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Abstract 

 

One result of climate change is the increasing strength and frequency of 
wind events. This creates a problem for the also increasing number of high-
rise buildings many of which are of unconventional shape. However, current 
methods for calculating wind response either do not account for these 
geometries, such as the Eurocode or are prohibitively expensive and time-
consuming, such as physical wind tunnel tests. This thesis aims to address 
this issue by developing a computational method by which one can analyse 
the structural effects of wind on a building and optimise the external 
geometry to reduce those effects in the early design phase.  

The method involves the combination of three main algorithms: 
Computational Fluid Dynamics (CFD) to simulate the wind and the pressure 
it exerts on a building, Finite Element Analysis (FEA) which calculates the 
structural effects such as deflection and stresses due to these forces, and an 
optimisation algorithm which can iteratively manipulate an input geometry 
to obtain better performance. For this thesis, a tool based on the method 
was developed in Grasshopper, the visual scripting plugin for Rhinoceros3D. 
Existing plugins were used for the main algorithms while custom scripting 
was used to combine them into a single tool that was made relatively easy 
to use and returned quick results. 

The methodology involved extensive research into the various aspects of the 
method. This was followed by the development of the method throughout 
which testing and validation were performed to determine its accuracy and 
timeliness. Case study buildings were tested with the goal of reducing 
structural material use. In all tests, the mass of structural material needed 
was reduced by allowing the optimisation algorithm to manipulate only the 
external geometry of the building. This produced a tool within Grasshopper 
and a set of guidelines for developing such a method. 

 

Keywords: Computational Fluid Dynamics; Optimisation; Finite Element 
Analysis; Wind engineering; Parametric design; Computational design 
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INTRODUCTION
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When we think of loads on a building we commonly think of self-weight and the 
weight of people and fixtures as the main structural factors. However, wind can as 
well play a large role in structural design. Particularly for very tall and slender 
buildings which have inherent flexibility due to their form. The movements caused 
by wind can make buildings uncomfortable for occupants as well as cause damage 
to the building. This is particularly a problem for areas that are susceptible to 
strong winds, both on a regular basis and at certain times of the year such as 
hurricane-prone regions. This is only getting worse due to the effects of climate 
change. Since the 1980s the strength of North Atlantic hurricanes has been 
increasing. In the United States alone hurricanes and tropical storms have caused 
more damage than any other large-scale natural disaster since 1980 (Melillo et al., 
2014).  

Also on the rise, is technology and its impact on architecture and the building 
industry. Contemporary building aesthetics are becoming increasingly non-
uniform as the growth in design and fabrication technologies enable us to create 
geometries that before were much more difficult to realise. Firms like UN Studio, 
MAD Architects, and Zaha Hadid Architects have been building more and more 
buildings of highly complex geometries. This has been made much easier to do 
with the rise of parametric design software and the integration of programming 
and scripting into the architectural design process. Programs like Rhinoceros 3D 
and Revit enable architects to bring their creative ideas to life. But what challenges 
do these designs bring for the engineering side of the equation? After all, these 
buildings have to meet the same code requirements as any other and wind 
loading is a big area of concern for these buildings. 

 

 

 

 

 

 

 

 

 
 

Figure 1-1: (Left) Absolute Towers by MAD Architects © Iwan Baan 
Figure 1-2: (Right) Morpheus Hotel by Zaha Hadid Architects © Ivan Dupont 
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Many of the codes used today for wind loads are based on analytical methods 
developed in the 1960s. Since the flow of wind, like other fluids, is a highly 
complex dynamic condition these methods are based on simplifications and 
assumptions. In addition, many of these codes only provide guidelines for simple 
shapes like rectangles and circular cylinders and recommend physical wind tunnel 
tests for anything more complicated. Since technology has been applied so 
deeply into the design phase could we also use this increase in technology and 
computing power to solve this problem? 

 

1.1 Problem Statement 

The impact of climate change is being felt throughout the world and will continue 
to worsen in future. One way this is presenting itself is through stronger and more 
frequent windstorms. On the other hand, recent advances in technology have 
given rise to more buildings of atypical and very complex geometry, especially in 
high-rise buildings. However, current codes and calculation methods for wind 
loading are insufficient in that they do not adequately account for the geometry 
of these kinds of buildings and many of the equations are based on simplifications 
and approximations. This can lead to under/over design of the structure as well as 
uncomfortable building motions during wind events, particularly for slender high-
rise buildings. 

These calculations, particularly the Eurocode, can be quite tedious requiring many 
equations to be solved simply to arrive at a value of wind force for a single height 
and wind direction. This is very inefficient especially for the early stages of design 
where the building form is still being explored and may change many times in the 
process. 

For this reason, wind load calculations tend to be done at a later stage of design 
by the structural engineers separate from the architects when the geometry of the 
building is already fixed. Thus, problems of wind load and wind-induced motions 
have to be dealt with at an element level rather than a building geometry level 
leading to compromises that can diminish the architectural intent.  

For buildings of complex geometry, most codes recommend physical scaled wind 
tunnel testing. While this is very accurate it is often very expensive and takes a lot 
of time and effort to prepare the model and experiment setup. 

Computational methods can be used to solve these problems however, 
differences in computer programs used necessitate time-consuming and 
complicated import/export of files where information can be lost and errors are 
prone to happen. 
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If the wind loading on a building massing can be deduced at an early stage in a 
simplified and integrated computational process, then the architect together with 
the engineers could analyse wind loads and use optimisation to generate options 
that minimise wind responses saving material in the structure and ensuring that 
neither the architectural nor structural design is compromised. 

 

1.2 Objective 

The main objective of this research is: 

To develop a computational method for accurately analysing 
wind loads on a complex geometry building and optimising the 

geometry based on analysis results at an early design phase. 

The idea is to have a method through which a tool could be created by which a 
user can gain insight into what kind of effects wind loads will have on a building 
of non-uniform complex shape and use that data to optimise the massing and 
generate options based on different building performance values. To do this, the 
tool should meet these requirements: 

• Ease of use: This tool should be usable by architects and engineers who 
may have little background in Computational Fluid Dynamics (CFD) and 
Finite Element Analysis (FEA) but do have some experience with 
Computer Aided Design (CAD) and parametric design programs. It 
should be relatively simple to give inputs, run the procedure, and 
visualise results. 

• Single environment: To aid in ease of use and save time, this tool 
should ideally accomplish all its tasks in a single environment. Users 
should not have to import and export models and other data to 
accomplish the task. 

• Rapid results: This tool should be used at an early design phase where 
the geometry is still changing and evolving. Its results should help to 
inform those decisions. Thus, it should be able to perform its function 
in a relatively short time so as not to hold up the design process even 
with multiple iterations needing to be run. 

• Accuracy and precision: With this simplification of use the tool should 
maintain an acceptable level of accuracy compared to more established 
methods like wind tunnel testing. More importantly, it should be precise 
so that there is a negligible deviation between the results of different 
iterations. This ensures the rapid reusability of the tool.  
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1.3 Research Questions 

1.3.1 Main question 

 

How can computational methods be used to accurately and 
efficiently calculate wind load on a complex geometry building 

and optimise the geometry to reduce wind responses in the 
early design phase?  

 

1.3.2 Sub-questions 

 

1. What are the existing methods for wind load analysis and how do they 
consider complex geometry buildings? Where do they fall short? 

2. What kinds of geometries are more suitable for dealing with high wind 
loads? 

3. What responses (deflections, vibrations, reaction forces) do building 
structures give to wind loading? 

4. How can Computational Fluid Dynamics (CFD) be used to analyse the 
effects of wind on a building? How efficient is it compared to current 
calculation methods? How accurate is it compared to current calculation 
methods? 

5. How can CFD, structural analysis, and optimisation be incorporated into a 
single, easy to use and efficient, computational process? 

6. How can having accurate wind load analysis in an early design phase 
improve building performance? 

 

1.4 Methodology 

The methodology of this research is divided into 3 sections: Research, Develop, 
Verify. The goal is to develop a computational method in order to have a relatively 
fast and easy-to-use calculation of the effect of wind load on a building and 
optimise the geometry to improve structural performance. The way in which this 
will be done will be by combining three solvers namely a Computational Fluid 
Dynamics (CFD) algorithm, a Finite Element Analysis (FEA) algorithm, and an 
optimisation algorithm. CFD takes care of the simulation of the wind flow around 
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the building and the pressure it exerts on the building surface and FEA calculates 
the structural effects such as deflections, moments, and forces. The combination 
of these two results in a Fluid-Structure Interaction (FSI) algorithm. Lastly, the 
optimisation algorithm will be responsible for manipulating the geometry to find 
the best performing option resulting in a Fluid-Structure Interaction based 
Optimisation (FSIO) method. 

For this thesis, it was chosen to create and test this computational method by 
developing a tool based on it inside of Grasshopper, the visual scripting interface 
for Rhinoceros. Grasshopper was chosen because it is already well known to 
architects and engineers, it is relatively easy and quick to use, and can be 
supplemented with a vast array of plugins and self-written code in a variety of 
computer languages all in a single parametric environment. At the culmination of 
this thesis, the goal was to have a single Grasshopper script that incorporates CFD, 
structural analysis, and optimisation in a loop that can produce a more optimised 
form of an input massing as a proof for the viability of a computational FSIO 
method.  

 

1.4.1 Research 

This stage involves the literature review. Gaining knowledge in topics related to 
the problem to deduce what solutions exist, what has been done in this field, what 
existing methods can be used, and where current methods and technology is 
lacking.  

It is divided into the following topics: 

• Wind flow in the environment 

• Wind actions on buildings 

• Calculation of wind loading 

• Computational Fluid Dynamics (CFD) 

• Fluid-Structure Interaction (FSI) 

• Optimisation methods 

The conclusions drawn from this stage will allow for better setting of goals for the 
tools as well as boundary conditions for the development. A shortlist of software 
and methods that can be used and further evaluated will be chosen. 
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1.4.2 Develop 

This stage focuses on the actual development of the method. It involves the 
joining of several smaller procedures to achieve the results desired from the 
method. These are as follows: 

 

1. Parametric building geometry 

In order to facilitate easy modifications which are prevalent at the early 
stage of design this tool is aimed at, the input building should have a 
parametrically defined shape. A few variables should determine the overall 
building shape to be used further. 

2. Computational Fluid Dynamic (CFD) simulations 

The impact of wind on a building is mainly due to the pressure exerted on 
the building surface. To obtain wind pressures on the façade of the building 
CFD will be used. This enables one to place a geometry in a virtual wind 
tunnel, simulate airflow, and calculate the effect that body has on the 
airflow and the effect the airflow has on the body namely the pressures 
exerted on the face.  

3. Evaluate the effect of wind pressure on the building structure 

Results such as deflection at the top of the building and moment reactions 
at the base due to the wind need to be known. Thus, the wind pressures 
obtained from the CFD analysis as well as the building geometry will have 
to be converted to a form that can be analysed structurally to give these 
results. 

4. Incorporate optimisation 

The optimisation portion involves changing the building geometry to 
improve wind response. The aim is to reduce wind pressures on the façade 
to lessen structural responses and properties like deflection, stresses, base 
moments, or mass of the structure. Thus, the optimisation will connect the 
resulting outputs from the structural analysis back to the building geometry 
parameters defined at the beginning to automatically manipulate the 
geometry, run the CFD analysis, the structural analysis, and evaluate the 
results in an iterative loop until an optimum shape is found. 
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As mentioned, it is desired for this thesis to develop this method within the 
Rhinoceros/Grasshopper environment. Thus, to achieve the above set out 
development goals plugins available for Grasshopper will be used combined with 
own scripting to connect the various parts. The imagined development procedure 
will be as follows: 

1. Parametric building geometry 

a. Select test high-rise buildings of non-standard shape 

b. Create parametric models of the external massing 

2. Computational Fluid Dynamics (CFD) simulations 

a. Select available CFD plugins and determine their setup, procedure, 
and results they can produce 

b. Evaluate them for precision, accuracy, and time by comparing to 
physical wind tunnel tests using a standard model 

c. Select a plugin based on that evaluation in addition to ease of use. 

3. Evaluate the effect of wind pressure on the building structure 

a. Karamba3D, an FEA plugin for Grasshopper will be used to perform 
the structural analysis. 

b. Determine how the massing model and pressure loads from CFD will 
be transformed into a form that can be analysed by Karamba. 

c. Develop said translation procedure and connect all portions of the 
script to form a single FSI procedure. 

d. Test FSI procedure and verify results with hand calculations. 

4. Incorporate optimisation 

a. Select optimisation plugins for Grasshopper based on algorithms 
researched. 

b. Incorporate into FSI procedure to form a Fluid-Structure Interaction 
and Optimisation procedure (FSIO). 

c. Test different combinations of input variables and objectives 

d. Compare to results from initial geometry 
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Since ease of use is greatly desired, efforts will be made throughout the 
development to make the script as seamless as possible. This includes minimising 
user input by automating parts of the script. Settings will be parametrised as much 
as possible so that they adapt automatically to any given building geometry. For 
those parameters that must be constant, testing will be done to determine the 
best option for precision, accuracy, and time. 

 

1.4.3 Verify 

In this stage the tool will be compared to existing methods to ascertain its 
comparativeness and if any improvement is made. Case study buildings of non-
standard geometry will be used. 

1. Calculate the wind loading using FSI method 

2. Calculate the wind loading using Eurocode procedure 

3. Compare results 

Figure 1-3 shows the methodology for the research. 
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Figure 1-3: Methodology diagram 
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2.1 Wind Flow in the Environment 

Wind in the environment is primarily due to temperature differences in the 
atmosphere which in turn cause pressure variations that cause air to flow from one 
part to another. Heat transfer from the equator to the cooler more northern 
latitudes and the forces of the earth’s rotation are responsible for the major 
prevailing winds.  On a smaller more local scale winds can vary widely in strength, 
direction, and frequency. Extreme events like storms and hurricanes can occur 
characterised by extremely high winds which can have a large impact on the built 
environment. Flowing wind exerts pressure on any surface it interacts with. Not 
only on perpendicular windward surfaces but those parallel and leeward as well 
eliciting a variety of structural responses, i.e. deflections, vibrations, and motions. 

 

2.1.1 Boundary layer 

Wind flow near the earth’s surface is not smooth (laminar) but unsteady (turbulent). 
This is due to frictional effects of the earth’s surface and its inherent roughness 
due to vegetation, orography (hills, cliffs, valleys, etc.), and buildings. This has the 
effect of slowing the flow of wind. This goes from zero at the earth’s surface 
increasing logarithmically to a maximum value called the freestream. This layer of 
turbulent air is called the Atmospheric Boundary Layer (ABL). It is characterised by 
the Boundary Layer depth, the distance between the earth’s surface and the 
beginning of the freestream where the friction of the earth no longer affects the 
flow of wind. Boundary layer depth depends on the roughness of the terrain below 
it. It can be very short for open countryside, to very high for cities (Figure 2-1).  

 

Figure 2-1: Boundary layer profiles (Cochran and ASCE. Committee on Structural Wind, 2012) 
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2.1.2 Roughness length 

Roughness length, z0, is a measure of the roughness of the earth’s surface. It has 
a value equal to about 5-10% of the average height of the terrain roughness 
elements such as the trees, buildings, etc (Aynsley et al., 1977). This value is critical 
for accurate forming of the wind velocity profile for calculations as well as CFD 
and wind tunnel testing. It is usually given in table form based on the terrain by 
the relevant code as seen in Table 2-1 from the Netherlands National Annex to 
the Eurocode for wind actions on structures. 

 

Table 2-1: Terrain categories and parameters (NEN, 2011). 

2.1.3 Turbulence 

Wind, especially near the earth’s surface is turbulent. It does not flow smoothly 
and steadily but its velocity constantly varies with time. This is due partly to thermal 
effects such as heated areas of air causing it to rise and collide with colder air but 
also due to mechanical turbulence. This occurs when airflow contacts obstacles 
such as trees, terrain, and buildings. The inertia of the wind causes its flow to 
deflect and often stumble over itself creating small circulating vortices called 
eddies. This turbulence is not locally contained but spreads to the rest of flow due 
to the collision of surrounding air molecules. Turbulent layers of air can be viewed 
as being governed by eddy viscosity which reflects the momentum transfer due 
to turbulence (Simiu and Scanlan, 1996). Turbulence is very important to wind 
applications for three reasons. Firstly, this causes structures to be subject to time-
dependent rather than constant loads. Secondly, due to this fluctuating loading 
flexible structures may exhibit resonant amplification effects if the loading 
frequency matches its natural frequency. Lastly, The aerodynamic behaviour of 
structures depends strongly on the characteristics of the flow thus it is important 
that this is considered during physical and computational tests (Simiu and Scanlan, 
1996). 

Researchers found that the speed of the wind over time can be separated by 
subtracting out the steady component and then quantifying the fluctuating 
component which accounts for the short gusts above and below the average 
speed. Since these can be both positive and negative the root-mean-square (RMS) 
is found to give an absolute value (Cochran and ASCE. Committee on Structural 
Wind, 2012). This is the basis of the quasi-steady methods that many codes use 
for calculating wind load. 
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2.2 Wind Actions on Structures 

2.2.1 Bluff and streamlined bodies 

Buildings are considered bluff bodies. These are bodies which cause large 
separation of the airflow from windward to leeward side (Aynsley, 1999). As a 
result, the major proportion of drag comes from pressure drag, caused by the 
difference in pressure between the windward and leeward face, compared to 
streamlined bodies where the flow stays very close to the shape and causes mainly 
friction drag (Smits, 2018). Typically, bluff bodies are shapes with sharp corners, 
such as rectangular plan buildings, however, circular structures are also 
considered bluff since at high Reynold’s numbers pressure drag dominates (Smits, 
2018). Streamlined bodies, such as aeroplane wings, are made to allow the flow 
to smoothly re-join after separation. These shapes minimise pressure drag though 
friction drag is more of concern since the flow is in direct contact with the surface 
for an extended time. While it may seem that a streamlined shape may be always 
better it worth noting that streamlined profiles are optimised for a single or very 
small range of wind direction. Any small deviation in the angle of attack can cause 
a significant change in the magnitude and distribution of pressures across the 
surface (Smits, 2018). This is not ideal for buildings as they are stationary structures 
subjected to winds coming from varying directions. The geometry would need to 
be optimised in a way to allow for that. 

 

2.2.2 Flow over a body 

Consider a bluff body in the path of fluid flow, in this case, air. The air will flow 
around the body in a characteristic way depending on the shape. The flow can be 
divided into three parts:  

1. Freestream flow – which is ahead and outside the influence of the 
surface where the flow is uniform.  

2. Shear layers – the layer close to the body surface where velocity 
moves from zero at the surface to free stream velocity at the 
boundary. Also called the boundary layer.  

3. Wake flow – the region behind a separated shear layer containing 
low-velocity eddy vortices. (Aynsley et al., 1977) 

The free stream of air can be described using Bernoulli’s equation: 

𝑝𝑝𝑝𝑝 +
1
2
𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉2 = 𝐶𝐶𝐶𝐶 

Equation 2-1: Bernoulli's equation 
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Where p = static pressure, ρ = density of air, V = velocity, and C is a constant. 
Bernoulli’s equation is valid for steady (zero vorticity), inviscid (zero viscosity), and 
incompressible flows (Smits, 2018). Therefore, in the shear layer and wake flow, 
Bernoulli’s equation is no longer valid. 

 

Figure 2-2: Flow separation around a rectangular body in a free stream (Aynsley et al., 1977) 

Flow separation occurs when the fluid particles near the surface are sufficiently 
decelerated by inertial forces from contact with the surface and the momentum of 
the flow above overcomes the cohesive viscous forces keeping the streamlines 
together (Simiu and Scanlan, 1996). This causes the flow at the surface to reverse 
forming eddy vortices that separate from the surface and form a free shear layer 
(Aynsley, 1999). This typically occurs at sharp corners or in the case of smoother 
shapes like a cylinder, the separation point as well as the characteristics of the 
flow, is dependent on Reynold’s number. Reynold’s number is the ratio of inertia 
forces to viscous forces in the flow (Holmes, 2007). 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒)

𝜇𝜇𝜇𝜇
=
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒)
𝜈𝜈𝜈𝜈

 

Equation 2-2: Reynold's number 

 

Where b = streamwise chord length, V(ze) = fluid velocity at height z, and μ = 
dynamic viscosity, ρ = density, ν = kinematic viscosity = 1.5x10-6 for air (NEN, 
2011). At low Reynold’s numbers, viscous forces dominate, and the boundary layer 
is more laminar. There is smooth flow around the body. As Reynold’s number 
increases the flow starts to separate and first forms large symmetrical vortices then 
as Re increases further, the vortices begin to alternate between each edge and 
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are swept downstream forming what is called a Von Karman vortex trail. This 
phenomenon is called vortex shedding and can be particularly critical for tall 
buildings. At high Reynold’s numbers like in most buildings, due to their large size 
and the low viscosity of air, a turbulent shear layer forms. This layer of rotating 
vortices separates the free stream laminar flow from the turbulent wake directly 
behind the building. The exact Reynold’s numbers at which these different 
degrees of flow separation occur vary depending on the geometry of the building. 
For example, for a sharp-edged building shear layer formation happen at Re > 
1000 whereas for a circular cylinder this occurs at Re > 5000 (Simiu and Scanlan, 
1996). 

 

Figure 2-3: Flow separation at different values of Re (Simiu and Scanlan, 1996). 

2.2.3 Wind forces 

The loads imposed on a building in the flow of wind are divided into 3 categories 
(Cochran and ASCE. Committee on Structural Wind, 2012): 

1. Along-wind loads 

2. Cross-wind loads 

3. Torsional loads 
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Along-wind 

The along-wind force is caused by drag. Drag is the total force in the streamwise 
direction caused by the fluid flow on a body. It is made up of friction drag, caused 
by the viscosity of the fluid and its contact with the surface, and pressure drag, 
caused by the pressure distribution on the body. For bluff bodies such as 
buildings, only pressure drag is considered as the friction drag component is very 
small  (Aynsley et al., 1977). This pressure is often expressed as a dimensionless 
coefficient, Cp. 

𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 =
𝑃𝑃𝑃𝑃

0.5𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉2
 

Equation 2-3: Pressure coefficient 

 

Where P = pressure, ρ = density, and V = the fluid velocity. Typically, a body 
experiences positive pressures (direction toward the body) at the windward face. 
The maximum positive pressure, around Cp = 0.9 for rectangular plan buildings, 
acts at the stagnation point seen in Figure 2-4. This is the point at the windward 
face where the velocity of the flow is brought to zero (Holmes, 2007).  

 

Figure 2-4: Pressure coefficient distribution on a rectangular prism (Holmes, 2007) 
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The leeward side of the building typically experiences negative pressures. 
However, there is no typical limit on the pressure coefficient for negative pressures 
(Aynsley, 1999). The drag force can also be represented as a dimensionless 
coefficient, Cd :  

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 =
𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑

0.5𝐴𝐴𝐴𝐴𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉2
 

Equation 2-4: Drag coefficient 

 

Where Fd = Drag force and A = area normal to the flow. Fd can also be expressed 
per unit span with A being replaced by B = reference dimension. The drag 
coefficient, especially for curved shapes is dependent on Reynold’s number since 
the position of flow separation is determined by the viscous forces as opposed to 
sharp-edged bodies where separation occurs at those points mostly regardless of 
Reynold’s number (Holmes, 2007). As seen in Figure 2-5 below there is a sharp 
drop in drag in what is called the critical region, around Re = 2x105 to 5x105. At 
this range of Reynold’s number, the flow transitions from laminar to turbulent at 
the boundary layer of the body. As Re further increases it comes to a maximum of 
about 1/3 of its original value (Simiu and Scanlan, 1996).  

 

 

Figure 2-5: Variation of Cd with Re (Simiu and Scanlan, 1996) 
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Cross-wind 

The force experienced by a body in a direction normal to the wind flow is called 
lift (Simiu and Scanlan, 1996). While streamlining building geometry can reduce 
drag it may also increase lift forces which can be even more critical in buildings 
(Aynsley, 1999). For example, in low rise, large span buildings such as stadia and 
arenas the lift force in the vertical direction is usually the most critical loading as 
wind flowing over the roof can cause large negative pressures (suction) which can 
damage the roof structure and cladding (Simiu and Scanlan, 1996). Lift forces can 
also be represented by a dimensionless coefficient: 

 

𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 =
𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿

0.5𝐴𝐴𝐴𝐴𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉2
 

Equation 2-5: Lift coefficient 

 

In tall buildings, cross-wind lift forces in the horizontal direction are often more 
critical than along wind forces (Taranath, 2012). The most critical of these 
crosswind effects is vortex shedding which is the periodic shedding of vortices 
from alternating sides of the building (Figure 2-6).  

