e, Characterization of the conditional gate for nuclear spin 1.
The nuclear spin rotates about the X-axis with opposite directions for m

s

= 0 (without
shaded gates) and m

s

= �1 (with shaded gates). Time for a ±⇡/2-rotation: 170 µs. f,
Unconditional gate for nucleus 1; the rotation is independent of the electron state. Time
for a ⇡/2-rotation: 254 µs. See Fig. 4.11 for gates on nuclear spin 2. Results are not
corrected for initialization or readout fidelities. 53



4. Universal control and error correction in multi-qubit spin registers in diamond

fidelities are possible (F ⇠ 0.96 for a single-qubit nuclear ⇡/2-rotation), enabling us
to explore multi-gate sequences that implement nuclear-nuclear gates and quantum
error correction.

To realize quantum gates between the nuclear spins27,30, whose mutual interaction
is negligible, we use the electron spin as a quantum bus. We first verify that both
nuclear spins can be prepared and read out in the same experiment by initializing the
spins in an eigenstate and performing state tomography by mapping the two-qubit
correlations onto the electron spin (Fig. 4.3a). We then implement entangling gates
through an electron controlled gate on nuclear spin 2 and a subsequent coherent SWAP
gate between the electron and nuclear spin 1 (Fig. 4.2b). The tomography reveals
strong correlations between the nuclear spins with near-zero single-qubit expectation
values, a clear signature of an entangling gate. Despite the 167 electron operations
over 986 µs required to implement the five nuclear X-rotations, the fidelity with the
target state is 0.66(3) (initialization and readout corrected), demonstrating that the
gate can take a pure input state into an entangled state of nuclear spins.

4.3 Three-qubit error correction

Finally, we implement a quantum-error-correction protocol that protects a quantum
state from bit-flip errors by encoding it in a 3-qubit state and correcting errors through
majority voting (Fig. 4.4a). Such protocols have been realized with nuclear magnetic
resonance14,15, trapped ions16 and superconducting qubits17, but have so far been
out of reach for individual solid-state spins due to a lack of multi-qubit control. We
compose this protocol from one- and two-qubit gates (Fig. 4.4b) and separately confirm
that the constructed doubly-controlled gate flips the state around the X-axis only if
the control qubits (nuclear spins) are in |1i

1

|1i
2

(Fig. 4.4c).

We first characterize the e↵ect of errors on each qubit individually. The applied
errors are rotations around the X-axis by an angle ✓ with a random sign (50%
clockwise, 50% anticlockwise) and therefore represent a decoherence-type process
with a strength determined by ✓. We prepare 6 input states: |Zi = |0i, |�Zi = |1i,
|±Y i = (|0i±|1i)/

p
2 and |±Y i = (|0i±i |1i)/

p
2, measure the corresponding fidelities

F with the output states and calculate the process fidelity F
p

with the identity process:

F
p

=
(F

x

+ F�x

+ F
y

+ F�y

+ F
z

+ F�z

)

4
� 1

2

Without error correction, errors on the data qubit (electron spin) are expected to result
in an oscillation about F

p0

= (F
x

+F�x

)/4 because only the |±xi states are una↵ected
by the applied errors. With error correction, however, the experimental process
fidelity always remains above F

p0

= 0.293(1), even for a completely randomizing error
(✓ = ⇡/2), indicating that the state is partly recovered (Fig. 4.4d). If one of the ancilla
qubits (nuclear spins) is also flipped, an oscillation about F

p0

is observed; the error
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Figure 4.3 — Two-qubit control and nuclear-nuclear entangling gate. a, The
nuclear spins are prepared in |1i

1

|0i
0

and two-qubit tomography is performed by mapping
the 15 combinations of the identity and Pauli operators onto the electron spin (Sec. 4.6.2).
After correction for single-qubit initialization and readout fidelities by renormalizing to
the maximum values in Fig. 4.2c and 2d, the state fidelity with the target state is
F = 0.99(3), indicating that the sequential initialization and two-qubit readout are
accurate. b, Entangling gate between nuclear spins by coherently swapping the state of
the electron onto nuclear spin 1. The nuclear spin coherence is preserved during electron
spin re-initialization (a 2 µs laser pulse); T ⇤

2

values under illumination are 51(7) µs and
0.35(9) ms for nuclear spin 1 and 2 respectively (Sec. 4.6.7). The grey bars depict the
target state. Note that the target state in the original publication31 missed a phase.

correction is e↵ectively turned o↵ because the protocol cannot correct two-qubit errors.

To quantitatively determine the e↵ectiveness of the error correction we analyze it
in terms of the three probabilities p

n

that an applied error on qubit n is successfully
corrected and a decoherence/depolarization process during the error-correction protocol
itself (Sec. 4.5.4). The model accurately fits the data and gives p

1

= 0.89(2), p
2

=
0.63(1) and p

3

= 0.84(2) for errors on nucleus 1, the electron and nucleus 2 respectively.
Crucially, the average probability hp

n

i = (p
1

+ p
2

+ p
3

)/3 = 0.786(9) is well above 2/3,
demonstrating that the process is robust against applied single-qubit errors and that
the entropy associated with the errors is successfully shuttled to the ancilla qubits.
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4. Universal control and error correction in multi-qubit spin registers in diamond

We further demonstrate the robustness by applying errors simultaneously on all
three qubits (Fig. 4.4e). Without error correction, i.e. without doubly-controlled gate,
a linear dependence is observed and a fit to the expected form gives hp

n

i = 0.67(3)
in excellent agreement with hp

n

i = 2/3 expected for no robustness to errors. With
error correction a markedly slower initial decay and a non-linear behaviour with
hp

n

i = 0.84(3) is obtained. This suppression of the linear dependence is a key
characteristic of quantum error correction.

The deviation from hp
n

i = 1 is mainly due to imperfect nuclear initialization, which
might be improved by repeated initialization steps (Fig. 4.13) or projective meas-
urements9,21. We calculate hp

n

i = 0.94(2) for ideal initialization fidelity (Fig. 4.16).
Without applied errors, decoherence and depolarization during the protocol itself ( 300
electron operations for 10 nuclear spin gates over 1.8 ms) result in a process fidelity
of 0.431(2), corresponding to an average decrease of the state fidelity to 0.93 for one
gate (Sec. 4.6.5). For only the encoding and decoding steps the process fidelity is
0.728(4). The main source of infidelity is electron decoherence (T

coh

= 2.86(4) ms,
Fig. 4.1b), which is likely phonon-induced32 and limits the average fidelity per gate to
0.97. Nuclear spin dephasing further reduces the fidelity to 0.94, close to the observed
value (Sec. 4.6.5). The electronic coherence time is greatly increased at cryogenic
temperatures, at which T

coh

= 14 ms (single NV)18 and T
coh

= 0.6 s (ensembles)32

have already been reported. Nuclear spin dephasing can be mitigated by decoupling
nuclear-nuclear interactions (T

2

measurements in Fig. 4.23). With such future im-
provements, our results can be used to protect entangled states of solid-state spins.

4.4 Discussion

In conclusion, we have established universal control over weakly coupled nuclear spins
that were previously regarded as a source of decoherence. These results provide
multiple qubits per defect with high certainty and are compatible with control of the
intrinsic nitrogen spin and potential strongly coupled 13C spins. Our techniques can be
applied to a wide variety of other electron-nuclear spin systems2,3,10,12. The resulting
reliable multi-qubit registers can be combined with recently demonstrated coherent
coupling between (distant) electron spins11,18 to realize novel surface-code quantum-
computation architectures that use four qubits per defect node19 and extended
quantum networks for long-distance quantum communication.

4.5 Methods

4.5.1 Diamond sample and hyperfine interactions

We use a room-temperature type IIa diamond with 1.1% of 13C grown by chemical
vapor deposition (ElementSix). We apply a magnetic field of B

z

⇡ 403 G along the
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Figure 4.4 — Implementation of 3-qubit quantum error correction. a, Bit-flip
quantum-error-correction protocol. The state | i is encoded in an entangled state using
two ancilla qubits. Potential errors E are detected by decoding and are corrected based
on a doubly-controlled NOT gate. b, Our implementation of the quantum-error-correction
protocol in a. The doubly-controlled gate (blue) is constructed using 4 controlled gates as
the final ancilla states are irrelevant. The experiment consists of 308 electron operations
in 1.8 ms (excluding initialization). c, Characterization of the doubly-controlled gate (blue
gates in b only). The average output fidelities for |±Xi, for |±Y i and for |±Zi are shown
for the four ancilla basis states. The average process fidelity with the targeted action is
F
p

= 0.534(5). d, Process fidelity for errors applied to nucleus 1, to nucleus 2, or to the
electron spin (with and without additional flip of nuclear spin 1). Grey data and fit are
F
p

0 = (F
x

+ F
(

� x))/4, which sets the average value for the expected oscillations if no
errors are corrected. e, Process fidelity for errors simultaneously applied to all three qubits
with error probability p

e

. Purple: without error correction. Blue: with error correction.
Grey: for ideal robustness against errors. Error bars are given by the symbol size (typical
standard deviation 0.002). Inset: deviation of the error correction data from a linear curve.
All curves in d and e are fits to the model in Sec. 4.5.4.

NV symmetry axis (Z-axis), yielding a 13C Larmor frequency !
L

= 2⇡ · 431 kHz.
The electronic dephasing time T ⇤

2

is 3.3(1) µs. The hyperfine interaction for nuclear
spin i is given by A

i

= Ai

kẑ + Ai

?x̂ (Fig. 4.1a), with Ak the component parallel to
the magnetic field and A? the perpendicular component. The values determined by
dynamical decoupling spectroscopy23 are A1

k = 2⇡ · 78.2(8) kHz and A1

? = 2⇡ · 30(1)
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4. Universal control and error correction in multi-qubit spin registers in diamond

kHz for nuclear spin 1, and A2

k = 2⇡ · 32(3) kHz and A2

? = 2⇡ · 44(2) kHz for nuclear

spin 2 (Fig. 4.6). Because Ak, A? < (2
p

2)/T ⇤
2

= 2⇡ · 136(1) kHz the nuclear spins
are weakly coupled to the electron spin and the hyperfine splittings are unresolved.

4.5.2 Nuclear gate design

In a suitable rotating frame, the Hamiltonian with a single nuclear spin can be written:

Ĥ = |0i h0|Ĥ
0

+ |1i h1|Ĥ
1

with Ĥ
0

= !
L

Î
Z

and Ĥ
1

= (!
L

+ Ak)ÎZ + A?Î
X

and with |0i and |1i the m
s

= 0 and
m

s

= �1 electron states, respectively. Nuclear spin gates are performed by applying
sequences of the type (⌧ � ⇡ � 2⌧ � ⇡ � ⌧)N/2 on the electron spin (Rabi frequency
31.25 MHz). Because we set !

L

� A?, sharp periodic resonances occur at:

⌧ ⇡ k⇡/(2!
L

+ Ak), (4.1)

with integer k (Sec. 4.6.5). At these values a nuclear X-rotation is performed (assuming
A? 6= 0). For odd k the direction of the rotation is conditional on the electron spin

(e.g. the R⇡

±X

/2 gates), for even k it is unconditional (R⇡/2

X

gates). We use values of
k for which the resonances of the di↵erent spins do not overlap. For the conditional
gates we take ⌧ = 2.656 µs (k = 5), N = 32 for spin 1 and ⌧ = 3.900 µs (k = 7),
N = 18 for spin 2. For the unconditional gates we use ⌧ = 3.186 µs (k = 6), N = 40
for spin 1 and ⌧ = 2.228 µs (k = 4), N = 64 for spin 2. Z-rotations are implemented
by choosing ⌧ o↵-resonant: for values of ⌧ that do not satisfy the above resonance
condition the nuclear spins precess unconditionally around the Z-axis with frequency
!̄ = !

L

+ Ak/2. Detailed simulations of the nuclear spin dynamics are available in
Sec. 4.6.5.

4.5.3 Nuclear spin initialization

The electron Ramsey measurements in Fig. 4.1d and 1e are analysed in two ways:
(1) The measurements are separately fit to F = 1

2

� 1

2

e�(t/T

⇤
2 )

2

cos(�t), in which T ⇤
2

is
a measure for the dephasing time set by the entire spin bath and � is the detuning.
The external magnetic field stability of better than 2 mG over the total integration
time (⇠2 hours), required to measure the increase in T ⇤

2

compared to without nuclear
spin initialization, was achieved by post selecting from a larger measurement set.
(2) Using the hyperfine components A1

k and A2

k, the measurements are fit to:

F =
1

2
� 1

2
e�(⌧/T

⇤⇤
2 )

2

F
1

F
2

cos(((� + (A1

k + A2

k)/2)t)

+ F
1

(1 � F
2

) cos(((� + (A1

k � A2

k)/2)t))

+ (1 � F
1

)(F
2

) cos((� + (�A1

k + A2

k)/2)t)

+ (1 � F
1

)(1 � F
2

) cos((� � (A1

k + A2

k)/2)t)).
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T ⇤⇤
2

= 4.5(3) µs is the electronic dephasing due to the rest of the spin bath, i.e.
not including the two spins under study. To accurately determine the nuclear spin
initialization fidelities F

1

and F
2

we use a di↵erent data set that is averaged over a
longer time and is given in Fig. 4.13.

4.5.4 Quantum error correction analysis

The applied errors realize the quantum map:

E(⇢, ✓) = cos2(✓/2)I⇢I + sin2(✓/2)X⇢X (4.2)

in which ⇢ is the initial density matrix and I is the identity operator (error char-
acterization in Sec. 4.6.8). We analyze the error-correction protocol by separating
depolarization during the encoding, decoding and error-correction steps from the
robustness of the encoded state to applied errors, which is characterized by the three
probabilities p

n

that an error applied on qubit n is successfully corrected (derivation
in Sec. 4.6.8). The process fidelity for a single-qubit error (Fig. 4.4d) is then given by:

F
p

(✓) = F
p0

+ A
Y Z

[p
n

+ (1 � p
n

) cos(✓)], (4.3)

where F
p0

= (F
x

+ F�x

)/4 and A
Y

Z = (F
y

+ F�y

+ F
z

+ F�z

� 2)/4 characterize
the additional depolarization and are given by the average fidelities without applied
errors. Equation (1) contains a constant due to the |±Xi states, which are una↵ected
by the applied error, and a sum of successful (p

n

= 1) and unsuccessful (p
n

= 0) error
correction for the |±Y i and |±Zi states. For errors simultaneous on all three qubits
(Fig. 4.4e), the process fidelity becomes:

F
p

(p
e

) = F
p0

+ A
Y Z

[1 � 3p
e

+ 3p2
e

� 2p3
e

+ 3(2hp
n

i � 1)(p
e

� 3p2
e

+ 2p3
e

)],

with p
e

= sin2(✓/2) the error probability. In general this equation describes a third
order polynomial. For ideal error correction (hp

n

i = 1) the linear term vanishes,
whereas without robustness to errors, hp

n

i = 2/3, the result is strictly linear. The
inversion symmetry about p

e

= 0.5 observed both theoretically and experimentally
ensures that the nonlinear behavior is not due to spurious coherent rotations.

4.6 Supporting material

4.6.1 Setup and sample

The experimental setup and sample are described in detail in the supplementary
information of Van der Sar et al.

7 and in Ch. 3 of this thesis. We used a type-
IIa chemical vapour deposition grown diamond with a 1.1% natural abundance of
carbon-13 (Element 6). Solid immersion lenses were fabricated on top of the nitrogen
vacancy (NV) centres to enhance the collection e�ciency33. The electron spin is
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4. Universal control and error correction in multi-qubit spin registers in diamond

controlled by microwaves through an on-chip stripline (Rabi frequency of 31.25 MHz).
A magnetic field of B

z

⇡ 403 G was applied along the NV symmetry axis using three
electromagnets. At this magnetic field the intrinsic NV nitrogen-14 spin is polarized
due to an excited-state anti-crossing34,35.

4.6.2 Electron spin initialization and readout

This section discusses the electron spin initialization, re-initialization and readout. In
particular it analyzes how the imperfect spin and charge state initialization a↵ect the
outcomes of the di↵erent type of experiments performed.

4.6.3 Experimental

The electron spin is initialized in the m
s

= 0 state by a 532 nm (⇠ 150 µW) laser pulse
(typically 2-4 µs) and read out through its spin-dependent time-resolved fluorescence.
In all experiments we measure the di↵erence signal �

f

= S
f

� S̃
f

between the
fluorescence signal S

f

for the final state and the fluorescence signal S̃
f

for the final
state with a pi-pulse applied just before readout (m

s

= 0 to m
s

= �1 transition). The
obtained value is then normalized by dividing it by the same di↵erence signal right
after initialization: �

i

= S
i

� S̃
i

, where S
i

is without pi-pulse and S̃
i

with pi-pulse.
The final normalized contrast C is:

C =
S
f

� S̃
f

S
i

� S̃
i

=
�

f

�
i

. (4.4)

This method directly measures the contrast between m
s

= 0 and m
s

= �1 states.
Note that �1  C  1 and that the result is independent of the population in other
states, such as m

s

= +1, that are not a↵ected by the microwave pi-pulse. The reported
expectation values directly correspond to C, the measured fidelities are obtained from
F = C/2 + 1/2.

Initial electron state

The electronic initialization involves both spin states (m
s

= �1, 0,+1) and charge
states (NV � and NV 0). The initial state ⇢

i

is:

⇢
i

= p
1

⇢
0

+ p
2

⇢
m

+ p
3

⇢
s

+ p
4

⇢
c

, (4.5)

with p
1

+ p
2

+ p
3

+ p
4

= 1, and in which ⇢
0

is the desired m
s

= 0 state, ⇢
m

is the
completely mixed state of m

s

= 0 and m
s

= �1, ⇢
s

represents the other spins states
(here m

s

= +1) and ⇢
c

other charge states (here NV 0).

The precise values for p
1

, p
2

, p
3

and p
4

are unknown. For this NV centre the spin-
state initialization fidelity was previously reported to be F

s

= p1+p2/2

p1+p2+p3
> 0.95 under
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similar conditions7. The NV� charge-state initialization fidelity F
c

= p
1

+ p
2

+ p
3

is
unknown here, but values of ⇠ 0.7 have been reported for other NV centres36.

The available initial population is given by p
1

. Ideally, measurements of C = �

f

�

i

directly reflect the actual polarization so that �p
1

 C  p
1

. Because only the ⇢
0

term in Eq. 4.5 is a↵ected by microwave pulses only this term yields signal (non-zero
�), so that the normalization signal always is �

i

= D
0

p
1

, with D
0

an unknown
proportionality constant. Next we determine the obtainable final signal �

f

for two
types of experiments: experiments that do not re-initialize the electron to create
additional polarization in the nuclear spin register and those that do.

First consider experiments where only a single electron initialization step is used,
i.e. experiments that do not transfer polarization to the nuclear spins before resetting
the electron spin. In this case the maximum value of �

f

simply is D
0

p
1

and the
maximum contrast is C

max

= D0p1

D0p1
= 1. Due to the calibration, the final measured

contrast is independent of p
1

and therefore does not take into account the charge and
spin initialization fidelities.

Experiments with nuclear spin initialization

Now consider experiments in which the electron spin polarization is transferred to a
nuclear spin, the electron is re-initialized, and finally the electron is used to measure
the nuclear spin state. The result �

f

depends on the correlations of the spin (charge)
state after the re-initialization step with the spin (charge) state before it. We assume
the spin states before and after re-initialization are uncorrelated, and derive the result
�

f

for both uncorrelated (no memory) and maximally positive correlations (ideal
memory) for the charge state.

