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Abstract—Air traffic delays have a major impact on the avi-
ation industry, affecting airlines, passengers, and the broader
ecosystem. With increasing regulatory and sustainability pres-
sures, accurate delay predictions are critical as they allow
for precise determination of the contingency and discretionary
fuel required for flights. This research aims to develop an
explainable supervised learning model to improve existing en
route delay predictions, focusing on intercontinental flights from
North America to Amsterdam Schiphol Airport. While prior
studies have explored flight delay prediction, they have not
addressed two critical research gaps identified in this research:
the inclusion of day-of-operations features, such as passenger
information, aircraft weights, and cost index, and the use
of transatlantic flight data for predictions 90 minutes before
departure. To address these gaps, two Gradient-Boosted models,
CatBoost and LightGBM, were trained using internal airline,
airport, and METAR data. Both models outperformed the
airline’s current in-use statistical model, with CatBoost achieving
an MAE of 3.44 minutes and RMSE of 4.61 minutes and
LightGBM achieving an MAE of 3.43 minutes and RMSE of
4.56 minutes. The most significant performance increase over the
current model was observed under adverse weather conditions.
This research advances en route delay prediction by providing
more accurate delay forecasts, particularly in critical weather
conditions, and proposes practical improvements to support
future studies focused on enhancing model adaptability across
diverse operational contexts.

Keywords—En Route Delay; Airline Operations; Fuel Plan-
ning; Gradient-Boosting; Supervised Learning

I. INTRODUCTION

Air traffic delays, particularly en route delays, represent a
persistent and costly challenge for the global aviation industry,
affecting airlines, passengers, and the broader ecosystem
daily. According to Eurocontrol, arrival and departure punc-
tuality have decreased by almost 7% since 2019, with arrival
punctuality at 65% and departure punctuality at 58% [1]. In
July 2024, air traffic flow management delays in Europe al-
most reached 7M minutes, averaging 6.5 minutes per flight, an
increase of 64% compared to the same period in 2023. These
elevated delay levels were driven by a combination of factors:
limited network capacity, adverse weather, constrained rerout-
ing options due to the Ukraine conflict, increased military
activity, and major technical disruptions [2].

Numerous factors can influence the actual flight time of a
flight, ranging from air traffic control instructions and weather
conditions to airspace congestion and safety-related rerout-
ing [2]. Accurate forecasts of en route delays are essential

for improving operational efficiency and planning accuracy.
Better predictions of expected en route delay can often
reduce the contingency and discretionary fuel required on
board [3, 4]. This lower fuel load reduces the aircraft’s weight,
leading to a more optimised flight and lower fuel consump-
tion throughout the entire journey. Thus, better predictions
can lead to optimised fuel management and improved flight
planning, which are critical for cost reduction and achieving
sustainability, safety, and customer satisfaction objectives.

In regular airline operations, flight dispatchers generate the
final flight plan approximately 90 minutes before departure.
Currently, dispatchers rely on simple statistical models that
average delays from previous flights, overlooking flight-to-
flight variations in weather, congestion, and other critical
parameters. Having a more accurate estimate of en route
flight delay at this stage would allow dispatchers and pilots to
make more informed decisions about fuel loading, ensuring
that sufficient fuel is carried to accommodate possible time
recovery during the flight or to manage holding patterns,
rerouting, and other in-flight adjustments due to unforeseen
circumstances. This precision could directly translate into
cost savings through optimised fuel usage while reducing the
airline’s environmental footprint.

This study advances prior research on en route flight delay
prediction by leveraging proprietary operational data from a
European Airline to develop a supervised machine-learning
model explicitly tailored to flights originating from North
America and landing at Amsterdam Schiphol Airport. The
model incorporates a novel set of features, including detailed
flight data such as Flight Planning Software (FPS) flight
times, expected congestion, and en route weather conditions.
These additional features aim to reduce prediction errors and
improve the accuracy of en route delay forecasts.

The remainder of this research paper is structured as
follows. The existing literature on flight delay prediction and
research gaps is discussed in section II. Next, in section III,
the problem at hand is discussed in more detail, highlight-
ing the importance of model explainability. After this, the
methodology used during this study is presented in section IV.
The results are given in section V. In section VI, the model
validation process is presented. The findings and resulting
recommendations are discussed in more detail in section VII.
Finally, the conclusion is given in section VIII.



II. LITERATURE REVIEW

Early studies on flight delay prediction used statistical
and basic regression-based models to analyse delay patterns.
Mueller and Chatterji [5] found that Poisson distributions
effectively modelled departure delays, while Normal distribu-
tions suited en route and arrival delays. Tu et al. [6] improved
predictions with a non-parametric model incorporating sea-
sonal trends and daily patterns. However these approaches
often lacked the adaptability to handle complex, real-time
conditions in aviation delay forecasting. As the complexity
of delay factors grew and data volumes increased, the avi-
ation industry began transitioning toward machine learning
methods, which offer the flexibility and adaptability needed
to capture dynamic, real-time conditions.

