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Abstract

Large fault­tolerant universal gate quantum computers will provide a major speed­up to a variety of
common computational problems. While such computers are years away, we currently have noisy
intermediate­scale quantum (NISQ) computers at our disposal. In this project we present two quantum
machine learning approaches that can be used to find quantum circuits suitable for specific NISQ de­
vices.
We present one gradient­based and one non­gradient based machine learning approach to optimize
the created quantum circuits, to best mimic the behaviour of a given function up to measurement. We
make sure that the created quantum circuits obey the restrictions of the chosen hardware, therefore
the approaches can be used to find circuits perfectly suited for specific NISQ devices. This enables
the user to make the best use of quantum technology in the near future.
In doing this we created our own quantum simulator which can be used to simulate small quantum
circuits that obey hardware restrictions. We also present the method used to implement this simulator.
Finally we present the results of applying both machine learning approaches to different problem types
and compare their performance.
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Glossary

ansatz In this thesis the term ansatz refers to an initial guess of placement of the quantum gates in
the circuit. Therefore an ansatz describes a quantum circuit of which the angles of the gates still
need to be determined.

basis state One of the 2𝑛 quantum states that together form a basis to span the 2𝑛 dimensional Hilbert
space. Unless specified otherwise, a basis state is a member of the computational basis.1

computational basis The standard choice of basis to span the 2𝑛 dimensional Hilbert space, equiv­
alent to the standard basis vectors. The i­th element of the computational basis is written |𝑖⟩.

circuit depth The depth of a circuit is the amount of gates applied to each qubit in a circuit.

circuit layer A single layer of a quantum circuit, which consists of applying exactly one quantum gate
to each qubit.

epoch The number of epochs refers to the amount of time a machine learning algorithm works through
the set of training data.

hardware connectivity Refers to which qubits are connected on a chosen quantum computer. A two­
qubit gate can be directly applied on two qubits only when they are connected on the hardware.

native gate Quantum gate that can be directly performed on the hardware considered.

NISQ device Noisy intermediate scale quantum devices are relatively small quantum computers that
are heavily influenced by noise.

PSO Particle swarm optimization (PSO) is a computational optimization method.

quantum algorithm A sequence of quantum gates that perform a desired operation or can be used
to solve a class of problems.

quantum circuit A sequence of quantum gates to be performed on the qubits.

quantum gate A basic operation that can be performed on a (small) number of qubits.

valid ansatz A valid ansatz is an ansatz which obeys the restrictions of the chosen quantum hardware.

1The variable 𝑛 represents the number of qubits.
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1
Introduction

This chapter introduces the reader to the optimization problem we consider in this project. We will
first give an overview of the current state of quantum technology and how the limitations of modern
quantum computers make it infeasible to run textbook quantum algorithms. This leads us to the problem
considered in this project, namely that of finding quantum circuits which can be feasibly run on a near­
term quantum device to mimic the behaviour of a chosen function. In the final section of this chapter,
we give an overview of several approaches that could be used to find such quantum circuits and we
indicate which approach we have taken.
Throughout this thesis we assume the reader has a basic knowledge of quantum computing. If this is
not the case, we recommend first reading Appendix A.

1.1. Aim of the project
In this project, we present a computational approach that enables the user to find quantum circuits that
mimic the action of a given quantum operation on specified near­term quantum hardware. Quantum
computers are the quantum equivalent of classical computers which behave differently from classical
computers. Quantum computers are known to provide speed­ups for several computational problems,
which are predicted to have a large impact on society [Ver+] [Sho94] [Gro96].
Known quantum algorithms require quantum computers of thousands to millions of qubits to run re­
liably on real world problems. Therefore, running such algorithms in the near term is unlikely due to
the instability and limited qubit numbers of today’s quantum technology. Current quantum technolo­
gies are nearing the age of NISQ computers. NISQ stands for Noisy Intermediate­Scale Quantum and
such computers have around 50­100 noisy qubits to their disposal [Pre18]. The fact that the qubits are
noisy implies that they have a limited coherence time and gate fidelity, on top of that there is a trade­off
between coherence time, gate fidelity and the amount of qubits [MN01].
The aforementioned limitations of modern quantum computers imply that we are not currently able to
run quantum algorithms of potential interest. In this project, we present two quantum machine learning
approaches that can be used to find quantum circuits which are specifically designed for the hardware
of a chosen quantum computer. The quantum circuits found take into account the limitations of the cho­
sen hardware by restricting the potential ansatzes to instances which obey the hardware limitations.
Here the term ansatz refers to the layout of the quantum circuit in terms of which gate is applied to
which qubit in each layer. By allowing any potential ansatz that obeys the restrictions of the hardware,
we ensure that we do not add unnecessary and potentially unforeseen depth to the circuit. This, in
turn, ensures that we make optimal use of the limited amount of qubits and circuit depth available on
near term quantum computers.
In this project, we first give a description of the different hardware restrictions modern quantum com­
puters have and the choices we made regarding how to represent these restrictions in the project.
We then take these restrictions to give a description of the created problem we want to optimize over.
The aim of our approach is to find a quantum circuit that is able to mimic the behaviour of a chosen
function. We optimize over the distance between the probability vectors of finding a certain basis state

1



2 1. Introduction

upon measurement for the result of running our created circuit and the desired operation.
After having presented this problem, we present the two different machine learning methods used to
find a solution with minimal cost. Note that the problem of finding a suitable quantum circuit to mimic
the behaviour of an arbitrary unitary operation is known to be generally NP­complete [BKM18], and a
circuit to approximate a chosen operation for 𝑛 qubits might require an exponential number of gates
[NC16] [SBM06].
In this project, we present both a gradient­based and a non­gradient based machine learning approach
to find an optimal circuit to mimic the desired function. We also present our own implementation of
a small quantum simulator used in this project. Finally, we present the results of our implementation
of the presented quantum circuit generating approach. We used our implementation to find quantum
circuits to mimic the action of a given operation for which quantum algorithms are known, though a
quantum algorithm need not be known for our approach to be applicable.
We implemented the approach described making use of the PyTorch, Pennylane and PySwarms pack­
ages [Pas+19] [Ber+18] [Mir18]. We present the results for the gradient­based and the non­gradient
based machine learning approaches separately, to compare the performance of both approaches for
the given problems.

1.2. Influential properties of quantum hardware
There are several hardware characteristics that influence the performance of a quantum computer
[Mol+18]. In the following section, we will briefly discuss the three main factors that need to be taken
into account when translating theoretical quantum computing to its real world application.

1.2.1. Noise
Noise is an important factor in modern­day quantum computers. There are two types of noise which
influence the performance of a quantum computer.
First of all, the application of a physical quantum gate to one or multiple qubits will never be precisely
equal to its theoretical counterpart. In this case noise reflects that we have imperfect control over the
qubits, and so when we aim to apply a certain operation to the qubits, the operation that gets imple­
mented in reality is slightly different [Pre18]. Not all native quantum gates are physically equally noisy
when applied on specific quantum hardware. Therefore, applying many of a certain type of quantum
gate on a certain hardware will have a greater negative affect on the fidelity of the outcome then another
type of quantum gate would. Specifically two­qubit gates are known to be more noisy then single qubit
operations [Pre18] [Mol+18].
The second type of noise that has an effect on the performance of modern day quantum computers,
is the noise associated with the interaction a quantum system has with its environment [NC16]. It is
unavoidable that the qubits of a quantum computer interact with the environment in some capacity, this
interaction negatively impacts the stability of the system which will ultimately affect the final measure­
ment outcomes. The term coherence time refers to the time a specific quantum device can keep a
stable state, after this interactions with the environment have influenced the system to the extend that
a measurement outcome is meaningless.

1.2.2. Native gates
The gates used in quantum algorithms and the gates natively applied to qubits on physical quantum
computers are not always the same. The quantum gates natively implemented on a physical quantum
computer usually consist of two single­qubit gates that represent rotations around one of the axes of
the Bloch sphere and an entanglement two­qubit gate; see Appendix A.1.1 and A.2.2. Precisely which
quantum gates are physically implemented depends on the technical features of the quantum computer.
In theoretical quantum computing, however, any unitary operation can be used as a quantum gate. The
gates commonly used in theoretical quantum computing are often handy in their matrix expression and
logical features.
Due to this mismatch in theoretical and physical quantum gates, known quantum algorithms need to be
decomposed into physical quantum gates prior to running the algorithm on a quantum computer. This
usually leads to quantum algorithms havingmore depth when ran on a physical quantum computer, then
can be seen from the algorithm on paper. As described in Section 2.1.1 modern quantum computers
perform best when the depth of the circuit is as small as possible. Since this decomposition adds depth
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to the circuit, this has a negative impact on the feasibility of implementing the designed algorithm.

1.2.3. Hardware connectivity
In a theoretical setting all qubits in a quantum computer are connected, enabling the user to perform a
two­ or three­qubit gate on any combination of qubits. Physical quantum computers, however, do not
have a physical connection between all 𝑛 qubits in the system.
When a quantum circuit requires a two­qubit gate to be performed between two qubits which are not
physically connected, this gate is decomposed on the physical quantum computer into multiple two­
qubit gates. As a first step, two­qubit gates need to be performed that virtually swap the order of the
qubits. These qubits are swapped such that the two qubits, on which we wish to perform the two­qubit
gate, are virtually moved to adjacent positions. Then the two­qubit gate can be performed between the
two qubits, subsequently the qubits need to be replaced in the correct order.
In doing so, depth and noisy operations are added to the circuit. This has an overall negative effect on
the feasibility of running the circuit and the reliability of the result.
In Figure 1.1 we present an example of the connectivity of a current quantum computer. In Figure 1.2
we show how applying a CNOT gate between qubits q0 and q4, on this quantum computer, would have
to be decomposed on the hardware.1

Figure 1.1: Layout of IBM Lima quantum computer [IBMa], the lines the physical qubits are connected.

q1q0 q2

q3

q4

Figure 1.2: Decomposition to apply a CNOT gate between q0 and q4 on the IBM Lima quantum computer.

• × ×= × • ×
× ×
× ×

1.3. Possible approaches and earlier research
The aim of the project is to find quantum circuits tailored to the properties of specific NISQ devices, in
order to make optimal use of current quantum technologies. There are several possible approaches
to be considered. The approaches can be divided into three main categories. The first category is the
ansatz­centric approach, in which a predetermined circuit structure is used regardless of problem and
hardware at hand.
The second category is the so­called circuit­centric approach. The circuit­centric approach starts from
a known textbook quantum algorithm to solve a specific problem. This known textbook algorithm is
subsequently altered and compiled in such a way that the chosen quantum hardware is optimally suited
to run the resulting quantum circuit.
The third approach is the hardware­centric approach, in which we start from the requirements that the
chosen quantum hardware puts on the possible circuits. Subsequently a quantum circuit is built that
optimally suits the hardware. This circuit is then possibly altered to be able to mimic the behaviour of
1See Appendix C.4 for an overview of symbols used when representing a quantum circuit by a figure.
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the desired function.
In the sections below we will further elaborate on the possible approaches and relevant research that
has been conducted in those areas.

1.3.1. Ansatz­centric ansatz
This approach is most common when a quantum layer is used in a larger machine learning scheme
to exploit the probabilistic nature of its measurement outcomes. In this approach, a predetermined
structure of parameterized and non­parameterized gates is used, the parameters of the parameterized
gates are subsequently optimized to mimic the desired behaviour [LW18]. Usually the chosen structure
of the quantum gates consists of layers, where entanglement layers are alternated with rotation layers.
The rotation layer generally consists of three separate rotation gates to allow arbitrary rotation for each
qubit; see Appendix A.1.1. A complete entanglement layer usually consists of a CNOT gate between
all possible qubits. Since such layers add a lot of extra depth to the system and CNOT gates of current
quantum computers are known to be rather noisy [Dav+19], some extra steps need be taken to make
these layers more sparse. One method that could be used is to sparsen the structure depending on
the estimated relation between qubit states, estimated by the desired distributions and inputs [CC68]
[LW18]. Note that this method gives no indication on the direction of the CNOT gates in the found gate
structure.

1.3.2. Circuit­centric ansatz
The second approach for finding quantum circuits to mimic the behaviour of a known quantum circuit, is
to start from the known quantum circuit. This circuit is then decomposed into native quantum gates and
subsequently some optimization scheme is used to reduce the depth of the created circuit. In doing
this, we allow the circuit to be altered in a way that does not add up to identity. In this case, the overall
outcome of the quantum state will be slightly altered in return for a decrease in depth when running the
circuit on the quantum hardware.
A downside of this approach is that it can only be used to simulate functions for which a quantum circuit
is known. Another downside is that with this approach the outcome depth of the found quantum circuit
cannot be directly controlled and is more heavily reliant on the input depth of the known quantum circuit.
A benefit of this approach is that it can always be implemented in such a way that a quantum circuit
mimicking the behaviour of a target algorithm is found up to a chosen error margin.

1.3.3. Hardware­centric ansatz
Another possible approach for finding quantum circuits to estimate a function, is to start from the hard­
ware restrictions and build the quantum circuit from scratch. The idea is to take the hardware restrictions
and from that create an ansatz consisting only of gates and operations that can natively be applied to
the chosen hardware. This ensures that no unforeseen depth or qubits are added when the circuit is run
on the hardware. Because of this it is possible to always choose to find a circuit which can be reliably
run on the chosen quantum computer. Another benefit of this approach, is that it can be used to try
to mimic functions for which no quantum algorithms are known. A downside of this approach is that it
can not be guaranteed that a quantum circuit of the chosen depth which can mimic the chosen function
even exists [NC16], let alone that it will be found. There are still open question regarding the complexity
of quantum circuit compilation for certain subproblems, but the problem is generally NP­hard [BKM18]
[Ale21].
The main challenge of this approach is to find a suitable circuit ansatz. One way to approach this is
to start from a known depth 𝐷 and build up the ansatz from layers of entanglement followed by layers
of rotation; this approach is taken in [Ben+19a] [Ben+19b]. A downside would be that to properly im­
plement the entanglement and rotation layers would require quite a lot of depth per layer. Specifically,
the implementation of the entanglement layers could add a lot of depth to the circuit when applied to
quantum hardware for which the qubits are sparsely connected, as many extra swap operations would
be required to even perform a two­qubit operation between most of the qubits. Since complete entan­
glement layers on a sparsely connected quantum computer is not realistic, this method is best used
on completely connected qubit architecture structures [Ben+19a]. Another implementation of this ap­
proach, could be to simply restrict the entanglement layers to act on connected qubits [Zhu+19]. An
approach as described in [LW18] [Ben+19b] making use of a Chow­Liu graph [CC68] to reduce en­
tanglement gates could also be considered. All three approaches still lead to potentially quite some
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unnecessary two­qubit gates adding noise to the system. On top of that, each rotation layer needs
to contain three gates per qubit. Even though single qubit operations are decidedly cheaper, this still
adds unnecessary depth to the circuit.
One could also consider building up a well performing quantum circuit by repeatedly adding relatively
thin, but structured, layers to the quantum circuit [Dav+19]. A downside of this approach is that it is
not guaranteed that adding a layer which at that point results in a minimal cost as compared to other
options, is also the layer that leads to the best possible circuit as it grows. In fact, many known quantum
algorithms work by first spreading out the amplitudes of the quantum states over the space and then
exploiting certain structures to obtain the right result. As the complexity of the problem increases, it is
increasingly difficult to gauge the goodness of a very thin layer.
Another approach would be to keep the chosen ansatz as flexible as possible. This could be done by
randomly creating ansatzes that respect the hardware restrictions [Cin+20] [Kha+19]. Subsequently, a
promising ansatz can be filtered out by running a shallow optimization scheme on the created ansatzes
and picking out the one that performs best. The best performing ansatz can then be further optimized.
Notice that the amount of possible ansatzes adhering to the hardware restrictions quickly becomes in­
tractable as the amount of qubits and circuit depth grows. Furthermore gradient­based machine learn­
ing methods are known to run into trouble as the size of quantum circuits grow [McC+18]. Nonetheless,
this approach is good when restricted to smaller problem sizes. When expanding to problems requiring
a larger circuit size, this method can serve as a basis that could be extended by adding a discrete op­
timization layer [Cin+20] [Kha+19] or gradient descent with momentum (GDM) to combat the potential
scaling problems mentioned before [Ben+19a].
In this project, we use the approach in which we allow for most flexibility in circuit design and control
over circuit depth, by creating random ansatzes suited for hardware restrictions and optimizing the as­
sociated parameters to mimic a chosen function. We find a good ansatz by creating multiple random
ansatzes and first running a shallow and cheaper optimization scheme, to identify the best ansatz and
subsequently optimize that further. This serves as a proof of concept for the parameter optimization
approach and cost function chosen in combination with a hardware­centric ansatz approach. The ap­
proach described can be extended upon as the problem size grows.
Our approach differs from [Kha+19] [Cin+20] as they restrict their learning to find circuits which create
exactly the same quantum state as the original circuit. We only require to find a circuit that creates
quantum states that have the same probability amplitudes as the desired states, this leads to more
flexibility and therefore potentially thinner quantum circuits. Since upon measurement in the chosen
basis we can only find one basis state, our approach does not lose any valuable information for most
use cases.
It is also important to point out that many of the approaches mentioned before treat the software native
gates of a quantum computer as a building block to learn [Kha+19] [Dav+19] [LW18] [Cin+20]. These
gates are actually build up using several different native gates implemented as pulses on the hardware
[Gok+20] [Ale+20]. In our approach we optimize using the matrix representation of the pulses in an
effort to find the thinnest possible circuit.





2
Quantum hardware­centric circuit

In this section, we further introduce and specify the problem of finding a suitable hardware­centric
quantum circuit. We do this by first defining the precise hardware restrictions. Subsequently the math­
ematical formulation of the problem and its restrictions are given. Finally, we present the cost function
used to evaluate and compare cost of found quantum circuits.

2.1. Quantum hardware
This section presents further information on current quantum hardware and its restrictions. We first
elaborate on NISQ computers and their qualities. After, we discuss the specific properties of the quan­
tum computers that are available for public use at the time of writing.

2.1.1. NISQ devices and quantum volume
Quantum technology is entering the stage of the NISQ devices. These are quantum computers with
about 50 to 100 qubits that can execute limited depth quantum circuits [Cin+20] [Pre18]. Since NISQ
devices are limited in the amount of qubits they have at their disposal and the maximum circuit depth,
IBM designed a metric known as quantum volume which expresses the power of a quantum computer
by these factors [Mol+18].
Quantum volume 𝑉𝑄 expresses the maximum size of a circuit that can be successfully run on a quantum
computer. The metric directly depends on the amount of qubits 𝑛 available in the computer and the
associated maximum depth of the circuit 𝑑(𝑛). The maximum depth of the circuit is decided by the gate
fidelity and coherence time. Quantum algorithms need a certain amount of qubits and circuit depth in
order to be implemented. Furthermore, there is a trade­off between the two, where adding extra qubits
can be used to reduce the depth of a circuit [MN01]. These properties make quantum volume a natural
metric to compare the power of NISQ devices [Mol+18]. Quantum volume can be expressed by the
following equation:

𝑉𝑄 =min[𝑛, 𝑑(𝑛)]2. (2.1)

The metric considers the square of the smallest value of 𝑑(𝑛) and 𝑛 to determine the quantum volume
𝑉𝑄, since this forces high scoring quantum computers to have both good circuit depth and a good
maximum amount of qubits. Another expression for the quantum volume is

�̃�𝑄 =max
�̃�<𝑛

(min[�̃�, 1
�̃�𝜖eff(�̃�)

]2) . (2.2)

The value �̃�𝑄 expresses that it can sometimes be beneficial for the quantum volume to only run on a
subset of the qubits available on the computer. In the equation above 𝜖eff is the effective error rate.
This effective error rate expresses the error when applying a two­qubit gate on any two qubits in the
hardware, taking into account hardware connectivity, native gates and possible parallelism. This means
that if all qubits are connected with the two­qubit gate natively implemented, we have 𝜖 = 𝜖eff, otherwise
𝜖 < 𝜖eff, where 𝜖 of course expresses the gate infidelity when applying a quantum gate to two connected

7
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qubits. If a quantum computer is a linear chain of qubits, we have 𝜖eff ∝ �̃�𝜖. This implies that the metric
takes into account that on the hardware we do not have all­to­all connectivity and we have a limited
native gate set.
Since our approach restricts the quantum gates applied, to gates that can be natively applied to the
hardware, we have that 𝜖eff = 𝜖 for all our found circuits. This implies that when we only consider the
valid ansatzes, the effective quantum volume �̃�𝑄 could be higher.

