

OPTIMISATION OF COMPLEX
GEOMETRY BUILDINGS BASED

ON WIND LOAD ANALYSIS

Graduation Report
Erron Estrado

4716116

Optimisation of Complex Geometry
Buildings Based on Wind load Analysis
Graduation Report

July 9, 2019

Author:
Erron J Estrado
4716116
MSc. Architecture, Urbanism, and Building Sciences
Building Technology Track

Mentors:
Dr Michela Turrin
AE+T | Design Informatics

Ir. Peter Eigenraam
AE+T | Structural Mechanics

Third Mentor:
Ir. Andreja Andrejevic
OMRT

External Examiner
Dr Ir. Andrej Radman
Architecture Theory

Abstract

One result of climate change is the increasing strength and frequency of
wind events. This creates a problem for the also increasing number of high-
rise buildings many of which are of unconventional shape. However, current
methods for calculating wind response either do not account for these
geometries, such as the Eurocode or are prohibitively expensive and time-
consuming, such as physical wind tunnel tests. This thesis aims to address
this issue by developing a computational method by which one can analyse
the structural effects of wind on a building and optimise the external
geometry to reduce those effects in the early design phase.

The method involves the combination of three main algorithms:
Computational Fluid Dynamics (CFD) to simulate the wind and the pressure
it exerts on a building, Finite Element Analysis (FEA) which calculates the
structural effects such as deflection and stresses due to these forces, and an
optimisation algorithm which can iteratively manipulate an input geometry
to obtain better performance. For this thesis, a tool based on the method
was developed in Grasshopper, the visual scripting plugin for Rhinoceros3D.
Existing plugins were used for the main algorithms while custom scripting
was used to combine them into a single tool that was made relatively easy
to use and returned quick results.

The methodology involved extensive research into the various aspects of the
method. This was followed by the development of the method throughout
which testing and validation were performed to determine its accuracy and
timeliness. Case study buildings were tested with the goal of reducing
structural material use. In all tests, the mass of structural material needed
was reduced by allowing the optimisation algorithm to manipulate only the
external geometry of the building. This produced a tool within Grasshopper
and a set of guidelines for developing such a method.

Keywords: Computational Fluid Dynamics; Optimisation; Finite Element
Analysis; Wind engineering; Parametric design; Computational design

 Acknowledgements

This document is the result of not only the final year of the Building
Technology master’s programme at the TU Delft but the culmination of a
long academic journey.

I am very grateful to my mentors for their support. To Dr Michela Turrin for
sharing her immense knowledge of optimisation and computational
processes and for always pushing me to improve my overall research. To
Peter Eigenraam for his guidance on the structural aspects of my work and
showing me the importance of this topic. To Andreja Andrejevic and all my
other colleagues at OMRT, thank you for giving me support in the
development of the tool but also inspiring me to the potential of
computational tools for the built environment. Special thanks to Adelya
Doudart de la Grée for her invaluable guidance on CFD, to Christoph Waibel
for his support in working with the GH Wind plugin, and Baojie He for
providing wind tunnel results for the CAARC model. Thanks also to Hans
Hoogenboom for setting up the computer to run the simulations.

I would also like to thank my parents whose hard work, love, and support
has enabled me to have the opportunity to pursue my education and be
what I am today. And to my sister, my loving girlfriend, and all other family
and friends for their continuous encouragement and support of everything I
do.

Finally, a great thanks to my beloved Biertje group: Agata, Alex, Valeria and
Sofia. Thanks for being my second family in Delft, whom I could always count
on to go through tough times and share the best moments of joy.

CONTENTS
1. INTRODUCTION 11

1.1 Problem Statement 13

1.2 Objective 14

1.3 Research Questions 15

1.3.1 Main question 15

1.3.2 Sub-questions 15

1.4 Methodology 15

1.4.1 Research 16

1.4.2 Develop 17

1.4.3 Verify 19

2. RESEARCH 23

2.1 Wind Flow in the Environment 24

2.1.1 Boundary layer 24

2.1.2 Roughness length 25

2.1.3 Turbulence 25

2.2 Wind Actions on Structures 26

2.2.1 Bluff and streamlined bodies 26

2.2.2 Flow over a body 26

2.2.3 Wind forces 28

2.2.4 Geometric strategies to reduce wind response 33

2.3 Calculation of Wind Loading 36

2.3.1 Eurocode procedure 36

2.3.2 Wind tunnel testing 40

2.4 Computational Fluid Dynamics 42

2.4.1 Navier-Stokes equations 43

2.4.2 Turbulence models 44

2.4.3 Fast Fluid Dynamics 48

2.4.4 Available programs/plugins 49

2.5 Fluid-Structure Interaction 52

2.6 Optimisation 53

2.6.1 Optimisation algorithms 54

2.6.2 Optimisation Problem Formulation 57

2.6.3 CFD based optimisation in buildings 59

2.7 Conclusions 60

3. DEVELOP 65

3.1 Case Study Buildings 66

3.2 CFD 67

3.2.1 CFD script setup 67

3.2.2 CFD validation 71

3.2.3 Sensitivity analysis 80

3.3 FSI 86

3.3.1 Translation procedure 86

3.3.2 Finite Element Analysis 88

3.3.3 Conclusions 91

3.4 Optimisation 92

3.4.1 Optimisation setup 92

3.4.2 Optimisation tests 94

3.4.3 Conclusions 110

3.5 Final Method and Tool 112

4. VERIFY 119

4.1 Eurocode Calculations 120

4.2 Results 121

4.3 Conclusions 123

5. CONCLUSIONS 125

5.1 Answers to Research Questions 128

5.2 Further Improvements 133

6. BIBLIOGRAPHY 135

6.1 Table of Figures 140

7. APPENDICES 143

7.1 Appendix 1 – Navier-Stokes equations 144

7.1.1 Euler Equations (Inviscid Flow) 144

7.1.2 Navier-Stokes Equations (Viscous Flow) 145

7.2 Appendix 2 – CFD validation 147

7.2.1 CFD Validation results 147

7.2.2 Cp of turbulence model sensitivity analysis 148

7.3 Appendix 3 – Sensitivity analysis 149

7.3.1 Sensitivity analysis results - Number of iterations - Butterfly 149

7.3.2 Sensitivity analysis results - Number of iterations – GH Wind 150

7.3.3 Sensitivity analysis – Mesh size – Butterfly 151

7.3.4 Sensitivity analysis – Mesh size – GH Wind 152

7.4 Appendix 4 – Hand calculations 153

7.5 Appendix 5 – Eurocode calculation 154

7.6 Appendix 6 - Scripts 161

7.6.1 Blockage ratio calculation 161

7.6.2 Cell size selector 162

7.6.3 Horizontal plane to visualize velocity vectors 162

7.6.4 Vertical plane to visualize velocity vectors 163

7.6.5 Get façade surface from building geometry 164

7.6.6 Vertical data grouping for FSI translation 166

Acronyms

ABL: Atmospheric Boundary Layer
BF: Butterfly
CAARC: Commonwealth Advisory Aeronautical Research Council
CAD: Computer-Aided Design
CDE: Computational Design Exploration
CDO: Computational Design Optimisation
CFD: Computational Fluid Dynamics
CFD-O: CFD-based Optimisation
CSO: Cross-Section Optimisation
DES: Detached Eddy Simulation
FDM: Finite Difference Method
FEA: Finite Element Analysis
FEM: Finite Element Model/Method
FFD: Fast Fluid Dynamics
FSI: Fluid-Structure Interaction
FSIO: Fluid-Structure Interaction based Optimisation
FVM: Finite Volume Method
GA: Genetic Algorithm
GH: Grasshopper
LES: Large Eddy Simulation
MOO: Multi-Objective Optimisation
OPF: Optimisation Problem Formulation
OPS: Optimisation Problem Solution
RANS: Reynold’s Averaged Navier-Stokes
RBF: Radial Basis Functions
SHM: Snappy Hex Mesh

INTRODUCTION

12

When we think of loads on a building we commonly think of self-weight and the
weight of people and fixtures as the main structural factors. However, wind can as
well play a large role in structural design. Particularly for very tall and slender
buildings which have inherent flexibility due to their form. The movements caused
by wind can make buildings uncomfortable for occupants as well as cause damage
to the building. This is particularly a problem for areas that are susceptible to
strong winds, both on a regular basis and at certain times of the year such as
hurricane-prone regions. This is only getting worse due to the effects of climate
change. Since the 1980s the strength of North Atlantic hurricanes has been
increasing. In the United States alone hurricanes and tropical storms have caused
more damage than any other large-scale natural disaster since 1980 (Melillo et al.,
2014).

Also on the rise, is technology and its impact on architecture and the building
industry. Contemporary building aesthetics are becoming increasingly non-
uniform as the growth in design and fabrication technologies enable us to create
geometries that before were much more difficult to realise. Firms like UN Studio,
MAD Architects, and Zaha Hadid Architects have been building more and more
buildings of highly complex geometries. This has been made much easier to do
with the rise of parametric design software and the integration of programming
and scripting into the architectural design process. Programs like Rhinoceros 3D
and Revit enable architects to bring their creative ideas to life. But what challenges
do these designs bring for the engineering side of the equation? After all, these
buildings have to meet the same code requirements as any other and wind
loading is a big area of concern for these buildings.

Figure 1-1: (Left) Absolute Towers by MAD Architects © Iwan Baan
Figure 1-2: (Right) Morpheus Hotel by Zaha Hadid Architects © Ivan Dupont

13

Many of the codes used today for wind loads are based on analytical methods
developed in the 1960s. Since the flow of wind, like other fluids, is a highly
complex dynamic condition these methods are based on simplifications and
assumptions. In addition, many of these codes only provide guidelines for simple
shapes like rectangles and circular cylinders and recommend physical wind tunnel
tests for anything more complicated. Since technology has been applied so
deeply into the design phase could we also use this increase in technology and
computing power to solve this problem?

1.1 Problem Statement

The impact of climate change is being felt throughout the world and will continue
to worsen in future. One way this is presenting itself is through stronger and more
frequent windstorms. On the other hand, recent advances in technology have
given rise to more buildings of atypical and very complex geometry, especially in
high-rise buildings. However, current codes and calculation methods for wind
loading are insufficient in that they do not adequately account for the geometry
of these kinds of buildings and many of the equations are based on simplifications
and approximations. This can lead to under/over design of the structure as well as
uncomfortable building motions during wind events, particularly for slender high-
rise buildings.

These calculations, particularly the Eurocode, can be quite tedious requiring many
equations to be solved simply to arrive at a value of wind force for a single height
and wind direction. This is very inefficient especially for the early stages of design
where the building form is still being explored and may change many times in the
process.

For this reason, wind load calculations tend to be done at a later stage of design
by the structural engineers separate from the architects when the geometry of the
building is already fixed. Thus, problems of wind load and wind-induced motions
have to be dealt with at an element level rather than a building geometry level
leading to compromises that can diminish the architectural intent.

For buildings of complex geometry, most codes recommend physical scaled wind
tunnel testing. While this is very accurate it is often very expensive and takes a lot
of time and effort to prepare the model and experiment setup.

Computational methods can be used to solve these problems however,
differences in computer programs used necessitate time-consuming and
complicated import/export of files where information can be lost and errors are
prone to happen.

14

If the wind loading on a building massing can be deduced at an early stage in a
simplified and integrated computational process, then the architect together with
the engineers could analyse wind loads and use optimisation to generate options
that minimise wind responses saving material in the structure and ensuring that
neither the architectural nor structural design is compromised.

1.2 Objective

The main objective of this research is:

To develop a computational method for accurately analysing
wind loads on a complex geometry building and optimising the

geometry based on analysis results at an early design phase.

The idea is to have a method through which a tool could be created by which a
user can gain insight into what kind of effects wind loads will have on a building
of non-uniform complex shape and use that data to optimise the massing and
generate options based on different building performance values. To do this, the
tool should meet these requirements:

• Ease of use: This tool should be usable by architects and engineers who
may have little background in Computational Fluid Dynamics (CFD) and
Finite Element Analysis (FEA) but do have some experience with
Computer Aided Design (CAD) and parametric design programs. It
should be relatively simple to give inputs, run the procedure, and
visualise results.

• Single environment: To aid in ease of use and save time, this tool
should ideally accomplish all its tasks in a single environment. Users
should not have to import and export models and other data to
accomplish the task.

• Rapid results: This tool should be used at an early design phase where
the geometry is still changing and evolving. Its results should help to
inform those decisions. Thus, it should be able to perform its function
in a relatively short time so as not to hold up the design process even
with multiple iterations needing to be run.

• Accuracy and precision: With this simplification of use the tool should
maintain an acceptable level of accuracy compared to more established
methods like wind tunnel testing. More importantly, it should be precise
so that there is a negligible deviation between the results of different
iterations. This ensures the rapid reusability of the tool.

15

1.3 Research Questions

1.3.1 Main question

How can computational methods be used to accurately and
efficiently calculate wind load on a complex geometry building

and optimise the geometry to reduce wind responses in the
early design phase?

1.3.2 Sub-questions

1. What are the existing methods for wind load analysis and how do they
consider complex geometry buildings? Where do they fall short?

2. What kinds of geometries are more suitable for dealing with high wind
loads?

3. What responses (deflections, vibrations, reaction forces) do building
structures give to wind loading?

4. How can Computational Fluid Dynamics (CFD) be used to analyse the
effects of wind on a building? How efficient is it compared to current
calculation methods? How accurate is it compared to current calculation
methods?

5. How can CFD, structural analysis, and optimisation be incorporated into a
single, easy to use and efficient, computational process?

6. How can having accurate wind load analysis in an early design phase
improve building performance?

1.4 Methodology

The methodology of this research is divided into 3 sections: Research, Develop,
Verify. The goal is to develop a computational method in order to have a relatively
fast and easy-to-use calculation of the effect of wind load on a building and
optimise the geometry to improve structural performance. The way in which this
will be done will be by combining three solvers namely a Computational Fluid
Dynamics (CFD) algorithm, a Finite Element Analysis (FEA) algorithm, and an
optimisation algorithm. CFD takes care of the simulation of the wind flow around

16

the building and the pressure it exerts on the building surface and FEA calculates
the structural effects such as deflections, moments, and forces. The combination
of these two results in a Fluid-Structure Interaction (FSI) algorithm. Lastly, the
optimisation algorithm will be responsible for manipulating the geometry to find
the best performing option resulting in a Fluid-Structure Interaction based
Optimisation (FSIO) method.

For this thesis, it was chosen to create and test this computational method by
developing a tool based on it inside of Grasshopper, the visual scripting interface
for Rhinoceros. Grasshopper was chosen because it is already well known to
architects and engineers, it is relatively easy and quick to use, and can be
supplemented with a vast array of plugins and self-written code in a variety of
computer languages all in a single parametric environment. At the culmination of
this thesis, the goal was to have a single Grasshopper script that incorporates CFD,
structural analysis, and optimisation in a loop that can produce a more optimised
form of an input massing as a proof for the viability of a computational FSIO
method.

1.4.1 Research

This stage involves the literature review. Gaining knowledge in topics related to
the problem to deduce what solutions exist, what has been done in this field, what
existing methods can be used, and where current methods and technology is
lacking.

It is divided into the following topics:

• Wind flow in the environment

• Wind actions on buildings

• Calculation of wind loading

• Computational Fluid Dynamics (CFD)

• Fluid-Structure Interaction (FSI)

• Optimisation methods

The conclusions drawn from this stage will allow for better setting of goals for the
tools as well as boundary conditions for the development. A shortlist of software
and methods that can be used and further evaluated will be chosen.

17

1.4.2 Develop

This stage focuses on the actual development of the method. It involves the
joining of several smaller procedures to achieve the results desired from the
method. These are as follows:

1. Parametric building geometry

In order to facilitate easy modifications which are prevalent at the early
stage of design this tool is aimed at, the input building should have a
parametrically defined shape. A few variables should determine the overall
building shape to be used further.

2. Computational Fluid Dynamic (CFD) simulations

The impact of wind on a building is mainly due to the pressure exerted on
the building surface. To obtain wind pressures on the façade of the building
CFD will be used. This enables one to place a geometry in a virtual wind
tunnel, simulate airflow, and calculate the effect that body has on the
airflow and the effect the airflow has on the body namely the pressures
exerted on the face.

3. Evaluate the effect of wind pressure on the building structure

Results such as deflection at the top of the building and moment reactions
at the base due to the wind need to be known. Thus, the wind pressures
obtained from the CFD analysis as well as the building geometry will have
to be converted to a form that can be analysed structurally to give these
results.

4. Incorporate optimisation

The optimisation portion involves changing the building geometry to
improve wind response. The aim is to reduce wind pressures on the façade
to lessen structural responses and properties like deflection, stresses, base
moments, or mass of the structure. Thus, the optimisation will connect the
resulting outputs from the structural analysis back to the building geometry
parameters defined at the beginning to automatically manipulate the
geometry, run the CFD analysis, the structural analysis, and evaluate the
results in an iterative loop until an optimum shape is found.

18

As mentioned, it is desired for this thesis to develop this method within the
Rhinoceros/Grasshopper environment. Thus, to achieve the above set out
development goals plugins available for Grasshopper will be used combined with
own scripting to connect the various parts. The imagined development procedure
will be as follows:

1. Parametric building geometry

a. Select test high-rise buildings of non-standard shape

b. Create parametric models of the external massing

2. Computational Fluid Dynamics (CFD) simulations

a. Select available CFD plugins and determine their setup, procedure,
and results they can produce

b. Evaluate them for precision, accuracy, and time by comparing to
physical wind tunnel tests using a standard model

c. Select a plugin based on that evaluation in addition to ease of use.

3. Evaluate the effect of wind pressure on the building structure

a. Karamba3D, an FEA plugin for Grasshopper will be used to perform
the structural analysis.

b. Determine how the massing model and pressure loads from CFD will
be transformed into a form that can be analysed by Karamba.

c. Develop said translation procedure and connect all portions of the
script to form a single FSI procedure.

d. Test FSI procedure and verify results with hand calculations.

4. Incorporate optimisation

a. Select optimisation plugins for Grasshopper based on algorithms
researched.

b. Incorporate into FSI procedure to form a Fluid-Structure Interaction
and Optimisation procedure (FSIO).

c. Test different combinations of input variables and objectives

d. Compare to results from initial geometry

19

Since ease of use is greatly desired, efforts will be made throughout the
development to make the script as seamless as possible. This includes minimising
user input by automating parts of the script. Settings will be parametrised as much
as possible so that they adapt automatically to any given building geometry. For
those parameters that must be constant, testing will be done to determine the
best option for precision, accuracy, and time.

1.4.3 Verify

In this stage the tool will be compared to existing methods to ascertain its
comparativeness and if any improvement is made. Case study buildings of non-
standard geometry will be used.

1. Calculate the wind loading using FSI method

2. Calculate the wind loading using Eurocode procedure

3. Compare results

Figure 1-3 shows the methodology for the research.