A. Machine Learning in Aviation

The data-rich nature of aviation makes it ideal for ma-
chine learning applications, with recent developments in
algorithms, the availability of vast datasets, and powerful
computational resources driving the rapid adoption of these
models. Advanced machine learning algorithms like Gradient
Boosting and Neural Networks are now commonly applied
by researchers such as Dalmau et al. [7] and Zhu and
Li [3], showing significantly improved performance in delay
prediction over traditional statistical methods. This transition
is further accelerated by increased funding and interest from
both public and private sectors [8, 9].

1) Flight Delay Prediction using Regression Approaches:
Multiple regression approaches have been compared to each
other, showing that Random Forest models outperform simple
Linear models and Decision Trees, as they leverage multiple
decision trees to capture complex patterns and interactions
within the data [10, 11]. Initial regression approaches for
flight delay prediction include Rebollo [12], who achieved
their results using aggregate pre-flight variables to select
appropriate forecast horizons. Kalliguddi [11] improved pre-
diction accuracy by employing Random Forest, which out-
performed other models due to its ability to handle complex
relationships in the data, achieving a Root Mean Squared
Error (RMSE) of 12.5 min. Manna et al. [13] achieved lower
RMSEs by using Gradient-Boosted Decision Trees, which
enhanced prediction accuracy by effectively handling data
variations and Boosting techniques. They achieved an RMSE
of 10.7 min for arrival delay and 8.2 min for departure delay.

Thiagarajan [14] and Ayhan [15] conducted comparative
studies that delved deeper into the impact of model selection
and data completeness on prediction outcomes. Thiagarajan et
al. [14] used a two-stage model with Extra-Trees and Random
Forest to predict on-time performance, demonstrating that
these models outperformed Boosting techniques, particularly
when the dataset was limited to flight and weather data. The
model achieved an RMSE of 8.3 min with global training and
5.1 min for selective training on single origin-destination pairs
for domestic flights in the USA. In contrast, Ayhan et al. [15]
focused on predicting the Estimated Time of Arrival (ETA)
using a more comprehensive dataset with trajectory infor-
mation. Their work showed that Boosting methods like Ad-
aBoost and Gradient Boosting delivered superior accuracy,

highlighting the critical role of data richness in enhancing
model performance, achieving an RMSE between 2.8 and
4 min for different domestic flight routes in Spain with a
forecast moment before departure.

Achenbach [16] and Birolini [10] explored hybrid and en-
semble models to enhance delay prediction. Achenbach [16]
combined Gradient Boosting and Linear Regression to opti-
mize flight arrival predictions and fuel consumption. Their
Gradient-Boosted Linear Regression model achieved an
RMSE of 5.9 min at the block-off moment. Similarly, Birolini
and Jacquillat [10] used segmented Random Forest and XG-
Boost models for day-ahead routing and delay mitigation.
Their XGboost model achieved an RMSE of 7.2 min one
day before the flight for flights in Europe.

In recent years, Neural Networks have gained attention
for their ability to model complex, nonlinear relationships
in flight delay prediction. Silvestre [17] followed this trend
by applying a Long Short-Term Memory network to predict
in-flight estimated arrival times, using 4D trajectory and
weather data, achieving an RMSE of 3.6 min with prediction
moment at 100 NM from the arrival airport. Similarly, Yu [18]
employed a Deep Belief Network combined with Support
Vector Regression to predict flight delays, outperforming
several other traditional models. These studies underscore
the effectiveness of Neural Networks in handling complex,
dynamic data to improve prediction accuracy. Their model
achieved a Mean Absolute Error (MAE) of 8.4 min with a
forecast moment 2 hours before the flight.

2) Flight Time and Estimated Time of Arrival Prediction:
Zhu [19] were among the first to investigate en route flight
time prediction. They used machine learning techniques to
model traffic volume and convective weather effects and
improve flight time predictions. Despite the limited dataset,
the study provided valuable insights into the importance of
considering en route variables and suggested that incorpo-
rating additional data, such as aircraft-specific information
and detailed flight plans, could further enhance prediction
accuracy. LightGBM, XGBoost, and Random Forest achieved
an RMSE of 7.1, 7.2, and 7.2 min, respectively, with the
forecast moment being before the flight.

Zhu [3] introduced a Spatial Weighted Recurrent Neural
Network to predict actual flight times to optimize fuel con-
sumption. Their model utilised data from Automatic Depen-
dent Surveillance-Broadcast (ADS-B) systems, Meteorolog-
ical Aerodrome Reports (METAR), and airline operational
records. Their model achieved an RMSE of 7.55 min, with
the forecast moment before the flight. Moreover, their study
demonstrated significant operational benefits, showing that
optimised flight time predictions could save fuel by 0.016%-
1.915% without compromising safety.

Wang [20] had an automated data-driven framework for
predicting ETA on the runway at the entry point of the Termi-
nal Manoeuvring Area (TMA) using ADS-B data from Bei-
jing Capital International Airport. The framework achieved
improved accuracy by clustering flights by runway-in-use and
applying a stacked ensemble model. Their Gradient Boosted
Machine performed best at an RMSE of 87.3 seconds.