 

 

Figure 2-6: Vortex Shedding (Taranath, 2012) 

 

Vortices are formed on the sides of the body parallel to the flow direction at the 
separation point. As shown previously, at low wind speed they are shed 
symmetrically but at high speed, the vortices break away from each side one after 
the other in a periodic way. As they break away they induce a force on the building 
normal to the surface which causes a vibration of the building (Taranath, 2012). 
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The frequency at which the vortices are shed is determined by the Strouhal 
number, S. 

𝑆𝑆𝑆𝑆 =
𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷
𝑉𝑉𝑉𝑉ℎ

 

Equation 2-6: Strouhal number 

 

Where ns = frequency of vortex shedding, D = body dimension normal to the flow, 
and Vh = flow velocity at height h. The Strouhal number is not constant but varies 
with wind speed and shape of the body and for circular and other smooth shapes, 
it varies with Reynold’s number up to a limit of about 0.21 (Holmes, 2007). If the 
shedding frequency increases until it is within a range of about 10% of the natural 
frequency of the building, the building will resonate. Meaning, assuming low 
damping, it will vibrate intensely side to side as if it has zero stiffness. Further 
changes in speed will not affect the frequency as the vortex shedding is now 
determined by the displacement of the building and not the wind speed until the 
speed increases significantly. This is called lock-in and can cause extreme 
discomfort to occupants, and in some cases, structural damage to the building 
(Mendis et al., 2007).  

 

Torsional Loads 

In addition to horizontal displacements, wind loads can also cause buildings to 
twist around their axis causing torsional loads. Torsional loads and the resulting 
torsional dynamic response occur when there is a non-uniform pressure 
distribution over the face of a building, particularly in cases of unsymmetrical 
building geometry, and/or if the centre of mass and centre of rigidity do not 
coincide, for example, in a building with its core off to one side. Torsion can also 
occur in buildings that are partially shielded by another of similar height (Holmes, 
2007). Torsional responses are not well studied or typically dealt with in building 
codes yet excessive torsion can particularly damage curtain walls and, just like 
cross-wind vibrations, cause great occupant discomfort (Cochran and ASCE. 
Committee on Structural Wind, 2012). The peak torque at the base of a building 
as a function of the wind speed V at height h, Tmax[V(h)], can be calculated by: 

 

𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑉𝑉𝑉𝑉(ℎ)] = 𝜓𝜓𝜓𝜓�𝑇𝑇𝑇𝑇[𝑉𝑉𝑉𝑉(ℎ)] + 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑉𝑉𝑉𝑉(ℎ)]� 

Equation 2-7: Peak torque at base 
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ѱ is a reduction factor which accounts for the fact that the wind directions 
responsible for highest mean torque, 𝑇𝑇𝑇𝑇� , rms torque, Trms, and most extreme 
conditions on the site will most likely never coincide. Thus in most cases 0.75 < ѱ 
< 1 (Simiu and Scanlan, 1996). Torsional peak factor, gT = 3.8.  

 

𝑇𝑇𝑇𝑇[𝑉𝑉𝑉𝑉(ℎ)] ≃ 0.038𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿4ℎ𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇2𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟2 

Equation 2-8: Mean torque 

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑉𝑉𝑉𝑉(ℎ)] ≃ 0.00167
1

𝜁𝜁𝜁𝜁𝑇𝑇𝑇𝑇
1
2�
𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿4ℎ𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇2𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟2.68 

Equation 2-9: Peak RMS torque 

 

Where nT = natural frequency and ζT = damping ratio. And: 

 

𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟 =
𝑉𝑉𝑉𝑉(ℎ)
𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿

 

Equation 2-10: Vr 

 

𝐿𝐿𝐿𝐿 =
∫|𝑟𝑟𝑟𝑟|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐴𝐴𝐴𝐴1 2�
 

Equation 2-11: L 

 

A = cross-sectional building area, r = the torque arm of element ds, which is the 
perpendicular distance between the centre of rigidity and the centre of ds at the 
building boundary (Simiu and Scanlan, 1996).  

 

2.2.4 Geometric strategies to reduce wind response 

Wind loads are critical to tall buildings due to the array of static and dynamic 
responses that can occur in the structure. In fact, treating dynamic responses to 
keep a tall structure comfortable is often more difficult than ensuring structural 
strength (Irwin, 2009). The response of a building to wind depends not only on its 
shape but also its stiffness distribution, mass distribution and damping properties 
(Irwin, 2009). However, there are several strategies that designers can take to 
reduce these dynamic loads at the source, i.e. the geometry of the building. 
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Optimisation of the geometry can be done at an early design phase to reduce the 
occurrence and intensity of these loads. 

Vortex shedding can be a big problem for very tall buildings. It causes discomfort, 
and in extreme cases damage to building elements. The source of vortex 
shedding is the building geometry and thus it can be severely reduced or 
eliminated by certain geometric strategies. Irwin (2009) gives the following design 
choices that can reduce vortex shedding:  

• Softened corners: Eliminating sharp edges by rounding, chamfering, or 
stepping back the corners of buildings can greatly reduce vortex excitation. 
These should ideally extend about 10% of the building dimension. 

• Spoilers: Façade elements such as vertical fins can help keep the flow 
attached to the building for longer. This shown in the thesis by Vongsingha 
(2015) 

• Porosity: Placing openings through the building allowing air to flow 
through and disrupt or weaken vortices. An example of this can be seen in 
432 Park Avenue tower in New York City by Rafael Viñoly Architects. 

• Tapering and setbacks: Vortex shedding depends on Strouhal number 
which from Equation 2-6 can be seen varies with building width. If the 
building width varies with the height it causes vortices to be shed at 
different frequencies along the height thus causing incoherent shedding 
which greatly reduces the force compared to contiguous vortices along the 
height. 

• Varying cross-section shape: Like tapering, this causes different vortex 
shedding frequencies along the height of the building. 

 

The Burj Khalifa in Dubai, Figure 2-7, is a good example of these applications. It 
is a tapering tower made up of a collection of rounded tubes that step back along 
the height but also vary in height along the width of the building. This 
arrangement ensures that the vortices do not shed in an organised manner to 
induce a steady frequency of sway (Feblowitz, 2010) 

Torsional loads can also be very uncomfortable for occupants. These can as well 
can be reduced by optimising the geometry by the following strategies: 

 

35 
 

• Pressure distribution: unsymmetrical geometries can cause pressure 
concentrations on areas away from the centre of stiffness forming a moment 
arm. The building geometry can be configured to ensure a more even 
pressure distribution (Cochran and ASCE. Committee on Structural Wind, 
2012). 

• Alignment of centres: Buildings have a centre of mass, where gravity acts, 
and the centre of stiffness, where lateral loads are mainly resisted. If the 
two centres are wide apart, for example in a building with an elevator core 
off to one side, this can cause torsional loads. The two centres should be 
kept close to concentric in order to minimise this (Holmes, 2007).  

 

 
Figure 2-7: Burj Khalifa (Donaldytong, 2012)  
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2.3 Calculation of Wind Loading 

Wind load calculations are inherently more complicated to deal with since, unlike 
most other building loads which are static, wind load is dynamic. It varies 
constantly with time due to the unsteady turbulent nature of wind. Alan G. 
Davenport and his work on using probability and statistics to develop an 
equivalent static function for calculation of wind loads in the 1960s led to the 
methods that we use today (Holmes, 2007). The ‘quasi-steady’ assumption is the 
basis of many modern wind load codes and standards such as the Eurocode. The 
quasi-steady method separates the dynamic wind speed into a steady, or mean, 
value and an unsteady, fluctuating, value. The proportion of this turbulent part is 
determined by the peak factor.  

Maximum wind speed, 𝑉𝑉𝑉𝑉
^

(𝑧𝑧𝑧𝑧), is given by: 
 

𝑉𝑉𝑉𝑉
^

(𝑧𝑧𝑧𝑧) = 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧) + 𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡) · 𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧) 

Equation 2-12: Maximum wind speed 

Where Vm(z) = mean wind speed at height z, g(t) = gust factor over duration t, and 
σv(z) is the root mean square of the turbulence (Cook, 2007). This gives the 
turbulence intensity, Iv(z) as 

𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧) =
𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧)
𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧) 

Equation 2-13: Turbulence intensity 

 

This method, however, can be quite conservative especially for the design of tall, 
slender, flexible towers. Flexible buildings are defined as having a height to width 
ratio, h/b > 4, or a fundamental frequency of less than 1 Hz (Simiu and Scanlan, 
1996). 

 

2.3.1 Eurocode procedure 

The Eurocode is based on this quasi-steady approach. Though some values like 
the pressure coefficients are based on the more complex Cook-Mayne 
methodology it is still brought back to the quasi-steady form for ease of 
calculation (Cook, 2007). EN1991-1-4:2005; Eurocode 1: Actions on structures - 
Part 1-4: General actions - Wind Actions, is the Eurocode section that sets out how 
wind loads on structures should be calculated, hereafter referred to as EN. In 
addition, many countries such as the Netherlands have a national annex that gives 
data and guidance to specific to the country such as wind speed maps and terrain 
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categories. These are called Non-Contradictory Complementary Information 
(NCCI) as it is not allowed to directly modify the Eurocode, only supplement it 
with information relative to the respective country. The EN also includes 
informative annexes with necessary information (Cook, 2007). 
 

• Annex A: Terrain Effects gives illustrations of terrain categories, rules for 
transitions between roughness categories, rules of orography and effects 
of upwind buildings. 

• Annex B: Procedure 1 for determining the structural factor cscd, Annex 

C: Procedure 2 for determining the structural factor cscd, and Annex D:

cscd values for different types of structures give two alternative 
calculation procedures and a graphical method for some types of structure, 
respectively, for determining the structural factor cscd, the factor that 
describes the effects of structural size and dynamics on the wind actions. 

• Annex E: Vortex shedding and aeroelastic instabilities gives rules for the 
vortex-induced response, including two alternative calculation procedures, 
and guidance on other aeroelastic effects. 

• Annex F: Dynamic characteristics of structures gives guidance on the 
dynamic characteristics of linear structures – fundamental natural 
frequencies, mode shapes and damping. 

Member states are required to either adopt the entire annex as normative or reject 
it. Thus, care must be taken to reference both the main Eurocode and the 
applicable national annex to ensure the correct data and procedure is used. For 
this thesis, the Netherlands National Annex to NEN-EN1991-1-4+A2+C1 (NEN, 
2011) is used. Hereafter referred to as NA.  

The EN describes wind loads as characteristic values which they define as “values 
with a characteristic annual risk of being exceeded of 0.02 in each and every year 
that the structure remains in service” (NEN, 2005). The basis of the calculations is 
the fundamental value of basic wind velocity, vb,o, defined as the 10-minute mean 
wind velocity with a 0.02 annual risk of being exceeded, irrespective of direction 
and season, at 10m above the ground in terrain category II (NEN, 2005). Category 
II is defined as open country with low vegetation such as grass and isolated 
obstacles with separations of at least 20 obstacle heights (NEN, 2005). The NA 
gives the values for vb,o based on location on a map describing 3 different wind 
areas (Figure 2-8). Applying a directional factor and season factor gives basic wind 
velocity, vb. However, the NA assigns a value of 1.0 to both of these factors, 
therefore, vb = vb,o.  
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The EN gives the main equations for wind pressure and wind force on a building 
surface. These equations have several unknowns that need to be calculated some 
of which are geometry dependent. EN section 7 has different subsections for 
different building geometries, roof types, and structure types which give methods 
of calculations for the coefficients. 

 

 

 Figure 2-8: Classification of the Netherlands in wind areas (NEN, 2011) 

 

To calculate the wind force, Fw, on a structure in the along-wind direction the EN 
gives the following equation: 

 

𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 · 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 · 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒) · 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Equation 2-14: Wind force on a structure 
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The force coefficient, cf, is based on the shape of the building and given in section 
7 of EN. qp(ze) is the peak velocity pressure at reference height ze. Aref is the 
reference area on which the force is acting. This could be for a small element such 
as a cladding panel, or the whole building, in which case it should be the area 
normal to wind flow. One can also obtain the force per unit length by setting the 
desired dimension to 1, or the force per unit area by setting Aref = 1. The structural 
factor, cscd, accounts for the size effect and dynamic response described below. 
This factor may be split into two i.e. cs and cd, if cd = 1.0 which occurs when if the 
building height is less than 50m and the ratio of height and width of the structure 
perpendicular to wind direction, h/b, is less than 5 according to the NA (NEN, 
2011). 

The size effect is the non-simultaneous action of peak wind pressures over faces 
of the structure and the dynamic response is the vibration of the structure in its 
fundamental mode due to the action of turbulence (Cook, 2007). Section 6 of the 
EN is dedicated to cscd. Annex B and C give different methods for the calculation, 
while Annex D gives graphs from which you can determine structural factor based 
on building type and height, however, these values are very conservative (Cook, 
2007).  

The equation determines the dynamic response of a structure in the along-wind 
direction as the root-sum-square of a background component representing the 
quasi-steady response and a resonant component representing the dynamic 
oscillation at the natural frequency of the structure. This is known as the Davenport 
method and is implemented with some slight modifications in Annex B. Annex C 
uses a newer method from Dyrbye and Hansen which is somewhat simpler and 
gives values within 5% of Davenport’s method (Cook, 2007). The NA requires the 
use of Annex C with the condition that the value of cscd cannot be lower than 0.85. 
The equation for cscd is as follows: 
 
 

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 =
1 + 2 · 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 · 𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)√𝐵𝐵𝐵𝐵2 + 𝑅𝑅𝑅𝑅2

1 + 7 · 𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)  

 
Equation 2-15: Structural factor 

 

Where kp = the peak factor, B2 is the background factor, R2
 is the resonant factor, 

and Iv(zs) is the turbulence intensity at reference height zs. Note that the reference 
height zs = 0.6·h is only valid for calculation of cscd and is not to be used anywhere 
else in the wind force calculations. 
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In the EN turbulence intensity at height, z is given by: 

𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧) =
𝑘𝑘𝑘𝑘𝐼𝐼𝐼𝐼

𝑐𝑐𝑐𝑐0(𝑧𝑧𝑧𝑧) · ln � 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧0
�
 

Equation 2-16: Turbulence Intensity 

 

kI = the turbulence factor for which the recommended value by the EN and NA is 
1.0. This assumes that RMS of kI is constant throughout the building height, 
however, Cook (2007) shows that kI should, in fact, be a function of height as RMS 
turbulence actually reduces with height. c0 = orography factor which for flat terrain 
is equal to 1.0. In the case of terrain Annex A.3 of the EN should be used to 
calculate the value. z0 = the roughness length given by table NB.3 - 4.1 of the NA.  

The equations presented here so far are just a few of the equations needed to be 
solved in order to find the wind force on a building. An example calculation is 
shown in Appendix 5. About 20 equations need to be solved in order to obtain 
the wind force at a single height for one wind direction. Many of these are 
simplifications and approximations that lead to very conservative values (Cook, 
2007). Furthermore, the EN procedure is only valid for buildings up to 200m in 
height (NEN, 2005). It only provides guidance for a limited number of building 
shapes; there is no procedure for unusually shaped buildings in the code. While 
the EN provides guidance on calculating forces due to vortex shedding in Annex 
E there is no provision for torsional loads. For these reasons, clause 1.5 of the EN 
states: 

In supplement to calculations, wind tunnel tests and proven and/or 
properly validated numerical methods may be used to obtain load and 
response information, using appropriate models of the structure and of the 
natural wind (NEN, 2005).  

This statement leaves open the prospect for the use of CFD in wind engineering 
provided the numerical models are established and well validated.  
 

2.3.2 Wind tunnel testing 

Boundary layer wind tunnels remain the de facto testing method for buildings that 
do not conform to the restrictions of the EN. Testing scaled models in boundary 
layer wind tunnels can provide time-dependent surface pressures, including the 
complex cross-wind and torsional loadings crucial to tall buildings (Clannachan et 
al., 2009). However, they themselves have some inherent uncertainty in their 
results and care must be taken during the tests to ensure accuracy. Jensen (1958) 
showed that for scaled wind tunnel measurements the ratio of height, h, to 
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roughness length number, z0, needs to be equivalent to ensure pressure 
measurements on the model in the tunnel would match those at full scale.  Thus, 
h/z0 came to be known as the Jensen number (Holmes, 2007). Scaling Reynold’s 
number correctly is as well important for ensuring accurate values (Clannachan et 
al., 2009). This combined with the time and expense of wind tunnel testing makes 
them unsuitable for generating multiple optimal design iterations in an early 
project phase.  

In a conversation on June 21, 2019, with Andy Mak, Bart Leclercq, and Josh Haigh, 
engineers at Aurecon in Dubai, UAE, it was discussed how wind tunnel testing is 
currently done in the context of high-rise and supertall buildings. In their projects 
wind tunnel testing is usually done. The longest time taken is waiting for a time 
slot to use the wind tunnel as they are usually very busy. Then comes the task of 
making the scaled model which today has been made a faster process with the 
advent of 3D printing. Then in all, the process of pre-processing, running the wind 
tunnel test, post-processing and getting the results can take an average of one to 
two weeks. What needs to be noted here is that this is only for a single building 
model. If the results turn out to be unsatisfactory, this process has to be repeated 
to test the performance of the new building model. The geometric strategies 
employed by engineers creating these buildings are usually based on general 
knowledge and rules-of-thumb acquired over the past 50 years of development 
in the field of wind engineering. While these can sometimes be sufficient at first 
there can be instances, especially with very unconventional designs, where even 
more needs to be done. What is commonly seen is that these wind tunnel tests 
are done at a later stage of design where the architect and client are very attached 
to the design and external geometric changes are not possible. This can result in 
having to increase the sizes or number of internal structural elements which then 
affect the architectural plan layout requiring changes.  

This is where CFD can act as a complementary tool calculating wind loads at an 
early stage and generating optimal options which can then be verified later in the 
design by a scaled wind tunnel test and/or Eurocode calculations. Although wind 
tunnel testing is accurate it is not ideal for optimisation due to its physical nature 
relying on a trial and error approach. As Bernardini et al. (2015) state: 

Typically, wind tunnel tests are used to characterize the aerodynamic 
behaviour of the candidate shapes, selected a priori based on experience, 
therefore the number of configurations that can be considered is limited by 
the significant resources and time necessary to execute each test. As a 
consequence, a vast portion of the search space remains unexplored, and 
more conventional configurations are favoured over innovative solutions. 
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2.4 Computational Fluid Dynamics 

A fluid is anything that flows to take the shape of its container such as water or air. 
It continuously deforms under the application of forces be that from gravity or 
external forces exerted on it. Fluid mechanics, or more specifically fluid dynamics, 
refers to the study of how these fluids move and the forces acting on them. Fluids 
are quite complex and can’t be modelled as simply as solids can. Fluid dynamics 
is based on 3 principles:  

1. Mass is conserved 
2. F = ma (Newton’s second law)  
3. Energy is conserved.  

These, in turn, form the basis of the three governing equations of fluid dynamics 
- the continuity, momentum, and energy equations. These principles are 
generalised as a series of partial differential equations known as the Navier-Stokes 
equations (Wendt et al., 2009).  

Computational Fluid Dynamics is the use of numerical methods to solve these 
governing equations (Mohotti et al., 2014). This involves subdividing the domain 
into a mesh of control volumes for which the solutions to the governing equations 
can be found. To enable this solution the continuous non-linear partial 
differentials, have to be replaced with an algebraic expression which gives a 
solution at a specific point. This process is called discretisation and can be done 
by either the Finite Difference Method (FDM), Finite Volume Method (FVM), or 
Finite Element Method (FEM). CFD software typically uses FDM (Anderson, 1995). 
CFD can describe many types of fluids and their flows. For the case of analysis of 
the effects of wind on a building, referred to as Computational Wind Engineering 
(CWE), we can refer to wind as an incompressible viscous flow. Though the 
viscosity is quite low it is necessary to take it into account to more accurately 
describe the flow separation and resulting turbulence at the boundary of the 
building. To analyse these flows a turbulence model is usually integrated into the 
solution. These use various algorithms to model the turbulent flow at boundary 
regions (Clannachan et al., 2009).  

There has been a lot of research into the application of CFD for wind engineering 
problems over the last three decades which is accelerated by the continued 
advancements in computer technology and resources enabling faster and more 
detailed solutions (Clannachan et al., 2009). However, it is still not widely accepted 
by many codes as a method for wind load analysis. Most codes such as the 
Eurocode, United States’ ASCE 7-10, and ISO 4354:2009 still do not explicitly 
mention the use of CFD for wind load. The Architectural Institute of Japan (AIJ) 
has published the AIJ guide for numerical prediction of wind loads on buildings 
(2008) which gives detailed advice on the use of CFD for wind engineering 
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purposes (Fransos and Lo Giudice, 2015). The fact that there is not a consensus 
on the use of CFD and CWE techniques shows that there are some shortcomings 
compared to traditional wind tunnel tests. Nonetheless, the benefits of CWE over 
time-consuming and expensive physical tests continue to inspire more research in 
the field.  

To date, most of the research pertaining to CFD in the built environment has 
focused on natural ventilation, wind at pedestrian level, pollution dispersal, and 
other comfort aspects. Clannachan et al. (2009) state that “It has proven very 
difficult for CFD to acceptably model the complex flow interference phenomena 
induced from buildings.” He further concludes that: 

This is the reason less work has been performed on predicting time-
dependent surface pressures on these man-made bluff bodies. CFD has 
not developed enough to suggest it could replace wind tunnel testing in 
this respect. It does, however, offer encouraging potential to act as a 
complementary tool. 

While verification should be performed by wind tunnel tests later in the design, 
CFD at this moment is very poised to be a useful tool at an early design phase 
when the geometry is still preliminary and a small amount of error in the results is 
acceptable. In the time since Clannachan’s paper was published to the present 
day, it is known that computational power has increased immensely, thus it is 
reasonable to assume that CFD applications have also accelerated in their 
effectiveness. 
 

2.4.1 Navier-Stokes equations 

Mathematician Leonhard Euler was the first to develop equations to describe fluid 
flow in the 18th century (Hosch, 2018). 

 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

+ 𝜕𝜕𝜕𝜕 · 𝛻𝛻𝛻𝛻𝜕𝜕𝜕𝜕 =
𝛻𝛻𝛻𝛻𝑃𝑃𝑃𝑃
𝜌𝜌𝜌𝜌

 

Equation 2-17: Euler equation describing fluid flow in modern notation 

 

Where u is the fluid velocity vector, P is the fluid pressure, ρ is the fluid density, 
and ∇ indicates the gradient differential operator. However, Euler’s equation 
defines inviscid flow; it completely neglects the effects of viscosity, mass diffusion, 
and thermal conductivity (Anderson, 1995). In the 19th century, French engineer 
Claude-Louis Navier and British physicist Sir George Gabriel Stokes independently 
developed the system of equations known today as the Navier-Stokes equations. 



44 
 

These equations expanded on Euler’s work by including the effects of viscosity 
(friction). They can be represented in both conservation, based on an infinitesimal 
element fixed in space, and non-conservation form, based on an infinitesimal 
element moving with the flow (Anderson, 1995). 

 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

+ 𝜕𝜕𝜕𝜕 · 𝛻𝛻𝛻𝛻𝜕𝜕𝜕𝜕 =
𝛻𝛻𝛻𝛻𝑃𝑃𝑃𝑃
𝜌𝜌𝜌𝜌

+ 𝜐𝜐𝜐𝜐𝛻𝛻𝛻𝛻2𝜕𝜕𝜕𝜕 

Equation 2-18: Navier-Stokes equation in modern notation 

 

Where υ = the kinematic viscosity, and 𝛻𝛻𝛻𝛻2 is the Laplace operator. See Appendix 
1 for the full system of Euler and Navier-Stokes equations.  

The Navier-Stokes equations are a coupled system of non-linear partial differential 
equations, and hence are very difficult to solve analytically. To date, there is no 
general closed-form solution to these equations that we know of (Anderson, 
1995). This plays a big role in making fluid dynamics and by extension CFD a very 
complicated field.  

 

2.4.2 Turbulence models 

Wind flow, especially around bluff-bodies, constitutes of the free-stream and the 
turbulent regions of the boundary layer and wake. CFD can discretise and solve 
the Navier-Stokes equations for all these regions in what is called Direct Numerical 
Simulation (DNS). However, since turbulence is inherently very random and 
complex, DNS necessitates an excessively fine grid as each control volume for 
calculation must be smaller than the smallest eddy in order to fully capture the 
turbulent effect. This makes DNS a very computationally expensive and inefficient 
process (Clannachan et al., 2009). Thus, CFD calculations can be supplemented 
by a variety of turbulence models which more efficiently account for these 
conditions. However, at present no turbulence model is perfect and the selection 
of the most appropriate model depends on what is being analysed and forming a 
balance between accuracy and computational cost (Clannachan et al., 2009). 
Below we will examine some of these turbulence models and their methods and 
seek to determine which ones are most promising for the goals of this thesis. 