20

Figure 1-3: Methodology diagram

21

METHODOLOGY

RESEARCH DEVELOP VERIFY

Computational Fluid
Dynamics (CFD)

Fluid-Structure
Interaction (FSI)

Optimisation
methods

Calculation of
wind loading

Wind actions on
buildings

Wind flow in the
environment Incorporate

Optimisation
Select case study

building

Evaluate CFD
software

Couple CFD to FEA
to create FSI
procedure

Calculate loading
using FSI tool

Calculate loading
using Eurocode

Compare results

RESEARCH

24

2.1 Wind Flow in the Environment

Wind in the environment is primarily due to temperature differences in the
atmosphere which in turn cause pressure variations that cause air to flow from one
part to another. Heat transfer from the equator to the cooler more northern
latitudes and the forces of the earth’s rotation are responsible for the major
prevailing winds. On a smaller more local scale winds can vary widely in strength,
direction, and frequency. Extreme events like storms and hurricanes can occur
characterised by extremely high winds which can have a large impact on the built
environment. Flowing wind exerts pressure on any surface it interacts with. Not
only on perpendicular windward surfaces but those parallel and leeward as well
eliciting a variety of structural responses, i.e. deflections, vibrations, and motions.

2.1.1 Boundary layer

Wind flow near the earth’s surface is not smooth (laminar) but unsteady (turbulent).
This is due to frictional effects of the earth’s surface and its inherent roughness
due to vegetation, orography (hills, cliffs, valleys, etc.), and buildings. This has the
effect of slowing the flow of wind. This goes from zero at the earth’s surface
increasing logarithmically to a maximum value called the freestream. This layer of
turbulent air is called the Atmospheric Boundary Layer (ABL). It is characterised by
the Boundary Layer depth, the distance between the earth’s surface and the
beginning of the freestream where the friction of the earth no longer affects the
flow of wind. Boundary layer depth depends on the roughness of the terrain below
it. It can be very short for open countryside, to very high for cities (Figure 2-1).

Figure 2-1: Boundary layer profiles (Cochran and ASCE. Committee on Structural Wind, 2012)

25

2.1.2 Roughness length

Roughness length, z0, is a measure of the roughness of the earth’s surface. It has
a value equal to about 5-10% of the average height of the terrain roughness
elements such as the trees, buildings, etc (Aynsley et al., 1977). This value is critical
for accurate forming of the wind velocity profile for calculations as well as CFD
and wind tunnel testing. It is usually given in table form based on the terrain by
the relevant code as seen in Table 2-1 from the Netherlands National Annex to
the Eurocode for wind actions on structures.

Table 2-1: Terrain categories and parameters (NEN, 2011).

2.1.3 Turbulence

Wind, especially near the earth’s surface is turbulent. It does not flow smoothly
and steadily but its velocity constantly varies with time. This is due partly to thermal
effects such as heated areas of air causing it to rise and collide with colder air but
also due to mechanical turbulence. This occurs when airflow contacts obstacles
such as trees, terrain, and buildings. The inertia of the wind causes its flow to
deflect and often stumble over itself creating small circulating vortices called
eddies. This turbulence is not locally contained but spreads to the rest of flow due
to the collision of surrounding air molecules. Turbulent layers of air can be viewed
as being governed by eddy viscosity which reflects the momentum transfer due
to turbulence (Simiu and Scanlan, 1996). Turbulence is very important to wind
applications for three reasons. Firstly, this causes structures to be subject to time-
dependent rather than constant loads. Secondly, due to this fluctuating loading
flexible structures may exhibit resonant amplification effects if the loading
frequency matches its natural frequency. Lastly, The aerodynamic behaviour of
structures depends strongly on the characteristics of the flow thus it is important
that this is considered during physical and computational tests (Simiu and Scanlan,
1996).

Researchers found that the speed of the wind over time can be separated by
subtracting out the steady component and then quantifying the fluctuating
component which accounts for the short gusts above and below the average
speed. Since these can be both positive and negative the root-mean-square (RMS)
is found to give an absolute value (Cochran and ASCE. Committee on Structural
Wind, 2012). This is the basis of the quasi-steady methods that many codes use
for calculating wind load.

26

2.2 Wind Actions on Structures

2.2.1 Bluff and streamlined bodies

Buildings are considered bluff bodies. These are bodies which cause large
separation of the airflow from windward to leeward side (Aynsley, 1999). As a
result, the major proportion of drag comes from pressure drag, caused by the
difference in pressure between the windward and leeward face, compared to
streamlined bodies where the flow stays very close to the shape and causes mainly
friction drag (Smits, 2018). Typically, bluff bodies are shapes with sharp corners,
such as rectangular plan buildings, however, circular structures are also
considered bluff since at high Reynold’s numbers pressure drag dominates (Smits,
2018). Streamlined bodies, such as aeroplane wings, are made to allow the flow
to smoothly re-join after separation. These shapes minimise pressure drag though
friction drag is more of concern since the flow is in direct contact with the surface
for an extended time. While it may seem that a streamlined shape may be always
better it worth noting that streamlined profiles are optimised for a single or very
small range of wind direction. Any small deviation in the angle of attack can cause
a significant change in the magnitude and distribution of pressures across the
surface (Smits, 2018). This is not ideal for buildings as they are stationary structures
subjected to winds coming from varying directions. The geometry would need to
be optimised in a way to allow for that.

2.2.2 Flow over a body

Consider a bluff body in the path of fluid flow, in this case, air. The air will flow
around the body in a characteristic way depending on the shape. The flow can be
divided into three parts:

1. Freestream flow – which is ahead and outside the influence of the
surface where the flow is uniform.

2. Shear layers – the layer close to the body surface where velocity
moves from zero at the surface to free stream velocity at the
boundary. Also called the boundary layer.

3. Wake flow – the region behind a separated shear layer containing
low-velocity eddy vortices. (Aynsley et al., 1977)

The free stream of air can be described using Bernoulli’s equation:

𝑝𝑝𝑝𝑝 +
1
2
𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉2 = 𝐶𝐶𝐶𝐶

Equation 2-1: Bernoulli's equation

27

Where p = static pressure, ρ = density of air, V = velocity, and C is a constant.
Bernoulli’s equation is valid for steady (zero vorticity), inviscid (zero viscosity), and
incompressible flows (Smits, 2018). Therefore, in the shear layer and wake flow,
Bernoulli’s equation is no longer valid.

Figure 2-2: Flow separation around a rectangular body in a free stream (Aynsley et al., 1977)

Flow separation occurs when the fluid particles near the surface are sufficiently
decelerated by inertial forces from contact with the surface and the momentum of
the flow above overcomes the cohesive viscous forces keeping the streamlines
together (Simiu and Scanlan, 1996). This causes the flow at the surface to reverse
forming eddy vortices that separate from the surface and form a free shear layer
(Aynsley, 1999). This typically occurs at sharp corners or in the case of smoother
shapes like a cylinder, the separation point as well as the characteristics of the
flow, is dependent on Reynold’s number. Reynold’s number is the ratio of inertia
forces to viscous forces in the flow (Holmes, 2007).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒)

𝜇𝜇𝜇𝜇
=
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒)
𝜈𝜈𝜈𝜈

Equation 2-2: Reynold's number

Where b = streamwise chord length, V(ze) = fluid velocity at height z, and μ =
dynamic viscosity, ρ = density, ν = kinematic viscosity = 1.5x10-6 for air (NEN,
2011). At low Reynold’s numbers, viscous forces dominate, and the boundary layer
is more laminar. There is smooth flow around the body. As Reynold’s number
increases the flow starts to separate and first forms large symmetrical vortices then
as Re increases further, the vortices begin to alternate between each edge and

28

are swept downstream forming what is called a Von Karman vortex trail. This
phenomenon is called vortex shedding and can be particularly critical for tall
buildings. At high Reynold’s numbers like in most buildings, due to their large size
and the low viscosity of air, a turbulent shear layer forms. This layer of rotating
vortices separates the free stream laminar flow from the turbulent wake directly
behind the building. The exact Reynold’s numbers at which these different
degrees of flow separation occur vary depending on the geometry of the building.
For example, for a sharp-edged building shear layer formation happen at Re >
1000 whereas for a circular cylinder this occurs at Re > 5000 (Simiu and Scanlan,
1996).

Figure 2-3: Flow separation at different values of Re (Simiu and Scanlan, 1996).

2.2.3 Wind forces

The loads imposed on a building in the flow of wind are divided into 3 categories
(Cochran and ASCE. Committee on Structural Wind, 2012):

1. Along-wind loads

2. Cross-wind loads

3. Torsional loads

29

Along-wind

The along-wind force is caused by drag. Drag is the total force in the streamwise
direction caused by the fluid flow on a body. It is made up of friction drag, caused
by the viscosity of the fluid and its contact with the surface, and pressure drag,
caused by the pressure distribution on the body. For bluff bodies such as
buildings, only pressure drag is considered as the friction drag component is very
small (Aynsley et al., 1977). This pressure is often expressed as a dimensionless
coefficient, Cp.

𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 =
𝑃𝑃𝑃𝑃

0.5𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉2

Equation 2-3: Pressure coefficient

Where P = pressure, ρ = density, and V = the fluid velocity. Typically, a body
experiences positive pressures (direction toward the body) at the windward face.
The maximum positive pressure, around Cp = 0.9 for rectangular plan buildings,
acts at the stagnation point seen in Figure 2-4. This is the point at the windward
face where the velocity of the flow is brought to zero (Holmes, 2007).

Figure 2-4: Pressure coefficient distribution on a rectangular prism (Holmes, 2007)

30

The leeward side of the building typically experiences negative pressures.
However, there is no typical limit on the pressure coefficient for negative pressures
(Aynsley, 1999). The drag force can also be represented as a dimensionless
coefficient, Cd :

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 =
𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑

0.5𝐴𝐴𝐴𝐴𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉2

Equation 2-4: Drag coefficient

Where Fd = Drag force and A = area normal to the flow. Fd can also be expressed
per unit span with A being replaced by B = reference dimension. The drag
coefficient, especially for curved shapes is dependent on Reynold’s number since
the position of flow separation is determined by the viscous forces as opposed to
sharp-edged bodies where separation occurs at those points mostly regardless of
Reynold’s number (Holmes, 2007). As seen in Figure 2-5 below there is a sharp
drop in drag in what is called the critical region, around Re = 2x105 to 5x105. At
this range of Reynold’s number, the flow transitions from laminar to turbulent at
the boundary layer of the body. As Re further increases it comes to a maximum of
about 1/3 of its original value (Simiu and Scanlan, 1996).

Figure 2-5: Variation of Cd with Re (Simiu and Scanlan, 1996)

31

Cross-wind

The force experienced by a body in a direction normal to the wind flow is called
lift (Simiu and Scanlan, 1996). While streamlining building geometry can reduce
drag it may also increase lift forces which can be even more critical in buildings
(Aynsley, 1999). For example, in low rise, large span buildings such as stadia and
arenas the lift force in the vertical direction is usually the most critical loading as
wind flowing over the roof can cause large negative pressures (suction) which can
damage the roof structure and cladding (Simiu and Scanlan, 1996). Lift forces can
also be represented by a dimensionless coefficient:

𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 =
𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿

0.5𝐴𝐴𝐴𝐴𝜌𝜌𝜌𝜌𝑉𝑉𝑉𝑉2

Equation 2-5: Lift coefficient

In tall buildings, cross-wind lift forces in the horizontal direction are often more
critical than along wind forces (Taranath, 2012). The most critical of these
crosswind effects is vortex shedding which is the periodic shedding of vortices
from alternating sides of the building (Figure 2-6).

Figure 2-6: Vortex Shedding (Taranath, 2012)

Vortices are formed on the sides of the body parallel to the flow direction at the
separation point. As shown previously, at low wind speed they are shed
symmetrically but at high speed, the vortices break away from each side one after
the other in a periodic way. As they break away they induce a force on the building
normal to the surface which causes a vibration of the building (Taranath, 2012).

32

The frequency at which the vortices are shed is determined by the Strouhal
number, S.

𝑆𝑆𝑆𝑆 =
𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷
𝑉𝑉𝑉𝑉ℎ

Equation 2-6: Strouhal number

Where ns = frequency of vortex shedding, D = body dimension normal to the flow,
and Vh = flow velocity at height h. The Strouhal number is not constant but varies
with wind speed and shape of the body and for circular and other smooth shapes,
it varies with Reynold’s number up to a limit of about 0.21 (Holmes, 2007). If the
shedding frequency increases until it is within a range of about 10% of the natural
frequency of the building, the building will resonate. Meaning, assuming low
damping, it will vibrate intensely side to side as if it has zero stiffness. Further
changes in speed will not affect the frequency as the vortex shedding is now
determined by the displacement of the building and not the wind speed until the
speed increases significantly. This is called lock-in and can cause extreme
discomfort to occupants, and in some cases, structural damage to the building
(Mendis et al., 2007).

Torsional Loads

In addition to horizontal displacements, wind loads can also cause buildings to
twist around their axis causing torsional loads. Torsional loads and the resulting
torsional dynamic response occur when there is a non-uniform pressure
distribution over the face of a building, particularly in cases of unsymmetrical
building geometry, and/or if the centre of mass and centre of rigidity do not
coincide, for example, in a building with its core off to one side. Torsion can also
occur in buildings that are partially shielded by another of similar height (Holmes,
2007). Torsional responses are not well studied or typically dealt with in building
codes yet excessive torsion can particularly damage curtain walls and, just like
cross-wind vibrations, cause great occupant discomfort (Cochran and ASCE.
Committee on Structural Wind, 2012). The peak torque at the base of a building
as a function of the wind speed V at height h, Tmax[V(h)], can be calculated by:

𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑉𝑉𝑉𝑉(ℎ)] = 𝜓𝜓𝜓𝜓�𝑇𝑇𝑇𝑇[𝑉𝑉𝑉𝑉(ℎ)] + 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑉𝑉𝑉𝑉(ℎ)]�

Equation 2-7: Peak torque at base

33

ѱ is a reduction factor which accounts for the fact that the wind directions
responsible for highest mean torque, 𝑇𝑇𝑇𝑇� , rms torque, Trms, and most extreme
conditions on the site will most likely never coincide. Thus in most cases 0.75 < ѱ
< 1 (Simiu and Scanlan, 1996). Torsional peak factor, gT = 3.8.

𝑇𝑇𝑇𝑇[𝑉𝑉𝑉𝑉(ℎ)] ≃ 0.038𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿4ℎ𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇2𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟2

Equation 2-8: Mean torque

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑉𝑉𝑉𝑉(ℎ)] ≃ 0.00167
1

𝜁𝜁𝜁𝜁𝑇𝑇𝑇𝑇
1
2�
𝜌𝜌𝜌𝜌𝐿𝐿𝐿𝐿4ℎ𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇2𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟2.68

Equation 2-9: Peak RMS torque

Where nT = natural frequency and ζT = damping ratio. And:

𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟 =
𝑉𝑉𝑉𝑉(ℎ)
𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿

Equation 2-10: Vr

𝐿𝐿𝐿𝐿 =
∫|𝑟𝑟𝑟𝑟|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐴𝐴𝐴𝐴1 2�

Equation 2-11: L

A = cross-sectional building area, r = the torque arm of element ds, which is the
perpendicular distance between the centre of rigidity and the centre of ds at the
building boundary (Simiu and Scanlan, 1996).

2.2.4 Geometric strategies to reduce wind response

Wind loads are critical to tall buildings due to the array of static and dynamic
responses that can occur in the structure. In fact, treating dynamic responses to
keep a tall structure comfortable is often more difficult than ensuring structural
strength (Irwin, 2009). The response of a building to wind depends not only on its
shape but also its stiffness distribution, mass distribution and damping properties
(Irwin, 2009). However, there are several strategies that designers can take to
reduce these dynamic loads at the source, i.e. the geometry of the building.

34

Optimisation of the geometry can be done at an early design phase to reduce the
occurrence and intensity of these loads.

Vortex shedding can be a big problem for very tall buildings. It causes discomfort,
and in extreme cases damage to building elements. The source of vortex
shedding is the building geometry and thus it can be severely reduced or
eliminated by certain geometric strategies. Irwin (2009) gives the following design
choices that can reduce vortex shedding:

• Softened corners: Eliminating sharp edges by rounding, chamfering, or
stepping back the corners of buildings can greatly reduce vortex excitation.
These should ideally extend about 10% of the building dimension.

• Spoilers: Façade elements such as vertical fins can help keep the flow
attached to the building for longer. This shown in the thesis by Vongsingha
(2015)

• Porosity: Placing openings through the building allowing air to flow
through and disrupt or weaken vortices. An example of this can be seen in
432 Park Avenue tower in New York City by Rafael Viñoly Architects.

• Tapering and setbacks: Vortex shedding depends on Strouhal number
which from Equation 2-6 can be seen varies with building width. If the
building width varies with the height it causes vortices to be shed at
different frequencies along the height thus causing incoherent shedding
which greatly reduces the force compared to contiguous vortices along the
height.

• Varying cross-section shape: Like tapering, this causes different vortex
shedding frequencies along the height of the building.

The Burj Khalifa in Dubai, Figure 2-7, is a good example of these applications. It
is a tapering tower made up of a collection of rounded tubes that step back along
the height but also vary in height along the width of the building. This
arrangement ensures that the vortices do not shed in an organised manner to
induce a steady frequency of sway (Feblowitz, 2010)

Torsional loads can also be very uncomfortable for occupants. These can as well
can be reduced by optimising the geometry by the following strategies:

35

• Pressure distribution: unsymmetrical geometries can cause pressure
concentrations on areas away from the centre of stiffness forming a moment
arm. The building geometry can be configured to ensure a more even
pressure distribution (Cochran and ASCE. Committee on Structural Wind,
2012).

• Alignment of centres: Buildings have a centre of mass, where gravity acts,
and the centre of stiffness, where lateral loads are mainly resisted. If the
two centres are wide apart, for example in a building with an elevator core
off to one side, this can cause torsional loads. The two centres should be
kept close to concentric in order to minimise this (Holmes, 2007).

Figure 2-7: Burj Khalifa (Donaldytong, 2012)

36

2.3 Calculation of Wind Loading

Wind load calculations are inherently more complicated to deal with since, unlike
most other building loads which are static, wind load is dynamic. It varies
constantly with time due to the unsteady turbulent nature of wind. Alan G.
Davenport and his work on using probability and statistics to develop an
equivalent static function for calculation of wind loads in the 1960s led to the
methods that we use today (Holmes, 2007). The ‘quasi-steady’ assumption is the
basis of many modern wind load codes and standards such as the Eurocode. The
quasi-steady method separates the dynamic wind speed into a steady, or mean,
value and an unsteady, fluctuating, value. The proportion of this turbulent part is
determined by the peak factor.