B. Research Gaps and Contribution of this Paper

There is a critical gap in considering detailed day-of-
operations data, such as flight plan data, for flight time
prediction: these features include flight data, cost index,
and operational and business requirements. These day-of-
operations attributes directly impact flight time, and their
inclusion in the feature set is anticipated to enhance the
performance of forecasting models.

Additionally, typical prediction horizons for ETA or flight
time are just before or during the flight, where uncertainty
is relatively low due to real-time data inputs [15, 17, 20].
This shorter prediction horizon works well for domestic or
short international flights but becomes more challenging for
longer intercontinental flights. For these flights, predictions
must account for conditions that will be encountered along
the route, where data uncertainties significantly increase as
the pre-departure time extends. Notably, no prior research has
addressed en route delay prediction for transatlantic flights
90 minutes before departure. This 90-minute pre-departure
window is critical, as it is typically when the final flight
plan, including the final fuel allocation, is released. Accurate
predictions of potential departure or en route delays at this
stage would allow for timely adjustments.

III. PROBLEM STATEMENT

This research is conducted in collaboration with an internal
airline, which operates flights to over 170 destinations world-
wide. We focus on transatlantic flights from North America to
Amsterdam Schiphol Airport. The choice to focus on North
America was made after evaluating other routes: flights to
Asia were excluded due to disruptions in routes caused by
unrest in the Middle East and Russia, flights to Africa were
limited by the few available destinations, and European flights
were too short to capture the en route delay patterns of
interest. Between North and South America, North America
was chosen due to a broader range of destinations and the
absence of triangular flights. The dataset comprises flight data
from 2018 to 2024, excluding years affected by the COVID-
19 pandemic, resulting in almost 45,000 flights.

The trip time given by Flight Planning Software (FPS)
is used to calculate the en route delay. Flight Planning
Software is a comprehensive flight planning tool airlines use
to optimize flight routes, manage fuel efficiency, and ensure
regulatory compliance. En route delay is considered to be a
deviation from the trip time provided by FPS and the actual
flight time. This differs from previous studies on flight delays,
where the scheduled trip times are often the comparison or
baseline. These standardised schedules do not account for
daily variations in route or weather and instead reflect average
or typical times for a route.

Note that the en route delay value has been corrected for
the actual cost index that has been flown. This means the en
route delay caused by the difference between the planned and
actual cost indexes has been corrected. This is a correction
for the difference in speed as this was not considered en
route delay. This is achieved using a standardised table that
gives the difference in flight time in minutes for different cost
indices for a specific route. A higher cost index than planned

would mean the flight is going faster than planned, and time
should be added to find the corrected FPS flight time. By
correcting this, the model does not have to identify patterns
in expected speed differences.

The airline currently uses a statistical model that outputs
an expected value of en route delay. This estimate is then
shared with the dispatcher, who can use it to make more
informed flight and fuel planning decisions. Together, this
can be used to anticipate any expected en route delays. The
performance improvement of the new models with respect
to the currently in-use statistical model will be shown in
more detail in subsection V-C. The current in-use model by
the airline will be referred to as the Current model in the
remainder of this paper.

IV. METHODOLOGY

This section will discuss the methodology used during this
research. First, the data preprocessing steps are presented in
subsection IV-A. After this, the model development procedure
is discussed in subsection IV-B. Finally, the feature engineer-
ing steps are laid out in subsection IV-C.

A. Data Preprocessing

Three data sources are used to build the features for
the en route delay prediction model as described below.
Through the collaboration with a European airline, detailed
airline data, including flight plan data, is available. Historical
actual weather measurements are available from the Iowa
State University Environmental Mesonet database. Finally, the
Opensky Network is used as a database to gather ADS-B
messages from flights all over the world.

• Airline Data: Data with respect to flight plans, flight
information, passenger information, en route weather.
After removing flights with missing information, almost
45,000 flights are considered for training and testing.

• Meteorological Aerodrome Report (METAR) Data:
METAR weather data available from Iowa State Uni-
versity Environmental Mesonet. The weather reports are
used for weather features at arrival airports [21].

• The OpenSky Network ADS-B Messages Data: Data
used to construct congestion features at outstation air-
ports (not used in final use case as only Schiphol
Amsterdam Airport was analysed) [22].

1) Missing Data Handling: Two steps are taken to deal
with missing data in the dataset. Flights that lack essential
data used to build the features, like scheduled or actual
times or other data inputs, are removed from the dataset.
The weather data from the METAR dataset occasionally has
empty cells for rows used in the model. For these missing
weather data points, linear interpolation was used to estimate
the weather situation at the recorded time. If a gap of more
than two hours in the measurements existed, the flight was
removed from the dataset to prevent the chance of a significant
difference between the interpolated and actual values.