The two leading turbulence models are Large Eddy Simulation (LES) and Reynolds 
Averaged Navier-Stokes (RANS), also known as Reynold’s Average Stress (RAS) 
with each employing a different approach. LES is a transient method using a 
spatial filtering technique where all eddies larger than a certain size are calculated 
while those smaller are modelled in a sub-grid scale (SGS). Whereas, RANS is a 
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steady-state time-averaging technique where, over a certain time period, the 
velocity vector is split into a mean and fluctuating part. Only the mean part is 
calculated but the effect of the fluctuating component is modelled on the flow 
(Clannachan et al., 2009). RANS gives only mean values whereas LES can give 
peak values and a more accurate picture of the transient phenomena of the flow 
at a particular time step. To achieve this LES needs a much finer grid and a higher 
number of time steps than RANS resulting in a much more computationally 
expensive process (Fransos and Lo Giudice, 2015).  

 

Figure 2-9: Fluid flow calculated by RANS vs. LES turbulence models 

 

The most common RANS methods are the k – ε and k - ω models. These methods 
involve solving two additional equations to obtain the turbulent viscosity which 
involves solving for the kinetic energy, k, and either the turbulent dissipation rate, 
ε, or the specific dissipation rate, ω (Clannachan et al., 2009). The k – ε is known to 
be unreliable in the turbulent regions around bluff bodies. Tamura et al (2008) 
performed CFD analyses using various turbulence models and compared the 
results to those from wind tunnel tests. They found that k – ε overpredicted 
pressure coefficients at the front face of the building while underpredicting suction 
at the rear. Clannachan et al. (2009) also found that k – ε consistently over-
predicted the wake reattachment length and severely under-predicted the level 
of turbulent kinetic energy. Huang et al (2007) performed tests comparing the 



46 
 

standard k – ε model to ones with modifications proposed by Launder and Kato 
(LK) and Murakami et al. (MMK) as well as LES. They found that the standard k – ε 
under-predicts the drag force coefficient Cd by about 20% with LK, MMK, then 
LES giving gradually more accurate results.  

The k – ω model is known to perform better for near-wall flows, however, it 
suffered from inaccuracies in the freestream flow. Sun et al. (2009) used the k – ω 
model in their paper exploring Fluid-Structure Interaction (FSI) of airflow over a 
bridge deck. They concluded that the k – ω model is potentially well suited to 
simulating Vortex Induced Vibration (VIV) and flutter of bridges because of its 
superior performance in near-wall flow simulation compared with k – ε. 

The Realisable k – ε model was developed by Shih et al. (1994). Realisable means 
that, unlike the standard model where the ε is determined based on reasoning, 
the model satisfies mathematical constraints consistent with the physics of 
turbulent fluid dynamics. This is chiefly done by making the empirical constant Cμ 
variable with the flow instead of constant as in the standard k – ε (Rahman et al., 
2007). van Hooff et al. (2011) chose to use the Realisable k – ε in their study of 
wind flow around and wind-driven rain on stadia because of its ‘significant 
improvements over the standard k – ε model.’ Another reason it was chosen was 
that it is widely validated for a wide range of flows including turbulent separated 
flows like those around bluff bodies.  

RNG k – ε is another variation of the standard RANS model developed by Yakhot 
et al. (1992) using Renormalisation Group (RNG) method to renormalize the 
Navier-Stokes equations, to account for the effects of smaller scales of motion 
thus making k – ε more accurate. Clannachan et al. (2009) found that the RNG k – 
ε gave results closest to full-scale physical tests at the CWE 2000 completion. 
Blocken (2014) stated in his paper, “the best agreement with the PIV wind-tunnel 
measurements by Karava et al. (2011) was obtained by the SST k – ω followed by 
the RNG k – ε model.” However, the aim of that experiment was testing natural 
ventilation. 

The Shear Stress Transport (SST) k – ω model developed by Florian R. Menter 
(1994) combines the best of k – ε and k – ω using the latter for near body flow and 
the former for flow further away by use of a transitioning function (Menter, 2009). 
This, along with an added cross-diffusion term in the ω-equation, gives SST k – ω 
better performance than both the standard and realisable k – ε models. 

In LES the major model is the Smagorinsky model. Others include the 
Smagorinsky-Lilly, Wall-Adapting Local Eddy-viscosity model (WALE) and dynamic 
SGS kinetic energy model. Huang et al. (2007) recommend the use of dynamic-
SGS for high Reynold’s number bluff body flows. It gave more accurate results 
than the RANS models in his assessment. 
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Detached Eddy Simulation (DES) is a hybrid of RANS and LES. It sought to 
combine the benefits of the two using LES at areas of flow separation and RANS 
for other areas (Clannachan et al., 2009). In a comparison of steady and unsteady 
RANS and DES models, DES showed notably better prediction of mean loads. 
However, it was concluded that the slight increase in accuracy was not worth the 
much greater increase in computational time (Clannachan et al., 2009). 

As is shown there are several models to choose from each with their pros and 
cons. The choice of which to use is a complicated balancing act. Fransos and Lo 
Giudice (2015) mention that the choice of CFD application should be based on 
goals. They give two criteria:  

1. The choice should not be based on model availability. They state that: 

The choice of a software product is in fact not as relevant, as long as 
it allows for proper models and boundary conditions and the user 
has performed a rigorous validation before using it in a design 
context.  

2. The choice should not be based on the pursuit of an unconditionally “best” 
CFD. This is based on the fact that there is not a single optimal model for 
every scenario.  

In the AIJ guide, Tamura et al. (2008) recommend that RANS only be used for 
finding time averaged wind forces. For max wind forces, the RANS results should 
be multiplied by a suitable Gust Effect Factor. Clannachan et al. (2009) state that 
the benefits of RANS for tall building problems are restricted since it is generally 
the crosswind and torsional loads that are critical. An unsteady RANS model, such 
as Realisable or RNG k – ε, or LES would give more accurate results for the flow 
around the building although RANS models are significantly more efficient than 
LES. RANS simulation runtime can be one order of magnitude lower than 
simulations on LES models (Fransos and Lo Giudice, 2015). Indeed Clannachan et 
al. (2009) stated in a particular experiment that although LES gave results close to 
field measurements compared to RANS, the solution time for the LES simulation 
was 160 hours, whereas the RANS solutions ranged between 15 minutes and 6 
hours. Sun et al. (2009) state that: 

On the one hand, the LES based approach is accurate and has been 
validated by comparison with experimental results. But LES is still too 
sophisticated and computationally intensive to be a viable tool for general 
engineering FSI applications. 

Thus, it appears a balance must be struck between accuracy and computational 
cost and the choice of turbulence model plays a big role in that regard. 
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Figure 2-10: CFD Procedure for estimating wind loads on structural frames (Tamura et al., 2008) 

 

2.4.3 Fast Fluid Dynamics 

Another development in the area of CFD, particularly to address the long 
calculation times of traditional CFD models is Fast Fluid Dynamics (FFD). This 
procedure was first proposed by Jos Stam (1999) for rendering fluids in video 
games. As a result, the simulations are more focused on visuals and speed of 
simulation than accuracy. Nevertheless, it has been used by researchers for CWE 
applications particularly in tandem with an optimisation algorithm. FFD solves the 
Navier-Stokes equations using fully implicit and lower order methods and 
decouples the pressure and velocity components. This gives linear equations that 
are much easier and faster to solve (Waibel et al., 2017). Another advantage is that 
FFD is stable, meaning that it can take much larger time steps than CFD without 
worrying about the simulation blowing-up (Stam, 1999). This also allows for much 
faster convergence which is essential for optimisation algorithms which may run 
hundreds of variations. This simplification of the Navier-Stokes equations, 
however, leads to inaccuracy. One source of inaccuracy is FFD’s inability to predict 
turbulent flows (Chronis et al., 2011). Indeed, Stam himself mentioned in his paper 
that FFD may not be suitable for engineering applications as it suffers from too 
much numerical dissipation. In other words, the flow dampens too quickly 
compared to real-world experiments. 

Chronis et al. (2011) used a custom FFD code based on Stam’s research together 
with a genetic algorithm to optimise a freeform surface based on pressures due 
to wind load. They were aware of the drawbacks of FFD regarding accuracy but 
stated that the aim of their experiment was not to “simulate physical phenomena 
with maximum accuracy but rather to investigate the potential of a resource 
effective simulation scheme in a conceptual stage generative approach.” They 
were able to successfully optimise the geometry of a free-form NURBS surface by 
using FFD to find the surface pressures and moving the control points first in 1 
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degree of freedom, then, 3 degrees of freedom at each iteration of the genetic 
algorithm to obtain a lower mean pressure on the surface.  

Figure 2-11: Optimisation interface and 4 fittest members (Chronis et al., 2011) 

Waibel et al. (2017) developed and validated an FFD solver in Grasshopper called 
GH Wind. Once again, the aim of using FFD was to reduce computational time 
especially for the early design phase where the geometry may not yet be finalised. 
They implemented a few changes to Stam’s algorithm to enable more accurate 
pressure values and parallelise the simulation to allow faster calculation. A major 
issue discovered was that at high Reynold’s numbers the results deviate much 
more from the reference. This is most likely due to the fact that FFD at this point 
does not model turbulence effects which are more critical at high Reynold’s 
numbers. To deal with that the researchers set the kinematic viscosity to a higher 
value of ν = 0.1 in order to artificially lower Re but conceded that this approach 
needs further research. For pressure coefficients on a façade, they observed that 
for the windward façade the results were very close to the reference from ASHRAE. 
For the leeward and side faces, the distribution was different, however, the 
numerical range of values of Cp was within that of the ASHRAE values.  

Although it has shortcomings FFD could provide a reasonable trade-off between 
accuracy and computation time (Waibel et al., 2017) especially for early-stage 
optimisation. Zuo and Chen (2009) found that their FFD simulations were at least 
50 times faster than CFD simulations for the same grid size and time step although 
the results were not as accurate as RNG k – ε. 

 

2.4.4 Available programs/plugins 

In the decades since its inception, CFD has developed immensely and now there 
are many programs in use today by engineers and researchers. We will examine a 
few below based on information from the developers and the author’s own 
experience. 
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Autodesk Flow Design 

Flow Design is a virtual wind tunnel program developed by Autodesk. It is easy to 
use and offers many visualisation options such as flow lines, surface pressures, 
drag plot, and velocity planes. Many file types can be imported. Options such as 
wind speed, tunnel size, and resolution can be changed as well as the rotation of 
the model. It is intended as a quick visualiser and thus it is fast and easy to use but 
maybe too simplistic. There is no option to pick a turbulence model or roughness 
length. The results are only presented visually with colours but there is no option 
to export the numerical data nor to see the numbers at the points they are taken 
on the model. Resolution is only represented by a percentage and a readout of 
voxel size. Also, the project cannot be saved so for each use the mesh will have 
to be reimported and tunnel parameters reset. As of March 28, 2018, Autodesk 
has stopped distribution of Flow Design. 

 

ANSYS Fluent 

Fluent is part of ANSYS’s workbench of engineering tools. It is widely known in 
the industry as reliable and accurate. There are many options for meshing, 
turbulence models, and many other settings. Custom scripts can also be written 
to make modifications to turbulence models. Many file types can be imported. 
Fluent is very powerful however, it is quite complicated, and a novice user could 
not just pick it up and instantly run an analysis without first becoming familiar with 
the program. It is ideal for detailed analysis but perhaps less so for early stage 
exploration. 

 

OpenFOAM 

OpenFOAM is a free, open source, CFD software that has been in development 
by OpenFOAM Ltd. since 2004. It is known to be robust and accurate and its 
open-source nature allows many researchers to use it and customise it for exactly 
what they need. Thus, it is one of the most independently validated CFD libraries 
in existence. It also offers a large array of turbulence models, solvers, meshing 
algorithms, and other tools. OpenFOAM is a Linux based C++ library that is 
primarily run through a console, but results can be visualised via the software 
Paraview. This can make it complicated to use. One must be very familiar with the 
OpenFOAM syntax in order to perform analyses.  
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Butterfly 

Butterfly is a Grasshopper plugin and python library developed by Mostapha 
Sadeghipour Roudsari as part of the Ladybug Tools suite. It is a Python wrapper 
for the OpenFOAM C++ library that allows users to run OpenFOAM CFD 
simulations from within the Grasshopper environment for cases pertaining to 
building design such as outdoor airflow, indoor airflow, buoyancy, and HVAC. It 
greatly simplifies the use of OpenFOAM by using Grasshopper components and 
allowing the user to integrate other plugins and components of the Grasshopper 
environment. Installing and using Butterfly has been made much simpler in version 
0.0.05 by using blueCFD-core which is a build of OpenFOAM which runs natively 
in Windows. Butterfly’s readily available source code allows users the freedom to 
modify and improve the software on their own. One also has the benefit of a 
powerful and accurate solver running within a fully parametric environment. Being 
part of Grasshopper and the extensively used Ladybug tools it has a very active 
online community in addition to the active OpenFOAM community. Features such 
as roughness length, tunnel size, and mesh refinements can be numerically set. It 
has a large assortment of RANS/RAS models, however, LES models have not yet 
been implemented.  

 

GH Wind 

GH Wind is a Fast Fluid Dynamics solver plugin for Grasshopper developed by 
Christoph Waibel as part of his 2017 paper, Validation of Grasshopper-based Fast 
Fluid Dynamics for Air Flow around Buildings in Early Design Stage (Waibel et al., 
2017). It includes components for forming the wind tunnel, meshing, solving, and 
visualising the pressure and velocity fields. Based on the results of the paper it is 
much quicker than OpenFOAM CFD solutions but suffers from some inaccuracy 
especially in the wake regions of the flow. Being in the Grasshopper environment 
it allows users, just like with Butterfly, to couple it with the large array of 
components and plugins available. The speed of the solution also makes it handy 
for optimisation problems. However, it is fairly new and as a result not 
independently validated to the extent of the other programs and plugins on this 
list. It also has no online community for support and does not appear to be in 
ongoing development. It is open source with source code provided in C#. 
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2.5 Fluid-Structure Interaction 

Fluid-Structure Interaction (FSI) is the analysis of the forces, deformations, and 
dynamic motions imposed on a body in fluid flow (Bungartz and Scha ̈fer, 2006). In 
this case, it would be the static and dynamic forces exerted on a building due to 
the wind. FSI usually takes place in two forms:  

(1) Monolithic: where the equations for fluid flow and structural deformation are 
solved simultaneously in a single solver.  

(2) Partitioned: where the fluid flow and structural deformation are solved 
separately with two separate solvers (Bungartz and Scha ̈fer, 2006).  

Monolithic solvers require specialised code using numerical methods to solve 
both problems simultaneously. An example of this is seen in Chronis et al. (2011) 
whose code developed in the Processing language integrated an FFD solver 
which returned surface pressures and ran a genetic optimisation algorithm. Thus, 
the partitioned approach is preferred for this thesis. This requires a separate Finite 
Element Analysis (FEA) software/plugin that the CFD solver could transfer the 
results in order to obtain information about the building response.  

Karamba3D is a parametric FEA plugin for Grasshopper developed by Clemens 
Preisinger in cooperation with Bollinger und Grohmann ZT GmbH. It is widely used 
and offers many options for analysis including many types of loads, materials, cross 
sections, as well as solvers and results. It’s parametric nature, given it is part of 
Grasshopper allows it to be coupled with many of the other plugins available and 
give real-time results (Preisinger, 2013). This makes it a prime candidate for 
coupling with a CFD solver. There are already many studies and examples of 
Karamba being used with optimisation algorithms to optimise structural 
components as well as overall geometry for structural performance. 

CFD simulations return pressure values on the external massing. This will need to 
be translated to the building elements such as the floors, beams, and core in order 
to ascertain the deflection imposed on the building by the wind. In the next stage 
of the research different methods of this will be devised and evaluated with based 
on how well they address the problem, feasibility to implement computationally, 
and ability to be integrated into an optimisation loop. 
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2.6 Optimisation 

Optimisation in a mathematical or computational sense involves the manipulating 
of various input factors in order to minimise or maximise a certain output result. It 
allows designers to use computational algorithms to determine the best design 
solutions based on a number of performance factors. This is the essence of 
performance-based design where a design is driven, not solely by aesthetics, but 
by the achievement of certain performance goals such as structural deflections, 
daylight, or energy use (Oxman, 2006). In the case of architectural design, 
optimisation usually focuses solely on the input variables and the resulting 
objective outputs with no regard for the mathematical definition of what comes in 
between. This is known as black-box optimisation (BBO) or derivative-free 
optimisation (Wortmann et al., 2017). It allows the designer to use optimisation 
with any number of algorithms or simulations such as CFD and use the resulting 
outputs as objectives. The optimisation usually follows a loop structure where 
some parameters, such as length, width, thickness, position, etc., are input. The 
design is then evaluated for its performance be it climatic, structural, or other 
criteria using an analysis or simulation procedure that outputs results. These 
results (structural deflection, energy use, etc.) are compared to the goal set by the 
designer. If it is not satisfactory, the parameters are then set to another value and 
the process continues until the goal is met. The outputs are called the objective 
functions and their closeness to the goal is its fitness.  

In single objective optimisation, input variables are evaluated against a single 
output objective which is aimed to be minimised or maximised. Thus, it converges 
to a single solution. However, engineering problems usually require the careful 
balancing of a variety of often contradictory objectives (Evins, 2013). This reality 
has given rise to the use of Multi-Objective Optimisation (MOO). In MOO, also 
called Pareto optimisation, the aim is to obtain a range of solutions that span the 
trade-off between each of the objectives. The MOO loop runs until each objective 
cannot be improved any further without worsening others. This leads to a range 
of solutions called the Pareto front (Evins, 2013). From this, an architect/engineer 
must choose the best design based on the importance of each objective. Indeed 
it is often much more valuable in architectural problems to give a range of 
solutions rather than a single optimum as many aspects including architectural 
aesthetics have to be balanced by many parties involved in the design process 
(Turrin et al., 2011).  
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Figure 2-12: Example of optimisation results with Pareto front (yellow triangles) (Evins, 2013) 

 

2.6.1  Optimisation algorithms 

There are many algorithms that can be used to perform optimisation ranging from 
purely mathematical to even those based on natural processes. These can be 
defined as either deterministic or stochastic. In deterministic, a certain set of input 
variables will always return a given objective value for a specific case. Stochastic 
on the other hand are more random so that a given starting point will not always 
return the same exact value (Ilunga and Leitão, 2018). For BBO methods these are 
usually divided into three categories: Direct search methods, metaheuristics, and 
model-based methods (Wortmann and Nannicini, 2016). 

 

Direct Search 

Direct search algorithms are deterministic methods which perform sequential 
examinations of trial solutions using points in the solution space generated by a 
certain strategy (Rios and Sahinidis, 2013). Examples include Dividing Rectangles 
(DIRECT) method, Parallel Axis (PRAXIS) method, and Nelder-Mead Simplex 
(NMS). For example, as shown in Figure 2-13 the Nelder-Mead Simplex algorithm 
first forms a simplex, i.e. a shape of n+1 vertices in an n-dimensional space, of 
points in the solution space. The next point is found by first taking the average of 
the two best points and performing a transformation of reflection, expansion, 
contraction, or shrink depending on the objective function value of the new point 
(Gregson, 2018). 
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Figure 2-13: Nelder-Mead process (Gregson, 2018) 

 

Direct search methods are highly used in mathematical test problems due to their 
fast performance and inherent stability however, they are not much used in 
architectural optimisation problems (Wortmann and Nannicini, 2016). While very 
efficient they are not very robust (Evins, 2013). This means that they tend to get 
trapped in local optima converging to a minimum (or maximum) of one section of 
design space while there may be other sections in the global solution space with 
better objective values. This can be alleviated by doing multiple optimisation runs 
at random start positions but of course, doing multiple optimisation runs greatly 
increases the time taken.  

Direct search methods currently present as plugins within Grasshopper include 
the Nelder-Mead plugin by Eckersley O’Callaghan Engineers, as well as Goat 
developed by Rechenraum e.U which uses DIRECT, Subplex, and another form of 
Nelder-Mead Simplex.  

 

Metaheuristics 

Metaheuristic algorithms are stochastic methods inspired by natural processes 
(Ilunga and Leitão, 2018).  These include algorithms such as Genetic Algorithms 
(GA) which are based on Darwinian survival of the fittest principles, Simulated 
Annealing (SA) which simulates the behaviour of metal molecules during the 
annealing process, and Particle Swarm Optimisation (PSO) which follow swarm 
intelligence principles (Wortmann et al., 2017). Metaheuristics, particularly GAs 
are the most popular choice in architectural applications since they are readily 
available (they come preloaded within Grasshopper in the plugins Galapagos and 
Octopus), can be applied to almost any problem, and are easy to understand and 
use (Wortmann et al., 2015). However, many mathematicians regard 
metaheuristics as “methods of last resort” (Conn et al., 2009). They tend to 
perform poorly in benchmarks compared to other algorithms as seen in studies by 
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Waibel et al. (2019), Wortmann (2018), Ilunga and Leitão (2018), Wortmann et al. 
(2017), and Rios and Sahinidis (2013). Additionally, metaheuristics typically require 
a much larger number of function calls to arrive at an optimum which is particularly 
problematic for cases such as CFD where a single function evaluation could take 
hours (Wortmann and Nannicini, 2016). 

 

Model-Based 

Model-based optimisation is a stochastic method which operates differently than 
direct search or metaheuristics. It involves replacing a computationally expensive 
objective function with an inexpensive surrogate model with the same input and 
output space as the original function. The search for the optimum is then carried 
on this surrogate rather than the original intensive function (Bernardini et al., 
2015). It first creates a set of points called a sampling plan by doing a few iterations 
of carefully chosen points in the solution space to obtain some results (Bernardini 
et al., 2015). Then, it generates a surrogate model or response surface (Figure 
2-14) of the unknown fitness landscape by interpolating through the points in the 
sampling plan. From this, it can estimate the performance of design candidates 
with fewer or no further function calls (Wortmann and Nannicini, 2016). The 
algorithms can generate local models such as the Trust Region method or global 
models which create a surrogate of the entire solution space using statistical 
methods, such as Polynomial Regression and the Kriging method, or machine-
learning, using Neural Networks, Support Vector Machines, or Radial Basis 
Functions (RBF) (Wortmann, 2017).  

 

Figure 2-14: Surrogate model (response surface) of a Kriging based optimisation with input variables on the 
x and y-axes and the objective variable is on the z-axis (Bernardini et al., 2015). 
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Surrogate model-based algorithms will either construct a response surface from a 
sampling plan and search for an optimum solely using the model either with or 
without a separate optimisation algorithm, or it will generate a response surface 
and iteratively update the model by sampling the carefully chosen points while 
searching for an optimum. For example, Bernardini et al. (2015) performed 2D 
shape optimisation on a building cross-section analysed by CFD. They constructed 
a Kriging based surrogate model from which an evolutionary algorithm was 
employed to find an optimum. The Grasshoper3D plugin, Opossum developed 
by Wortmann (2017) uses a Radial Basis Function (RBF) method to construct the 
initial response surface and iteratively improve it based on carefully chosen 
evaluation points. The RBF algorithm is found to perform better than other 
surrogate model algorithms in problems employing time-consuming simulations 
(Wortmann et al., 2015). Yang et al. (2016) in a study of the effects of sampling 
strategy and problem scale found RBF to perform the best for a low number of 
variables. 

Many benchmark studies of optimisation algorithms, such as those mentioned in 
the previous section, conclude that model-based algorithms provide fast 
convergence, stability, and robustness particularly in optimisation problems 
requiring expensive simulations. Bernardini et al. (2015) in the CFD optimisation 
study mentioned above state that: 

In order to find the Pareto fronts discussed here, a total of 90 CFD 
simulations were carried out while a total of about 12,000 evaluations of 
the Kriging models were made at each design update. Therefore, by 
following the proposed approach, only 0.75% of the CFD runs necessary 
to directly search for the Pareto optimal solution are necessary, which once 
again illustrates the strong potential of the proposed [Aerodynamic Shape 
Optimisation] approach. 

Since CFD evaluations can take a very long time it is beneficial to reduce the 
number of function calls as much as possible.  

 

2.6.2 Optimisation Problem Formulation 

Optimisation has seen an increase in popularity in the past few years and many 
engineers and researchers have put it to good use in solving problems of the 
building industry. However, building design is a complex procedure involving 
many, often competing, objectives. On the other hand, optimisation is a very 
definitive process where there needs to be set input variables with a defined range 
of values and one or many meaningful objectives. Thus, designers have to distil 
each case into a well-defined optimisation problem that can be used with 
optimisation algorithms (Wortmann et al., 2015). For this reason, Yang et al. (2018) 
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assert that Optimisation Problem Formulation (OPF) is even more important than 
obtaining Optimisation Problem Solutions (OPS). OPF involves evaluating the 
design to determine first which parameters and objectives are the most valuable 
in the present case. It involves two main parts: 

(1) Formulation of the objective space: selecting objective and constraint variables 
(outputs) and constraint values. This determines the performance goals and 
constraints to be achieved. 