The state of the initialized electron and a single nuclear spin in a completely mixed
state is:

⇢ = ⇢
electron

⌦⇢
nucleus

= p
1

(⇢
0

⌦⇢
m

)+p
2

(⇢
m

⌦⇢
m

)+p
3

(⇢
s

⌦⇢
m

)+p
4

(⇢
c

⌦⇢
m

), (4.6)

swapping the electron and nuclear spin states gives:

⇢ = p
1

(⇢
m

⌦ ⇢
0

) + p
2

(⇢
m

⌦ ⇢
m

) + p
3

(⇢
s

⌦ ⇢
m

) + p
4

(⇢
c

⌦ ⇢
m

), (4.7)

as the SWAP gate has no e↵ect on the erroneous electron spin (⇢
s

) and charge (⇢
c

)
states. The electron spin initialization p

1

is thus directly transferred to the nuclear
spin.

We re-initialize the electron spin and assume that the electron spin initialization is
independent of the nuclear spin state. First consider the case of no correlations (no
memory) for the charge state, so that the electron is completely re-initialized. The
state in Eq. 4.7 becomes:

⇢ = (p
1

⇢
0

+ p
2

⇢
m

+ p
3

⇢
s

+ p
4

⇢
c

) ⌦ (p
1

⇢
0

+ (1 � p
1

)⇢
m

). (4.8)
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Reading out the nuclear spin with the electron spin only yields non-zero signal for
both the electron and nuclear spins in the pure state ⇢

0

, so that:

�
f

= D
0

p2
1

, C
max

= p
1

, (4.9)

which shows that the maximum contrast C
max

is reduced by a factor p
1

and thus that
the experiment faithfully reflects the actual nuclear spin state, including a reduced
fidelity due to the imperfect electron spin and charge initialization.

If the electron re-initialization does not change the charge state, Eq. 4.7 after
electron re-initialization becomes:

⇢ = p
1

✓
p
1

⇢
0

+ p
2

⇢
m

+ p
3

⇢
s

p
1

+ p
2

+ p
3

◆
⌦⇢

0

+(p
2

+p
3

)

✓
p
1

⇢
0

+ p
2

⇢
m

+ p
3

⇢
s

p
1

+ p
2

+ p
3

◆
⌦⇢

m

+p
4

⇢
c

⌦⇢
m

(4.10)
Again taking into account that no di↵erence signal is obtained if either the electron or
the nuclear spin is not in state ⇢

0

:

�
f

=
p2
1

p
1

+ p
2

+ p
3

, C
max

=
p
1

p
1

+ p
2

+ p
3

(4.11)

The result now accurately reflects the spin state initialization, but is independent of
the charge state initialization.

The high nuclear initialization fidelity obtained here (F ⇡ 0.9, Fig. 4.1), indicates
that the charge state initialization fidelity is high (> 0.90) or that the measurements
are not sensitive to it (i.e. the re-initialization laser pulse has low probability to change
the charge state). The same value gives a lower limit of the electron spin initialization
F = p

1

/2+1/2 � 0.90, as the swap gate for initialization and the nuclear spin readout
have limited fidelities as well.

In conclusion, as in previous room temperature experiments, the charge state is not
rigourously initialized nor proven to be fully reflected in the measurement outcomes.
Therefore the measured state fidelities do not give the actual purity of the states
and no entanglement can be proven to be present. Nevertheless the (entangling)
gates and protocols developed and studied in this work can be accurately investigated
through their action on the prepared states. Note that methods to initialize the charge
state have been developed at room temperature11,36 and that pure entangled states
have been reported at cryogenic temperatures using simultaneous spin and charge
initialization9.

4.6.4 Characterization and control for three NV centres

To demonstrate that harnessing weakly coupled spins makes multiple qubits avail-
able for each defect with high certainty, we have controlled three weakly coupled
nuclear spins for each of the three NV centres studied. This section contains the
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Figure 4.5 — Characterization of the nuclear spin environment for the three NV
centres studied. Dynamical decoupling spectroscopy23 for NV

A

, NV
B

and NV
C

. The
electron spin is prepared in a coherent superposition state (|Xi = 1p

2

(|0i + |1i)) and a

dynamical decoupling sequence with 32 pi-pulses of the form (⌧ � ⇡ � 2⌧ � ⇡ � ⌧)16 is
applied with variable interpulse delay 2⌧ before measuring hXi. Sharp periodic resonances
(dips) in the signal indicate an entangling operation of the electron spin with individual
13C spins in the spin bath23. The arrows indicate the 9 di↵erent 13C nuclear spins, and
the values of ⌧ used, for which we implemented initialization, control and readout (see
Figs. 4.6 for NV

A

, 4.7 for NV
B

and 4.8 for NV
C

). The experiments in the main text use
nuclear spin 1 and 2 of NV

A

. ⌧
L

is the bare Larmor period.

characterization of the NV centres and the nuclear-spin free-evolution experiments
that demonstrate the initialization, control and readout of the nuclear spins.

Characterization of the nuclear spin environment

We use dynamical decoupling spectroscopy23 to characterize the nuclear spin envir-
onment of a total of three NV centres: NV

A

, which is studied in the main text, and
the two additional centres NV

B

and NV
C

(Fig. 4.5). The resulting curves provide
characteristic fingerprints of the nuclear spin environments of the NV centre.

NV
A

and NV
B

show qualitatively similar behavior (Fig. 4.5). Both curves contain
periodic broad collapses of the signal (echo collapses) due to the spin bath at ⌧/⌧

L

=
m/4 with odd m, as well as distinct sharp periodic dips due to the resonances of
individual 13C nuclear spins that become visible at larger ⌧ (examples are marked
by the numbered arrows)23. However, the positions and strengths of the resonances
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Figure 4.6 — Control of three weakly coupled nuclear spins for NV
A

. Experiments
as in Fig. 4.2, but with the electron spin in m

s

= 0 (left) or m
s

= �1 (right). The values
for ⌧ used for spin 1 (orange), spin 2 (green) and spin 3 (purple) are marked in Fig. 4.5.
Note that nuclear spin 1 and nuclear spin 2 are the two spins studied in detail and used
for implementing the quantum-error-correction protocol.

di↵er strongly as the the distribution of nuclear spins near each NV centre is unique.
In addition to a bath of weakly-coupled 13C spins NV

C

shows a rapidly oscillating
component in the signal due to the presence of a nuclear spin with a strong hyperfine
interaction (hyperfine interaction of 2⇡ · 453 kHz and therefore strongly coupled).

Control of 3 weakly coupled nuclear spins per NV centre

For each of the three NV centres in Fig. 4.5 we select three nuclear spins. For each
spin we select a resonance that is well separated from the other qubits and the rest of
the bath (marked in the figure by arrows) in order to construct a conditional gate (see
subsection ‘Nuclear gate design’). We use this gate to realize initialization, control
and direct readout and perform nuclear free precession experiments (see Figs. 2a-d).
We prepare the electron spin in m

s

= 0 or m
s

= �1. For m
s

= 0 all spins precess with
!
0

= !
L

, as expected. The unique precession frequencies !
1

⇡ !
L

+ Ak for m
s

= �1
confirm that in each case three di↵erent 13C spins are controlled and that these spins
have weak hyperfine interactions (Figs. 4.6, 4.7 and 4.8).

These results demonstrate the control of three weakly-coupled nuclear spins for each
NV centre studied. Our decoherence-protected gates therefore make several nuclear
spins available per defect centre with a high certainty, in stark contrast to the highly
probabilistic nature of the presence of strongly coupled 13C spins. The fact that the
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Figure 4.7 —Control of three weakly coupled nuclear spins for NV
B

. Experiments
as in Fig. 4.2, but with the electron spin in m

s

= 0 (left) or m
s

= �1 (right). The values
for ⌧ used for spin 1 (orange), spin 2 (green) and spin 3 (purple) are marked in Fig. 4.5.

gates can be applied in the presence of strongly coupled nuclear spins, including the
intrinsic Nitrogen and nearby 13C nuclear spins, indicates that quantum registers with
over 5 nuclear spins are now well within reach (see e.g. NV

C

in Fig. 4.5).

4.6.5 Nuclear spin dynamics and gates

Hyperfine parameters

We obtain the hyperfine parameters for the NV centre used in the main text (NV
A

)
following Taminiau et al.

23. We first select a well-isolated resonance dip in Fig. 4.5
and identify the resonance order k, and the 13C spin that the resonance belongs to,
using the periodicity of the resonances. We then determine the parallel Ak and the
perpendicular A? components of the hyperfine interaction by fitting a small part of
the curve around the resonance to the theory23. The hyperfine parameters for the
three nuclear spins for NV

A

are given in Table 4.1. The two nuclear spin qubits in
the main text are spin 1 and 2.

Nuclear gate design

With an appropriate rotation of the coordinate axes, the Hamiltonian of the NV
electron spin and a single 13C spin is:

Ĥ = AkŜz

Î
z

+ A?Ŝ
z

Î
x

+ !
L

Î
z

= |0ih0|Ĥ
0

+ |1ih1|Ĥ
1

, (4.12)
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Figure 4.8 —Control of three weakly coupled nuclear spins for NV
C

. Experiments
as in Fig. 4.2, but with the electron spin in m

s

= 0 (left) or m
s

= �1 (right). The values
for ⌧ used for spin 1 (orange), spin 2 (green) and spin 3 (purple) are marked in Fig. 4.5.

Nuclear spin Ak (kHz) A? (kHz)

1 78.2(8) 30(1)
2 32(3) 44(2)
3 41.2(4) 19.2(7)

Table 4.1 —Hyperfine parameters for the three 3 13C spins for NV
A

. Ak is the
component parallel to the applied magnetic field (along the NV symmetry axis). A? is
the perpendicular component. This NV centre was studied previously23.

where Ŝ
i

(Î
i

) are the electron (nuclear) spin operators, !
L

= 2⇡ ·431 kHz is the nuclear
Larmor frequency (applied magnetic field B

z

⇡ 403 G). The nuclear spin evolution
thus depends on the electron spin state: Ĥ

0

if the electron is in m
s

= 0 (state |0i),
and Ĥ

1

if the electron is in m
s

= �1 (state |1i), with

Ĥ
0

= !
L

Î
z

, and Ĥ
1

= (Ak + !
L

)Î
z

+ B?Î
x

. (4.13)

All nuclear gates are implemented by applying a sequence of periodic pulses on the
electron spin:

(⌧ � ⇡ � 2⌧ � ⇡ � ⌧)N/2, (4.14)

with ⌧ a free evolution time, ⇡ a pi-pulse on the electron and N the total number
of pulses. We symmetrize the decoupling sequence by alternating pi-pulses around
the X and Y axis (base sequence X � Y � X � Y � Y � X � Y � X, which is then
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Figure 4.9 —Simulations of the nuclear dynamics for spin 1. a,b, The X and Z
projections of (a) n̂

0

(the net rotation axis for initial electron state m
s

= 0) and of (b) n̂
1

(initial electron state m
s

= �1). The Y projection is 0. c, The inner product n̂
0

· n̂
1

of
the the two rotation axis indicates if the gate is unconditional (parallel axes, n̂

0

· n̂
1

= 1)
or conditional (anti-parallel axes, n̂

0

· n̂
1

= �1). d, The number of pulses N required
for a ⇡/2-rotation. The total gate duration is given by 2N⌧ . The two arrows mark the
values for ⌧ for the conditional and unconditional gates for this spin.

repeated). The nuclear evolution operators for the basic sequence (N = 2) are:

V̂
0

= exp [�iĤ
0

⌧ ] exp [�iĤ
1

2⌧ ] exp [�iĤ
0

⌧ ] (4.15)

V̂
1

= exp [�iĤ
1

⌧ ] exp [�iĤ
0

2⌧ ] exp [�iĤ
1

⌧ ], (4.16)

for m
s

= 0 and m
s

= �1 respectively.

The conditional operators V̂
0

and V̂
1

can be represented as:

V̂
0

= exp [�i�(̂I · n̂
0

)] (4.17)

V̂
1

= exp [�i�(̂I · n̂
1

)], (4.18)

which illustrates that the net evolution is a rotation by an angle � around an axis
n̂
i

that depends on the initial state of the electron spin: n̂
0

for m
s

= 0 and n̂
1

for
m

s

= �1. The rotation angle � is independent of the electron spin input state23.
Next, we show that both conditional and unconditional rotations can be constructed
by choosing ⌧ . Figure 4.9 shows the dynamics for nuclear spin 1. Because !

L

� A?,
the X and Z components of the rotation axes n̂

0

(Fig. 4.9a) and n̂
1

(Fig. 4.9b)
show sharp resonances, for which the nuclear spin undergoes an X-rotation. These
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Figure 4.10 —Simulations of the dynamics for nuclear spin 2. See description in
Fig. 4.9.

resonances occur for:

⌧ ⇡ k⇡

2!
L

+ Ak
, (4.19)

with integer k. The X-rotation is conditional for the odd resonances (odd k, anti-
parallel rotation axes: n̂

0

· n̂
1

= �1) and unconditional for the even resonances (even
k, parallel axes: n̂

0

· n̂
1

= 1) (Fig. 4.9c). For all other values of ⌧ the nuclear spin
undergoes a simple Z-rotation independent of the electron spin state (n̂

0

· n̂
1

= 1).
The electron and nuclear spin are then e↵ectively decoupled from each other. The
number of pulses N required for a ⇡/2 rotation are shown in Fig. 4.9 as a function
of ⌧ . The dynamics for spin 2 are similar (Fig. 4.10), but the resonances occur for
di↵erent values of ⌧ due to the di↵erence in Ak.

The values for ⌧ and N for the gates used in this work are given in Tab. 4.2 and
the values for ⌧ are also indicated in Figs. 4.9d and 4.10d.

The sharp resonances enable the universal control of a selected nuclear spin, while
decoupling the electron spin from all other nuclear spin qubits and the rest of the
environment. The gates are thus selective, not limited by the electron T ⇤

2

7,37 and do
not require strong coupling.

Nuclear gate characterization

To characterize the conditional and unconditional gates we study the e↵ect of the
gates on an initialized nuclear spin state, as a function of the number of electron spin
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⌧ (µs) N Total time (µs, rounded)

Spin1: Re

X

(⇡/2) 2.656 32 170
R

X

(⇡/2) 3.186 40 255
R

Z

(⇡/2) 2.058 4 16
Spin2: Re

X

(⇡/2) 3.900 18 140
R

X

(⇡/2) 2.228 64 285
R

Z

(⇡/2) 2.100 2 8

Table 4.2 —Gate parameters. R
↵

(✓) is a rotation of the nuclear spin around Bloch-
sphere axis ↵ by an angle ✓. For gates marked Re the rotation direction is controlled by
the electron spin state, for all other gates the direction is unconditional.

pulses in the gate. Figures 2e and 2f give the Y -projections for both gates for nuclear
spin 1. Figure 4.11 gives the complete set of measurements, including the gates for
nuclear spin 2 and the Z-projections that confirm that the gates are conditional and
unconditional rotations around X.

Theoretical gate fidelities

To investigate the theoretical fidelity of the gates and the crosstalk of the gates to the
other spin qubits, we apply the gates to a small set of initial states and calculate the
fidelity with the ideal final state (Tab. 4.3). In general the resulting state fidelities
for our two qubits (spin 1 and 2) are high (> 0.995). Even though spin 3 is not used
as a qubit in the main text, it is considered here because its Ak value is similar to
the value for spin 2. As a result the conditional gate on spin 2 also rotates spin 3,
potentially leading to extra loss of electron coherence. These fidelities do not take into
account the rest of the spin bath nor phonon-induced decoherence and depolarization.

The calculations use the experimental discretization precision (2 ns steps for ⌧).
Nevertheless, the di↵erence between the value used and the optimal value of ⌧ can
be di↵erent in the experiment and the calculation, as the values for the hyperfine
interaction and the magnetic field used in the calculation might be slightly o↵. In
the worst case the discretization reduces the fidelities for the X-rotations by ⇠ 0.005.
O↵-resonant rotations such as Z-rotations are not a↵ected by this.

4.6.6 Nuclear initialization fidelity

The nuclear initialization fidelity is determined from Ramsey-type experiments as
described in the main text. The measurements in Figs. 1f and 1g are post selected on
small magnetic field drifts so that the absolute increase of T ⇤

2

can be determined. For
the initialization fidelity we use an average over a longer measurement that constantly
switches between the di↵erent initialization conditions (Fig. 4.12). This approach has
the advantage that the initialization fidelity can be determined more accurately and
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Figure 4.11 —Gate characterization. Action of the conditional (a-b) and unconditional
(c-d) gates for both nuclear spin 1 (a,c) and nuclear spin 2 (b,d). Measurement schemes
in Figs. 2e and 2f. The Z-projection shows that the spin undergoes a Rabi oscillation
and the Y -projection shows that the orientation of the rotation is either conditional (a,b)
or unconditional on the electron state (c,d). Not corrected for initialization or readout
fidelities.

that the influence of magnetic field fluctuations averages out, but it is not suited for
measurements of the absolute increase of T ⇤

2

, as significant magnetic field fluctuations
over the extended measurement time decrease T ⇤

2

.

In these experiments we repeat the initialization step four times when switching
between initialization conditions to ensure maximum initialization fidelity. Once
initialized in one of the states, a single initialization step before each repetition of the
measurement is su�cient because these measurements leave the nuclear state mostly
intact. We find F

1

= 0.91(2) for nuclear spin 1 and F
2

= 0.88(5) for nuclear spin 2
(Fig. 4.12).

Although the initialization protocol ideally needs only a single application, Fig. 4.13
shows that repeated applications do further increase the polarization before saturating
after approximately 2 steps. In the implementation of the quantum error correction
protocol (Fig. 4.4) only a single initialization step was used, and the sequence does
not preserve the nuclear polarization, so that the initialization fidelities are lower than
those obtained from Fig. 4.12. The results in Fig. 4.13 yield an initialization fidelity
for these experiments of F

1

⇡ F
2

⇡ 0.82.
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Target Gate Fidelity spin 1 Fidelity spin 2 Fidelity spin 3

Spin 1 Re

X

(±⇡/2) 0.9976 0.9997 0.9959
R

X

(⇡/2) 0.9981 0.9999 1.000
RZ(⇡/2) 0.9994 0.9992 0.9999

Spin 2 Re

X

(±⇡/2) 1.000 0.9999 0.9630
R

X

(⇡/2) 1.000 0.9987 0.9975
R

Z

(⇡/2) 0.9993 0.9971 0.9993

Table 4.3 —Theoretical fidelities. The state fidelity with the ideal state after application
of the gates. The first collumn gives the target spin for the gate. The second column gives
the type of gate. Conditional X-rotation: Re

X

(±⇡/2). Unconditional X- and Z-rotations:
R

X

(⇡/2) and R
X

(⇡/2). The electron spin always starts in m
s

= 0. For the target spin
the X-rotations are applied to |0i and the Z-rotations to |Xi. For the not-targeted spins
all gates are applied to |0i and the ideal operation is a Z-rotation that has no e↵ect. All
numbers are rounded to four digits.

4.6.7 Two-qubit tomography

Two-qubit tomography (Fig. 4.3) is performed by mapping two-qubit correlations
onto the electron spin before reading out the electron. Figure 4.14a shows the general
principle and Fig. 4.14b shows our implementation.