2.1.2. IBM quantum experience
In this section we will give a small overview of the quantum computers IBM currently has available
and their near­term goals. We do this to give the some more insight in the state of current quantum
computers.
At the time of writing this thesis, IBM shows 20 different quantum computers available on their website
[IBMa]. The largest available quantum computer in terms of number of qubits is the 𝑖𝑏𝑚𝑞_𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑒𝑛
with 65 qubits and a quantum volume of 32. The quantum computer with the largest available quantum
volume is the 𝑖𝑏𝑚𝑞_𝑚𝑜𝑛𝑡𝑟𝑒𝑎𝑙, which has a quantum volume of 128. This means that we can at least
reliably run a circuit with up to 11 qubits of depth 11.
IBM has released a quantum roadmap in which they lay­out their predictions for the size and processor
types of the quantum computers they will release in the coming years [IBMc]. In the quantum roadmap
IBM predicts to have a functioning quantum computer with 127 qubits become available in 2021. By
2022 they claim to have a 433 qubit counting quantum processor functioning. Furthermore, they pre­
dict to have a 1.121 qubit processor available by 2023. From 2023 onwards, they plan to scale up to a
million qubits, but no precise roadmap is given for this process.
The largest quantum computer IBM currently offers for free use is the 𝑖𝑏𝑚𝑞_16_𝑚𝑒𝑙𝑏𝑜𝑢𝑟𝑛𝑒, which
consists of 15 qubits and has a quantum volume of 8. The IBM computer available for free use with
the largest quantum volume is the 𝑖𝑏𝑚_𝑠𝑎𝑛𝑡𝑖𝑎𝑔𝑜, which has a quantum volume of 32 with 5 qubits.
The IBMqubits have two natively implemented single­qubit gates and one native two­qubit gate [Mur+19].
On the hardware these gates are implemented as pulses [Ale+20]. The natively implemented single­
qubit gates are rotations around the x­ and z­axis; see Appendix A.1.1

𝑅𝑋 (
𝜋
2) =

1
√2

[
1 −𝑖
−𝑖 1

] , (2.3)

𝑅𝑍 (𝜃) = [
𝑒−𝑖

𝜃
2 0
0 𝑒𝑖

𝜃
2
] . (2.4)

Note that the rotations around the 𝑥­ and 𝑧­axis are generated by the Pauli­spin matrices 𝜎𝑧 and 𝜎𝑥.
We have 𝑅𝑍(𝜃) = 𝑒−𝑖

𝜃
2 𝜎𝑧 and 𝑅𝑋 (

𝜋
2 ) = 𝑒−𝑖

𝜋
4 𝜎𝑥 . Where the Pauli­spin matrices have the following

definitions

𝜎𝑧 = [
1 0
0 −1

] , (2.5)

𝜎𝑥 = [
0 1
1 0

] . (2.6)

The IBM two­qubit gates are given rise to by the cross­resonance (CR) pulse [Mur+19], which im­
plements a ZX interaction [IBMb] C. The 𝑅𝑍𝑋(𝜃) gate is generated by the 𝑋 ⊗ 𝑍 matrix, 𝑅𝑍𝑋(𝜃) =
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𝑒−𝑖
𝜃
2𝑋⊗𝑍

𝑅𝑍𝑋(𝜃) =

⎡
⎢
⎢
⎢
⎢
⎣

cos (𝜃2 ) 0 −𝑖 sin (𝜃2 ) 0
0 cos (𝜃2 ) 0 𝑖 sin (𝜃2 )

−𝑖 sin (𝜃2 ) 0 cos (𝜃2 ) 0
0 𝑖 sin (𝜃2 ) 0 cos (𝜃2 )

⎤
⎥
⎥
⎥
⎥
⎦

. (2.7)

Similarly the 𝑅𝑋𝑍(𝜃) gate can be applied which is generated by the 𝑍 ⊗ 𝑋 matrix

𝑅𝑋𝑍(𝜃) =

⎡
⎢
⎢
⎢
⎢
⎣

cos (𝜃2 ) −𝑖 sin (𝜃2 ) 0 0
−𝑖 sin (𝜃2 ) cos (𝜃2 ) 0 0

0 0 cos (𝜃2 ) 𝑖 sin (𝜃2 )
0 0 𝑖 sin (𝜃2 ) cos (𝜃2 )

⎤
⎥
⎥
⎥
⎥
⎦

. (2.8)

Note that the native gates that we consider for this project are the gates that are implemented by the
pulses used to control the qubits on the hardware. IBM has other software native gates visible, but those
are ultimately decomposed in terms of pulses described by our chosen matrices [Gok+20] [Mur+19].
Each IBM quantum computer also has its own qubit connectivity, for an overview of the connectivity of
the IBM quantum computers considered for this project see Appendix D.

2.1.3. Rigetti’s Aspen quantum computers
Rigetti is another company currently providing sizeable quantum computers, we will also give a small
overview of the computers they have available.
The Rigetti Aspen 8 is available for use via Amazon Web Services and it provides a 32 qubit quantum
computer. Other then IBM, the Rigetti computers have four natively implemented quantum gates

𝑅𝑋 (±
𝜋
2) =

1
√2

[
1 ±𝑖
±𝑖 1

] , (2.9)

𝑅𝑍(𝜃) = [
𝑒−𝑖

𝜃
2 0
0 𝑒𝑖

𝜃
2
] , (2.10)

𝐶𝑍 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

, (2.11)

𝑅𝑋𝑌(𝜃) =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 cos (𝜃2 ) 𝑖 sin (𝜃2 ) 0
0 𝑖 sin (𝜃2 ) cos (𝜃2 ) 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

. (2.12)

Rigetti added the fourth gate, 𝑅𝑋𝑌(𝜃), in 2019 to limit the circuit depth after gate decomposition [Abr+20].
Before that they only had the 𝑅𝑋 (±

𝜋
2 ), 𝑅𝑍(𝜃) and 𝐶𝑍 gates natively implemented [Mur+19]. In Appendix

D we have listed the connectivity structure of the Rigetti computers considered in this project.

2.2. Valid quantum ansatz
In order to make optimal use of quantum computers, our approach finds quantum circuits which take
the properties of the chosen backend into consideration.
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Concretely, this means that all the gates used in the found quantum circuit will be gates that are native
to the chosen backend. Because of this, the gates will no longer need to be decomposed when running
the circuit. This means that the depth of the circuit found, will be the actual depth of the circuit ran on
the computer, thereby avoiding unforeseen circuit depth.
Another important aspect is that our approach takes into account which qubits are actually connected
in the backend. The found quantum circuit will only apply two­qubit gates between qubits which are
physically connected on the hardware.
A valid ansatz represents the lay­out of a quantum circuit, such that the hardware connectivity and
native gates are taken into account. Our approach allows to create a valid ansatz 𝑈 for any of the
implemented quantum computers with specified circuit depth 𝐷 and number of qubits used 𝑛. In Figure
2.1 we give a drawing of a quantum circuit which consists of a valid ansatz 𝑈 with some parameter Θ
as input for the parameterized gates. In this project we will sometimes refer to a circuit generated by a
valid ansatz as a valid ansatz.

Figure 2.1: Quantum circuit representing the found valid ansatz of which the unitary operations are built up using only natively
implemented quantum gates.

Circuit
𝑞0

𝑈0(Θ0) 𝑈1(Θ1)

⋯

𝑈𝐷−1(Θ𝐷−1)

𝑞1 ⋯
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯

𝑞𝑛−1 ⋯

A valid ansatz 𝑈 of 𝐷 layers for 𝑛 qubits can be used to express a quantum circuit 𝑈(Θ) consisting of
𝐷 layers 𝑈𝑖(Θ𝑖) successively applied to the 𝑛 qubits. These unitary operations are built up of natively
implemented quantum gates for the chosen hardware. Hence, the dimension of the parameter Θ𝑖
depends on the amount of parameterized gates 𝑚 used in the layer 𝑈𝑖: Θ𝑖 ∈ [0, 2𝜋]𝑚 ⊂ ℝ𝑚, where
𝑚 ≤ 𝑛 since no more then 𝑛 qubits have a parametrized gate applied to it in a layer. Figure 2.2 gives
the circuit drawing of a possible decomposition of a layer 𝑈𝑖(Θ𝑖) of a valid ansatz.

Figure 2.2: An example of a valid 𝑈𝑖 for an IBM quantum computer, where all the gates used are natively implemented on the
specified hardware.

𝑈𝑖(Θ𝑖)

𝑅𝑍(𝜃0)

𝑅𝑋 (
𝜋
2 )

𝑅𝑋𝑍(𝜃𝑚−1)
⋯ ⋯ ⋯

𝑅𝑋𝑍(𝜃𝑚−1)

𝑅𝑋 (
𝜋
2 )

2.3. Problem description
In the previous section we have defined what constitutes a valid ansatz for a given quantum computer.
In this section we will formulate the optimization problem of finding a quantum circuit to mimic a certain
operation, where such a quantum circuit is a valid ansatz with the optimal gate parameters Θ to mimic
the chosen operation. In our approach, the depth of the circuit 𝐷 and number of qubits 𝑛 are determined
beforehand and so the quantum volume is to not exceed its maximum.



2.3. Problem description 11

The problem of finding the best ansatz to simulate a quantum circuit with a given depth is a mixed
integer problem with nonlinear objective. We need to optimize over which of the quantum gates native
to the chosen computer is used in each position, as well as over the angles of the parameterized gates.
Let 𝑛 be the number of qubits of the quantum computer and 𝒩 ≔ {0,… , 𝑛 − 1}. Let 𝐷 represent the
depth of the quantum circuit and 𝒟 ≔ {0,… , 𝐷 − 1}. Let 𝒢 be the set of gate operations native to the
computer hardware and 𝒢′ ⊂ 𝒢 the set of all native two­qubit gates. Let 𝒫 be the set of all directed
qubit pairs connected on the chosen hardware, we have |𝒫| ≤ 𝑛(𝑛 − 1).
Define the variables 𝑥𝑖𝑗𝑘, where 𝑖 ∈ 𝒢, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒟 and 𝑥𝑖𝑗𝑘 ∈ {0, 1}. We define 𝑥𝑖𝑗𝑘 = 1 if qubit 𝑗 has
gate type 𝑖 applied to it in layer 𝑘, 𝑥𝑖𝑗𝑘 = 0 otherwise.
Another variable will be 𝑦𝑖𝑙𝑘, where 𝑖 ∈ 𝒢′, 𝑙 ∈ 𝒫, 𝑘 ∈ 𝒟. Where 𝑦𝑖𝑙𝑘 = 1 if for 𝑙 = {𝑝, 𝑞} qubit 𝑝 and
qubit 𝑞 share a the two­qubit gate 𝑖 in layer 𝑘, and 𝑦𝑖𝑙𝑘 = 0 otherwise. The problem of finding a valid
ansatz of minimal cost with given depth, which mimics a known quantum circuit, can be expressed by
the following restrictions

Minimize 𝑐(𝑥, 𝑦, 𝜃) (2.13)

subject to

∑
𝑖∈𝒢
𝑥𝑖𝑗𝑘 ≤ 1 ∀𝑗 ∈ 𝒩,∀𝑘 ∈ 𝒟 (2.14)

∑
𝑙∶𝑗∈𝑙,𝑙∈𝒫

𝑦𝑖𝑙𝑘 = 𝑥𝑖𝑗𝑘 ∀𝑖 ∈ 𝒢′, ∀𝑗 ∈ 𝒩, ∀𝑘 ∈ 𝒟 (2.15)

𝑥𝑖𝑗𝑑 , 𝑦𝑖𝑙𝑘 ∈ {0, 1} 𝜃 ∈ [0, 2𝜋]𝑛 ∀𝑖 ∈ 𝒢, ∀𝑗 ∈ 𝒩, ∀𝑘 ∈ 𝒩,∀𝑑 ∈ 𝒟. (2.16)

It is now left to define the cost function (2.13). Finding a good cost function in this case is non­trivial
and the choice of cost function is further discussed in Section 2.4. We will first argue the correctness
of the formulation.

2.3.1. Correctness of formulation
In order to show that this formulation is correct, we show that any point in the space spanned by this
formulation is a valid ansatz of a quantum circuit. Secondly, we show that any valid ansatz of a quan­
tum circuit obeys the following restrictions, and therefore is in the space spanned by the formulation.
First, we will show that any point which satisfies Equations (2.14) to (2.16) must represent a valid quan­
tum circuit.
By Equation (2.14) we have that each qubit has at most one native quantum gate assigned to it in each
layer.
By Equation (2.15) we have that in each layer, if a qubit 𝑗 has a two­qubit gate 𝑖 ∈ 𝒢′ assigned to it,
then there exists exactly one ordered pair 𝑙 s.t. 𝑙 = (𝑗,𝑚) or 𝑙 = (𝑚, 𝑗) for which 𝑦𝑖𝑙𝑘 = 1. This means
that 𝑗 shares the two­qubit 𝑖 gate with precisely one other qubit 𝑚 ∈ 𝑙 in the layer 𝑘. Then, by Equation
(2.15) this other qubit must have 𝑥𝑖𝑚𝑘 = 1, since 𝑦𝑖𝑙𝑘 = 1. And so, the other qubit must have the same
two­qubit gate applied to it in the same layer. Then, also by Equation (2.15), this qubit has exactly
one 𝑙′ ∈ 𝑃 s.t. 𝑚 ∈ 𝑙′ and 𝑦𝑖𝑙′𝑘 = 1. Since 𝑦𝑖𝑙𝑘 = 1 and 𝑚 ∈ 𝑙 we must have 𝑦𝑖𝑙′𝑘 = 𝑦𝑖𝑙𝑘. And so,
we have that if a two­qubit gate is applied to a qubit in a layer, it has exactly one qubit with which it
shares this two­qubit gate in the layer, this pair is ordered and its qubits are connected on the hardware.
In Equation (2.16) wemake sure that 𝑥𝑖𝑗𝑑 and 𝑦𝑗𝑘𝑑 take binary values, where the angles of the parametrized
gates 𝜃𝑖 can take any value between [0, 2𝜋].
To summarize we make sure that each qubit is assigned at most one gate operation in each layer. We
also make sure that if a qubit is assigned a two­qubit gate operation, there is precisely one qubit with
which it forms an ordered pair which also has this two­qubit gate operation assigned to it in the layer
and the pair of qubits is connected on the hardware. Since the qubits form an ordered pair, it is also
clear which qubit takes which position in the two­qubit operation. Therefore any combination 𝑥 and 𝑦
which satisfies the above requirements also describes a valid quantum circuit obeying the hardware of
a chosen backend.
Next we will show that any valid quantum circuit satisfies the restrictions described.
Take 𝑥 and 𝑦, which describe a valid quantum circuit, and show that they obey the restrictions (2.14)
to (2.16). Since this is a valid quantum circuit, we have that each qubit has at most one gate applied
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to it in each layer. Therefore, Equation (2.14) must be satisfied by 𝑥.
In a valid quantum circuit it must be so that if a qubit 𝑗 has a two­qubit gate 𝑖 applied to it, there exists
another qubit 𝑚 with which it shares this two­qubit gate in the layer, the two must be connected on the
hardware and they both have a different position in the operation. Let 𝑗 be the qubit in the first position
of the two­qubit operation and𝑚 the qubit in the second position and let 𝑙 = (𝑗,𝑚), then clearly we have
𝑙 ∈ 𝑃. Since for our valid ansatz we have that 𝑗 and 𝑚 share the two qubit gate 𝑖 in the layer 𝑘 with 𝑗 in
the first position and 𝑚 in the second, we have 𝑥𝑖𝑗𝑘 = 1, 𝑥𝑖𝑚𝑘 = 1, 𝑦𝑖𝑙𝑘 = 1 and 𝑦𝑖𝑙′𝑘 = 0 ∀𝑙′ ≠ 𝑙 and
so Equation (2.15) is satisfied.
In a valid quantum system it must be that either a gate is applied or not applied, and either two qubits
are paired or are not paired. This is clearly a binary system and therefore Equation (2.16) must also be
satisfied. From this we can conclude that any valid quantum circuit obeying the hardware of a chosen
backend satisfies the requirements given in the problem description.
We have shown that any combination of vectors 𝑥 and 𝑦 that satisfies the Equations (2.14), (2.15),
and (2.16) also describes a valid quantum circuit obeying the hardware of a chosen backend and vice
versa. Therefore, we have shown that the given description of the problem is correct.

2.3.2. Problem size
The vector 𝑥 consisting of the 𝑥𝑖𝑗𝑑 ’s has length |𝒢|𝑛𝐷 which in our case can be capped by |𝒢|𝑛𝐷 ≤ 4𝑛𝐷,
as we will not have more than 4 native gates in the quantum computers we are considering. So the
magnitude of this vector is of order 𝒪(𝑛𝐷). This simplification generally hold as quantum computers
have very few native gates. 𝑦 has length |𝒢||𝒫|𝐷 ≤ 4𝑛(𝑛−1)𝐷. This is of order 𝒪(𝑛2𝐷). The described
problem consists of 𝒪(𝑛𝐷) restrictions.

2.4. Cost of the ansatz
It is not directly clear how to define the cost function 𝑐 for this problem. There are several aspects of a
potential cost function that would make it difficult to deal with.
First of all, due to the nature of the problem, the cost function will be nonlinear with respect to the
input variables, therefore we can not use a standard linear programming approach to find 𝑥, 𝑦 and 𝜃 to
minimize it.
The other challenging aspect of any potential cost function, is that it would scale exponentially with the
amount of qubits 𝑛 in the system, due to the fact that we are working in a 2𝑛 dimensional Hilbert space.
The naive choice of cost function would be to find the distance between the matrix expressing the
quantum circuit found by our machine learning approach and thematrix expressing the aimed for unitary
operation. This approach assumes that the matrix of the desired unitary operation is known and exists,
which limits our use case. More importantly it requires the distance to be determined between two
2𝑛×2𝑛 sized matrices. This operation is too computationally costly to perform. As a first step we would
need to find the matrix expression of the learned circuit, using approximately 𝐷×𝑛 Kronecker products
followed by 𝐷 matrix multiplications; see Appendix A.2.1. Subsequently, we would need to calculate
the distance between two 2𝑛 ×2𝑛 matrices. To avoid these difficulties, we use another cost function to
evaluate the goodness of fit of the found quantum circuit compared to the aimed for operation.

2.4.1. Cost estimation function
Since evaluating the cost of the circuit created by comparing the distance to the aimed for unitary
operation is too costly, we use a different method to estimate the cost. Let 𝑓 ∶ ℂ2𝑛 → ℝ2𝑛 be the
function for which we wish to find a quantum circuit to mimic the behaviour of this function on the
chosen quantum hardware. The input to this function 𝑓 is a prepared quantum state |𝜙⟩. The output
of the function 𝑓(|𝜙⟩) is the probability vector representing the probabilities of finding each basis state
after measurement in the computational basis. Let 𝑓𝐴(|𝜙⟩) be the function that describes the resulting
probability vector of applying a known quantum circuit 𝐴 to the input qubit state |𝜙⟩ and subsequently
measuring the result in the computational basis. Then, the vector 𝑓𝐴(|𝜙⟩) ∈ ℝ2

𝑛 represents the resulting
probability vector describing the probabilities of measuring each of the 2𝑛 basis states after applying
the quantum circuit 𝐴 to the state |𝜙⟩

𝑓𝐴 (|𝜙⟩) = (| ⟨𝑖 | 𝐴 | 𝜙⟩ |2)𝑖=0,…,2𝑛−1 . (2.17)
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In this project we will write 𝑓(|𝜙⟩) and 𝑓𝐴(|𝜙⟩) interchangeably when the applied quantum circuit is
clear from context. Note that a quantum measurement in the computational basis always results in one
specific basis state. Therefore, it is impossible to find this value 𝑓(|𝜙⟩) directly on a quantum computer.
We can estimate the value of 𝑓(|𝜙⟩) by running the circuit multiple times and taking the average of the
results. When using our quantum simulator, as described in Chapter 3, we can access these values
directly by creating the resulting vector 𝐴 |𝜙⟩ = ∑2

𝑛−1
𝑖=0 𝛼𝑖 |𝑖⟩ and turning the amplitudes 𝛼𝑖 of the different

basis states |𝑖⟩ into the probability of measuring the state |𝑖⟩ namely |𝛼𝑖|2.
Let 𝑈(Θ) be the learned quantum circuit, where 𝑈 represents the chosen ansatz represented by 𝑥 and 𝑦
in Equation (2.13), with depth 𝐷 and 𝑛 qubits and Θ represent the angles of the parameterized quantum
gates in the circuit. Define 𝑓𝑈(Θ) to be the function which maps the quantum states created with 𝑈(Θ)
to its associated expectation values

𝑓𝑈(Θ)(|𝜙⟩) = (| ⟨𝑖 | 𝑈(Θ) | 𝜙⟩ |2)𝑖=0,…,2𝑛−1 . (2.18)

In this project, we estimate the cost of the created circuit 𝑈(Θ) by evaluating the distance between 𝑓𝑈(Θ)
and 𝑓 for several input states |𝜙⟩, where 𝑓 represents the function which takes the input quantum state
to the desired probability vector. Let 𝑌 = 𝑓(𝐵) with 𝑦 ∈ 𝑌 such that 𝑦 ∈ ℝ2𝑛 . Let 𝐵 be a chosen batch
of quantum states to evaluate the cost over. Then, we can define

𝑐𝑈(Θ),𝑓(𝐵) =
1
|𝐵| ∑

|𝜙⟩∈𝐵
‖𝑓(|𝜙⟩) − 𝑓𝑈(Θ)(|𝜙⟩)‖2 (2.19)

as our cost function. Similarly we could write

𝑐𝑈(Θ)(𝑌, 𝐵) =
1
|𝐵|

|𝐵|−1

∑
𝑖=0

‖𝑦𝑖 − 𝑓𝑈(Θ)(𝑏𝑖)‖2. (2.20)

Above we have written the cost function as a function of the input quantum states 𝐵 and the associated
optimal output values. This makes sense when considering the meaning of the chosen cost function.
As we will use this cost function in the context of optimizing the parameters Θ of a quantum circuit 𝑈(Θ),
we can also view this cost function as a function of Θ with 𝑈 and 𝐵 (and 𝑌) as fixed parameters

𝑐𝑈,𝐵(Θ) =
1
|𝐵| ∑

|𝜙⟩∈𝐵
‖𝑓(|𝜙⟩) − 𝑓𝑈(Θ)(|𝜙⟩)‖2. (2.21)

It is important to note here that this cost function is defined over the resulting probability vectors of
having evaluated the quantum circuit on certain input states, we do not measure the distance between
the actual resulting quantum states.
This is a sensible choice since quantum computing does not allow you to recover the actual quantum
states. Upon measurement of a qubit in a chosen basis it always collapses to a basis state with nonzero
amplitude. Therefore the information that is not taken into account in our cost function, is information
that is lost upon measurement. This makes our cost function suitable to use in cases where we want
to learn a quantum circuit that performs a certain operation and is subsequently measured. This cost
function is not suitable for purposes in which it is necessary to distinguish the actual quantum output
state of having run the circuit.
A second important aspect of our cost function, is that its outcome value is not directly informative. The
distance we use is not designed to express the likeliness of two probability vectors. Other functions,
such as the Kullback­Leibler divergence, would result in a more informative cost function, but are more
computationally costly [NC16].
Notice that the result of the cost function depends on the batch chosen to learn over. Generally a larger
batch will result in a more reliable cost function. However, each probability vector resulting from running
a circuit on an input quantum state, is exponential in size with respect to the amount of qubits. This
implies a trade­off between computational speed and reliability of the cost function.
Another important aspect of the cost function is that it is defined over the distance between the resulting
measurement and the aimed for measurement, whichmeans that non­unitary and non­linear operations
have taken place on the quantum states before the cost is determined. This means that we cannot
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choose a basis which spans the space and conclude that if our ansatz performs well for these basis
states, it will perform well on all linear combinations of these states. To see this, consider the example
of the Hadamard gate. We have that

𝐻 |0⟩ = 1
√2
(|0⟩ + |1⟩) (2.22)

and
𝐻 |1⟩ = 1

√2
(|0⟩ − |1⟩). (2.23)

Then, by linearity of the quantum operation we know that

𝐻 1
√2
(|0⟩ + |1⟩) = |0⟩ . (2.24)

Define the unitary operation 𝐻′ to do the following on the two basis states

𝐻′ |0⟩ = 1
√2

|0⟩ + 𝑖
√2

|1⟩ (2.25)

and
𝐻′ |1⟩ = −𝑖

√2
|0⟩ + 1

√2
|1⟩ . (2.26)

It can easily be checked that 𝐻′ is a unitary operation and therefore a valid quantum circuit. Now
consider

𝐻′ 1
√2
(|0⟩ + |1⟩) = (12 −

−𝑖
2 ) |0⟩ + (

𝑖
2 +

1
2) |1⟩ . (2.27)

Now, clearly 𝐶𝐻′ ,𝐻(|0⟩) = 𝐶𝐻′ ,𝐻(|1⟩) = 0 ≠ 𝐶𝐻′ ,𝐻 (
1
√2(|0⟩ + |1⟩)). It is important to take this into account

when determining the batch to let the quantum circuit learn over.