(2) Formulation of the design space: selecting design variables (inputs) and their 
domains. This determines the possible design alternatives that can be searched. 

It is essential to define the problem carefully first to avoid creating meaningless 
problems which upon optimisation give useless solutions (Yang et al., 2018). All 
problems, especially related to computational processes, are ill-structured 
problems at first according to Simon (1973). It is only after testing and formulating 
the problem to adapt to the problem solver being used do they trend toward a 
well-structured problem.  Most studies, however, mainly focus on OPS rather than 
OPF giving results for a singular research setup rather than the process of 
determining the best setup for the problem. Indeed, in this research, it was difficult 
to find examples of this type of work.  
 
Careful consideration should be given to, for instance, what parameters have the 
most impact on performance, can they be easily modified in the design, and how 
can their domain be restricted so that the obtained solutions are feasible and 
attractive. In addition, one must take into account the abilities of the optimisation 
algorithm itself. For example, Waibel et al. (2019) performed a  benchmark study 
of multiple optimisation algorithms applied to building energy problems. The 
algorithms were tested using the same building models but different numbers of 
input variables, different ranges, and also continuous versus discrete variables, in 
order to compare the algorithms’ performance in each problem space.  
 
OPF is crucial in the early conceptual design phase where designers are not able 
to perceive every aspect of the design project and how the chosen workflow can 
be applied to it. At this stage, goals are usually vague, and a lot of the choices are 
based mostly on experience, educated guesses and intuition rather than hard 
information and results. At this point, the process can be referred to as 
Computational Design Exploration (CDE) rather than Computational Design 
Optimisation (CDO). CDE, rather than solving a specific problem, involves fixing 
a problem within the problem space by searching for a solution in the solution 
space in an iterative manner where the characteristics of the found solution can 
now reform the original problem space generating a new solution space and so 
on (Maher et al., 1996). To formulate an optimisation problem that produces a 
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meaningful optimum, exploration must be done on the problem and solution 
spaces.  

 

Figure 2-15: Relationship between OPF, CDE, OPS, and CDO (Yang et al., 2018) 

 

OPF is an iterative process that requires performing multiple optimisation runs to 
obtain an ideal OPS. Thus, the choice of optimisation algorithm also plays an 
important role particularly in this case using expensive CFD simulations. The 
greater the number of input variables the greater the control over the outcome 
and the possibility for better-performing objective. However, this increases the 
computational cost of the optimisation. It may arrive at a point where the increase 
in runtime is not worth the marginal gains in fitness. Thus, the number of inputs to 
be manipulated should be kept minimal to be most efficient. Just as important is 
the domain within which these values can be changed. Too wide a domain 
requires a lot more generations to ensure adequate samples are taken while too 
small a domain may leave out truly optimal values. 

While the explored examples focused on a more detailed optimisation problem, 
the method to be in developed in this thesis is on a much coarser level of detail. 
What is important is the focus on experimenting with the different arrangements 
of input, objective, and algorithm settings to determine the optimal optimisation. 
This is especially important in a field such as CFD based optimisation in buildings 
where not a lot of research has been done. 

 

2.6.3 CFD based optimisation in buildings 

While optimisation has been increasingly applied to both environmental and 
structural simulations in buildings, optimisation using CFD is still comparatively 
rare. For instance, Ekici et al. (2019) performed a review of the usage of 
computational optimisation in built environment problems. Out of one hundred 
papers found, only one used CFD which was used for HVAC flow simulation. CFD 
based optimisation (CFD-O), however, has been applied extensively in 
aeronautical engineering for aerodynamic shape optimisation (ASO) of aircraft 
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wings, engines, etc. (Thévenin and Janiga, 2008). Indeed, in this literature review, 
it was difficult to find research on CFD-O for buildings particularly to optimise 
structural objectives.   

However, Bernardini et al. (2015) see the importance  of CFD-O over the 
traditional trial and error approach using wind tunnels sating that: 

The possibility of taking advantage of computational fluid dynamics (CFD) 
simulations for the assessment of the aerodynamic performance while using 
optimization algorithms to find the best aerodynamic shape is therefore 
very attractive as it would allow not only to rigorously and thoroughly 
investigate the search domain but to do so automatically, also in principle 
eliminating the necessity of costly wind tunnel experiments. 

CFD by its nature imparts some issues to its use in optimisation. For one, CFD is 
in itself not an exact evaluation but rather an approximation of a physical 
phenomenon that is highly dependent parameters such as mesh size and 
discretisation. This results in optimisations always having a certain level of 
uncertainty. Bernardini et al. (2015) state that this is to be expected as users may 
tend to attempt to shorten CFD’s long calculation time by using coarser grids or 
fewer iterations. However, the uncertainty should be small enough to still allow for 
a meaningful optimisation. CFD simulations can vary widely based on the problem 
being analysed. It is a balance between time and accuracy and time plays a big 
role especially in commercial applications. Thus, it is reasonable to conclude that 
CFD-O is practical only when a single CFD evaluation takes at most a few hours 
(Bernardini et al., 2015). 

 

2.7 Conclusions 

This literature study was done to establish the current state of the art in terms of 
wind load calculations and the potential of using computational methods for 
performing those calculations and optimisation of buildings for such. It can be 
seen from the study of wind in the environment and its actions on structures that 
wind and its flows are a complex phenomenon. This mostly due to its turbulent 
nature particularly in its interaction with bodies such as buildings. Pressure drag in 
the direction of the wind should be considered but also accelerations due to 
vortex shedding and torsion. The Navier-Stokes equations describe fluid flow but 
these do not have a closed form solution. This led to the simplified quasi-static 
equations for wind loading. Eurocode EN1991-1-4:2005 is based on these. About 
20 equations are required simply to obtain the wind force at a single height and 
wind direction. This is grossly inefficient for early-stage design exploration when 
multiple iterations are usually done. In addition, the code only offers guidance for 
a limited number of simple building geometries. No procedure is given for 
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complex shapes. However, the EN does allow for the use of validated numerical 
methods for the calculation of wind loading. Thus, CFD is a possibility if it can be 
shown to give good results. 

CFD takes the Navier-Stokes equations and discretises them to a mesh or grid so 
that they can be solved using numerical methods. Many established and validated 
programs such as ANSYS Fluent and OpenFOAM exist which employ powerful 
solvers that can simulate the flow of air around a building and the resulting surface 
pressures. OpenFOAM is integrated into the Grasshopper environment with the 
plugin Butterfly thus allowing the use of a powerful and widely validated solver 
within a parametric environment. Plus, its open source nature allows for modifying 
the tools to fit the needs of this thesis. The main factors in the consideration of 
CFD in this project are time and accuracy. Mesh size and choice of turbulence 
model have the largest impact on these. As seen in section 2.4.2 there are many 
turbulence models to choose from each with their own pros and cons. Fast Fluid 
Dynamics has been shown to be much faster than CFD but suffers from some 
inaccuracy particularly due to its lack of turbulence model. Further investigation is 
needed into the choice of fluid solver as it is a key part of the proposed tool. Table 
2-2 below shows the chosen shortlist of solvers and their pros and cons. A variety 
of RANS models were chosen with the Butterfly component in addition to the FFD 
component GH Wind. In the next steps of the research, these will be evaluated 
on the two criteria: accuracy and time to determine the best choice. A comparison 
will be made to validated results from research to determine their accuracy.  

 

 Pros Cons 
Butterfly (k – ε) • Very fast 

• Good freestream flow 
accuracy 

• Coarse grid 

• Inaccurate near-body flow 
• Inaccurate pressures on 

sides and in wake 

Butterfly 
(Realisable k – ε) 

• Better accuracy in 
separated flows and wake 
region 

• Coarse grid  

• Slower than standard 
models 

Butterfly  
(RNG k – ε) 

• Better near body flow and 
in wake than standard k – ε 

• Slow calculation time 

GH Wind • Faster than traditional CFD 
models 

• Simpler meshing (no 
grading)  

• Less accurate than CFD 
mainly in turbulent regions 

Table 2-2: Comparison of CFD methods 
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Karamba3D will be used to calculate the structural performance. Karamba is an 
established, well-known and validated FEA plugin in the parametric environment. 
It gives a large array of options for inputs and calculations Karamba will be 
integrated with the chosen CFD solution with a translation procedure to take the 
pressure loads to a structural model and obtain results like deflections and 
moments. Vortex shedding is also important for this application however, it is 
difficult to obtain the shedding frequency from steady-state RANS solutions.  

While genetic algorithms are the most popular method of optimisation, 
particularly in Grasshopper, their high number of required function calls make 
them unsuitable for a computationally expensive process such as CFD. Direct 
search methods, while efficient, suffer from low robustness which is not ideal for 
building cases where an array of options is desired rather than a single optimum 
geometry. Doing multiple optimisation runs of a direct search method to mitigate 
robustness would most likely be just as, or even more, inefficient than a genetic 
algorithm. Model-based algorithms appear to be the most promising as the 
benchmarks studies have shown their reliability, robustness, and the ability to 
arrive at convergence with fewer function calls than other algorithms. Therefore, 
in this case, the Opossum plugin (Wortmann, 2017) will be used with the RBFopt 
algorithm.  

To ensure a well-balanced optimisation procedure time will be spent evaluating 
different objectives and selecting an ideal array of objective and input variables 
to formulate a meaningful optimisation problem. Since Opossum is a single-
objective optimisation plugin, objectives will be considered and evaluated to 
determine which is the most meaningful for this research. The number of input 
variables will be kept low (max 3) to further help reduce computation time. These 
inputs will be solely for manipulating the geometry. All other settings for the CFD 
and FEA will be constant. 

Figure 2-16 outlines the computational procedure with the environment it is 
contained in, i.e. Grasshopper, the key parts, and the components to be used or, 
in the case of CFD and translation algorithm, still to be determined or 
developed.  
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Figure 2-16: Computational procedure 
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This stage of the thesis is focused on the development and testing of the 
computational method through development of a tool in Grasshopper. It builds 
on the knowledge gained in the research portion and continues in a joint research 
and design method. Firstly, case study buildings are selected on which the 
method will be tested. The work was divided into the CFD portion, development 
of the FSI procedure, and the addition of the optimisation algorithm. In the CFD 
portion, first, the two selected algorithms are set up in Grasshopper. This involved 
understanding the methods and modifying them to conform to standard CFD 
practices while making the procedure more adaptable to the geometries 
expected. The next step is the validation which was needed to establish the 
accuracy of the CFD method compared to physical wind tunnel tests and the time 
taken for the simulation in order to achieve those results. This was followed by 
sensitivity analyses to determine which parameters could be modified to reduce 
time. After these tests, the results of the two algorithms are compared and the 
best one was chosen based on accuracy, precision, and time. The FSI chapter 
details the chosen FEA method and the development of the algorithm for 
coupling it to the CFD procedure. Lastly, the optimisation chapter details the 
addition of the optimisation algorithm and the series of tests done in order to 
arrive at a meaningful optimisation problem. 

 

3.1 Case Study Buildings 

To help evaluate and develop the tool case study buildings were chosen to be 
used as input geometry in the procedure. These were high-rise buildings chosen 
based on their non-standard geometries and the opportunity they presented to 
challenge the effectiveness of the tool. These are the Absolute Towers by MAD 
Architects due to its twisting geometry, Jiangxi Nanchang Greenland Central 
Plaza by SOM for its varying cross-sectional shape and supertall height, and the 
Ardmore Residences by UNStudio for its unconventional floor plan shape (Figure 
3-1). These buildings were modelled as simple parametric masses. Each has two 
or three parameters controlling an aspect of its geometry which was used as input 
variables for the optimisation algorithm. 
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Figure 3-1: Absolute Towers by MAD Architects © Iwan Baan (Left) and Jiangxi Nanchang Greenland 
Central Plaza by SOM © SOM (Middle), and Ardmore Residence by UNStudio © Iwan Baan (right) 

 

3.2 CFD 

3.2.1 CFD script setup 

A typical CFD procedure involves inputting the geometry to be analysed then the 
domain or virtual wind tunnel is created around it. The entire domain is meshed 
to create a 3D mesh of the space between the tunnel and geometry to be analysed 
(Figure 3-2). The solver then runs iteratively calculating the flow in each cell until 
it reaches convergence. CFD has many parameters which affect how well the 
solution runs. The aim was to make the chosen CFD procedures easy to use and 
adaptable to any geometry that one would input and obtain the pressure on the 
facade. Settings were made constant or parametric, based on the dimensions of 
the input geometry, according to researched standard practices for CFD. The 
main settings affecting the outcome for this case were tunnel size, mesh cell size, 
and turbulence model. Other additional settings based on the individual CFD 
solver were looked at and set to the best option determined for this study. The 
CFD plugin Butterfly and the FFD plugin GH Wind for Grasshopper were used. 

 

 

 

Figure 3-2: CFD workflow 
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Butterfly 

The validation study (Section 3.2.2) was done using Butterfly version 0.0.04 while 
all subsequent work was done in version 0.0.05. Butterfly has many options that 
can be adjusted owing to OpenFOAM’s complexity. To fit the purposes of this 
study some changes were made including removing all mesh refinement so that 
only implicit meshing takes place, i.e. the chosen cell size is used with no further 
subdivision. Also added were new custom components written in Python or C#. 
These were mainly to make the simulation faster and make the script as parametric 
as possible so that new geometries could be input with minimal changes having 
to be made to settings. See Appendix 6 for all C# and Python scripts. 

 

 

Figure 3-3: Butterfly script 

 

Figure 3-3 shows the layout of the Butterfly script. Firstly, the geometry from 
Grasshopper is input to create Butterfly geometries. This is then connected to the 
wind tunnel component which defines the domain of the simulation as a virtual 
wind tunnel. The wind tunnel size is defined in multiples of the building height for 
the windward, leeward, side, and top extensions. A python script was written in 
order to calculate the blockage ratio, the ratio of the cross-sectional area of an 
obstruction in a wind tunnel (the building) to the cross-sectional area of the tunnel 
perpendicular to the wind flow. This should be kept under 3%, though some 
professionals suggest up to 10%, in order to prevent the artificial acceleration of 
the flow (Franke et al., 2007).  

Next, the data moves to the meshing components where first a cell size is set. A 
Python script was written to parametrise the cell size. This takes the input of the 
building geometry and allows the setting of different mesh resolutions starting 
with the coarsest which is equal to the length of the shortest side of the building 
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divided by 10 (Franke et al., 2007). Further refinements are had by dividing by 10 

multiplied by root 2 for each level. eg. Medium = building length/(10 x √2), Fine 

= building length/(10 x √2 x √2), etc. as was recommended in personal 
correspondence with Adelya Doudart de la Grée, engineer and CFD expert at 
Cauberg Huygen, on February 18, 2019. Refinement levels are Coarse, Medium, 
fine, SuperFine, and XXFine. Butterfly uses two mesh types. First, a block mesh is 
created which fills the domain with regular hexahedral cells which are graded 
automatically i.e. desired cell size near the building which gradually gets larger 
further away. Afterwards, the SnappyHexMesh (SHM) component adjusts the 
block mesh to the geometry by removing cells from within the geometry and 
applying any refinement if chosen. As the name suggests it can also adjust the 
hexahedral cells by attempting to snap cells to the geometry of the building. For 
the tests with complex geometry, snapping was turn on. 

In the solution portion, different parameters of the solution are set such as the 
turbulence model, max number of iterations, and residual values for convergence. 
The residuals are the scaled errors between successive iterations for different 
values such as pressure, velocity, k, and ε. These residual values tend toward zero 
with each successive iteration. A residual value of 0.0001 was set for convergence 
based on recommendations by Franke et al. (2007).  

In order to obtain results of pressure and velocity, probe locations must be given 
as points. This can be obtained from the Generate Test Points component in the 
Probes section of the script by inputting a surface or by directly inputting points 
to the Probes component. After the solution, the values are obtained from the 
probes and used to colour a mesh based on pressure or show velocity vectors. 
Finally, the results section outputs the results of the simulation as a coloured mesh 
showing pressure and coloured arrows showing the velocity vectors of the wind 
flow. 
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GH Wind 

GH Wind is set up differently to the more traditional CFD of Butterfly. Like with 
Butterfly some custom components had to be created in order to parametrise the 
workflow but also to obtain results that GH Wind at this stage could not give.  

 

Figure 3-4: GH Wind Script 

 

In GH Wind one can only manually set the tunnel size and the position of the 
object in it. Therefore, a custom C# code was written in order to define the tunnel 
in a similar way to Butterfly. GH Wind does not use the meshes of 
OpenFOAM/Butterfly but rather voxelises the domain and geometry. There is no 
grading, i.e. all voxels are the same size, and the grid does not snap to the 
geometry but rather is approximated by the voxels (see Figure 3-18). The 
Generate Test Points component is taken from Butterfly to be used here to create 
probe points where results obtained. This was then used with Ladybug 
components from Butterfly to colour the building mesh according to pressure. 
Solution settings such as fluid viscosity, time step, and max iterations are set in 
the solver component. While GH Wind has components for visualising pressure 
and velocity vectors on a plane, as well as pressure coefficient (Cp) on the building 
surface, it does not have the capability to output pressures on the surface in 
Pascals as in Butterfly. Therefore, using the provided source code a new 
Grasshopper component (Get Pressure) was written to output the pressure values.  
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3.2.2 CFD validation 

A validation study was performed to ascertain the ability of the chosen CFD/FFD 
methods in this study to give results within an acceptable degree of uncertainty 
to physical tests. This was done by comparing results from the computational 
method against results from wind tunnel tests using the same building model. 
Also, noted as part of this validation is the time taken for each simulation as this is 
of interest for the project. For the comparison, the Commonwealth Advisory 
Aeronautical Research Council (CAARC) Standard Tall Building Model was used. 
This is a building model created in 1969 for the purpose of comparison of wind 
tunnel tests (Melbourne, 1980). Several studies were done by different institutions 
to gain results for wind tunnel tests. Today, its use has been expanded to CFD 
analysis and verification. One such research paper by Meng et al. (2018) is the 
basis for this study. The physical setup of this building was replicated in the two 
procedures outlined above for Butterfly and GH Wind and simulations run. The 
results for each method – Butterfly, GH Wind, and wind tunnel test – are 
compared. 

  

Aim 

The aims of this validation study were to study two aspects of CFD analysis: 
accuracy and time.  

Accuracy was to verify that the tools selected for this thesis were reliable and to 
deduce to what extent they can replicate established setup procedures and 
results. This is done by comparing obtained values for the pressure coefficient at 
specific points. In Butterfly, this will also be done for various turbulence models as 
the model used can affect accuracy. Time was also important to this study since 
this thesis aims to develop a tool for designers that can be used in the early design 
stages where building geometry changes constantly. The time taken for each 
simulation to complete, Butterfly with each turbulence model, and GH Wind, will 
be recorded and compared. The balance of accuracy and time will determine what 
setup is selected at the end of the study. Since, based on the previous literature 
review, it is known that there is always some discrepancy in results between CFD 
and even physical wind tunnel tests, absolute accuracy was not what was looked 
for. Rather, the study aimed to determine the extent of the error between the 
results of different setups and how much time does the analysis need to reach that 
level of accuracy. This study also gave insight and understanding of the principles 
of CFD as well as the proper procedure for setting up the experiment, running it, 
and recording results.  
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Methodology 

This validation study was done using data from the paper by Meng et al. (2018). 
The paper includes a table of pressure coefficients from physical scaled wind 
tunnel tests carried out on the CAARC model by various institutions. In that paper, 
the authors made tests of this model using the CFD package ANSYS Fluent and 
measured its sensitivity to different changing settings such as grid type, grid 
density, turbulence model, incoming wind speed, and wind direction.  

Their CFD setup was replicated in Butterfly and GH Wind as outlined below. 
Pressure coefficients, Cp, from wind tunnel tests by Tonji University, TJ(D), given 
in table 2 of the paper, were compared to the CFD results. Cp is a dimensionless 
coefficient relating a reference pressure to the pressure at a body surface. It is 
calculated by: 

 

𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑃𝑃0
0.5𝜌𝜌𝜌𝜌𝑈𝑈𝑈𝑈02

 

Equation 3-1: Pressure coefficient (Cp) 

 

Where Cpi = mean wind pressure coefficient at a point i, Pi = wind pressure at point 
i, P0 = static wind pressure at reference height, ρ = air density (1.225 kg/m3), and 
U0 = wind speed at reference height. The reference height is the height of the 
building: 182.88 m. 

In addition to Cp, the time for the simulation to run was recorded. All analyses 
performed were done on a desktop PC running Windows 10 with an Intel® Core™ 
i5-3470 CPU @ 3.20GHz, and 16GB of RAM. 

 

Building Setup 

The CAARC standard tall building model is a rectangular building of dimensions 
30.48m x 45.72m x 182.88m (L x W x H). The wind tunnel tests done on the model 
used an array of 20 pressure taps around the building at 2/3 height to measure 
the pressure at the surface. The Cp will be measured at these points in the 
CFD/FFD setup as shown in Figure 3-5 and Figure 3-6. 
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Figure 3-5: CAARC model dimensions 

 

 

Figure 3-6: Pressure tap locations 
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Tunnel Setup 

The wind tunnel domain from Meng et al. (2018) was replicated in both plugins as 
shown in Figure 3-7 below. The domain measures 900m x 600m x 400m (L x W x 
H). The building is centrally located in the Y direction and 300m from the front 
inlet boundary. This corresponds to a blockage ratio of 3.48% which is less than 
the chosen threshold of 5% (Meng et al., 2018). P0 and U0 are obtained at the 
reference point located at the inlet boundary, central in the y-direction, at building 
height (Figure 3-7). 

 

Figure 3-7: Wind tunnel domain 

Meshing 

The meshing of Meng et al. was attempted to be replicated. The smallest grid 
length was 0.0054H = 0.987552m at the building with grading in the X and Y 
direction (Figure 3-8 and Figure 3-9). This gave 615 120 cells which are less than 
the 850 000 cells from the paper possibly due to the slight difference in meshing 
methodology between ANSYS and OpenFOAM/Butterfly. GH Wind uses a 
structured regular hexahedral grid. Grading is not possible. A grid size of 5m was 
used. This gave 1 728 000 cells. 5m was used as Waibel et al. (2017) in a similar 
validation of Cp on a rectangular building showed that it gave good results and 
smaller sizes gave cell counts that were judged to be too high. 
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Figure 3-8: Wind tunnel domain mesh from Butterfly 

 

 

Figure 3-9: Domain mesh at building geometry from Butterfly showing grading 
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Turbulence models 

The turbulence models evaluated were standard k – ε, Realizable k – ε, and RNG k 
– ε. FFD at present does not have turbulence modelling. To simulate the effects 
of turbulence in GH Wind the kinematic viscosity, ν, of air was set to 0.1, compared 
to the true value of 1.5e-5, as a means of artificially lowering Reynold’s number 
(Waibel et al., 2017). 

 

Solution 

In Butterfly the residuals limit was set at 0.0001 and max iterations at 30 000. The 
solution was run in serial (on a single processor core). Terrain category 6 was 
selected which corresponds to an urban area. To obtain the results, probes were 
placed at the pressure tap locations in the model to get the pressure at each point, 
Pi. Another probe was placed at the reference point location to obtain P0 and U0. 
These values were then put into a custom GH Python script which calculated Cpi.  

GH Wind is natively parallelized. The time step was set at, dt = 0.1 and the time 
horizon (the sum of dt until the calculation stops) is set at 60, totalling 600 
interactions. Terrain category 3 corresponding to an urban area is selected. GH 
Wind has a component (Cp Visualiser) which shows the Cp values over a given 
mesh at the vertices. The surface of the CAARC building was meshed with UV 
dimensions that allowed the vertices to match up with pressure tap points and the 
values were read from those.  

After each analysis, the Cp values at each location was recorded along with the 
time taken in a table. The Cp values from TJ(D) were also recorded in the table for 
comparison. The settings are summarised in Table 3-1. 