4.6.8 Quantum error correction

This section discusses the application and characterization of the errors, gives the
derivation of the theoretical analysis used in the main text, and gives the complete set
of state fidelity results used to derive the process fidelities in the main text (Fig. 4.4).

Error implementation

The quantum error correction scheme corrects both coherent errors of the type R
X

(✓),
i.e. a rotation around the X-axis by angle ✓ or the quantum map:

✏
c

(⇢, ✓) = [cos(✓/2)I + i sin(✓/2)X]⇢[cos(✓/2)I � i sin(✓/2)X] (4.20)

and non-unitary, decoherence-type, operations given by the quantum map:

✏
d

(⇢, ✓) = cos2(✓/2)I⇢I + sin2(✓/2)X⇢X (4.21)

Errors on the electron spin are directly created by a microwave pulse that implements
R

X

(✓). In half the experiments a positive rotation R
X

(+✓) is applied and in the
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Figure 4.12 —Data set for the determination of the nuclear spin initialization
fidelity. Electron spin free evolution measurements with and without nuclear spin ini-
tialization. Top: nuclear spin 1, fidelity F

1

= 0.91(2). Bottom nuclear spin 2, fidelity
F
2

= 0.88(5). The three curves are measured in a single experiment that is long enough
to average over the magnetic field fluctuations, reducing T ⇤

2

to 3.1(1) µs.

other half a negative rotation R
X

(�✓). The final result is the average over the two
measurements, so that the implemented error is of the form of Eq. 4.21.

Errors on the nuclear spins are implemented through the electron spin. First the
error is applied to the electron spin. Then the initialization gate transfers the error to
the nuclear spin state. This operation gives the same result as applying ✏

d

(⇢, ✓) on an
initialized nuclear spin state. Figure 4.15 shows the resulting fidelity with |Zi = |0i for
both nuclear spins as a function of the error pulse amplitude. The observed oscillation
around F = 1/2 confirms the expected application of the error.

Theoretical analysis

We analyze the quantum error process as a combination of imperfect majority voting
and a general decoherence/depolarization process. We assume the following two
properties: (1) that applied errors have no e↵ect on the |±Xi states and (2) that
the probabilities that the error correction (majority voting) is successful for errors
applied to qubit 1, qubit 2 or qubit 3 are given by p

1

, p
2

and p
3

respectively. In the
above statement an error is defined relative to the other two qubits; simultaneous
errors on qubit 2 and qubit 3 are recognized by the majority voting as an error on
qubit 1. These probabilities then completely describe the e↵ectiveness of the error
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Figure 4.13 —Increased initialization fidelity through multiple initialization steps.
The measured expectation value hZi = h |Z| i for the nuclear spin state | i as a function
of the number of initialization steps. The nuclear spin is either initialized on |0i or |1i. a,
Nuclear spin 1. b, Nuclear spin 2. Data not corrected for initialization or readout fidelities.
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Figure 4.14 —Two-qubit tomography. We measure the expectation values of the
di↵erent combinations of the nuclear two-qubit pauli operators using the electron spin. a,
General readout scheme to measure hUUi, with U a unitary operator and H the Hadamard
gate. b, Our implementation. The shaded gates are optional basis rotations. Note that
the signs of the first two operations on both nuclear spins are corrected with respect to
the publication.

correction process against errors occuring on the encoded state (for an ideal case
p
1

= p
2

= p
3

= 1).

In each experiment we prepare 6 input states |↵i:

73



4. Universal control and error correction in multi-qubit spin registers in diamond

|Zi = |0i , (4.22)

|�Zi = |1i , (4.23)

|Xi =
1p
2
(|0i + |1i), (4.24)

|�Xi =
1p
2
(|0i � |1i), (4.25)

|Y i =
1p
2
(|0i + i |1i), (4.26)

|�Y i =
1p
2
(|0i � i |1i), (4.27)

and measure the expectation values:

C
↵

= h 
↵

|↵| 
↵

i, (4.28)

where | 
↵

i is the output state for input state |↵i, and ↵ = Z, �Z, Y, �Y, X, or �X.
The fidelities of the output states with the input states are given by:

F
↵

= C
↵

/2 + 1/2. (4.29)

We label the 8 possible combinations of (applied) errors that can occur with j. For
example: j = 000 implies no error, j = 100 is an error on qubit 1, etc. The obtained
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Figure 4.15 —Characterization of the nuclear spin errors. Fidelity F of the final
nuclear state with |Zi = |0i as a function of the amplitude of the error pulse applied on
the electron. a, For nuclear spin 1. b, For nuclear spin 2. Lines are fits to the expected
cosine behavior around fidelity 0.5. The measurements are not corrected for readout or
initialization fidelities.
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signal for error combination j and input state |↵i is Cj

↵

. Using the above assumptions
all possible results can be described by the probabilities p

1

, p
2

and p
3

together with
the obtained signals when no error is applied C000

±Z

, C000

±Y

and C000

±X

. All possible values
based on the above error correction model are given in Tab. 4.4.

Signal for error j |±Zi |±Y i |±Xi

C000

↵

C000

±Z

C000

±Y

C000

±X

C001

↵

(2p
3

� 1)C000

±Z

(2p
3

� 1)C000

±Y

C000

±X

C010

↵

(2p
2

� 1)C000

±Z

(2p
2

� 1)C000

±Y

C000

±X

C100

↵

(2p
1

� 1)C000

±Z

(2p
1

� 1)C000

±Y

C000

±X

C011

↵

�(2p
1

� 1)C000

±Z

�(2p
1

� 1)C000

±Y

C000

±X

C101

↵

�(2p
2

� 1)C000

±Z

�(2p
2

� 1)C000

±Y

C000

±X

C110

↵

�(2p
3

� 1)C000

±Z

�(2p
3

� 1)C000

±Y

C000

±X

C111

↵

�C000

±Z

�C000

±Y

C000

±X

Table 4.4 —Action of the error correction protocol. Cj

↵

is the signal obtained for input
state |↵i and error combination j. p

n

is the probability that an error on qubit n is
successfully corrected.

Single-qubit errors

For a variable strength error on one of the qubits the final fidelity for inputs |±Y i
and |±Zi is given by a weighted sum of the two corresponding values in Tab. 4.4:

F
↵

(✓) =
cos2(✓/2)

2
Cklm

↵

+
sin2(✓/2)

2
Ck

0
l

0
m

0

↵

+ 1/2, (4.30)

in which klm and k0l0m0 identify the applied error combination. For example, for
the variable error applied to qubit 2 and no error to qubits 1 and 3, we have klm = 000
and k0l0m0 = 010. For |±Xi the signal is simply constant:

F±X

(✓) = C000

±X

/2 + 1/2. (4.31)

In Fig. 4.4d two di↵erent types of errors are applied: (1) just a variable error on
qubit n and (2) a variable error on qubit 2 and a full flip on qubit 1. For a variable
error on qubit n (n = 1, 2, 3) and input |±Y i or |±Zi Eq. 4.30 simplifies to:

F
↵

(✓) =
C000

↵

2
(p

n

+ (1 � p
n

) cos(✓)) + 1/2, (4.32)
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in agreement with the interpretation of the values p
n

as the probability that an
error on qubit n is successfully corrected. For the variable error on qubit 2 and a full
flip on qubit 1 we find:

F
↵

(✓) =
C000

↵

2
(p

1

� p
3

+ (p
1

+ p
3

� 1) cos(✓)) + 1/2, (4.33)

which is of the same form as Eq. 4.32 and shows that for p
1

= p
3

a cosine around
fidelity 1/2 is obtained; the error correction is e↵ectively switched of.

The process fidelity F
p

of the error correction process with the identity is:

F
p

(✓) =
F
Z

(✓) + F�Z

(✓) + F
X

(✓) + F�X

(✓) + F
Y

(✓) + F�Y

(✓)

4
� 1/2, (4.34)

in which the F
↵

are given by Eqs. 4.30 and 4.31. For a single applied error this
simplifies to:

F
p

(✓) = F
p0

+ A
Y Z

(p
n

+ (1 � p
n

) cos(✓)), (4.35)

in which F
p0

= (F
X

+ F�X

)/4 and A
Y Z

= (F
Y

(0) + F�Y

(0) + F
Z

(0) + F�Z

(0) � 2)/4.
Note that all the di↵erent fidelities without error get grouped into two constants, one
related to the average fidelity of the |±Xi states and one related to the average fidelity
of the |±Y i and |±Zi states without applied errors.

Ancilla initialization fidelity

We now discuss how our description accounts for imperfect ancilla initialization. As
C000

↵

is the signal without additional errors being applied, or additional errors occuring
to the already encoded state, errors in the ancilla initialization are not included in ✓.
Instead, imperfect ancilla initialization reduces the probability that applied errors are
corrected, i.e. it decreases the values p

n

.

The e↵ect of the initialization fidelities F
1

and F
2

of the two ancilla qubits (here
qubit 1 and 3) is that the measured values C 0j

↵

are now combinations of the Cj

↵

values
in Tab. 4.4 following:

2

6664

C
0
0k0

↵

C
0
0k1

↵

C
0
1k0

↵

C
0
1k1

↵

3

7775
=

2

664

F
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F
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F
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(1� F
2
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F
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2

664

C0k0

↵
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↵
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↵
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↵

3

775

(4.36)
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Figure 4.16 —E↵ect of initialization on the error correction. Process fidelity for
selectively applied errors with error angle ✓ as in Fig. 4.4d. Solid lines are a fit to the
model including Eq. 4.36 . The dashed lines are the expected results for ideal initialization
of the two nuclear ancillas (F

1

= F
2

= 1).

We take F
1

= F
2

= 0.82 as an estimate for the initialization fidelities (Fig. 4.13). The
resulting fits are shown in Fig. 4.16 (solid lines) and yield p

n

= 0.93(3), 0.89(3), 0.99(3) and
hp

n

i = (p
1

+ p
2

+ p
3

)/3 = 0.94(2). These are the values p
n

expected for ideal initialization.
We calculate the expected result for ideal initialization by using the same values for p

n

but
setting F

1

= F
2

= 1 (dashed lines, Fig. 4.16). The imperfect initialization has two e↵ects on
the measured curves. First it strongly a↵ects the success probability of the error correction.
Second, it lowers the overall maximum fidelity slightly. This is a weak e↵ect because it
requires wrong preparation of both ancillas at the same time and is therefore proportional to
(1� F

1

)(1� F
2

).

We now derive explicit equations for the dependence of the error correction probabilities
p
n

on the ancilla initialization. For simplicity we set F
1

= F
2

= F and assume that this is the
only imperfection by setting Cklm

↵

= 1 if k+ l+m  1 (maximum 1 error) and Cklm

↵

= �1 if
k + l +m � 2 (more than 1 error). The observed values C0klm

↵

are given by Eq. 4.36 and the
values for p

n

can then be derived from Tab. 4.4. We find for the data qubit:

p
2

=
�2F + 1

2F 2 � 4F + 1
(4.37)

and for the ancilla qubits:

p
1

= p
3

=
�F

2F 2 � 4F + 1
. (4.38)
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Errors on di↵erent types of qubits thus respond di↵erently to the ancilla initialization fidelity.
In particular note that without initialization, F = 0.5, p

2

= 0 and p
1

= p
3

= 1. The average
value is given by:

hp
n

i = �4F + 1
6F 2 � 12F + 3

. (4.39)

This value monotonously decreases from 1 (perfect error correction) to 2/3 (no error cor-
rection) as the initialization fidelity goes from F = 1 (perfect initialization) to F = 0.5 (no
initialization).

Simultaneous errors

The process fidelity F
p

for simultaneous errors is given by:

F
p

(p
e

) =(1� 3p
e

+ 3p2
e

� p3
e

)F 000

p

(4.40)

+ p
e

(1� p
e

)2(F 001

p

+ F 010

p

+ F 100

p

) (4.41)

+ p2
e

(1� p
e

)(F 011

p

+ F 101

p

+ F 110

p

) (4.42)

+ p3
e

F 111

p

, (4.43)

with p
e

= sin(✓/2)2 the error probability and F klm

p

the process fidelity for applied error
klm, i.e.:

F klm

p

= 1/4

✓
1 +

Cklm

X

+ Cklm

�X

2
+

Cklm

Y

+ Cklm

�Y

2
+

Cklm

Z

+ Cklm

�Z

2

◆
. (4.44)

with Cklm

↵

as given in Tab. 4.4 we obtain:

F
p

(p
e

) = F
p0

+A
Y Z

⇥
1� 3p

e

+ 3p2
e

� 2p3
e

+ 3(2hp
n

i � 1)(p
e

� 3p2
e

+ 2p3
e

)
⇤
, (4.45)

The experiment is completely described by just 3 parameters: the o↵set F
p0

(due to the
average |±Xi fidelity without applied errors), the amplitude A

Y Z

(due to the average |±Y, Zi
fidelity without applied errors) and the average error correction probability hp

n

i.

Complete state fidelity data set

The complete set of state fidelities used to derive the process fidelities for errors applied to
one of the qubits at a time (main text Fig. 4.4d) is shown in Fig. 4.17. The complete sets of
state fidelities used to obtain the process fidelities for simultaneously applied errors (Fig. 4.4e
of the main text) are given in Fig. 4.18a (without error correction) and Fig. 4.18b (with
error correction).

4.6.9 Decoherence and depolarization

In this section we analyze the di↵erent decoherence mechanisms in the three-qubit register.
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Figure 4.17 —Complete set of state fidelities for selectively applied errors. State
fidelity for the 6 input states |Zi , |�Zi , |Xi , |�Xi , |Y i and |�Y i, for 4 di↵erent com-
binations of errors and as a function of the error angle ✓. We apply ✏

d

(⇢, ✓) to each of
the three qubits separately and a combination of ✏

d

(⇢, ✓) to the electron and ✏
d

(⇢,⇡) to
Nucleus 1. Lines are fits to Eqs. 4.31-4.33.
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Figure 4.18 —a, State fidelities for the 6 input states as a function of the error probability
without error correction. Lines are linear fits to the data. b, State fidelities for the 6
input states as a function of the error probability with error correction. Lines are 3rd order
polynomial fits to the data.

Electron depolarization “T
1

”

The electronic depolarization (longitudinal relaxation or T1-type process) due to phonon
interactions plays an important role at these room temperature experiments. To measure
the depolarization rates we prepare one of the three states m

s

= �1, m
s

= 0 and m
s

= +1
and let the system relax for a time t. We then apply a pi-pulse on the m

s

= 0 transition (for
the state starting in m

s

= 0 nothing is done) before reading out the electron. The results are
fit to a 3-level model that yields three rates between the di↵erent levels (Fig. 4.19). We find:
�
0,�1

= 71(3) s�1, �
0,+1

= 51(2) s�1 and ��1,+1

= 133(3) s�1. In this three level system no
unique “T

1

” value can be defined. Nevertheless, a separate analysis of each of the curves
gives 1/e times of 3.24(9) ms (m

s

= �1), 5.11(7) ms (m
s

= 0, which is often reported as
the T

1

value) and 3.91(6) ms (m
s

= +1). We verified that the same rates were obtained
with a 4 times lower laser output power, indicating that transitions induced by background
illumination are negligible.

Electron decoherence T
coh

To measure the electronic coherence time under dynamical decoupling T
coh

the electron spin
is prepared along X. We then apply a decoupling sequence with ⌧ = 2⇡/!

L

= 2.324 µs and
measure the spin projection along X. The total time is varied by varying the number of pulses
N in the sequence. The result is shown in Fig. 4.20. The green line marks the limit given by
phonon-induced depolarization of the electron spin. It is given by the total decay rate out of
the m

s

= 0 and m
s

= �1 levels: �
0,�1

+ �
0,+1

/2 + ��1,+1

/2. The additional decoherence
observed experimentally is consistent with previous reports32 and is likely due to phonon-
induced dephasing, as much longer coherence times were reported at low temperatures18,32.
The expected signal without phonon-induced dephasing and depolarization is given by:
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Figure 4.20 —Decoherence of the electron spin under dynamical decoupling. We
apply a decoupling sequence to input state |Xi and measure the final state along X. The
interpulse delay ⌧ is 2⇡/!

L

, in the same range as used for the nuclear gates. Purple:
Exponential fit to the data that gives T

coh

= 2.86(4). Green: expected value due to
electron depolarization alone.

S = e
�
⇣

2⌧
T2

⌘
n

N,

(4.46)

with the spin echo time T
2

= 251(7) µs. With n = 3 this gives an estimated decay time of
⇠ 700 ms, indicating that decoupling from the spin bath is not the limiting factor here.

Nuclear dephasing T ?

2

We measure the nuclear dephasing time T ?

2

by preparing the nuclear spin in a superposition
and the electron spin in m

s

= 0, and let the system evolve for variable time. The electron
spin is then reset to m

s

= 0 before the nuclear spin is measured along an axis that creates
an e↵ective detuning of approximately 1 kHz. We obtain T ?

2

= 2.7(2) ms for nuclear spin 1

81



4. Universal control and error correction in multi-qubit spin registers in diamond

Fi
de

lit
y

0 1 2 30.5 1.5 2.5 3.5
Evolution time (ms) Evolution time (ms)

0 1 2 30.5 1.5 2.5 3.5 4

0.7

0.6

0.5

0.4

0.3

Fi
de

lit
y

(a)

0.7

0.6

0.5

0.4

0.3

(b)

Figure 4.21 —Nuclear dephasing time T ?

2

. a, For nuclear spin 1. T ?

2

= 2.7(2) ms,
simultaneously measured electron T ?

2

= 3.4(1) µs. b, For nuclear spin 2. T ?

2

= 4.4(5)
ms, simultaneously measured electron T ?

2

= 3.18(8) µs. Fits are sine functions with a

decaying envelope e(�t/T

?

2 )

�

. Spin 1: � = 2, spin 2: � = 1. No readout correction.

and T ?

2

= 4.4(5) ms for nuclear spin 2 (Fig. 4.21). An electron free-precession (Ramsey-type)
measurement is performed during the experiments (interleaved on a µs timescale), so that
the electron and nuclear T ?

2

can be compared under the same magnetic field fluctuations.

We expect the nuclear dephasing time to be set by a combination of electron relaxation
and magnetic field fluctuations (including the nuclear spin bath). Electron relaxation gives a
rate of �

0,�1

+�
0,+1

= 122(4) s�1 (time constant of 8.2 ms). To estimate the intrinsic nuclear
dephasing timescale T ?

2int

we subtract the electron depolarization rate from the inverse of the
measured dephasing time T ?

2

. We find T ?

2int

⇠ 4.0 ms for spin 1 and T ?

2int

⇠ 9.5 ms for spin
2. The di↵erence between values could originate from the di↵erences in the nuclear spin’s
microscopic environments.

Magnetic field stability

We stabilize the magnetic field through a feedback loop by periodically measuring the energy
splitting of the NV centre. This stabilization is required to counteract slow magnetic field
drifts (order of 0.1 G) over the measurement time. Figure 4.22 characterizes the magnetic
field stability during the quantum-error-correction measurements with simultaneous errors
(taken over a total of 344 hours, spread out over 1 month). These values are representative
for the other measurements.

The measured residual slow fluctuations of the magnetic field (38.7 kHz, 0.014 G) are
small compared to the fast fluctuations due to the 13C bath (⇠ 66 kHz, 0.024 G). These slow
fluctuations are expected to decrease the electron T ?

2e

from the instantaneous value 3.3 µs to
2.9 µs (and the nuclear T ?

2

with approximately the same factor).