Maximum wind speed, 𝑉𝑉𝑉𝑉
^

(𝑧𝑧𝑧𝑧), is given by:

𝑉𝑉𝑉𝑉
^

(𝑧𝑧𝑧𝑧) = 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧) + 𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡) · 𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧)

Equation 2-12: Maximum wind speed

Where Vm(z) = mean wind speed at height z, g(t) = gust factor over duration t, and
σv(z) is the root mean square of the turbulence (Cook, 2007). This gives the
turbulence intensity, Iv(z) as

𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧) =
𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧)
𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧)

Equation 2-13: Turbulence intensity

This method, however, can be quite conservative especially for the design of tall,
slender, flexible towers. Flexible buildings are defined as having a height to width
ratio, h/b > 4, or a fundamental frequency of less than 1 Hz (Simiu and Scanlan,
1996).

2.3.1 Eurocode procedure

The Eurocode is based on this quasi-steady approach. Though some values like
the pressure coefficients are based on the more complex Cook-Mayne
methodology it is still brought back to the quasi-steady form for ease of
calculation (Cook, 2007). EN1991-1-4:2005; Eurocode 1: Actions on structures -
Part 1-4: General actions - Wind Actions, is the Eurocode section that sets out how
wind loads on structures should be calculated, hereafter referred to as EN. In
addition, many countries such as the Netherlands have a national annex that gives
data and guidance to specific to the country such as wind speed maps and terrain

37

categories. These are called Non-Contradictory Complementary Information
(NCCI) as it is not allowed to directly modify the Eurocode, only supplement it
with information relative to the respective country. The EN also includes
informative annexes with necessary information (Cook, 2007).

• Annex A: Terrain Effects gives illustrations of terrain categories, rules for
transitions between roughness categories, rules of orography and effects
of upwind buildings.

• Annex B: Procedure 1 for determining the structural factor cscd, Annex

C: Procedure 2 for determining the structural factor cscd, and Annex D:

cscd values for different types of structures give two alternative
calculation procedures and a graphical method for some types of structure,
respectively, for determining the structural factor cscd, the factor that
describes the effects of structural size and dynamics on the wind actions.

• Annex E: Vortex shedding and aeroelastic instabilities gives rules for the
vortex-induced response, including two alternative calculation procedures,
and guidance on other aeroelastic effects.

• Annex F: Dynamic characteristics of structures gives guidance on the
dynamic characteristics of linear structures – fundamental natural
frequencies, mode shapes and damping.

Member states are required to either adopt the entire annex as normative or reject
it. Thus, care must be taken to reference both the main Eurocode and the
applicable national annex to ensure the correct data and procedure is used. For
this thesis, the Netherlands National Annex to NEN-EN1991-1-4+A2+C1 (NEN,
2011) is used. Hereafter referred to as NA.

The EN describes wind loads as characteristic values which they define as “values
with a characteristic annual risk of being exceeded of 0.02 in each and every year
that the structure remains in service” (NEN, 2005). The basis of the calculations is
the fundamental value of basic wind velocity, vb,o, defined as the 10-minute mean
wind velocity with a 0.02 annual risk of being exceeded, irrespective of direction
and season, at 10m above the ground in terrain category II (NEN, 2005). Category
II is defined as open country with low vegetation such as grass and isolated
obstacles with separations of at least 20 obstacle heights (NEN, 2005). The NA
gives the values for vb,o based on location on a map describing 3 different wind
areas (Figure 2-8). Applying a directional factor and season factor gives basic wind
velocity, vb. However, the NA assigns a value of 1.0 to both of these factors,
therefore, vb = vb,o.

38

The EN gives the main equations for wind pressure and wind force on a building
surface. These equations have several unknowns that need to be calculated some
of which are geometry dependent. EN section 7 has different subsections for
different building geometries, roof types, and structure types which give methods
of calculations for the coefficients.

 Figure 2-8: Classification of the Netherlands in wind areas (NEN, 2011)

To calculate the wind force, Fw, on a structure in the along-wind direction the EN
gives the following equation:

𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 · 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 · 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒) · 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Equation 2-14: Wind force on a structure

39

The force coefficient, cf, is based on the shape of the building and given in section
7 of EN. qp(ze) is the peak velocity pressure at reference height ze. Aref is the
reference area on which the force is acting. This could be for a small element such
as a cladding panel, or the whole building, in which case it should be the area
normal to wind flow. One can also obtain the force per unit length by setting the
desired dimension to 1, or the force per unit area by setting Aref = 1. The structural
factor, cscd, accounts for the size effect and dynamic response described below.
This factor may be split into two i.e. cs and cd, if cd = 1.0 which occurs when if the
building height is less than 50m and the ratio of height and width of the structure
perpendicular to wind direction, h/b, is less than 5 according to the NA (NEN,
2011).

The size effect is the non-simultaneous action of peak wind pressures over faces
of the structure and the dynamic response is the vibration of the structure in its
fundamental mode due to the action of turbulence (Cook, 2007). Section 6 of the
EN is dedicated to cscd. Annex B and C give different methods for the calculation,
while Annex D gives graphs from which you can determine structural factor based
on building type and height, however, these values are very conservative (Cook,
2007).

The equation determines the dynamic response of a structure in the along-wind
direction as the root-sum-square of a background component representing the
quasi-steady response and a resonant component representing the dynamic
oscillation at the natural frequency of the structure. This is known as the Davenport
method and is implemented with some slight modifications in Annex B. Annex C
uses a newer method from Dyrbye and Hansen which is somewhat simpler and
gives values within 5% of Davenport’s method (Cook, 2007). The NA requires the
use of Annex C with the condition that the value of cscd cannot be lower than 0.85.
The equation for cscd is as follows:

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 =
1 + 2 · 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 · 𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)√𝐵𝐵𝐵𝐵2 + 𝑅𝑅𝑅𝑅2

1 + 7 · 𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)

Equation 2-15: Structural factor

Where kp = the peak factor, B2 is the background factor, R2
 is the resonant factor,

and Iv(zs) is the turbulence intensity at reference height zs. Note that the reference
height zs = 0.6·h is only valid for calculation of cscd and is not to be used anywhere
else in the wind force calculations.

40

In the EN turbulence intensity at height, z is given by:

𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧) =
𝑘𝑘𝑘𝑘𝐼𝐼𝐼𝐼

𝑐𝑐𝑐𝑐0(𝑧𝑧𝑧𝑧) · ln � 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧0
�

Equation 2-16: Turbulence Intensity

kI = the turbulence factor for which the recommended value by the EN and NA is
1.0. This assumes that RMS of kI is constant throughout the building height,
however, Cook (2007) shows that kI should, in fact, be a function of height as RMS
turbulence actually reduces with height. c0 = orography factor which for flat terrain
is equal to 1.0. In the case of terrain Annex A.3 of the EN should be used to
calculate the value. z0 = the roughness length given by table NB.3 - 4.1 of the NA.

The equations presented here so far are just a few of the equations needed to be
solved in order to find the wind force on a building. An example calculation is
shown in Appendix 5. About 20 equations need to be solved in order to obtain
the wind force at a single height for one wind direction. Many of these are
simplifications and approximations that lead to very conservative values (Cook,
2007). Furthermore, the EN procedure is only valid for buildings up to 200m in
height (NEN, 2005). It only provides guidance for a limited number of building
shapes; there is no procedure for unusually shaped buildings in the code. While
the EN provides guidance on calculating forces due to vortex shedding in Annex
E there is no provision for torsional loads. For these reasons, clause 1.5 of the EN
states:

In supplement to calculations, wind tunnel tests and proven and/or
properly validated numerical methods may be used to obtain load and
response information, using appropriate models of the structure and of the
natural wind (NEN, 2005).

This statement leaves open the prospect for the use of CFD in wind engineering
provided the numerical models are established and well validated.

2.3.2 Wind tunnel testing

Boundary layer wind tunnels remain the de facto testing method for buildings that
do not conform to the restrictions of the EN. Testing scaled models in boundary
layer wind tunnels can provide time-dependent surface pressures, including the
complex cross-wind and torsional loadings crucial to tall buildings (Clannachan et
al., 2009). However, they themselves have some inherent uncertainty in their
results and care must be taken during the tests to ensure accuracy. Jensen (1958)
showed that for scaled wind tunnel measurements the ratio of height, h, to

41

roughness length number, z0, needs to be equivalent to ensure pressure
measurements on the model in the tunnel would match those at full scale. Thus,
h/z0 came to be known as the Jensen number (Holmes, 2007). Scaling Reynold’s
number correctly is as well important for ensuring accurate values (Clannachan et
al., 2009). This combined with the time and expense of wind tunnel testing makes
them unsuitable for generating multiple optimal design iterations in an early
project phase.

In a conversation on June 21, 2019, with Andy Mak, Bart Leclercq, and Josh Haigh,
engineers at Aurecon in Dubai, UAE, it was discussed how wind tunnel testing is
currently done in the context of high-rise and supertall buildings. In their projects
wind tunnel testing is usually done. The longest time taken is waiting for a time
slot to use the wind tunnel as they are usually very busy. Then comes the task of
making the scaled model which today has been made a faster process with the
advent of 3D printing. Then in all, the process of pre-processing, running the wind
tunnel test, post-processing and getting the results can take an average of one to
two weeks. What needs to be noted here is that this is only for a single building
model. If the results turn out to be unsatisfactory, this process has to be repeated
to test the performance of the new building model. The geometric strategies
employed by engineers creating these buildings are usually based on general
knowledge and rules-of-thumb acquired over the past 50 years of development
in the field of wind engineering. While these can sometimes be sufficient at first
there can be instances, especially with very unconventional designs, where even
more needs to be done. What is commonly seen is that these wind tunnel tests
are done at a later stage of design where the architect and client are very attached
to the design and external geometric changes are not possible. This can result in
having to increase the sizes or number of internal structural elements which then
affect the architectural plan layout requiring changes.

This is where CFD can act as a complementary tool calculating wind loads at an
early stage and generating optimal options which can then be verified later in the
design by a scaled wind tunnel test and/or Eurocode calculations. Although wind
tunnel testing is accurate it is not ideal for optimisation due to its physical nature
relying on a trial and error approach. As Bernardini et al. (2015) state:

Typically, wind tunnel tests are used to characterize the aerodynamic
behaviour of the candidate shapes, selected a priori based on experience,
therefore the number of configurations that can be considered is limited by
the significant resources and time necessary to execute each test. As a
consequence, a vast portion of the search space remains unexplored, and
more conventional configurations are favoured over innovative solutions.

42

2.4 Computational Fluid Dynamics

A fluid is anything that flows to take the shape of its container such as water or air.
It continuously deforms under the application of forces be that from gravity or
external forces exerted on it. Fluid mechanics, or more specifically fluid dynamics,
refers to the study of how these fluids move and the forces acting on them. Fluids
are quite complex and can’t be modelled as simply as solids can. Fluid dynamics
is based on 3 principles:

1. Mass is conserved
2. F = ma (Newton’s second law)
3. Energy is conserved.

These, in turn, form the basis of the three governing equations of fluid dynamics
- the continuity, momentum, and energy equations. These principles are
generalised as a series of partial differential equations known as the Navier-Stokes
equations (Wendt et al., 2009).

Computational Fluid Dynamics is the use of numerical methods to solve these
governing equations (Mohotti et al., 2014). This involves subdividing the domain
into a mesh of control volumes for which the solutions to the governing equations
can be found. To enable this solution the continuous non-linear partial
differentials, have to be replaced with an algebraic expression which gives a
solution at a specific point. This process is called discretisation and can be done
by either the Finite Difference Method (FDM), Finite Volume Method (FVM), or
Finite Element Method (FEM). CFD software typically uses FDM (Anderson, 1995).
CFD can describe many types of fluids and their flows. For the case of analysis of
the effects of wind on a building, referred to as Computational Wind Engineering
(CWE), we can refer to wind as an incompressible viscous flow. Though the
viscosity is quite low it is necessary to take it into account to more accurately
describe the flow separation and resulting turbulence at the boundary of the
building. To analyse these flows a turbulence model is usually integrated into the
solution. These use various algorithms to model the turbulent flow at boundary
regions (Clannachan et al., 2009).

There has been a lot of research into the application of CFD for wind engineering
problems over the last three decades which is accelerated by the continued
advancements in computer technology and resources enabling faster and more
detailed solutions (Clannachan et al., 2009). However, it is still not widely accepted
by many codes as a method for wind load analysis. Most codes such as the
Eurocode, United States’ ASCE 7-10, and ISO 4354:2009 still do not explicitly
mention the use of CFD for wind load. The Architectural Institute of Japan (AIJ)
has published the AIJ guide for numerical prediction of wind loads on buildings
(2008) which gives detailed advice on the use of CFD for wind engineering

43

purposes (Fransos and Lo Giudice, 2015). The fact that there is not a consensus
on the use of CFD and CWE techniques shows that there are some shortcomings
compared to traditional wind tunnel tests. Nonetheless, the benefits of CWE over
time-consuming and expensive physical tests continue to inspire more research in
the field.

To date, most of the research pertaining to CFD in the built environment has
focused on natural ventilation, wind at pedestrian level, pollution dispersal, and
other comfort aspects. Clannachan et al. (2009) state that “It has proven very
difficult for CFD to acceptably model the complex flow interference phenomena
induced from buildings.” He further concludes that:

This is the reason less work has been performed on predicting time-
dependent surface pressures on these man-made bluff bodies. CFD has
not developed enough to suggest it could replace wind tunnel testing in
this respect. It does, however, offer encouraging potential to act as a
complementary tool.

While verification should be performed by wind tunnel tests later in the design,
CFD at this moment is very poised to be a useful tool at an early design phase
when the geometry is still preliminary and a small amount of error in the results is
acceptable. In the time since Clannachan’s paper was published to the present
day, it is known that computational power has increased immensely, thus it is
reasonable to assume that CFD applications have also accelerated in their
effectiveness.

2.4.1 Navier-Stokes equations

Mathematician Leonhard Euler was the first to develop equations to describe fluid
flow in the 18th century (Hosch, 2018).

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

+ 𝜕𝜕𝜕𝜕 · 𝛻𝛻𝛻𝛻𝜕𝜕𝜕𝜕 =
𝛻𝛻𝛻𝛻𝑃𝑃𝑃𝑃
𝜌𝜌𝜌𝜌

Equation 2-17: Euler equation describing fluid flow in modern notation

Where u is the fluid velocity vector, P is the fluid pressure, ρ is the fluid density,
and ∇ indicates the gradient differential operator. However, Euler’s equation
defines inviscid flow; it completely neglects the effects of viscosity, mass diffusion,
and thermal conductivity (Anderson, 1995). In the 19th century, French engineer
Claude-Louis Navier and British physicist Sir George Gabriel Stokes independently
developed the system of equations known today as the Navier-Stokes equations.

44

These equations expanded on Euler’s work by including the effects of viscosity
(friction). They can be represented in both conservation, based on an infinitesimal
element fixed in space, and non-conservation form, based on an infinitesimal
element moving with the flow (Anderson, 1995).

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

+ 𝜕𝜕𝜕𝜕 · 𝛻𝛻𝛻𝛻𝜕𝜕𝜕𝜕 =
𝛻𝛻𝛻𝛻𝑃𝑃𝑃𝑃
𝜌𝜌𝜌𝜌

+ 𝜐𝜐𝜐𝜐𝛻𝛻𝛻𝛻2𝜕𝜕𝜕𝜕

Equation 2-18: Navier-Stokes equation in modern notation

Where υ = the kinematic viscosity, and 𝛻𝛻𝛻𝛻2 is the Laplace operator. See Appendix
1 for the full system of Euler and Navier-Stokes equations.

The Navier-Stokes equations are a coupled system of non-linear partial differential
equations, and hence are very difficult to solve analytically. To date, there is no
general closed-form solution to these equations that we know of (Anderson,
1995). This plays a big role in making fluid dynamics and by extension CFD a very
complicated field.

2.4.2 Turbulence models

Wind flow, especially around bluff-bodies, constitutes of the free-stream and the
turbulent regions of the boundary layer and wake. CFD can discretise and solve
the Navier-Stokes equations for all these regions in what is called Direct Numerical
Simulation (DNS). However, since turbulence is inherently very random and
complex, DNS necessitates an excessively fine grid as each control volume for
calculation must be smaller than the smallest eddy in order to fully capture the
turbulent effect. This makes DNS a very computationally expensive and inefficient
process (Clannachan et al., 2009). Thus, CFD calculations can be supplemented
by a variety of turbulence models which more efficiently account for these
conditions. However, at present no turbulence model is perfect and the selection
of the most appropriate model depends on what is being analysed and forming a
balance between accuracy and computational cost (Clannachan et al., 2009).
Below we will examine some of these turbulence models and their methods and
seek to determine which ones are most promising for the goals of this thesis.

The two leading turbulence models are Large Eddy Simulation (LES) and Reynolds
Averaged Navier-Stokes (RANS), also known as Reynold’s Average Stress (RAS)
with each employing a different approach. LES is a transient method using a
spatial filtering technique where all eddies larger than a certain size are calculated
while those smaller are modelled in a sub-grid scale (SGS). Whereas, RANS is a

45

steady-state time-averaging technique where, over a certain time period, the
velocity vector is split into a mean and fluctuating part. Only the mean part is
calculated but the effect of the fluctuating component is modelled on the flow
(Clannachan et al., 2009). RANS gives only mean values whereas LES can give
peak values and a more accurate picture of the transient phenomena of the flow
at a particular time step. To achieve this LES needs a much finer grid and a higher
number of time steps than RANS resulting in a much more computationally
expensive process (Fransos and Lo Giudice, 2015).

Figure 2-9: Fluid flow calculated by RANS vs. LES turbulence models

The most common RANS methods are the k – ε and k - ω models. These methods
involve solving two additional equations to obtain the turbulent viscosity which
involves solving for the kinetic energy, k, and either the turbulent dissipation rate,
ε, or the specific dissipation rate, ω (Clannachan et al., 2009). The k – ε is known to
be unreliable in the turbulent regions around bluff bodies. Tamura et al (2008)
performed CFD analyses using various turbulence models and compared the
results to those from wind tunnel tests. They found that k – ε overpredicted
pressure coefficients at the front face of the building while underpredicting suction
at the rear. Clannachan et al. (2009) also found that k – ε consistently over-
predicted the wake reattachment length and severely under-predicted the level
of turbulent kinetic energy. Huang et al (2007) performed tests comparing the

46

standard k – ε model to ones with modifications proposed by Launder and Kato
(LK) and Murakami et al. (MMK) as well as LES. They found that the standard k – ε
under-predicts the drag force coefficient Cd by about 20% with LK, MMK, then
LES giving gradually more accurate results.

The k – ω model is known to perform better for near-wall flows, however, it
suffered from inaccuracies in the freestream flow. Sun et al. (2009) used the k – ω
model in their paper exploring Fluid-Structure Interaction (FSI) of airflow over a
bridge deck. They concluded that the k – ω model is potentially well suited to
simulating Vortex Induced Vibration (VIV) and flutter of bridges because of its
superior performance in near-wall flow simulation compared with k – ε.