 

Solver Butterfly GH Wind 

Turbulence 
models 

k – ε,  
Realizable k – ε, and  
RNG k – ε 

N/A (set v = 0.1) 

Cell size (m) 0.987552 5 

no. of cells 615 120 1 728 000 

Domain (m) 900 x 600 x 400 900 x 600 x 400 

Iterations 30000 600 

Table 3-1: Validation study settings 

77 
 

Results 

The Cp results between tests vary in different amounts from the TJ(D) results (see 
Appendix 2). The RNG kEpsilon model from Butterfly showed the closest Cp values 
to TJ(D) followed by standard kEpsilon. The values from the RNG kEpsilon 
simulation also closely match those found by Meng et al. (2018). The realizable KE 
model gave unrealistic Cp values as Cp generally should not be greater than 1.0 
for incompressible flows (Aynsley, 1999). The reason for this result is unknown 
thus, it was eliminated. Time wise, RNG kEpsilon, though most accurate took 42.6 
hours to complete. Standard kEpsilon took 41.7 hours and realizable KE, 37.4 
hours.  

The FFD analysis, as expected, took a much shorter time to complete, 9.2 hours, 
though it is still a very long time. The Cp values, however, were much lower than 
the TJ(D) and Butterfly results. The average difference between FFD and TJ(D) Cp 
values was 0.39 whereas for RNG and standard kEpsilon it was 0.18. C. Waibel in 
personal correspondence on 12 February 2019, stated that this is expected as it 
is the nature of FFD at present to under-predict Cp values. However, for both FFD 
and the Butterfly calculations the trend in Cp values is similar to TJ(D) as shown in 
Figure 3-10. 

For the Butterfly results, the Cp values are quite close at the front face of the 
building (1 - 5). On the sides and rear (6 – 20) the values deviate more. RNG 
kEpsilon more closely follows the trend of the TJ(D) values compared to standard 
KE which has a more rounded graph shape. This is likely due to standard 
kEpsilon’s poor performance in predicting flow in separated regions (Tamura et 
al., 2008).  
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Figure 3-10: Analysis results 

 

The FFD results in the graph as well follow the general trend albeit with a much 
smoother line than TJ(D) or RNG kEpsilon. Figure 3-11 shows the absolute 
deviation of the Cp results from the simulation to those from TJ(D) per face of the 
building. One can see that FFD is the highest others while kEpsilon and RNG are 
lower.  

 

 

Figure 3-11: Graph of deviation per building side 
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Conclusions 

As expected, the CFD analysis of Butterfly gave closer results to the experimental 
results. RNG kEpsilon was shown to perform the best by more closely following 
the graph trend from the wind tunnel results. However, in the scope of this thesis 
where quick results are desired, the time taken for analysis is still too high though 
there is potential to reduce it. 

The GH Wind analysis was indeed much quicker than Butterfly although the lower 
quantities for Cp present a problem. In personal correspondence on February 12, 
2019, C. Waibel suggested calibrating the reference point at which the static 
pressure and velocity are found by varying the height. This was tried but the values 
were not able to be matched to the Butterfly or TJ(D) results. Scaling the Cp was 
also suggested provided that the error is somewhat consistent. To evaluate this a 
graph of the absolute difference between Cp of each analysis and TJ(D) at each 
pressure tap was plotted (Figure 3-12).  

 

 

Figure 3-12: Error between TJ(D) results and CFD analyses 

 

FFD varies between 0.4 to 0.8 difference compared to TJ(D) with a standard 
deviation of 0.14. The average can be used but it cannot be known whether this 
scale factor can be used for all analyses. Another problem of GH Wind is that it, 
at present, does not automatically stop the simulation upon the convergence of 
residuals. Also, when the residuals were plotted, they started to diverge again 
which C. Waibel, in the same personal correspondence above, stated that this is 
also a problem native to FFD. Further recommendations given in personal 
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correspondence with C. Waibel on 13 February 2019 were to reduce the width of 
the domain but extend the leeward portion. This gives the flow time to reattach 
which would give more numerically accurate results.  

It must be noted that while this validation has provided a good foundation for 
CFD procedure and expectations, the results and conclusions drawn are for a 
simple rectangular tower which is not the intended case for this thesis. It remains 
to be seen if these conclusions can be applied to more complex geometry 
buildings. 

 

3.2.3 Sensitivity analysis 

The aim of the sensitivity analysis portion was to determine how much the 
calculation time can be reduced while maintaining reasonable accuracy. The 
biggest factors affecting CFD/FFD simulation time are the cell size and number of 
iterations. The first sensitivity analysis using the number of iterations was done 
with the CAARC model. However, tests for cell size were done on the Absolute 
Tower model. The tests were again run on a Windows 10 PC with an Intel® Core™ 
i5-3470 CPU @ 3.20GHz, and 16GB of RAM. 

 

Number of Iterations 

It was noticed from the validation study in Butterfly that at 30 000 iterations the 
solution did not converge on its own even though the residuals looked sufficiently 
low. It was inferred that the solution could be stopped even earlier and still give 
satisfactory results cutting down on time. This was confirmed by plotting the 
residuals of the solution where it is seen by 10 000 iterations the residuals are 
sufficiently below the threshold of 0.0001 with a few errant peaks (Figure 3-13). 
Analyses with 10 000 and 5000 max iterations were done to test this theory. The 
Cp values were nearly identical for each pressure tap and the analysis took 15.7h 
and 6.95h respectively (see Appendix 3). Much quicker but still very long.  

 

Figure 3-13: Residuals plot of RNG kEpsilon analysis 
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The GH wind residuals were not so straightforward. As seen in Figure 3-14 the 
graph decreases but at a certain point begins to increase again. In personal 
correspondence with Christoph Waibel, the developer of the GH Wind plugin on 
February 13, 2019, he stated that the divergence of residual values is a 
phenomenon that has been observed with many FFD simulations. His suggestion 
was to stop the simulation at a point before they begin to diverge. Based on the 
graph it was decided to reduce the simulation run from 600 iterations to 400 
iterations. The results for Cp between 600 and 400 iterations were identical 
(Appendix 3). 

 

 

Figure 3-14: GH Wind residuals graph 

 

Cell Size 

Cell size and thus, the number of cells, are crucial parameters for CFD simulations 
since they greatly affect time and accuracy (Franke et al., 2007). The model of the 
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the building was recorded (Figure 3-15). The domain has the following 
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H is the height of the building based on recommendations from Franke et al. 
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for an urban site (roughness length = 1m). The tests were done in both Butterfly 
with RNG kEpsilon turbulence model and GH Wind. 

 

 

Figure 3-15: Pressure tap locations 

 

Butterfly 
The tests were performed for various cell sizes. These start from the standard 
minimum size of the length of the shortest side of the building divided by 10 for 

the coarsest mesh (Franke et al., 2007). Then, divided each time by √2 for 
Medium, Fine, SuperFine, and XXFine. The simulation was run for 10 000 iterations 
and this number was verified as reasonable after checking a graph of the residuals. 

 

Test MAD_1 MAD_2 MAD_3 MAD_4 MAD_5 

Turbulence 
model 

RNGkEpsilon RNGkEpsilon RNGkEpsilon RNGkEpsilon RNGkEpsilon 

Resolution Coarse Medium Fine Super Fine XXFine 

Cell size (m) 4.18 2.96 2.09 1.48 1.08 

no. of cells 176545 236050 346647 525640 732422 

Time 5.7h 6.3h 8.6h 14.5h 20.3h 

Iterations 10000 10000 10000 10000 10000 

Table 3-2: Settings and time results for Butterfly simulations 
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Table 3-2 shows the settings used as well as the time taken for each run. MAD_5 
with a cell size of 1.08 is assumed to be most accurate however, a time of 20.3 
hours is too high.  

 

 

Figure 3-16: Butterfly results 

 

 Mesh Resolution 

 Coarse Medium Fine SuperFine 

Front -18.46% 28.08% 8.71% -0.77% 

Rear 17.63% 15.36% 10.19% -1.46% 

Table 3-3: Deviation from XXFine results 

 

Table 3-3 shows the percentage deviation between the results at XXFine 
resolution and the others. Fine resolution has a relatively small deviation 
compared to Medium and a time of 8.6h is reasonable compared to 14.5h for 
SuperFine. Medium and Coarse have higher deviations but the time reductions 
are significant compared to the others especially if it has to be repeated in an 
optimisation loop. From Figure 3-16 it is that the values closely match in trend 
showing the precision of Butterfly. 
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GH Wind 
For GH Wind the simulations were done for three cell sizes: 10m, 8m, and 6m. 
The time taken for each is shown in Table 3-4 below. The time increases 
exponentially with each jump in cell size. Moreover, the results do not appear to 
be accurate. The values are underpredicted as expected however, the trend 
mostly does not follow the Butterfly (Figure 3-17). 

 

Test MAD_5 MAD_6 MAD_7 

Turbulence model FFD FFD FFD 

Resolution Medium Fine SuperFine 

Cell size (m) 10 8 6 

no. of cells 390830 774387 1824912 

Time 3.4h 7.1h 11.8h 

Iterations 400 400 400 

Table 3-4: Setting and time result for GH Wind simulations 

 

 

Figure 3-17: GH Wind results 
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Conclusions 

Butterfly with the RNG kEpsilon model looked to perform very well. There was 
good correspondence between values as the graphs are very close. The time 
taken is still large however, it can be further reduced by lowering the number of 
iterations and using the coarse mesh setting. While accuracy may be lowered it 
may still be reasonable for early-stage evaluation especially as part of optimisation 
which requires many iterations to be run.  

GH Wind appears to be unsuitable for complex geometries as the results do not 
appear to be precise. It could be made better by decreasing cell size however, 
based on the previous tests it appears it will end up taking a longer time than 
Butterfly. The values could also be scaled to closer match Butterfly however, it 
requires a lot of experimentation to come to a constant value that would be good 
for all geometries. At this moment, it seems futile to continue using GH Wind for 
this case. The main advantage was its potential time savings, but it appears that 
to work for complex geometries the cell size would have to be reduced so much 
that it will take longer while still being less accurate than Butterfly. It seems 
reasonable to think that this is due to the meshing of the geometry. While the 
Snappy Hex Mesh of Butterfly can adapt itself to complex geometries the 
voxelization of GH Wind is a much more inaccurate representation (Figure 3-18). 
Therefore, going forward Butterfly with RNG kEpsilon will be used. 

 

 

Figure 3-18: Butterfly Snappy Hex Mesh (left) and GH Wind voxelization (right) 
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3.3 FSI 

A partitioned FSI procedure will be used for this tool. This involves creating an 
algorithm to join the output of the CFD solver to the input of the FEA solver. 
Specifically, the pressure on the façade into a FEM using an upright fixed beam 
with a number of point loads and moments. Thus, the procedure follows two 
interconnected lanes: one for translating the pressure values and one for 
translating the geometry (Figure 3-19). These are then assembled and analysed 
with the FEA solver to obtain the structural reactions. 

 

 

Figure 3-19: FSI translation algorithm workflow 

 

3.3.1 Translation procedure 

This translation procedure developed in Grasshopper takes the pressure loads on 
a mesh of the building surface from Butterfly and consolidates it into point loads 
and moments along the core of the building represented by line segments. The 
idea was to divide the mesh into sections and sum the forces on each sector to 
get point loads and moments. The script layout is shown below in Figure 3-20. 

 

 

Figure 3-20: FSI translation script 
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Butterfly outputs a mesh and a list of pressures in Pascals which corresponds to 
each mesh face (Figure 3-21a). The resolution of the mesh is set before the 
solution and is unrelated to the resolution of the CFD mesh. First, the list of mesh 
faces is sorted. Since the list comes out from Butterfly in an unpredictable order 
this sorting algorithm ensures the lists will always be in the same order. The centre 
point of each face is obtained and then sorted and grouped by height so that all 
points with the same Z component are in a branch of the data tree. Then using a 
bounding circle, the groups of points are sorted in an anticlockwise direction. The 
pressure values are multiplied by the area of their corresponding mesh face to 
give a force in kN. This becomes the magnitude of the normal vectors. This list, as 
well as the list of face normal vectors, is sorted using the same ordering algorithm 
for the list of points so that each element of one list corresponds to the right 
element in the other lists. The points at each height are average to get the centre 
points of the building. The force vectors are summed at each height to give a 
point load acting at each corresponding centre point. Input for the number of 
vertical divisions is given which determines where the central polyline is split and 
where forces will be applied. The point force vectors are summed and applied to 
their nearest division point. 

 

 

              

Figure 3-21: (a) Mesh from Butterfly with corresponding pressures, (b) division into segments, (c) force 
vectors summed per segment and applied to centre point plus distance vector from centre of the building, 

(d) force vectors and moment vectors applied to core beam 
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To get moment vectors an input for the number of horizontal divisions is also 
given. This, as well as the number of vertical divisions, guides an algorithm for 
arranging the lists of force vectors per mesh face and corresponding face points 
into rectangular segments on the building mesh (Figure 3-21b). These force 
vectors are then summed per segment and applied to the centre point of the 
segment (Figure 3-21c). The moment vectors are obtained from the cross product 
of the segment force vectors and distance vectors and applied to the core at the 
division points (Figure 3-21d). These force and moment load vectors can then be 
put into Karamba along with a polyline of the core split at the points of application 
of the loads. 

 

3.3.2 Finite Element Analysis 

To perform structural analysis in FEA software a Finite Element Model (FEM) is first 
constructed. Elements are the beams, shells, or other components being 
analysed. The loads, usually in the form of vectors, are added as well as the points 
on the elements that will be the supports. Finally, the material and size of the 
cross-section are given. This is assembled into the FEM where the solver can 
analyse the resulting structural behaviour and give results such as reaction forces 
and moments, deflections, and stresses. 

 

 

Figure 3-22: FEA workflow 

 

Karamba version 1.3.1 was integrated into the Grasshopper tool. To perform FEA 
in Karamba the elements, loads, supports, cross-section, and material must be 
defined and assembled into the FEM in the “Assemble” component. The 
elements will be the lines obtained from splitting the central polyline of the 
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building which represents the core at the points the loads will be applied. The 
cross-section of the elements will be the dimensions of the core. In this case for 
the Absolute Tower, the core is 8.6m x 8.0m and 0.4m thick (Figure 3-23). The 
script layout can be seen in Figure 3-24. 

  

 

Figure 3-23: Typical floor plan of Absolute Tower © MAD Architects 

 

 

Figure 3-24: Karamba FEA script 
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The material chosen is C45/55 concrete. The supports are fixed in all degrees of 
freedom. The loads are the point forces and moments obtained from the 
translation procedure. After the model is assembled and analysed the results are 
obtained (Figure 3-25 and Figure 3-26).  

          

Figure 3-25: FEM in Karamba (left) and deflected model (right) 

 

Figure 3-26: Deflected model of core showing stresses 
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The script was run for 10 000 iterations at Fine mesh setting. Max deflection at the 
top was 1.28m. This is large as the SLS requirement from Eurocode 6 for concrete 
of L/250 gives max deflection of 0.677m. This could be due to the fact that only 
the core is modelled to take all the load when in reality there would be additional 
columns, floors, and beams that could add to the stiffness. Additionally, these 
loads are for an extreme wind case. Other results include max stress of 25.7 MPa, 
base overturning moment of 831 254 kNm, and base twisting moment of 3717 
kNm. These results were also verified by hand calculations (see Appendix 4). 

  

3.3.3 Conclusions 

The devised FSI translation procedure was able to be implemented successfully in 
Grasshopper. Through examinatio, the results align with what was expected which 
shows that the sorting and grouping algorithms perform as they should with the 
test buildings used. 

For the FEA the deflection obtained in this test is very large thus it may not be 
reasonable to compare to Eurocode limits. For the optimisation portion, the 
improvements could be minimised relative to the first obtained values. 
Nonetheless, the results show that the script works and is able to produce results 
for the wind-induced reactions on a building structure. The wind forces were quite 
significant on the building, especially at higher points. Twisting moments were 
greater near the middle of the tower corresponding to the section with the most 
twist which was expected. However, the twisting moment is relatively small and 
its contribution to deflection is negligible with -0.0037 degree max rotation 
possibly due to the slender shape of the tower.  

Dynamic loading is still a factor that is not analysed. Although the displacement 
from torque is small it could have a significant impact on comfort if the frequency 
of displacement is significant. This also applies even more so for crosswind 
displacements due to vortex shedding. This could be accounted for analytically 
using custom scripts in further research. 
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3.4 Optimisation 

The next step in the research involved exploring the viability of optimisation with 
the FSI tool. The goal is to reduce structural objectives solely by manipulating 
geometry. Thus, an array of parameters which morph the geometry would be the 
input variables while an output of the FSI algorithm would be the objective of the 
optimisation algorithm. This joining of an optimisation component with the FSI 
method thus creates a Fluid-Structure Interaction based Optimisation (FSIO) 
method. It involves iteratively changing the variables and reading the objective 
until an optimum is found. Thus, Figure 3-27 shows the workflow of the complete 
method. 

 

 

Figure 3-27: Optimisation workflow 

 

3.4.1 Optimisation setup 

The Opossum plugin was used with the developed FSI tool in Grasshopper. 
Different options for objectives and variables were explored to determine a viable 
optimisation problem for this case. All optimisation tests were run on a Windows 
10 PC with Intel® Core™ i7-5820K CPU @ 3.30GHz 6 Cores and 16GB RAM. In 
order to prepare the full FSI script for optimisation, it must be able to run without 
any other input apart from a change in the chosen input variables. This required 
some changes to the script. A small user input (UI) area was made and the script 
modified so that only the settings in this area need to be changed in order to run 
the tool. The layout and steps are illustrated in Figure 3-28. 
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Figure 3-28: User Input (UI) area of script and steps to run the FSIO tool 

 

The geometry is input first (step 1). This geometry must be parametrically defined 
in order to have input variables for Opossum to manipulate. The case study 
buildings were built parametrically to have 2 or 3 sliders controlling the geometry. 
A name is given to the case and a wind speed set as required by Butterfly (step 
2). The cross-sectional dimensions of the core are then set as required for Karamba 
(step 3). After these settings have been input, one sets the first toggle to true to 
create the case and mesh and the second to run the FSI tool (step 4). The two 
toggles below (Purge) allow the user to clear the existing meshes and/or results. 
To the right is a readout of information about the building and the different 
objectives that can be used in the optimisation. After running an initial analysis to 
obtain baseline results the user then inputs the obtained in the deflection limit 
field and sets the “Optimise?” toggle to true (step 5). The “Optimise?” toggle 
enables Karamba Cross-Section Optimisation plugin to allow for optimising 
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material mass as explained in the tests following section. If the user is only using 
deflection as the optimisation objective leave the toggle on False. Then, connect 
the objective output of Opossum to the desired objective and the variables input 
to the sliders controlling the geometry (step 6). Finally, open the Opossum 
component and run the optimisation (step 7). 

 

3.4.2 Optimisation tests 

The aim of these tests was to determine the extent to which structural performance 
due to wind can be optimised by making relatively small changes to the geometry 
of the building. By trying different arrangements of inputs, objectives, and settings 
for the optimisation algorithm with multiple buildings models the hope is to 
determine a robust optimisation problem that can be used for many different 
building models. 

The case study buildings shown in section 3.1 were used in tests to formulate the 
optimisation problem. This involved exploring different input variables and ranges 
of values and objectives to determine the most meaningful arrangement. Since 
optimisation with CFD will take a very long time given the number of iterations to 
be done it was decided to try to minimise the length of the CFD simulations. Thus, 
a coarse mesh setting was used and max iterations for Butterfly was set to 2000. 
This would not give totally accurate results in absolute terms but by keeping these 
constant along with wind speed and other settings and only allowing the 
optimisation algorithm to manipulate the geometry one would still see a relative 
improvement in the objective which is still valuable.  

The building models themselves were parametrically defined in order to allow the 
optimisation algorithm to manipulate the geometry and find a better performing 
arrangement. The parameters chosen to be modified allowed the building to 
change enough so that there would be an impact on wind reactions but still 
maintain much of the general architectural intent of the building. No parts were 
added or subtracted but existing features were morphed.  

For this study, like the rest of the tool, the building models were built in 
Grasshopper as detailed below so that two or three characteristics were able to 
be modified using number sliders. 
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Optimisation 1 – Absolute tower with deflection 

In the first optimisation test, the Absolute Tower model was used. This building is 
characterised by an elliptical cross-section that twists as it rises. It was decided to 
manipulate the size of this ellipse as well as the amount of twist. A base ellipse 
was created whose width and length are controlled by sliders. This curve was then 
copied and moved upwards in the position of each floor and each rotated 
according to the angles given in the original design by the architect. A slider was 
added to act as a multiplier to these angles so that the twist could be increased 
or decreased. These three sliders: base length, base width, and twist multiplier, 
were the input variables for the optimisation (Figure 3-29). 

 

Figure 3-29: Absolute Tower model parameters 

 

Case study Absolute Tower  
Max iterations 60   
Parameters Base length Base width Twist 

Ranges 13.0 < x < 15.0 13.0 < x < 15.0 0.5 < x < 1.5 

Objective Deflection   

Table 3-5: Absolute Tower optimisation 1 settings 
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Table 3-5 shows the ranges and initial values of each input variable. The objective 
for this optimisation run will be to minimise deflection. The deflection value is 
obtained from Karamba. An initial FSI analysis was done to determine the baseline 
objective value. This gave a max deflection value of 1.5444m. In Opossum the 
RBFOpt algorithm was selected with max iterations of 60. After completion, the 
deflection saw a 38% reduction to 0.9454m with input variables of 13.25, 13.00, 
0.50 for length, width, and twist respectively. Figure 3-30 shows the gradual 
improvement of the deflection objective with every iteration which appears to 
converge at around 40 iterations. The optimised shape (Figure 3-31) is rotated 
about 90° in the top portion. This results in a smaller area of high pressure on the 
front windward side of the building and thus lower point loads on the FEM. 

 

 

Figure 3-30: Results of Absolute Tower optimisation 1 

 

 

 

 

 

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 6 11 16 21 26 31 36 41 46 51 56

M
ax

 d
ef

le
ct

io
n

 [m
]

Iterations

OPTIMISATION OF DEFLECTION

97 
 

 

Figure 3-31: Absolute Tower optimisation 1 

While this first test was successful in reducing the objective there was room for 
improvement. Firstly, the design space i.e. the range of values for the input 
variables was quite small thus there could be more optimums that are missed. 
Also, it was thought that material mass could be a more meaningful objective to 
minimise rather than just deflection as this can translate to lower cost and lower 
carbon footprint which is very valuable to building stakeholders.  
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Optimisation 2 – Absolute tower with mass 

For the next optimisation trial, the ranges of input variables were expanded 
allowing the size to expand or contract more and also a greater range of twist so 
that the tower could go from double the twist to completely reversed and even 
no twist at all (Table 3-6). This was done in order to possibly catch an optimal 
configuration that may have been missed in the smaller design space of the 
previous optimisation run. This came with the caveat that the geometry may stray 
even further from the original architectural design. 

Case study Absolute Tower  

Max iterations 60   

Parameters Base length Base width Twist 

Ranges 12.0 < x < 16.0 12.0 < x < 16.0 -1.0 < x < 2.0 

Objective Material mass   

Cross-sections 0.10m to 0.80m in 0.05m increments 

Table 3-6: Absolute Tower optimisation 2 settings 

 

In order to reduce material mass, the Cross-Section Optimisation (CSO) 
component in Karamba was used. This does not utilise an optimisation algorithm 
but rather consecutively searches a list of cross-sections, ideally sorted from 
lightest to heaviest, until it finds one that meets the requirements set for utilisation 
and deflection. Therefore, as the wind pressure reduces so does the stiffness 
required to stay within the deflection limit and thus a thinner cross-section will be 
selected resulting in reduced material.  

For this test, a list of cross-sections for the core was created with the length and 
width, 8.6m and 8.0m, kept constant but thickness ranging from 0.1m to 0.8m in 
0.05m intervals. The deflection limit was set at 1.5444m as per the initial analysis 
and max utilisation ratio kept at the default of 1.0. It was at this point that a 
deflection limit input was added in the UI area of the script. Also, a toggle was 
implemented so that a user can switch between “True” where the FEA runs 
through the CSO component to optimise material mass, or “False” where it 
optimises deflection by using the input cross-section thickness and running 
through Karamba’s first order analysis component as normal (Figure 3-28). 
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Figure 3-32: Results of Absolute Tower optimisation 2 

 

Properties Original Optimised 

Material mass [T] 5984.924 4068.394 

Core thickness [m] 0.40 0.30 

Deflection [m] 1.544 1.073 

Table 3-7: Results of Absolute Tower optimisation 2 

 

Figure 3-32 shows the trending down of the material mass objective. This graph, 
however, is more stepped compared to the smooth graph of the deflection in the 
previous optimisation. This is due to material mass not being a continuous variable 
like deflection but is the property of a fixed list of cross-sections. Nonetheless, the 
mass of concrete needed in the core was reduced by 32%, a reduction of close to 
2000 tons, simply by manipulating the geometry of the building. This was as a 
result of reduced thickness of 0.3m versus the original 0.4m. The deflection was 
also reduced to 1.073m which was unexpected. It was concluded that this could 
be a result of the deflection limit; perhaps the previous smaller thickness, 0.25m, 
would have put the deflection slightly over the 1.544m limit. A smaller step size 
for thickness could be used to mitigate this problem. 
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Figure 3-33: Figure 3 26: Absolute Tower optimisation 2 

 

The optimised design, in this case, is different from that in optimisation run 1. The 
building is now only slightly rotated from the original and the cross-section is a bit 
wider/more rounded. This, though being the best performing option is quite 
different from the original design of the building and may not be acceptable to 
an architect.  
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Optimisation 3 – Nanchang tower with mass 

The Nanchang tower features a gradually changing smooth cross-sectional shape. 
To parametrise the geometry, it was thought to manipulate this shape along the 
tower. The model was made in Rhino based on floor plan and section drawings 
and then referenced into Grasshopper. Contour curves were made all along the 
height of the building and their control points obtained. Based on a bounding 
attractor circle for each curve a multiplier with slider was made to control the 
attraction or repulsion of the control points to the circle. This was split between 
the top and bottom half of the tower with a slider controlling each. From these 
control points, the curves were reformed and lofted and capped to create the 
model to be put into Butterfly (Figure 3-34). Table 3-8 shows the initial values and 
ranges of the input variables.  