Part of the fluctuations are caused by the uncertainty in the measurements of the electron
splitting. Figure 4.22 shows that this e↵ect is small, because the measurement uncertainty of
(6.9 kHz) is small compared to the total drift observed (38.7 kHz).
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Figure 4.22 —Magnetic field stabilization. The magnetic field during the error cor-
rection measurements was stabilized by a feedback loop based on 840 measurements.
(left) Electron energy splitting. Fluctuations during the experiment of 38.7 kHz (1�) are
observed, corresponding to 14 mG. (right) The average measurement uncertainty in a
single instance of the magnetic field measurement is 6.9 kHz (2 mG).
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Figure 4.23 —Nuclear spin echo experiments. a, For nuclear spin 1: T
2

= 5.9(8) ms.
b, For nuclear spin 2: T

2

= 9(1) ms. Single exponential fits. No readout or initialization
correction.

Nuclear T
2

The nuclear spin coherence times can be extended by decoupling from the spin bath. Figure
4.23 shows the results of nuclear spin echo experiments. The required pi-pulse is constructed
in the same way as all nuclear gates in this work. The electron is prepared in m

s

= 0 and
re-initialized before the pi-pulse, which makes it possible to use a conditional gate, and
re-initialized again to be used in the final measurement. We find T

2

= 5.9(8) ms (nuclear
spin 1) and T

2

= 9(1) ms (nuclear spin 2).

Nuclear dephasing T ?

2

and depolarization T
1

under laser illumination

Being able to re-initialize the electron spin without depolarizing or dephasing the nuclear spins
is essential for initializing the multi-qubit register and for performing partial measurements
within such registers.
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Figure 4.24 —Nuclear Ramseys and T ?

2

under illumination. a, Nuclear spin 1,
T ?

2

= 51(7) µs. b, Nuclear spin 2, T ?

2

= 0.35(9) ms. The laser power is the same as
used in the initialization, re-initialization and readout steps. No readout or initialization
correction.

Figure 4.24 shows a T ?

2

under illumination of 51(7) µs for nuclear spin 1 and 0.35(9)
ms for nuclear spin 2. These times are long compared to the time required to re-initialize
the electron spin (⇠ 2 µs). For example, for nuclear spin 1 this predicts a contrast loss of
approximately 1� e�2/50 = 0.04.

Figure 4.25 shows nuclear relaxation measurements for both spins with and without laser
illumination. The nuclear spin is prepared in |0i and the electron spin in m

s

= 0. We let the
system relax for a variable time during which the laser is either on or o↵. For the experiment
without laser illumination, the electron is reset by a short laser pulse (2 µs) so that it can be
used to measure the nuclear spin state. Without illumination, we find T

1

= 0.04(1) s and
T
1

= 21(5) ms for spin 1 and 2 respectively. With illumination, we find T
1

= 2.5(3) ms and
T
1

= 1.2(2) ms for spin 1 and 2 respectively.

The nuclear depolarization during laser illumination is slow compared to the time it takes
to re-initialize the electron spin (⇠ 2 µs), so that the electron can be re-initialized without
depolarizing the nuclei. Note that the final signal approaches a fidelity of 0.5; prolonged laser
light does not create a preferential polarization for these nuclear spins.

4.6.10 Fidelity estimates

The decoherence processes above decrease the ultimate fidelities of the protocols implemented
in the main text. Here we provide estimates for the expected fidelities based on the above
decoherence e↵ects.

Quantum error correction

The estimates for the final fidelities for the three-qubit quantum-error-correction protocol
in the main text are obtained from the electron decoherence time (T

coh

= 2.86(4) ms)
and the two nuclear spin intrinsic dephasing times (T ?

2int

⇠ 4.0 ms and T ?

2int

⇠ 9.5).
We approximate all three processes by rates and add them to obtain a final decay time
T
est

= 1.4 ms. The typical state fidelity for the 1.8 ms quantum error correction protocol
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Figure 4.25 —Nuclear T1 with and without illumination. Lines are exponential fits.
a, nuclear spin 1. b, nuclear spin 2. The laser power is the same as used in the initialization,
re-initialization and readout steps. No readout correction.

becomes F
est

= e�1.8/T

est/2 + 1/2 = 0.64. This corresponds to an estimated process fidelity
F
p,est

= 6F
est

/4 � 1/2 = 0.46, similar to the observed value. The average state fidelity
loss per gate for the 10 nuclear gates in the error correction protocol is estimated from
F
average

= 1/2 10
p
2F

est

� 1 + 1/2 = 0.94.

Nuclear initialization

The nuclear initialization protocol for spin 1 takes approximately 340 µs. As only two qubits
are involved we add the rates for the electron decoherence and spin 1 to obtain F

1,est

= 0.91
as the estimated initialization fidelity. In the same way we obtain F

2,est

= 0.94 (time: 280
µs) for spin 2.

Entangling gate

The entangling gate takes 0.986 ms. Following the calculation for the error correction
protocol, and including additional loss due to the nuclear T ?

2

under illumination during the 2
µs electron reset, we find F

est

= 0.74.
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Chapter 5

Repeated quantum error

correction on a continuously

encoded qubit by real-time

feedback

J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen, R.
Hanson, T. H. Taminiau

Reliable quantum information processing in the face of errors is a major fundamental and
technological challenge. Quantum error correction protects quantum states by encoding a
logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-
tolerant computations, it is essential that states remain encoded at all times and that errors
are actively corrected. Here we demonstrate such active error correction on a continuously
protected logical qubit using a diamond quantum processor. We encode the logical qubit in
three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements,
and apply corrections by real-time feedback. The actively error-corrected qubit is robust
against errors and encoded quantum superposition states are preserved beyond the natural
dephasing time of the best physical qubit in the encoding. These results establish a powerful
platform to investigate error correction under di↵erent types of noise and mark an important
step towards fault-tolerant quantum information processing.

The results in this chapter have been published in Nature Communications 7, 11526 (2016).

89



5. Repeated quantum error correction on a continuously encoded qubit by real-time
feedback

5.1 Introduction

Large-scale quantum information processing requires the correction of errors during computa-
tions. In quantum error correction a logical quantum bit (qubit) is encoded in a subspace of
multiple physical qubits so that errors can be actively corrected without a↵ecting the encoded
information. A promising way to correct errors in encoded quantum states is to perform feed-
back based on multi-qubit measurements known as stabilizer measurements1–3 (see Fig. 5.1a).
These measurements are performed non-destructively using extra qubits (ancillas) and are
frequently repeated to detect errors before they accumulate. The measurement outcomes are
then processed in classical logic that identifies the error syndrome, and, in order to enable
universal computations1, active feedback is applied to the encoded system to correct errors
where needed. The key experimental challenge is to perform such complete error-correction
cycles including non-destructive stabilizer measurements and real-time feedback well within
the coherence time.

Quantum-error-correction protocols have been explored across a range of platforms4–14.
Pioneering experiments bypassed stabilizer measurements by reversing the encoding to correct
errors, thus leaving the quantum state unprotected5–11. Recent breakthroughs have enabled
the use of stabilizer measurements to passively track errors in quantum states and retrieve
stored information afterwards through post processing12–15.

Here we realize complete rounds of active quantum error correction on a continuously
encoded logical qubit by exploiting newly-developed stabilizer measurements based on an
electron spin ancilla with high-fidelity non-demolition readout, by encoding in long-lived
nuclear spins, and by applying real-time correction of errors through fast classical logic.
We show that the actively error-corrected logical qubit is robust against errors and that
multiple rounds of error correction prevent errors from accumulating. Finally, by correcting
time-correlated phase errors naturally induced by the environment, we demonstrate that
encoded quantum superposition states are preserved beyond the dephasing time of the best
physical qubit used in the encoding.

5.2 Error correction code

The three-qubit code considered here corrects a single phase error on any one of the physical
qubits. To protect against such errors, we encode the logical qubit in states for which all
physical qubits have the same phase: | i

L

= ↵ |0i
L

+� |1i
L

with |0i
L

= (|+Xi
1

|+Xi
2

|+Xi
3

+
|-Xi

1

|-Xi
2

|-Xi
3

)/
p
2, |1i

L

= (|+Xi
1

|+Xi
2

|+Xi
3

� |-Xi
1

|-Xi
2

|-Xi
3

)/
p
2 and |±Xi = (|0i ±

|1i)/
p
2. Errors (Z operations) are detected by measuring the two stabilizer generators

X
1

X
2

I
3

and I
1

X
2

X
3

via an ancilla. These measurements respectively compare the phases of
qubit 1 & 2 and qubit 2 & 3. For an uncorrupted state both measurements yield outcome +1
(same phase, no error), but for a phase error on just one of the qubits the two measurements
give a unique syndrome of -1 outcomes that identifies the error. For example, an error on
the first qubit results in outcome -1 for the first stabilizer measurement and outcome +1 for
the second. The logical qubit operators are X

L

= X
1

I
2

I
3

, Y
L

= Y
1

Z
2

Z
3

and Z
L

= Z
1

Z
2

Z
3

(or their permutations).

90



5.2. Error correction code

5 µm

Ancilla

Qubit 1

Qubit 2

Qubit 3

Optical 

measurement

a Classical control layer

Qubits

Encode

Ancilla

Compute Detect Correct

b c

x

±x

X

|0i
2

|0i
1

|0i
a

d e

Detect

(Measure XX)

X
I

Y
I

Z
I

IX IY IZ X
X

X
Y

X
Z

Y
X

Y
Y

Y
Z

Z
X

Z
Y

Z
Z

-1

0

1

E
x
p

e
c

ta
ti
o

n
 v

a
lu

e

Compute Detect Correct

Correct

x

XZ

±x

Qubit 1

Qubit 2

Qubit 3

0 5 10 15 20 25 30
0

0.5

1

S
ta

te
 f

id
e

li
ty

0 5 10
0

0.5

1
0 5 10 15

Free evolution time (ms)

0

0.5

1

Figure 5.1 — Quantum error correction and implementation of stabilizer meas-
urements. a, A quantum state is encoded in a logical qubit consisting of three physical
qubits. Errors inevitably occur, for example during computations. An ancilla is used to
repeatedly perform measurements that detect errors. Errors are corrected through classical
logic and feedback, while the quantum state remains coherent and encoded. b, Device:
CVD-grown single-crystal diamond with a solid-immersion lens16 and on-chip lines for
microwave control. Scale bar: 5 µm. Ancilla: the optically addressable electronic spin of
a nitrogen vacancy (NV) centre. Qubits: three 13C nuclear spins that are controlled and
measured through the hyperfine coupling to the ancilla (Sec. 5.8.2). c, Free induction
decay (Ramsey) experiments. Gaussian fits yield dephasing times T ⇤

2

= 12.0(9), 9.1(6)
and 18.2(9) ms for qubits 1, 2 and 3, respectively. d, Deterministic entanglement of two
qubits by XX stabilizer measurement and feedback. The ±x gates are ⇡/2 rotations
around x with the sign controlled by the ancilla state. The final operations reset the ancilla
and account for an additional flip for the +1 outcome (Sec. 5.8.3). e, State tomography
of the generated entangled state for qubits 2 and 3. The fidelity with the ideal state is
F = 0.824(7) (see Fig. 5.10 for other qubit combinations and post-selected results). All
error bars are one statistical s.d. 91
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5.3 Stabilizer measurements and real-time feedback

Our qubits are three 13C nuclear spins (I = 1/2, 1.1% abundance) surrounding a single
nitrogen-vacancy (NV) centre in diamond, whose electronic spin we use as ancilla (S = 1;
|0i

a

: m
s

= 0 and |1i
a

: m
s

= �1) (Fig. 5.1b). At 4 K, the ancilla combines fast control17,
optical single-shot readout18 and long coherence times19 (> 25 ms, Sec. 5.8.1). We use
relatively remote nuclear qubits (coupling to the ancilla 20-50 kHz) that are robust against
optical excitation of the ancilla and design decoherence-protected gates to control them9,20

(Sec. 5.8.2). All three qubits show long dephasing times T ⇤
2

with the dominant natural errors
being phase errors (Fig. 5.1c).

The key challenge for implementing stabilizer measurements in this system is that the
ancilla-qubit interaction is always present: imperfect knowledge of the ancilla state during or
after readout dephases the qubits21–23. To minimize this dephasing, we implement quantum
non-demolition measurements of the ancilla by resonant optical excitation of |0i

a

and stopping
the excitation within 2 µs upon photon detection (outcome |0i

a

) to minimize uncontrolled
spin flips in the optically excited state24 (Sec. 5.8.1). The resulting readout fidelities are
F
0

= 0.890(4) for |0i
a

and F
1

= 0.988(2) for |1i
a

(average: F = 0.939(2)). Crucially, the
post-measurement fidelity after correctly assigning |0i

a

is 0.992, demonstrating the desired
non-demolition character.

To benchmark the stabilizer measurements and real-time feedback, we deterministically
entangle two qubits by projecting into a Bell state, i.e. a simultaneous eigenstate of XX
and ZZ 22,25,26. First, the qubits are initialized in |00i, an eigenstate of ZZ, with fidelity
0.910(6). Then a XX stabilizer measurement projects the qubits onto one of two Bell states
(Fig. 5.1d). We interpret the -1 outcome as an error in the desired state and correct it
through feedback before performing two-qubit tomography. The deterministically generated
entangled state, with fidelity F = 0.824(7) (Fig. 5.1e), demonstrates the non-destructive
nature of the measurement; coherence within the subspaces is maintained throughout the
measurement and feedback cycle. The complete cycle can be repeated up to 6 times within
the shortest qubit T ⇤

2

.

5.4 Active quantum error correction on a logical qubit

We now turn to quantum error correction by stabilizer measurements. The logical qubit is
encoded by mapping an arbitrary state | i

a

= ↵ |0i
a

+ � |1i
a

prepared on the ancilla to the
three-qubit state | i

L

= ↵ |0i
L

+� |1i
L

(Fig. 5.2a). We characterize the encoding by preparing
six basis states |0i

L

, |1i
L

, |±Xi
L

= (|0i
L

± |1i
L

)/
p
2 and |±Yi

L

= (|0i
L

± i |1i
L

)/
p
2 and

performing three-qubit state tomography. The fidelities with the ideal states confirm successful
encoding and genuine three-qubit entanglement (Fig. 5.2b).

We first investigate the recovery of arbitrary logical qubit states from phase errors. To
emulate a general process causing dephasing, uncorrelated incoherent errors are applied with
variable probability p

e

to each physical qubit simultaneously (Fig. 5.3a); for each qubit the
error process is E(⇢) = (1 � p

e

)I⇢I + p
e

Z⇢Z, with ⇢ the single-qubit density matrix. By
controllably applying such errors we characterize the e↵ectiveness of the error correction
for any process causing uncorrelated errors with equal probability to the qubits. We then
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Figure 5.2 — Encoding of the logical qubit. a, Encoding an arbitrary quantum state
| i = ↵ |0i+� |1i prepared on the ancilla into | i

L

= ↵ |0i
L

+� |1i
L

. Successful encoding
is heralded by outcome |0i

a

. b, Characterization of the logical states |+Xi
L

, |+Y i
L

and |0i
L

. Only the logical qubit operators and stabilizers are shown (see Fig. 5.11 for
complete tomography of all 6 logical basis states). The fidelities with the ideal three-qubit
states are F = 0.810(5), 0.759(5) and 0.739(5), respectively, demonstrating three-qubit
entanglement10. The logical state fidelities are F

+X

= (1 + hX
L

i)/2 = 0.916(6),
F
+Y

= (1 + hY
L

i)/2 = 0.822(7) and F
0

= (1 + hZ
L

i)/2 = 0.813(9). Ideally, all the
encoded states are +1 eigenstates of the stabilizers X

1

X
2

I
3

and I
1

X
2

X
3

. The fidelity to
this code space, F

S

= (1 + hX
1

X
2

I
3

i + hI
1

X
2

X
3

i + hX
1

I
2

X
3

i)/4, is 0.839(3) averaged
over all states and gives the probability that the starting state is free of detectable errors.
All error bars are one statistical s.d.
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measure the stabilizers X
1

X
2

I
3

and I
1

X
2

X
3

, identify potential errors and correct them
through feedback. The probabilities to obtain the four di↵erent error syndromes (inset in
Fig. 5.3b) show the expected symmetry around p

e

= 0.5 and match the theoretical prediction
based on the errors present in the initial states (Fig. 5.2b) and the average ancilla readout
fidelity.

The protection of the logical qubit is characterized by the process fidelity with the identity
(Fig. 5.3b) (Sec. 5.8.4). We quantitatively analyse the results by fitting to wF

QEC

+ (1�
w)F

linear

, where F
QEC

(p
e

) and F
linear

(p
e

) are the theoretical curves with and without error
correction (w = 1 indicates ideal robustness against applied single-qubit errors). When no
error correction is applied we observe the expected linear dependence on the error probability:
w ⇡ 0. In contrast, with quantum error correction w is 0.81(3), and a non-linear curve
shape that is characteristic for robustness against single-qubit errors is obtained. This result
demonstrates that the entropy associated to the applied errors is successfully removed from
the system.

Comparisons to an unencoded qubit and the logical qubit without error correction reveal
that adding quantum error correction on top of a computation does not yet provide a net
improvement (Fig. 5.3b), due to additional errors introduced by the initialization, encoding
and stabilizer measurements (total of 13 two-qubit gates, 488 ancilla refocusing pulses and 6
ancilla readouts/resets). To isolate the errors due to the stabilizer measurements, we compare
the error-corrected logical qubit to the logical qubit left idle. We further optimize the error
correction, by assigning the ancilla state with the best readout fidelity (|1i

a

, F
1

= 0.988(2))
to the most likely error syndrome (+1, +1 - no error, inset Fig. 5.3b), instead of averaging
over all assignments as in Fig. 5.3b. With this improvement, error correction outperforms
idling for a range of p

e

(Fig. 5.3c); once the logical qubit is encoded, quantum error correction
can be beneficial.

5.5 Multiple rounds of active error correction

Because a complete round of error correction (2.99 ms) fits well within the dephasing time
of the physical qubits, we can concatenate multiple rounds to improve the coherence of
continuously encoded quantum superpositions by preventing the accumulation of errors
(Fig. 5.4a). Three new elements are introduced. First, the total error probability p

e

is
distributed over n rounds, so that the error probability per round is p

n

= (1� n

p
1� 2p

e

)/2
(Sec. 5.8.4). This error model corresponds to errors occurring incoherently, for example with
a constant rate in time. Second, to investigate dephasing we focus on the protection of the
two states |±Xi

L

= |±X,±X,±Xi (i.e. a classical bit stored in the phase of a quantum
superposition). Third, we exploit the intrinsic robustness of the logical qubit to single Z
errors by redefining X

L

= (X
1

I
2

I
3

+ I
1

X
2

I
3

+ I
1

I
2

X
3

�X
1

X
2

X
3

)/2, which is equivalent to
performing a round of error correction by majority voting at the end of the experiment13.