The Realisable k – ε model was developed by Shih et al. (1994). Realisable means
that, unlike the standard model where the ε is determined based on reasoning,
the model satisfies mathematical constraints consistent with the physics of
turbulent fluid dynamics. This is chiefly done by making the empirical constant Cμ
variable with the flow instead of constant as in the standard k – ε (Rahman et al.,
2007). van Hooff et al. (2011) chose to use the Realisable k – ε in their study of
wind flow around and wind-driven rain on stadia because of its ‘significant
improvements over the standard k – ε model.’ Another reason it was chosen was
that it is widely validated for a wide range of flows including turbulent separated
flows like those around bluff bodies.

RNG k – ε is another variation of the standard RANS model developed by Yakhot
et al. (1992) using Renormalisation Group (RNG) method to renormalize the
Navier-Stokes equations, to account for the effects of smaller scales of motion
thus making k – ε more accurate. Clannachan et al. (2009) found that the RNG k –
ε gave results closest to full-scale physical tests at the CWE 2000 completion.
Blocken (2014) stated in his paper, “the best agreement with the PIV wind-tunnel
measurements by Karava et al. (2011) was obtained by the SST k – ω followed by
the RNG k – ε model.” However, the aim of that experiment was testing natural
ventilation.

The Shear Stress Transport (SST) k – ω model developed by Florian R. Menter
(1994) combines the best of k – ε and k – ω using the latter for near body flow and
the former for flow further away by use of a transitioning function (Menter, 2009).
This, along with an added cross-diffusion term in the ω-equation, gives SST k – ω
better performance than both the standard and realisable k – ε models.

In LES the major model is the Smagorinsky model. Others include the
Smagorinsky-Lilly, Wall-Adapting Local Eddy-viscosity model (WALE) and dynamic
SGS kinetic energy model. Huang et al. (2007) recommend the use of dynamic-
SGS for high Reynold’s number bluff body flows. It gave more accurate results
than the RANS models in his assessment.

47

Detached Eddy Simulation (DES) is a hybrid of RANS and LES. It sought to
combine the benefits of the two using LES at areas of flow separation and RANS
for other areas (Clannachan et al., 2009). In a comparison of steady and unsteady
RANS and DES models, DES showed notably better prediction of mean loads.
However, it was concluded that the slight increase in accuracy was not worth the
much greater increase in computational time (Clannachan et al., 2009).

As is shown there are several models to choose from each with their pros and
cons. The choice of which to use is a complicated balancing act. Fransos and Lo
Giudice (2015) mention that the choice of CFD application should be based on
goals. They give two criteria:

1. The choice should not be based on model availability. They state that:

The choice of a software product is in fact not as relevant, as long as
it allows for proper models and boundary conditions and the user
has performed a rigorous validation before using it in a design
context.

2. The choice should not be based on the pursuit of an unconditionally “best”
CFD. This is based on the fact that there is not a single optimal model for
every scenario.

In the AIJ guide, Tamura et al. (2008) recommend that RANS only be used for
finding time averaged wind forces. For max wind forces, the RANS results should
be multiplied by a suitable Gust Effect Factor. Clannachan et al. (2009) state that
the benefits of RANS for tall building problems are restricted since it is generally
the crosswind and torsional loads that are critical. An unsteady RANS model, such
as Realisable or RNG k – ε, or LES would give more accurate results for the flow
around the building although RANS models are significantly more efficient than
LES. RANS simulation runtime can be one order of magnitude lower than
simulations on LES models (Fransos and Lo Giudice, 2015). Indeed Clannachan et
al. (2009) stated in a particular experiment that although LES gave results close to
field measurements compared to RANS, the solution time for the LES simulation
was 160 hours, whereas the RANS solutions ranged between 15 minutes and 6
hours. Sun et al. (2009) state that:

On the one hand, the LES based approach is accurate and has been
validated by comparison with experimental results. But LES is still too
sophisticated and computationally intensive to be a viable tool for general
engineering FSI applications.

Thus, it appears a balance must be struck between accuracy and computational
cost and the choice of turbulence model plays a big role in that regard.

48

Figure 2-10: CFD Procedure for estimating wind loads on structural frames (Tamura et al., 2008)

2.4.3 Fast Fluid Dynamics

Another development in the area of CFD, particularly to address the long
calculation times of traditional CFD models is Fast Fluid Dynamics (FFD). This
procedure was first proposed by Jos Stam (1999) for rendering fluids in video
games. As a result, the simulations are more focused on visuals and speed of
simulation than accuracy. Nevertheless, it has been used by researchers for CWE
applications particularly in tandem with an optimisation algorithm. FFD solves the
Navier-Stokes equations using fully implicit and lower order methods and
decouples the pressure and velocity components. This gives linear equations that
are much easier and faster to solve (Waibel et al., 2017). Another advantage is that
FFD is stable, meaning that it can take much larger time steps than CFD without
worrying about the simulation blowing-up (Stam, 1999). This also allows for much
faster convergence which is essential for optimisation algorithms which may run
hundreds of variations. This simplification of the Navier-Stokes equations,
however, leads to inaccuracy. One source of inaccuracy is FFD’s inability to predict
turbulent flows (Chronis et al., 2011). Indeed, Stam himself mentioned in his paper
that FFD may not be suitable for engineering applications as it suffers from too
much numerical dissipation. In other words, the flow dampens too quickly
compared to real-world experiments.

Chronis et al. (2011) used a custom FFD code based on Stam’s research together
with a genetic algorithm to optimise a freeform surface based on pressures due
to wind load. They were aware of the drawbacks of FFD regarding accuracy but
stated that the aim of their experiment was not to “simulate physical phenomena
with maximum accuracy but rather to investigate the potential of a resource
effective simulation scheme in a conceptual stage generative approach.” They
were able to successfully optimise the geometry of a free-form NURBS surface by
using FFD to find the surface pressures and moving the control points first in 1

49

degree of freedom, then, 3 degrees of freedom at each iteration of the genetic
algorithm to obtain a lower mean pressure on the surface.

Figure 2-11: Optimisation interface and 4 fittest members (Chronis et al., 2011)

Waibel et al. (2017) developed and validated an FFD solver in Grasshopper called
GH Wind. Once again, the aim of using FFD was to reduce computational time
especially for the early design phase where the geometry may not yet be finalised.
They implemented a few changes to Stam’s algorithm to enable more accurate
pressure values and parallelise the simulation to allow faster calculation. A major
issue discovered was that at high Reynold’s numbers the results deviate much
more from the reference. This is most likely due to the fact that FFD at this point
does not model turbulence effects which are more critical at high Reynold’s
numbers. To deal with that the researchers set the kinematic viscosity to a higher
value of ν = 0.1 in order to artificially lower Re but conceded that this approach
needs further research. For pressure coefficients on a façade, they observed that
for the windward façade the results were very close to the reference from ASHRAE.
For the leeward and side faces, the distribution was different, however, the
numerical range of values of Cp was within that of the ASHRAE values.

Although it has shortcomings FFD could provide a reasonable trade-off between
accuracy and computation time (Waibel et al., 2017) especially for early-stage
optimisation. Zuo and Chen (2009) found that their FFD simulations were at least
50 times faster than CFD simulations for the same grid size and time step although
the results were not as accurate as RNG k – ε.

2.4.4 Available programs/plugins

In the decades since its inception, CFD has developed immensely and now there
are many programs in use today by engineers and researchers. We will examine a
few below based on information from the developers and the author’s own
experience.

50

Autodesk Flow Design

Flow Design is a virtual wind tunnel program developed by Autodesk. It is easy to
use and offers many visualisation options such as flow lines, surface pressures,
drag plot, and velocity planes. Many file types can be imported. Options such as
wind speed, tunnel size, and resolution can be changed as well as the rotation of
the model. It is intended as a quick visualiser and thus it is fast and easy to use but
maybe too simplistic. There is no option to pick a turbulence model or roughness
length. The results are only presented visually with colours but there is no option
to export the numerical data nor to see the numbers at the points they are taken
on the model. Resolution is only represented by a percentage and a readout of
voxel size. Also, the project cannot be saved so for each use the mesh will have
to be reimported and tunnel parameters reset. As of March 28, 2018, Autodesk
has stopped distribution of Flow Design.

ANSYS Fluent

Fluent is part of ANSYS’s workbench of engineering tools. It is widely known in
the industry as reliable and accurate. There are many options for meshing,
turbulence models, and many other settings. Custom scripts can also be written
to make modifications to turbulence models. Many file types can be imported.
Fluent is very powerful however, it is quite complicated, and a novice user could
not just pick it up and instantly run an analysis without first becoming familiar with
the program. It is ideal for detailed analysis but perhaps less so for early stage
exploration.

OpenFOAM

OpenFOAM is a free, open source, CFD software that has been in development
by OpenFOAM Ltd. since 2004. It is known to be robust and accurate and its
open-source nature allows many researchers to use it and customise it for exactly
what they need. Thus, it is one of the most independently validated CFD libraries
in existence. It also offers a large array of turbulence models, solvers, meshing
algorithms, and other tools. OpenFOAM is a Linux based C++ library that is
primarily run through a console, but results can be visualised via the software
Paraview. This can make it complicated to use. One must be very familiar with the
OpenFOAM syntax in order to perform analyses.

51

Butterfly

Butterfly is a Grasshopper plugin and python library developed by Mostapha
Sadeghipour Roudsari as part of the Ladybug Tools suite. It is a Python wrapper
for the OpenFOAM C++ library that allows users to run OpenFOAM CFD
simulations from within the Grasshopper environment for cases pertaining to
building design such as outdoor airflow, indoor airflow, buoyancy, and HVAC. It
greatly simplifies the use of OpenFOAM by using Grasshopper components and
allowing the user to integrate other plugins and components of the Grasshopper
environment. Installing and using Butterfly has been made much simpler in version
0.0.05 by using blueCFD-core which is a build of OpenFOAM which runs natively
in Windows. Butterfly’s readily available source code allows users the freedom to
modify and improve the software on their own. One also has the benefit of a
powerful and accurate solver running within a fully parametric environment. Being
part of Grasshopper and the extensively used Ladybug tools it has a very active
online community in addition to the active OpenFOAM community. Features such
as roughness length, tunnel size, and mesh refinements can be numerically set. It
has a large assortment of RANS/RAS models, however, LES models have not yet
been implemented.

GH Wind

GH Wind is a Fast Fluid Dynamics solver plugin for Grasshopper developed by
Christoph Waibel as part of his 2017 paper, Validation of Grasshopper-based Fast
Fluid Dynamics for Air Flow around Buildings in Early Design Stage (Waibel et al.,
2017). It includes components for forming the wind tunnel, meshing, solving, and
visualising the pressure and velocity fields. Based on the results of the paper it is
much quicker than OpenFOAM CFD solutions but suffers from some inaccuracy
especially in the wake regions of the flow. Being in the Grasshopper environment
it allows users, just like with Butterfly, to couple it with the large array of
components and plugins available. The speed of the solution also makes it handy
for optimisation problems. However, it is fairly new and as a result not
independently validated to the extent of the other programs and plugins on this
list. It also has no online community for support and does not appear to be in
ongoing development. It is open source with source code provided in C#.

52

2.5 Fluid-Structure Interaction

Fluid-Structure Interaction (FSI) is the analysis of the forces, deformations, and
dynamic motions imposed on a body in fluid flow (Bungartz and Scha ̈fer, 2006). In
this case, it would be the static and dynamic forces exerted on a building due to
the wind. FSI usually takes place in two forms:

(1) Monolithic: where the equations for fluid flow and structural deformation are
solved simultaneously in a single solver.

(2) Partitioned: where the fluid flow and structural deformation are solved
separately with two separate solvers (Bungartz and Scha ̈fer, 2006).

Monolithic solvers require specialised code using numerical methods to solve
both problems simultaneously. An example of this is seen in Chronis et al. (2011)
whose code developed in the Processing language integrated an FFD solver
which returned surface pressures and ran a genetic optimisation algorithm. Thus,
the partitioned approach is preferred for this thesis. This requires a separate Finite
Element Analysis (FEA) software/plugin that the CFD solver could transfer the
results in order to obtain information about the building response.

Karamba3D is a parametric FEA plugin for Grasshopper developed by Clemens
Preisinger in cooperation with Bollinger und Grohmann ZT GmbH. It is widely used
and offers many options for analysis including many types of loads, materials, cross
sections, as well as solvers and results. It’s parametric nature, given it is part of
Grasshopper allows it to be coupled with many of the other plugins available and
give real-time results (Preisinger, 2013). This makes it a prime candidate for
coupling with a CFD solver. There are already many studies and examples of
Karamba being used with optimisation algorithms to optimise structural
components as well as overall geometry for structural performance.

CFD simulations return pressure values on the external massing. This will need to
be translated to the building elements such as the floors, beams, and core in order
to ascertain the deflection imposed on the building by the wind. In the next stage
of the research different methods of this will be devised and evaluated with based
on how well they address the problem, feasibility to implement computationally,
and ability to be integrated into an optimisation loop.

53

2.6 Optimisation

Optimisation in a mathematical or computational sense involves the manipulating
of various input factors in order to minimise or maximise a certain output result. It
allows designers to use computational algorithms to determine the best design
solutions based on a number of performance factors. This is the essence of
performance-based design where a design is driven, not solely by aesthetics, but
by the achievement of certain performance goals such as structural deflections,
daylight, or energy use (Oxman, 2006). In the case of architectural design,
optimisation usually focuses solely on the input variables and the resulting
objective outputs with no regard for the mathematical definition of what comes in
between. This is known as black-box optimisation (BBO) or derivative-free
optimisation (Wortmann et al., 2017). It allows the designer to use optimisation
with any number of algorithms or simulations such as CFD and use the resulting
outputs as objectives. The optimisation usually follows a loop structure where
some parameters, such as length, width, thickness, position, etc., are input. The
design is then evaluated for its performance be it climatic, structural, or other
criteria using an analysis or simulation procedure that outputs results. These
results (structural deflection, energy use, etc.) are compared to the goal set by the
designer. If it is not satisfactory, the parameters are then set to another value and
the process continues until the goal is met. The outputs are called the objective
functions and their closeness to the goal is its fitness.

In single objective optimisation, input variables are evaluated against a single
output objective which is aimed to be minimised or maximised. Thus, it converges
to a single solution. However, engineering problems usually require the careful
balancing of a variety of often contradictory objectives (Evins, 2013). This reality
has given rise to the use of Multi-Objective Optimisation (MOO). In MOO, also
called Pareto optimisation, the aim is to obtain a range of solutions that span the
trade-off between each of the objectives. The MOO loop runs until each objective
cannot be improved any further without worsening others. This leads to a range
of solutions called the Pareto front (Evins, 2013). From this, an architect/engineer
must choose the best design based on the importance of each objective. Indeed
it is often much more valuable in architectural problems to give a range of
solutions rather than a single optimum as many aspects including architectural
aesthetics have to be balanced by many parties involved in the design process
(Turrin et al., 2011).

54

Figure 2-12: Example of optimisation results with Pareto front (yellow triangles) (Evins, 2013)

2.6.1 Optimisation algorithms

There are many algorithms that can be used to perform optimisation ranging from
purely mathematical to even those based on natural processes. These can be
defined as either deterministic or stochastic. In deterministic, a certain set of input
variables will always return a given objective value for a specific case. Stochastic
on the other hand are more random so that a given starting point will not always
return the same exact value (Ilunga and Leitão, 2018). For BBO methods these are
usually divided into three categories: Direct search methods, metaheuristics, and
model-based methods (Wortmann and Nannicini, 2016).

Direct Search

Direct search algorithms are deterministic methods which perform sequential
examinations of trial solutions using points in the solution space generated by a
certain strategy (Rios and Sahinidis, 2013). Examples include Dividing Rectangles
(DIRECT) method, Parallel Axis (PRAXIS) method, and Nelder-Mead Simplex
(NMS). For example, as shown in Figure 2-13 the Nelder-Mead Simplex algorithm
first forms a simplex, i.e. a shape of n+1 vertices in an n-dimensional space, of
points in the solution space. The next point is found by first taking the average of
the two best points and performing a transformation of reflection, expansion,
contraction, or shrink depending on the objective function value of the new point
(Gregson, 2018).

55

Figure 2-13: Nelder-Mead process (Gregson, 2018)

Direct search methods are highly used in mathematical test problems due to their
fast performance and inherent stability however, they are not much used in
architectural optimisation problems (Wortmann and Nannicini, 2016). While very
efficient they are not very robust (Evins, 2013). This means that they tend to get
trapped in local optima converging to a minimum (or maximum) of one section of
design space while there may be other sections in the global solution space with
better objective values. This can be alleviated by doing multiple optimisation runs
at random start positions but of course, doing multiple optimisation runs greatly
increases the time taken.

Direct search methods currently present as plugins within Grasshopper include
the Nelder-Mead plugin by Eckersley O’Callaghan Engineers, as well as Goat
developed by Rechenraum e.U which uses DIRECT, Subplex, and another form of
Nelder-Mead Simplex.

Metaheuristics

Metaheuristic algorithms are stochastic methods inspired by natural processes
(Ilunga and Leitão, 2018). These include algorithms such as Genetic Algorithms
(GA) which are based on Darwinian survival of the fittest principles, Simulated
Annealing (SA) which simulates the behaviour of metal molecules during the
annealing process, and Particle Swarm Optimisation (PSO) which follow swarm
intelligence principles (Wortmann et al., 2017). Metaheuristics, particularly GAs
are the most popular choice in architectural applications since they are readily
available (they come preloaded within Grasshopper in the plugins Galapagos and
Octopus), can be applied to almost any problem, and are easy to understand and
use (Wortmann et al., 2015). However, many mathematicians regard
metaheuristics as “methods of last resort” (Conn et al., 2009). They tend to
perform poorly in benchmarks compared to other algorithms as seen in studies by

56

Waibel et al. (2019), Wortmann (2018), Ilunga and Leitão (2018), Wortmann et al.
(2017), and Rios and Sahinidis (2013). Additionally, metaheuristics typically require
a much larger number of function calls to arrive at an optimum which is particularly
problematic for cases such as CFD where a single function evaluation could take
hours (Wortmann and Nannicini, 2016).

Model-Based

Model-based optimisation is a stochastic method which operates differently than
direct search or metaheuristics. It involves replacing a computationally expensive
objective function with an inexpensive surrogate model with the same input and
output space as the original function. The search for the optimum is then carried
on this surrogate rather than the original intensive function (Bernardini et al.,
2015). It first creates a set of points called a sampling plan by doing a few iterations
of carefully chosen points in the solution space to obtain some results (Bernardini
et al., 2015). Then, it generates a surrogate model or response surface (Figure
2-14) of the unknown fitness landscape by interpolating through the points in the
sampling plan. From this, it can estimate the performance of design candidates
with fewer or no further function calls (Wortmann and Nannicini, 2016). The
algorithms can generate local models such as the Trust Region method or global
models which create a surrogate of the entire solution space using statistical
methods, such as Polynomial Regression and the Kriging method, or machine-
learning, using Neural Networks, Support Vector Machines, or Radial Basis
Functions (RBF) (Wortmann, 2017).