 

Figure 3-34: Nanchang Tower model parameters 

 

Case study Nanchang Tower 
Max iterations 60  
Parameters Top curves Bot curves 
Ranges -1.000 < x < 1.000 -1.000 < x < 1.000 
Objective Material mass  
Cross-sections 0.20m to 1.15m  in 0.05m increments 

Table 3-8: Nanchang Tower optimisation settings 
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The objective for this optimisation was material mass. As the true core of this tower 
has a shape that starts as a square and, at near halfway up the height, begins to 
transition to an octagon it could not be modelled directly for Karamba. Thus, for 
these tests, a square core was modelled with a moment of inertia equal to the 
average moment of inertia of the true core geometry. This equates to a cross-
section of 19.75m x 19.75m x 1.0m thick. The building is 302.91m tall. An initial 
FSI analysis was done to establish a baseline deflection of 0.6836m. This was set 
as the deflection limit. For the list of cross-sections for CSO, the length and width 
were kept constant at 19.75m but the thicknesses ranged from 0.20m to 1.15m in 
0.05m intervals. 

 

 

Figure 3-35: Results of Nanchang Tower optimisation 

 

Properties Original Optimised 

Material mass [T] 56240.466 47533.016 

Core thickness [m] 1.00 0.85 

Deflection [m] 0.6836 0.66132 

Table 3-9: Results of Nanchang Tower optimisation 2 
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Table 3-9 shows the core thickness was reduced from 1m to 0.85m corresponding 
to a reduction in material mass of 15% to 47533 tons. A small decrease in 
deflection of 0.022m was also observed. As with the results from the second 
Absolute tower optimisation run this could be due to the step size selected from 
the thicknesses though it is less of a problem in this model.  

Figure 3-36 shows the original and optimised Nanchang Tower model. The 
optimised version looks more rounded in the top half while the lower half is 
contracted. The largest point load on the initial model is the one before the top 
corresponding to the concave shape of the facade at that height. The optimised 
geometry smooths out this area possibly allowing air to flow easily around it rather 
than get caught in the concave area and impart higher pressures. The resulting 
loading is now a gradual increase from bottom to top corresponding to the 
increase of wind velocity with height. The contraction of the bottom cross-section 
was unexpected as it would be thought that the most optimal shape would be 
smoother and rounder. On further examination of the pressure values of the mesh 
and the resulting point loads it was noticed that while the loads between the 
original and optimised version near the bottom were more or less equivalent, the 
decrease in pressure at the top portion between the optimised and original 
geometry was so great that it is possible that the bottom simply didn’t matter so 
much. Since black-box optimisation methods such as the one used here have no 
knowledge of the actual subject of the optimisation but only look at the numeric 
values of the inputs and outputs it is plausible that an unexpected result like this 
can occur. 

As with the Optimisation 2, the optimised version of the geometry is noticeably 
different from the original design which can be an issue for an architect. The 
Opossum plugin includes a feature where a text log file is saved during the 
optimisation run which records for each iteration the variables and objective 
values. This is very useful as it allows the designer to have a list of potential designs 
and their resulting material use or other objective. Thus, they have the option of 
selecting a design that is a balance of performance and aesthetics. In the next 
optimisation, this was further explored as well as other methods of recording the 
options of each iteration. 
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Figure 3-36: Nanchang Tower optimisation 
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Optimisation 4 – Ardmore Residence with mass 

The Ardmore Residence’s floor plan shape was built as a curve to be modified by 
sliders. There were three parameters. Two sliders control the position of each of 
the wings along the main body. A third slider modifies the edges of these wings 
from straight to a more angled position. From this curve outline, the massing was 
extruded to the 136m height of the building. In addition, the building was rotated 
45 degrees so the wind would impinge on the building off axis.  

 

Figure 3-37: Ardmore Residence model parameters 

Case study Ardmore Residence  

Max iterations 100   

Parameters Top position Bot position Edges 

Ranges -15.00 < x < 5.00 -5.00 < x < 15.00 -2.00 < x < 1.00 

Objective Material mass   

Cross-sections 0.10m to 0.59m in 0.01m increments 

Table 3-10: Ardmore Residence optimisation settings 

 

The core of the building measured 11m by 7m and 0.4m thick. The lists of cross-
sections range from 0.10m to 0.59m thick in 0.01m intervals in contrasts to the 
previous optimisation tests in order to have a wider range of possible objectives. 
The max number of iterations was increased to 100 to allow for more time to reach 
an optimum owing to the wider objective range. The deflection limit was set at 
0.6553m based on an initial FSI run.  



106 
 

 

Figure 3-38: Results of Ardmore Residence optimisation 

 

Properties Original Optimised 

Material mass [T] 4609.59 3497.39 
Core thickness [m] 0.40 0.30 
Deflection [m] 0.66 0.66 

Table 3-11: Results of Ardmore Residence optimisation 

Figure 3-38 shows the gradual reduction of the objective over each iteration. It is 
much smoother than the previous two tests owing to the smaller step size in cross 
section. A 24% reduction in the material mass was achieved by reducing the core 
thickness from 0.30m to 0.40m (Table 3-11). Deflection remained the same in 
contrast to the past two tests. This shows that a small step size in thickness is 
preferable. Figure 3-40 shows the resulting optimum shape. The lower wing is 
moved to the front resulting in a more symmetrical cross-section. This was most 
likely to reduce the large flat wall area on the windward side in the original layout. 
The edges were also pulled to a sharper angle. The optimised layout performs 
more like an airfoil allowing wind to flow better around it imparting less pressure 
(Figure 3-39).  

  

Figure 3-39: Original vs. optimised plan layout 
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Figure 3-40: Ardmore Residence optimisation 

 

Again, this shape is quite different from the original. However, Opossum is able 
to produce a log file of each iteration showing the parameters and resulting 
variables. Table 3-12 shows a portion of this log. From this, an architect/engineer 
could choose an option that may be of lower performance but closer to the 
desired design. 
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Objective Parameters 
3497.389648 -1.33485 -0.929071 10.44161 
3497.389648 -1.31458 -0.939001 9.601758 
3497.389648 -1.304247 -0.723498 10.06166 
3497.389648 -1.339462 -0.923453 10.42814 
3497.389648 -1.336708 -0.888233 10.44881 
3497.389648 -1.314301 -0.783084 9.776589 
3497.389648 -1.337035 -0.913835 10.44251 
3497.389648 -1.297746 -0.760683 9.94928 
3497.389648 -1.30454 -0.738041 9.98592 
3497.389648 -1.308119 -0.837547 9.784086 
3497.389648 -1.285229 -1.288027 9.214127 
3497.389648 -1.299032 -1.106098 9.43351 
3497.389648 -1.306246 -0.775974 9.83051 
3609.815648 -0.49105 -4.586158 5.201521 
3609.815648 -0.521421 -4.93481 5.170925 
3609.815648 -0.56391 -4.800343 5.513151 
3609.815648 -0.510737 -4.983012 5.248821 
3609.815648 -0.519789 -4.899149 5.24057 
3609.815648 -0.50487 -4.58078 5.22472 
3609.815648 -0.497973 -4.571504 5.19698 
3609.815648 -1.346463 -0.985015 10.70364 
3609.815648 -0.497863 -4.576131 5.228151 
3609.815648 -0.564426 -4.473779 5.532446 
3609.815648 -0.54981 -4.542832 5.322157 
3609.815648 -1.295984 0.159091 8.790278 
3609.815648 -1.332086 -0.940997 10.1768 
3609.815648 -1.351015 -0.962754 10.36552 
3609.815648 -1.328714 -0.983009 10.43439 
3609.815648 -1.274754 -0.71672 9.536599 
3609.815648 -1.317449 -0.892674 9.659267 
3609.815648 -1.293029 -1.047025 9.644604 
3721.973648 -0.5 -5 5 
3721.973648 -0.197962 -6.041961 6.439614 
3721.973648 -0.382408 -5.530504 5.857319 
3721.973648 -0.335814 -6.489037 6.152292 
3721.973648 -0.36223 -5.833817 6.099619 
3721.973648 -0.54279 -4.838407 5.015133 

Table 3-12: Part of log produced from Opossum optimisation run 

 

In addition, data recorder components were added in the Grasshopper script 
connected to the mesh and pressure value outputs so the results at each iteration 
were recorded in a list. This allowed the user to scroll through resulting geometry 
and structural results at each iteration after the optimisation run. This is a feature 
that could be further developed and better integrated into the tool in future work. 

109 
 

Optimisation 5 – Absolute Tower with smaller step size 

To confirm the findings regarding cross-section step size discovered in 
optimisation 4, optimisation 2 was rerun using a different list of cross-sections. 
This time the list went from 0.10m to 0.59m in 0.01m steps. All other settings 
remained the same as optimisation 2. 

 

Case study Absolute Tower  
Max iterations 60   
Variables Base length Base width Twist 

Ranges 12.0 < x < 16.0 12.0 < x < 16.0 -1.0 < x < 2.0 

Objective Material mass   
Cross-sections 0.10m to 0.59m in 0.01m increments 

Table 3-13: Absolute Tower optimisation 3 settings 

 

 

Figure 3-41: Results of Absolute Tower optimisation 3 

 

Properties Original Optimised 
Material mass [T] 5984.924 3522.112 
Core thickness [m] 0.40 0.26 
Deflection [m] 1.544 1.420 

Table 3-14: Results of Absolute Tower optimisation 3 
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The resulting graph is much smoother than that in optimisation 2. It was also able 
to arrive at an even better-performing objective of 3522 Tons due to a smaller 
cross-section of 0.26m with a deflection value of 1.4199m which is much closer to 
the limit than the 1.017m in optimisation 2. This confirms the hypothesis that the 
0.05m step size in optimisation 2 was too large and thus missed the optimum 
gained by selecting a 0.26m cross-section. 

 

3.4.3 Conclusions 

The goal of these optimisation tests was, as previously stated, to ascertain the 
extent to which structural performance based on wind load can be improved by 
manipulating the external massing of the building and what input variables, 
objectives, and optimisation settings can produce the most ideal optimisation 
problem. The computational method being developed should be able to readily 
accept any geometry that a user puts into it and get good results. The optimisation 
settings, in particular, should allow for that. The result would be a set of guidelines 
for performing optimisation runs using this method. 

In general, each of the optimisation tests was able to successfully reduce the 
objective by manipulating the numeric sliders controlling geometry. While it was 
sought to keep the shape-changing within the general architectural layout of the 
building there was, in all cases, noticeable difference between the original and 
optimised geometry. This shows one of the ways building design is complicated 
with one aspect of performance, in this case, the size of the structural core, 
competing with another like architectural aesthetics. In this, it is concluded that it 
is better to have a range of options rather than a single optimal result. Thus, the 
user can pick an option that balances performance with the desired shape. The 
Opossum plugin was a good choice in this regard as it can produce a table of 
input variables and resulting objective value at each iteration. This along with the 
ability to use data recorders in Grasshopper can allow a useful result selection 
feature to be added to the developed tool. 

The research showed that CFD-O is rarely done due to the computationally 
expensive and time-consuming nature of it. In these tests, each iteration took a 
maximum of 2 hours for the Nanchang tower, the largest building tested, and a 
minimum of 30 minutes for the smallest case the Ardmore residence. Therefore, a 
full optimisation run took between 1 and 2 days in each case. This was possible 
due to using low mesh and iteration settings for the CFD and using a model-based 
optimisation algorithm which works best at a low number of iterations. Though it 
is still quite a bit of time it would have been much worse using, for example, a 
genetic algorithm which typically requires hundreds or even thousands of 
iterations to converge. It can be concluded that CFD-O and particularly in this 
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case FSIO is feasible and reasonably efficient using this method. Opossum with 
the RBFOpt algorithm looks to be able to produce optimised results within a 
relatively small number of iterations. For optimisation 1 & 2 the objective seems 
to converge before the max iterations of 60. In number 3 with the Nanchang 
Tower, the final level of the graph is steady for about 15 iterations. This may mean 
that optimisation 3 could have run for some more iterations, but it is uncertain 
whether this additional time would have produced a fitter result. In optimisation 4 
the max iterations were increased to 100 however, there was not a long period of 
static results like in the previous cases so a slightly longer run may have been 
better to confirm convergence. Nevertheless, it did come to much improved 
objective value in the time given. It looks that between 60 – 120 iterations with 
the RBFOpt algorithm is ideal. 

Material mass seems to be a more meaningful objective than just deflection as it 
makes the tool more applicable in practice. The combination of Opossum with 
Karamba CSO is very useful in this case especially if one already has selected an 
initial core size. It can show as a result of changing the geometry of the building 
you can reduce core size by the found amount and save this amount of material. 
However, if it is even earlier in the design phase, deflection can still be a good 
objective as it shows what shape would generally perform better. The step size of 
0.05m was too large as deduced in optimisation 2 and 3. A reduced step size of 
0.01m performed better as shown in optimisation 4 and 5.   
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3.5 Final Method and Tool 
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Figure 3-42: Final FSIO method workflow 
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The final developed method is shown in Figure 3-42. The variable inputs are the 
ones which change with each project, the constant inputs remain the same 
between projects as there is no need to modify them, however, a more advanced 
user could alter them if desired. The FSIO method takes a 3D model of an object 
performs CFD analysis to determine the wind pressure imparted on it and passing 
those results to FEA solver to obtain structural results. This is then paired with an 
optimisation algorithm in order to generate better performing options and output 
a list of results. This thesis developed this method within Rhino/Grasshopper using 
existing plugins such as Butterfly for CFD, Karamba for FEA, and Opossum for 
optimisation. This was combined with own custom scripting with GH components, 
Python, and C# code to obtain the tool based on the method (Figure 3-43). This 
custom scripting allowed the combination of the existing plugins as well as 
allowing the procedure to be as parametric and adaptable as possible so that 
precise and timely results can be obtained regardless of the building model input 
by a user. See Appendix 6 for Python and C# code. 

 

 

 

 

  

Figure 3-43: Full FSIO script 
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Figure 3-44: Total FSIO script overview 
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Figure 3-44: Total FSIO script overview 



116 
 

  

117 
 



VERIFY



120 
 

As mentioned in the Research section, the current methods for evaluating wind 
loading on buildings are the Eurocode EN1991-1-4 procedure with corresponding 
National Annex and scaled boundary layer wind tunnel tests particularly when the 
building is of complex geometry. As a complement to the CFD validation study 
(section 3.2.2) which validated the CFD procedure’s accuracy against wind tunnel 
tests, this section will seek to compare the FSI tool against the Eurocode 
calculation method. The aim was to see how similar (or different) the values 
obtained from EN methods are to those obtained from the FSI procedure. The 
Absolute Tower and Nanchang Tower models were used in this test. 

 

4.1 Eurocode Calculations 

In EN1991-1-4 many of the values given or derived from graphs are provided for 
standard cross-sectional shapes like rectangles or circles. For these calculations, it 
was chosen to assume values for a circular cross-section as these building models 
have a smooth cross-sectional shape which is imagined having airflow closer to a 
circle rather than a rectangle with sharp corners causing flow separation. Basic 
wind velocity was taken as 30m/s and roughness length of 1m to match the CFD 
simulations. Aref was set at 1m2 in order to obtain wind force, Fw, per area. In the 
FSI script, the point loads were obtained at 6 points along the height of the 
building. These same 6 heights were used to obtain Fw from the EN. The areas to 
which the Fw would be applied was obtained in Grasshopper by finding the areas 
around the point loads of the building perpendicular to the wind flow (Figure 4-1). 
This was done for each of the case study buildings and the loads compared to 
those from the FSI procedure. See Appendix 4 for the calculation procedure. 

 

Figure 4-1: Areas for wind force, Fw, application 
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4.2 Results 

The results for the Absolute Tower model are shown in Figure 4-2 and Table 4-1. 
The EN numbers begin to rise then fall with respect to the decrease in the 
perpendicular area near the middle of the tower then rise again to a maximum 
value of 1255.92kN. The values from the FSI tool follow a similar pattern but are 
much higher. The values as well vary according to the height which accounts for 
the change in geometry of the tower. For instance, near the midpoint of the tower, 
there is a dip in wind force corresponding to the location of the twist. This area 
has lower wind pressure due to the long axis of the elliptical cross-section facing 
the wind which is a more aerodynamic arrangement. The higher forces at the top 
and bottom are possibly due to wind impacting the ellipse along the short axis 
which is a flatter area than the perceived circle of the EN calculation. 

However, the discrepancy in the magnitude of the loads between the FSI 
procedure and the EN is quite large. This was thought to be so as CFD with RANS 
turbulence models calculates the mean static pressures. In reality, wind flow in the 
boundary layer is more random and peak pressures do not occur simultaneously 
over a structure (Cook, 2007). This is accounted for in the EN by the structural 
factor, cscd, and the force coefficient, cf, which are multiplied to the peak velocity 
pressure qp(z) (Equation 2-14). To account for this the FSI values were multiplied 
by the by cscd and cf (FSI Reduced). As seen in Figure 4-2, the reduced values from 
GH are now closer in line with those from EN calculations. 

 

 
Figure 4-2: Absolute Tower EN/FSI calculation comparison 
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Heights [m] Areas 
[m2] 

Wind Force 
[N/m2] 

EN Point 
Load [kN] 

FSI Point 
Load [kN] 

FSI reduced 
[kN] 

15.93 1232.57 544.10 670.64 1210.84 755.47 

46.84 1148.51 806.31 926.05 1417.42 884.37 

76.29 867.27 927.85 804.70 1282.13 799.95 

100.80 803.19 997.78 801.41 1412.59 881.35 

126.38 1018.82 1054.79 1074.64 2386.57 1489.04 

155.73 1133.90 1107.61 1255.92 2490.19 1553.69 

Table 4-1: Absolute Tower EN/FSI calculation comparison 

 

The calculations were as well carried out for the Nanchang Tower model. The EN 
values follow a smooth curve with a peak at a height of 178.44m. The GH values 
are much higher than EN. They smoothly increase until a height of 178.44m then 
jump at 229.46m. This is likely due to the concave façade at this point which leads 
to a higher pressure as the air would have difficulty flowing around the building at 
this point. The value then drops back down at the highest point where the wind 
can then flow over the top of the building (Figure 4-3). To mitigate the problem 
of the high values from the FSI procedure, the values were again multiplied by the 
factors cscd and cf for the Nanchang building. This gives values that closely follow 
the EN curve of values except for the deviations discussed earlier. 

 

 

Figure 4-3: Nanchang Tower EN/FSI calculation comparison 
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Heights 
[m] 

Areas [m2] Wind Force 
[N/m2] 

EN Point Load 
[kN] 

FSI Point 
Load [kN] 

FSI reduced 
[kN] 

25.41 3013.03 676.56 2038.49 3120.78 2106.78 

76.40 2738.92 962.12 2635.16 3834.93 2479.81 

127.45 2555.49 1096.21 2801.35 4279.36 2698.20 

178.44 2371.95 1184.31 2809.12 4621.25 2862.45 

229.46 2168.35 1250.04 2710.52 6101.75 3727.84 

278.95 1892.52 1301.02 2462.21 5285.71 3194.20 

Table 4-2: Nanchang Tower EN/FSI calculation comparison 

 

4.3 Conclusions 

These results show that the FSI procedure does indeed give values similar to the 
Eurocode procedure if the structural factor and force coefficient are taken into 
account. The FSI tool, however, has the added benefit of being able to capture 
local effects of geometry on wind pressure along the building height as shown in 
the graphs above for the two building models. Moreover, performing optimisation 
one could see the benefits in the results whereas with the EN calculations they 
would remain mostly the same as the only variables used relating to building 
geometry are overall building width and height. The values obtained from the FSI 
procedure, however, were expected to be appreciably lower than the EN as Cook 
(2007) stated: 

The simplification in the [EN1991-1-4] model inevitably involves a degree 
of conservatism to ensure that the most onerous loading case is included. 
For this reason, design assisted by testing and measurement, as permitted 
by clause 1.5, often results in lower design loads and a more efficient 
structure. 

These simulations were run with a coarse mesh setting and only 2000 iterations in 
order to save time. A finer mesh with a higher number of iterations may give better 
results. Nonetheless, the similarity in results to the EN with the deviations based 
on geometry prove that this tool can be used, at least in earlier stages, as a 
complement to the EN. 
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The objective of this study was to create a computational method that designers 
and engineers could use in the early stage of design to analyse the structural 
responses due to the wind and optimise the geometry to reduce it. The project 
followed a three-step process of research, develop, and verify with each integral 
to the success of the tool. Research was done to further the knowledge needed in 
the areas of wind and its action on structures as well on CFD and pairing it with 
FEA to obtain structural objectives. Finally, research on the science and process 
of optimisation was done. Also researched was current calculation methods. This 
all helped establish the current state of the art and how the presently available 
processes and tools could be used and improved upon. As a result, development 
of this method could take place by creating a proof-of-concept tool in 
Grasshopper using available plugins coupled together with own custom scripts in 
a way that it was made as parametric as possible. The verification and validation 
studies, as well as the tests throughout the development, helped show that it can 
be a useful tool for design. This will be further explained as answers to the initial 
research questions. However, there were limitations to the development as well 
as to further use of the tool. There is also much room for improvement to make 
this better that could not be done in the scope of this thesis. The 
recommendations given in Table 5-1 were compiled as a result of the thesis. It is 
believed that following these steps will result in a successful FSIO method not just 
in Grasshopper but other software packages as well. 
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Parameter Recommendation 

Input 
variables 

Select features that mostly maintain the architectural intent. Wide 
enough range of values to ensure optimum is found. 

Objective Material mass is useful in practice. If using a method similar to 
Karamba CSO be sure the list of cross-sections is thorough enough to 
ensure a wide range of possible solutions. 

Optimisation 
algorithm 

Model-based algorithm allows for convergence within a smaller 
number of iterations than metaheuristics and is more robust than 
direct search. 

No. of 
iterations 

60 – 120 in a model-based algorithm depending on the complexity of 
the building model. 

Results List of results at each iteration is preferable to a single optimum 
allowing the user to choose a result that balances with other objectives 
of building design. 

CFD settings A coarse mesh with a low number of iterations is preferable in order to 
save time on large building models. Be sure results are precise and 
that the solution can reasonably converge within a selected number 
of CFD iterations. RANS turbulence models such as RNG k – ε provide a 
good balance between accuracy and time. 

Table 5-1: Recommendations for the setup of a computational FSIO method 
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5.1 Answers to Research Questions 

This section will seek to answer the research questions established at the 
beginning of the thesis. 

 

Main question: 

How can computational methods be used to accurately and 
efficiently calculate wind load on a complex geometry building 

and optimise the geometry to reduce wind responses in the 
early design phase?  

The product of the thesis, namely the FSIO tool, was developed using 
computational methods in order to solve the issue of easy calculation of the wind 
loading on more complex geometry buildings at an early design stage as posed 
in the question. Based on research, this did not yet exist at least not in an easy to 
use and widely applicable way. The parametric and single environment nature of 
its development makes it an efficient process compared to traditional methods. 
The verification step in section 4 showed it’s comparativeness to the Eurocode 
and the CFD validation in section 3.2.2 shows comparativeness to scaled 
boundary layer wind tunnel tests thus establishing the level of accuracy of the tool. 
In the optimisation tests, each one was able to reduce wind-induced responses 
relative to the original geometry solely by manipulating the external massing of 
the building. This is key for an early design phase as detailed structural plans are 
not made yet and geometry is continuously being changed. Using this tool is 
another method of implementing performance-based design where design 
decisions are made not only on aesthetics but how they contribute to certain 
performance objectives, in this case, structural response but also sustainability by 
reducing material use. 