For a single round of error correction (majority vote only) the average fidelity is higher
than for an unencoded qubit for any p

e

(Fig. 5.4b); adding more (identical) qubits is always
beneficial in the repetition code. For p

e

= 0, additional rounds of quantum error correction
can only introduce errors, reducing the fidelity (Fig. 5.4b). For larger p

e

, however, multiple
rounds prevent errors from accumulating by dividing the error process in parts that are
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Figure 5.3 — Active quantum error correction by stabilizer measurements. a, All
qubits are simultaneously subjected to uncorrelated phase errors E with probability p
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.
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and subsequently corrected by Z
operations through feedback. Finally we measure the process fidelity with the identity. b,
Process fidelities for: an unencoded qubit (averaged over the three qubits), the logical
qubit without stabilizer measurements, the error-corrected logical qubit, and the logical
qubit without feedback (i.e. errors are detected but not corrected). We average over the
logical qubit permutations, e.g. X

L

= X
1

I
2

I
3

, I
1

X
2

I
3

and I
1

I
2

X
3

, and the four ways to
assign the ancilla states to the error syndromes (see Fig. 5.12 for individual curves). Inset:
probabilities for the error syndromes with theoretically predicted curves based on the state
tomography in Fig. 5.2b (Sec. 5.8.5). c, Comparison between the error-corrected logical
qubit and the logical qubit with the stabilizer measurements replaced by an equivalent idle
time (2.99 ms). Compared to b, the e↵ective readout fidelity is optimized by associating
syndrome +1,+1 (no error) to obtaining |1i

a

for both stabilizer measurements. Curves in
b and c are fits described in Sec. 5.8.4. All error bars are one statistical s.d.
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more likely to contain only single errors, which are corrected. In addition, unlike error
detection with post-processing13,14, active correction between rounds keeps the probability
to obtain +1 (no error) high (inset Fig. 5.4b) and thus maintains the advantage of assigning
the highest-fidelity ancilla readout to that outcome. Preventing errors by maximizing the
probability that the ancilla qubits reside in the optimal state is a key general advantage of
real-time feedback in quantum error correction. As a result, for p

e

> 0.3, multiple rounds
outperform a single round of error correction.

5.6 Correcting natural dephasing

Finally, as an example of suppressing errors naturally present in the environment, we let
the qubits evolve freely instead of applying errors (Fig. 5.4c). The resulting errors are still
spatially uncorrelated across the qubits, but the error probabilities are now di↵erent for
each qubit because their intrinsic T ⇤

2

di↵er due to their local environments (Fig. 5.14c). In
addition, the errors arise from quasi static detunings due to the slowly fluctuating 13C spin
bath so that the errors in a given experimental run evolve coherently and are correlated
in time. Like most environmental errors, such errors might also be suppressed by other
methods than quantum error correction, for example by polarizing the spin environment27,28,
by refocusing pulses29 or by isotopic purification29–32.

The fidelity for the logical qubit with majority voting again starts above the best unencoded
qubit, but drops below it for larger evolution times (Fig. 5.4d). Because the error probabilities
vary between qubits, an error detected on the best qubit becomes more likely to actually
correspond to errors on both other qubits and the wrong correction is made. An additional
round of quantum error correction in the middle of the evolution time now not only prevents
errors from accumulating by intermediately correcting them, but also interrupts any coherent
build-up by projecting the errors, thus suppressing them (Fig. 5.4d). Due to this combination,
the logical qubit shows an enhanced dephasing time (24.2(2) ms against 18.2(9) ms for the
best physical qubit) and yields the highest average state fidelity for total evolution times
between 5 and 19 ms (Fig. 5.4d). This result demonstrates an actively error-corrected logical
qubit with an improved dephasing time over the best qubit used in the encoding.

5.7 Discussion

The presented non-destructive measurements and real-time feedback on encoded quantum
states are the key primitives for universal computations on logical qubits and for error-
correcting codes that correct both phase and bit-flip errors. To reach scalability thresholds,
readout and gate fidelities should be further increased, for example by: improving the
optical collection e�ciency through optical cavities33, enhancing coherence times through
implantation or selective growth of defects and isotopes in purified diamonds29,30, and
improving gate design through optimal control34. In a wider perspective, our results can
be combined with recently demonstrated entanglement between distant NV centres35,36 to
form quantum networks with error-corrected nodes for entanglement purification, quantum
communication and networked quantum computation37. Therefore, these results establish
a promising platform to experimentally investigate protocols for fault-tolerant quantum
information processing under di↵erent types of noise and error correlations in diverse settings.

96



5.7. Discussion
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Figure 5.4 — Extending coherence by active quantum error correction. a, Three
rounds of error correction on a logical qubit. The first two rounds of quantum error
correction use stabilizer measurements and feedback. The final round is implemented by
majority voting. b, Average logical state fidelity for |+Xi
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and |�Xi
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as a function of
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for n = 1, 2 and 3 rounds of error correction compared to an
unencoded qubit. The errors per round occur with probability p

n

. Inset: probabilities that
no error is detected (n = 3). The similarity of the results for rounds A and B confirms
that errors are corrected in between rounds. c, Correcting natural dephasing. The storage
time is defined from the end of the encoding until the start of the final measurements.
d, Dephasing of the logical qubit: without stabilizer measurements, with quantum error
correction and without feedback, compared to the best unencoded qubit. The dashed
lines indicate the times between which the actively error-corrected logical qubit gives the
highest fidelity. The data without feedback (detecting errors without correcting) isolates
the suppression of coherently evolving errors by projecting them. For long times, applying
error correction lowers the fidelity because the stabilizer measurements extract no useful
information about errors, but nevertheless preferentially suppress evolutions that result
in phase errors at the end of the sequence (See Fig. 5.14 for a detailed analysis). See
Fig. 5.13 for error syndrome probabilities. Solid curves in b and d are fits described in
Secs. 5.8.4, 5.8.4 and 5.8.5. Dashed lines are a guide to the eye. All error bars are one
statistical s.d.
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5.8 Methods and theoretical analysis

In this section we will discuss relevant background methods and on the the presented results.
Figures corresponding to the following subsections are displayed on pages 105-115.

5.8.1 Sample and Setup

We use a naturally occurring Nitrogen-Vacancy (NV) in high-purity type IIa chemical-vapor-
deposition (CVD) grown diamond with a 1.1% natural abundance of 13C and a < 111 >
crystal orientation (Element Six). To enhance the collection e�ciency a solid-immersion lens
was fabricated on top of the NV centre16,18 (Fig. 5.1b) and a single-layer aluminum-oxide
anti-reflection coating was deposited35,38. The sample temperature is T ⇡ 4.2 K and a
magnetic field of 403.553(3) G is applied along the NV symmetry axis.

The ancilla NV electron spin is characterized by a Rabi frequency of 4.3 MHz, a dephasing
time T ⇤

2

=4.6(2) µs, a Hahn echo time T
2

= 1.03(3) ms and a longitudinal relaxation time of
0.43(6) s (due to microwave noise and laser background). The coherence time of the ancilla
under dynamical decoupling exceeds 25 ms and does not limit the experiments (Fig. 5.5). We
initialize and readout the ancilla through resonant excitation of the zero-phonon transitions
of the NV centre (Fig. 5.6). Prior to every experiment the 14N nuclear spin is initialized by
measurement with a fidelity of F

N

= 0.94(3) in m
I

= �118. No external electric fields are
applied: the gates in Fig. 5.1b are grounded.

5.8.2 Nuclear spin qubit control

The hyperfine interactions for the three nuclear spins are estimated by dynamical decoupling
spectroscopy9 (Tab. 5.1). Building on previous gate designs9, nuclear gates are realized by
applying sequences of ⇡-pulses on the electron spin of the form (⌧ � ⇡ � 2⌧ � ⇡ � ⌧)N/2.
The number of pulses N sets the rotation angle. The inter-pulse delay 2⌧ determines which
qubit is controlled and whether the rotation is conditional on the ancilla state. In contrast
to previous work (Ch. 4) we allow the gates to be detuned, providing greater flexibility to
optimize ⌧ and N for gate selectivity and minimal discretization errors. The gate parameters
are listed in Tabs. 5.1, 5.2.

The nuclear spins are initialized by swapping with the ancilla electron spin (Fig. 5.7) and
are read out by mapping the required correlation to the ancilla before reading it out (Fig. 5.8).
To obtain best estimates for the actual states, the results are corrected for the fidelity of
the gates used in the final readout (tomography) (details in Sec. 5.8.6). Uncorrected data is
shown in Fig. 5.15.

5.8.3 Feedback

Real-time feedback is implemented through a programmable microprocessor (ADwin Pro II)
that controls the experimental sequence (Fig. 5.9). We exploit feedback in four di↵erent ways.
First, detected phase errors are corrected directly after the stabilizer measurements. Note
that analysing errors over multiple rounds14 would additionally enable real-time correction
of ancilla readout errors, but that this is not implemented here. Second, dependent on
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the ancilla measurement outcome the qubits pick up a deterministic phase shift due to the
hyperfine interaction, which is corrected in the same way. Third, for an odd number of +1
outcomes the operations in the stabilizer measurements imprint a bit flip on the logical qubit,
which we correct by transforming the logical qubit basis in real time. Fourth, to start each
measurement sequence with the ancilla in |0i

a

it is flipped back to |0i
a

when the previous
measurement returned |1i

a

.

Importantly, we perform real-time feedback either by adapting the qubit bases for all
subsequent gates and measurements (for correcting Z errors and for the logical qubit) or
by absorbing the feedback operations into the next gate acting on the same qubit (for the
ancilla). Therefore the physical control sequence is directly adapted based on the measurement
outcomes without introducing any unnecessary gate operations that would cause additional
errors. In the circuit diagrams we sometimes display the gates for the feedback separately
for clarity.

5.8.4 Quantum error correction analysis

The process fidelity with the identity is given by F
p

= (F
0

+F
1

+F
+X

+F�X

+F
+Y

+F�Y

�2)/4,
with F

↵

= h↵|⇢
↵

|↵i the six fidelities of the final states ⇢
↵

with the ideal states |↵i
L

.
The results of Fig. 5.3 are analysed by fitting to wF

QEC

(p
e

) + (1 � w)F
linear

(p
e

), with
F
QEC

(p
e

) = O + A(1� 3p2
e

+ 2p3
e

) and F
linear

(p
e

) = O + A(1� p
e

). A and O account for
the experimental fidelities.

The state fidelities for multiple rounds of error correction and incoherent errors (Fig. 5.4b)
are fitted to the same equation using F

QEC

(p
e

) = 1

2

(1+A(1�6p2
n

+4p3
n

)n), with n the number
of rounds, p

n

= 1

2

n

p
1� 2p

e

the error per round, and F
linear

(p
e

) = 1

2

(1 +A(1� 2p
e

)). The
error per round p

n

is obtained as follows. An error process with total error probability (p
e

)
reduces the expectation value by a factor of (1� 2p

e

). For incoherent errors, a process can be
divided in n equal rounds using (1�2p

e

) = (1�2p
n

)n, which results in p
n

= (1� n

p
1� 2p

e

)/2
(for p

e

 0.5). In Fig. 5.3c and Fig. 5.4b, A depends on the error-probability p
e

, because we
optimize the e↵ective readout fidelity by associating the most likely error syndrome to the
best ancilla readout. Further details on all theoretical analysis, including the error syndrome
probabilities and numerical simulations of Fig. 5.4d. are discussed below.

State and process fidelities

For ideal error correction the process fidelity to the identity as a function of error probability
p
e

for a single round of quantum error correction (QEC) is

F
QEC

(p
e

) = O +A(1� 3p2
e

+ 2p3
e

). (5.1)

The o↵set O and amplitude A account for the finite experimental state fidelities. Note that
the value at p

e

= 0.5, F
QEC

(p
e

= 0.5) = O +A/2, is determined by the fidelity of the logical
states |0i

L

and |1i
L

, which are insensitive to phase errors. Without error correction a linear
function

F
linear

= O +A(1� p
e

) (5.2)

is expected. The experimental data can be fitted to a weighted sum of the two functions by:

F
P

= wF
QEC

+ (1� w)F
linear

. (5.3)
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The shape of the curve is set by w, which gives the relative weights of the equations for ideal
error correction and for no error correction.

Assignment of ancilla states to the error syndrome: e↵ective
measurement fidelity FM

In our experiment, the ancilla readout fidelity is asymmetric: |1i
a

has a higher readout
fidelity (F

1

= 0.988(2)) than |0i
a

(F
0

= 0.890(4)). The e↵ective measurement fidelity for
error correction F

M

is therefore determined by the probabilities to obtain |0i
a

or |1i
a

, which
depend on the assignment of the ancilla states (|0i

a

or |1i
a

) to each stabilizer measurement
outcome (+1 or -1) and the probabilities for di↵erent errors to occur. There are four di↵erent
ways to assign the ancilla states to the error syndromes: the +1,+1 outcome (no error) can
be set to result in {|0i

a

, |0i
a

}, {|0i
a

, |1i
a

}, {|1i
a

, |0i
a

} or {|1i
a

, |1i
a

}. The probability to
obtain outcome +1,+1 (no error) ideally is 1 � 3p

e

+ 3p2
e

, while the probability to detect
an error on a given qubit is p

e

� p2
e

. With these probabilities, we obtain the e↵ective QEC
measurement fidelity as function of error probability:

F
M

= F (0)(1� 3p
e

+ 3p3
e

) + (F (1) + F (2) + F (3))(p
e

� p2
e

)

= F (0) + (F (1) + F (2) + F (3) � 3F (0))(p
e

� p2
e

), (5.4)

with F (0), F (1), F (2) and F (3), the readout fidelities for 0 errors, an error on qubit 1, an error
on qubit 2 and an error on qubit 3, respectively. For example, for assignment {|1i

a

, |1i
a

} to
stabilizer outcomes +1,+1 (no error), these readout fidelities are

F (0) = F 2

1

,

F (1) = F (3) = F
1

F
0

,

F (2) = F 2

0

,

In a similar way, the fidelities for the other three assignments can be calculated.

Finally, if we assume that an erroneous ancilla readout decoheres the logical state, the
dependence of the e↵ective readout fidelity on p

e

can be taken into account by setting:

A = A0F
M

(5.5)

in Eqs. 5.1&5.2 for the process fidelity, with A0 a constant.

Fitting of Figs. 3b, 3c and 5.12

In Fig. 5.3b, the ancilla readout is symmetrized by averaging over all four assignments,
so that F

M

equals the average readout fidelity 0.939(2) and is independent of p
e

. We
can therefore simply fit the data in Fig. 5.3b to Eq. 5.3, with A constant. We find
w = 0.81(3), corresponding to an average probability to successfully correct single-qubit
errors of hP

n

i = 1

3

(w + 2) = 0.94(1)9. We obtain A = 0.557(2) and O = 0.086(1). For the
unencoded qubit, the encoded qubit without stabilizer measurements, and the encoded qubit
without feedback, we find a linear function and w ⇡ 0 (hP

n

i ⇡ 2/3) as expected without
error correction (exact values: w = �0.06(3),�0.03(3) and �0.07(3), A = 0.882(4), 0.734(3)
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and 0.543(2), and O = 0.019(3), 0.051(3) and 0.092(1), respectively for the three cases). In
Fig. 5.12 the separate process fidelities for the di↵erent assignments are shown. Switching
between assignments is done by adding or omitting a ⇡-pulse before the ancilla readout.

In Fig. 5.3c, we assign the ancilla state |1i
a

to the +1 outcome for all stabilizer meas-
urements. This assignment is optimal because it associates the best readout fidelity with the
most likely outcome: +1,+1 (no error, inset in Fig. 5.3b). We fit the data in Fig. 5.3c and
Fig. 5.12 to Eq. 5.3, with A now error-dependent according to Eq. 5.5 and obtain w = 0.8(1),
corresponding to hP

n

i = 0.93(3) (A0 = 0.666(8) and O = 0.038(6)). The values for w and
hP

n

i are in good agreement with the result of Fig. 5.3b, indicating that the treatment in
Eqs. 5.4&5.5 is accurate.

Multiple rounds of error correction (incoherent errors), Fig. 5.4b

For multiple rounds of QEC with incoherent errors and with the total error with probability
p
e

equally distributed over n rounds, the error-probability per round is p
n

= 1

2

(1� n

p
1� 2p

e

),
for p

e

< 0.5. Ideally, the (average) state fidelity is then described by:

F =
1
2
[1 + (1� 6p2

n

+ 4p3
n

)n]. (5.6)

As before we fit the data to a weighted sum of the equations for ideal error correction and for
a linear error-dependence (no error correction). We use the optimal ancilla state assignment
(F

M

(p
e

) from Eq. 5.4). For two rounds of error correction we obtain

F
2

=
1
2
w[1 +A0F

M

(1� 6p2
2

+ 4p3
2

)2] +
1
2
(1� w)[1 +A0F

M

(1� 2p
e

)], (5.7)

giving w = 0.66(4) and A0 = 0.850(9). For three rounds it becomes

F
3

=
1
2
w[1 +A0F 2

M

(1� 6p2
3

+ 4p3
3

)3] +
1
2
(1� w)[1 +A0F 2

M

(1� 2p
e

)], (5.8)

giving w = 0.71(2) and A0 = 0.810(5). Importantly, the data for multiple rounds cannot be
accurately described by the expected shape for a single round of error correction (Eq. 5.3).

Naturally occurring decoherence (coherent errors), Fig. 5.4d

The experiments for the best unencoded qubit, the logical qubit with QEC and without QEC
(majority vote only) are fitted to a general exponentially decaying function:

F =
1
2
(1 +Ae�(t/T )

n

). (5.9)

Here, we obtain for the error-corrected logical qubit: T = 24.2(2) ms and n = 2.03(7), while
for the best qubit we find: T = 17.3(2) ms and n = 2.09(7). For the encoded qubit with
majority voting we obtain: T = 13.7(1) ms and n = 2.37(8).

To get a better understanding of quantum error correction and the projection of errors
in the experiments with stabilizer measurements at half the free evolution time in Fig. 5.4d
we turn to numerical Monte Carlo simulations, see Fig. 5.14 for details and results.
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5.8.5 Error probabilities

The probability to detect no error (P (0)) is the sum of the probability to have no error (no
qubits flipped) or three errors (all qubits flipped) and is described by:

P (0) = (1� p
(1)

tot

)(1� p
(2)

tot

)(1� p
(3)

tot

) + p
(1)

tot

p
(2)

tot

p
(3)

tot

, (5.10)

where p
(i)

tot

is the error probability for qubit i. The probability to detect an error on one of
the three qubits (P (i)) is the probability to have an error on qubit i, or an error on both of
the other qubits, which for example for qubit 1 is described by:

P (1) = p
(1)

tot

(1� p
(2)

tot

)(1� p
(3)

tot

) + (1� p
(1)

tot

)p(2)
tot

p
(3)

tot

. (5.11)

With finite input error probability p
(i)

in

for qubit i (errors already present in the initially
prepared state), the total error as function of the applied error probability p

e

, becomes:

p
(i)

tot

= p
(i)

in

+ p
e

� 2p(i)
in

p
e

(5.12)

Finally we can take imperfect ancilla readout into account and obtain the probability to
detect one of the error outcomes P (i)

D

(i=0 for no detected error) as function of the applied
error p

e

:

P
(0)

D

= P (0)F 2 + (P (1) + P (3))F (1� F ) + P (2)(1� F )2 (5.13)

P
(1)

D

= P (1)F 2 + (P (0) + P (2))F (1� F ) + P (3)(1� F )2 (5.14)

P
(2)

D

= P (2)F 2 + (P (1) + P (3))F (1� F ) + P (0)(1� F )2 (5.15)

P
(3)

D

= P (3)F 2 + (P (0) + P (2))F (1� F ) + P (1)(1� F )2 (5.16)

The XX stabilizers in the encoded state tomography (Fig. 5.2) detect errors present in the
encoded state, we obtain:
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which are uncorrected for qubit readout. These results can be translated to the input
errors, as these outcomes refer to Eqs. 5.10&5.11 with no additional applied error p

e

, giving
p
(1)

in

= 0.064(2), p(2)
in

= 0.091(2), p(3)
in

= 0.077(2).