Figure 2-14: Surrogate model (response surface) of a Kriging based optimisation with input variables on the
x and y-axes and the objective variable is on the z-axis (Bernardini et al., 2015).

57

Surrogate model-based algorithms will either construct a response surface from a
sampling plan and search for an optimum solely using the model either with or
without a separate optimisation algorithm, or it will generate a response surface
and iteratively update the model by sampling the carefully chosen points while
searching for an optimum. For example, Bernardini et al. (2015) performed 2D
shape optimisation on a building cross-section analysed by CFD. They constructed
a Kriging based surrogate model from which an evolutionary algorithm was
employed to find an optimum. The Grasshoper3D plugin, Opossum developed
by Wortmann (2017) uses a Radial Basis Function (RBF) method to construct the
initial response surface and iteratively improve it based on carefully chosen
evaluation points. The RBF algorithm is found to perform better than other
surrogate model algorithms in problems employing time-consuming simulations
(Wortmann et al., 2015). Yang et al. (2016) in a study of the effects of sampling
strategy and problem scale found RBF to perform the best for a low number of
variables.

Many benchmark studies of optimisation algorithms, such as those mentioned in
the previous section, conclude that model-based algorithms provide fast
convergence, stability, and robustness particularly in optimisation problems
requiring expensive simulations. Bernardini et al. (2015) in the CFD optimisation
study mentioned above state that:

In order to find the Pareto fronts discussed here, a total of 90 CFD
simulations were carried out while a total of about 12,000 evaluations of
the Kriging models were made at each design update. Therefore, by
following the proposed approach, only 0.75% of the CFD runs necessary
to directly search for the Pareto optimal solution are necessary, which once
again illustrates the strong potential of the proposed [Aerodynamic Shape
Optimisation] approach.

Since CFD evaluations can take a very long time it is beneficial to reduce the
number of function calls as much as possible.

2.6.2 Optimisation Problem Formulation

Optimisation has seen an increase in popularity in the past few years and many
engineers and researchers have put it to good use in solving problems of the
building industry. However, building design is a complex procedure involving
many, often competing, objectives. On the other hand, optimisation is a very
definitive process where there needs to be set input variables with a defined range
of values and one or many meaningful objectives. Thus, designers have to distil
each case into a well-defined optimisation problem that can be used with
optimisation algorithms (Wortmann et al., 2015). For this reason, Yang et al. (2018)

58

assert that Optimisation Problem Formulation (OPF) is even more important than
obtaining Optimisation Problem Solutions (OPS). OPF involves evaluating the
design to determine first which parameters and objectives are the most valuable
in the present case. It involves two main parts:

(1) Formulation of the objective space: selecting objective and constraint variables
(outputs) and constraint values. This determines the performance goals and
constraints to be achieved.

(2) Formulation of the design space: selecting design variables (inputs) and their
domains. This determines the possible design alternatives that can be searched.

It is essential to define the problem carefully first to avoid creating meaningless
problems which upon optimisation give useless solutions (Yang et al., 2018). All
problems, especially related to computational processes, are ill-structured
problems at first according to Simon (1973). It is only after testing and formulating
the problem to adapt to the problem solver being used do they trend toward a
well-structured problem. Most studies, however, mainly focus on OPS rather than
OPF giving results for a singular research setup rather than the process of
determining the best setup for the problem. Indeed, in this research, it was difficult
to find examples of this type of work.

Careful consideration should be given to, for instance, what parameters have the
most impact on performance, can they be easily modified in the design, and how
can their domain be restricted so that the obtained solutions are feasible and
attractive. In addition, one must take into account the abilities of the optimisation
algorithm itself. For example, Waibel et al. (2019) performed a benchmark study
of multiple optimisation algorithms applied to building energy problems. The
algorithms were tested using the same building models but different numbers of
input variables, different ranges, and also continuous versus discrete variables, in
order to compare the algorithms’ performance in each problem space.

OPF is crucial in the early conceptual design phase where designers are not able
to perceive every aspect of the design project and how the chosen workflow can
be applied to it. At this stage, goals are usually vague, and a lot of the choices are
based mostly on experience, educated guesses and intuition rather than hard
information and results. At this point, the process can be referred to as
Computational Design Exploration (CDE) rather than Computational Design
Optimisation (CDO). CDE, rather than solving a specific problem, involves fixing
a problem within the problem space by searching for a solution in the solution
space in an iterative manner where the characteristics of the found solution can
now reform the original problem space generating a new solution space and so
on (Maher et al., 1996). To formulate an optimisation problem that produces a

59

meaningful optimum, exploration must be done on the problem and solution
spaces.

Figure 2-15: Relationship between OPF, CDE, OPS, and CDO (Yang et al., 2018)

OPF is an iterative process that requires performing multiple optimisation runs to
obtain an ideal OPS. Thus, the choice of optimisation algorithm also plays an
important role particularly in this case using expensive CFD simulations. The
greater the number of input variables the greater the control over the outcome
and the possibility for better-performing objective. However, this increases the
computational cost of the optimisation. It may arrive at a point where the increase
in runtime is not worth the marginal gains in fitness. Thus, the number of inputs to
be manipulated should be kept minimal to be most efficient. Just as important is
the domain within which these values can be changed. Too wide a domain
requires a lot more generations to ensure adequate samples are taken while too
small a domain may leave out truly optimal values.

While the explored examples focused on a more detailed optimisation problem,
the method to be in developed in this thesis is on a much coarser level of detail.
What is important is the focus on experimenting with the different arrangements
of input, objective, and algorithm settings to determine the optimal optimisation.
This is especially important in a field such as CFD based optimisation in buildings
where not a lot of research has been done.

2.6.3 CFD based optimisation in buildings

While optimisation has been increasingly applied to both environmental and
structural simulations in buildings, optimisation using CFD is still comparatively
rare. For instance, Ekici et al. (2019) performed a review of the usage of
computational optimisation in built environment problems. Out of one hundred
papers found, only one used CFD which was used for HVAC flow simulation. CFD
based optimisation (CFD-O), however, has been applied extensively in
aeronautical engineering for aerodynamic shape optimisation (ASO) of aircraft

60

wings, engines, etc. (Thévenin and Janiga, 2008). Indeed, in this literature review,
it was difficult to find research on CFD-O for buildings particularly to optimise
structural objectives.

However, Bernardini et al. (2015) see the importance of CFD-O over the
traditional trial and error approach using wind tunnels sating that:

The possibility of taking advantage of computational fluid dynamics (CFD)
simulations for the assessment of the aerodynamic performance while using
optimization algorithms to find the best aerodynamic shape is therefore
very attractive as it would allow not only to rigorously and thoroughly
investigate the search domain but to do so automatically, also in principle
eliminating the necessity of costly wind tunnel experiments.

CFD by its nature imparts some issues to its use in optimisation. For one, CFD is
in itself not an exact evaluation but rather an approximation of a physical
phenomenon that is highly dependent parameters such as mesh size and
discretisation. This results in optimisations always having a certain level of
uncertainty. Bernardini et al. (2015) state that this is to be expected as users may
tend to attempt to shorten CFD’s long calculation time by using coarser grids or
fewer iterations. However, the uncertainty should be small enough to still allow for
a meaningful optimisation. CFD simulations can vary widely based on the problem
being analysed. It is a balance between time and accuracy and time plays a big
role especially in commercial applications. Thus, it is reasonable to conclude that
CFD-O is practical only when a single CFD evaluation takes at most a few hours
(Bernardini et al., 2015).

2.7 Conclusions

This literature study was done to establish the current state of the art in terms of
wind load calculations and the potential of using computational methods for
performing those calculations and optimisation of buildings for such. It can be
seen from the study of wind in the environment and its actions on structures that
wind and its flows are a complex phenomenon. This mostly due to its turbulent
nature particularly in its interaction with bodies such as buildings. Pressure drag in
the direction of the wind should be considered but also accelerations due to
vortex shedding and torsion. The Navier-Stokes equations describe fluid flow but
these do not have a closed form solution. This led to the simplified quasi-static
equations for wind loading. Eurocode EN1991-1-4:2005 is based on these. About
20 equations are required simply to obtain the wind force at a single height and
wind direction. This is grossly inefficient for early-stage design exploration when
multiple iterations are usually done. In addition, the code only offers guidance for
a limited number of simple building geometries. No procedure is given for

61

complex shapes. However, the EN does allow for the use of validated numerical
methods for the calculation of wind loading. Thus, CFD is a possibility if it can be
shown to give good results.

CFD takes the Navier-Stokes equations and discretises them to a mesh or grid so
that they can be solved using numerical methods. Many established and validated
programs such as ANSYS Fluent and OpenFOAM exist which employ powerful
solvers that can simulate the flow of air around a building and the resulting surface
pressures. OpenFOAM is integrated into the Grasshopper environment with the
plugin Butterfly thus allowing the use of a powerful and widely validated solver
within a parametric environment. Plus, its open source nature allows for modifying
the tools to fit the needs of this thesis. The main factors in the consideration of
CFD in this project are time and accuracy. Mesh size and choice of turbulence
model have the largest impact on these. As seen in section 2.4.2 there are many
turbulence models to choose from each with their own pros and cons. Fast Fluid
Dynamics has been shown to be much faster than CFD but suffers from some
inaccuracy particularly due to its lack of turbulence model. Further investigation is
needed into the choice of fluid solver as it is a key part of the proposed tool. Table
2-2 below shows the chosen shortlist of solvers and their pros and cons. A variety
of RANS models were chosen with the Butterfly component in addition to the FFD
component GH Wind. In the next steps of the research, these will be evaluated
on the two criteria: accuracy and time to determine the best choice. A comparison
will be made to validated results from research to determine their accuracy.

 Pros Cons
Butterfly (k – ε) • Very fast

• Good freestream flow
accuracy

• Coarse grid

• Inaccurate near-body flow
• Inaccurate pressures on

sides and in wake

Butterfly
(Realisable k – ε)

• Better accuracy in
separated flows and wake
region

• Coarse grid

• Slower than standard
models

Butterfly
(RNG k – ε)

• Better near body flow and
in wake than standard k – ε

• Slow calculation time

GH Wind • Faster than traditional CFD
models

• Simpler meshing (no
grading)

• Less accurate than CFD
mainly in turbulent regions

Table 2-2: Comparison of CFD methods

62

Karamba3D will be used to calculate the structural performance. Karamba is an
established, well-known and validated FEA plugin in the parametric environment.
It gives a large array of options for inputs and calculations Karamba will be
integrated with the chosen CFD solution with a translation procedure to take the
pressure loads to a structural model and obtain results like deflections and
moments. Vortex shedding is also important for this application however, it is
difficult to obtain the shedding frequency from steady-state RANS solutions.

While genetic algorithms are the most popular method of optimisation,
particularly in Grasshopper, their high number of required function calls make
them unsuitable for a computationally expensive process such as CFD. Direct
search methods, while efficient, suffer from low robustness which is not ideal for
building cases where an array of options is desired rather than a single optimum
geometry. Doing multiple optimisation runs of a direct search method to mitigate
robustness would most likely be just as, or even more, inefficient than a genetic
algorithm. Model-based algorithms appear to be the most promising as the
benchmarks studies have shown their reliability, robustness, and the ability to
arrive at convergence with fewer function calls than other algorithms. Therefore,
in this case, the Opossum plugin (Wortmann, 2017) will be used with the RBFopt
algorithm.

To ensure a well-balanced optimisation procedure time will be spent evaluating
different objectives and selecting an ideal array of objective and input variables
to formulate a meaningful optimisation problem. Since Opossum is a single-
objective optimisation plugin, objectives will be considered and evaluated to
determine which is the most meaningful for this research. The number of input
variables will be kept low (max 3) to further help reduce computation time. These
inputs will be solely for manipulating the geometry. All other settings for the CFD
and FEA will be constant.

Figure 2-16 outlines the computational procedure with the environment it is
contained in, i.e. Grasshopper, the key parts, and the components to be used or,
in the case of CFD and translation algorithm, still to be determined or
developed.

63

Figure 2-16: Computational procedure

Geometry GH Components

Butterfly

GH Wind

GH Components

Python

C#

Karamba

Opossum

G
R

A
S

S
H

O
P

P
E

R

CFD

Translation

FEA

Optimisation

DEVELOP

66

This stage of the thesis is focused on the development and testing of the
computational method through development of a tool in Grasshopper. It builds
on the knowledge gained in the research portion and continues in a joint research
and design method. Firstly, case study buildings are selected on which the
method will be tested. The work was divided into the CFD portion, development
of the FSI procedure, and the addition of the optimisation algorithm. In the CFD
portion, first, the two selected algorithms are set up in Grasshopper. This involved
understanding the methods and modifying them to conform to standard CFD
practices while making the procedure more adaptable to the geometries
expected. The next step is the validation which was needed to establish the
accuracy of the CFD method compared to physical wind tunnel tests and the time
taken for the simulation in order to achieve those results. This was followed by
sensitivity analyses to determine which parameters could be modified to reduce
time. After these tests, the results of the two algorithms are compared and the
best one was chosen based on accuracy, precision, and time. The FSI chapter
details the chosen FEA method and the development of the algorithm for
coupling it to the CFD procedure. Lastly, the optimisation chapter details the
addition of the optimisation algorithm and the series of tests done in order to
arrive at a meaningful optimisation problem.

3.1 Case Study Buildings

To help evaluate and develop the tool case study buildings were chosen to be
used as input geometry in the procedure. These were high-rise buildings chosen
based on their non-standard geometries and the opportunity they presented to
challenge the effectiveness of the tool. These are the Absolute Towers by MAD
Architects due to its twisting geometry, Jiangxi Nanchang Greenland Central
Plaza by SOM for its varying cross-sectional shape and supertall height, and the
Ardmore Residences by UNStudio for its unconventional floor plan shape (Figure
3-1). These buildings were modelled as simple parametric masses. Each has two
or three parameters controlling an aspect of its geometry which was used as input
variables for the optimisation algorithm.

67

Figure 3-1: Absolute Towers by MAD Architects © Iwan Baan (Left) and Jiangxi Nanchang Greenland
Central Plaza by SOM © SOM (Middle), and Ardmore Residence by UNStudio © Iwan Baan (right)

3.2 CFD

3.2.1 CFD script setup

A typical CFD procedure involves inputting the geometry to be analysed then the
domain or virtual wind tunnel is created around it. The entire domain is meshed
to create a 3D mesh of the space between the tunnel and geometry to be analysed
(Figure 3-2). The solver then runs iteratively calculating the flow in each cell until
it reaches convergence. CFD has many parameters which affect how well the
solution runs. The aim was to make the chosen CFD procedures easy to use and
adaptable to any geometry that one would input and obtain the pressure on the
facade. Settings were made constant or parametric, based on the dimensions of
the input geometry, according to researched standard practices for CFD. The
main settings affecting the outcome for this case were tunnel size, mesh cell size,
and turbulence model. Other additional settings based on the individual CFD
solver were looked at and set to the best option determined for this study. The
CFD plugin Butterfly and the FFD plugin GH Wind for Grasshopper were used.

Figure 3-2: CFD workflow

68

Butterfly

The validation study (Section 3.2.2) was done using Butterfly version 0.0.04 while
all subsequent work was done in version 0.0.05. Butterfly has many options that
can be adjusted owing to OpenFOAM’s complexity. To fit the purposes of this
study some changes were made including removing all mesh refinement so that
only implicit meshing takes place, i.e. the chosen cell size is used with no further
subdivision. Also added were new custom components written in Python or C#.
These were mainly to make the simulation faster and make the script as parametric
as possible so that new geometries could be input with minimal changes having
to be made to settings. See Appendix 6 for all C# and Python scripts.

Figure 3-3: Butterfly script

Figure 3-3 shows the layout of the Butterfly script. Firstly, the geometry from
Grasshopper is input to create Butterfly geometries. This is then connected to the
wind tunnel component which defines the domain of the simulation as a virtual
wind tunnel. The wind tunnel size is defined in multiples of the building height for
the windward, leeward, side, and top extensions. A python script was written in
order to calculate the blockage ratio, the ratio of the cross-sectional area of an
obstruction in a wind tunnel (the building) to the cross-sectional area of the tunnel
perpendicular to the wind flow. This should be kept under 3%, though some
professionals suggest up to 10%, in order to prevent the artificial acceleration of
the flow (Franke et al., 2007).

Next, the data moves to the meshing components where first a cell size is set. A
Python script was written to parametrise the cell size. This takes the input of the
building geometry and allows the setting of different mesh resolutions starting
with the coarsest which is equal to the length of the shortest side of the building

69

divided by 10 (Franke et al., 2007). Further refinements are had by dividing by 10

multiplied by root 2 for each level. eg. Medium = building length/(10 x √2), Fine

= building length/(10 x √2 x √2), etc. as was recommended in personal
correspondence with Adelya Doudart de la Grée, engineer and CFD expert at
Cauberg Huygen, on February 18, 2019. Refinement levels are Coarse, Medium,
fine, SuperFine, and XXFine. Butterfly uses two mesh types. First, a block mesh is
created which fills the domain with regular hexahedral cells which are graded
automatically i.e. desired cell size near the building which gradually gets larger
further away. Afterwards, the SnappyHexMesh (SHM) component adjusts the
block mesh to the geometry by removing cells from within the geometry and
applying any refinement if chosen. As the name suggests it can also adjust the
hexahedral cells by attempting to snap cells to the geometry of the building. For
the tests with complex geometry, snapping was turn on.

In the solution portion, different parameters of the solution are set such as the
turbulence model, max number of iterations, and residual values for convergence.
The residuals are the scaled errors between successive iterations for different
values such as pressure, velocity, k, and ε. These residual values tend toward zero
with each successive iteration. A residual value of 0.0001 was set for convergence
based on recommendations by Franke et al. (2007).

In order to obtain results of pressure and velocity, probe locations must be given
as points. This can be obtained from the Generate Test Points component in the
Probes section of the script by inputting a surface or by directly inputting points
to the Probes component. After the solution, the values are obtained from the
probes and used to colour a mesh based on pressure or show velocity vectors.
Finally, the results section outputs the results of the simulation as a coloured mesh
showing pressure and coloured arrows showing the velocity vectors of the wind
flow.

70

GH Wind

GH Wind is set up differently to the more traditional CFD of Butterfly. Like with
Butterfly some custom components had to be created in order to parametrise the
workflow but also to obtain results that GH Wind at this stage could not give.