2.4.2. Cost estimation and noise
Note that when we use the chosen physical quantum computer to run our machine learning approach,
we directly take noise into account with our cost estimation function. As noise influences the measure­
ment outcomes, the estimated expectation values we find will actually have noise incorporated in them,
as they are the exact expectation values of running the found circuit on the chosen quantum computer.
When using our approach with a quantum simulator, noise is not taken into account.
Both our machine learning approaches are designed in such a way that they can be used on a physical
quantum computer. Scaling suggests that using a physical quantum computer becomes unavoidable
as the Quantum Volume of NISQ devices increases. In this way our optimization approach naturally
takes noise into consideration without explicitly implementing this in the chosen cost function.
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Kronx quantum circuit simulator

To learn over the performance of quantum circuits, we need to be able to simulate the effect a quantum
circuit has on the state of a quantum system. For this purpose, we wrote our own quantum simulator
that takes quantum states and operations expressed as PyTorch tensors as input, and outputs the re­
sulting quantum state.
The foundation of our Kronx quantum circuit simulator is the so­called Algorithm 993 [Fac19], which
enables the user to efficiently find vector states resulting from a matrix operation that was built up of
Kronecker products. The Algorithm 993 [Fac19] as presented is designed for programming languages
which store vectors in a column­major form. As PyTorch stores matrices in row­major format we altered
the Algorithm 993 for this case. Furthermore we wrote our own extension of the algorithm to enable
two­qubit operations to be performed on two qubits which are non­adjacent in number, but connected
on the hardware; see Section 3.2.

3.1. Algorithm 993
The Algorithm 993 [Fac19] is designed to efficiently perform matrix­vector multiplication, where the ma­
trix is the Kronecker product of smaller matrices, without assembling the full matrix explicitly. Algorithm
993 avoids calculating the Kronecker products and reshapes the vector to apply the original matrix
operations one­by­one.
As an example let 𝐴 = 𝐴1 ⊗ 𝐴2 ⊗ 𝐴3, with 𝐴1 ∈ 𝕂2×2, 𝐴2 ∈ 𝕂4×4 and 𝐴3 ∈ 𝕂2×2. The worked­out
Kronecker product yields 𝐴 ∈ 𝕂16×16, which requires the storage of 162 = 256 matrix entries and the
application to a target vector of size 16. Algorithm 993 only requires 22 + 42 + 22 = 24 matrix entries,
which is less then 10% of the fully worked­out matrix. In summary, Algorithm 993 is particularly helpful
to reduce the memory consumption.
This algorithm is useful in our setting as the application of a quantum circuit can be expressed as a ma­
trix vector multiplication. Let 𝑈 be the quantum circuit we wish to apply. The circuit 𝑈 has depth 𝐷, so
𝑈 = 𝑈0𝑈1…𝑈𝐷−1, where the 𝑈𝑖 are the layers of the circuit. Each layer 𝑈𝑖 of 𝑈 is the Kronecker product
of the matrix expressions of the quantum gates applied to each qubit in the layer 𝑈𝑖 = 𝑢0𝑖 ⊗⋯⊗𝑢𝑛−1𝑖 .
For each of these layers 𝑈𝑖 we make use of the Algorithm 993 to create the result of applying 𝑈𝑖 to
a quantum state, without explicitly calculating 𝑈𝑖 by performing the Kronecker products. By doing this
make use of the Algorithm 993 [Fac19] to avoid the costly Kronecker products and memory storage
associated with storing the 2𝑛 × 2𝑛 matrix 𝑈𝑖.
Notice that this algorithm is particularly well suited for our use case, since we only implement quantum
circuits consisting of native gates. This is due to the fact that native gates are at most two­qubit gates,
and so we potentially save a lot of computational steps and memory, in the form of calculating and
saving the Kronecker products.
In the following section, we will show how this algorithm enables the simulation of a single­qubit gate
on the least significant qubit. We will then show how the index order of the resulting state vector is such
that a virtual qubit shift has appeared, which enables us to directly perform the simulation of a quantum

15
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gate on what was originally the second­to­last qubit. We use this method to virtually apply a quantum
gate to all the qubits in the system, after which the virtual shifts have brought all the qubits back to the
original position. In the following section we argue how to extend this to be able to apply single­ and
two­qubit quantum gates on all possible qubit combinations.
Consider an 𝑛 qubit state |𝜙⟩, we wish to perform a layer of a quantum circuit 𝑈𝑖 = 𝑢0⊗𝑢1⊗⋯⊗𝑢𝑚
on this qubit state such that we end up in the state

|𝜓⟩ = 𝑈𝑖 |𝜙⟩ . (3.1)

Applying the quantum circuit to the state |𝜙⟩ is the same as first creating a state

|𝜓′⟩ = 𝐼 ⊗⋯⊗ 𝐼 ⊗ 𝑢𝑚 |𝜙⟩ , (3.2)

followed by

|𝜓″⟩ = 𝐼 ⊗⋯⊗ 𝐼 ⊗ 𝑢𝑚−1⊗ 𝐼 |𝜓′⟩ , (3.3)

etcetera. We will now show how to use the Algorithm 993 [Fac19] to create the state |𝜓⟩ by first creating
a state |𝜉′⟩ that is equal to |𝜓′⟩ up to a shift in qubit order, which can then be used to create |𝜉⟩ which
is equal to |𝜓″⟩ up to a shift in qubit order until we end up in the state |𝜓⟩.
First notice that we can rewrite the state

|𝜙⟩ =
2𝑛

∑
𝑖=0
𝛼𝑖 |𝑖⟩ =

2𝑛−1

∑
𝑖=0

|𝑖⟩ ⊗ (𝛼2𝑖 |0⟩ + 𝛼2𝑖+1 |1⟩), (3.4)

which essentially isolates the least significant qubit from the rest of the system. Define 𝛽𝑖 to be such
that

𝑢𝑚 [
𝛼2𝑖
𝛼2𝑖+1

] = [
𝛽2𝑖
𝛽𝑖+1

] . (3.5)

We can combine Equations (3.3), (3.4) and (3.5) to find an expression for |𝜓′⟩, which is

|𝜓′⟩ =
2𝑛−1

∑
𝑖=0

|𝑖⟩ ⊗ 𝑢𝑚(𝛼2𝑖 |0⟩ + 𝛼2𝑖+1 |1⟩) =
2𝑛−1

∑
𝑖=0

|𝑖⟩ ⊗ (𝛽2𝑖 |0⟩ + 𝛽2𝑖+1 |1⟩). (3.6)

Now that we have found an expression for |𝜓′⟩, we will show how we can create this quantum state as
a PyTorch tensor up to a qubit shift by using the [Fac19] algorithm altered for row­major form vectors.
Using the equality expressed in Equation (3.6) we can simulate this single qubit operation on the last
qubit, by virtually reshaping the 2𝑛 state vector to a 2 × 2𝑛−1 size matrix. First we isolate the last
qubit as in Equation (3.4) by reshaping the 2𝑛 state tensor to a 2𝑛−1 × 2 and subsequently taking
the transpose phi = transpose(phi.reshape(2**(n­1),2)), these operations transform the
vector representation of |𝜙⟩ as follows

|𝜙⟩ =

⎡
⎢
⎢
⎢
⎢
⎣

𝛼0
𝛼1
⋮

𝛼2𝑛−1

⎤
⎥
⎥
⎥
⎥
⎦

⟹ [
𝛼0 𝛼2 … 𝛼2𝑛−2
𝛼1 𝛼3 … 𝛼2𝑛

] . (3.7)

To see that doing this essentially isolates the last qubit for each possible basis state of the 𝑛 − 1
preceding qubits as in Equation (3.4) consider the following representation of Equation (3.7) in terms
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of the quantum basis states associated with each index

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

|0…0⟩ |0⟩
|0…0⟩ |1⟩
|0…1⟩ |0⟩
|0…1⟩ |1⟩

⋮
|1…1⟩ |0⟩
|1…1⟩ |1⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⟶ [
|0…0⟩ |0⟩ |0…1⟩ |0⟩ … |1…1⟩ |0⟩
|0…0⟩ |1⟩ |0…1⟩ |1⟩ … |1…1⟩ |1⟩

] . (3.8)

From the above expression it can be seen that the basis states represented in that column are such
that only the last qubit state flips while all the other qubit states remain constant in each column. This
means we are essentially isolating the last qubit and in each column, combining it with another basis
state for the rest of the qubits, which is precisely what is expressed in Equation (3.4).
Performing matrix multiplication between

𝑢𝑚 = [
𝑢𝑚,11 𝑢𝑚,12
𝑢𝑚,21 𝑢𝑚,22

] (3.9)

and the result of applying operation (3.7) to the quantum state |𝜙⟩ can now be performed by phi=
matmul(u_m,phi), which gives

[
𝑢𝑚,11 𝑢𝑚,12
𝑢𝑚,21 𝑢𝑚,22

] [
𝛼0 𝛼2 … 𝛼2𝑛−2
𝛼1 𝛼3 … 𝛼2𝑛

] = [
𝛽0 𝛽2 … 𝛽2𝑛−2
𝛽1 𝛽3 … 𝛽2𝑛−1

] . (3.10)

Above the 𝛽𝑖 ’s are defined precisely to be the resulting matrix entries from applying the matrix multi­
plication. The matrix is subsequently reshaped to vector form by xi=phi.reshape(2**n), which
results in the vector

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛽0
𝛽2
…

𝛽2𝑛−2
𝛽1
𝛽3
…

𝛽2𝑛−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.11)

The reason we get the entries of the vector in this order is that we are using a row­major format, note
that this also means that this reshape operation does not cost any memory operations. Since Equation
(3.11) expresses a quantum state we can call it |𝜉′⟩.
We now claim that the state |𝜉′⟩ expresses a quantum state equal to |𝜙′⟩ up to a difference in qubit
order. In fact, we claim that |𝜉′⟩ expresses a state precisely equal to the state |𝜙′⟩ but with the last qubit
of |𝜙′⟩ being the first qubit of |𝜉′⟩ in which all other qubits have shifted one index up.
We use this claim to explain how to simulate an entire layer of a quantum circuit. Since we can use the
method described above to simulate a quantum operation acting on the last qubit and we then get the
resulting quantum state with the last qubit virtually shifted to the first position and all the other qubits
virtually shifted one position up, we can then repeat the same operations to perform a quantum gate
on the formerly second to last (now virtually last) qubit.
We simply repeat this process until we have performed a quantum gate operation on all qubits and
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now each qubit has virtually shuffled back to its original position. Leaving us with the correct vector
expression of having applied exactly one quantum gate on each qubit. As a result we have simulated
one layer 𝑈𝑖 of a quantum circuit.
We will now show that the claim that |𝜉⟩ expresses a state equal to |𝜙′⟩ up to a shift in qubit order holds.
We do this by introducing a function 𝑓, which expresses how the indexation of a quantum state vector
of an 𝑛 qubit system should change if we virtually shuffle the last qubit to the first position, while all the
other qubits move one position up. By showing that the function is correct we have proven our claim
since in our case |𝜉′⟩ = 𝑓(|𝜙′⟩).
Define the function

𝑓(𝛼𝑖 |𝑖⟩) ≔ {
𝛼𝑖 |

𝑖
2 ⟩ if 𝑖 is even

𝛼𝑖 |2𝑛−1 +
𝑖−1
2 ⟩ if 𝑖 is odd

, (3.12)

below we will show that this function expresses how the indexation of a quantum state vector of an 𝑛
qubit system changes, when virtually shuffling the last qubit to the first position and moving all other
qubits one index up.

Proof. Assume 𝑖 is even. In this case the state of the least significant qubit, the last qubit, must be 0
as it adds 1 to 𝑖 when it is in the state 1 and it is the only index that can add an odd number.
This means that only the first 𝑛−1 qubits can be nonzero for these states. These 𝑛−1 qubits virtually
move one position up, and so they each become one step less significant. When each of the nonzero
qubits become one step less significant they add half as much weight to the index by being in state 1.
This is of course because in a binary system each index brings two times more weight than the one
that is one step less significant.
And so in the case that the last qubit is in the state 0, we have 𝑖 is even and we can simply find the new
position of this basis state in our vector in position 𝑖

2 since all the nonzero qubits virtually become one
place less significant and thus add half as much weight as before.
For 𝑖 is odd, we know that the last qubit has to be in the state 1. Since in our new ordering this qubit
becomes the most significant qubit, this qubit adds weight 2𝑛−1 to the index number. Furthermore we
need to add the factor 𝑖−12 . This is because all the other qubits that were in the state 1 still add weight
to the index we are in, albeit half as much as before. Before dividing the former index 𝑖 by 2 we must
first, however, subtract the weight 1 which came from the last qubit being in the state 1.

Nowwe have shown howwe can simulate applying a layer of a quantum circuit to a given quantum state.
The method described above can be trivially extended to apply two­qubit operations on two adjacent
qubits. To avoid only being able to apply two­qubit operations in one direction, we have implemented
the matrix expression for both the original and the swapped version each two­qubit operation in the
project. As an example consider the CNOT operation. We have implemented both

𝐶𝑁𝑂𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

(3.13)

and

𝐶𝑁𝑂𝑇flipped =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

. (3.14)

Things become a bit more complicated when we want to apply a two­qubit operation on two­qubits
which are not adjacent in number, but are nevertheless connected on the hardware. The next section
explain how we handle this case.



3.2. Non­adjacent two­qubit extension 19

3.2. Non­adjacent two­qubit extension
In order to be able to use this algorithm to simulate general quantum circuits, we need to allow for
the case where a two­qubit gate is applied to two qubits which are non­adjacent in the ordering of the
qubits, but connected on the hardware. The Algorithm 993 is written for simulating the operation per­
formed by a matrix built up from smaller matrices with a Kronecker product. However, a non­adjacent
two­qubit gate cannot be directly expressed as a matrix. One option would be to first compose the
matrix representing the non­adjacent two­qubit gate and all the quantum gates applied to in­between
qubits. This would be rather costly as it would require at most 𝑛 − 1 Kronecker products, creating a
2𝑛 × 2𝑛 sized matrix (for the case that the two­qubit gate is performed on the first and last qubit of the
system).
Instead we implemented an approach where we virtually alter the order of the qubits to make the non­
adjacent qubits virtually adjacent, allowing for a direct two­qubit gate to be applied to them. There are
two options, either we swap the targeted control qubit with the qubit adjacent to the controlled qubit, or
we insert the targeted control qubit next to the controlled qubit.1
The first approach would be to virtually swap the targeted control qubit with a qubit adjacent to the con­
trolled qubit. We can then perform the two­qubit operation normally. Now the two qubits are swapped.
In order for the Algorithm 993 to work properly, we need to finish the layer of quantum gates. To make
sure that the right gate is applied to the right qubit, we need to swap the gates associated with the
swapped qubits in the gate list accordingly. Note that swapping the gates in the gates list is much
simpler then swapping the logical qubits, as there is no superposition we need to keep track of. We do
need to make sure that the qubit we swap away, to allow for the operation to occur, does not have a
two­qubit gate performed on it in the layer as well, as we then need to alter its connectivity marker.2
After having completed the qubit operations of the layer, we can then reset the qubit order and start the
next layer. Another option would be to first continue simulating the other layers of the quantum circuit
and only reset the qubits in the right order before returning the quantum state vector. This has as a
downside that it require us to keep track of how the qubits have shifted throughout the layers, to use
this to change the gate order and connectivity markers of later two­qubit gates accordingly. This would
lead to a lot of extra computational steps, making it an unattractive option.
Figures 3.1 and 3.2 give a visual representation of this swapping method.

Figure 3.1: Swapping q0 and q3 to perform two­qubit gate on q4 and q0.

q4q3q2q1q0

q4q0q2q1q3

Figure 3.2: Swapping q0 and q3 to perform two­qubit gate on q4 and q0, while q3 was itself part of a two­qubit operation. It can
be seen that this changes the distance between q3 and its control qubit q2.

q4q3q2q1q0

q4q0q2q1q3

The second approach is to virtually insert the targeted control qubit next to the controlled qubit. This
1Here the term control qubit refers to the qubit that is in the left position, i.e. the most significant qubit of the two. The term
controlled qubit refers to the qubit that is in the right position, i.e. the least significant qubit of the two. These names are due to
the fact that in a CNOT operation the left qubit is the control qubit and the right qubit is the controlled qubit.

2The connectivity marker is part of our implementation of the Kronx quantum simulator, it keeps track of the distance between
two qubits on which a two­qubit gate needs to be performed.
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approach has the benefit that it is not necessary to change the order of the gates in the gate list. A
downside to this is that we are required to reset the qubit order after each layer. We are also required
to employ extra steps in the case that a layer has multiple separated two­qubit gates of which the
qubits cross. This is to account for the case where we insert a qubit to be the control qubit to the two­
qubit operation with the last qubit, when this qubit itself was originally positioned between another pair
of qubits that have a two­qubit gate performed on them in that layer. Since then we change the qubit
distance between these two qubits, which we need to keep track of for when we bring them into position
to perform the two­qubit operation between those two. In Figure 3.3 we show the swapping method
and in Figure 3.4 an example of the case where multiple two­qubit gates were applied to non­adjacent
qubits in the layer.

Figure 3.3: Inserting q0 to perform two­qubit gate on q4 and q0.

q4q3q2q1q0

q4q0q3q2q1

Figure 3.4: Inserting q2 to perform two­qubit gate on q2 and q4, while we also require a two­qubit gate to be performed on q3
and q1.

q4q3q2q1q0

q4q2q3q1q0

In this thesis, the approach where we virtually swap the targeted control qubit with a qubit adjacent to
the controlled qubit is implemented.
This paragraph will give a detailed description of the implementation of the two qubit swapping method.
When the Kronx function encounters a two­qubit gate of which the control qubit is non­adjacent, it en­
ters a special case. We first read out the distance between the targeted control qubit and the controlled
qubit. We use this to determine the right operation to swap the qubit currently adjacent to the controlled
qubit, with the targeted control bit. The virtual qubit swap itself is done by turning the qubit state into
vector shape and creating another vector which expresses the new indexation given the qubit swap.
The vector expressing the indexation after the qubit swap is created using the replacer function 𝑓rep.
The replacer function works by exploiting the binary nature of quantum computing. It first creates a
vector 𝑣rep of length 𝑛 with each index 𝑖 having value 2𝑛−1−𝑖, with the values at the indices associated
to the qubits 𝑗 and 𝑘 swapped

𝑣rep(𝑗, 𝑘)𝑖 = {
2𝑖 , for 𝑖 ∉ {𝑗, 𝑘}
2𝑗 , for 𝑖 = 𝑘
2𝑘 , for 𝑖 = 𝑗.

(3.15)

Subsequently the vector 𝑣rep is multiplied with the matrix𝑀𝑏𝑖𝑛 of size 2𝑛×𝑛, in which each row contains
a binary representation of its index. Let 𝑀bin,𝑙 be the 𝑙𝑡ℎ row of the matrix 𝑀bin and 𝑏𝑙𝑖 the state of the
𝑖𝑡ℎ bit in the binary representation of the number 𝑙, then we have

𝑀bin,𝑙 = [𝑏𝑙0 … 𝑏𝑙𝑛] . (3.16)

The function 𝑓rep(𝑗, 𝑘) then returns the vector expressing the indexation, after virtually swapping the
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qubits 𝑗 and 𝑘
𝑓rep(𝑗, 𝑘)𝑙 = 𝑀bin,𝑙 ⋅ 𝑣rep(𝑗, 𝑘). (3.17)

Where 𝑓rep(𝑗, 𝑘)𝑙 represents the 𝑙𝑡ℎ index of the vector returned by the function 𝑓rep(𝑗, 𝑘) which virtually
swaps the 𝑗𝑡ℎ and 𝑘𝑡ℎ qubits.
We have now created the vector which expresses how the order of the indexation of a vector repre­
senting a quantum state changes, when virtually swapping two qubits. We use this vector to reorder
the indices of the quantum state. Before continuing the regular process of the Algorithm 993, we need
to make sure that we still perform the right operation on the qubit which was originally positioned next
to the controlled qubit in a later stage of the process.
We do this by first reading out which type of operation we are working with. If this was a single­qubit
gate we simply put it in the position in the list of matrix operations associated with the targeted control
qubit we swapped it with.
A bit more subtlety is required when this gate was a two­qubit gate. As replacing this qubit will then
influence its position with respect to its control qubit (or controlled qubit). We need to make sure to
track this accordingly. If the moved qubit overtakes its control qubit (or controlled qubit), we ensure
the two­qubit gate remains expressed in the list at the first qubit encountered. We also ensure that the
control qubit remains the control qubit of the operation and the controlled qubit remains the controlled
qubit.
After each layer we reset the qubits to their original position by using the same replacer function de­
scribed above.