2) Data Sampling and Outlier Removal: The distribution
is centred just below zero and over 90% of the flights experi-
ence within -10 and 10 minutes of en route delay. By training
the model on the entire dataset, the model gets biased towards



this majority class. As a result, flights from the majority class
(-5, 5) are removed so that the model is not overtrained on
these instances. The final distribution can be seen in Figure 1a.
This sampling method effectively increases the ‘weight’ of
flights outside this range so the model can better recognise
patterns in these cases. This suggests that the model’s overall
performance may decline as the performance for the majority
class reduces. However, it will likely improve performance for
flights outside this range. This primary method of removing
part of the majority class of the data distribution is used in
the results from subsection V-A to subsection V-B.

However, from an operational standpoint, there is particular
interest in flights experiencing over 5 minutes of en route
delay, as better predictions in this area are crucial for safety
and planning, enabling more proactive responses to potential
disruptions. A second sampling technique was thus proposed
to achieve this, focusing more on >5 minutes en route delayed
flights. For the middle part of the distribution, a total number
of flights is specified instead of a maximum number of
flights per bin; this causes the original distribution of more
flights around 0 to stay intact. In Figure 1b, the resulting
distribution is visualised. As expected by sampling in this
way, the performance on the right-hand side of the distribution
is further increased compared to the first sampling method
previously described. In subsection V-C, the second sampling
method will be used to show how the model performance can
be further increased for the right-hand side of the distribution.

(a) En route delay distribution after removing samples from the
majority class

(b) En route delay distribution after removing samples from the
majority class and resampling in >5 minutes region

Figure 1: Visual of the resulting distributions of en route delay
for both sampling methods

For training of the model, the dataset will be split into a
training dataset (90% of the data) and a test dataset (10%
of the data). Finally, the model performance improved when
all flights with more than four standard deviations from the
average were removed. This resulted in 151 flights being
removed from the dataset. Such led to some erroneous entries
in the flight data were removed as some flights had delay
values of -40 and 40+, which are unlikely to be achievable.

B. Model Selection and Development

We use two variations of the Gradient-Boosted Decision
Tree algorithm, Catboost and LightGBM, to predict flight de-
lays. Numerous studies show that Boosted algorithms perform
better than more simplistic models like Linear Regression,
Decision Trees, and Random Forest [14, 15, 17]. There are
two prominent reasons for choosing Boosted methods over
Neural Networks. First, the explainability and interpretability
of a model are very important. Since this study was conducted
in collaboration with an airline, Boosted algorithms were
chosen to increase explainability and understandability for
end users like dispatchers and pilots. Boosted methods, such
as CatBoost and LightGBM, are generally considered more
explainable than Neural Networks, as their decision-making
processes are more straightforward to interpret through fea-
ture importance and Decision Trees [23, 24]. The second
reason is the dataset size - Neural Networks need extensive
datasets to achieve high performance, which is hard to achieve
by only considering the intercontinental flights of one airline.

CatBoost is a type of Gradient-Boosting Decision Tree
specifically designed to work well with categorical input
features. Instead of one-hot encoding or label encoding, it
uses a technique called order target encoding. In this way,
the dimensionality of the dataset is reduced without losing
critical information about the categories, increasing efficiency
and performance. It uses ordered boosting to prevent data
leakage, a problem that can occur for traditional Gradient-
Boosting methods [25]. The hyperparameter values used for
the final Catboost model can be found in Table Ia.

LightGBM, just like Catboost, is a specific variation of
the Gradient-Boosting Decision Tree algorithm. It is widely
known for its fast and efficient implementation, particularly
with large datasets. By using several optimisations, it becomes
faster and more memory efficient compared to a standard
Gradient-Boosted Decision Tree. The leaf-wise growth ap-
proach that LightGBM uses is the prominent driver of this.
Instead of growing each tree level by level, splitting all
nodes at each depth, LightGBM expands the tree by choosing
the largest loss reduction leaf [26]. LightGBM provides
more adjustable hyperparameters than CatBoost, allowing for
greater flexibility and precision in model optimization. The
final hyperparameter values can be found in Table Ib.

C. Feature Engineering

1) Selected Features for Final Model: Table II presents
the features used in the final model. These features were
selected using the RFE algorithm and correlation analysis.
The features encompass a range of categories, including



temporal factors, flight plan details, weather conditions, and
congestion indicators.

2) Feature Correlation of Numerical Features: In Figure 2,
the correlation matrix for all numeric variables in the dataset
can be found. None of the features have a really high
correlation. A moderately strong correlation exists between
the Wind Gust and Wind Speed - higher wind speeds result
in high gusting. However, the Wind Gust feature was found
to be especially critical in adverse weather situations, and
information was added for the model compared to using only
the Wind Speed feature. Therefore, it was decided that both
features should be kept in the model. Additionally, a mod-
erate correlation can be observed between the Arrival Hour
and the Number of Arrivals features. Amsterdam Schiphol
Airport works with arrival and departure banks, causing this
relationship to appear. Finally, it can also be seen that there
is a moderate negative correlation between the Average Wind
Component and the FPS Flight Time Standard Deviations -
a higher Average Wind Component (tailwind) will result in
shorter flight times.