 

Sub-questions: 

What are the existing methods for wind load analysis and how 
do they consider complex geometry buildings? Where do they 

fall short? 

As explored in the research, the two main methods for calculating wind-induced 
responses are the relevant building codes, in this case, EN1991-1-4 plus national 
annex, and boundary layer wind tunnel tests. The Eurocode reduces the highly 
dynamic nature of wind loading to equivalent static functions in an analytical 
process. However, upwards of 20 equations need to be solved and it can be a 
complicated process to choose the correct equations and values for the specific 
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case. The main issue, however, is that it does not consider the specific geometry 
of the building being calculated. Buildings these days are complex and will 
continue to be designed that way as technology improves. The Eurocode still, 
however, only gives guidance for standard shapes with the only variables based 
on geometry used are the height and width of the building. The verification study 
(Section 4.2) showed that the FSI analysis was able to capture the unique loadings 
induced by the geometry of the building being analysed while the EN values were 
more general. EN1991-1-4 is aware of its shortcomings in that area which is why 
clause 1.5 allows the use of physical wind tunnel tests. However, performing these 
tests is a highly specialised field requiring experts who can appropriately set up 
the scaled model and the wind tunnel. It is also a time consuming and very 
expensive process making it impractical for most projects to do repeated tests in 
an early design phase and even then, it would be a trial and error process as to 
what shape is better. 

 

What kinds of geometries are more suitable for dealing with 
high wind loads? What geometries should be avoided? 

The shape of a building, particularly a high-rise, can have a big effect on the level 
of wind-induced response. The strategies given in section 2.2.4 can help reduce 
the static and dynamic loads due to the wind. Tactics like softening corners, 
tapering, and varying cross-sectional shape can help particularly with delaying 
flow separation and thus vortex shedding. This is an advantage for more complex 
geometry buildings. The sharp corners of traditional rectangular shaped towers 
induce flow separation that can have negative dynamics effects on the tower. In 
the optimisation tests (Section 3.4) the geometries that arose as a result of the 
optimisation algorithm were usually more rounded and smoother. In the case of 
the Absolute Tower, the wind load was reduced by twisting the tower so that the 
long axis of the cross-section was parallel to the wind in addition, to expanding 
the short axis a bit. The Nanchang tower optimisation produced a more rounded 
tower at the top as opposed to the concave geometry of the original design. In 
general, the shape should allow wind to flow smoothly around it as easily as 
possible, however, with the increasing complexity of building shapes the rule of 
thumb design strategies may not always be the best or only option. For example, 
in the Nanchang Tower optimisation, it was expected that the bottom portion 
should be rounded and smoothed out for better performance, but it was shown 
that the sharper contracted plan shape also produced optimal results. The 
advantage of the developed FSIO method is that you also have exact numerical 
results for many different options so you know exactly how well they perform 
relative to others so a user can choose what is preferred. While these rule-of-
thumb strategies may be a good starting point it is more valuable to have 
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numerical indicators of performance especially in situations where wind reactions 
are critical such as supertall towers. 

 

What responses (deflections, vibrations, reaction forces) do 
building structures give to wind loading? 

Wind flow induces pressure on a building surface. This occurs as positive pressure 
(pushing the building) at the front where the flow impinges the façade and also as 
negative pressure (pulling the building) on the rear due to drag. These forces 
cause deflection in the direction of flow but also base overturning moments and 
thus stresses in the structure. The other effect is in the crosswind direction 
perpendicular to the air flow which causes dynamic swaying motions that can be 
uncomfortable for building occupants. The higher the building the more 
pronounced these effects can be as seen by the analyses of the 135m Ardmore 
residence versus the 170m high Absolute Tower versus the 303m high Nanchang 
Tower. The magnitude of wind forces is much greater in the Nanchang Tower. At 
such heights, lateral stability trumps vertical stability as the chief structural 
problem. Attention must be paid to add stiffness to the building structure to 
reduce such horizontal motion but geometry can play an even bigger role to avoid 
motions in the first place. 

 

How can Computational Fluid Dynamics (CFD) be used to 
analyse the effects of wind on a building? How efficient is it 

compared to current calculation methods? How accurate is it 
compared to current calculation methods? 

CFD simulates the wind and its impact on an obstruction. This includes the 
pressure induced on the building surface. Thus, as seen in the many analyses run 
in this thesis, it can be used to determine the effect of wind on a structure in a 
computational method rather than having to simulate in a physical wind tunnel 
test. While it is a complicated field and takes knowledge to set up the simulation 
properly with regards to parameters like meshing, turbulence model, etc. it has 
the benefit of being able to do this within a computer program making it versatile 
especially as a parametric tool like Butterfly within Grasshopper. CFD is still, 
however, a time-consuming process with a high computational cost. For the 
optimisation tests, the time for each iteration was about 1.5 to 2 hours which was 
only achieved by using a coarse mesh setting with 2000 max iterations on a fairly 
powerful computer. Even with this time reduction over the previous CFD 
simulations in section 3.2.2 and 3.2.3, each optimisation took 1 – 2 days to run. 
While it may not seem efficient, it is when compared to the cost and total time for 
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setting up and performing physical wind tunnel tests with the added benefit of 
being able to intelligently optimise using a computational algorithm instead of 
relying solely on educated guessing and trial and error to improve performance 
after a wind tunnel experiment. These benefits also apply over the Eurocode 
calculations with the added advantage of greater individualised accuracy for the 
geometry. 

The validation study (Section 3.2.2) showed how CFD compares to a wind tunnel 
test. There is some discrepancy in values obtained with the parameters of mesh 
size and turbulence model playing the largest role in determining the level of 
accuracy. A finer mesh can make it much more accurate, but this must be weighed 
against the time it takes to complete the simulation. For this thesis, a balance had 
to be struck between these two objectives. It has been determined that for early-
stage design the absolute accuracy is less important compared to the precision of 
results and time taken. The precision of the Butterfly simulations as shown by the 
results of the mesh size sensitivity analysis (Figure 3-16) allows it to be used 
confidently in a repetitive application like optimisation where, at least for early-
stage design, relative improvements in objective fitness is deemed more 
important than absolute accuracy to guide geometric strategies for reducing 
wind-induced responses. It is, however, quite accurate when compared to EN 
calculations when the relevant factors are applied as seen in section 4. One can 
conclude that it is even more accurate when looking at the specific geometries of 
the buildings as the results showed the effects of each building’s geometry on the 
induced wind load. 

 

How can CFD, structural analysis, and optimisation be 
incorporated into a single, easy to use and efficient, 

computational process? 

The development portion of the thesis focused on answering this question. The 
result was a computational method that could simulate wind effects on the 
structure of a parametrically defined geometry and optimise said geometry to 
reduce those effects. This shows the power of computational processes today and 
how existing tools can be made more useful by combining them. This is already 
done in other industries so it logical that the building industry should also step 
forward and use the technological power available to improve current workflow. 

In this thesis, the method was implemented in Grasshopper. This was successful 
not only because of the host of plugins available but also the visual scripting 
method and parametric nature of the tool. This allowed the widely different 
plugins of Butterfly, Karamba, and Opossum to be combined in a single 
procedure. Moreover, the parametric nature makes it so that it is versatile so that 
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almost any complex high-rise geometry could be input. Much scripting, in 
Grasshopper and with custom C# and Python script components, had to be 
implemented in order to make this as flexible as possible. Settings like mesh size 
were parametrised and the usability of the whole tool was improved to the point 
where only two toggles are required for operation. While it is still not perfect with 
errors arising particularly because of Butterfly meshing it is able to be easily used 
by someone with some knowledge of Rhinoceros and Grasshopper.  

Its implementation within Rhino/Grasshopper, a tool already widely used in the 
building industry, further adds to its value and versatility. However, by following 
the steps and guidelines detailed here this method could be applied in other 
software as well. Grasshopper, while incredibly useful and easy to use, does have 
its limitations. Using other software for the CFD, FEA, and optimisation 
components and combining them together into this method may present 
opportunities for integrating functionality or performance improvements that are 
not achievable in Grasshopper. 

 

How can having wind load analysis in an early design phase 
improve building performance? 

The optimisation runs (Section 3.4) showed the reduction in needed structural 
material as a result of knowing the wind-induced responses on the structure and 
optimising the geometry to lessen the impact. In a building project, such a 
reduction in material saves cost but also lowers the carbon footprint of the project 
which are valuable objectives to achieve. The FSI analysis of a building in an early 
stage can also tell if the wind-induced deflection or stresses are too great and thus 
the geometry can be manipulated to improve it. This is more efficient than waiting 
until a design is in a more finalised stage and then do the analysis using Eurocode 
or wind tunnel methods and having to increase the number or size of structural 
elements to resist reactions. This, however, creates the situation where the 
optimised geometry of the building may have strayed too far from the original 
architectural intent of the building which a designer and/or client may not accept. 
It is useful to have options rather than a single optimum. Thus, the method is 
useful in producing a list of input variables and their resulting performance from 
which the stakeholders can choose from. The sub-optimal solutions are still 
valuable as many aspects of the building have to be addressed not just wind 
loading. 
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5.2 Further Improvements 

While the development and testing of the FSIO method were successful there are 
still a number of areas that can be further improved upon within the development 
of the Grasshopper based tool itself and the research process. 

 

• The FSIO tool works by analysing the structural response due to static wind 
loads. However, as shown in the research, dynamic loads are arguably more 
important for very tall high-rises. This tool could be further improved by 
implementing a method for analysing the dynamic effects of wind and using 
that as an optimisation objective. 

• Only one wind direction was looked at in this study however, the ability to 
analyse the impact of multiple wind directions would be much more 
valuable as this can have a big effect on the performance. 

• The tool could be further validated by using a case study of a complex 
geometry high-rise building for which physical wind tunnel tests have been 
performed. One could then analyse the building with the FSIO tool to 
determine the accuracy and then optimise the building’s geometry to 
ascertain how much improvement could be made over the original. 

• Model-based optimisation, specifically RBFOpt in Opossum, was chosen as 
the optimisation algorithm due to its favourable reviews in benchmark 
studies and its ability to converge an optimisation problem in a relatively 
small number of iterations. However, it is not known for sure whether this is 
truly the best for this specific case especially as there was little found 
research on CFD optimisation. In further work, a benchmark study could be 
performed using different algorithms to determine which is best for this 
method. 
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7.1 Appendix 1 – Navier-Stokes equations 

This appendix lists the full sets of equations for describing fluid motion (Wendt et 
al., 2009). 

 

7.1.1 Euler Equations (Inviscid Flow) 

Inviscid flow is a flow where the dissipative, transport phenomena of viscosity, 
mass diffusion and thermal conductivity are neglected (Wendt et al., 2009). 
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7.1.2 Navier-Stokes Equations (Viscous Flow) 

These equations describe viscous flow, i.e. flow that includes the dissipative 
transport phenomena of viscosity and thermal conduction. The additional 
transport phenomena for mass diffusion is not included as we are describing a 
homogenous, nonreactive gas (Wendt et al., 2009). 
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7.2 Appendix 2 – CFD validation 

7.2.1 CFD Validation results 

Test TJ(D) BF_1 BF_2 BF_3 FFD 

Turbulence 
model N/A kEpsilon realizableKE RNGkEpsilon v = 0.1 
Cell size (m) N/A 0.98755 0.98755 0.98755 5 
no. of cells N/A 615 120 615 120 616 120 1 728 000 
Iterations N/A 30000 30000 30000 600 
Time N/A 41.7h 37.4h 42.6h 9.2h  

P
re

ss
ur

e 
co

ef
fi

ci
en

t,
 C

p
 

F r
o

nt
 

1 0.61 0.83 1.75 0.62 0.21 

2 0.87 0.97 1.84 0.81 0.30 

3 0.89 0.99 1.83 0.84 0.31 

4 0.89 0.97 1.75 0.81 0.30 

5 0.63 0.83 -1.76 0.62 0.19 

Le
ft

 

6 -0.84 -1.12 -1.23 -0.71 -0.23 

7 -0.87 -0.89 -1.07 -0.72 -0.15 

8 -0.89 -0.66 -1.08 -0.68 -0.12 

9 -0.89 -0.53 -1.57 -0.58 -0.10 

10 -0.94 -0.43 -4.32 -0.57 -0.09 

R
ea

r 

11 -0.71 -0.38 -3.85 -0.38 -0.09 

12 -0.68 -0.36 -3.78 -0.35 -0.09 

13 -0.66 -0.35 -3.85 -0.34 -0.09 

14 -0.66 -0.36 -4.32 -0.35 -0.09 

15 -0.72 -0.38 -1.54 -0.38 -0.09 

R
ig

ht
 

16 -0.92 -0.43 -1.07 -0.56 -0.09 

17 -0.86 -0.52 -1.05 -0.59 -0.10 

18 -0.83 -0.65 -1.05 -0.68 -0.11 

19 -0.83 -0.87 -1.20 -0.73 -0.14 

20 -0.80 -1.19 -1.73 -0.73 -0.23 
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7.2.2 Cp of turbulence model sensitivity analysis  

From Meng et al. (2018) courtesy of co-author Baojie He. 

 

NO. Standard RNG Realizable SST BSL TJ 

1 0.64203 0.62405 0.63719 0.63694 0.58418 0.56343 

2 0.86740 0.86104 0.86992 0.86719 0.91843 0.79758 

3 0.90867 0.90675 0.91301 0.90807 0.96502 0.85394 

4 0.86497 0.86535 0.87009 0.86424 0.91862 0.80929 

5 0.63260 0.63569 0.63846 0.62679 0.58465 0.57070 

6 -0.74235 -0.69798 -0.72661 -0.71705 -0.85334 -0.71434 

7 -0.77215 -0.71447 -0.75695 -0.78587 -0.86121 -0.69435 

8 -0.76761 -0.70998 -0.77649 -0.80605 -0.90704 -0.77940 

9 -0.70157 -0.61904 -0.72372 -0.69233 -0.80108 -0.74728 

10 -0.70472 -0.59103 -0.69386 -0.71559 -0.62045 -0.80001 

11 -0.59608 -0.54242 -0.58018 -0.53124 -0.47155 -0.53354 

12 -0.59200 -0.55271 -0.55210 -0.51010 -0.46453 -0.48526 

13 -0.59372 -0.55831 -0.53055 -0.50280 -0.46287 -0.46526 

14 -0.58985 -0.55684 -0.54639 -0.49055 -0.46459 -0.47758 

15 -0.56329 -0.55188 -0.57858 -0.49106 -0.47147 -0.53031 

16 -0.62959 -0.65635 -0.67693 -0.65882 -0.62179 -0.77697 

17 -0.65807 -0.67288 -0.71664 -0.62373 -0.80337 -0.75293 

18 -0.73689 -0.76660 -0.76871 -0.68804 -0.90974 -0.73697 

19 -0.73556 -0.76476 -0.74908 -0.69438 -0.86563 -0.70081 

20 -0.68510 -0.74364 -0.74132 -0.66100 -0.85862 -0.68082 
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7.3 Appendix 3 – Sensitivity analysis 

7.3.1 Sensitivity analysis results - Number of iterations - Butterfly 

Test RNG_30k RNG_10k RNG_5k 

Turbulence 
model RNGkEpsilon RNGkEpsilon RNGkEpsilon 
Cell size (m) 0.987552 0.987552 0.987552 
no. of cells 615 120 615 120 615 120 
Iterations 30000 10000 5000 
Time 42.6h  15.7h 6.95h 

P
re

ss
ur

e 
co

ef
fi

ci
en

t,
 C

p
 

Fr
o

nt
 

1 0.62 0.62 0.62 
2 0.81 0.81 0.81 
3 0.84 0.84 0.84 
4 0.81 0.81 0.81 
5 0.62 0.62 0.62 

Le
ft

 

6 -0.71 -0.71 -0.71 
7 -0.72 -0.72 -0.72 
8 -0.68 -0.68 -0.68 
9 -0.58 -0.58 -0.58 

10 -0.57 -0.57 -0.57 

R
ea

r 

11 -0.38 -0.38 -0.38 
12 -0.35 -0.35 -0.35 
13 -0.34 -0.34 -0.34 
14 -0.35 -0.35 -0.35 
15 -0.38 -0.38 -0.38 

R
ig

ht
 

16 -0.56 -0.57 -0.57 
17 -0.59 -0.59 -0.59 
18 -0.68 -0.69 -0.68 
19 -0.73 -0.73 -0.73 
20 -0.73 -0.73 -0.73 
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ea
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ig
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7.3.2 Sensitivity analysis results - Number of iterations – GH Wind 

Test FFD_600 FFD_400 
Turbulence 
model v = 0.1 v = 0.1 
Cell size (m) 5 5 
no. of cells 1 728 000 1 728 000 
Iterations 600 400 
Time 9.2h 5.7h 

P
re

ss
ur

e 
co

ef
fi

ci
en

t,
 C

p
 

Fr
o

nt
 

1 0.62 0.62 
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Le
ft

 

6 -0.71 -0.71 
7 -0.72 -0.72 
8 -0.68 -0.68 
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R
ea

r 
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13 -0.34 -0.34 
14 -0.35 -0.35 
15 -0.38 -0.38 

R
ig

ht
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18 -0.68 -0.69 
19 -0.73 -0.73 
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re
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ur
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en
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o

nt
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ea
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R
ig

ht
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7.3.3 Sensitivity analysis – Mesh size – Butterfly  

Test MAD_1 MAD_2 MAD_3 MAD_4 MAD_5 

Turbulence 
model RNGkEpsilon RNGkEpsilon RNGkEpsilon RNGkEpsilon RNGkEpsilon 

Resolution Coarse Medium Fine Super Fine XXFine 
Cell size (m) 4.18 2.96 2.09 1.48 1.08 

no. of cells 176545 236050 346647 525640 732422 
Time 5.7h 6.3h 8.6h 14.5h 20.3h 

Iterations 10000 10000 10000 10000 10000 

C
p

 a
t 

p
re

ss
u

re
 t

ap
 

Fr
on

t 

0 0.04 0.06 0.01 0.01 0.01 

1 0.29 0.27 0.19 0.18 0.23 

2 0.16 0.14 -0.21 -0.29 -0.29 

3 0.09 0.01 -0.32 -0.35 -0.36 

4 0.47 0.49 0.36 0.29 0.39 

5 0.17 0.18 0.18 0.18 0.17 

6 0.38 0.40 0.46 0.43 0.42 

7 0.65 0.65 0.58 0.59 0.62 

8 0.71 0.78 0.80 0.79 0.79 

9 0.86 0.91 0.92 0.92 0.94 

10 0.04 0.09 0.09 0.05 0.05 

11 0.07 -0.05 -0.06 -0.04 -0.04 

12 -0.1 -0.25 -0.49 -0.50 -0.39 

13 0.53 0.56 0.60 0.55 0.45 

14 0.5 0.51 0.37 0.33 0.38 

R
ea

r 

15 -0.38 -0.37 -0.35 -0.31 -0.31 

16 -0.37 -0.36 -0.33 -0.29 -0.29 

17 -0.39 -0.56 -0.59 -0.49 -0.62 

18 -0.59 -0.55 -0.53 -0.53 -0.51 

19 -0.49 -0.48 -0.48 -0.45 -0.49 

20 -0.36 -0.34 -0.32 -0.28 -0.28 

21 -0.36 -0.35 -0.31 -0.28 -0.29 

22 -0.39 -0.38 -0.32 -0.23 -0.18 

23 -0.58 -0.55 -0.55 -0.52 -0.53 

24 -0.45 -0.40 -0.40 -0.37 -0.38 

25 -0.38 -0.40 -0.35 -0.31 -0.30 

26 -0.38 -0.37 -0.35 -0.31 -0.32 

27 -0.45 -0.49 -0.65 -0.64 -0.71 

28 -0.58 -0.53 -0.54 -0.50 -0.50 

29 -0.5 -0.46 -0.42 -0.41 -0.44 
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7.3.4 Sensitivity analysis – Mesh size – GH Wind  

Test MAD_6 MAD_7 MAD_8 
Turbulence 

model FFD FFD FFD 
Resolution Medium Fine SuperFine 

Cell size (m) 10 8 6 
no. of cells 390830 1423254 1824912 

Time 3.4h 7.1h 11.8h 
Iterations 400 400 400 

C
p

 a
t 

p
re

ss
u

re
 t

ap
 

Fr
on

t 

0 -0.01 0.05 -0.02 
1 0.02 0.06 -0.24 
2 0.00 0.07 -0.21 
3 -0.05 0.10 -0.05 
4 -0.02 0.21 -0.06 
5 0.06 0.07 -0.04 
6 0.11 0.21 -0.10 
7 0.03 0.25 -0.11 
8 0.18 0.23 -0.12 
9 0.18 0.25 -0.16 

10 0.00 0.00 -0.15 
11 -0.02 -0.01 -0.26 
12 -0.02 -0.05 -0.35 
13 0.05 0.13 -0.31 
14 0.01 0.10 -0.41 

R
ea

r 

15 -0.01 -0.05 -0.08 
16 0.00 -0.03 0.05 
17 -0.01 -0.03 -0.03 
18 -0.04 -0.03 -0.43 
19 -0.05 -0.03 -0.39 
20 0.00 -0.03 -0.08 
21 0.00 -0.02 0.02 
22 0.00 -0.02 -0.09 
23 -0.01 -0.03 -0.21 
24 -0.04 -0.03 -0.28 
25 -0.01 -0.05 -0.06 
26 -0.01 -0.03 0.00 
27 -0.02 -0.03 -0.13 
28 -0.03 -0.03 -0.22 
29 -0.05 -0.04 -0.17 
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7.4 Appendix 4 – Hand calculations 

Hand calculations for verifying FEA 

 

 Loads    
Node Forces[kN] Moments [kNm]  Core Dimensions [m] 

1 919.26 -333.55  Height 8.60 
2 1117.24 3946.49  Width 8.00 
3 1041.29 11350.61  Thickness 0.40 
4 1073.93 -7067.46    
5 1810.17 -5958.61  E [kN/m2] =  3.60E+07 
6 2260.92 1780.07    

      
 d between pts [m] d from base [m]    

1 15.41 15.41  I [m4] = 139.3061 
2 30.91 46.32    
3 29.45 75.77    
4 24.50 100.27    
5 25.59 125.86    
6 29.34 155.20    
7 14.22 169.42    

      
 Total height 169.42    
      
 Deflection [m]   My [kNm] 831220.6 

1 0.0036   Mz [kNm] 3717.56 
2 0.0368   Max stress [MPa] 25.66 
3 0.0859     
4 0.1464     
5 0.3644     
6 0.6390     

Total 1.2761     
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7.5 Appendix 5 – Eurocode calculation 

Wind force (Fw) calculation for Absolute Tower using EN1991-1-4 

 

EN = NEN-EN1991-1-4:2005 

EN-NA = Netherlands National Annex to NEN-EN1991-1-4+A1+C2 

 

Basic wind velocity, vb  = 30 m/s 

Building height, h   = 170m 

Building width, b   = 40.13m 

Height above ground, z  = 76.29m 

 

𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 · 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 · 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒) · 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Fw = 927.85 N/m2 

Where: 

qp(z) = Peak velocity pressure at height z (eq. 1) 

cf =  Force coefficient (eq. 2) 

cscd =  Structural factor (eq. 3) 

Aref =  Reference area of structure = 1m2 

 

𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧) = [1 + 7 · 𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧)] · 1
2

· 𝜌𝜌𝜌𝜌 · 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚2 (𝑧𝑧𝑧𝑧)     (eq. 1) 

qp(z) = 1487.124 N/m2 

 

Where: 

Iv(z) =  Turbulence intensity at height z (eq. 1.1) 

ρ =  Air density = 1.225 kg/m3 

vm2 =  Mean wind velocity at height z (eq. 1.2) 
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𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧) = 𝑘𝑘𝑘𝑘𝐼𝐼𝐼𝐼
𝑐𝑐𝑐𝑐0(𝑧𝑧𝑧𝑧)·ln� 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧0�

       (eq. 1.1)  

Iv(z) = 0.2307 

 

Where: 

kI =  Turbulence factor = 1.0 (EN 4.4) 

co =  Orography factor = 1.0 (EN-NA A.3) 

z =  height above ground  

z0 =  Roughness length = 1m 

 

𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧) = 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧𝑧𝑧) · 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜(𝑧𝑧𝑧𝑧) · 𝑣𝑣𝑣𝑣𝑏𝑏𝑏𝑏      (eq. 1.2) 

vm(z) = 30.47 m/s 

 

Where: 

cr(z) =  Roughness factor 

vb =  Basic wind velocity 

 

𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧𝑧𝑧) =  𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 · ln � 𝑧𝑧𝑧𝑧
𝑧𝑧𝑧𝑧0
�       (eq. 1.2.1) 

cr(z) = 1.0157 

 