Figure 3-4: GH Wind Script

In GH Wind one can only manually set the tunnel size and the position of the
object in it. Therefore, a custom C# code was written in order to define the tunnel
in a similar way to Butterfly. GH Wind does not use the meshes of
OpenFOAM/Butterfly but rather voxelises the domain and geometry. There is no
grading, i.e. all voxels are the same size, and the grid does not snap to the
geometry but rather is approximated by the voxels (see Figure 3-18). The
Generate Test Points component is taken from Butterfly to be used here to create
probe points where results obtained. This was then used with Ladybug
components from Butterfly to colour the building mesh according to pressure.
Solution settings such as fluid viscosity, time step, and max iterations are set in
the solver component. While GH Wind has components for visualising pressure
and velocity vectors on a plane, as well as pressure coefficient (Cp) on the building
surface, it does not have the capability to output pressures on the surface in
Pascals as in Butterfly. Therefore, using the provided source code a new
Grasshopper component (Get Pressure) was written to output the pressure values.

71

3.2.2 CFD validation

A validation study was performed to ascertain the ability of the chosen CFD/FFD
methods in this study to give results within an acceptable degree of uncertainty
to physical tests. This was done by comparing results from the computational
method against results from wind tunnel tests using the same building model.
Also, noted as part of this validation is the time taken for each simulation as this is
of interest for the project. For the comparison, the Commonwealth Advisory
Aeronautical Research Council (CAARC) Standard Tall Building Model was used.
This is a building model created in 1969 for the purpose of comparison of wind
tunnel tests (Melbourne, 1980). Several studies were done by different institutions
to gain results for wind tunnel tests. Today, its use has been expanded to CFD
analysis and verification. One such research paper by Meng et al. (2018) is the
basis for this study. The physical setup of this building was replicated in the two
procedures outlined above for Butterfly and GH Wind and simulations run. The
results for each method – Butterfly, GH Wind, and wind tunnel test – are
compared.

Aim

The aims of this validation study were to study two aspects of CFD analysis:
accuracy and time.

Accuracy was to verify that the tools selected for this thesis were reliable and to
deduce to what extent they can replicate established setup procedures and
results. This is done by comparing obtained values for the pressure coefficient at
specific points. In Butterfly, this will also be done for various turbulence models as
the model used can affect accuracy. Time was also important to this study since
this thesis aims to develop a tool for designers that can be used in the early design
stages where building geometry changes constantly. The time taken for each
simulation to complete, Butterfly with each turbulence model, and GH Wind, will
be recorded and compared. The balance of accuracy and time will determine what
setup is selected at the end of the study. Since, based on the previous literature
review, it is known that there is always some discrepancy in results between CFD
and even physical wind tunnel tests, absolute accuracy was not what was looked
for. Rather, the study aimed to determine the extent of the error between the
results of different setups and how much time does the analysis need to reach that
level of accuracy. This study also gave insight and understanding of the principles
of CFD as well as the proper procedure for setting up the experiment, running it,
and recording results.

72

Methodology

This validation study was done using data from the paper by Meng et al. (2018).
The paper includes a table of pressure coefficients from physical scaled wind
tunnel tests carried out on the CAARC model by various institutions. In that paper,
the authors made tests of this model using the CFD package ANSYS Fluent and
measured its sensitivity to different changing settings such as grid type, grid
density, turbulence model, incoming wind speed, and wind direction.

Their CFD setup was replicated in Butterfly and GH Wind as outlined below.
Pressure coefficients, Cp, from wind tunnel tests by Tonji University, TJ(D), given
in table 2 of the paper, were compared to the CFD results. Cp is a dimensionless
coefficient relating a reference pressure to the pressure at a body surface. It is
calculated by:

𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑃𝑃0
0.5𝜌𝜌𝜌𝜌𝑈𝑈𝑈𝑈02

Equation 3-1: Pressure coefficient (Cp)

Where Cpi = mean wind pressure coefficient at a point i, Pi = wind pressure at point
i, P0 = static wind pressure at reference height, ρ = air density (1.225 kg/m3), and
U0 = wind speed at reference height. The reference height is the height of the
building: 182.88 m.

In addition to Cp, the time for the simulation to run was recorded. All analyses
performed were done on a desktop PC running Windows 10 with an Intel® Core™
i5-3470 CPU @ 3.20GHz, and 16GB of RAM.

Building Setup

The CAARC standard tall building model is a rectangular building of dimensions
30.48m x 45.72m x 182.88m (L x W x H). The wind tunnel tests done on the model
used an array of 20 pressure taps around the building at 2/3 height to measure
the pressure at the surface. The Cp will be measured at these points in the
CFD/FFD setup as shown in Figure 3-5 and Figure 3-6.

73

Figure 3-5: CAARC model dimensions

Figure 3-6: Pressure tap locations

74

Tunnel Setup

The wind tunnel domain from Meng et al. (2018) was replicated in both plugins as
shown in Figure 3-7 below. The domain measures 900m x 600m x 400m (L x W x
H). The building is centrally located in the Y direction and 300m from the front
inlet boundary. This corresponds to a blockage ratio of 3.48% which is less than
the chosen threshold of 5% (Meng et al., 2018). P0 and U0 are obtained at the
reference point located at the inlet boundary, central in the y-direction, at building
height (Figure 3-7).

Figure 3-7: Wind tunnel domain

Meshing

The meshing of Meng et al. was attempted to be replicated. The smallest grid
length was 0.0054H = 0.987552m at the building with grading in the X and Y
direction (Figure 3-8 and Figure 3-9). This gave 615 120 cells which are less than
the 850 000 cells from the paper possibly due to the slight difference in meshing
methodology between ANSYS and OpenFOAM/Butterfly. GH Wind uses a
structured regular hexahedral grid. Grading is not possible. A grid size of 5m was
used. This gave 1 728 000 cells. 5m was used as Waibel et al. (2017) in a similar
validation of Cp on a rectangular building showed that it gave good results and
smaller sizes gave cell counts that were judged to be too high.

75

Figure 3-8: Wind tunnel domain mesh from Butterfly

Figure 3-9: Domain mesh at building geometry from Butterfly showing grading

76

Turbulence models

The turbulence models evaluated were standard k – ε, Realizable k – ε, and RNG k
– ε. FFD at present does not have turbulence modelling. To simulate the effects
of turbulence in GH Wind the kinematic viscosity, ν, of air was set to 0.1, compared
to the true value of 1.5e-5, as a means of artificially lowering Reynold’s number
(Waibel et al., 2017).

Solution

In Butterfly the residuals limit was set at 0.0001 and max iterations at 30 000. The
solution was run in serial (on a single processor core). Terrain category 6 was
selected which corresponds to an urban area. To obtain the results, probes were
placed at the pressure tap locations in the model to get the pressure at each point,
Pi. Another probe was placed at the reference point location to obtain P0 and U0.
These values were then put into a custom GH Python script which calculated Cpi.

GH Wind is natively parallelized. The time step was set at, dt = 0.1 and the time
horizon (the sum of dt until the calculation stops) is set at 60, totalling 600
interactions. Terrain category 3 corresponding to an urban area is selected. GH
Wind has a component (Cp Visualiser) which shows the Cp values over a given
mesh at the vertices. The surface of the CAARC building was meshed with UV
dimensions that allowed the vertices to match up with pressure tap points and the
values were read from those.

After each analysis, the Cp values at each location was recorded along with the
time taken in a table. The Cp values from TJ(D) were also recorded in the table for
comparison. The settings are summarised in Table 3-1.

Solver Butterfly GH Wind

Turbulence
models

k – ε,
Realizable k – ε, and
RNG k – ε

N/A (set v = 0.1)

Cell size (m) 0.987552 5

no. of cells 615 120 1 728 000

Domain (m) 900 x 600 x 400 900 x 600 x 400

Iterations 30000 600

Table 3-1: Validation study settings

77

Results

The Cp results between tests vary in different amounts from the TJ(D) results (see
Appendix 2). The RNG kEpsilon model from Butterfly showed the closest Cp values
to TJ(D) followed by standard kEpsilon. The values from the RNG kEpsilon
simulation also closely match those found by Meng et al. (2018). The realizable KE
model gave unrealistic Cp values as Cp generally should not be greater than 1.0
for incompressible flows (Aynsley, 1999). The reason for this result is unknown
thus, it was eliminated. Time wise, RNG kEpsilon, though most accurate took 42.6
hours to complete. Standard kEpsilon took 41.7 hours and realizable KE, 37.4
hours.

The FFD analysis, as expected, took a much shorter time to complete, 9.2 hours,
though it is still a very long time. The Cp values, however, were much lower than
the TJ(D) and Butterfly results. The average difference between FFD and TJ(D) Cp
values was 0.39 whereas for RNG and standard kEpsilon it was 0.18. C. Waibel in
personal correspondence on 12 February 2019, stated that this is expected as it
is the nature of FFD at present to under-predict Cp values. However, for both FFD
and the Butterfly calculations the trend in Cp values is similar to TJ(D) as shown in
Figure 3-10.

For the Butterfly results, the Cp values are quite close at the front face of the
building (1 - 5). On the sides and rear (6 – 20) the values deviate more. RNG
kEpsilon more closely follows the trend of the TJ(D) values compared to standard
KE which has a more rounded graph shape. This is likely due to standard
kEpsilon’s poor performance in predicting flow in separated regions (Tamura et
al., 2008).

78

Figure 3-10: Analysis results

The FFD results in the graph as well follow the general trend albeit with a much
smoother line than TJ(D) or RNG kEpsilon. Figure 3-11 shows the absolute
deviation of the Cp results from the simulation to those from TJ(D) per face of the
building. One can see that FFD is the highest others while kEpsilon and RNG are
lower.

Figure 3-11: Graph of deviation per building side

-1.50

-1.00

-0.50

0.00

0.50

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
re

ss
u

re
 C

oe
ff

, C
p

Pressure Tap

CP AT PRESSURE TAPS

TJ(D) BF kEpsilon BF RNGkEpsilon FFD

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

kEpsilon RNGkEpsilon FFD

D
ev

ia
ti

on

Turbulence Model

DEVIATION PER SIDE

Front

Left

Rear

Right

79

Conclusions

As expected, the CFD analysis of Butterfly gave closer results to the experimental
results. RNG kEpsilon was shown to perform the best by more closely following
the graph trend from the wind tunnel results. However, in the scope of this thesis
where quick results are desired, the time taken for analysis is still too high though
there is potential to reduce it.

The GH Wind analysis was indeed much quicker than Butterfly although the lower
quantities for Cp present a problem. In personal correspondence on February 12,
2019, C. Waibel suggested calibrating the reference point at which the static
pressure and velocity are found by varying the height. This was tried but the values
were not able to be matched to the Butterfly or TJ(D) results. Scaling the Cp was
also suggested provided that the error is somewhat consistent. To evaluate this a
graph of the absolute difference between Cp of each analysis and TJ(D) at each
pressure tap was plotted (Figure 3-12).

Figure 3-12: Error between TJ(D) results and CFD analyses

FFD varies between 0.4 to 0.8 difference compared to TJ(D) with a standard
deviation of 0.14. The average can be used but it cannot be known whether this
scale factor can be used for all analyses. Another problem of GH Wind is that it,
at present, does not automatically stop the simulation upon the convergence of
residuals. Also, when the residuals were plotted, they started to diverge again
which C. Waibel, in the same personal correspondence above, stated that this is
also a problem native to FFD. Further recommendations given in personal

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
iff

er
en

ce

Pressure Tap

ERROR FROM WT RESULTS

BF kEpsilon BF RNGkEpsilon FFD

80

correspondence with C. Waibel on 13 February 2019 were to reduce the width of
the domain but extend the leeward portion. This gives the flow time to reattach
which would give more numerically accurate results.

It must be noted that while this validation has provided a good foundation for
CFD procedure and expectations, the results and conclusions drawn are for a
simple rectangular tower which is not the intended case for this thesis. It remains
to be seen if these conclusions can be applied to more complex geometry
buildings.

3.2.3 Sensitivity analysis

The aim of the sensitivity analysis portion was to determine how much the
calculation time can be reduced while maintaining reasonable accuracy. The
biggest factors affecting CFD/FFD simulation time are the cell size and number of
iterations. The first sensitivity analysis using the number of iterations was done
with the CAARC model. However, tests for cell size were done on the Absolute
Tower model. The tests were again run on a Windows 10 PC with an Intel® Core™
i5-3470 CPU @ 3.20GHz, and 16GB of RAM.

Number of Iterations

It was noticed from the validation study in Butterfly that at 30 000 iterations the
solution did not converge on its own even though the residuals looked sufficiently
low. It was inferred that the solution could be stopped even earlier and still give
satisfactory results cutting down on time. This was confirmed by plotting the
residuals of the solution where it is seen by 10 000 iterations the residuals are
sufficiently below the threshold of 0.0001 with a few errant peaks (Figure 3-13).
Analyses with 10 000 and 5000 max iterations were done to test this theory. The
Cp values were nearly identical for each pressure tap and the analysis took 15.7h
and 6.95h respectively (see Appendix 3). Much quicker but still very long.

Figure 3-13: Residuals plot of RNG kEpsilon analysis

81

The GH wind residuals were not so straightforward. As seen in Figure 3-14 the
graph decreases but at a certain point begins to increase again. In personal
correspondence with Christoph Waibel, the developer of the GH Wind plugin on
February 13, 2019, he stated that the divergence of residual values is a
phenomenon that has been observed with many FFD simulations. His suggestion
was to stop the simulation at a point before they begin to diverge. Based on the
graph it was decided to reduce the simulation run from 600 iterations to 400
iterations. The results for Cp between 600 and 400 iterations were identical
(Appendix 3).

Figure 3-14: GH Wind residuals graph

Cell Size

Cell size and thus, the number of cells, are crucial parameters for CFD simulations
since they greatly affect time and accuracy (Franke et al., 2007). The model of the
Absolute Tower was used for this test. To compare accuracy a similar setup to the
previous validation was used where the Cp at 30 points on the front and back of
the building was recorded (Figure 3-15). The domain has the following
dimensions: windward = 3H, Leeward = 10H, sides = 2.3H, and top = 2.3H where
H is the height of the building based on recommendations from Franke et al.
(2007). This corresponds to a tunnel size of 826.27m x 2258.35m x 392.15m
(LxWxH). Wind speed was set at 30 m/s which corresponds to a violent storm on
the Beaufort scale in order to test an extreme case. Terrain category was chosen

0.001

0.01

0.1

1

10

100

1 51 101 151 201 251 301 351 401 451 501 551

R
es

id
u

al
 v

al
u

es

Iterations

GH WIND RESIDUALS

 pavg uavg vavg wavg

82

for an urban site (roughness length = 1m). The tests were done in both Butterfly
with RNG kEpsilon turbulence model and GH Wind.

Figure 3-15: Pressure tap locations

Butterfly
The tests were performed for various cell sizes. These start from the standard
minimum size of the length of the shortest side of the building divided by 10 for

the coarsest mesh (Franke et al., 2007). Then, divided each time by √2 for
Medium, Fine, SuperFine, and XXFine. The simulation was run for 10 000 iterations
and this number was verified as reasonable after checking a graph of the residuals.

Test MAD_1 MAD_2 MAD_3 MAD_4 MAD_5

Turbulence
model

RNGkEpsilon RNGkEpsilon RNGkEpsilon RNGkEpsilon RNGkEpsilon

Resolution Coarse Medium Fine Super Fine XXFine

Cell size (m) 4.18 2.96 2.09 1.48 1.08

no. of cells 176545 236050 346647 525640 732422

Time 5.7h 6.3h 8.6h 14.5h 20.3h

Iterations 10000 10000 10000 10000 10000

Table 3-2: Settings and time results for Butterfly simulations

83

Table 3-2 shows the settings used as well as the time taken for each run. MAD_5
with a cell size of 1.08 is assumed to be most accurate however, a time of 20.3
hours is too high.

Figure 3-16: Butterfly results

 Mesh Resolution

 Coarse Medium Fine SuperFine

Front -18.46% 28.08% 8.71% -0.77%

Rear 17.63% 15.36% 10.19% -1.46%

Table 3-3: Deviation from XXFine results

Table 3-3 shows the percentage deviation between the results at XXFine
resolution and the others. Fine resolution has a relatively small deviation
compared to Medium and a time of 8.6h is reasonable compared to 14.5h for
SuperFine. Medium and Coarse have higher deviations but the time reductions
are significant compared to the others especially if it has to be repeated in an
optimisation loop. From Figure 3-16 it is that the values closely match in trend
showing the precision of Butterfly.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P
re

ss
u

re
 C

oe
ff

ic
ie

n
t,

C
p

Pressure tap

CP AT DIFFERENT MESH RESOLUTIONS

XXFine Super Fine Fine Medium Coarse

84

GH Wind
For GH Wind the simulations were done for three cell sizes: 10m, 8m, and 6m.
The time taken for each is shown in Table 3-4 below. The time increases
exponentially with each jump in cell size. Moreover, the results do not appear to
be accurate. The values are underpredicted as expected however, the trend
mostly does not follow the Butterfly (Figure 3-17).

Test MAD_5 MAD_6 MAD_7

Turbulence model FFD FFD FFD

Resolution Medium Fine SuperFine

Cell size (m) 10 8 6

no. of cells 390830 774387 1824912

Time 3.4h 7.1h 11.8h

Iterations 400 400 400

Table 3-4: Setting and time result for GH Wind simulations

Figure 3-17: GH Wind results

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P
re

ss
u

re
 c

oe
ff

ic
ie

n
t,

C
p

Pressure tap

CP AT DIFFERENT MESH RESOLUTIONS

BF-XXFine SuperFine Fine Medium

85

Conclusions

Butterfly with the RNG kEpsilon model looked to perform very well. There was
good correspondence between values as the graphs are very close. The time
taken is still large however, it can be further reduced by lowering the number of
iterations and using the coarse mesh setting. While accuracy may be lowered it
may still be reasonable for early-stage evaluation especially as part of optimisation
which requires many iterations to be run.

GH Wind appears to be unsuitable for complex geometries as the results do not
appear to be precise. It could be made better by decreasing cell size however,
based on the previous tests it appears it will end up taking a longer time than
Butterfly. The values could also be scaled to closer match Butterfly however, it
requires a lot of experimentation to come to a constant value that would be good
for all geometries. At this moment, it seems futile to continue using GH Wind for
this case. The main advantage was its potential time savings, but it appears that
to work for complex geometries the cell size would have to be reduced so much
that it will take longer while still being less accurate than Butterfly. It seems
reasonable to think that this is due to the meshing of the geometry. While the
Snappy Hex Mesh of Butterfly can adapt itself to complex geometries the
voxelization of GH Wind is a much more inaccurate representation (Figure 3-18).
Therefore, going forward Butterfly with RNG kEpsilon will be used.