4
Machine learning for quantum circuit

simulation

In this chapter we present the method employed to find and optimize suitable quantum circuits to mimic
a chosen function.

4.1. Ansatz creation and selection
The aim of the project is to find values for the parameters 𝑥, 𝑦 and Θ for a given quantum computer,
which minimize the cost function as described in Section 2.4.1. We do this by creating vectors 𝑥 and 𝑦
which meet the restrictions of Equations (2.13) to (2.16) and therefore describe a valid ansatz 𝑈 for the
chosen quantum computer. Subsequently, we run a machine learning technique to find optimal values
of Θ for the given ansatz. We create multiple valid ansatzes 𝑈 at random and run the machine learning
technique to find the optimal value of the parameter Θ for each ansatz. We then compare the costs of
the created circuits 𝑈(Θ) to identify which circuit performs best for the given function.

4.2. Parameter optimization
Once we have chosen a valid ansatz to optimize over, we use a machine learning approach to optimize
the parameters Θ of the chosen circuit in order to minimize the cost estimation function

min
Θ∈[0,2𝜋]𝑚

𝑐𝑈,𝐵(Θ). (4.1)

The cost estimation function is defined in Equation (2.21). In the above expression 𝑚 is the number of
parameterized gates in the chosen ansatz 𝑈.
The ansatz 𝑈 consists of 𝐷 layers 𝑈𝑖 with 𝑖 ∈ 𝒟 = {0,… , 𝑑 − 1}. When using a machine learning
approach to optimize the angles of the gates, we can view the angles as the weights of the machine
learning structure. In the learning process, the goal is to find the weights which minimize the cost
function. In our case this means that we find the angles of the quantum gates which create a circuit
𝑈(Θ) as close as possible to the desired circuit.
Our training data consists of the sets 𝐵 and 𝑌. Where 𝐵 is a set of |𝐵| vectors 𝑏 = |𝜙⟩ with 𝑏 ∈ ℂ2𝑛 and
𝑏 unitary. The vectors 𝑦 ∈ 𝑌 represent the probability vectors 𝑓(𝐵) = 𝑌 associated with the circuit we
wish to simulate, where 𝑦 ∈ ℝ𝑚; see Section 2.4.1.
In each iteration of the machine learning process we use the created quantum circuit 𝑈(Θ) to find the
value 𝑓𝑈(Θ)(𝑏) for each 𝑏 ∈ 𝐵. As described in Section 2.4.1 we can find the values of 𝑓𝑈(Θ)(𝑏) directly
when using our own Kronx quantum simulator and we have to estimate it when running on an quantum
computer. Using the values for 𝑓𝑈(Θ)(𝑏) and 𝑦 we can find a value for the cost function and use our
machine learning approach to find gate parameters to minimize the cost function.

23
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Figure 4.1: Machine learning approach to optimize the quantum gate parameters Θ to let the circuit 𝑈(Θ) best mimic a desired
operation.
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Notice that in the chosen approach the ansatz 𝑈 describes the structure for the machine learning
network, where the weights are the angles of the parameterized gates of the quantum ansatz; see
Figure 4.1. Now we can use a machine learning approach to minimize the cost function. The resulting
weights that minimize the cost are precisely the angles Θ for which the resulting quantum circuit best
mimics the desired function.
We have implemented two different machine learning approaches to minimize this cost function, a
gradient­based and a non­gradient based approach.

4.3. Gradient­freemachine learning ­ particle swarmoptimization
In this project, we make use of Particle Swarm Optimization (PSO) as our gradient­free machine learn­
ing technique. PSO is used to optimize the weights Θ of the chosen ansatz in order to minimize the cost
function. PSO is an evolutionary approach that aims to find the point of minimum cost in a space.

4.3.1. PSO
PSO works by first creating a swarm 𝑆 of particles distributed over the space 𝑅𝑚, where 𝑚 represents
the amount of parameterized gates in the chosen ansatz. Each particle 𝑗 has an initial velocity 𝑣0𝑗 ∈ ℝ𝑚,
let 𝑣𝑖𝑗 represent the velocity of the particle 𝑗 in the 𝑖­th iteration. In the first iteration, we start by evaluating
the cost associated to the position each particle of the swarm takes in the space. After having evaluated
the cost of the different particle positions, the velocities of the particles are updated to

𝑣𝑖+1𝑗 = 𝜔𝑣𝑖𝑗 + 𝑐1 (𝑝𝑗 − Θ𝑖𝑗) + 𝑐2 (Θ𝑜𝑝𝑡 − Θ𝑖𝑗) . (4.2)

In the above equation 𝜔 is the inertia constant, 𝑐1 is the memory coefficient and 𝑐2 the social coefficient.
The inertia coefficient 𝜔 represents the unwillingness of the particle to change direction. The memory
coefficient 𝑐1 determines how heavily past success influences the direction the particle is travelling
in. The social coefficient 𝑐2 represents how heavily the success of the best found position by any
particle in the swarm influences the search direction of each particle. The parameter 𝑝𝑗 represents the
best position in space the particle 𝑗 has had. The parameter Θ𝑜𝑝𝑡 represents the point in space with
the lowest cost function found by any particle in the swarm so far. The parameter Θ𝑖𝑗 represents the
position in space of the 𝑗­th particle in the 𝑖­th iteration.
After having found the updated expression of the velocities of the particles we use this to find the next
position in space of each particle 𝑗

Θ𝑖+1𝑗 = Θ𝑖𝑗 + 𝑣𝑖+1𝑗 . (4.3)
The above equation does not have an expression for time, as we simply move the particles one
timestep. We subsequently evaluate the cost of the new positions of the particles Θ𝑖+1𝑗 and again
update the velocities accordingly.
This process is repeated a predetermined number of times or until a point in space has been found with
a cost below a certain threshold. The goal is for the particles of the PSO algorithm to start clustering
around a point in space which represents a (local) minimum.
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4.3.2. PSO for hardware­centric quantum circuit generation
We have implemented the particle swarm optimization approach using PySwarms [Mir18] in combina­
tion with our Kronx quantum simulator as described in Chapter 3 and the cost function as described in
Section 2.4.1.

4.4. Gradient­based machine learning
The second machine learning approach we use for optimizing the parameters of the quantum gates
is a gradient­based machine learning approach. In a gradient­based machine learning we compute
the gradients of the cost function with respect to the input parameters, in our case, the angles of the
parameterized gates, to optimize the parameters and ultimately minimize the loss function. The angles
of the parameterized gates are updated in each step as follows

Θ𝑖+1 = Θ𝑖 − 𝑙∇𝑐 (Θ𝑖) . (4.4)

Where 𝑙 ∈ ℝ+ is the learning rate and ∇𝑐 (Θ𝑖)𝑗 represents the partial derivatives of the cost function
with respect to the 𝜃𝑗 of Θ evaluated at Θ𝑖. The learning rate is a hyperparameter, the value of which is
established beforehand.
The idea of the gradient­descent method is that the parameters Θ are altered in each iteration in a
direction that further minimizes the cost function, so that we eventually find a minimum. Since in our
case there are more input than output parameters, we use backpropagation to calculate the gradients of
the cost function with respect to the angles of the parameterized gates. In the next subsections we will
first discuss the forward pass of the machine learning approach and then discuss how backpropagation
is used to find the gradients.

4.4.1. Forward pass
In the forward pass we go through the quantum circuit, as depicted in Figure 4.1, for several quantum
input states 𝑏 to find 𝑓𝑈(Θ)(𝑏) and eventually 𝑐𝑈(Θ)(𝑏). During the forward pass, as the value of 𝑐𝑈(Θ)(𝑏)
is calculated, a graph is created which gives structure to the process of calculating the derivatives dur­
ing the backpropagation step.
The graph is built up when variables of which we require to know the gradients, in our case the angles of
the parameterized gates, have some operation applied to them. Of these operations the partial deriva­
tives with respect to the variables requiring the gradients, are calculated and stored in the nodes of the
created graph. The variables created by applying operations to variables which require derivatives, will
also require derivatives.
Similarly, applying an operation to these parameters results in the expansion of the graph with the
associated derivative values of that operation stored in each node. This graph is built up further until
we call to start the backpropagation process. During the backpropagation step, this graph is used to
calculate the partial derivatives of the output variables with respect to the chosen input variables.
As an example, consider the following figure representing the graph that could be created during the
forward pass, when running our gradient machine learning approach using a naive quantum simula­
tor.
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Figure 4.2: Graph created during the forward pass, where the arrows reflect the direction of information during the forward pass
and the nodes store the values of the derivatives for the backward direction.
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Here it can be seen that the input to the graph consists of the quantum states |𝜙⟩ (where as before
𝑏 = |𝜙⟩) and the input angles Θ𝑖 to the layers 𝑈𝑖 of the quantum circuit. Then in node 1, a function is
applied that transforms Θ0 to 𝑈0(Θ0) and, as we require to know the gradient of the gate parameters,
the Jacobian of 𝑈0(Θ0) with respect to the vector Θ0 is stored in the first node. The same is done at all
the other nodes in the graph, until we have completed the forward pass and found an expression for
𝑐(|𝜙⟩).

4.4.2. Backpropagation
In order to understand how backpropagation works, we will first look into calculating partial derivatives
of a system of functions using the chain rule.
Let 𝑐 be the output variable of which we want to calculate the partial derivative with respect to the input
variable 𝜃𝑖, using the chain rule we get

𝜕𝑐
𝜕𝜃𝑖

=∑
𝑗

𝜕𝑐
𝜕𝑢𝑗

𝜕𝑢𝑗
𝜕𝜃𝑖

. (4.5)

We stored the values of the partial derivatives of each operation in the nodes of the graph depicted in
Figure 4.2, created during the forward pass. Therefore, we can now just go through the graph starting
at 𝜃𝑖 and find the value of 𝜕𝑤𝜕𝜃𝑖 , by multiplying with the intermediate values 𝜕𝑢𝑗

𝜕𝜃𝑖
and 𝜕𝑤

𝜕𝑢𝑗
stored in the

nodes. Since we are working with𝑚 input variables 𝜃𝑖, we would have to go through the graph𝑚 times
to calculate the partial derivatives with respect to the cost function 𝑐 using (4.5).
Since we have more input then output parameters, we make use of backpropagation instead. As
the name suggests backpropagation evaluates the derivatives by going through the derivatives graph
created in the forward pass, starting from the output variable working to the input variables.
Let 𝑐 be the output variable of which we wish to calculate the gradient, let 𝑤𝑖 be some intermediate
variable with respect to which we wish to calculate the partial derivative. Now write the chain rule
slightly different

𝜕𝑐
𝜕𝑤𝑖

=∑
𝑗

𝜕𝑢𝑗
𝜕𝑤𝑖

𝜕𝑐
𝜕𝑢𝑗

. (4.6)

We evaluate this starting from the chosen output variable 𝑐 and work our way down the chain. We start
at the end of the graph by calculating the trivial 𝜕𝑐𝜕𝑐 = 1. Then we go backwards through the created

graph and first multiply this with the values 𝜕𝑐
𝜕𝑢𝑗

saved in the nodes adjacent to 𝑐 and then work our way

back through the graph multiplying by the partial derivatives saved in the nodes till we find 𝜕𝑐
𝜕𝑤𝑖

.
In our machine learning approach, we want to find the partial derivatives of 𝑐 with respect to the𝑚 input
parameters 𝜃𝑖. Using the graph created in the forward pass, we can calculate this most efficiently by
working backwards through the graphs to the leafs of the graph to find the value of 𝜕𝑐

𝜕𝜃𝑖
when reaching
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the leaf associated with 𝜃𝑖.
Since we only have one output variable 𝑐, this means that we can find the required gradient by working
our way backwards through the graph only once. Note that if we had more output then input parame­
ters, it would be most efficient to calculate the gradients by creating the same graph as described, but
going through it in the forward direction.
In our machine learning approach, calculating the partial derivatives to store in the nodes during the
forward pass is not trivial since the operations described are applying quantum gates and it is not di­
rectly clear how to calculate the derivative of a quantum gate. One approach could be to write out the
quantum operations as matrix multiplications and find the partial derivatives of these matrix multiplica­
tions with respect to the gate parameters that determine the matrix.
Notice that that would again imply us needing to work with 2𝑛 × 2𝑛 dimensional matrices in complex
space, which is precisely something we wish to avoid. Furthermore, this would also mean that we could
never use this machine learning approach in combination with a physical quantum computer, as we
would always need to work from the classical simulation to be able to find the derivatives.
To avoid only being able to use our gradient­based machine learning approach in combination with a
classical simulator we use a quantum machine learning package [Ber+18] which uses a method by
Schuld [Sch+19] that enables us to calculate the partial derivatives of the angles of a quantum gate
directly on a quantum computer.

4.4.3. Partial derivatives of quantum nodes
In order to use backwards propagation in combination with a quantum computing layer, we need to be
able to find the partial derivatives of quantum operations. To do this, we use a method from [Sch+19]
to calculate the partial derivatives of the expectation values of quantum states after an operation.
The expectation value of the observable �̂� upon measurement of the state |𝜓⟩ can be expressed
as

⟨�̂�⟩ = ⟨𝜓 | �̂� | 𝜓⟩ . (4.7)

It follows that the expectation value of a measurement with �̂� after having our quantum circuit 𝑈(Θ) will
be

⟨�̂�⟩𝑈(Θ) = ⟨𝜓 |𝑈(Θ)
†�̂�𝑈(Θ) | 𝜓⟩ . (4.8)

In the above equation 𝑈(Θ)† expresses the Hermitian conjugate of 𝑈(Θ).
We write |𝜙𝑈(Θ)⟩ = 𝑈(Θ) |𝜓⟩, which gives

⟨�̂�⟩𝑈(Θ) = ⟨𝜙𝑈(Θ) | �̂� | 𝜙𝑈(Θ)⟩ . (4.9)

Using the method from Schuld [Sch+19], we can calculate the partial derivatives of 𝜕
𝜕𝜃𝑖
⟨�̂�⟩. To use

this method, we first need to link our cost function to expectation values of quantum observables. As
before, our cost function 𝑐 can be expressed as a function of Θ as follows

𝑐(Θ) = 1
|𝐵| ∑

|𝜙⟩∈𝐵
‖𝑓𝑈(Θ)(|𝜙⟩) − 𝑓(|𝜙⟩)‖2. (4.10)

Where 𝑓(|𝜙⟩) expresses the desired probability vector for the input state |𝜙⟩ and 𝑓𝑈(Θ)(|𝜙⟩) describes
the resulting probability vector of applying 𝑈(Θ) to |𝜙⟩ as before

𝑓𝑈(Θ)(|𝜙⟩) = (| ⟨𝑖 | 𝑈(Θ) | 𝜙⟩ |2)𝑖=0,…,2𝑛−1 . (4.11)

If we choose to perform the measurement with the observable �̂�𝑖 = |𝑖⟩ ⟨𝑖|, we get the following expec­
tation value

⟨�̂�𝑖⟩𝑈(Θ) = ⟨𝜙|𝑈(Θ)
†|𝑖⟩ ⟨𝑖|𝑈(Θ)|𝜙⟩ = | ⟨𝑖 | 𝑈(Θ) | 𝜙⟩ |2. (4.12)

This shows that we can use the expectation values of the observables �̂�𝑖 to find the values 𝑓𝑈(Θ)(|𝜙⟩)𝑖
to use in our cost function.
Now that we have shown how the expectation values of the observables �̂�𝑖 relate to our cost function,
we can use the [Sch+19] to show how to calculate the partial derivatives of the expectation values.
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These partial derivatives can then be used to calculate the partial derivatives of our cost function with
respect to the angles of the parameterized quantum gates.
Define 𝑓𝑈,|𝜙⟩ ∶ ℝ𝑚 ↦ ℝ2𝑛 the function which maps from the parameterized gate angles to the resulting
probability vector of measuring the basis states

𝑓𝑈,|𝜙⟩(Θ) = (| ⟨𝑖 | 𝑈(Θ) | 𝜙⟩ |2)𝑖=0,…,2𝑛−1 . (4.13)

Notice that this function is essentially equal to (2.18), only now we consider it a function of Θ. For
notational simplicity let 𝑓(Θ) ≔ 𝑓𝑈,|𝜙⟩(Θ) for the remainder of this section and let 𝜃 be an element in Θ
and let �̂� be the observable, we then get

𝜕𝜃𝑓(Θ) = ⟨𝜙 |𝑈(Θ)†�̂�𝜕𝜃𝑈(Θ) | 𝜙⟩ + ⟨𝜙 | 𝜕𝜃𝑈(Θ)†�̂�𝑈(Θ) | 𝜙⟩ . (4.14)

The ansatz of our quantum circuit consists of D layers

𝑈(Θ) = 𝑈0(Θ0)𝑈1(Θ1)…𝑈𝐷−1(Θ𝐷−1). (4.15)

Since each gate in the ansatz has at most one parameter and each parameter has at most one gate
associated to it, there exists a unique 𝑖 such that 𝜕𝜃𝑈𝑖(Θ𝑖) ≠ 0, since each parameter 𝜃 is an element
of one unique Θ𝑖 and does not effect a quantum gate in any other layer.
We can decompose this layer 𝑈𝑖(Θ𝑖) = 𝑉′𝐺(𝜃)𝑊′ where 𝑉′ and 𝑊′ only depend on 𝜃′, which are
elements of Θ𝑖 such that 𝜃′ ≠ 𝜃 and 𝐺(𝜃) = 𝐼⊗𝑛−𝑡 ⊗ 𝑔(𝜃) ⊗ 𝐼⊗𝑡−1. Here we assume that 𝑔(𝜃) is a
single­qubit gate, but the same argument holds for multiple qubit gates. Then we can write

𝑈(Θ) = 𝑈0(Θ0)…𝑉′𝐺(𝜃)𝑊′…𝑈𝐷(Θ) = 𝑉𝐺(𝜃)𝑊 (4.16)

which leads to
𝜕𝜃𝑓(Θ) = ⟨𝜙′ | 𝐺(𝜃)†�̂�𝜕𝜃𝐺(𝜃) | 𝜙′⟩ + h.c.. (4.17)

In the above equation +h.c. stands for plus hermitian conjugate and we have |𝜙′⟩ = 𝑊 |𝜙⟩ and �̂� =
𝑉†�̂�𝑉. Note that for any two operators 𝐴 and 𝐵 we have

2 ⟨𝜓 | 𝐴†�̂�𝐵 | 𝜓⟩ + 2 h.c. = ⟨𝜓 | (𝐴 + 𝐵)†�̂�(𝐴 + 𝐵) |𝜓⟩
− ⟨𝜓 | (𝐴 − 𝐵)†�̂�(𝐴 − 𝐵) |𝜓⟩ .

(4.18)

This implies that if 𝐺(𝜃) ± 𝜕𝜃𝐺(𝜃) are themselves unitary operations, we can evaluate Equation (4.17)
directly by running the circuits 𝑉(𝐺(𝜃) ± 𝜕𝜃𝐺(𝜃))𝑊.

Case 1: 𝐺(𝜃) ± 𝜕𝜃𝐺(𝜃) a unitary operation with a known decomposition
We will now show a class of quantum gates for which 𝐺(𝜃) ± 𝜕𝜃𝐺(𝜃) are known unitary operations
[Sch+19]. Consider a quantum gate 𝐺(𝜃) generated by a Hermitian operator 𝐺 such that 𝐺(𝜃) = 𝑒−𝑖𝜃𝐺
then 𝜕𝜃𝐺(𝜃) = −𝑖𝐺𝑒−𝑖𝜃𝐺. Let 𝐺(𝜃) |𝜙′⟩ = |𝜙″⟩ and rewrite Equation (4.17).

𝜕𝜃𝑓(Θ) = ⟨𝜙″ | �̂�(−𝑖)𝐺 | 𝜙″⟩ + h.c. (4.19)

Making use of (4.18) we get

2
𝑟 𝜕𝜃𝑓 = ⟨𝜙

″ | (𝐼 − 𝑖𝑟−1𝐺)�̂�(𝐼 − 𝑖𝑟−1𝐺) | 𝜙″⟩ − ⟨𝜙″ | (𝐼 + 𝑖𝑟−1𝐺)�̂�(𝐼 + 𝑖𝑟−1𝐺) | 𝜙″⟩ . (4.20)

From this it follows that if you can implement 1
√2(𝐼 − 𝑖𝑟

−1𝐺) as a quantum gate, you can evaluate
Equation (4.17) directly. In Equation (4.20) we multiply both sides with 𝑟−1, as there is a class of
quantum gates 𝐺(𝜃) for which we know how to implement 1

√2(𝐼 − 𝑖𝑟
−1𝐺) as a quantum gate.

Theorem 1 ([Sch+19]). If the Hermitian generator G of the quantum gate 𝐺(𝜃) = 𝑒−𝑖𝜃𝐺 has at most
two unique eigenvalues ±𝑟 the following holds:

𝐺 ( 𝜋4𝑟) =
1
√2
(𝐼 − 𝑖𝑟−1𝐺). (4.21)
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Proof. Since G has spectrum {±𝑟} and is unitary we have 𝐺2 = 𝑟2𝐼. This leads to the following Taylor
series of 𝐺(𝜃).

𝐺(𝜃) = 𝑒−𝑖𝜃𝐺

=
∞

∑
𝑘=0

(−𝑖𝜃)𝑘𝐺𝑘
𝑘!

= 𝐼
∞

∑
𝑘=0

(−1)𝑘(𝑟𝜃)2𝑘
(2𝑘)! + (−𝑖𝑟−1𝐺))

∞

∑
𝑘=0

(−1)𝑘(𝑟𝜃)2𝑘+1
(2𝑘 + 1)!