Using these values we estimate the expected total error detection probabilities P
(0)

D

, P (1)

D

,

P
(2)

D

and P
(3)

D

as function of applied error probability p
e

according to Eqs. 5.10-5.16. The
expected error-dependent QEC measurement outcomes are shown by the solid lines in the
inset of Fig. 5.3b.

Error syndrome assignment

For the di↵erent error assignments, the asymmetry in the ancilla readout complicates the error
detection curves: the QEC measurement fidelity is dependent on the error probability. If, for
instance, both stabilizer measurements giving +1 are assigned to {|1i

a

, |1i
a

}, Eqs. 5.13-5.16
become:

P
(0)

11

= P (0)F 2

1

+ (P (1) + P (3))F
1

(1� F
0

) + P (2)(1� F
0

)2 (5.17)

P
(1)

11

= P (1)F
1

F
0

+ P (0)F
1

(1� F
1

) + P (2)F
0

(1� F
0

) + P (3)(1� F
1

)(1� F
0

) (5.18)

P
(2)

11

= P (2)F 2

0

+ (P (1) + P (3))F
0

(1� F
1

) + P (0)(1� F
1

)2 (5.19)

P
(3)

11

= P (3)F
1

F
0

+ P (0)F
1

(1� F
1

) + P (2)F
0

(1� F
0

) + P (2)(1� F
1

)(1� F
0

) (5.20)

All error detection curves for the four error assignments using similar equations are plotted
in Fig. 5.12.

Multiple rounds of error correction, Fig. 5.4b

For multiple rounds we now calculate the average input error p
(avg)

in

from the detection
probability for no additional applied error (p

e

= 0). We simplify Eq. 5.10 to

P (0) = 1� 3p(avg)
tot

+ 3(p(avg)
tot

)2 (5.21)

and use Eq. 5.17 to obtain the following average input error for round 1: p(avg)
in

= 0.092(1)

and for round 2: p(avg)
in

= 0.086(1). The resulting curves according to Eq. 5.17 are shown in
the inset of Fig. 5.4b.

5.8.6 Qubit readout calibration

To obtain best estimates for the actual states, the results are corrected for the fidelity of the
gates used in the final readout (tomography). We distinguish between reading out single-
two- and three-qubit expectation values.

For a single qubit i that is initialized and readout immediately, the measured expecta-
tion value hZ

i

i is set by the initialization fidelity of the nitrogen spin (F
N

= 0.94(3)) and
by factors due to the initialization (C

init,Qi

) and readout (C
Q

i

) of the qubit. Because the
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initialization and readout consist of the same set of gates, we assume that C
init,Qi

= C
Q

i

for
this experiment and obtain:

hZ
i

i = F
N

C2

Q

i

, (5.22)

from which a readout correction factor 1/C
Q

i

can be determined.

To calibrate the multi-qubit readouts we initialize the three qubits in separable states.
For example, for state |000i, the measured three-qubit expectation value hZ

1

Z
2

Z
3

i is set by
the nitrogen initialization F

N

, by factors C
init,Qi

due to the individual initialization fidelities
of the three-qubits and by a factor C

Q1,Q2,Q3 due to the three-qubit readout:

hZ
1

Z
2

Z
3

i = F
N

C
init,Q1

C
init,Q2

C
init,Q3

C
Q1,Q2,Q3 ! C

Q1,Q2,Q3 =
hZ

1

Z
2

Z
3

i
F
N

C
init,Q1

C
init,Q2

C
init,Q3

.

(5.23)
This equation assumes that the initialization errors, other than those due to the nitrogen
initialization, are uncorrelated. The initialization fidelities are obtained using the single-qubit
expectation values and single qubit C

Q

i

for the corresponding qubit, i.e. for qubit 1:

hZ
1

I
2

I
3

i = F
N

C
init,Q1

C
Q1

! C
init,Q1

=
hZ

1

I
2

I
3

i
F
N

C
Q1

(5.24)

with C
Q1 from Eq. 5.22. In a similar way, the two-qubit readout is calibrated using two-qubit

expectation values of two- and three-qubit states. We obtain the following values:

C
Q1 = 0.95(1) C

Q1Q2 = 0.94(2) C
Q1Q2Q3 = 0.92(5)

C
Q2 = 0.94(1) C

Q1Q3 = 0.88(4)

C
Q3 = 0.95(1) C

Q2Q3 = 0.90(2)

which are used to calibrate the final readouts for tomography. Note that the uncertainty in
the readout calibration potentially creates a small systematic error (a rescaling of all y-axes).
For this reason we also provide all raw (uncalibrated) data for the error correction in Fig. 5.15.

Although our data do not yield a rigorous value of the two-qubit gate fidelity, the qubit
readout fidelities derived here, F = (1 + C

Q

i

)/2 ⇡ 0.97 give an indication of the two-qubit
gate fidelity as readout consists of two single qubit gates and one two-qubit gate.
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Figure 5.5 —Coherence of the NV electron spin by dynamical decoupling with
256 pulses. The spin is decoupled from the nuclear spin bath by applying a sequence of
256 ⇡-pulses with alternating phases. The time between the pulses is chosen to be a
multiple of the Larmor period of the 13C spins. This result shows no significant decay on
the relevant timescale of our experiments.
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m
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Figure 5.6 —Optical readout and initialization of the ancilla NV electron spin.
The electron spin is initialized and read out by spin-selective resonant excitation18. To
initialize or reset the electron spin state we apply a laser pulse that excites only the
m

s

= ±1 $ E0
m

s

=±1

transitions (Reset). Due to spin mixing in the excited state this
prepares the electron spin in the m

s

= 0 state (fidelity > 0.98)18. To measure the spin
state we apply a laser pulse resonant with the m

s

= 0 $ E
x

transition (Read-out).
Ideally, this results in the detection of 1 or more photons for the m

s

= 0 state, and no
detected photons for m

s

= ±1. The resulting readout fidelities are asymmetric:
F
0

= 0.890(4) for m
s

= 0 (limited by the detection e�ciency and number of cycles
before a spin flip) and F

1

= 0.988(2) for m
s

= ±1 (limited by background counts and
unwanted excitations). Because uncontrolled spin flips in the excited state decohere
nearby nuclear spins, we minimize the number of unnecessary optical excitations by using
a weak readout pulse with a maximum duration of 114 µs (⇠ 100 excitations) and by
switching o↵ the laser within 2 µs (⇠ 2 excitations) once a photon is detected24. The
resulting measurement is non-destructive: the probability that the spin prepared in
m

s

= 0 is still in that state after a measurement with outcome m
s

= 0 is 0.992. In
contrast, without dynamically stopping the laser the spin would be pumped almost
completely to m

s

= ±1. For the final readout at the end of the experiment, which is
allowed to be destructive, we use a stronger readout pulse of maximum duration 35 µs.
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Figure 5.7 —Qubit initialization. All qubits naturally start in fully mixed states ⇢
m

.
The ancilla is initialized in |0i

a

and a reduced SWAP operation between the ancilla and
the qubit is performed, deterministically initializing the qubit in |0i. The ancilla is then
reinitialized by a 300 µs laser pulse (Reset) and the process is repeated to initialize the
other qubits. Note that the signs of the controlled ±y-rotations are corrected with
respect to the publication.
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Figure 5.8 —Tomography sequences for three-qubit states. Examples of
three-qubit expectation values that are measured by mapping the required correlation on
the ancilla before reading it out. a, hX

1

, I
2

, I
3

i, b, hX
1

, X
2

, I
3

i, c, h�X
1

, Y
2

, Z
3

i. Note
that the phase of the last ⇡/2-pulse on the ancilla depends on the number of qubits read
out (i.e. the number of operators that are not I). Note that the sign of the controlled
±y-rotation in c is corrected with respect to the publication. The examples given here for
the measurement of one- two- and three-qubit expectation values can be translated to
any of the 63 measurements in the full three-qubit state tomography.
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Figure 5.9 —Experimental sequence and logic for the QEC experiments. Example
for a single round of quantum error correction by stabilizer measurements (as in Fig. 5.3).
The order of the sequence is controlled in real-time by an ADwin microprocessor. I - The
NV centre is prepared in its negative charge state and on resonance with the readout and
reset lasers (Fig. 5.6) by turning on both lasers, counting the fluorescence photons and
requiring a threshold to be passed (“CR Check”). The 14N nuclear spin is initialized by
measuring it and continuing only for outcome m

I

= �1 (“MBI N”, success probability
0.073(7)). II - The qubits are sequentially deterministically initialized following Fig. 5.7.
III - The encoding of the logic state is a probabilistic process (success probability
0.41(1)), as shown in Fig. 5.2a. When the wrong outcome is obtained the preparation of
the experiment starts over. IV - Errors are detected by two stabilizer measurements.
Depending on the outcome (�1 or +1) of each measurement, the next sequence to
execute is communicated to the waveform generator in real time. V - Depending on
which of the 4 outcomes is obtained, a set of gates is performed to correct errors and to
map the desired expectation value onto the ancilla (Fig. 5.8). VI - Finally the ancilla is
read out. Each outcome is taken into account without post processing or post selection.
Note that for the experiment with three rounds of error correction (two rounds of
stabilizer measurements QEC, Fig. 5.4b), the sequence branches in 16 paths instead.
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Figure 5.10 —Deterministic entanglement by stabilizer measurements including
post-selected results. a, For qubits 1 and 2. b, For qubits 2 and 3. First the qubits are
initialized following Fig. 5.7 in |00i with fidelity 0.878(6) for (a) and 0.910(6) for (b) (left
column). Then a XX measurement is performed (Fig. 5.1d). Depending on the
measurement outcome feedback is applied, so that independent of the outcome the same
two-qubit state is obtained, as can be seen by post-selecting on the two outcomes (middle
column). The full result is a deterministically entangled state (right column). The fidelity
with the desired two-qubit entangled state is 0.776(7) in (a) and 0.824(7) in (b).
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Figure 5.11 —Three-qubit state tomography for |000i and the six logical states.
The three qubits are initialized as in Fig. 5.7 and encoded following Fig. 5.2a. The
fidelities F shown are the three-qubit state fidelities and the shaded bars indicate the
ideal states. Ideally, the 6 encoded states are all eigenstates of the XX stabilizers with
eigenvalues +1, in agreement with the high values for hX

1

, X
2

, I
3

i, hX
1

, I
2

, X
3

i and
hI

1

, X
2

, X
3

i for all states and an average fidelity with this code subspace of 0.839(3).
The logical qubit is encoded as ↵ |0i

L

+ � |1i
L

, with
|0i

L

= 1p
2

(|+X,+X,+Xi + |-X,-X,-Xi) and |1i
L

= 1p
2

(|+X,+X,+Xi � |-X,-X,-Xi). The
logical state expectation values are given by: hXi

L

= hX
1

, I
2

, I
3

i, hY i
L

= hY
1

, Z
2

, Z
3

i,
hZi

L

= hZ
1

, Z
2

, Z
3

i or cyclic permutations. The logical qubit fidelities for the states are
|+Xi

L

: 0.916(6), |�Xi
L

: 0.911(6), |+Y i
L

: 0.822(7), |�Y i
L

: 0.828(7),
|0i

L

: 0.813(9) and |1i
L

: 0.808(9).
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Figure 5.12 —Process fidelity and error syndrome probabilities for di↵erent
ancilla assignments. Left: comparison of the process fidelities for the quantum error
correction experiment in Fig. 5.3 for all four possible assignments of the ancilla states to
the +1,+1 outcome of the stabilizer measurements. In Fig. 5.3b we average over these
four curves. In Fig. 5.3c the optimal result is used (assignment {|1i

a

, |1i
a

}). Solid lines
are fits to Eq. 5.3 taking into account Eq. 5.4 and yield: w = 0.8(1), w = 0.71(7),
w = 0.95(7) and w = 0.84(9) for the four assignments. Right: the probabilities for the
error syndromes for each of the four ancilla state assignments. Solid lines are expected
curves similar to Eqs. 5.17-5.20, based on the estimated initial errors in the encoded

states: p
(1)

in

= 0.091(2), p
(2)

in

= 0.064(2), p
(3)

in

= 0.077(2) obtained from Fig. 5.11. The
theoretical probabilities are in good agreement with the experimental values (no free
parameters). The probabilities are the normalized occurrences in 84000 samples for the
assignments {|0i

a

, |0i
a

} and {|0i
a

, |1i
a

} and in 28000 samples for the assignments
{|1i

a

, |1i
a

} and {|1i
a

, |0i
a

}.
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Figure 5.13 —Error syndrome probabilities for naturally occurring errors.
Corresponding to Fig. 5.4d. Solid lines are theoretical predictions from the unique
coherence times T ⇤

2

of the individual qubits and the initial error (p
in

) determined from
this data. As the stabilizer measurements are performed halfway the waiting time, the
error probability for each qubit is: p

e

( t

2

) = 1

2

(1 � Exp[�( t

2T

⇤
2
)2]). Using Eqs. 5.17-5.20

and the measured error outcome probabilities at the first datapoint (t = 2.99 ms), we

estimate the input errors at t = 0 to be p
(1)

in

= 0.049(2), p
(2)

in

= 0.0804(4) and

p
(3)

in

= 0.110(2). Dashed lines show the expected probabilities for complete dephasing.
The probabilities are based on the normalized occurrences in 12000 samples.
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Figure 5.14 —Zoom of data of Fig. 5.4b (a) and numerical simulation of
Fig. 5.4d (b). a, A zoom-in of the area of the data in Fig. 5.4b in which additional
rounds of error-correction are advantageous. b, Numerical Monte-Carlo simulations for
the error correction experiment of Fig. 5.4d. Sequence. The initial state is |Xi

L

. Each
qubit then coherently evolves with a constant detuning randomly drawn from a Gaussian
probability distribution with � =

p
2/T ⇤

2

for that qubit. Halfway the evolution time the
stabilizer measurements instantaneously project the quantum state, taking into account
the asymmetric fidelity of the ancilla readout and the error-dependent readout fidelity
(Eqs. 5.3-5.5). After letting the state evolve for the second period with the same
detuning, detected errors are corrected (this final step is omitted for “No feedback”).
Longitudinal relaxation. The qualitative behavior of the simulations is dominated by
the dephasing times T ⇤

2

. We additionally take into account the measured longitudinal
relaxation of each qubit, which approximately decays with e�(t/T1)

0.5

for ancilla state |0i
a

(See Tab. 5.1), and of the ancilla (time-constant 300 ms, due to MW and laser
background). The longitudinal decay results in a small quantitative correction, but does
not alter the qualitative behavior observed. Results & discussion. The simulation
results qualitatively match all the main features of the observed dephasing curves
(Fig. 4d). For short times, the stabilizer measurements suppress errors by stopping small
errors from building up coherently and error correction further reduces the remaining
errors. For long times, the stabilizer measurements halfway the sequence preferentially
suppress coherent evolutions that would result in an error at the end of the sequence. As
a result the fidelity at long times exceeds 0.5 and decays only slowly. Moreover, for long
times, applying error correction becomes detrimental: at the moment the stabilizer
measurements are applied the state is essentially random and no useful information about
errors is extracted so that applied corrections further dephase the final state. A complete
quantitative comparison would require detailed modeling of the full evolution of the
4-qubit system during the gates, initialization, stabilizer measurements, and readout
sequences as well as of the longitudinal decay at short times.
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Figure 5.15 —Data of Fig. 5.3b (a) 5.3c (b), 5.4b (c) and 5.4d (d), without
correction for the final readout gates. a, b, The fitted value for w is identical as in
the main text (curve shapes are not influenced by the readout calibration). c,
Corresponding fit values for the unencoded qubit: w = �0.02(2), for 1 round:
w = 0.56(6), for 2 rounds w = 0.64(4) and for three rounds w = 0.70(2). d, The logical
qubit follows Eq. 5.9 with T = 13.7(1) ms and n = 2.35(8).
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Qubit 1 Qubit 2 Qubit 3

Ak (kHz) 2⇡·20.6 2⇡·-36.4 2⇡·24.4
A? (kHz) 2⇡·43 2⇡·25 2⇡·26
!
0

(kHz) 2⇡·431.874(3) 2⇡·431.994(3) 2⇡·431.934(3)
!
1

(kHz) 2⇡·413.430(3) 2⇡·469.025(3) 2⇡·408.303(3)
⌧ (µs) 13.616 4.996 11.312

N 32 34 48
gate time (µs) 980 400 1086

T ⇤
2

, m
s

= 0 (ms) 12.0(9) 9.1(6) 18.2(9)
T ⇤
2

, m
s

= �1 (ms) 12.8(6) 9.8(4) 21(1)
T
1

, m
s

= 0 (ms) 110(10) 100(10) 330(30)

Table 5.1 —Qubit and gate parameters. Ak and A? are the estimated hyperfine
interaction components parallel and perpendicular to the applied magnetic field. !

0

and
!
1

are the nuclear precession frequencies for m
s

= 0 (|0i
a

) and m
s

= �1 (|1i
a

). ⌧ is
half the inter pulse delay, N the number of pulses and gate time the total duration for
the conditional ±x-gates. These values vary slightly over the experiment as they are
calibrated every ⇠ 36 hours. T ⇤

2

is the (natural) dephasing time and T
1

the longitudinal
relaxation time.

Fig. 5.3b (logical qubit with QEC) Fig. 5.4b (3 rounds)

Two-qubit gates 19 20
Ancilla refocusing pulses 698 808
Ancilla read-out and reset 7 9

Table 5.2 —Experimental complexity. Number of operations in the entire sequence,
starting from the initialization of the nuclear spins as qubits. All qubit (13C) gates are
composed of ancilla (NV electron spin) refocusing pulses and the ancilla is read-out and
reset multiple times. We give values for two examples: a single round of QEC with
measurement of hZ

1

Z
2

Z
3

i (Fig. 5.3b) and three rounds of QEC with measurement of
hX

1

X
2

X
3

i (Fig. 5.4b).

115



5. Repeated quantum error correction on a continuously encoded qubit by real-time
feedback

5.9 Bibliography

[1] B. M. Terhal. Quantum error correction for quantum memories. Reviews of Modern
Physics 87, 307 (2015).

[2] S. B. Bravyi and A. Y. Kitaev. Quantum codes on a lattice with boundary. arXiv:quant-
ph/9811052 (1998).

[3] R. Raussendorf and J. Harrington. Fault-Tolerant Quantum Computation with High
Threshold in Two Dimensions. Physical Review Letters 98, 190504 (2007).

[4] D. Nigg et al. Quantum computations on a topologically encoded qubit. Science 345,
302 (2014).

[5] E. Knill, R. Laflamme, R. Martinez and C. Negrevergne. Benchmarking Quantum
Computers: The Five-Qubit Error Correcting Code. Physical Review Letters 86, 5811
(2001).

[6] J. Chiaverini et al. Realization of quantum error correction. Nature 432, 602 (2004).

[7] P. Schindler et al. Experimental Repetitive Quantum Error Correction. Science 332,
1059 (2011).

[8] M. D. Reed et al. Realization of three-qubit quantum error correction with supercon-
ducting circuits. Nature 482, 382 (2012).

[9] T. H. Taminiau, J. Cramer, T. v. d. Sar, V. V. Dobrovitski and R. Hanson. Uni-
versal control and error correction in multi-qubit spin registers in diamond. Nature
Nanotechnology 9, 171 (2014).

[10] G. Waldherr et al. Quantum error correction in a solid-state hybrid spin register. Nature
506, 204 (2014).