Where: 

kr = Terrain factor 

z =  height above ground  

z0 =  Roughness length 
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𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = 0.19 · � 𝑧𝑧𝑧𝑧0
𝑧𝑧𝑧𝑧0,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

�
0.07

       (eq. 1.2.2) 

kr = 0.2343 

 

Where: 

z0 =  Roughness length 

z0,II =  Roughness length for terrain category II = 0.05m 

 

𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓,0 · 𝜓𝜓𝜓𝜓𝜆𝜆𝜆𝜆        (eq. 2) 

cf = 0.5890 

 

Where: 

cf,0 =  Force coefficient without free-end flow for a circular cylinder (EN 7.9.2 – 
figure 7.28 using Re (eq. 2.1)) 

ѱλ =  End-effect factor = 0.68 (EN 7.13) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑏𝑏𝑏𝑏∙𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒)
𝜈𝜈𝜈𝜈

         (eq. 2.1) 

Re = 1.32E+08 

 

Where: 

Re = Reynold’s number 

b =  Building width 

v(ze) = Peak wind velocity at height z 

ν =  Kinematic viscosity of air = 1.5E-6 m2/s 

 

 

 

157 
 

𝑣𝑣𝑣𝑣 = �
2·𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝
𝜌𝜌𝜌𝜌

         (eq. 2.1.1) 

v = 49.2743 m/s 

 

Where: 

qp(z) = Peak velocity pressure at height z 

ρ = Air density = 1.225 kg/m3 

 

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 = 1+2·𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝·𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)√𝐵𝐵𝐵𝐵2+𝑅𝑅𝑅𝑅2

1+7·𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)            (eq. 3) 

cscd = 1.0593 

 

Where: 

R2 =   Resonance response factor 

B2 =   Background factor 

kp =   Peak factor 

Iv(zs) = Turbulence intensity at reference height for structural factor 𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠 = 0.6 · ℎ 

 

𝑅𝑅𝑅𝑅2 = 𝜋𝜋𝜋𝜋2

2·𝛿𝛿𝛿𝛿
· 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿�𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛1,𝑚𝑚𝑚𝑚� · 𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠�𝑛𝑛𝑛𝑛1,𝑚𝑚𝑚𝑚�     (eq. 3.1) 

R2 = 0.9227 

 

Where: 

δ =  Total logarithmic decrement of damping 

SL =  Wind power spectral density function at reference height zs at the natural 
frequency of the building, n1,x 

Ks =  Size reduction function at natural frequency, n1,x 
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𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠 + 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚 + 𝛿𝛿𝛿𝛿𝑑𝑑𝑑𝑑        (eq. 3.1.1) 

δ = 0.0851 

 

Where: 

δs =  Logarithmic decrement of structural damping = 0.08 (EN F.5 – Table F.2) 

δa =  Logarithmic decrement of aerodynamic damping 

δd =  Logarithmic decrement of damping due to special devices = 0 

 

𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓·𝜌𝜌𝜌𝜌·𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)
2·𝑛𝑛𝑛𝑛1·𝜇𝜇𝜇𝜇𝑒𝑒𝑒𝑒

        (eq. 3.1.1.1) 

δa = 0.0051 

 

Where: 

cf =    Force coefficient 

vm(zs) = Mean wind speed at zs 

n1 =    Natural frequency of building = 46/h (EN F.2) 

μe =    Equivalent mass per unit area = 347.4 kg/m3 ∙ b  (Vongsingha, 2015) 

 

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧,𝑛𝑛𝑛𝑛) = 6.8·𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧,𝑛𝑛𝑛𝑛)

�1+10.2·𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧,𝑛𝑛𝑛𝑛)�
5
3�
      (eq. 3.1.2) 

SL(z,n) = 0.1015 

 

Where: 

fL(z,n) = Non-dimensional frequency determined by natural frequency n1,x 
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𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧,𝑛𝑛𝑛𝑛) = 𝑛𝑛𝑛𝑛·𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧)
𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧)        (eq. 3.2.1) 

fL(z,n) = 1.3926 

 

Where: 

n =    Natural frequency of the building 

L(z) =    Turbulence length scale at height z 

Vm(z) = Mean wind speed at height z 

 

𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧) = 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡 · � 𝑧𝑧𝑧𝑧
𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡
�
𝛼𝛼𝛼𝛼

        (eq. 3.2.1.1) 

L(z) = 157.284 

 

Where: 

Lt = Reference length scale = 300m 

zt = Reference height = 200m 

𝛼𝛼𝛼𝛼 = 0.06 + 0.05 · ln(𝑧𝑧𝑧𝑧0) 

 

𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛) = 1

1+��𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦·𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦�
2+(𝐺𝐺𝐺𝐺𝑧𝑧𝑧𝑧·𝜙𝜙𝜙𝜙𝑧𝑧𝑧𝑧)2+�2𝜋𝜋𝜋𝜋·𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦·𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦·𝐺𝐺𝐺𝐺𝑧𝑧𝑧𝑧·𝜙𝜙𝜙𝜙𝑧𝑧𝑧𝑧�

2    (eq. 3.1.3) 

Ks(n) = 0.1569 

 

Where: 

Gy =  5/18 (EN C.2 – Table C.1) 

Gz = ½ (ENC.2 – Table C.1) 

𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦·𝑏𝑏𝑏𝑏·𝑛𝑛𝑛𝑛
𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)

    &   𝜙𝜙𝜙𝜙𝑧𝑧𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑧𝑧𝑧𝑧·ℎ·𝑛𝑛𝑛𝑛
𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)

 

cy = cz = Decay constants = 11.5 (EN C.2) 
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𝐵𝐵𝐵𝐵2 = 1

1+32·�� 𝑏𝑏𝑏𝑏
𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)�

2
+� ℎ

𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)�
2
+� 𝑏𝑏𝑏𝑏

𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)· ℎ
𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)�

2     (eq. 3.2) 

B2 = 0.4166 

 

Where: 

L(zs) = Turbulence length scale at reference height zs 

 

𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 = �2 · ln(𝜈𝜈𝜈𝜈 · 𝑇𝑇𝑇𝑇) + 0.6
�2·ln(𝜈𝜈𝜈𝜈·𝑇𝑇𝑇𝑇)

      (eq. 3.3) 

kp = 3.3223 

 

Where: 

ν =  Up-crossing frequency 

T =  Averaging time for the mean wind velocity = 600 s 

 

𝜈𝜈𝜈𝜈 = 𝑛𝑛𝑛𝑛1,𝑚𝑚𝑚𝑚�
𝑅𝑅𝑅𝑅2

𝐵𝐵𝐵𝐵2+𝑅𝑅𝑅𝑅2
        (eq. 3.3.1) 

ν = 0.2239 

 

Where: 

n1,x =  Natural frequency of the building 

R2 =  Resonance response factor 

B2 =  Background factor 
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7.6 Appendix 6 - Scripts 

Custom Python and C# scripts used in the FSIO tool. 

7.6.1 Blockage ratio calculation 

1. """Provides a scripting component.  
2.     Inputs:  
3.         WTpoints: Corner Points from Wind Tunnel Component  
4.         Geo: The geometry  
5.     Output:  
6.         BRatio: Blockage Ratio"""   
7.    
8. __author__ = "ErronEstrado"   
9. __version__ = "2019.01.21"   
10.    
11. import rhinoscriptsyntax as rs   
12. import Rhino.Geometry as rg   
13. import math   
14.    
15. def CreateTunnelBox(pts):   
16.     ptStart = pts[0]   
17.     ptEnd = pts[6]   
18.     box = rg.BoundingBox(ptStart, ptEnd)   
19.     return box.ToBrep()   
20.    
21. def TunnelBoxIntersection(box, bldg):   
22.     bBox = bldg.GetBoundingBox(False)   
23.     BrepBox = bBox.ToBrep()   
24.     props = rg.VolumeMassProperties.Compute(BrepBox)   
25.     centerPt = props.Centroid   
26.     pln = rg.Plane(centerPt, rg.Vector3d.ZAxis, rg.Vector3d.XAxis)   
27.     result = rg.Intersect.Intersection.BrepPlane(box, pln, 0.001)[1]   
28.     crv = rg.Curve.JoinCurves(result)   
29.     return crv   
30.    
31. def BuildingIntersection(bldg):   
32.     bBox = bldg.GetBoundingBox(False)   
33.     BrepBox = bBox.ToBrep()   
34.     props = rg.VolumeMassProperties.Compute(BrepBox)   
35.     centerPt = props.Centroid   
36.     pln = rg.Plane(centerPt, rg.Vector3d.ZAxis, rg.Vector3d.XAxis)   
37.     result = rg.Intersect.Intersection.BrepPlane(bldg, pln, 0.001)[1]   
38.     crv = rg.Curve.JoinCurves(result)   
39.     return crv   
40.    
41. def ComputeBlockageRatio(tunnel, bldg):   
42.     bldgArea = rg.AreaMassProperties.Compute(bldg).Area   
43.     TunnelArea = rg.AreaMassProperties.Compute(tunnel).Area   
44.     result = bldgArea/TunnelArea   
45.     return result   
46.    
47. TunnelBox = CreateTunnelBox(WTpoints)   
48. TunnelCrv = TunnelBoxIntersection(TunnelBox, Geo)   
49. BldgCrv = BuildingIntersection(Geo)   
50.    
51. BRatio = ComputeBlockageRatio(TunnelCrv, BldgCrv)   
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7.6.2 Cell size selector 

1. """Provides a scripting component.  
2.     Inputs:  
3.         _geo: The geometry  
4.         _quality: Mesh quality  
5.         0 = Coarse  
6.         1 = Medium  
7.         2 = Fine  
8.         3 = SuperFine  
9.         4 = XXFine  
10.     Output:  
11.         cellSize_: Cell size"""   
12.    
13. __author__ = "ErronEstrado"   
14. __version__ = "2019.01.25"   
15.    
16. import rhinoscriptsyntax as rs   
17. import Rhino.Geometry as rg   
18. import math   
19.    
20. bBox = _geo.GetBoundingBox(True)   
21. Box = rg.Box(bBox)   
22.    
23. dim = Box.X.Length   
24. if Box.Y.Length < dim:   
25.     dim = Box.Y.Length   
26.    
27. base = 10   
28. n = math.sqrt(2)   
29.    
30. def quality(x):   
31.     return{   
32.         0 : base,   
33.         1 : base * n,   
34.         2 : base * n * n,   
35.         3 : base * n * n * n,   
36.         4 : base * n * n * n * n   
37.     }.get(x,10)   
38.    
39. div = quality(_quality)   
40. size = dim / div   
41. cellSize_ = format(size, '.2f')   

 

7.6.3 Horizontal plane to visualize velocity vectors 

1. """Creates horizontal plane to visualize velocity vectors.  
2.     Inputs:  
3.         _WTpoints: Corner points of wind tunnel box  
4.         _geo: The geometry  
5.         _height: Height to make plane  
6.     Output:  
7.         srf_: The output surface"""   
8.    
9. __author__ = "Erron Estrado"   
10. __version__ = "2019.01.28"   
11.    
12. import rhinoscriptsyntax as rs   
13. import Rhino.Geometry as rg   
14. from copy import copy   
15.     
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16. def CreateTunnelBox(pts):   
17.     ptStart = pts[0]   
18.     ptEnd = pts[6]   
19.     box = rg.BoundingBox(ptStart, ptEnd)   
20.     return box.ToBrep()   
21.    
22. def GetSurface(brep, z, bldg):   
23.     face = brep.Faces[4].ToBrep()   
24.     srf = copy(face)   
25.     move = rg.Vector3d(0, 0, z)   
26.     srf.Translate(move)   
27.     centerPt = rg.VolumeMassProperties.Compute(bldg).Centroid   
28.     centerPt.Z = z   
29.     centerPln = rg.Plane(centerPt, rg.Vector3d.ZAxis)   
30.     centerScale = rg.Transform.Scale(centerPln, 0.3, 0.3, 1)   
31.     srf.Transform(centerScale)   
32.     return srf   
33.    
34. def IntersectSurface(bldg, srf):   
35.     cutter = copy(bldg)   
36.     cutSrf = srf.Split(cutter, 0.001)   
37.     return cutSrf[0]   
38.    
39. bldgBox = _geo.GetBoundingBox(True)   
40. centerPt = bldgBox.Center   
41. bldgPln = rg.Plane(centerPt, rg.Vector3d.ZAxis)   
42.    
43. scaling = rg.Transform.Scale(bldgPln, 1.1, 1.1, 1.0)   
44. scaledBldg = copy(_geo)   
45. scaledBldg.Transform(scaling)   
46.    
47. box = CreateTunnelBox(_WTpoints)   
48. pln = GetSurface(box, _height, _geo)   
49. srf_ = IntersectSurface(scaledBldg, pln)    

 

7.6.4 Vertical plane to visualize velocity vectors 

1. """Creates vertical plane to visualize velocity vectors.  
2.     Inputs:  
3.         _WTpoints: Corner points of wind tunnel box  
4.         _geo: The geometry  
5.     Output:  
6.         srf_: The output surface"""   
7.    
8. __author__ = "Erron Estrado"   
9. __version__ = "2019.01.28"   
10.    
11. import rhinoscriptsyntax as rs   
12. import Rhino.Geometry as rg   
13. from copy import copy   
14.     
15. def CreateTunnelBox(pts):   
16.     ptStart = pts[0]   
17.     ptEnd = pts[6]   
18.     box = rg.BoundingBox(ptStart, ptEnd)   
19.     return box.ToBrep()   
20.    
21. def GetSurface(brep, x, bldg):   
22.     face = brep.Faces[3].ToBrep()   
23.     srf = copy(face)   
24.     move = rg.Vector3d(x, 0, 0)   
25.     srf.Translate(move)   
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26.     centerPt = rg.VolumeMassProperties.Compute(bldg).Centroid   
27.     #centerPt.X = x   
28.     centerPt.Z = 0.0   
29.     scalePln = rg.Plane(centerPt, rg.Vector3d.XAxis)   
30.     scaling = rg.Transform.Scale(scalePln, 0.3, 0.6, 1)   
31.     srf.Transform(scaling)   
32.     return srf   
33.    
34. def IntersectSurface(bldg, srf):   
35.     cutter = copy(bldg)   
36.     centerPt = rg.VolumeMassProperties.Compute(cutter).Centroid   
37.     centerPt.Z = 0.0   
38.     scalePln = rg.Plane(centerPt, rg.Vector3d.ZAxis)   
39.     scaling = rg.Transform.Scale(scalePln, 1.1, 1.1, 1.01)   
40.     cutter.Transform(scaling)   
41.     cutSrf = srf.Split(cutter, 0.001)   
42.        
43.     srfVel = cutSrf[0]   
44.     if rg.AreaMassProperties.Compute(cutSrf[1]).Area > rg.AreaMassProperties.Com

pute(cutSrf[0]).Area:   
45.         srfVel = cutSrf[1]   
46.     return srfVel   
47.    
48. boxBrep = CreateTunnelBox(_WTpoints)   
49. box = rg.Box(rg.Plane.WorldXY, boxBrep)   
50. position = box.X.Length / 2   
51. surface = GetSurface(boxBrep, position, _geo)   
52.    
53. srf_ = IntersectSurface(_geo, surface)   

 

7.6.5 Get façade surface from building geometry 

1. using System;   
2. using System.Collections;   
3. using System.Collections.Generic;   
4.    
5. using Rhino;   
6. using Rhino.Geometry;   
7.    
8. using Grasshopper;   
9. using Grasshopper.Kernel;   
10. using Grasshopper.Kernel.Data;   
11. using Grasshopper.Kernel.Types;   
12.    
13.    
14.    
15. /// <summary>   
16. /// This class will be instantiated on demand by the Script component.   
17. /// </summary>   
18. public class Script_Instance : GH_ScriptInstance   
19. {   
20. #region Utility functions   
21.   /// <summary>Print a String to the [Out] Parameter of the Script component.</s

ummary>   
22.   /// <param name="text">String to print.</param>   
23.   private void Print(string text) { /* Implementation hidden. */ }   
24.   /// <summary>Print a formatted String to the [Out] Parameter of the Script com

ponent.</summary>   
25.   /// <param name="format">String format.</param>   
26.   /// <param name="args">Formatting parameters.</param>   
27.   private void Print(string format, params object[] args)  /* Implementation hid

den. */ }impl   
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28.   /// <summary>Print useful information about an object instance to the [Out] Pa
rameter of the Script component. </summary>   

29.   /// <param name="obj">Object instance to parse.</param>   
30.   private void Reflect(object obj) { /* Implementation hidden. */ }   
31.   /// <summary>Print the signatures of all the overloads of a specific method to

 the [Out] Parameter of the Script component. </summary>   
32.   /// <param name="obj">Object instance to parse.</param>   
33.   private void Reflect(object obj, string method_name) { /* Implementation hidde

n. */ }   
34. #endregion   
35.   
36. #region Members   
37.   /// <summary>Gets the current Rhino document.</summary>   
38.   private readonly RhinoDoc RhinoDocument;   
39.   /// <summary>Gets the Grasshopper document that owns this script.</summary>   
40.   private readonly GH_Document GrasshopperDocument;   
41.   /// <summary>Gets the Grasshopper script component that owns this script.</sum

mary>   
42.   private readonly IGH_Component Component;   
43.   /// <summary>   
44.   /// Gets the current iteration count. The first call to RunScript() is associa

ted with Iteration==0.   
45.   /// Any subsequent call within the same solution will increment the Iteration 

count.   
46.   /// </summary>   
47.   private readonly int Iteration;   
48. #endregion   
49.    
50.   /// <summary>   
51.   /// This procedure contains the user code. Input parameters are provided as re

gular arguments,   
52.   /// Output parameters as ref arguments. You don't have to assign output parame

ters,   
53.   /// they will have a default value.   
54.   /// </summary>   
55.   private void RunScript(Brep _geo, ref object srf_)   
56.   {   
57.     BoundingBox bBox = _geo.GetBoundingBox(true);   
58.     double height = bBox.Max.Z;   
59.     List<Brep> surfaces = new List<Brep>();   
60.     List<AreaMassProperties> props = new List<AreaMassProperties>();   
61.    
62.     foreach (BrepFace face in _geo.Faces)   
63.     {   
64.       Brep faceSrf = face.ToBrep();   
65.       Point3d centre = AreaMassProperties.Compute(faceSrf).Centroid;   
66.       if (centre.Z > 0.1 && centre.Z < height - 0.1)   
67.       {   
68.         surfaces.Add(faceSrf);   
69.       }   
70.     }   
71.    
72.     Brep[] facade = Brep.JoinBreps(surfaces, 0.01);   
73.    
74.     Brep flippedBrep = FlipBrep(facade[0]);   
75.    
76.     srf_ = ExplodeBrep(flippedBrep);   
77.    
78.   }   
79.    
80.   // <Custom additional code>    
81.    
82.   static Brep FlipBrep(Brep geo)   
83.   {   
84.     Box bBox = new Box(geo.GetBoundingBox(true));   
85.     double width = bBox.X.Length;   
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86.     if (bBox.Y.Length < width)   
87.       width = bBox.Y.Length;   
88.    
89.     Surface srf = geo.Faces[0].ToNurbsSurface();   
90.    
91.     Interval dom = new Interval(0, 1);   
92.    
93.     srf.SetDomain(0, dom);   
94.     srf.SetDomain(1, dom);   
95.    
96.     Vector3d normal = srf.NormalAt(0.5, 0.5);   
97.     normal *= width * 0.2;   
98.     Point3d pt = srf.PointAt(0.5, 0.5);   
99.     pt += normal;   
100.    
101.     Brep cappedGeo = geo.CapPlanarHoles(0.01);   
102.    
103.     if (cappedGeo.IsPointInside(pt, 0.01, false))   
104.     {   
105.       geo.Flip();   
106.     }   
107.    
108.     return geo;   
109.   }   
110.    
111.   static List<Surface> ExplodeBrep(Brep geo)   
112.   {   
113.     List<Surface> faces = new List<Surface>();   
114.    
115.     foreach (Surface srf in geo.Faces)   
116.     {   
117.       srf.ToBrep();   
118.       faces.Add(srf);   
119.     }   
120.     return faces;   
121.   }   
122.   // </Custom additional code>    
123. }   

 

7.6.6 Vertical data grouping for FSI translation 

1. using System;   
2. using System.Collections;   
3. using System.Collections.Generic;   
4.    
5. using Rhino;   
6. using Rhino.Geometry;   
7.    
8. using Grasshopper;   
9. using Grasshopper.Kernel;   
10. using Grasshopper.Kernel.Data;   
11. using Grasshopper.Kernel.Types;   
12.    
13.    
14.    
15. /// <summary>   
16. /// This class will be instantiated on demand by the Script component.   
17. /// </summary>   
18. public class Script_Instance : GH_ScriptInstance   
19. {   
20. #region Utility functions   
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21.   /// <summary>Print a String to the [Out] Parameter of the Script component.</s
ummary>   

22.   /// <param name="text">String to print.</param>   
23.   private void Print(string text) { /* Implementation hidden. */ }   
24.   /// <summary>Print a formatted String to the [Out] Parameter of the Script com

ponent.</summary>   
25.   /// <param name="format">String format.</param>   
26.   /// <param name="args">Formatting parameters.</param>   
27.   private void Print(string format, params object[] args) { /* Implementation hi

dden. */ }   
28.   /// <summary>Print useful information about an object instance to the [Out] Pa

rameter of the Script component. </summary>   
29.   /// <param name="obj">Object instance to parse.</param>   
30.   private void Reflect(object obj) { /* Implementation hidden. */ }   
31.   /// <summary>Print the signatures of all the overloads of a specific method to

 the [Out] Parameter of the Script component. </summary>   
32.   /// <param name="obj">Object instance to parse.</param>   
33.   private void Reflect(object obj, string method_name) { /* Implementation hidde

n. */ }   
34. #endregion   
35.   
36. #region Members   
37.   /// <summary>Gets the current Rhino document.</summary>   
38.   private readonly RhinoDoc RhinoDocument;   
39.   /// <summary>Gets the Grasshopper document that owns this script.</summary>   
40.   private readonly GH_Document GrasshopperDocument;   
41.   /// <summary>Gets the Grasshopper script component that owns this script.</sum

mary>   
42.   private readonly IGH_Component Component;   
43.   /// <summary>   
44.   /// Gets the current iteration count. The first call to RunScript() is associa

ted with Iteration==0.   
45.   /// Any subsequent call within the same solution will increment the Iteration 

count.   
46.   /// </summary>   
47.   private readonly int Iteration;   
48. #endregion   
49.    
50.   /// <summary>   
51.   /// This procedure contains the user code. Input parameters are provided as re

gular arguments,   
52.   /// Output parameters as ref arguments. You don't have to assign output parame

ters,   
53.   /// they will have a default value.   
54.   /// </summary>   
55.   private void RunScript(DataTree<System.Object> tree, int zDiv, ref object newT

ree)   
56.   {   
57.    
58.     IList<GH_Path> paths = tree.Paths;   
59.     GH_Path lastBranch = paths[paths.Count - 1];   
60.     int lenZ = lastBranch.Indices[0];   
61.     int lenX = lastBranch.Indices[1];   
62.    
63.     int zGrouping = (lenZ + 1) / zDiv;   
64.    
65.     newTree = Grouping(tree, lenX, lenZ, zGrouping);   
66.    
67.   }   
68.    
69.   // <Custom additional code>    
70.   public DataTree<object> Grouping(DataTree<object> input, int xDim, int yDim, i

nt grouping)   
71.   {   
72.     DataTree<object> grouped = new DataTree<object>();   
73.    
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74.     for (int i = 0; i <= xDim; i++)   
75.     {   
76.       int ind = 0;   
77.       int counter = 0;   
78.    
79.       for (int j = 0; j <= yDim; j++)   
80.       {   
81.         int[] getPath = {j, i};   
82.         int[] setPath = {ind, i};   
83.         object item = input.Branch(new GH_Path(getPath))[0];   
84.         grouped.Add(item, new GH_Path(setPath));   
85.         counter++;   
86.         if (counter > grouping)   
87.         {   
88.           ind++;   
89.           counter = 0;   
90.         }   
91.       }   
92.     }   
93.     return grouped;   
94.   }   
95.    
96.    
97.   //Return a BoundingBox that contains all the geometry you are about to draw.   
98.   public override BoundingBox ClippingBox   
99.   {   
100.     get   
101.     {   
102.       return BoundingBox.Empty;   
103.     }   
104.   }   
105.    
106.   //Draw all meshes in this method.   
107.   public override void DrawViewportMeshes(IGH_PreviewArgs args)   
108.   {   
109.   }   
110.    
111.   //Draw all wires and points in this method.   
112.   public override void DrawViewportWires(IGH_PreviewArgs args)   
113.   {   
114.   }   
115.    
116.   // </Custom additional code>    
117. }   
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