3) Feature Uncertainty due to Data Limitations: During
the training of the model, some limitations in data avail-
ability were encountered, which affect the predictions and
performance of the model. The first limitation encountered
during the model training is that not all flight plan versions
are saved for a long time. This means that during the model’s
training, only the latest issued flight plan is available, which
is not necessarily the flight plan that was available 90 minutes
before departure. In total, 85% of the flight plans used were

TABLE I. Hyperparameters of the selected methods.

(a) CatBoost

Hyperparameter Value

iterations 1300
learning rate 0.03
depth 9
subsample 0.7
L2 leaf reg 5
objective RMSE

(b) LightGBM

Hyperparameter Value

n estimators 1000
learning rate 0.02
num leaves 50
max depth 20
min child samples 10
subsample 0.8
colsample bytree 0.6
reg alpha 0.5
reg lambda 0.0
objective MSE

TABLE II. Selected features after elimination

Feature Name Unit Type Example

Hour of Day [-] Numeric 12
Week of Year [-] Numeric 24
Season [-] Categorical S22
Departure Airport [-] Categorical JFK
Aircraft Type [-] Categorical 789
Average Wind Component [kts] Numeric 65
Cost Index [-] Numeric 200
Planned Arrival Runway [-] Categorical 18R
Wind Speed [kts] Numeric 18
Wind Direction (cos) [-] Numeric 0.68
Wind Direction (sin) [-] Numeric -0.69
Wind Gust [kts] Numeric 40
Visibility [km] Numeric 6
Number of Arrivals [-] Numeric 18
FPS Flight Time Standard Deviations [-] Numeric 2

90 minutes before, and 96% of the flight plans were created
at least 60 minutes before departure. The fact that flight plans
later than 90 minutes are also used introduces a bias in the
model. During the actual use of the model, only the flight plan
90 minutes before departure is available. This means that in
some cases, this flight plan does not have the latest update on
the route or weather forecast, causing a worse representation
of the actual flight. This means that the model’s performance,
when tested on new data, will be slightly worse as the data
will not be as accurate as the training data.

The second limitation concerns the weather data used for
Schiphol. For training, actual measurements from the Iowa
State University Meteorological Aerodrome Report database
are used. However, 90 minutes before departure, only Ter-
minal Aerodrome Forecasts (TAFs) are available. Given the
long flight durations from North America (up to 10 hours),
TAFs for Schiphol may be issued well in advance, leading
to discrepancies between forecasted and actual conditions.
This is especially problematic in adverse weather, with wind
speeds over 15 knots or visibility below 3 kilometres.

V. RESULTS

In this section, the performance will be analysed globally
in subsection V-A and for the binned distribution in subsec-
tion V-B. Finally, in subsection V-C, the developed models
will be compared to the currently in-use model.

A. Global Model Performance

Below in Table III, performance metrics are given for
four models. The table includes a Random Forest model to
show the superior performance of Boosted methods. But also
the Current model introduced in section III, to show the
performance increase over the currently in use model. The
Catboost model and the LightGBM model outperform the
Current model and the Random Forest model. Although the
fit of all models can still be considered low, the Catboost and
LightGBM models perform better than the Current model.
The Boosted methods also perform slightly better regarding
the MAE and RMSE. The higher difference in RMSE for the
Current model compared to the other models is explained by
the fact that the model does not understand outliers well, as
it is a simple statistical model that uses medians. However,
this means that the Current model predicts flights closer to
the middle of the distribution more accurately.

The LightGBM model required less than 20 seconds to
train and produce results, while the CatBoost model took
around 2.5 minutes. This efficiency makes both models suit-
able for operational use. Notably, these results were achieved
on a 13th Gen Intel(R) Core(TM) i5-1345U CPU with inte-
grated Intel(R) UHD Graphics.

TABLE III. Global performance of the models

Model MAE [min] RMSE [min] R2

Random Forest 3.68 4.91 0.17
Catboost 3.44 4.61 0.23
LightGBM 3.43 4.56 0.22
Current 3.69 5.23 0.11



Figure 2: Feature correlation for the numerical features used in the models

B. Binned Model Performance

Figure 3 shows that the MAE increases when moving to the
sides of the distribution. It is also visible that the number of
flights drops significantly in a similar fashion to the training
dataset. In the plot, the performance of the four models is
visible again. It can be seen that the Current model has the
best performance in the range of -5 to 2.5 minutes of en route
delay. For most of these flights, nothing major happens, and
the median is a good prediction. However, outside of this
region, the machine-learning models perform better.

Catboost has the best performance of the machine learning
models in the middle of the distribution but loses performance
compared to the Random Forest and LightGBM models when
moving to the right side of the distribution. Still, it performs
better than the Random Forest for most of the left side of the
distribution. The LightGBM model performs slightly worse
than Catboost in the range of -5 to 7.5 but does outperform the
Catboost and Random Forest models outside of this region.
It significantly outperforms the current model when moving
more to the outside.