[11] B. P. Lanyon et al. Measurement-Based Quantum Computation with Trapped Ions.
Physical Review Letters 111, 210501 (2013).
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Chapter 6

Towards general QEC

experiments with spins in diamond

J. Cramer

In the preceding chapters I presented the experimental implementation of basic QEC
protocols. However, these protocols could only correct for specific errors. In this chapter I
will discuss the protection of quantum information against general single-qubit errors and
propose the experimental implementation of fault-tolerant protocols based on the techniques
developed in this thesis for diamond spins. I will consider the protection of two logical qubits
by quantum error detection (Sec. 6.2) and the active protection of a single logical qubit by
five-qubit quantum error correction, the smallest general QEC code (Sec. 6.3).
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6. Towards fault-tolerant QEC experiments with spins in diamond

6.1 Introduction

Realistic quantum information processing demands the correction of general errors on
arbitrary quantum states. Quantum error correction (QEC) protects quantum information
by redundant encoding in multiple data qubits and subsequent correlation measurements
to detect errors that can be actively corrected1–4. While the detection and correction of
specific errors in quantum systems has been explored experimentally5–16, there have not
been experimental implementations that detect and correct quantum states against general
errors (X, Y and Z errors) on continuously encoded qubits.

Spins in diamond have shown to be a promising platform for the implementation of
QEC, employing nuclear spins surrounding the NV electron spin (Chaps. 4,5). The long
coherence times of these nuclear spins, combined with high-fidelity non-destructive single-shot
readout of the NV electron spin state, provide a hybrid quantum system allowing for QEC
by ancilla-based correlation measurements and real-time feedback. The NV centre coupled
to 13C spins provides an extendable quantum register allowing for the implementation of
general QEC codes17,18.

In this chapter I propose the implementation of general quantum error detection and
correction codes based on the control of nuclear 13C spins in diamond via the NV centre
electron spin. For quantum error detection, two logical qubits are encoded in four data
qubits, detecting single-qubit errors by stabilizer measurements. The smallest code for
general quantum error correction, which detects and corrects single-qubit errors, requires five
data qubits for the encoding and four correlation measurements to detect errors that can
subsequently be corrected.

One important task in the experimental implementation of such codes in our system is the
compiling of the protocol into the natural two-qubit gates between the NV electron spin and
a 13C nuclear spin. The resulting deterministic basis rotations transform the Pauli frame of
the protocol (Ch. 2), which will be worked out in this chapter.

6.2 Quantum error detection

Besides active detection and correction of quantum errors, general quantum computations
can be achieved by post-selected error detection protocols19. Such error detection protocols
can be relatively fast with respect to quantum error correction protocols and generally require
less qubits. Due to the post-selection however, the final resource requirements can be larger
than for quantum error correction in which post-selection is not needed19,20.

The minimal code detecting general errors in arbitrary quantum information is the four-
qubit code21. A combination of two stabilizer measurements (e.g. ZZZZ and XXXX)
detects general errors on single qubits in the encoding. No information is obtained regarding
the erroneous qubit, which makes it impossible to deterministically correct the state. Ex-
tending the nuclear spin register from three (Ch. 5) to four weakly coupled 13C spins in a
single experiment allows for the implementation of four-qubit quantum error detection.
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6.2. Quantum error detection

6.2.1 Logical qubit

The four-qubit quantum error detection code protects two logical qubits by encoding in four
data qubits. The code space can be defined by the stabilizers XXXX and ZZZZ. This
allows for two qubits of freedom, two logical operators therefore define the four codewords
|00i

L

, |01i
L

, |10i
L

and |11i
L

. The logical operators for the two logical qubits can for example
be defined by:

X
L1

= X
1

X
2

, Z
L1

= Z
1

Z
3

, X
L2

= X
1

X
3

, Z
L2

= Z
1

Z
2

.

Initialization in a logical state in the code space can be performed by a chosen method,
such as:

• Measurement of two stabilizer operators corresponding to the code space and two
logical operators corresponding to the intended logical state projects the data qubits
to the code space and the logical state. For example, subsequent measurements of the
operators XXXX, ZZZZ, Z

1

Z
2

and Z
1

Z
3

on a four-qubit (mixed) state initialized
the qubits in the logical state |00i

L

.

• Initialization of the data qubits can reduce the number of measurements. For example,
an input state of |0000i only requires measurement of the operator XXXX to initialize
the logical qubit in |00i

L

(Fig. 6.1a).

• Initialization in a logical two-qubit state by one of the methods above followed by
an operation via the ancilla qubit, as employed in Ch. 5. For example, a controlled

y y

±x

±x

±x

±x

|0i
a

|0i
a

{±ZZZZ,
±ZIII,
±ZZII,
±ZIZI}

{±YYYY,
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±YYII,
±YIYI}

y
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a

|00i
L

a) b)

x

x

↵|0i
a
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↵|00i
L
+�|11i

L

Figure 6.1 — Logical state initialization for four-qubit encoding. a, The four nuclear
spins are encoded in a two-qubit logical codeword by initializing in an eigenstate of ZZZZ
and ZIII and two logical operators, for example ZZII and ZIZI. A measurement of
XXXX detects the overlap with the code space, intializing qubits in the logical state. b,
An example of initialization in state ↵ |00i

L

+ � |11i
L

via the ancilla qubit is given. After
the circuit shown in a, a state on the logical qubit is initialized via the ancilla qubit. To
compensate for the extra ⇡/2-rotations in the electron-controlled operations on the 13C,
a ⇡/2 gate can be applied on each physical qubit. In practice, however, these operations
are taken into account by Pauli frame updates in subsequent operations.
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X
L1XL2 operation on the logical state |00i

L

, for the ancilla in ↵ |0i+ � |1i, initializes
the system in ↵ |00i

L

+ � |11i
L

upon projection of the ancilla qubit by measurement
(Fig. 6.1b).

The code space is determined by the measurement outcomes of the stabilizer measurements
(error syndrome), which can simultaneously mark a first round of error detection.

6.2.2 Error detection

The four-qubit quantum error detection code detects general errors by stabilizer measurements
via an ancilla qubit. The logical code space is stabilized by the operators XXXX and ZZZZ.
By projecting the stabilizer operators in the initialization, the code space is defined. To
detect errors, these stabilizer operators are continuously measured. When a single error
on a data qubit occurs, a measurement of the noncommuting stabilizer operator switches
sign22 (‘clicks’); the measurement returns the opposite eigenvalue indicating an error. The
combination of the two stabilizer measurement outcomes returns the ‘error syndrome’, to
identify if no error or an error around the x�, y� or z�axis on one of the four qubits
occurred.

Due to the extra basis rotations in the physical gates of our system, the measurements
transform the Pauli frame (Ch. 2) and thus the stabilizer operators defining the code space. A
measurement of the XXXX-stabilizer transforms the stabilizers ZZZZ $ Y Y Y Y , while a
measurement of the Y Y Y Y -stabilizer transforms the stabilizers ZZZZ $ XXXX. Keeping
track of these transformations will result in the correct error detection as well as the updates
of Pauli frame of the logical qubit. The symmetric concatenation of the four-qubit stabilizer

y y
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y y
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Even detection round Odd detection round

Figure 6.2 — Repeated sequence of stabilizer measurements for four-qubit error
detection. Repeating the stabilizer measurements for error detection in the proposed way
returns the initial states after four succesful stabilizer measurements (two rounds of error
detection). Transformations can be tracked and taken into account in updates of the
Pauli frame of the logical quantum state.
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measurements as shown in Fig. 6.2, transforms the stabilizer operators such that after two
e↵ective rounds of error detection (four stabilizers), the initial Pauli frame is obtained.

To characterize the experimental implementation of the protocol state fidelity and state
tomography can be measured. Full state tomography of the final four-qubit state requires a set
of 255 measurements to obtain all expectation values in the Pauli-set {hIIIIi, ..., hZZZZi}.
However, the logical two-qubit state tomography requires measurement of only fifteen
operators {hI

L1

I
L2

i, ..., hZ
L1

Z
L2

i}. The logical state-fidelity is obtained by measurement of
three logical operators defining the intended logical state or the fifteen operators defining the
corresponding four-qubit state.

6.3 Five-qubit quantum error correction

The four-qubit error detection code as discussed above detects single-qubit errors around all
axes (X, Y and Z errors), but does not identify the data qubit that got the error. According
to the Hamming bound23 a minimum number of five qubits is required to detect and correct
for single-qubit errors around all axes. Here, I will discuss the implementation of such a
five-qubit QEC protocol as first proposed by Laflamme et al.24, extending the spin register
and methods used in Ch. 4.

6.3.1 Logical qubit

The five-qubit quantum error correction code detects and corrects general single-qubit errors
by encoding a single logical qubit of information in five data qubits. A combination of four
four-qubit stabilizer measurements detects the error syndrome, leaving one degree of freedom
for the encoding of the logical qubit state. The logical code space can be defined by four
stabilizer operators22,25:

Ka = XY Y XI, Kb = XZIZX, Kc = Y IY ZZ, Kd = ZXXZI. (6.1)

The logical-qubit operators can be defined by

X
L

= XXXXX, Z
L

= ZZZZZ. (6.2)

Initialization of the data qubits in a logical single-qubit state, can be performed dependent
on experimental preference and intended encoded state, similar to the four-qubit logical state
(Sec. 6.2). We focus on three methods to initialize the logical qubit state. All methods require
the measurement of the four stabilizer operators, to project into the logical code space.

• To initialize in an eigenstate of a logical Cli↵ord operator, one can initialize the five
data qubits individually in a eigenstate of the single-qubit operators X,Y or Z, e.g.
|00000i, followed by projection of the four stabilizer operators (Eq. 6.1).

• Initialization in an eigenstate of a logical operator (Eq. 6.2) can also be performed
by projection of this operator, followed by projection of the four stabilizer operators
(Eq. 6.1). An example of such initialization along the x-axis is given in Fig. 6.3a,
where the operator X

L

is projected, taking into account the basis rotations of our
experimental two-qubit gates.
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Figure 6.3 — Logical state initialization for five-qubit encoding. A logical state is
encoded in five data qubits either (a) from a fully mixed state by first measuring the
logical operator corresponding to the required logical state (here logical operator X

L

to
obtain |Xi

L

) or (b) via the ancilla qubit. An arbitrary state can be initialized on the data
qubits which are stabilized by Z

L

= ZZZZZ. To initialize in the code space, in both
cases, four orthogonal stabilizer operators are subsequently measured, taking into account
extra basis rotations corresponding to the gate implementation in our system. The final
state is the positive or negative eigenstate of the chosen logical operator, with at most
one single-qubit error that is ‘detected’ by the four stabilizer measurements and can thus
be corrected by a single-qubit operation or Pauli update as given in Tab. 6.1.
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6.3. Five-qubit quantum error correction

• An arbitrary logical state can be initialized via the ancilla qubit, as employed in Ch. 5.
For example, after initializing the data qubits in an eigenstate of ZZZZZ, the sequence
shown in Fig. 6.3b initializes an arbitrary state on the logical qubit and projects the
data qubits in the code space by the stabilizer measurements.

Dependent on the measurement outcomes of all stabilizer measurements and the projection of
the logical operator, the final state is at most one single-qubit error and a logical bit-flip away
from the intended logical state. The code space can be defined by the stabilizer measurement
outcomes. In rounds of QEC (next section), errors are detected when stabilizer measurement
outcomes switch sign (‘click’).

6.3.2 Error syndrome detection and correction

Once a logical qubit is encoded in the five data qubits, errors are detected by stabilizer
measurements via the ancilla qubit. The five-qubit code detects and distinguishes single
X, Y and Z errors on the data qubits. The combination of four stabilizer measurement
outcomes forms the four-bit error syndrome; the information that is required to succesfully
correct general single-qubit errors in the encoded system.

After the logical qubit initialization (Sec. 6.3.1, Fig. 6.3), the code space is defined by the
stabilizer operators given in Eq. 6.1. Taking into account basis rotations due to our two-qubit
gates that transform the Pauli frame, errors are detected by a chosen set of orthogonal
stabilizer measurements (Fig. 6.4), corresponding to the operators of Eq. 6.1. The sequence
given in Fig. 6.3 corresponds to the measurements of stabilizer operators:

Ka

0
= XYXY I, Kb

0
= ZIZY Y, Kc

0
= Y ZIY Z, Kd

0
= Y XZZI. (6.3)

By transformations of the Pauli frame errors also transform through the circuit. An initial
error on a data qubit, corresponding to a detected syndrome by the sequence of Fig. 6.4
(corresponding to Eq. 6.3) requires a correcting operation given in Tab. 6.1 and transforms
the system to the Pauli frame given by the stabilizer operators of Eq. 6.3. Reversing the
sequence of Fig. 6.4 (equal to the order of stabilizer measurements of Fig. 6.3) symmetrizes
the sequence and transforms the system to the Pauli frame given by the stabilizer operators
of Eq. 6.1. This combination of rounds of detecting errors can be convenient but are not a
requirement to the experiment as the basis rotations only require processing in software and
no additional overhead in the quantum processor.

6.3.3 Proposed experimental implementation

The control of five nuclear spins via the NV electron spin can allow for the implementation
of five-qubit quantum error correction. The spin register can be initialized in a logical state
and error detection and correction can be performed. In this section I will propose initial
experiments to determine the feasibility of the full implementation of five-qubit quantum
error correction.
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Error I X
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2
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3
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X
4

Y
4

Z
4

X
5

Y
5

Z
5

Syndrome

Ka + + - - - + - - + - + - - + + +
Kb + + - - - - + + + + - - + + - -
Kc + - + - + + + - + - - - + - - +
Kd + - - + + - - + - - - - + + + +

Correction I Y
1

Z
1

X
1

Y
2

X
2

Z
2

X
3

Z
3

Y
3

Z
4

X
4

Y
4

Z
5

X
5

Y
5

Table 6.1 —Unique pattern of positive (+) and negative (-) measurement out-
comes for a combination of measurements of the four stabilizer operators for the
five-qubit QEC code and required correction. Inital errors X

i

, Y
i

and Z
i

on data
qubit i corresponding to the outcomes of the measurement of the set of stabilizer oper-
ators (K) given in Fig. 6.4, corresponding to Eq. 6.3, result in a unique error syndrome.
‘Error’ and ‘Correction’ are interchanged for the set of stabilizer measurements in Fig. 6.3
corresponding to the stabilizer operators of Eq. 6.1.

State initialization by five-qubit QEC

As a first demonstration of five-qubit QEC, the initialization sequence shown in Fig. 6.3a
contains all required elements. The sequence combines initialization and a first round of
general QEC on the five-qubit logical state. Starting in a five-qubit mixed state, the circuit
of Fig. 6.3a projects the codeword by measurement of the logical operator and the code space
by measurement of four stabilizer operators. This e↵ectively initializes the five-qubit register
in a defined logical state that deviates from the intended logical state by at most a logical
bit flip, dependent on the measurement outcome of the logical operator, and a single-qubit
Pauli operation, dependent on the stabilizer measurement outcomes (the ‘error syndrome’).
Correspondingly, a correction is either just a single-qubit Pauli operation or a Pauli frame
update (Tab. 6.1).

The initialization procedure (Fig. 6.3) results in 25 = 32 possible final five-qubit states,
defined by the five ancilla measurement outcomes. Postselection of the final state, dependent
on the detected syndrome, gives insight in the initialization fidelity of the logical state, as
well as in the fidelity of the stabilizer measurements. The detected ‘error’ can be actively
corrected by the adaption of further operations on the data qubits. Feedback can be applied
to keep the ancilla qubit in the optimal state throughout the experiment (Ch. 5).

State tomography of the resulting five-qubit state requires the measurement of 45�1 = 1023
expectation values in the full Pauli set. The five-qubit state fidelity after initialization in a
logical state is obtained by measurement of the corresponding 25 = 31 non-zero expectation
values in the Pauli set. Logical state tomography is performed by measurement of three logical
operators via the ancilla qubit (e.g. X

L

= �IY XY I, Y
L

= �Y IXXI and Z
L

= �Y IZIY ).
To determine the quality of the experimental encoding, process fidelity of the sequence in
Fig. 6.3 can be determined by initializing in the eigenstates of logical Cli↵ord gates, defining:

F
p

=
1
4
(F

X

+ F�X

+ F
Y

+ F�Y

+ F
Z

+ F�Z

� 2), (6.4)

with F
↵

the logical output state fidelity to the intended state |↵
L

i.

Once the logical qubit is encoded in the five-qubit register as described in this section, a

126



6.4. Discussion

Z X Z Y

y y

±x

±y

±y

±x

±1

y y

±x

⌥x

⌥y

±x

±1

y y

±y

⌥y

±y

⌥y

±1

y y

⌥x

⌥y

±x

⌥y

±1

|0i
a

| i
L

E

E

E

E

E

y y

±x

±y

±y

±x

y y

±x

⌥x

⌥y

±x

y y

±y

⌥y

±y

⌥y

y y

⌥x

±y

⌥x

⌥y

|0i
a

| i
L

X Z Y

-1 +1 -1 -1

b)

a)

Figure 6.4 — Five-qubit QEC on a logical encoded qubit, taking into account
basis rotations. a, The combination of four stabilizer measurements on the data qubits
uniquely detects general single-qubit errors on the data qubits. The stabilizer measurements
are compiled to take into account extra basis rotations due to our gate implementation.
b, Example of an initial Z error on data qubit 3. The error propagates through the
circuit. This particular error propagates to the ancilla qubit in three out of four stabilizer
measurements and thus results in the syndrome {�1, +1, �1, �1}, see Tab. 6.1.

next round of QEC can be performed following Fig. 6.4a. To characterize the QEC code,
single-qubit errors around all axes can be applied on the initialized state and analyzed
according to Tab. 6.1.

6.4 Discussion

In this chapter, I proposed the experimental implementation of two general quantum codes
that can detect and correct general errors on the data qubits. The implementation of
such codes requires the extension of the nuclear spin register, exploiting the experimental
implementation of Ch. 5. The natural gates between the NV electron spin and a nuclear spin
cause extra basis rotations on the data qubits in the encoding, transforming the Pauli frame
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(Chs. 4, 5). These transformations are taken into account in the compiling of the protocol to
our experimental implementation.

First demonstrations of such general quantum error detection and correction codes with
spins in diamond, detecting and/or correcting single-qubit X, Y and Z errors, include logical
qubit Initialization by correlation measurements on a register of data qubits via the ancilla
qubit. initializing the logical states by stabilizer measurements can be considered as a
first round of error detection that characterizes the experimental implementation of these
protocols.
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Chapter 7

Conclusions and outlook

J. Cramer

The future of quantum technology requires the protection of quantum information against
uncontrollable errors. The results in this thesis present the NV centre as a hybrid quantum
node and implement active quantum error correction on a continuously encoded quantum
state in spins in diamond. These methods and results can be extended to the experimental
implementation of general quantum error correction protocols. The developed quantum
register based on spins in diamond can be employed as a local node for quantum networks as
basis for other multi-qubit experiments. In this chapter I will summarize the results of this
thesis and address future research directions.
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7.1 Conclusions

This thesis presents the experimental implementation of quantum error correction based
on a spin register in diamond. In the first experiments at ambient temperature, errors are
detected by encoding in three spins and corrected after decoding to a single spin (Ch. 4),
leaving the quantum state unprotected. In the work presented in Ch. 5 errors are detected
and corrected on a continuously encoded quantum state in nuclear spins in diamond by
stabilizer measurements and real-time feedback, enabled by high-fidelity single-shot readout
of the NV electron spin as ancilla qubit at cryogenic temperatures. The results presented in
this thesis can be summarized as follows:

• Universal control over deterministically available multi-qubit spin registers is realized
via the electron spin of NV centres in diamond. Multiple 13C spins in the spin bath of
such NV centres are selectively initialized, controlled and read out.