Figure 3-18: Butterfly Snappy Hex Mesh (left) and GH Wind voxelization (right)

86

3.3 FSI

A partitioned FSI procedure will be used for this tool. This involves creating an
algorithm to join the output of the CFD solver to the input of the FEA solver.
Specifically, the pressure on the façade into a FEM using an upright fixed beam
with a number of point loads and moments. Thus, the procedure follows two
interconnected lanes: one for translating the pressure values and one for
translating the geometry (Figure 3-19). These are then assembled and analysed
with the FEA solver to obtain the structural reactions.

Figure 3-19: FSI translation algorithm workflow

3.3.1 Translation procedure

This translation procedure developed in Grasshopper takes the pressure loads on
a mesh of the building surface from Butterfly and consolidates it into point loads
and moments along the core of the building represented by line segments. The
idea was to divide the mesh into sections and sum the forces on each sector to
get point loads and moments. The script layout is shown below in Figure 3-20.

Figure 3-20: FSI translation script

87

Butterfly outputs a mesh and a list of pressures in Pascals which corresponds to
each mesh face (Figure 3-21a). The resolution of the mesh is set before the
solution and is unrelated to the resolution of the CFD mesh. First, the list of mesh
faces is sorted. Since the list comes out from Butterfly in an unpredictable order
this sorting algorithm ensures the lists will always be in the same order. The centre
point of each face is obtained and then sorted and grouped by height so that all
points with the same Z component are in a branch of the data tree. Then using a
bounding circle, the groups of points are sorted in an anticlockwise direction. The
pressure values are multiplied by the area of their corresponding mesh face to
give a force in kN. This becomes the magnitude of the normal vectors. This list, as
well as the list of face normal vectors, is sorted using the same ordering algorithm
for the list of points so that each element of one list corresponds to the right
element in the other lists. The points at each height are average to get the centre
points of the building. The force vectors are summed at each height to give a
point load acting at each corresponding centre point. Input for the number of
vertical divisions is given which determines where the central polyline is split and
where forces will be applied. The point force vectors are summed and applied to
their nearest division point.

Figure 3-21: (a) Mesh from Butterfly with corresponding pressures, (b) division into segments, (c) force
vectors summed per segment and applied to centre point plus distance vector from centre of the building,

(d) force vectors and moment vectors applied to core beam

88

To get moment vectors an input for the number of horizontal divisions is also
given. This, as well as the number of vertical divisions, guides an algorithm for
arranging the lists of force vectors per mesh face and corresponding face points
into rectangular segments on the building mesh (Figure 3-21b). These force
vectors are then summed per segment and applied to the centre point of the
segment (Figure 3-21c). The moment vectors are obtained from the cross product
of the segment force vectors and distance vectors and applied to the core at the
division points (Figure 3-21d). These force and moment load vectors can then be
put into Karamba along with a polyline of the core split at the points of application
of the loads.

3.3.2 Finite Element Analysis

To perform structural analysis in FEA software a Finite Element Model (FEM) is first
constructed. Elements are the beams, shells, or other components being
analysed. The loads, usually in the form of vectors, are added as well as the points
on the elements that will be the supports. Finally, the material and size of the
cross-section are given. This is assembled into the FEM where the solver can
analyse the resulting structural behaviour and give results such as reaction forces
and moments, deflections, and stresses.

Figure 3-22: FEA workflow

Karamba version 1.3.1 was integrated into the Grasshopper tool. To perform FEA
in Karamba the elements, loads, supports, cross-section, and material must be
defined and assembled into the FEM in the “Assemble” component. The
elements will be the lines obtained from splitting the central polyline of the

89

building which represents the core at the points the loads will be applied. The
cross-section of the elements will be the dimensions of the core. In this case for
the Absolute Tower, the core is 8.6m x 8.0m and 0.4m thick (Figure 3-23). The
script layout can be seen in Figure 3-24.

Figure 3-23: Typical floor plan of Absolute Tower © MAD Architects

Figure 3-24: Karamba FEA script

90

The material chosen is C45/55 concrete. The supports are fixed in all degrees of
freedom. The loads are the point forces and moments obtained from the
translation procedure. After the model is assembled and analysed the results are
obtained (Figure 3-25 and Figure 3-26).

Figure 3-25: FEM in Karamba (left) and deflected model (right)

Figure 3-26: Deflected model of core showing stresses

91

The script was run for 10 000 iterations at Fine mesh setting. Max deflection at the
top was 1.28m. This is large as the SLS requirement from Eurocode 6 for concrete
of L/250 gives max deflection of 0.677m. This could be due to the fact that only
the core is modelled to take all the load when in reality there would be additional
columns, floors, and beams that could add to the stiffness. Additionally, these
loads are for an extreme wind case. Other results include max stress of 25.7 MPa,
base overturning moment of 831 254 kNm, and base twisting moment of 3717
kNm. These results were also verified by hand calculations (see Appendix 4).

3.3.3 Conclusions

The devised FSI translation procedure was able to be implemented successfully in
Grasshopper. Through examinatio, the results align with what was expected which
shows that the sorting and grouping algorithms perform as they should with the
test buildings used.

For the FEA the deflection obtained in this test is very large thus it may not be
reasonable to compare to Eurocode limits. For the optimisation portion, the
improvements could be minimised relative to the first obtained values.
Nonetheless, the results show that the script works and is able to produce results
for the wind-induced reactions on a building structure. The wind forces were quite
significant on the building, especially at higher points. Twisting moments were
greater near the middle of the tower corresponding to the section with the most
twist which was expected. However, the twisting moment is relatively small and
its contribution to deflection is negligible with -0.0037 degree max rotation
possibly due to the slender shape of the tower.

Dynamic loading is still a factor that is not analysed. Although the displacement
from torque is small it could have a significant impact on comfort if the frequency
of displacement is significant. This also applies even more so for crosswind
displacements due to vortex shedding. This could be accounted for analytically
using custom scripts in further research.

92

3.4 Optimisation

The next step in the research involved exploring the viability of optimisation with
the FSI tool. The goal is to reduce structural objectives solely by manipulating
geometry. Thus, an array of parameters which morph the geometry would be the
input variables while an output of the FSI algorithm would be the objective of the
optimisation algorithm. This joining of an optimisation component with the FSI
method thus creates a Fluid-Structure Interaction based Optimisation (FSIO)
method. It involves iteratively changing the variables and reading the objective
until an optimum is found. Thus, Figure 3-27 shows the workflow of the complete
method.

Figure 3-27: Optimisation workflow

3.4.1 Optimisation setup

The Opossum plugin was used with the developed FSI tool in Grasshopper.
Different options for objectives and variables were explored to determine a viable
optimisation problem for this case. All optimisation tests were run on a Windows
10 PC with Intel® Core™ i7-5820K CPU @ 3.30GHz 6 Cores and 16GB RAM. In
order to prepare the full FSI script for optimisation, it must be able to run without
any other input apart from a change in the chosen input variables. This required
some changes to the script. A small user input (UI) area was made and the script
modified so that only the settings in this area need to be changed in order to run
the tool. The layout and steps are illustrated in Figure 3-28.

93

Figure 3-28: User Input (UI) area of script and steps to run the FSIO tool

The geometry is input first (step 1). This geometry must be parametrically defined
in order to have input variables for Opossum to manipulate. The case study
buildings were built parametrically to have 2 or 3 sliders controlling the geometry.
A name is given to the case and a wind speed set as required by Butterfly (step
2). The cross-sectional dimensions of the core are then set as required for Karamba
(step 3). After these settings have been input, one sets the first toggle to true to
create the case and mesh and the second to run the FSI tool (step 4). The two
toggles below (Purge) allow the user to clear the existing meshes and/or results.
To the right is a readout of information about the building and the different
objectives that can be used in the optimisation. After running an initial analysis to
obtain baseline results the user then inputs the obtained in the deflection limit
field and sets the “Optimise?” toggle to true (step 5). The “Optimise?” toggle
enables Karamba Cross-Section Optimisation plugin to allow for optimising

94

material mass as explained in the tests following section. If the user is only using
deflection as the optimisation objective leave the toggle on False. Then, connect
the objective output of Opossum to the desired objective and the variables input
to the sliders controlling the geometry (step 6). Finally, open the Opossum
component and run the optimisation (step 7).

3.4.2 Optimisation tests

The aim of these tests was to determine the extent to which structural performance
due to wind can be optimised by making relatively small changes to the geometry
of the building. By trying different arrangements of inputs, objectives, and settings
for the optimisation algorithm with multiple buildings models the hope is to
determine a robust optimisation problem that can be used for many different
building models.

The case study buildings shown in section 3.1 were used in tests to formulate the
optimisation problem. This involved exploring different input variables and ranges
of values and objectives to determine the most meaningful arrangement. Since
optimisation with CFD will take a very long time given the number of iterations to
be done it was decided to try to minimise the length of the CFD simulations. Thus,
a coarse mesh setting was used and max iterations for Butterfly was set to 2000.
This would not give totally accurate results in absolute terms but by keeping these
constant along with wind speed and other settings and only allowing the
optimisation algorithm to manipulate the geometry one would still see a relative
improvement in the objective which is still valuable.

The building models themselves were parametrically defined in order to allow the
optimisation algorithm to manipulate the geometry and find a better performing
arrangement. The parameters chosen to be modified allowed the building to
change enough so that there would be an impact on wind reactions but still
maintain much of the general architectural intent of the building. No parts were
added or subtracted but existing features were morphed.

For this study, like the rest of the tool, the building models were built in
Grasshopper as detailed below so that two or three characteristics were able to
be modified using number sliders.

95

Optimisation 1 – Absolute tower with deflection

In the first optimisation test, the Absolute Tower model was used. This building is
characterised by an elliptical cross-section that twists as it rises. It was decided to
manipulate the size of this ellipse as well as the amount of twist. A base ellipse
was created whose width and length are controlled by sliders. This curve was then
copied and moved upwards in the position of each floor and each rotated
according to the angles given in the original design by the architect. A slider was
added to act as a multiplier to these angles so that the twist could be increased
or decreased. These three sliders: base length, base width, and twist multiplier,
were the input variables for the optimisation (Figure 3-29).

Figure 3-29: Absolute Tower model parameters

Case study Absolute Tower
Max iterations 60
Parameters Base length Base width Twist

Ranges 13.0 < x < 15.0 13.0 < x < 15.0 0.5 < x < 1.5

Objective Deflection

Table 3-5: Absolute Tower optimisation 1 settings

96

Table 3-5 shows the ranges and initial values of each input variable. The objective
for this optimisation run will be to minimise deflection. The deflection value is
obtained from Karamba. An initial FSI analysis was done to determine the baseline
objective value. This gave a max deflection value of 1.5444m. In Opossum the
RBFOpt algorithm was selected with max iterations of 60. After completion, the
deflection saw a 38% reduction to 0.9454m with input variables of 13.25, 13.00,
0.50 for length, width, and twist respectively. Figure 3-30 shows the gradual
improvement of the deflection objective with every iteration which appears to
converge at around 40 iterations. The optimised shape (Figure 3-31) is rotated
about 90° in the top portion. This results in a smaller area of high pressure on the
front windward side of the building and thus lower point loads on the FEM.

Figure 3-30: Results of Absolute Tower optimisation 1

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 6 11 16 21 26 31 36 41 46 51 56

M
ax

 d
ef

le
ct

io
n

 [m
]

Iterations

OPTIMISATION OF DEFLECTION

97

Figure 3-31: Absolute Tower optimisation 1

While this first test was successful in reducing the objective there was room for
improvement. Firstly, the design space i.e. the range of values for the input
variables was quite small thus there could be more optimums that are missed.
Also, it was thought that material mass could be a more meaningful objective to
minimise rather than just deflection as this can translate to lower cost and lower
carbon footprint which is very valuable to building stakeholders.

98

Optimisation 2 – Absolute tower with mass

For the next optimisation trial, the ranges of input variables were expanded
allowing the size to expand or contract more and also a greater range of twist so
that the tower could go from double the twist to completely reversed and even
no twist at all (Table 3-6). This was done in order to possibly catch an optimal
configuration that may have been missed in the smaller design space of the
previous optimisation run. This came with the caveat that the geometry may stray
even further from the original architectural design.

Case study Absolute Tower

Max iterations 60

Parameters Base length Base width Twist

Ranges 12.0 < x < 16.0 12.0 < x < 16.0 -1.0 < x < 2.0

Objective Material mass

Cross-sections 0.10m to 0.80m in 0.05m increments

Table 3-6: Absolute Tower optimisation 2 settings

In order to reduce material mass, the Cross-Section Optimisation (CSO)
component in Karamba was used. This does not utilise an optimisation algorithm
but rather consecutively searches a list of cross-sections, ideally sorted from
lightest to heaviest, until it finds one that meets the requirements set for utilisation
and deflection. Therefore, as the wind pressure reduces so does the stiffness
required to stay within the deflection limit and thus a thinner cross-section will be
selected resulting in reduced material.

For this test, a list of cross-sections for the core was created with the length and
width, 8.6m and 8.0m, kept constant but thickness ranging from 0.1m to 0.8m in
0.05m intervals. The deflection limit was set at 1.5444m as per the initial analysis
and max utilisation ratio kept at the default of 1.0. It was at this point that a
deflection limit input was added in the UI area of the script. Also, a toggle was
implemented so that a user can switch between “True” where the FEA runs
through the CSO component to optimise material mass, or “False” where it
optimises deflection by using the input cross-section thickness and running
through Karamba’s first order analysis component as normal (Figure 3-28).

99

Figure 3-32: Results of Absolute Tower optimisation 2

Properties Original Optimised

Material mass [T] 5984.924 4068.394

Core thickness [m] 0.40 0.30

Deflection [m] 1.544 1.073

Table 3-7: Results of Absolute Tower optimisation 2

Figure 3-32 shows the trending down of the material mass objective. This graph,
however, is more stepped compared to the smooth graph of the deflection in the
previous optimisation. This is due to material mass not being a continuous variable
like deflection but is the property of a fixed list of cross-sections. Nonetheless, the
mass of concrete needed in the core was reduced by 32%, a reduction of close to
2000 tons, simply by manipulating the geometry of the building. This was as a
result of reduced thickness of 0.3m versus the original 0.4m. The deflection was
also reduced to 1.073m which was unexpected. It was concluded that this could
be a result of the deflection limit; perhaps the previous smaller thickness, 0.25m,
would have put the deflection slightly over the 1.544m limit. A smaller step size
for thickness could be used to mitigate this problem.

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21 26 31 36 41 46 51 56

M
as

s
[T

]

Iterations

OPTIMISATION OF MATERIAL USE

100

Figure 3-33: Figure 3 26: Absolute Tower optimisation 2

The optimised design, in this case, is different from that in optimisation run 1. The
building is now only slightly rotated from the original and the cross-section is a bit
wider/more rounded. This, though being the best performing option is quite
different from the original design of the building and may not be acceptable to
an architect.

101

Optimisation 3 – Nanchang tower with mass

The Nanchang tower features a gradually changing smooth cross-sectional shape.
To parametrise the geometry, it was thought to manipulate this shape along the
tower. The model was made in Rhino based on floor plan and section drawings
and then referenced into Grasshopper. Contour curves were made all along the
height of the building and their control points obtained. Based on a bounding
attractor circle for each curve a multiplier with slider was made to control the
attraction or repulsion of the control points to the circle. This was split between
the top and bottom half of the tower with a slider controlling each. From these
control points, the curves were reformed and lofted and capped to create the
model to be put into Butterfly (Figure 3-34). Table 3-8 shows the initial values and
ranges of the input variables.

Figure 3-34: Nanchang Tower model parameters

Case study Nanchang Tower
Max iterations 60
Parameters Top curves Bot curves
Ranges -1.000 < x < 1.000 -1.000 < x < 1.000
Objective Material mass
Cross-sections 0.20m to 1.15m in 0.05m increments

Table 3-8: Nanchang Tower optimisation settings

102

The objective for this optimisation was material mass. As the true core of this tower
has a shape that starts as a square and, at near halfway up the height, begins to
transition to an octagon it could not be modelled directly for Karamba. Thus, for
these tests, a square core was modelled with a moment of inertia equal to the
average moment of inertia of the true core geometry. This equates to a cross-
section of 19.75m x 19.75m x 1.0m thick. The building is 302.91m tall. An initial
FSI analysis was done to establish a baseline deflection of 0.6836m. This was set
as the deflection limit. For the list of cross-sections for CSO, the length and width
were kept constant at 19.75m but the thicknesses ranged from 0.20m to 1.15m in
0.05m intervals.

Figure 3-35: Results of Nanchang Tower optimisation

Properties Original Optimised

Material mass [T] 56240.466 47533.016

Core thickness [m] 1.00 0.85

Deflection [m] 0.6836 0.66132

Table 3-9: Results of Nanchang Tower optimisation 2

40000

45000

50000

55000

60000

65000

1 6 11 16 21 26 31 36 41 46 51 56

M
as

s
[T

]

Iterations

OPTIMISATION OF MATERIAL USE

103

Table 3-9 shows the core thickness was reduced from 1m to 0.85m corresponding
to a reduction in material mass of 15% to 47533 tons. A small decrease in
deflection of 0.022m was also observed. As with the results from the second
Absolute tower optimisation run this could be due to the step size selected from
the thicknesses though it is less of a problem in this model.

Figure 3-36 shows the original and optimised Nanchang Tower model. The
optimised version looks more rounded in the top half while the lower half is
contracted. The largest point load on the initial model is the one before the top
corresponding to the concave shape of the facade at that height. The optimised
geometry smooths out this area possibly allowing air to flow easily around it rather
than get caught in the concave area and impart higher pressures. The resulting
loading is now a gradual increase from bottom to top corresponding to the
increase of wind velocity with height. The contraction of the bottom cross-section
was unexpected as it would be thought that the most optimal shape would be
smoother and rounder. On further examination of the pressure values of the mesh
and the resulting point loads it was noticed that while the loads between the
original and optimised version near the bottom were more or less equivalent, the
decrease in pressure at the top portion between the optimised and original
geometry was so great that it is possible that the bottom simply didn’t matter so
much. Since black-box optimisation methods such as the one used here have no
knowledge of the actual subject of the optimisation but only look at the numeric
values of the inputs and outputs it is plausible that an unexpected result like this
can occur.

As with the Optimisation 2, the optimised version of the geometry is noticeably
different from the original design which can be an issue for an architect. The
Opossum plugin includes a feature where a text log file is saved during the
optimisation run which records for each iteration the variables and objective
values. This is very useful as it allows the designer to have a list of potential designs
and their resulting material use or other objective. Thus, they have the option of
selecting a design that is a balance of performance and aesthetics. In the next
optimisation, this was further explored as well as other methods of recording the
options of each iteration.

104

Figure 3-36: Nanchang Tower optimisation

105

Optimisation 4 – Ardmore Residence with mass

The Ardmore Residence’s floor plan shape was built as a curve to be modified by
sliders. There were three parameters. Two sliders control the position of each of
the wings along the main body. A third slider modifies the edges of these wings
from straight to a more angled position. From this curve outline, the massing was
extruded to the 136m height of the building. In addition, the building was rotated
45 degrees so the wind would impinge on the building off axis.