C. Model Improvement Compared to the Current Model

The Current model is a simple statistical model that uses
averages to predict en route delay, which means that it does
not understand changes in day-to-day weather, congestion,
and flight plans. This causes significant errors for more
extreme cases of en route delay, both for negative and positive
values. This means it is exciting to see the increase in
performance of the Catboost and LightGBM models for those
flights. A new model, Right Side LightGBM, is introduced to
illustrate the potential for further improving performance on
the right side of the distribution. The model uses the second
way of sampling training data as discussed in subsubsec-
tion IV-A2. This is only shown for the LightGBM model as

it had superior performance over the Catboost model on the
right-hand side of the distribution as shown in subsection V-B.

In Figure 4a, three models are compared to the Current
model: Right Side LightGBM, LightGBM, and Catboost.
Only flights with an actual en route delay higher than 0 are
considered in the figures. The left y-axis shows the percentage
of flights correctly predicted above a specified en route
delay threshold (in minutes). A flight is considered correctly
predicted above the threshold when both the predicted and
actual en route delay are higher than the specified delay value
on the x-axis. For instance, 14.1% of flights in the test set
(consisting of 1,655 flights from North America) experience
en route delays above 6 minutes. The Right Side LightGBM
model correctly predicts delays above 6 minutes for 40%
of these flights. The relaxed bounds provide further context,
showing that for the same 14.1% of flights with delays over
6 minutes, the model predicts delays above 5 minutes in
47% of cases. While the regular LightGBM and CatBoost
models perform slightly less accurately, they still significantly
outperform the Current model.

The model understands certain conditions better than other
conditions. If a flight has experienced an en route delay
of more than 0 minutes and one or more of the following
conditions below is true: (1) Wind Speed: Wind speed over
15 [kts], (2) Wind Gust: Wind gust over 25 [kts], and (3)
Visibility: Visibility under 3 [km], the flights are included in
Figure 4b. In the training data, 16% of the flights meet one
or more of these conditions. The increase in performance
is visible in Figure 4b as now 67% of flights are correctly
identified as above 6 minutes (48% for LightGBM and
38% for Catboost Models), and for the relaxed bound -1,
it is almost 80%. This shows that the increase in model
performance is significant under certain specific conditions.
From an operational standpoint, this also gives confidence in
the model prediction for these conditions.



Figure 3: Binned model performance of the Catboost and LightGBM models compared to the Current model and Random
Forest model

(a) Comparison of three models against the Current model in predicting flights exceeding specified en route delay values. The x-axis shows
the en route delay, with the percentage of test set flights meeting or exceeding each delay value indicated in brackets

(b) Comparison of three models compared to the Current model in predicting flights exceeding specified en route delay values under
specific weather conditions. The x-axis shows the en route delay, with the percentage of test set flights meeting or exceeding each delay
value indicated in brackets

Figure 4: Comparison of models in predicting flights above specific bounds. (a) Full test data set, and (b) Under specific weather
conditions



VI. MODEL VALIDATION

In this section, the models that have been built are vali-
dated. In section VI, two sensitivity analyses are discussed.
The test run performance is presented in subsection VI-B.

A. General Errors

For all ranges of delays often there is a difference between
the actual wind experienced by the aircraft and the planned
wind over the full range of the flight. This wind affects the
total travel time as the ground speed can change significantly
depending on the wind speed. This also means that this error
can be significant for longer flights, like the flights analysed
during this research from North America to Schiphol. A 1-
knot difference in wind speed can translate into a 1-minute
difference in flight time for flights of 3000-4000 nautical
miles; the flights analysed in this research are all over 3000
nautical miles and go up to almost 6000 nautical miles.

Another error that has been observed frequently is the error
caused by the difference in time spent from the Standard
Terminal Arrival Route (STAR) entry point to the landing
runway. All flights from North America enter via 1 of 4 entry
points: LAMSO, REDFA, TOPPA, and MOLIX. An average
time from each of these points towards every runway can be
calculated from historical data. From this, it was clear that
flights can have a difference of 3-4 minutes within the Ter-
minal Manoeuvring Area (TMA) without having significant
deviations from the route, such as a holding. This means that
a large part of the error can be explained by a difference in
time spent in this area. Flights with a positive prediction error
(prediction longer than actual) often had short, straight paths
to the runway. Whereas flights with a negative prediction error
often had longer, curved paths to the runway. Another primary
reason for the difference in time spent in the TMA is a change
in the landing runway. The arrival runway differed from the
planned arrival runway in about 35% of the flights.

Following, different parts of the en route delay distribution
are discussed in more detail, and commonly found reasons
for errors in the model prediction are given:

• Flights that experience an en route delay of −5 minutes
or less typically encounter one or more of the following
factors. First, they encountered a significantly better
average wind factor along the route. Second, they have
had a significant shortcut somewhere along the route. Or
they landed on a runway different from the one planned
in the flight plan.