• Single-shot correlation measurements of 13C spins can be performed via the electron
spin of the NV centre, without projecting the individual nuclear spin states. Moreover,
feedback can be applied while protecting coherence in the projected subspaces of these
spin states.

• Multiple rounds of active quantum error correction are performed on a continuously
protected logical qubit in a spin register in diamond, demonstrating robustness against
phase errors on the data qubits in the encoding.

• A logical quantum superposition state is preserved beyond the natural dephasing time
of the best physical qubit in the encoding.

• By extending the number of individually controlled 13C spins general quantum error
detection and correction protocols are within reach by the implementation of stabilizer
measurements and feedback via the NV electron spin.

Combining the recent results on the long-distance coupling of NV centres1,2 via photonic
channels3 with the presented control of quantum spin registers in diamond makes the NV
centre a promising platform for the implementation of quantum networks4–6. Extending the
number of spins controlled via the NV centre electron spin, as well as improving the rate
and e�ciency of the coupling between distant NV centres allows for the exploration of more
advanced quantum error correction protocols, first applications in quantum technology and
other related experiments.
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7.2 Extended quantum error correction protocols

Protecting quantum states against general errors requires the extension of the experimental
methods presented in this thesis to a larger register of data qubits. First experiments based
on four or five nuclear spins are within reach employing current control methods as proposed
in Ch. 6. While it is still an open question how many nuclear spins can be controlled via the
NV centre, the characterization of the nuclear spins in the NV centre’s spin bath, shown in
Chs. 4, 5 indicates that more than the three spins used in the presented experiments can be
controlled as qubits. It is expected that the current quantum register in diamond can be
extended to a larger number of qubits by exploring di↵erent methods of control7,8.

The two-qubit gates between the NV electron spin and a 13C nuclear spin mainly rely on
the perpendicular component of the hyperfine interaction9. Nuclear spins with relatively
small perpendicular hyperfine coupling to the NV electron spin, require long dynamical
decoupling gates and can be di�cult to control individually. This can be overcome by
combining the decoupling gates with radio-frequency pulses, directly driving the nuclear
spins, using a similar approach to earlier work on the control of the nitrogen spin of the NV
centre10. To avoid gate errors by discretization and to increase spin-selectivity on the nuclear
gates, elaborated decoupling sequences built-up by non-equally spaced decoupling elements
can be explored8. For the numerical optimization of such gates, detailed simulations of the
system are required11.

Flexibility in the spin-selective control of nuclear spins can be increased by using the
third spin level of the electron spin state. Decoupling the NV electron spin between the
(m

s

= 0 $ m
s

= +1) transition or the (m
s

= 0 $ m
s

= �1) transition results in a
di↵erent resonant interaction with each nuclear spin (Ch. 3). Where decoupling on one
transition allows for high-fidelity, individual control of certain nuclear spins, for other spins
the other electron transitions can be more favorable. Combining both electron transitions
in a single experiment can therefore increase the number of controllable nuclear spins in
a single experiment. This requires coherent and robust population transfer between the
m

s

= �1 $ m
s

= +1 spin states12.

The coherence times of quantum states in spins in diamond can be extended with various
methods. Purified diamond samples13,14, containing a lower density of nuclear spins, or
selective co-implantation of closely coupled NV centres15 and local nuclear spins can enhance
the natural coherence times of both electron and nuclear spins. The interactions between
nuclear spins in the spin bath cause uncontrolled spin flips and dephasing of the nuclear spin
qubits. The dephasing e↵ects can be suppressed by methods such as decoupling the nuclear
spins16,17 and polarization of the nuclear spin bath. Uncontrolled spin-flips between nuclear
spins are strongly suppressed by storing the NV electron spin in the m

s

= �1 or m
s

= +1
spin states17,18. While the current operations on the nuclear spins involve the m

s

= 0 spin
level, this e↵ect can be studied in more detail17. Furthermore, when nuclear spins have
strongly correlated noise, decoherence-protected subspaces19 can be used to suppress such
noise; by encoding a quantum state in a combined spin state of two such nuclear spins the
dephasing can cancel out.

Extending the number of nuclear spins in the encoding allows for the implementation
of more elaborate quantum error correction codes20, such as the seven21 or nine22 qubit
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QEC codes. Quantum error corrected logical qubit operations can be implemented and
explored. Repeated rounds of quantum error correction allow for characterization23 and
optimization24,25 of the experimental QEC protocols.

7.3 Quantum networks

The presented local control over a spin register in diamond and the recent advances in the
realization of quantum entanglement over macroscopic distances1,2,26 can become the building
blocks of a multi-node quantum network4,5 as illustrated in Fig. 7.1. These networks can be
used to study both fundamental questions as well as future applications. Large macroscopic
multi-qubit quantum entangled states can be generated as a basis for experiments on
fundamental and technical questions in quantum mechanics. In such a network, measurement-
based quantum computing can be implemented27,28 and device-independent quantum key
distribution can be studied29,30.

The local spin register in diamond combined with photonic coupling between distant NV
centres is a promising platform to develop such a network1,4,31. The proposed networks4

allow for reasonably high error thresholds in the entanglement generation (on the order of
ten percent) if the local errors are on the order of one percent. To e�ciently develop such
networks, the rate of entanglement generation between distant nodes should exceed the local
memory lifetime. The two main requirements for such networks are the ability to create links

Figure 7.1 —Towards quantum networks based on spins in diamond. The envisioned
quantum network consists of local nodes of NV centres that are each coupled to a nuclear
spin register. These nodes can be coupled via photonic channels and by direct coupling
between closeby NV centres.
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via photonic channels and long-lived local memories that can be stored while the networking
links are generated.

First, for long memory lifetimes, the stored quantum information in the nodes should not
be disturbed by the generation of entanglement to other nodes. During optical excitation,
readout and reset of the NV electron spin required for the entanglement generation, the
electron spin state is unknown. The nuclear spins that are used in this thesis are weakly
coupled to the NV electron spin. Recent work32,33 has shown that such weakly coupled spins
can withstand in the order of hundreds of attempts of entanglement generation. Quantum
states in decoherence-protected subspaces based on two of these spins can be robust to ⇠ 1000
attempts, the order of attempts currently required to generate one entanglement event26.

Secondly, for e�cient entanglement generation, the photon collection e�ciency can be
improved2. The current entanglement generation protocol between NV centres in diamond
relies on the emission and detection of indistinguishable photons1 in two consecutive rounds
of single-photon detection events34. Only ⇠ 4% of the emitted photons is suitable for
entanglement generation and these photons are emitted omnidirectional. The e�ciency of
photon emission can be improved by means of a micro-cavity, controlling both the spectral
and spatial properties of the emitted photons35–37. Furthermore, the detection of these
photons can be improved by decreasing the photon loss over distance. At the wavelength of
the naturally emitted photon (637 nm), losses in optical fibers are in the order of 5 dB/km.
By downconverting the emitted photons of the NV centre to telecom wavelengths38, these
losses can be decreased to 0.2 dB/km.

The fidelity of entanglement between such nodes can be improved by entanglement
purification31, employing nuclear spins in the entanglement generation protocol. Remote
entanglement between NV centres is swapped39 to coupled nuclear spins, repeating the
entanglement generation, purifying the entanglement probabilistically. By using entanglement
purification, the entanglement protocol can be relaxed to a single-photon heralding scheme40.
This makes the impact of photon loss on failure linear, versus quadratic in the two-photon
protocol34.

7.4 Other related experiments

Apart from the interest in future applications in quantum computing and quantum networks,
the proposed research directions can also be used for fundamental research. The generation of
larger entangled states and qubit registers, as well as the generation of macroscopic quantum
states invites to explore fundamental limitations of quantum information29.

The stabilizer measurements employed in this thesis, using the NV electron spin to detect
correlations between nuclear spin qubits, are of interest beyond quantum error correction.
The ability to project correlations in logical quantum states, without projecting individual
qubits, allows for the study of the e↵ect of such measurements. Our recent work on the
repeated projection of correlations, generating Zeno subspaces, allow for the exploration of
e↵ects of such repeated measurements on di↵erent types of noise and other dynamics between
quantum states18.

Furthermore, the NV centre has shown to be a very precise sensor in many applications
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such as living cells41, single spins42 and temperature43. The NV centre can be used to
sense fields outside of the diamond when placed close enough to the surface44,45. However,
spectral di↵usion and instability of the NV centres complicate these applications. Repeated
sensing with nuclear spins as (error-corrected) memory46, and adaptive protocols47 while
using real-time feedback could improve these applications.
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Summary

Quantum error correction with spins in diamond

Digital information based on the laws of quantum mechanics promisses powerful new
ways of computation and communication. However, quantum information is very fragile;
inevitable errors continuously build up and eventually all information is lost. Therefore,
realistic large-scale quantum information processing requires the protection of quantum bits
(qubits) against errors. In this thesis we present the experimental implementation of quantum
error correction protocols based on spins in diamond. In such protocols, a quantum state is
protected against errors by encoding in multiple qubits. Errors can be detected and corrected
by measurement of correlations, so-called stabilizer-measurements, on these qubits.

The experimental work presented in this thesis employs multiple spins in diamond as
qubits to explore and implement error correction protocols. The nitrogen-vacancy (NV)
centre in diamond is a lattice defect consisting of a nitrogen atom (N) and a vacancy (V) on
two adjacent diamond lattice sites. This defect e↵ectively results in an electronic spin that
can be addressed as a qubit. The spin state can be manipulated by microwave fields and
optically read out. At liquid helium temperatures (cryogenic temperature, ⇠ 4 K = -269 �C),
the NV electron spin provides high-fidelity single-shot readout and long coherence times.

The NV centre is surrounded by naturally available (1.1% abundance) nuclear 13C spins.
As the number of spins that are close enough to the NV centre to be strongly coupled is
limited, we employ the weakly coupled nuclear spins in the spin bath of the NV centre. Using
dynamical decoupling techniques these nuclear spins can be detected via the NV electron
spin through the hyperfine interaction. The nuclear spins are long-lived and robust against
optical excitation of the NV electron spin, which can make these spins a robust quantum
register for quantum error correction.

In Ch. 4 we demonstrate universal control over multiple of such weakly coupled nuclear
13C spins in the environment of the NV centre at ambient temperatures. We demonstrate
initialization, control and read-out of individual nuclear spins. Finally, we implement a
quantum error correction protocol by encoding a quantum state in the NV electron spin
and two nuclear spins. Errors are detected by un-encoding the quantum state back to the
electron spin and correction via a double controlled operation.

For universal fault-tolerant quantum computations it is essential that the quantum inform-
ation remains encoded at all times. In Ch. 5 we present multiple rounds of quantum error
correction and active feedback on a continuously encoded qubit at cryogenic temperatures.
A quantum state is protected by encoding in three weakly coupled spins. Errors are detected
via high-fidelity non-demolition readout of the NV electron spin and actively corrected using
fast classical electronics. We demonstrate that an actively error-corrected qubit is robust
against phase flip errors and show that a superposition state can live longer than the best
physical qubit in the encoding.

The presented methods and results can be extended to a range of future experiments. In
Ch. 6 we propose the implementation of five-qubit quantum error correction, the smallest
code to correct for general single-qubit errors on the physical qubits in the encoding, by
extending the experimental methods as developed in Chs. 4&5. Besides the exploration and
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development of larger error correction protocols and fault-tolerant quantum computing, the
presented quantum register based in spins in diamond can be employed as a quantum node
and combined with recent advances in the realization of quantum entanglement over large
distances to form quantum networks. These networks can be used to study both fundamental
questions as well as future applications in quantum information technology.
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Quantumfoutcorrectie met spins in diamant

Digitale informatie gebaseerd op de wetten van de quantummechanica belooft nieuwe,
krachtige methodes voor berekeningen en communicatie. Maar quantuminformatie is heel
kwetsbaar; onvermijdelijke fouten bouwen continu op waardoor de informatie verloren
gaat. Voor realistische quantuminformatie op grote schaal is het daarom noodzakelijk om
quantumbits (qubits) te beschermen tegen fouten. In dit proefschrift presenteren we de
experimentele implementatie van quantumfoutcorrectieprotocollen gebaseerd op spins in
diamant. In deze protocollen is een quantumtoestand beschermd tegen fouten door deze te
encoderen in meerdere qubits. Fouten kunnen worden gedetecteerd en gecorrigeerd door
correlaties tussen deze qubits te meten.

Het experimentele werk dat in dit proefschrift wordt gepresenteerd maakt gebruik van
meerdere spins in diamant als qubits om quantumfoutcorrectieprotocollen te onderzoeken
en implementeren. Het stikstof-gat (nitrogen-vacancy, NV) centrum is een roosterdefect in
diamant waarbij een stikstof atoom (N) en een gat (V) twee naastgelegen roosterpunten
bezetten. Deze combinatie resulteert e↵ectief in een elektronspin die kan worden aangestuurd
als qubit. De spintoestand kan worden gemanipuleerd door microgrolfvelden en optisch worden
uitgelezen. Op de temperatuur van vloeibaar helium (cryogene temperatuur, ⇠ 4 K= �269�C)
kan de elektronspin met hoge betrouwbaarheid in een keer worden uitgelezen en heeft deze
een lange coherentietijd.

Het NV centrum is omgeven door 13C kernspins (1.1% natuurlijke aanwezigheid in het
rooster). Het aantal kernspins die zo dicht bij het NV centrum zitten dat deze sterk gekoppeld
zijn, is gelimiteerd, daarom gebruiken we zwak gekoppelde kernspins uit het spinbad van
het NV centrum. Door gebruik te maken van dynamische ontkoppelingstechnieken kunnen
dit soort spins worden gedetecteerd dankzij de hyperfijne interactie met de elektronspin
van het NV centrum. Deze kernspins kunnen hun toestand lang behouden en zijn bestand
tegen optische excitatie van de elektronspin van het NV centrum, waardoor ze een robuust
quantum register kunnen vormen voor quantumfoutcorrectie.

In hoofdstuk 4 demonstreren we de universele controle van meerdere van zulke zwak
gekoppelde 13C spins in de omgeving van het NV centrum bij kamertemperatuur. We
demonstreren het initialiseren, controleren en uitlezen van individuele kernspins. Uiteindelijk
implementeren we een quantumfoutcorrectieprotocol door een quantumtoestand te encoderen
in de elektronspin van het NV centrum en twee kernspins. Fouten worden gedetecteerd
door de quantumtoestand terug te brengen naar de elektronspin en gecorrigeerd door een
dubbel-gecontroleerde quantumoperatie.

Voor universele fout-tolerante quantumberekeningen is het essenteel dat de quantuminform-
atie altijd geëncodeerd blijft. In hoofdstuk 5 presenteren we de implementatie van meerdere
rondes quantumfoutcorrectie en actieve terugkoppeling op een continu geëncodeerde qubit
bij cryogene temperatuur. Een quantumtoestand is beschermd door deze te encoderen in
drie zwakgekoppelde spins en actief gecorrigeerd door gebruik te maken van snelle klassieke
electronica. We demonstreren dat een actief fout-gecorrigeerde qubit robuust is tegen fase-
fouten en laten ziet dat een superpositie langer bewaard kan blijven dan de beste fysieke
qubit in het geëncodeerde systeem.
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De gepresenteerde methodes en resultaten kunnen worden uitgebreid naar een spectrum
aan toekomstige experimenten. In hoofdstuk 6 stellen we de implementatie van vijf-qubit
quantumfoutcorrectie voor, de kleinste code om algemene enkele-qubit fouten op de qubits in
de geëncodeerde toestand te corrigeren, door de ontwikkelde experimentele methodes uit te
breiden. Naast het bestuderen en ontwikkelen van grotere quantumfoutcorrectieprotocollen
en fout-tolerante quantumberekeningen kan het gepresenteerde quantum register van spins in
diamant worden gebruikt als quantumknooppunt en worden gecombineerd met de recente
ontwikkelingen in het realiseren van quantumverstrengeling over lange afstanden als basis voor
quantumnetwerken. Deze netwerken kunnen worden gebruikt om zowel fundamentele vragen
te bestuderen en toekomstige toepassingen in quantuminformatietechnologie te onderzoeken.
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you now really came to Delft. Anäıs you are a great o�ce buddy; we ate so much chocolate
during our little chats in between work! Good luck in Montpellier, you will be a great group
leader. Andreas and Cristian, I am sure you are doing great in setting up your own groups,
I will always remember our little conference-‘holiday’ in San Francisco. Peter, you will do
great as a Dutch man but please never loose your accent. Sorry for shamelessly using your
language skills, I do believe in your scientific value too! Adriaan and Michiel, it was great to
help out with your master project, I think I learned as much as you in return! Arian, from
the day you came to talk about a project I was happy to work with you. The combination of
motivation, dedication and stability that you have shown will bring you very far. Lisanne, it
was a lot of fun to explore working in the lab together during you bachelor project and it
was good to see you come back. Maarten and Valeria, I wish you a great time, you definitely
chose the right team!

Furthermore I want to thank many people within QuTech. I am very glad to have been
part of the transition from QT to QuTech, which has grown to a professional institute with
even more than one co↵ee machine! Leo DC, thank you for introducing me to the world
of quantum computing and qantum error correction, I still benefit from the many things I
learned from you. Leo K, thanks for building up such a great research institute. Without
your vision this would not have grown so fast. Lieven, you are the most steady factor in
QuTech and it is always great to have a chat with you in the hallways. Stephanie, I admire
your vision and dedication and it is always fun to receive an email from our ‘theory friends’.
Val, while you are not part of QuTech anymore, I have enjoyed my first steps in quantum
experiments with your supervision and this was a great start of my quantum adventures.
Kemo, you are a great addition to the QuTech MT, thank you for all your thrust in me.
Anouschka, you are the one that is not always very visible, but extremely valuable. Thanks
for your help and advises. All (new) QuTech-PI’s: I wish you all the best in your projects.
I think it will be more and more of a joint e↵ort and that will be a challenge with great
prospects.

I believe that we would have not so much time and stability to spend all our e↵ort on
science without such dedicated sta↵ all around us, not sticking to their job-description but
all being very flexible. Marja, Chantal, Yuki, Marion and Joanna, thank you for all the work
you have done. You always help thinking what is the best way to do something, arrange
everything up to the smallest detail and always have time for questions. Besides that, it is
always a nice break to walk in your o�ces. Yuki, I wish you all the best in Japan! Marja
and Chantal, I am very happy that you will still be here! Heera, you have been both a friend
and a great support to me. I enjoyed all our brainstorms on ‘how to say it best’ and I am
looking forward to work together with you! All other new and ‘old’ QuTech sta↵: thanks for

146



your flexibility and enthusiasm! Bram, Mark, Jelle, Remco, Olaf, Nico, Ronald, Jason, Siebe,
thanks for being so helpful on the cryostat issues and other lab-related stu↵. It it great
that you always take time to think with us, ask more questions than we already thought
of ourselves to find the issue or the best solution as soon as possible! Raymond, Raymond,
Marijn, Jack and Ruud, without you my time spent on electronics would have been infinite!
Thanks for explaining things that must be peanuts for you guys, helping to find the best
solutions and to solve any electronics-related issues!

Basia, thanks to you I became a scientist. I am so grateful that I met you during my
bachelor project and that we became good friends later on. Together with Yun and Marieke
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