= 𝐼 cos(𝑟𝜃) − 𝑖𝑟−1𝐺 sin(𝑟𝜃)

(4.22)

Hence 𝐺 ( 𝜋4𝑟) =
1
√2(𝐼 − 𝑖𝑟

−1𝐺)

It follows that for quantum gates generated by a Hermitian operator with at most two unique eigenvalues
±𝑟, we can evaluate partial derivatives directly by finding the expectation values for the circuit with a
gate 𝐺 (± 𝜋

4𝑟) added after 𝐺(𝜃). This is the same as finding the expectation values of the circuit with

𝐺(𝜃) replaced by 𝐺 (𝜃 ± 𝜋
4𝑟). And so we can find the partial derivative of the function 𝑓(Θ) with respect

to the parameter 𝜃 using the following equation

𝜕𝜃𝑓(Θ) =
𝑟
2 (⟨𝜙

′ | 𝐺 (𝜃 + 𝜋
4𝑟) �̂�𝐺 (𝜃 +

𝜋
4𝑟) | 𝜙

′⟩ − ⟨𝜙′ | 𝐺 (𝜃 − 𝜋
4𝑟) �̂�𝐺 (𝜃 −

𝜋
4𝑟) | 𝜙

′⟩) . (4.23)

Rotation gates which are generated by the Pauli­spin matrices to implement a rotation around a spe­
cific axis fall into the class of quantum gates for which we can use the method described above to
calculate the partial derivatives, as they are generated by matrices with only two unique eigenvalues
±1 [Sch+19].
In Appendix D.1 we show that the parameterized native gates considered in this project all fall in
the class of quantum gates for which 𝐺(𝜃) ± 𝜕𝜃𝐺(𝜃) can be evaluated using the method described
above.

Case 2: 𝐺 + 𝜕𝜃𝐺 not a unitary operation with a known decomposition
Not all two­qubit gates natively implemented on a quantum computer belong to the class described,
where 𝐺 ± 𝜕𝜃𝐺 are unitary operations we can implement on a quantum computer. For these gates, we
can use another method from [Sch+19] to estimate the gradients of the quantum nodes.
Note that we can write 𝜕𝜃𝐺(𝜃) as a complex square matrix. We can subsequently decompose this
matrix 𝜕𝜃𝐺(𝜃) as a linear combination of unitary matrices

𝜕𝜃𝐺(𝜃) =
𝑘

∑
𝑖=1
𝛼𝑖𝐴𝑖 , (4.24)

where 𝛼𝑖 ∈ ℝ and 𝐴𝑖 unitary complex matrices [Sch+19]. Combining this decomposition with equation
(4.17) gives

𝜕𝜃𝑓 =∑
𝑖=1
𝛼𝑖 (⟨𝜙′ | 𝐺(𝜃)†�̂�𝐴𝑖 | 𝜙′⟩ + h.c.) . (4.25)

And so we can compute the partial derivatives if we can find the matrices 𝐴𝑖 and their amplitudes 𝛼𝑖,
as well as an estimation for ⟨𝜙′ | 𝐺(𝜃)†�̂�𝐴𝑖 | 𝜙′⟩ + h.c.. We claim that this latter value can be estimated
by running the circuit presented in Figure 4.3 multiple times [Sch+19].

Figure 4.3: Circuit that can be run to estimate ⟨𝜙′ | 𝐺(𝜃)†�̂�𝐴𝑖 | 𝜙′⟩ + h.c. [Sch+19].

|𝜙′⟩ 𝐺 𝐴𝑖

|0⟩ 𝐻 • 𝐻 
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Here the wire with |𝜙′⟩ represent 𝑛 qubits in the state |𝜙′⟩ = 𝑊 |𝜙⟩ and the extra qubit in the state |0⟩ is
a so­called ancilla qubit. A ancilla qubit is a qubit which gets added in a quantum algorithm to be able
to perform some computational step. In order to calculate the gradients using this method we need
𝑛 + 1 qubits.
In the circuit presented in Figure 4.3, we first apply a Hadamard gate to the ancilla qubit, which starts
in the state |0⟩, resulting the 𝑛 + 1­qubit system to be in the state

1
√2

|𝜙′⟩ (|0⟩ + |1⟩). (4.26)

Then, we apply the controlled­𝐺 and controlled­𝐴𝑖 gates. The controlled­𝐺 gate is controlled in such a
way that 𝐺 is only applied to the quantum states |𝜙′⟩ if the ancilla bit is in the state |0⟩. The controlled­𝐴𝑖
gate is such that the gate 𝐴𝑖 is only applied to the qubits of the first wire where the ancilla bit is in the
state |1⟩. This results in the system being in the state

1
√2
(𝐺(𝜃) |𝜙′⟩ |0⟩ + 𝐴𝑖 |𝜙′⟩ |1⟩). (4.27)

Then a second Hadamard gate is applied to the ancilla bit, resulting in the state

1
2((𝐺(𝜃) + 𝐴𝑖) |𝜙

′⟩ |0⟩ + (𝐺(𝜃) − 𝐴𝑖) |𝜙′⟩ |1⟩). (4.28)

Subsequently the ancilla qubit is measured. The measurement of the ancilla qubit finds |0⟩ with prob­
ability 𝑝𝑖0 =

1
4 (⟨𝜙

′ | (𝐺 + 𝐴𝑖)†(𝐺 + 𝐴𝑖) | 𝜙′⟩). In this case, the first 𝑛 qubits are now in the state

|𝜙′0⟩ =
1

2√𝑝𝑖0
(𝐺 + 𝐴𝑖) |𝜙′⟩ . (4.29)

Similarly, with probability 𝑝𝑖1 =
1
4 (⟨𝜙

′ | (𝐺 − 𝐴𝑖)†(𝐺 − 𝐴𝑖) | 𝜙′⟩) we find the ancilla qubit to be in the state
|1⟩, in which case the first 𝑛 qubits are in the state

|𝜙′1⟩ =
1

2√𝑝𝑖1
(𝐺 − 𝐴𝑖) |𝜙′⟩ . (4.30)

We run the described circuit multiple times to find the expectation values 𝐸𝑖𝑗, where

𝐸𝑖0 =
1
4𝑝𝑖0

⟨𝜙′ | (𝐺 + 𝐴𝑖)†�̂�(𝐺 + 𝐴𝑖) | 𝜙′⟩ (4.31)

and
𝐸𝑖1 =

1
4𝑝𝑖1

⟨𝜙′ | (𝐺 − 𝐴𝑖)†�̂�(𝐺 − 𝐴𝑖) | 𝜙′⟩ . (4.32)

When we combine these results with Equation (4.18) we get

⟨𝜙′ | 𝐺(𝜃)†�̂�𝐴𝑖 | 𝜙′⟩ + h.c. = 2 (𝑝𝑖0𝐸𝑖0 − 𝑝𝑖1𝐸𝑖1) (4.33)

from which it follows that

𝜕𝛿𝑓 =
𝑘

∑
𝑖=1
𝛼𝑖2 (𝑝𝑖0𝐸𝑖0 − 𝑝𝑖1𝐸𝑖1) (4.34)

using Equation (4.25). We can estimate the values of (𝑝𝑖0𝐸𝑖0 − 𝑝𝑖1𝐸𝑖1) by estimating the values 𝑝𝑖𝑗 and
𝐸𝑖𝑗 for each 𝐴𝑖, by running the described circuit multiple times.
Finding the gates 𝐴𝑖 and their amplitudes 𝛼𝑖 is non­trivial, but needs to be done only once for all imple­
mented quantum gates.
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4.4.4. Gradient­based backpropagation for quantum circuits
In Section 4.4.1 we gave the graph created during the forward pass, when using backpropagation to
optimize the parameters of a quantum circuit; see Figure 4.2 .
Using the methods from [Sch+19], presented in the sections above, we can rewrite this graph where
we treat the entire quantum circuit as one operation and we can calculate these partial derivatives,
with respect to all gate parameters, directly. In this way, we can use backpropagation when (part
of) the machine learning structure is performed on a quantum computer, without having to be able
to find the partial derivatives of 𝑈𝑖(Θ𝑖) on a classical computer. This method also saves time in the
backpropagation step, as we now have less nodes to go through.

Figure 4.4: Graph created during the forward pass when using Pennylane [Ber+18] to evaluate the gradients of a circuit using
an actual quantum computer.

2 3

1

|𝜙⟩

Θ
𝑈(Θ)

𝑓𝑈(Θ)(|𝜙⟩) 𝑐(𝑈(Θ) |𝜙⟩)

Note that in our case, where the quantum circuit is one of the few computational steps of the algorithm,
backpropagation does not save as much computational time as it would in a larger machine learning
structure, when there are more layers in the graph for calculating the derivatives.
We still save computational time by using backpropagation, as the last node where we calculate the
cost function actually consists of several computational steps, all with their own partial derivatives.
Furthermore, this method allows us to use a quantum circuit as a layer in a larger machine learning
structure which is optimized using backpropagation.
For the implementation of the classical part of this backpropagation algorithm we make use of PyTorch
[Pas+19]. PyTorch is a classical computing package which can be used to calculate the gradients
of the output parameters with respect to the chosen input parameters by creating a derivative graph
and performing backpropagation as described. Since we are using a quantum layer we make use of
Pennylane [Ber+18]. Pennylane is a quantum machine learning plugin that can be used in combination
with PyTorch and has the recipes implemented to calculate the derivatives of quantum operations as
described above. Pennylane has a function that allows the user to create random quantum states as
input quantum states, these are subsequently prepared on a quantum computer using a method from
Möttönen and Vartiainen [MV05]. When using this function from the Pennylane package the function
required real input vectors, and so we only use gradient­based machine learning to learn over quantum
states with real amplitudes.





5
Results

In the previous section, we have described two different machine learning approaches that can be used
for finding quantum circuits to mimic the behaviour of a given function. In this chapter, we will give the
results of using both approaches on different problems. First, we will show the result of running our
quantum machine learning algorithms to mimic simple known quantum operations. Secondly, we use
our approach to find a circuit that could be used for the search problem.
All the results presented in this section were created for the IBM Ruschlikon computer; see Figure
D.3.

5.1. Simple function
The first test for our machine learning approach is to learn a simple function

𝑓simple ∶ ℂ2
𝑛 ↦ ℝ2𝑛 . (5.1)

Where we define 𝑓simple to be the function that returns the associated probabilities of each quantum
basis state after applying the quantum circuit 𝐴. The quantum circuit 𝐴 consists of the following quantum
gates, one for each of the 𝑛 qubits

𝐴 = {𝑋 ⊗𝐻⊗𝑋⊗𝐻⊗⋯⊗𝑋⊗𝐻, for 𝑛 even
𝑋 ⊗𝐻⊗𝑋⊗𝐻⊗⋯⊗𝑋, for 𝑛 odd. (5.2)

In the above equation 𝑋 is the NOT gate

𝑋 = [
0 1
1 0

] (5.3)

and 𝐻 represents the Hadamard gate

𝐻 = 1
√2

[
1 1
1 −1

] . (5.4)

We can express 𝑓simple as follows

𝑓simple(|𝜙⟩) = ⟨𝜙 | 𝐴�̂�𝑖𝐴 |𝜙⟩𝑖=0,…,2𝑛−1 . (5.5)

The theoretical decomposition of this quantum circuit into rotation gates consists of the decompositions
of the 𝐻 gate and the 𝑋 gate. They are as follows

𝐻 = 𝑒
𝑖𝜋
2 𝑅𝑍 (

𝜋
2)𝑅𝑋 (

𝜋
2)𝑅𝑍 (

𝜋
2) (5.6)

and
𝑋 = 𝑒

𝑖𝜋
2 𝑅𝑋(𝜋). (5.7)
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Phase shifts 𝑒
𝑖𝜃𝜋
2 can be ignored as they have an immeasurable effect on the system; see Appendix

A.2.3. The Hadamard gate has a theoretical decomposition of three rotation operations and the 𝑋 gate
can be performed using only one rotation around the x­axis. Note that since most quantum computers
only have 𝑅𝑋 (

𝜋
2 ) natively implemented, the 𝑋 gate usually requires two rotations of 𝜋/2 around the

x­axis.
First, we run the quantum machine learning circuit for this problem giving only the computational basis
states as input vectors, this is done for both the gradient­based and non­gradient based approach.
Then, we use our PSO machine learning approach to find a quantum circuit mimicking the behaviour
of 𝑓simple while learning over a predetermined number of random quantum states.
Finally, we use our gradient­based machine learning algorithm to learn over a predetermined number
of random real unit states to find a quantum circuit that mimics the circuit 𝐴.

5.1.1. PSO ­ basis states
We start by running the PSO machine learning approach for finding a circuit that mimics the behaviour
of 𝐴 for the case 𝑛 = 2. We let the algorithm create 50 random ansatzes and for each ansatz repeated
the PSO procedure 70 times with a swarm of 450 particles. This was done several times and we found
four ansatzes of depth 𝐷 = 2 that perfectly mimic the given circuit for the computational basis states.
We will now take a more in­depth look at one of the results. The resulting ansatz looks as follows

𝑈(Θ) = (𝑅𝑋 (
𝜋
2)⊗ 𝑅𝑋 (

𝜋
2)) (𝑅𝑋 (

𝜋
2)⊗ 𝑅𝑍(𝛼)) , (5.8)

where the angle 𝛼 is not defined as it does not have an impact on the cost function.

Figure 5.1: The found circuit 𝑈(Θ) for simulating the effect of Equation (5.2) for 2 qubits learning over the computational basis
states.

𝑅𝑋 (
𝜋
2 ) 𝑅𝑋 (

𝜋
2 )

𝑅𝑍 (𝛼) 𝑅𝑋 (
𝜋
2 )

In the found circuit the Hadamard gate is mimicked by

𝑅𝑋 (
𝜋
2)𝑅𝑍(𝛼) =

1
√2

[
𝑒−𝑖

𝛼
2 −𝑖𝑒𝑖

𝛼
2

−𝑖𝑒−𝑖
𝛼
2 𝑒𝑖

𝛼
2
] . (5.9)

It can be seen that this has the desired effect on the computational basis states for any 𝛼, as for any
value of 𝛼 the matrix described in Equation (5.9) simply spreads the amplitude of the basis states out
to an equally divided superposition. This leads to a probability of 12 to measure either basis state, for
both input basis vectors. Therefore, our circuit results in the same vector describing the probabilities
of measuring each basis state as the desired operation. For other input states such as

|𝜙⟩ = 1
√2

[
1
1
] , (5.10)

however, this matrix does not work for all values of 𝛼. For instance

𝑅𝑋 (
𝜋
2)𝑅𝑍(0) |𝜙⟩ =

1
2 [

1 −𝑖
−𝑖 1

] [
1
1
] = 1

2 [
1 − 𝑖
1 − 𝑖

] (5.11)

which leads to an equal probability of measuring either basis state, whereas

𝐻 |𝜙⟩ = [
1
0
] (5.12)
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leads to finding |0⟩ upon measurement with certainty.
In the found decomposition the 𝑋 gate is simulated by applying 𝑅𝑋 (

𝜋
2 ) twice

𝑅𝑋 (
𝜋
2)𝑅𝑋 (

𝜋
2) = 𝑒

−𝑖𝜋
2 [
0 1
1 0

] . (5.13)

Note that this is precisely equal to the theoretical decomposition of the 𝑋 gate.

5.1.2. Gradient descent ­ basis states
The gradient descent method gives rise to the same results as PSO when learning over the computa­
tional basis states. Here we run 70 epochs of our gradient descent method and all the other parameters
remain as before.

5.1.3. PSO ­ complex states
Finally, we find a quantum circuit mimicking the behaviour of 𝐴 for all possible input states. We run
the PSO machine learning approach with a batch of 16 random unitary complex input vectors to learn
over. We performed 50 iterations of the PSO scheme on each ansatz and we again used a swarm of
450 particles and 50 ansatzes. The circuit resulting from running the quantum circuit generator with
the described input is as follows

𝑈 (Θ) = (𝑅𝑋 (
𝜋
2)⊗ 𝑅𝑋 (

𝜋
2)) (𝑅𝑋 (

𝜋
2)⊗ 𝑅𝑍 (

𝜋
2)) . (5.14)

The found circuit results in the same probability vectors for all possible input states as the aimed­for
circuit 𝐴.
Figure 5.2: The found circuit 𝑈(Θ) for simulating the effect of Equation (5.2) for 2 qubits learning over random quantum states.
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2 ) 𝑅𝑋 (
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2 )
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𝜋
2 )

The found circuit has less depth then a theoretical decomposition of the operation in the native gates.
This is due to the decomposition of the Hadamard gate, and the fact that in our found circuit we apply
a different operation that results in the same probability distribution of the output states. In our found
circuit the Hadamard gate is replaced by 𝑅𝑋 (

𝜋
2 ) followed by 𝑅𝑍 (

𝜋
2 ), the matrix expression of these

operations combined is

𝑅𝑋 (
𝜋
2)𝑅𝑍 (

𝜋
2) =

1
2 [

1 − 𝑖 1 − 𝑖
−1 − 𝑖 1 + 𝑖

] . (5.15)

It can be seen that this results in the right probabilities of measuring each basis state by writing

𝑅𝑋 (
𝜋
2)𝑅𝑍 (

𝜋
2) =

1
√2

[
𝑒
−𝑖𝜋
4 𝑒

−𝑖𝜋
4

−𝑒
𝑖𝜋
4 𝑒

𝑖𝜋
4
] . (5.16)

Then for any input qubit state

|𝜙⟩ = [
𝛼0
𝛼1
] , (5.17)

we have

𝑅𝑋 (
𝜋
2)𝑅𝑍 (

𝜋
2) |𝜙⟩ = [

𝑒
−𝑖𝜋
4 (𝛼0 + 𝛼1)

−𝑒
𝑖𝜋
4 (𝛼0 − 𝛼1)

] . (5.18)
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The probability of finding |0⟩ upon measurement is |𝛼0 + 𝛼1|2 and the probability of finding |1⟩ is |𝛼0 −
𝛼1|2, which is exactly the same as after applying the Hadamard gate.
In the found decomposition the 𝑋 gate is again simulated by applying 𝑅𝑋 (

𝜋
2 ) twice, which gives

𝑅𝑋 (
𝜋
2)𝑅𝑋 (

𝜋
2) = 𝑒

−𝑖𝜋
2 [
0 1
1 0

] . (5.19)

5.1.4. Gradient descent ­ real states
We also used the gradient descent method to find a quantum circuit that perfectly mimics the desired
circuit 𝐴. We used the gradient descent method by learning over 16 random real unit vectors and the
associated desired outcome vectors. As before, we kept the parameters the same as in the PSO case
and we used 70 epochs of the machine learning scheme.
Using gradient descent we found the exact same result as in Section 5.1.3.

5.1.5. Simple problem with 𝑛 > 2
Having found the right ansatz for 𝑛 = 2 we generalize this for the case 𝑛 and first use this as the ansatz
for our quantum machine learning approach. This gives the following ansatz:

𝑈(Θ) = {
(𝑅𝑋 (

𝜋
2 )⊗⋯⊗𝑅𝑋 (

𝜋
2 )) (𝑅𝑋 (

𝜋
2 )⊗ 𝑅𝑍 (𝜃0) ⊗⋯⊗𝑅𝑋 (

𝜋
2 )⊗ 𝑅𝑍 (𝜃𝑛/2)) , for 𝑛 even

(𝑅𝑋 (
𝜋
2 )⊗⋯⊗𝑅𝑋 (

𝜋
2 )) (𝑅𝑋 (

𝜋
2 )⊗ 𝑅𝑍 (𝜃0) ⊗⋯⊗𝑅𝑋 (

𝜋
2 )) , for 𝑛 odd.

(5.20)
We do this to test our algorithm’s ability to learn the right parameters when we are working in a larger
Hilbert space with more parameters to optimize. We also want to know how large the batch size needs
to be when learning over random input states.
Using this result we also use our machine learning approach to find a circuit to mimic the function 𝑓simple
for 𝑛 > 2 without giving the right ansatz as input.

Simple problem with 𝑛 = 5
We run our machine learning approaches to optimize the parameters Θ of 𝑈(Θ) as described above in
Equation (5.20) to mimic the behaviour of 𝐴 in the case of 5 qubits.
Using our particles swarm approach, we create a swarm of 450 particles and run 70 iterations of the
scheme. We use this approach for different batch sizes ranging from 32 to two random unitary complex
input states. For each batch size, PSO was able to perfectly optimize the angles to 𝜋

2 for each attempt.
Note here that the space we are working in has dimension 32 so the approach works with a batch much
smaller than would minimally be required to span the space.
Furthermore, we noticed that for such small batch sizes wrong ansatzes still perform bad, meaning we
can run our optimization scheme with a very small batch size saving a considerable amount of time.
We tried this and created 1000 random ansatzes and used our PSO optimization scheme as described
above learning over a batch of size two. Our machine learning algorithm correctly identified the right
ansatz (as described before) and found the correct angles.
We did the same with the gradient descent approach which was consistently able to find the right an­
gles. However, as the batch size decreased the gradient descent method became less reliable. Our
gradient­based machine learning approach performed consistently well up to a batch size as small as
five.

Simple problem with 𝑛 = 10
Doing the same with 𝑛 = 10 PSO is able to correctly learn the angles using a batch size as small as 2.
Our gradient­descent method was not consistently effective. The algorithm seemed unable to find a
negative gradient to optimize in that direction. This is a known problem of gradient­based machine
learning for quantum computers as the circuit size grows [McC+18].
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5.2. CNOT gate
As a next step we test our algorithms ability to learn a circuit that mimics the behaviour of the CNOT
gate

CNOT =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

. (5.21)

We do this for the IBM native gate set. The decomposition of the CNOT gate as used by IBM is given
in Figure 5.3.1

Figure 5.3: Circuit to implement CNOT on IBM computer [Gok+20].
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This decomposition uses six layers, as the X gate needs to be implemented using two 𝑅𝑍 (
𝜋
2 ) gates.

5.2.1. PSO ­ basis states
Using the four computational basis states as input to train over we found multiple circuits with depth
𝐷 = 3 that perfectly mimic the desired operation. See Figure 5.4 for an example of this circuit.

Figure 5.4: Circuit to mimic CNOT over computational basis.
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𝑅𝑍 (3.14) 𝑅𝑋 (
𝜋
2 )

To find this circuit we tried 50 different ansatzes used 50 repetitions of the PSO scheme for each
ansatz.