• Flights that experienced en route delay of [-5, 5]: The
error in this range appears random. Most of the flights in
this delay range do not experience anything significant.
No extensive shortcuts are given, and no significant
events happen in the TMA. It is challenging for the
model to explain precisely what happens. A minute and
even a 5-minute difference on such long flights can stem
from many reasons, including differences in en route
wind, shortcuts, vectoring, and runway changes.

• Flights that experienced en route delay of [5, 15]: Most
flights in this delay range experience several things that
cause the en route delay. These flights spend, on average,

a longer time in the TMA due to minor vectoring
procedures or runway changes. The flights experience
a worse tailwind than planned due to unplanned altitude
changes. From 10 minutes en route delay and onwards,
flights often experience at least one holding pattern.

• Almost every flight with an en route delay of >15
minutes has a holding pattern. The model has difficulty
predicting whether or not a flight will experience a
holding and the time spent in holding. For some very
extreme conditions, like extreme gusting or very strong
winds, the average delay is over 15 minutes. For these
conditions, there is a big range of what delays are
experienced. It is challenging for the model to predict
what will happen on individual flights. Flights arriving
within 20 minutes of each other on the same conditions
might experience en route delay differences of up to 20
minutes, even in adverse weather circumstances.

B. Test Run Performance

A test run was performed to test performance on flights
outside the training period. Flight data over 1 month was
gathered, including weather forecast. For this test run, weather
forecasts were used instead of actual measurements used
during training. Flight plans created at least 90 minutes before
departure were used - the median creation time of flight plans
in the test set was 153 minutes before departure. During
training, flight plans of a later stage were sometimes used
due to the limitations in saved flight plan data. Additionally,
since the test run considers a new operational period, potential
seasonal variations could impact model performance. Limited
familiarity with this new season may result in reduced model
accuracy. The resulting performance is shown in Table IV.

The performance of the Catboost and LightGBM mod-
els using TAFs is similar to the performance discussed
in subsection V-A. However, the R2 value is significantly
lower when the TAF and 90-minute flight plan are used. As
shown in subsubsection IV-C3, the actual weather can differ
significantly from the TAFs. Furthermore, flight plans created
within 90 minutes of departure were used during training with
new routing and en route weather information. However, this
effect is smaller than that of the actual weather.

As shown in subsection V-C, the LightGBM and Catboost
models understand adverse weather situations better. This
could also explain the additional drop in R2 performance
compared to what was given in Table III, as the training
dataset contains 16% flights that comply with the conditions
given in subsection V-C. Whereas the test run set only has
3% of flights that comply with those conditions. As a result,

TABLE IV. Results of the shadow run

Model MAE
[min]

RMSE
[min]

R2

Catboost TAF 3.43 4.65 0.05
Catboost Actual Weather 3.31 4.47 0.13
Catboost Actual Weather & Latest Flight Plan 3.24 4.37 0.14
LightGBM TAF 3.50 4.70 0.04
LightGBM Actual Weather 3.42 4.54 0.10
LightGBM Actual Weather & Latest Flight Plan 3.36 4.47 0.10



the test set is primarily composed of flights under non-critical
conditions, where delays tend to be more variable and lack a
consistent directional trend. By contrast, critical conditions
provide a more evident directional tendency (towards de-
layed), enabling the model to generate more reliable forecasts.

The binned model performance of the test run is given
in Figure 5. A similar response is visible as in Figure 3.
The Catboost model outperforms the LightGBM model in
the centre part of the distribution, and the LightGBM model
performs better to the sides of the distribution except for
flights in the range of -12.5 to -7.5 minutes of en route
delay. Furthermore, it is visible that for almost every bin,
the performance of the models improves as more actual data
(actual weather and latest flight plan) is used.

Finally, the test set has six flights that experience an en
route delay of more than 15 minutes. All these experienced
arrival wind speeds of less than 13 knots and maximal
visibility of 10+ kilometres. Also, no critical values of the
Number of Arrivals or any other feature were visible. This
again shows that it is often impossible to correctly predict all
possible flight scenarios during the en route phase of a flight.

VII. DISCUSSION AND RECOMMENDATIONS

This section discusses a final, high-level overview of all the
research outcomes in subsection VII-A. From this discussion,
a set of recommendations follows that will be presented in
more detail in subsection VII-B.

A. Discussion of Research Outcomes and Implications

While the MAE and RMSE indicate good performance
across all models, the R2 score shows that there is still
room for improvement. The Current model demonstrates a
superior performance for flights that experience low en route
delays as it uses averages to predict en route delay, and most
flights experience low values of en route delay. However,
the Catboost and LightGBM models, while outperforming the
Current model for high-delay flights (more than 5 min) and
faster flights (less than 10 min), struggle to achieve the same
accuracy in more ‘normal’ cases (-5 to 5 min). The models
aim to capture the broader variability in delays, introducing a
range of delay values to better account for unexpected delays
in typically ‘non-critical’ flights. This added variability can
shift predictions away from the average, providing the flexi-
bility to predict higher delays when necessary but potentially
reducing accuracy for flights with minimal delays.