5.2.2. Gradient descent ­ basis states
Using gradient descent to optimize the angles by learning over the basis states as input states we found
the circuit presented in Figure 5.5. This circuit mimics the CNOT gate over the input states and from the
gradient descent method we can see that only the input parameter for the 𝑅𝑋𝑍 gate has a measurable
effect.

Figure 5.5: Circuit to mimic CNOT over computational basis.
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𝑅𝑍 (3.92) 𝑅𝑍 (4.05)

𝑅𝑋 (
𝜋
2 ) 𝑅𝑍 (4.46)

To find this circuit we tried 100 different ansatzes used 50 epochs in the gradient­descent method for
each ansatz.

1Here we used that the CR pulse gives rise to the 𝑅𝑍𝑋 gate.
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5.2.3. PSO ­ complex states
Using 4 random input states to learn over, the thinnest circuit that we found has depth 𝐷 = 3 and
perfectly mimics the CNOT gate on all possible input states. The circuit found is represented in Figure
5.6.

Figure 5.6: Circuit to mimic CNOT learned over complex input states.
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To find this circuit we tried 50 different ansatzes used 50 repetitions of the PSO scheme for each
ansatz.

5.2.4. Gradient descent ­ real states
Using 4 random real input states, we were able to a circuit that perfectly mimics the CNOT operation
for the input. The circuit is depicted in Figure 5.7.

Figure 5.7: Circuit to mimic CNOT learned over real input states
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To find this circuit, we tried 100 different ansatzes used 50 epochs of the gradient descent scheme for
each ansatz.

5.3. The search problem
The search problem is one of the problems for which an efficient quantum algorithm is known. The
search problem is as follows, given a binary vector 𝑥 of length 𝑁, return a nonzero index of the vector.
In this problem we assume that the hamming weight 𝑡 of the binary vector is known. Furthermore, we
assume to have access to an oracle function 𝑂𝑥. The oracle function negates the amplitudes of the
basis states corresponding to a nonzero index in 𝑥

𝑂𝑥 |𝜙⟩ =
𝑁

∑
𝑖=0
(−1)𝑥𝑖 |𝑖⟩ . (5.22)

Grover’s search algorithm allows the user to solve the search problem using 𝒪 (√𝑁) queries to the
oracle function and using 𝒪 (√𝑁 log𝑁) other gates [Gro96] [Wol19]. Grover’s search algorithm starts
with an 𝑛 = log2 (𝑁) qubit system in the state |0⟩. Subsequently a Hadamard gate is applied to all
qubits creating a superposition over all the basis states |𝑈0⟩ =

1
√𝑁
∑𝑁−1𝑖=0 |𝑖⟩.

After the state |𝑈0⟩ is prepared, Grover’s search algorithm runs the so­called Grover’s iterate 𝒢 �̃� times.
A subsequent measurement of the qubits returns a state |𝑖⟩ for which 𝑥𝑖 = 1 with probability 𝑃𝑁,𝑡

𝑃𝑁,𝑡 = {
1, for 𝑘 ∈ ℤ
1 − sin2 (2 (𝑘 − �̃�) 𝜃) , for 𝑘 ∉ ℤ. (5.23)

Where in the above expression 𝑘 = 𝜋
4𝜃−

1
2 and �̃� is the integer closest to 𝑘. In the sections below we will

give an expression for the angle 𝜃 and the Grover iterates followed by a proof of the given probability
of success 𝑃𝑁,𝑡.
Let |𝐵⟩ = 1

√𝑁−𝑡
∑𝑖∶𝑥𝑖=0 |𝑖⟩ be the state that is a linear combination of all the basis states representing
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indices of the vector 𝑥 for which 𝑥𝑖 = 0. Similarly |𝐺⟩ =
1
√𝑡
∑𝑖∶𝑥𝑖=1 |𝑖⟩ is a linear combination of all the

good basis states that represent indices for which 𝑥𝑖 = 1.
Let |𝑈0⟩ be the quantum state that is the input state for the first Grover iterate. We define 𝜃 to be the
angle between the input state and the superposition of bad states |𝐵⟩

𝜃 = arccosRe (⟨𝐵 | 𝑈0⟩). (5.24)

A Grover iterate 𝒢 consists of the following combination of actions. Let |𝑈𝑙⟩ be the quantum state that
is the input to the 𝑙𝑡ℎ Grover iterate. First we reflect the state |𝑈𝑙⟩ along the bad states |𝐵⟩ by applying
the oracle function. Then we reflect the resulting state 𝑂𝑥 |𝑈𝑙⟩ along the original position of the input
state |𝑈0⟩, this is called the amplitude amplification step. This combination of actions results in the state
|𝑈𝑙+1⟩ = 𝒢 |𝑈𝑙⟩. In the Figures 5.8, 5.9 and 5.10 we depict the effect these actions have on the qubit
state.

Figure 5.8: Visual representation of the states |𝐵⟩, |𝐺⟩ and |𝑈0⟩.
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𝑂
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Figure 5.9: Visual representation of the states |𝐺⟩, |𝐵⟩ and 𝑂𝑥 |𝑈0⟩.

|𝐵⟩

|𝐺⟩

𝑂𝑥 |𝑈0⟩

𝑂 𝜃



40 5. Results

Figure 5.10: Visual representation of the states |𝐺⟩, |𝐵⟩ and 𝒢 |𝑈0⟩.
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We will now present a proof of the probability of success 𝑃𝑁,𝑡, as given in Equation (5.23), of Grover’s
search for the cases 𝑘 ∈ ℤ+ and 𝑘 ∉ ℤ+ [Wol19].
For 𝑘 ∈ ℤ+ apply the Grover iterate 𝑘 = 𝜋

4𝜃 −
1
2 times starting from the state |𝑈0⟩ =

1
√𝑁
∑𝑁−1𝑖=0 |𝑖⟩. Note

that |𝑈0⟩ = sin(𝜃) |𝐺⟩ + cos(𝜃) |𝐵⟩. We apply the Grover iterate 𝒢 to the state |𝑈0⟩ 𝑘 times, each time
adding 2𝜃 to the angle

𝒢𝑘 |𝑈0⟩ = sin((2𝑘 + 1)𝜃) |𝐺⟩ + cos((2𝑘 + 1)𝜃) |𝐵⟩ . (5.25)

Since 𝑘 = 𝜋
4𝜃 −

1
2 , we end up in the state 𝒢𝑘 |𝑈0⟩ = sin (𝜋2 ) |𝐺⟩ + cos (𝜋2 ) |𝐵⟩ = |𝐺⟩. Which means

that 𝒢𝑘 |𝑈0⟩ is a linear combination of basis states representing an index of 𝑥 for which 𝑥𝑖 = 1. Upon
measurement we find a state |𝑖⟩ for which 𝑥𝑖 = 1 with certainty, and so we solve the search problem
with success probability 1.
For 𝑘 ∉ ℤ+ we repeat the Grover iterate �̃� times. Where we choose �̃� to be the integer closest to 𝑘.
We then apply the Grover iterate �̃� times.

𝒢�̃� |𝑈⟩ = sin ((2�̃� + 1) 𝜃) |𝐺⟩ + cos ((2�̃� + 1) 𝜃) |𝐵⟩ (5.26)

And so the probability of finding a state |𝑖⟩ representing a solution to the Grover’s search problem
upon measurement after the �̃� iterations is 𝑃𝑁,𝑡 = sin2 ((2�̃� + 1) 𝜃) = sin2 (𝜋2 + 2 (�̃� − 𝑘) 𝜃) = 1 −
sin2 (2 (�̃� − 𝑘) 𝜃). This proves that Equation (5.23) holds.
We can use the above to derive how many Grover iterations should be necessary for each type of the
search problem and what the subsequent probability of success is. The angle between the states |𝐵⟩
and the input state |𝑈0⟩ only depend on the problem size 𝑁 and the hamming weight 𝑡.

𝜃 = arccos√𝑁 − 𝑡𝑁 (5.27)

This can be used to directly find an expression for 𝑘 or �̃� and the success probability 𝑃𝑁,𝑡 for each
instance of the search problem.
We will use our hardware­centric machine learning approach to find a circuit to simulate the second
step of the Grover iterate, the amplitude amplification step. As in Grovers search algorithm we assume
access to a quantum oracle, which implicitly holds the information of which indices 𝑖 are such that
𝑥𝑖 = 1 in our generated circuit. In Grovers search algorithm the amplitude amplification step consists
of a reflection around the states |𝑈0⟩, that were the input state to the first iteration of the Grover iterate.
Remember that we have |𝑈0⟩ = 𝐻⊗𝑛 |0⟩, which means |0⟩ = 𝐻⊗𝑛 |𝑈0⟩ since the Hadamard gate is its
own inverse. This means it is easiest to find this operation by finding a reflection around the state |0⟩
say 𝑅0. A reflection around |𝑈0⟩ will then be expressed by 𝐻⊗𝑛𝑅0𝐻⊗𝑛. A reflection around the state
|0⟩ is equal to negating the amplitudes of all states |𝑖⟩ such that 𝑖 ≠ 0. It is easy to see that the circuit
of Figure 5.11 does that job.
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Figure 5.11: Amplitude amplification step for 𝑛 qubits.
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Notice that the part of this circuit in the dashed box expresses a reflection around the state |0⟩. This
can be seen as first the 𝑋⊗𝑛 operation ensures that the states |0⟩ and |2𝑛 − 1⟩ change positions (it also
switches the position of the other basis states). Subsequently the 𝐶⊗(𝑛−1)𝑍 (i.e. the Z gate on the first
qubit controlled by all other qubits) ensures that the amplitude of the state |2𝑛 − 1⟩ gets negated and all
other amplitudes remain unchanged. Finally the 𝑋 gates ensure that the states |0⟩ and |2𝑛 − 1⟩ (and
all other basis states) change back to their original positions. This ensures that a negative amplitude is
added only to the state |0⟩, while all other states remain unchanged. This is equal to adding a negative
amplitude to all states but the state |0⟩, up to a phase shift.
Since we perform Hadamard gates on all qubits before and after the part of the circuit in the dashed
box, the amplitude amplification step as presented performs a rotation around the states |𝑢0⟩ = 𝐻 |0⟩.
Notice that the implementation of this operation on a physical quantum computer potentially adds a lot
of depth, as the 𝐶⊗(𝑛−1)𝑍 gate is a 𝑛­qubit gate that needs to be decomposed in terms of native gates.
Therefore this amplitude amplification step is a good candidate for our quantum circuit generator to
see if we can find a circuit to simulate this operation. We run the quantum circuit generator for each
combination of 𝑁 and 𝑡 separately. We are looking for a quantum circuit for simulating the amplitude
amplification step of the search problem for several vector length and hamming weight combinations.
Since we are only interested in training a circuit to learn the amplitude amplification step, the input
training data fed into our machine learning algorithm consists of the vectors 𝑥 ∈ 𝑅2𝑛 which represent
the vectors |𝑈0⟩ for different options of answer vectors 𝑥 of length 𝑁 and hamming weight 𝑡. We only
consider 𝑁 such that there exists an 𝑛 with 2𝑛 = 𝑁. We train the circuit using the input data

|𝜙𝑥⟩ = 𝑂𝑥𝐻⊗𝑛 |0⟩ =
1
√𝑁

∑
𝑖=0
(−1)𝑥𝑖 |𝑖⟩ , (5.28)

where 𝑥 is a vector of length 𝑛 with hamming weight 𝑡. The associated output training data 𝑌 consists
of the associated probability vectors 𝑦𝑥

(𝑦𝑥)𝑖 =
𝑥𝑖
𝑡 . (5.29)

5.3.1. 𝑁 = 4 and 𝑡 = 1
The case 𝑁 = 4 and 𝑡 = 1 has that 𝑡 = 𝑁

4 , therefore Grover’s algorithm can solve this problem with
certainty, using only one query to the oracle.
Using our machine learning algorithm we were able to find a circuit solving this problem with success
probability 1, requiring only one query to the oracle and depth 𝐷 = 5. The found circuit is represented
in Figure 5.12.
We found this circuit by running the approach with PSO to optimize the parameters. We learned over
𝑁 = 1000 ansatzes, using a swarm of size |𝑆| = 450, a batch of size |𝐵| = 4 and 70 repetitions.

Figure 5.12: Resulting circuit mimicking the amplitude amplification step of Grover’s search problem with 𝑁 = 4 and 𝑡 = 1.
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The above circuit can be worked out to create the following matrix

⎡
⎢
⎢
⎢
⎢
⎣

0.4747 − 0.1569𝑖 −0.4747 + 0.1569𝑖 −0.4747 + 0.1569𝑖 −0.4747 + 0.1569𝑖
−0.4747 − 0.1569𝑖 0.4747 + 0.1569𝑖 −0.4747 − 0.1569𝑖 −0.4747 − 0.1569𝑖
0.1569 + 0.4747𝑖 0.1569 + 0.4747𝑖 −0.1569 − 0.4747𝑖 0.1569 + 0.4747𝑖
−0.1569 + 0.4747𝑖 −0.1569 + 0.4747𝑖 −0.1569 + 0.4747𝑖 0.1569 − 0.4747𝑖

⎤
⎥
⎥
⎥
⎥
⎦

. (5.30)

From this matrix expression it can easily be seen that our circuit gives the right result for the described
input vectors.
Note that the final angle of the 𝑅𝑍 gate is inconsequential as it can only alter the relative phase of the
basis states in which the last qubit is in state 1 instead of 0. As we perform the measurement directly
after this operation it does not affect the outcomes.
If we replace the angle of the final 𝑅𝑍 operation to 0 then 𝑅𝑍(0) = I. Using this and the above logic that
the angle 𝜃 of the final 𝑅𝑍(𝜃) gate is inconsequential we know that we can remove the final 𝑅𝑍(.64)
operation without changing the measurement outcome of the circuits. The alternative circuit resulting
from this change is represented in Figure 5.13.

Figure 5.13: Alternative circuit for mimicking the amplitude amplification step of Grover’s search with 𝑁 = 4 and 𝑡 = 1.
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This circuit can be worked out to the following matrix

⎡
⎢
⎢
⎢
⎢
⎣

0.5000 −0.5000 −0.5000 −0.5000
−0.5000 0.5000 −0.5000 −0.5000
0.5000𝑖 0.5000𝑖 −0.5000𝑖 0.5000𝑖
0.5000𝑖 0.5000𝑖 0.5000𝑖 −0.5000𝑖

⎤
⎥
⎥
⎥
⎥
⎦

. (5.31)

It can easily be seen that an operation with this matrix on the described input vectors gives the right
solution. Notice as well that this is not what the theoretical matrix for the amplitude amplification step
looks like. The theoretical matrix for this operation is

⎡
⎢
⎢
⎢
⎢
⎣

−0.5000 0.5000 0.5000 0.5000
0.5000 −0.5000 0.5000 0.5000
0.5000 0.5000 −0.5000 0.5000
0.5000 0.5000 0.5000 −0.5000

⎤
⎥
⎥
⎥
⎥
⎦

. (5.32)

This matrix can be created by the circuit shown in Figure 5.14.

Figure 5.14: Theoretical decomposition of the amplitude amplification step of Grovers search algorithm for 𝑛 = 2

𝐻 𝑍 • 𝐻
𝐻 𝑍 𝐻

This decomposition of the amplitude amplification step is different from the one we gave in Section
5.11, for 𝑛 = 2 this decomposition is also known, and it is thinner. The theoretical decomposition of the
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CNOT gate takes 6 layers to be decomposed in IBM native gates [Gok+20]; see Figure 5.3. Therefore,
the circuit to perform the amplitude amplification step consists of 11 layers. This means that the circuit
we found has a significantly lower quantum volume, but still performs the amplitude amplification step
perfectly well.
Using our gradient­based machine learning approach we were also able to find a circuit that also per­
fectly mimics the amplitude amplification step for 𝑁 = 4 and 𝑡 = 1.

5.3.2. 𝑁 = 8 and 𝑡 = 2
We are in the case 𝑡 = 𝑁

4 and so we know that Grover can solve this problem with probability 1.
Using our PSO machine learning approach we found the circuit depicted in Figure 5.15 with depth
𝐷 = 12.

Figure 5.15: Found amplitude amplification step for 3 qubits.
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In 24 out of the 28 possible input states this circuit yields a success probability of approximately .80,
where both states |𝑖⟩ such that 𝑥𝑖 = 1 have a probability of approximately .40 to be measured. In the
other four possible cases the probability of finding a state |𝑖⟩ for which 𝑥𝑖 = 1 is approximately .45. In
these four cases the probability of finding the state |𝑖⟩ for which 𝑥𝑖 = 1, is approximately .23 for both
states which have 𝑥𝑖 = 1.
Therefore the probability of solving the search problem using the amplitude amplification step found by
our circuit is approximately .65.
The theoretical amplitude amplification step leads to the user solving the search problemwith probability
1 using the circuit depicted in Figure 5.16.

Figure 5.16: Amplitude amplification step for 𝑛 qubits.
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The theoretical decomposition of the controlled­controlled­Z operation consists of 12 layers using at
least 6 CNOT operations. The CNOT operations need to be decomposed, using 6 layers of native
gates for the IBM computer [Gok+20]. Therefore the theoretical decomposition of this operation would
require about 48 layers. From which we can conclude that even though our quantum circuit leads to
a lower probability of finding the right state upon measurement, it does require a NISQ device with a
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much smaller quantum volume.

5.4. Comparison of performance of PSO and gradient­based ma­
chine learning

This section will give a comparison of the performance of the PSO and gradient­based machine learn­
ing algorithms.
In the examples described above, we used both PSO and the gradient­based approach to learn over
the same problems. The first difference we noticed is that for the simple example where we trained to
find a circuit that mimics 𝑓simple, the gradient­based approach required a larger batch size to learn over
in order to consistently optimize the gradients. This difference became particularly clear as the num­
ber of qubits of the system grew. When we reached 𝑓simple with 10 qubits the PSO approach was still
able to optimize the parameters, where the gradient­based approach seemed unable to find negative
gradients.
The other difference we noticed is that when learning a circuit to mimic the CNOT gate and the amplitude
amplification step of Grover’s search algorithm, the gradient­based approach needed more ansatzes
to learn over, in order to find a well performing circuit. For some ansatzes for which we knew well
performing angles were possible (and found by the PSO approach), the gradient­based approach was
unable to optimize the parameters.

5.5. Overview of results
In this section we presented the results of running our machine learning approaches on several differ­
ent problems.
We started by defining a small problem 𝑓simple, which is designed in such a way that mimicking the
function requires little circuit depth, but the amount of qubits used in the problem can grow arbitrarily.
For 𝑛 = 2 we were able to find a circuit that perfectly mimics the chosen function, using both our PSO
and gradient­based machine learning approach.
Using both PSO and gradient descent, we were able to find and perfectly optimize the right ansatz up
to 𝑛 = 5. We were able to learn the right angles and identify the right circuit using a much smaller batch
to learn over then would be required to span the space.
When learning to mimic 𝑓simple for 𝑛 = 10 qubits, our PSO approach was perfectly able to optimize
the angles correctly and distinguish the right ansatz in a batch of ansatzes using only two quantum
states to learn over (which is much smaller than the 1024 states minimally required to span the Hilbert
space we are working in). For 𝑛 = 10 our gradient­based approach was no longer able to consistently
optimize the gate parameters. This is in line with what is to be expected of gradient­based machine
learning for quantum circuits, as the circuit size grows [McC+18] [Kha+19].
Another important aspect of our results when learning to find a circuit to mimic 𝑓simple, is that we were
able to find a circuit which is thinner then a theoretical decomposition would require and has the de­
sired effect on all possible input states. This is due or choice of cost function, which only discriminates
between the probability vector describing the probabilities of each basis state being found upon mea­
surement.
Another interesting result we saw when learning quantum circuits for mimicking 𝑓simple, is that if you
define the batch to be the computational basis you run the risk of finding a circuit that performs perfectly
well on the computational basis states, but potentially very bad on states that are in a superposition.
This stands out as we do find the right result when learning over a much smaller amount of random
quantum states.
Next, we used our machine learning approaches to mimic the behaviour of applying a single CNOT
operation. In this case both the gradient­based and PSO approach performed well. We were also able
to show that using our approach, in combination with a cost function that only discriminates over the
outcome probabilities, we can find thinner circuits than would be theoretically required.
Finally, we used our machine learning approaches to find quantum circuits that can be used to mimic
the behaviour of the amplitude amplification step of Grover’s search algorithm.
For the problem with 𝑁 = 4 and the hamming weight 𝑡 = 1, we can find a circuit that performs the am­
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plitude amplification step perfectly for all possible input states. The circuit we found has a significantly
lower quantum volume than the decomposition of the theoretical amplitude amplification step.
We also used our machine learning approach to find a circuit to simulate the amplitude amplification
step in the case 𝑁 = 8 and 𝑡 = 2. Here we are again in the case where 𝑡 = 𝑁

4 and so we know that
the amplitude amplification step as given by Grover’s search algorithm leads to the right result with
probability 1. We were able to find a quantum circuit with much lower depth (and therefore smaller
quantum volume) but a probability of approximately 2

3 to find the right result.





6
Discussion

In this thesis, we presented an approach that can be used to find circuits designed to make optimal use
of NISQ devices, by creating a hardware­centric quantum circuit.
We identified the aspects of modern quantum computers that have a large impact on its performance
and used those to restrict the allowed ansatzes of the quantum circuits.
In particular, we require that any quantum circuit we create only uses quantum gates which are native
to the chosen device.
We also restrict two­qubit gates to be applied only between qubits which are connected on the hard­
ware. By implementing this requirement, we are in control of the true depth of the created quantum
circuit, as there is no extra depth hidden in the decomposition from used quantum gates to native quan­
tum gates.
A third aspect of NISQ devices, that has a large impact on its performance, is noise. Our approach
makes sure that we can always choose our circuit to be thin enough, such that it can be run without
noise having a large effect on the final measurement outcome. We do this by allowing the user to
choose the depth of the circuit and the number of qubits used. As long as these choices are such that
the maximum quantum volume of the chosen computer is not surpassed, we know the circuit can be
reliably run.
In our machine learning approach, we learn over an input batch of quantum states and the associated
desired probabilities of measuring each basis state after performing the desired function. We then
calculate the mean squared error between the probability vectors resulting from applying our created
quantum circuit and the desired probability vectors. This cost function can be evaluated relatively effi­
ciently, but is still exponential in terms of the number of qubits. This exponential size of the cost function
is unavoidable, as long as we use a classical computer to calculate the costs of the quantum circuit.
Since we learn over an input batch of quantum states and the desired probabilities, our optimization
method automatically takes noise into account when we run our approach using an actual quantum
computer.
In this project we subsequently presented our own implementation of a quantum simulator, to be able to
evaluate the cost associated with our created circuits. In designing this quantum simulator we exploited
that the quantum circuits, represented by the valid ansatzes considered, always consist of applying
single­ and two­qubit gates to the system. This means that the unitary applied to the quantum state
vector is the Kronecker product of many smaller matrices. We then used the Algorithm 993 [Fac19]
to efficiently simulate applying this unitary to the quantum state vector. Thereby, we avoid the extra
memory and computational costs associated to calculating this Kronecker product.
We also added extra cases and structure to allow for two­qubit operations to be performed between
qubits which are adjacent on the hardware but not in qubit order.
After having defined the aspects of NISQ devices to be taken into account when creating a valid ansatz,
as well as a cost function and a simulator to be able to evaluate the cost function, we usemachine learn­
ing to optimize the parameters of the quantum gates in the ansatz. We have presented two different
machine learningmethods that can be used to optimize the angles of the parameterized quantum gates.
The first method was a gradient­free machine learning approach, where we made use of particle swarm
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optimization. The second machine learning method we used was gradient­based, where we made use
of backpropagation in combination with the method from [Sch+19] to calculate the gradients of quantum
gates.
Both machine learning approaches presented can be used in combination with a quantum computer
or a quantum simulator. The gradient­based approach, however, is designed specifically to enable the
gradients of a quantum operation to be evaluated directly on a quantum computer. Nonetheless this
approach can still be used in combination with a quantum simulator.
We then used both machine learning approaches to learn over several example problems and com­
pared their results. The parameter optimization approaches performed equally well for smaller problem
sizes. Specifically for finding a circuit to mimic the function 𝑓simple, which required a circuit of small
depth, the approaches both performed well when learning the circuit for a small number of qubits. As
the amount of qubits got larger, the PSO approach performed more consistently.
As the depth of the circuits used to mimic certain functions got larger, the PSO approach also started
performing better, relative to the gradient­based approach. This can be explained by the fact that find­
ing non­zero gradients in a quantum circuit grows less likely as the size of the circuit grows [McC+18].
We have shown that our approaches can find quantum circuits which create the desired probability
vectors for all possible input states, while learning over a batch size much smaller than would be re­
quired to span the space. This is an interesting result, as any quantum state vector and its associated
probability vector have an exponential amount of elements with respect to the number of qubits, so by
significantly reducing the amount of quantum vectors to learn over we save memory usage and com­
putational steps.
We have also shown that by defining the cost function over the probabilities of measuring each basis
state upon measurement, we can find smaller quantum circuits then would be required to create the
correct output quantum state. This can save valuable circuit depth and no information measurable in
the chosen basis is lost.

6.1. Recommendations for further research
In this project we presented a machine learning based optimization technique to optimize the param­
eters of the gates in a quantum circuit, in order to mimic a chosen cost function. The method we
presented is designed to be used on smaller circuit sizes.
The next step of this research should be to extend these methods to enable them to be used for gen­
erating quantum circuits of larger quantum volume.
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A
Quantum computing

A.1. Qubits
Quantum computers are built using qubits. Qubits are the quantum equivalent to classical bits and as
such they have specific quantum properties. In this chapter we will introduce the properties of qubits
necessary to understand the basic ideas of quantum computing.

A.1.1. Single qubit
A qubit is the basic unit of quantum information. A single qubit is a two­state quantum system and can
be expressed as a 2 dimensional vector in complex Hilbert space. In quantum mechanics we express
the state of a physical system using bra­ket notation. For a single qubit 𝑞0 we can write the state
as

|𝑞0⟩ = [
𝛼0
𝛼1
] , (A.1)

with 𝛼0, 𝛼1 ∈ ℂ. Since any quantum mechanical object lives in Hilbert space and has a normalized
inner product we must have that |𝛼0|2 + |𝛼1|2 = 1.
Therefore a qubit state can be expressed as a linear combination of the two basis states |0⟩ and |1⟩.
The basis states |0⟩ and |1⟩ form the computational basis states of the space ℂ2. We can also write
|𝑞0⟩ as

|𝑞0⟩ = 𝛼0 [
1
0
] + 𝛼1 [

0
1
] = 𝛼0 |0⟩ + 𝛼1 |1⟩ , (A.2)

with 𝛼𝑖 ∈ ℂ and ∑
1
𝑖=0 |𝛼𝑖|2 = 1 as before.

Since |𝛼0|2 + |𝛼1|2 = 1 we can rewrite Equation (A.2) as follows:

|𝑞0⟩ = 𝑒𝑖𝛾 (cos(
𝜃
2) |0⟩ + 𝑒

𝑖𝜙 sin(𝜃2) |1⟩) . (A.3)

The factor 𝑒𝑖𝛾 does not effect an observation of the qubit; see Appendix A.2.3. Therefore we can
write

|𝑞0⟩ = cos(𝜃2) |0⟩ + 𝑒
𝑖𝜙 sin(𝜃2) |1⟩ . (A.4)

The equation above can be used to understand the Bloch sphere representation of a single qubit sys­
tem. This representation is useful for understanding the single qubit rotation gates 𝑅𝑋(𝜃), 𝑅𝑌(𝜃) and
𝑅𝑍(𝜃), which are often used as native gates on physical quantum computers; see Section 1.2.2. The
Bloch sphere is given in Figure A.1.
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Figure A.1: Bloch sphere representation of a single qubit state |𝜙⟩.
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The states on the z­axis are the computational basis state, from this it can be seen why the computa­
tional basis is sometimes refered to as the z­basis.
From the Bloch sphere representation it can also be seen that any single­qubit quantum gate can be
performed by performing a total of three rotations around the axes [NC16].

A.1.2. Multiple qubit states
Now consider a two­qubit system and call |𝜙⟩ the state of our quantum system. Then the state |𝜙⟩ can
be written as

|𝜙⟩ = 𝛼0

⎡
⎢
⎢
⎢
⎢
⎣

1
0
0
0
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⎥
⎥
⎥
⎥
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+ 𝛼1
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0
0
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+ 𝛼3

⎡
⎢
⎢
⎢
⎢
⎣

0
0
0
1

⎤
⎥
⎥
⎥
⎥
⎦

= 𝛼0 |00⟩ + 𝛼1 |01⟩ + 𝛼2 |10⟩ + 𝛼3 |11⟩ (A.9)

with 𝛼𝑖 ∈ ℂ and ∑
3
𝑖=0 |𝛼𝑖|2 = 1. The basis states can also be given in terms of decimal instead of binary

numbers, this gives

|𝜙⟩ = 𝛼0 |00⟩ + 𝛼1 |01⟩ + 𝛼2 |10⟩ + 𝛼3 |11⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ + 𝛼2 |2⟩ + 𝛼3 |3⟩ , (A.10)

where the 𝛼𝑖 are as before.
The benefit of using the binary representation of the basis states, is that you can immediately read
out which qubit is in the state |0⟩ and which is in the state |1⟩. However, as the amount of qubits and
therefore the dimensions of the Hilbert space increase, it is more practical to use decimal numbers to
indicate the basis states.
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Combining two separate qubits |𝑞0⟩ and |𝑞1⟩ to form a single qubit system |𝜙⟩, can be seen as taking
the tensor product

|𝜙⟩ = |𝑞0⟩ ⊗ |𝑞1⟩ . (A.11)

Similarly combining two quantum states consisting of multiple qubits can be seen as taking the tensor
product between the two. As such an 𝑛 qubit quantum system |𝜙⟩ is an element of ℂ2𝑛 dimensional
complex Hilbert space.
A quantum state |𝜙⟩ consisting of 𝑛 qubits can be written as

|𝜙⟩ =
2𝑛−1

∑
𝑖=0

𝛼𝑖 |𝑖⟩ , (A.12)

with 𝛼𝑖 ∈ ℂ and ∑2
𝑛−1
𝑖=0 |𝛼𝑖|2 = 1. Note that as before we express our quantum state as a sum of

computational basis states |𝑖⟩, the computational basis is equal to the standard basis.

A.1.3. Superposition
As seen in Equation (A.12), a system of qubits can be expressed as a linear combination of its basis
states.
As long as there is more then one basis state with non­zero amplitude we say that the quantum system
is in a superposition of these basis states.

A.1.4. Qubit order and indentation
In order to avoid confusion it is important we choose a convention of which qubit to give which index
when working with multiple qubit systems. When working with a system of 𝑛 qubits we use the following
indexation

|𝑞0⟩ ⊗ |𝑞1⟩ ⊗⋯⊗ |𝑞𝑛−1⟩ . (A.13)

From left to right the first qubit we encounter is the 0𝑡ℎ qubit and the last qubit is the 𝑛−1𝑡ℎ qubit. This
convention of qubit ordering is known as the little­endian convention [Nan20].

A.1.5. Measurement of a qubit
As described in the last section, a qubit can be in a superposition of several basis states. We cannot,
however, measure this superposition. Upon measurement we find one of the basis states that the qubit
was in a superposition of.
To make this more precise, consider the measurement of the multiple qubit system expressed in Equa­
tion (A.12). Since upon measurement we can only find a single basis state, we must first define the
basis we are working in. The most common choice of basis is the computational basis.
If we measure this qubit in the computational basis we will find the state |𝑖⟩ with probability |𝛼𝑖|2, we
cannot, however, recover the entire state of system |𝜙⟩.
In fact, after measuring of the state |𝜙⟩ and finding a certain basis state |𝑖⟩ the original state of |𝜙⟩
is lost. Upon measurement of a qubit system |𝜙⟩ the system collapses completely to the basis state
found upon measurement and now

|𝜙⟩ = 𝛼𝑖
‖𝛼𝑖‖2

|𝑖⟩ . (A.14)

This implies that measuring the qubits may actually change the state they are in and information might
be lost. This also means that we cannot measure the same quantum state multiple times in order to
find an estimation for the values |𝛼𝑖|2.
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A.1.6. Entanglement
Consider three separate qubits 𝑞0, 𝑞1, 𝑞2, we can combine them to form one quantum state |𝜙⟩. This
can be written as taking the tensor product

|𝜙⟩ = |𝑞0⟩ ⊗ |𝑞1⟩ ⊗ |𝑞2⟩ = [
𝛼0
𝛽0
] ⊗ [

𝛼1
𝛽1
] ⊗ [

𝛼2
𝛽2
]

= 𝛾0 |000⟩ + 𝛾1 |001⟩ + 𝛾2 |010⟩ + 𝛾3 |011⟩
+ 𝛾4 |100⟩ + 𝛾5 |101⟩ + 𝛾6 |110⟩ + 𝛾7 |111⟩ .

with 𝛼𝑖 , 𝛽𝑖 ∈ ℂ and ∑
2
𝑖=0 |𝛾𝑖|2 = 1. Here the state |𝜙⟩ is the Kronecker product of the states associated

with the three separate qubits. For notational simplicity we can write |𝑞0⟩ |𝑞1⟩ |𝑞2⟩ = |𝑞0⟩⊗ |𝑞1⟩⊗ |𝑞2⟩.
However, we cannot always write a quantum state |𝜙⟩ consisting of more then one qubit, as the Kro­
necker product of the separate qubit states. This leads us to the concept of entanglement. Consider
the following two­qubit state

|𝜙⟩ = 1
√2
(|00⟩ + |11⟩). (A.15)

This quantum state |𝜙⟩ consists of two qubits, but cannot be written as the Kronecker product of two
quantum states1. When this is the case we say that the qubits are entangled.
To see what the implications of entanglement are, consider measuring the second qubit. You will find
state |0⟩ or |1⟩ with equal probability. Assume we measure the second qubit and find state |0⟩. As
described in Section A.1.5 this means that the second qubit is now in the state |0⟩ and so if we look
at the two­qubit system as a whole, we know that only the basis states in which the second qubit has
state |0⟩ can still exist. In particular, after having performed this measurement the two qubit system |𝜙⟩
will be

|𝜙⟩ = |00⟩ . (A.16)

Now if we were to measure the first qubit we will find it in the state |0⟩ with probability 1. We can see
that upon measuring of the second qubit, we have also altered the state of the first qubit as they were
entangled.

A.1.7. Bra­ket notation
In quantum computing bra­ket notation is used to denote vectors in Hilbert space. A ket |𝜙⟩ is used
to represent the state of a qubit system. A bra ⟨𝜓| represents the Hermitian conjugate of |𝜓⟩. The
expression ⟨𝜓 | 𝜙⟩ represents an inner product between the two states.

A.2. Quantum Gates
In order for us to make use of qubits we need to be able to perform operations on them. Quantum me­
chanics only allows for linear operations to be performed [Wol19] and so we can consider an operation
performed on a qubit state |𝜙⟩ to be a matrix­vector multiplication. Let

|𝜙⟩ =
2𝑛−1

∑
𝑖=0

𝛼𝑖 |𝑖⟩ (A.17)

and 𝑈 be the quantum operation we wish to perform, we then get

|𝜙′⟩ = 𝑈 |𝜙⟩ = 𝑈
2𝑛−1

∑
𝑖=0

𝛼𝑖 |𝑖⟩ =
2𝑛−1

∑
𝑖=0

𝛼𝑖𝑈 |𝑖⟩ . (A.18)

Since a system of 𝑛 qubits can be expressed as a vector in 2𝑛 dimensional complex Hilbert space, the
matrix of the quantum gate acting on 𝑛 qubits can be expressed as an 2𝑛 × 2𝑛 dimensional complex
1The proof is simple. Assume |𝜙⟩ = (𝛼0 |0⟩+𝛼1 |1⟩)⊗(𝛽0 |0⟩+𝛽1 |1⟩), then we must have that 𝛼0 ≠ 0 and 𝛽1 ≠ 0 as 𝛼0𝛽0 =

1
√2

and 𝛼1𝛽1 =
1
√2 . Therefore 𝛼0𝛽1 ≠ 0, this is a contradiction as then |𝜙⟩ must have a nonzero amplitude for the state |01⟩.
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matrix. Since the unitarity of a quantum state needs to be preserved we have that the matrix represent­
ing the quantum operation 𝑈 must be a unitary matrix.2 An operation 𝑈 performed on one or multiple
qubits is often referred to as a quantum gate. When multiple quantum gates are subsequently applied
to a system of qubits we call this a quantum circuit.

Figure A.2: A quantum circuit consisting of the gates 𝑈0, 𝑈1 and 𝑈2 followed by a measurement.

𝑞0 𝑈0
𝑈2 




𝑞1 𝑈1

The figure above shows a quantum circuit where we first apply the quantum gate 𝑈0 to the first qubit
𝑞0 and simultaneously apply 𝑈1 to 𝑞1. We subsequently apply the two­qubit gate 𝑈2 to 𝑞0 and 𝑞1. The
final operation portrayed in the circuit is a measurement of the quantum state resulting from applying
the described operations to 𝑞0 and 𝑞1.
Let |𝜙⟩ be the quantum state 𝑞0 and 𝑞1 comprise at the start of the circuit. Then we can also write
the state resulting from applying the quantum gates, as described in Figure A.2, by 𝑈2(𝑈0 ⊗ 𝑈1) |𝜙⟩.
It is common to represent a quantum circuit in the form of such a figure, as it gives a good overview
of which operations are applied to which qubits in what order. See Appendix C.4 for an overview of
commonly used symbols when representing quantum circuits by such figures.

A.2.1. Quantum operations as matrix multiplications
As stated before, performing an operation on a quantum state can be seen as a matrix­vector multipli­
cation. As an example consider performing a Hadamard gate 𝐻 as defined in Appendix C on a single
qubit state

|𝜙⟩ = [
𝛼0
𝛼1
] . (A.19)

This can be expressed as

𝐻 |𝜙⟩ = [
1
√2

1
√2

1
√2

−1
√2

] [
𝛼0
𝛼1
] = 1

√2
[
𝛼0 + 𝛼1
𝛼0 − 𝛼1

] . (A.20)

We can generalise this idea of writing quantum operations as matrix vector multiplications to a system
with multiple qubits.
When applying a quantum operation 𝑈 on a state |𝜙⟩ consisting of multiple qubits, usually we must
first create the correct matrix expression for the quantum operation 𝑈. This is because most quantum
gates are single­ or two­qubit gates, so the quantum operation 𝑈 is built up from single­ and two­qubit
operations.
Say we have an 𝑛 qubit state |𝜙⟩ and we wish to apply a single­qubit gate 𝑢𝑖 to each qubit 𝑖. This can
be seen as performing the following operation 𝑢0⊗𝑢1⊗⋯⊗𝑢𝑛−1 |𝜙⟩. To write this as a matrix­vector
multiplication, we must first create the matrix 𝑈 = 𝑢0⊗𝑢1⊗⋯⊗𝑢𝑛−1 by performing 𝑛 − 1 Kronecker
products.
Notice that it is rather expensive to simulate such operations classically, as we need to perform 𝑛 − 1
Kronecker products to create a 2𝑛 × 2𝑛 size matrix.

A.2.2. Universal gate set
The universal gate set is the set of quantum operations required to be able to perform any arbitrary
quantum gate, up to an arbitrary accuracy. Since all operations performed on a quantum computer
2Since all operations performed on a quantum state are unitary we have that quantum computing is invertible. This follows
directly from the definition of unitary matrices. A matrix is unitary if 𝑈†𝑈 = 𝑈𝑈† = 𝐼 or equivalently 𝑈∗𝑈 = 𝑈𝑈∗ = 𝐼, therefore
any quantum operation 𝑈 has an inverse which is also a unitary operation 𝑈†. This does not hold for classical computing.
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must be unitary, a set of gates is universal for quantum computation if any unitary operation can be
approximated to arbitrary accuracy using only gates from the given set [NC16].
It can be shown that any unitary operation acting on a 𝑑 dimensional Hilbert space can be decomposed
as the product of two­level unitary matrices. A two­level unitary matrix is a matrix that acts non­trivially
on two or less vector components.
It can also be shown that by considering the single qubit operations and the CNOT­gate we can build
up all two­level unitary matrices. And so we can conclude that the set of single qubit operations
and the CNOT­gate are universal. This universal gate set is infinitely large and can be expressed
as {𝑅𝑋(𝛼), 𝑅𝑌(𝛽), 𝑅𝑍(𝛾),CNOT} where 𝛼, 𝛽, 𝛾 ∈ [0, 2𝜋]. Notice that the three rotation matrices 𝑅𝑋, 𝑅𝑌
and 𝑅𝑍 can be used to decompose any arbitrary single qubit gate , the matrix expressions of the de­
scribed quantum gates can be found in Appendix C.
Another well known and often used universal gate set consists of the Hadamard gate, the phase gate,
CNOT and the 𝜋/8 gates for 𝑛 ∈ {𝑥, 𝑦, 𝑧}. This gate set is known as the standard set and is a finite
universal gate set.
There are many different possible universal gate sets [NC16]. Any quantum computer that can natively
implement all the gates in a universal gate set can be used to perform any quantum operation. Note,
however, that for most unitary operations we do not have a good recipe to decompose it in terms of
the gates of a universal gate set [BKM18] [NC16]. In fact, you can proof that for any finite universal
gate set there will always be some universal operations that require an exponential number of quantum
gates to be approximated up to precision 𝜖 > 0 [NC16]. Generally speaking the problem of quantum
compilation is NP­complete [BKM18].

A.2.3. Phase of a quantum gate
Any 𝑛 qubit quantum state can be expressed as

|𝜙⟩ =
2𝑛−1

∑
𝑗=0

𝛼𝑖 |𝑖⟩ . (A.21)

Consider a phase 𝑒
𝑖𝜃𝜋
2 , then define the 𝛽𝑗 such that 𝛼𝑗 = 𝑒

𝑖𝜃𝜋
2 𝛽𝑗, this gives

|𝜙⟩ = 𝑒
𝑖𝜃𝜋
2

2𝑛−1

∑
𝑗=0

𝛽𝑗 |𝑗⟩ . (A.22)

We can always find such 𝛽𝑗, where ∑ |𝛽𝑗|2 = 1 as |𝑒
𝑖𝜃𝜋
2 | = 1. Notice that

|𝜙′⟩ =
2𝑛−1

∑
𝑗=0

𝛽𝑗 |𝑗⟩ (A.23)

is also a valid quantum state. Furthermore notice that the two states |𝜙⟩ and |𝜙′⟩ are indistinguishable
when a measurement is applied to them, as |𝛼𝑗| = |𝑒

𝑖𝜃𝜋
2 𝛽𝑗| = |𝛽𝑗|. Applying the same unitary operation

on both states |𝜙⟩ and |𝜙′⟩, also leads to indistinguishable quantum states

𝑈 |𝜙⟩ =
2𝑛−1

∑
𝑗=0

𝑈𝛼𝑗 |𝑗⟩ =
2𝑛−1

∑
𝑗=0

𝛼′𝑗 |𝑗⟩ (A.24)

𝑈 |𝜙′⟩ =
2𝑛−1

∑
𝑗=0

𝑈𝛽𝑗 |𝑗⟩ =
2𝑛−1

∑
𝑗=0

𝛽′𝑗 |𝑗⟩ . (A.25)

The states 𝑈 |𝜙⟩ and 𝑈 |𝜙′⟩ are indistinguishable as we have 𝑈 |𝜙⟩ = 𝑒𝑖
𝜃𝜋
2 𝑈 |𝜙′⟩ so again both quantum

states give the same probabilities of each basis state being measured.
From this it can be seen that two quantum gates which are the same up to a phase shift can be seen
as the same operation. Similarly, two quantum states which are the same up to a phase shift can be
seen as the same state.