For many of the features, there is a range of values that can
be considered ‘non-critical’. Examples include lower wind
speeds, good visibility, and fewer incoming flights at the
arrival airport. In these conditions, delays tend to fall in the
-5 to 5-minute range, though with outliers in both directions.
Flights under such ‘non-critical’ conditions often display
more random variations in en route delay, making precise pre-
dictions challenging. Variations in en route delay arise due to
unmodelled factors, such as differences between planned and
actual en route winds, vectoring and shortcuts in the TMA,
or unexpected runway changes. This unpredictability under
non-critical conditions complicates clear delay expectations

and partially explains the relatively low R2 values, given that
the majority of flights operate under these conditions.

The most significant performance increase compared to
the Current model could be seen in specific adverse weather
conditions. This understanding is absent in the Current model,
which only adjusts for adverse weather over extended periods
rather than on a flight-to-flight basis. This shows a possible
initial use case for the newly developed models. The model
can help improve the prediction of en route delay under the
conditions identified in subsection V-C. Additionally, training
the models to focus more on these conditions, as demonstrated
with the second sampling technique used for the Right Side
LightGBM model, offers the potential for further performance
gains. By increasing the number of flights that experience
these conditions, this can be improved even further. Currently,
the models frequently underestimate the full extent of en route
delay under critical conditions, as many non-critical flights
tend to ‘pull’ predictions toward the average en route delay.

B. Recommendations for Model Improvement

The analyses performed during this research have high-
lighted several key areas that could further improve the
models. First, while the sensitivity plots of both models for
the Number of Arrivals feature demonstrated the expected
increase in en route delay with higher arrival numbers, it
only increases the prediction over a range of 3-3.5 min-
utes maximum. It is recommended to link it to an actual
capacity factor that can be expected at arrival time. By
incorporating the dynamics of landing and take-off procedures
based on expected runway configurations, the model would
better understand when arrival numbers become critical. This
enhancement would improve the model’s ability to understand
varying capacities throughout the day, allowing it to predict
en route delays under different conditions more effectively.

Additionally, it is recommended that a more refined feature
or model be developed to improve the prediction of events
within the TMA. Unpredictable delays within the TMA could
be attributed to a notable portion of the model’s prediction
error per flight. By including data from the local Air Traffic
Control authority, it might be possible to better predict
runway changes and shortcut and vectoring procedures under
certain circumstances from the Standard Terminal Arrival
Route (STAR) entry point to the landing runway.

VIII. CONCLUSION

In an increasingly complex aviation environment, accurate
flight time prediction is becoming essential for airlines. En
route delays not only have a significant financial impact on
the aviation industry and the broader ecosystem as a whole,
but they also affect airspace congestion, safety, passenger sat-
isfaction, and the achievement of regulatory and sustainability
goals. This research aims to proposed Catboost and Light-
GBM models outperformed the currently in-use statistical
model (Current model) by the European airline and a Random
Forest model. The LightGBM model achieved a MAE of 3.43
minutes and an RMSE of 4.56 minutes, while the CatBoost
model reached an MAE of 3.44 minutes and an RMSE of
4.61 minutes. The most significant performance improvement



Figure 5: Binned model performance of the Catboost and LightGBM models during the test run

was observed in predicting delays during adverse weather
conditions. The models understand how these adverse weather
conditions reliably increase the average expected en route
delay. Such enables the developed models to deliver more
accurate predictions in critical weather conditions.

Future research will focus on better understanding the
arrival airport’s capacity at a given time. For this, a new con-
gestion feature is proposed that considers capacity constraints
connected to runway maintenance, adverse weather and other
factors that influence the expected time in the TMA.
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[23] Aurélien Géron. Hands-on Machine Learning with Scikit-Learn,
Keras & Tensorflow. O’Reilly Media, 2017.

[24] Christoph Molnar. Interpretable Machine Learning. A Guide for
Making Black Box Models Explainable. 2nd ed. 2022.

[25] CatBoost. “Catboost Documentation ”. In: (). Accessed: 2024-10-15.
[26] LightGBM. LightGBM Documentation. Accessed: 2024-10-15.


	Introduction
	Literature Review
	Machine Learning in Aviation
	Flight Delay Prediction using Regression Approaches
	Flight Time and Estimated Time of Arrival Prediction

	Research Gaps and Contribution of this Paper

	Problem Statement
	Methodology
	Data Preprocessing
	Missing Data Handling
	Data Sampling and Outlier Removal

	Model Selection and Development
	Feature Engineering
	Selected Features for Final Model
	Feature Correlation of Numerical Features
	Feature Uncertainty due to Data Limitations


	Results
	 Global Model Performance
	Binned Model Performance
	Model Improvement Compared to the Current Model

	Model Validation
	General Errors
	Test Run Performance

	Discussion and Recommendations
	Discussion of Research Outcomes and Implications
	Recommendations for Model Improvement

	Conclusion