B
The quantum circuit generator

This section is written to give the reader some insight in the code created to implement the approaches
described in this project.1
The quantum generator takes as input the operation we wish to mimic together with other parameters
specifying the circuit properties and which type of machine learning we want to use, and outputs the
optimized circuit for the given depth and computer.
The quantum circuit generator consists of three layers which build on each other, the Library B.1, the
Engine B.2 and the ML layer B.3.

B.1. Library
The first layer of the program is the Library layer. In the library we have several files which translate
technical properties of certain computers to PyTorch objects, which we are able to use in our optimiza­
tion and learning steps. The library also contains the list of distances specified for our purpose.

B.1.1. connectivity.py
The connectivity file contains contains information on the connectivity of several Rigetti and IBM quan­
tum computers. In this file the connectivity of the computers is expressed as a function of the amount
of qubits required. The user can specify how many qubits they are interested in using and the function
returns a PyTorch object representing which qubits are connected on the hardware.

B.1.2. native_gates.py
This file contains a list of the gates natively implemented in the quantum computers considered. The
gates are expressed in terms of their matrix representation, for use with the Kronx simulator, and in
terms of their Pennylane representation.

B.1.3. ibm.py
This file combines the connectivity and native gate properties for the IBM computers and ensures that,
when considering IBM computers, we only use IBM native gates and hardware structures.

B.1.4. rigetti.py
This file combines the connectivity and native gate properties for the Rigetti computers and ensures
that for Rigetti computers we only use Rigetti native gates and hardware structures.

B.1.5. backends.py
This file contains functions which can be used to get the native get sets in pennylane gates or the Kronx
matrix operation and quantum computing properties for the chosen computer necessary to run the ML
approach. The file also contains a function which returns which native gates are parameterized for

1If you are interested in obtaining the code used, please contact me at M.A.Schalkers@tudelft.nl.
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each quantum computer.

B.1.6. distances.py
In the distances file we have a function named distance. This returns the average of the distance
between the probability vector associated with measuring each basis state of the quantum states out­
putted by our learned circuit and the desired probability vector.
The user can choose between several distances. The standard distance to use corresponds to the
mean squared error of the associated probability vectors of each measurement outcome, as described
in Section 2.4.

B.2. Engine
The engine layer contains the functions necessary to run the steps of the machine learning files. In this
layer we prepare the data, the ansatzes and the angles to optimize over.

B.2.1. circuit_simulator.py
This file contains a function which returns a function that takes a quantum state as input and acts on
it as a quantum computer would. The user can choose to use our Kronx quantum simulator to get the
quantum state created by our circuit. The user can also choose to create the function using Pennylane,
in which case the probability vector of measuring the basis states would be the output of the created
function.

B.2.2. kronx.py
This file contains the functions and operations necessary to apply the Kronx function as described in
Chapter 3.

B.2.3. operations.py
This file contains a list of functions that can be used to create the data to learn over.

B.2.4. order_creator.py
This file creates a function that randomly creates a valid ansatz given the quantum computer properties
and desired qubit number and gate depth.

B.2.5. thetas_creator.py
This file consists of the function that creates a vector of length equal to the amount of parameterized
gates. Simultaneously a tensor is created which keeps track of which parameter index is connected to
which quantum gate. This file makes use of functions from the backends.py file to ensure we do not
optimize over an unnecessary number of parameters.

B.2.6. circuit_creator.py
This file translates the created ansatz in the order_creator.py file to a circuit which can be directly used
by Pennylane or our Kronx quantum simulator.

B.3. ML
The final layer of our code consists of the machine learning section. The files in this folder make use
of the Library and Engine layers to be able to run the quantum circuit generator. This layer contains
the file runner.py which should be evoked by the user to use our approach on a chosen function. In
this folder we also keep a esults folder in which all the results of running the circuits are automatically
stored if this option is turned on by the user.

B.3.1. gradient.py
This file contains our implementation of the gradient­based machine learning approach as described
in Section 4.4.
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B.3.2. PSO.py
This file contains our implementation of the Particle Swarm Optimization approach for optimizing the
parameters of a quantum circuit as described in Section 4.3.

B.3.3. qcg.py
This file can be used to potentially combine the gradient­based and non­gradient based machine learn­
ing approach in several configurations. In this file the data to learn over is also created and the ansatzes
are created.

B.3.4. runner.py
The runner file is the file directly run by the user. At the top of the file the user can specify the computer
they want to use, as well as which function they want to learn a circuit for and the amount of qubits
and circuit depth. Here the user can also specify if they want to save the result in the Results folder.
The user can also choose if they want to use the PSO or gradient­based machine learning approach to
optimize the gradients as well as how many different ansatzes they want to create. This is also the file
where the user can specify the swarm size and number of iterations in case of PSO and the number of
epochs in case of gradient­based learning.





C
Quantum gates

In this appendix we provide lists of commonly used quantum gates. Note that since every unitary matrix
can be a quantum gate, this list cannot contain all quantum gates. It does, however, contain all the
quantum gates which are commonly used and named.
In this last section we give an overview of the commonly used symbols in the visual representation of
a quantum circuit.

C.1. Single­qubit gates

Symbol Name Matrix Description Comments

𝐼 Identity [
1 0
0 1

] This gate does not change
the state of the qubit

One of the four
Pauli matrices

𝑋 Pauli­X [
0 1
1 0

]
This gate is the

quantum version of the
classical not gate

One of the four
Pauli matrices

𝑌 Pauli­Y [
0 −𝑖
𝑖 0

] 𝑌 = 𝑖𝑋𝑍 One of the four
Pauli matrices

𝑍 Pauli­Z [
1 0
0 −1

]
This gate shifts
the phase of the

|1⟩ state
One of the four
Pauli matrices

𝐻 Hadamard [
1
√2

1
√2

1
√2 − 1

√2

]
Spreads the amplitude
of the one or zero
state over both

This operation is
the equivalent of
a two by two QFT

𝑅𝑋(𝜃) Rotate X [
cos (𝜃2 ) −𝑖 sin (𝜃2 )
−𝑖 sin (𝜃2 ) cos (𝜃2 )

]
This gate rotates a

qubit around the X­axis.
See Bloch sphere;

Figure A.1
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𝑅𝑌(𝜃) Rotate Y [
cos (𝜃2 ) − sin (𝜃2 )
sin (𝜃2 ) cos (𝜃2 )

]
This gate rotates a

qubit around the X­axis.
See Bloch sphere;

Figure A.1

𝑅𝑍(𝜃) Rotate Z [
𝑒−𝑖

𝜃
2 0
0 𝑒𝑖

𝜃
2
]

This gate rotates a
qubit around the X­axis.

See Bloch sphere;
Figure A.1

𝑆 S gate [
1 0
0 𝑖

] This gate changes the
phase of the |1⟩ state 𝑆 = 𝑅𝑍(𝜋)

𝑇 T gate [
1 0
0 𝑒

𝑖𝜋
4
] This gate changes the

phase of the |1⟩ state
𝑇 = 𝜋/8
and

𝑇 = √𝑆 = 𝑅𝑍(
𝜋
2 )

𝜋/8 𝜋/8 gate 𝑒
𝑖𝜋
8 [
𝑒
−𝑖𝜋
8 0
0 𝑒

𝑖𝜋
8
] This gate changes the

phase of the |1⟩ state
𝜋/8
and

𝜋/8 = √𝑆 = 𝑅𝑍(
𝜋
2 )

𝑅(𝜙) Phase shift gate [
1 0
0 𝑒𝑖𝜙

] This gate changes the
phase of the |1⟩ state

A generalisation of
the 𝑆 gate

𝑅𝑘(𝜙) 𝑅𝐾 gate [
1 0

0 𝑒
2𝜋𝑖
2𝑘
] This gate changes the

phase of the |1⟩ state
A quantised phase

shift gate
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C.2. Two­qubit gates

Symbol Name Matrix Description Comments

𝐶𝑋 Controlled X

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

Controlled version
of the

single qubit
X gate

This gate is
often referred

to as
Controlled NOT
(or CNOT)

𝐶𝑌 Controlled Y

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 −𝑖
0 0 𝑖 0

⎤
⎥
⎥
⎥
⎥
⎦

Controlled version
of the

single qubit
Y gate

𝐶𝑍 Controlled Z

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

Controlled version
of the

single qubit
Z gate

𝐶𝑅(𝜃) Controlled
phase shift

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑒𝑖𝜃

⎤
⎥
⎥
⎥
⎥
⎦

Controlled version
of the

single qubit
phase shift

gate

𝐶𝑅𝑘(𝜃)
Controlled k
phase shift

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 𝑒
2𝜋𝑖
2𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Controlled version
of the

single qubit
𝑅𝑘
gate

𝑆𝑊𝐴𝑃 Swap gate

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

This gate can be
used to change the
order of two qubits

√𝑆𝑊𝐴𝑃 Square root
of swap

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 𝑖+1

2
𝑖−1
2 0

0 𝑖−1
2

𝑖+1
2 0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

√SWAP√SWAP
=SWAP

𝑖𝑆𝑊𝐴𝑃 Imaginary
SWAP gate

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 𝑖 0
0 𝑖 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

iSWAP is
a physical

implementation
gate
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√𝑖𝑆𝑊𝐴𝑃 Square root
of iSWAP

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1

√2
𝑖
√2 0

0 𝑖
√2

1
√2 0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

𝑀𝑆
Mølmer­
Sørensen

gate

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 𝑖
0 1 𝑖 0
0 𝑖 1 0
𝑖 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

MS is a physical
implementation

gate

𝑅𝑍𝑋
ZX gate
gate

⎡
⎢
⎢
⎢
⎢
⎣

cos(𝜃2 ) 0 −𝑖 sin(𝜃2 ) 0
0 cos(𝜃2 ) 0 𝑖 sin(𝜃2 )

−𝑖 sin(𝜃2 ) 0 cos(𝜃2 ) 0
0 𝑖 sin(𝜃2 ) 0 cos(𝜃2 )

⎤
⎥
⎥
⎥
⎥
⎦

The ZX­gate
is a

physical
implementation
gate given rise

to by the
Cross Resonance

gate [IBMb]
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C.3. Three­qubit gates

Symbol Name Matrix Description Comments

𝐶𝐶𝑁𝑂𝑇
Toffoli
or

Controlled
Controlled not

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This gate is the
controlled controlled

not gate

𝐹 Fredkin

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This gate is the
controlled controlled

swap gate
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C.4. Quantum circuit symbols
As mentioned in Appendix A.2.1, quantum circuits are often given in the form of a figure. In this section
we will give a table providing an overview of symbols used in such figures.

Table C.3: An overview of used symbols when representing a quantum circuit as a figure.

Operation Circuit symbol Further explanation

Identity

Each wire represents
a qubit.

When only the
wire is drawn
no operation is

performed on the qubit.

U 𝑈
The quantum gate
𝑈 is performed on

the qubit.

Multiple­qubit
gate 𝑈

A multiple qubit
gate 𝑈 is performed

on the qubits
whose wires cross

the gate.

CNOT •

CNOT is performed,
here the first qubit
is the control qubit
the second qubit is
the target qubit.

SWAP ××

This symbol represents
a swap operation

being performed between
the two qubits.

Measurement 




A measurement is
performed on the

qubit.



D
Properties of considered quantum
computers and their native gates

In this appendix we give some of the properties of the quantum computers and their native gates
considered for this project. The first section shows how to calculate the partial derivatives of the native
gates by using the theorem from [Sch+19]. The second section shows the lay­out and qubit connectivity
of some of the quantum computers considered for this project.

D.1. Gradients of implemented native gates
In Section 4.4 we gave a derivation of how the gradients of quantum gates can be determined. In this
section we will go over the native gates considered for this project. Both parameterized native gates
considered belong to the class for which we can evaluate the derivative by implementing 𝐺 ± 𝛿𝐺 as a
quantum gate.
Below we show that the native gates considered belong to the class for which Theorem 4.4.3.1 holds
and then we give the gate which we can use to implement 𝐺±𝛿𝐺 and subsequently calculate the partial
derivatives. We first show that this holds in the case we are working with a quantum circuit consisting
of as many qubits as the native gates apply to (i.e. a single­qubit circuit in the case of 𝑅𝑍(𝜃) and a
two­qubit circuit in the case of 𝑅𝑍𝑋(𝜃)). In this case we have that the layer 𝐺 is precisely equal to the
quantum gate. After having shown this case, we show that this generalises to the case that we are
working with multiple qubits and we have that 𝐺 consists of the native gate applied to the target qubit,
with identity operations applied to the other qubits.

D.1.1. Native gate: 𝑅𝑍(𝜃)
The rotation around the z­axis is generated by the Hermitian matrix

𝑍 = [
1 0
0 −1

] , (D.1)

we have
𝑅𝑍(𝜃) = 𝑒−𝑖𝜃

1
2𝑍 . (D.2)

Since 1
2𝑍 is also a Hermitian matrix and it has eigenvalues ±

1
2 , it follows that this gate is in the class of

quantum gates for which Theorem 4.4.3.1 holds, and so we know

𝜕𝜃𝑓(𝜃) = ⟨𝜙′ | 𝑅𝑍 (𝜃 +
𝜋
4) �̂�𝑅𝑍 (𝜃 +

𝜋
2) |𝜙

′⟩ − ⟨𝜙′ | 𝑅𝑍 (𝜃 −
𝜋
2) �̂�𝑅𝑍 (𝜃 −

𝜋
2) |𝜙

′⟩ (D.3)

holds. This means we can evaluate the partial derivatives with respect to 𝜃 by simply evaluating the cir­
cuit again, with 𝑅𝑍(𝜃) replaced by 𝑅𝑍 (𝜃 +

𝜋
2 ) and then again with 𝑅𝑍(𝜃) replaced by 𝑅𝑍 (𝜃 −

𝜋
2 ).

67
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D.1.2. Native gate: 𝑅𝑍𝑋(𝜃)
We know that

𝑅𝑍𝑋 = 𝑒
−𝑖𝜃
2 (𝑋⊗𝑍) (D.4)

holds. Where we have that

𝑋⊗ 𝑍 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

, (D.5)

so 𝑋⊗𝑍 has eigenvalues±1 and is a Hermitian matrix. Therefore the 𝑅𝑍𝑋 gate also belongs to the class
for which Theorem 4.4.3.1 holds and we can evaluate the partial derivatives by running the circuit again
with 𝑅𝑍𝑋(𝜃) replaced by 𝑅𝑍𝑋 (𝜃 +

𝜋
2 ) and again with 𝑅𝑍𝑋(𝜃) replaced by 𝑅𝑍𝑋 (𝜃 −

𝜋
2 ) and subsequently

calculating the expectation values. Finally we get

𝜕𝜃𝑓(𝜃) = ⟨𝜙′ | 𝑅𝑍𝑋 (𝜃 +
𝜋
4) �̂�𝑅𝑍𝑋(𝜃 +

𝜋
2 ) | 𝜙

′⟩ − ⟨𝜙′ | 𝑅𝑍𝑋 (𝜃 −
𝜋
2) �̂�𝑅𝑍𝑋 (𝜃 −

𝜋
2) |𝜙

′⟩ (D.6)

D.1.3. Extension of partial derivatives to circuits with more qubits
In the sections above we have shown how we can calculate the partial derivatives of the native gates,
in case of a circuit consisting of as many qubits as the gate natively applies to (i.e. a single­qubit circuit
for 𝑅𝑍(𝜃) and a two­qubit circuit for 𝑅𝑍𝑋(𝜃)).
In order to do this we will show that if we have a native gate 𝑅𝑍(𝜃) or 𝑅𝑍𝑋(𝜃) as part of a circuit with
more qubits, then the layer 𝐺(𝜃) = 𝐼⊗𝑚⊗𝑅𝑍(𝜃)⊗𝐼⊗𝑙 or 𝐺(𝜃) = 𝐼⊗𝑚⊗𝑅𝑍𝑋(𝜃)⊗𝐼⊗𝑙 can still be seen
as a quantum gate generated by a hermitian matrix with two unique eigenvalues ±12 .

Case 1: 𝑅𝑍(𝜃)
Consider 𝐼⊗𝑚⊗𝑍⊗𝐼⊗𝑙 this matrix clearly has the same eigenvalues as 𝑍 and the claim is that

𝐼⊗𝑚⊗𝑅𝑍(𝜃) ⊗ 𝐼⊗𝑙 = 𝑒
−𝑖𝜃
2 (𝐼⊗𝑚⊗𝑍⊗𝐼⊗𝑙). (D.7)

This claim can be proven by writing out the matrix exponential

𝑒
−𝑖𝜃
2 (𝐼⊗𝑚⊗𝑍⊗𝐼⊗𝑙) = ∑

𝑘=0

1
𝑘!
(−𝑖𝜃)𝑘
2𝑘 (𝐼⊗𝑚⊗𝑍⊗ 𝐼⊗𝑙)𝑘 . (D.8)

We can use that (𝐼⊗𝑚⊗𝑍⊗ 𝐼⊗𝑙)2 = 𝐼⊗(𝑚+𝑙+1), to get

𝑒
−𝑖𝜃
2 (𝐼⊗𝑚⊗𝑍⊗𝐼⊗𝑙) = ∑

𝑘=0

1
(2𝑘)!

(−1)𝑘𝜃2𝑘
22𝑘 𝐼⊗(𝑚+𝑙+1) + 𝑖∑

𝑘=0

1
(2𝑘 + 1)!

(−1)𝑘𝜃2𝑘+1
22𝑘+1 (𝐼⊗𝑚⊗𝑍⊗ 𝐼⊗𝑙) .

(D.9)
Using the Taylor series of the sine and cosine we get

𝑒
−𝑖𝜃
2 (𝐼⊗𝑚⊗𝑍⊗𝐼⊗𝑙) = cos(𝜃2) 𝐼

⊗(𝑚+𝑙+1) + 𝐼⊗𝑚⊗ 𝑖 sin(𝜃2)𝑍 ⊗ 𝐼⊗𝑙 = 𝐼⊗𝑚⊗𝑅𝑍(𝜃) ⊗ 𝐼⊗𝑙 . (D.10)

We can conclude that 𝐺(𝜃) = 𝐼⊗𝑚⊗𝑅𝑍(𝜃) ⊗ 𝐼⊗𝑙 is generated by a Hermitian matrix with two eigen­
values ±12 and so we can calculate the partial derivatives as follows

𝜕𝜃𝑓(Θ) = ⟨𝜙′ | 𝐺 (𝜃 +
𝜋
2) �̂�𝐺 (𝜃 +

𝜋
2) |𝜙

′⟩ − ⟨𝜙′ | 𝐺 (𝜃 − 𝜋2) �̂�𝐺 (𝜃 −
𝜋
2) |𝜙

′⟩ . (D.11)
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Case 2: 𝑅𝑍𝑋(𝜃)
Consider 𝐼⊗𝑚⊗𝑋⊗𝑍⊗𝐼⊗𝑙 again this matrix has the same eigenvalues as 𝑋⊗𝑍 and we claim

𝐼⊗𝑚⊗𝑅𝑍𝑋(𝜃) ⊗ 𝐼⊗𝑙 = 𝑒
−𝑖𝜃
2 (𝐼⊗𝑚⊗𝑋⊗𝑍⊗𝐼⊗𝑙). (D.12)

We use the same structure as in the section above and write this out

𝑒
−𝑖𝜃
2 (𝐼⊗𝑚⊗𝑋⊗𝑍⊗𝐼⊗𝑙) = ∑

𝑘=0

1
𝑘!
(−𝑖𝜃)𝑘
2𝑘 (𝐼⊗𝑚⊗𝑋⊗𝑍⊗ 𝐼⊗𝑙)𝑘 . (D.13)

Where as before (𝐼⊗𝑚⊗𝑋⊗𝑍⊗ 𝐼⊗𝑙)2 = 𝐼⊗(𝑚+𝑙+2). This leads to

𝑒
−𝑖𝜃
2 (𝐼⊗𝑚⊗𝑋⊗𝑍⊗𝐼⊗𝑙) = ∑

𝑘=0

1
(2𝑘)!

(−1)𝑘𝜃2𝑘
22𝑘 𝐼⊗(𝑚+𝑙+2)+𝑖∑

𝑘=0

1
(2𝑘 + 1)!

(−1)𝑘𝜃2𝑘+1
22𝑘+1 (𝐼⊗𝑚⊗𝑋⊗𝑍⊗ 𝐼⊗𝑙) .

(D.14)
Using the Taylor expansion for the sine and cosine we get

𝑒
−𝑖𝜃
2 (𝐼⊗𝑚⊗𝑋⊗𝑍⊗𝐼⊗𝑙) = cos(𝜃2) 𝐼

⊗(𝑚+𝑙+2) + 𝐼⊗𝑚⊗ 𝑖 sin(𝜃2) (𝑋 ⊗ 𝑍)⊗ 𝐼⊗𝑙 = 𝐼⊗𝑚𝑅𝑍𝑋(𝜃)𝐼⊗𝑙 . (D.15)

And we can conclude that 𝐺(𝜃) = 𝐼⊗𝑚𝑅𝑍𝑋(𝜃)𝐼⊗𝑙 is generated by a Hermitian matrix with two eigen­
values ±12 and so we can calculate the partial derivative of 𝑓(𝜃) with respect to 𝜃 can be evaluated
by

𝜕𝜃𝑓(Θ) = ⟨𝜙′ | 𝐺 (𝜃 +
𝜋
2) �̂�𝐺 (𝜃 +

𝜋
2) |𝜙

′⟩ − ⟨𝜙′ | 𝐺 (𝜃 − 𝜋2) �̂�𝐺 (𝜃 −
𝜋
2) |𝜙

′⟩ . (D.16)
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D.2. Qubit connectivity of considered quantum computers
In this section we present the layout of several quantum current quantum computers, of which the
connectivity is coded in the implementation of our approach. This is done to give the reader some
more insight in the connectivity and size of modern NISQ devices.

Figure D.1: Layout of the Rigetti Aspen 7 quantum computer [HGB20].
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Figure D.2: Layout of the Rigetti Agave quantum computer [Mur+19].
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Figure D.3: Layout of the IBM Ruschlikon quantum computer [IBMa].
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Figure D.4: Layout of IBM Lima quantum computer [IBMa], the lines the physical qubits are connected.
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Figure D.5: Layout of IBM Yorktown quantum computer [IBMa].
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