Figure 3-37: Ardmore Residence model parameters

Case study Ardmore Residence

Max iterations 100

Parameters Top position Bot position Edges

Ranges -15.00 < x < 5.00 -5.00 < x < 15.00 -2.00 < x < 1.00

Objective Material mass

Cross-sections 0.10m to 0.59m in 0.01m increments

Table 3-10: Ardmore Residence optimisation settings

The core of the building measured 11m by 7m and 0.4m thick. The lists of cross-
sections range from 0.10m to 0.59m thick in 0.01m intervals in contrasts to the
previous optimisation tests in order to have a wider range of possible objectives.
The max number of iterations was increased to 100 to allow for more time to reach
an optimum owing to the wider objective range. The deflection limit was set at
0.6553m based on an initial FSI run.

106

Figure 3-38: Results of Ardmore Residence optimisation

Properties Original Optimised

Material mass [T] 4609.59 3497.39
Core thickness [m] 0.40 0.30
Deflection [m] 0.66 0.66

Table 3-11: Results of Ardmore Residence optimisation

Figure 3-38 shows the gradual reduction of the objective over each iteration. It is
much smoother than the previous two tests owing to the smaller step size in cross
section. A 24% reduction in the material mass was achieved by reducing the core
thickness from 0.30m to 0.40m (Table 3-11). Deflection remained the same in
contrast to the past two tests. This shows that a small step size in thickness is
preferable. Figure 3-40 shows the resulting optimum shape. The lower wing is
moved to the front resulting in a more symmetrical cross-section. This was most
likely to reduce the large flat wall area on the windward side in the original layout.
The edges were also pulled to a sharper angle. The optimised layout performs
more like an airfoil allowing wind to flow better around it imparting less pressure
(Figure 3-39).

Figure 3-39: Original vs. optimised plan layout

3000

3500

4000

4500

5000

5500

6000

6500

7000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

M
at

er
ia

l m
as

s
[T

]

Iterations

OPTIMISATION OF MATERIAL USE

107

Figure 3-40: Ardmore Residence optimisation

Again, this shape is quite different from the original. However, Opossum is able
to produce a log file of each iteration showing the parameters and resulting
variables. Table 3-12 shows a portion of this log. From this, an architect/engineer
could choose an option that may be of lower performance but closer to the
desired design.

108

Objective Parameters
3497.389648 -1.33485 -0.929071 10.44161
3497.389648 -1.31458 -0.939001 9.601758
3497.389648 -1.304247 -0.723498 10.06166
3497.389648 -1.339462 -0.923453 10.42814
3497.389648 -1.336708 -0.888233 10.44881
3497.389648 -1.314301 -0.783084 9.776589
3497.389648 -1.337035 -0.913835 10.44251
3497.389648 -1.297746 -0.760683 9.94928
3497.389648 -1.30454 -0.738041 9.98592
3497.389648 -1.308119 -0.837547 9.784086
3497.389648 -1.285229 -1.288027 9.214127
3497.389648 -1.299032 -1.106098 9.43351
3497.389648 -1.306246 -0.775974 9.83051
3609.815648 -0.49105 -4.586158 5.201521
3609.815648 -0.521421 -4.93481 5.170925
3609.815648 -0.56391 -4.800343 5.513151
3609.815648 -0.510737 -4.983012 5.248821
3609.815648 -0.519789 -4.899149 5.24057
3609.815648 -0.50487 -4.58078 5.22472
3609.815648 -0.497973 -4.571504 5.19698
3609.815648 -1.346463 -0.985015 10.70364
3609.815648 -0.497863 -4.576131 5.228151
3609.815648 -0.564426 -4.473779 5.532446
3609.815648 -0.54981 -4.542832 5.322157
3609.815648 -1.295984 0.159091 8.790278
3609.815648 -1.332086 -0.940997 10.1768
3609.815648 -1.351015 -0.962754 10.36552
3609.815648 -1.328714 -0.983009 10.43439
3609.815648 -1.274754 -0.71672 9.536599
3609.815648 -1.317449 -0.892674 9.659267
3609.815648 -1.293029 -1.047025 9.644604
3721.973648 -0.5 -5 5
3721.973648 -0.197962 -6.041961 6.439614
3721.973648 -0.382408 -5.530504 5.857319
3721.973648 -0.335814 -6.489037 6.152292
3721.973648 -0.36223 -5.833817 6.099619
3721.973648 -0.54279 -4.838407 5.015133

Table 3-12: Part of log produced from Opossum optimisation run

In addition, data recorder components were added in the Grasshopper script
connected to the mesh and pressure value outputs so the results at each iteration
were recorded in a list. This allowed the user to scroll through resulting geometry
and structural results at each iteration after the optimisation run. This is a feature
that could be further developed and better integrated into the tool in future work.

109

Optimisation 5 – Absolute Tower with smaller step size

To confirm the findings regarding cross-section step size discovered in
optimisation 4, optimisation 2 was rerun using a different list of cross-sections.
This time the list went from 0.10m to 0.59m in 0.01m steps. All other settings
remained the same as optimisation 2.

Case study Absolute Tower
Max iterations 60
Variables Base length Base width Twist

Ranges 12.0 < x < 16.0 12.0 < x < 16.0 -1.0 < x < 2.0

Objective Material mass
Cross-sections 0.10m to 0.59m in 0.01m increments

Table 3-13: Absolute Tower optimisation 3 settings

Figure 3-41: Results of Absolute Tower optimisation 3

Properties Original Optimised
Material mass [T] 5984.924 3522.112
Core thickness [m] 0.40 0.26
Deflection [m] 1.544 1.420

Table 3-14: Results of Absolute Tower optimisation 3

3000

3500

4000

4500

5000

5500

6000

1 6 11 16 21 26 31 36 41 46 51 56

M
as

s
[T

]

Iterations

OPTIMISATION OF MATERIAL USE

110

The resulting graph is much smoother than that in optimisation 2. It was also able
to arrive at an even better-performing objective of 3522 Tons due to a smaller
cross-section of 0.26m with a deflection value of 1.4199m which is much closer to
the limit than the 1.017m in optimisation 2. This confirms the hypothesis that the
0.05m step size in optimisation 2 was too large and thus missed the optimum
gained by selecting a 0.26m cross-section.

3.4.3 Conclusions

The goal of these optimisation tests was, as previously stated, to ascertain the
extent to which structural performance based on wind load can be improved by
manipulating the external massing of the building and what input variables,
objectives, and optimisation settings can produce the most ideal optimisation
problem. The computational method being developed should be able to readily
accept any geometry that a user puts into it and get good results. The optimisation
settings, in particular, should allow for that. The result would be a set of guidelines
for performing optimisation runs using this method.

In general, each of the optimisation tests was able to successfully reduce the
objective by manipulating the numeric sliders controlling geometry. While it was
sought to keep the shape-changing within the general architectural layout of the
building there was, in all cases, noticeable difference between the original and
optimised geometry. This shows one of the ways building design is complicated
with one aspect of performance, in this case, the size of the structural core,
competing with another like architectural aesthetics. In this, it is concluded that it
is better to have a range of options rather than a single optimal result. Thus, the
user can pick an option that balances performance with the desired shape. The
Opossum plugin was a good choice in this regard as it can produce a table of
input variables and resulting objective value at each iteration. This along with the
ability to use data recorders in Grasshopper can allow a useful result selection
feature to be added to the developed tool.

The research showed that CFD-O is rarely done due to the computationally
expensive and time-consuming nature of it. In these tests, each iteration took a
maximum of 2 hours for the Nanchang tower, the largest building tested, and a
minimum of 30 minutes for the smallest case the Ardmore residence. Therefore, a
full optimisation run took between 1 and 2 days in each case. This was possible
due to using low mesh and iteration settings for the CFD and using a model-based
optimisation algorithm which works best at a low number of iterations. Though it
is still quite a bit of time it would have been much worse using, for example, a
genetic algorithm which typically requires hundreds or even thousands of
iterations to converge. It can be concluded that CFD-O and particularly in this

111

case FSIO is feasible and reasonably efficient using this method. Opossum with
the RBFOpt algorithm looks to be able to produce optimised results within a
relatively small number of iterations. For optimisation 1 & 2 the objective seems
to converge before the max iterations of 60. In number 3 with the Nanchang
Tower, the final level of the graph is steady for about 15 iterations. This may mean
that optimisation 3 could have run for some more iterations, but it is uncertain
whether this additional time would have produced a fitter result. In optimisation 4
the max iterations were increased to 100 however, there was not a long period of
static results like in the previous cases so a slightly longer run may have been
better to confirm convergence. Nevertheless, it did come to much improved
objective value in the time given. It looks that between 60 – 120 iterations with
the RBFOpt algorithm is ideal.

Material mass seems to be a more meaningful objective than just deflection as it
makes the tool more applicable in practice. The combination of Opossum with
Karamba CSO is very useful in this case especially if one already has selected an
initial core size. It can show as a result of changing the geometry of the building
you can reduce core size by the found amount and save this amount of material.
However, if it is even earlier in the design phase, deflection can still be a good
objective as it shows what shape would generally perform better. The step size of
0.05m was too large as deduced in optimisation 2 and 3. A reduced step size of
0.01m performed better as shown in optimisation 4 and 5.

112

3.5 Final Method and Tool

113

Figure 3-42: Final FSIO method workflow

Input geometry

Wind speed

Domain size

Initial
cross-section size

Output log END

START

Cross-section
list

Fitness
achieved?

Change input
variables

Record input
variables

Record results

Case name

Create Wind
Tunnel Mesh domain

Cell size

Run CFD
solution

Turbulence
model

Max iterations/
max residual

Output pres-
sures

Output mesh

Assemble FEM

Loads

Elements

FEA Get results Pick
cross-section

Output mass

Cross-section

Material

Support

Calculate point
load values

Get force
vectors

Sum vectors
per point

Output force
vectors

Variable inputs

Constant inputs

Outputs

Output points

Output linesGet centre line

Get normal
vectors

no

yes

Divide at points

CFD

FSI

OPT

FEA

114

The final developed method is shown in Figure 3-42. The variable inputs are the
ones which change with each project, the constant inputs remain the same
between projects as there is no need to modify them, however, a more advanced
user could alter them if desired. The FSIO method takes a 3D model of an object
performs CFD analysis to determine the wind pressure imparted on it and passing
those results to FEA solver to obtain structural results. This is then paired with an
optimisation algorithm in order to generate better performing options and output
a list of results. This thesis developed this method within Rhino/Grasshopper using
existing plugins such as Butterfly for CFD, Karamba for FEA, and Opossum for
optimisation. This was combined with own custom scripting with GH components,
Python, and C# code to obtain the tool based on the method (Figure 3-43). This
custom scripting allowed the combination of the existing plugins as well as
allowing the procedure to be as parametric and adaptable as possible so that
precise and timely results can be obtained regardless of the building model input
by a user. See Appendix 6 for Python and C# code.

Figure 3-43: Full FSIO script

115

Figure 3-44: Total FSIO script overview

115

Figure 3-44: Total FSIO script overview

116

117

VERIFY

120

As mentioned in the Research section, the current methods for evaluating wind
loading on buildings are the Eurocode EN1991-1-4 procedure with corresponding
National Annex and scaled boundary layer wind tunnel tests particularly when the
building is of complex geometry. As a complement to the CFD validation study
(section 3.2.2) which validated the CFD procedure’s accuracy against wind tunnel
tests, this section will seek to compare the FSI tool against the Eurocode
calculation method. The aim was to see how similar (or different) the values
obtained from EN methods are to those obtained from the FSI procedure. The
Absolute Tower and Nanchang Tower models were used in this test.

4.1 Eurocode Calculations

In EN1991-1-4 many of the values given or derived from graphs are provided for
standard cross-sectional shapes like rectangles or circles. For these calculations, it
was chosen to assume values for a circular cross-section as these building models
have a smooth cross-sectional shape which is imagined having airflow closer to a
circle rather than a rectangle with sharp corners causing flow separation. Basic
wind velocity was taken as 30m/s and roughness length of 1m to match the CFD
simulations. Aref was set at 1m2 in order to obtain wind force, Fw, per area. In the
FSI script, the point loads were obtained at 6 points along the height of the
building. These same 6 heights were used to obtain Fw from the EN. The areas to
which the Fw would be applied was obtained in Grasshopper by finding the areas
around the point loads of the building perpendicular to the wind flow (Figure 4-1).
This was done for each of the case study buildings and the loads compared to
those from the FSI procedure. See Appendix 4 for the calculation procedure.

Figure 4-1: Areas for wind force, Fw, application

121

4.2 Results

The results for the Absolute Tower model are shown in Figure 4-2 and Table 4-1.
The EN numbers begin to rise then fall with respect to the decrease in the
perpendicular area near the middle of the tower then rise again to a maximum
value of 1255.92kN. The values from the FSI tool follow a similar pattern but are
much higher. The values as well vary according to the height which accounts for
the change in geometry of the tower. For instance, near the midpoint of the tower,
there is a dip in wind force corresponding to the location of the twist. This area
has lower wind pressure due to the long axis of the elliptical cross-section facing
the wind which is a more aerodynamic arrangement. The higher forces at the top
and bottom are possibly due to wind impacting the ellipse along the short axis
which is a flatter area than the perceived circle of the EN calculation.

However, the discrepancy in the magnitude of the loads between the FSI
procedure and the EN is quite large. This was thought to be so as CFD with RANS
turbulence models calculates the mean static pressures. In reality, wind flow in the
boundary layer is more random and peak pressures do not occur simultaneously
over a structure (Cook, 2007). This is accounted for in the EN by the structural
factor, cscd, and the force coefficient, cf, which are multiplied to the peak velocity
pressure qp(z) (Equation 2-14). To account for this the FSI values were multiplied
by the by cscd and cf (FSI Reduced). As seen in Figure 4-2, the reduced values from
GH are now closer in line with those from EN calculations.

Figure 4-2: Absolute Tower EN/FSI calculation comparison

0

500

1000

1500

2000

2500

15.93 46.84 76.29 100.80 126.38 155.73

Lo
ad

 [k
N

]

Height [m]

WIND FORCE AT HEIGHT ABOVE GROUND

Eurocode FSI FSI Reduced

122

Heights [m] Areas
[m2]

Wind Force
[N/m2]

EN Point
Load [kN]

FSI Point
Load [kN]

FSI reduced
[kN]

15.93 1232.57 544.10 670.64 1210.84 755.47

46.84 1148.51 806.31 926.05 1417.42 884.37

76.29 867.27 927.85 804.70 1282.13 799.95

100.80 803.19 997.78 801.41 1412.59 881.35

126.38 1018.82 1054.79 1074.64 2386.57 1489.04

155.73 1133.90 1107.61 1255.92 2490.19 1553.69

Table 4-1: Absolute Tower EN/FSI calculation comparison

The calculations were as well carried out for the Nanchang Tower model. The EN
values follow a smooth curve with a peak at a height of 178.44m. The GH values
are much higher than EN. They smoothly increase until a height of 178.44m then
jump at 229.46m. This is likely due to the concave façade at this point which leads
to a higher pressure as the air would have difficulty flowing around the building at
this point. The value then drops back down at the highest point where the wind
can then flow over the top of the building (Figure 4-3). To mitigate the problem
of the high values from the FSI procedure, the values were again multiplied by the
factors cscd and cf for the Nanchang building. This gives values that closely follow
the EN curve of values except for the deviations discussed earlier.

Figure 4-3: Nanchang Tower EN/FSI calculation comparison

0

1000

2000

3000

4000

5000

6000

7000

25.41 76.40 127.45 178.44 229.46 278.95

Lo
ad

 [k
N

]

Height [m]

WIND FORCE AT HEIGHT

Eurocode FSI FSI Reduced

123

Heights
[m]

Areas [m2] Wind Force
[N/m2]

EN Point Load
[kN]

FSI Point
Load [kN]

FSI reduced
[kN]

25.41 3013.03 676.56 2038.49 3120.78 2106.78

76.40 2738.92 962.12 2635.16 3834.93 2479.81

127.45 2555.49 1096.21 2801.35 4279.36 2698.20

178.44 2371.95 1184.31 2809.12 4621.25 2862.45

229.46 2168.35 1250.04 2710.52 6101.75 3727.84

278.95 1892.52 1301.02 2462.21 5285.71 3194.20

Table 4-2: Nanchang Tower EN/FSI calculation comparison

4.3 Conclusions

These results show that the FSI procedure does indeed give values similar to the
Eurocode procedure if the structural factor and force coefficient are taken into
account. The FSI tool, however, has the added benefit of being able to capture
local effects of geometry on wind pressure along the building height as shown in
the graphs above for the two building models. Moreover, performing optimisation
one could see the benefits in the results whereas with the EN calculations they
would remain mostly the same as the only variables used relating to building
geometry are overall building width and height. The values obtained from the FSI
procedure, however, were expected to be appreciably lower than the EN as Cook
(2007) stated:

The simplification in the [EN1991-1-4] model inevitably involves a degree
of conservatism to ensure that the most onerous loading case is included.
For this reason, design assisted by testing and measurement, as permitted
by clause 1.5, often results in lower design loads and a more efficient
structure.

These simulations were run with a coarse mesh setting and only 2000 iterations in
order to save time. A finer mesh with a higher number of iterations may give better
results. Nonetheless, the similarity in results to the EN with the deviations based
on geometry prove that this tool can be used, at least in earlier stages, as a
complement to the EN.

CONCLUSIONS

126

The objective of this study was to create a computational method that designers
and engineers could use in the early stage of design to analyse the structural
responses due to the wind and optimise the geometry to reduce it. The project
followed a three-step process of research, develop, and verify with each integral
to the success of the tool. Research was done to further the knowledge needed in
the areas of wind and its action on structures as well on CFD and pairing it with
FEA to obtain structural objectives. Finally, research on the science and process
of optimisation was done. Also researched was current calculation methods. This
all helped establish the current state of the art and how the presently available
processes and tools could be used and improved upon. As a result, development
of this method could take place by creating a proof-of-concept tool in
Grasshopper using available plugins coupled together with own custom scripts in
a way that it was made as parametric as possible. The verification and validation
studies, as well as the tests throughout the development, helped show that it can
be a useful tool for design. This will be further explained as answers to the initial
research questions. However, there were limitations to the development as well
as to further use of the tool. There is also much room for improvement to make
this better that could not be done in the scope of this thesis. The
recommendations given in Table 5-1 were compiled as a result of the thesis. It is
believed that following these steps will result in a successful FSIO method not just
in Grasshopper but other software packages as well.

127

Parameter Recommendation

Input
variables

Select features that mostly maintain the architectural intent. Wide
enough range of values to ensure optimum is found.

Objective Material mass is useful in practice. If using a method similar to
Karamba CSO be sure the list of cross-sections is thorough enough to
ensure a wide range of possible solutions.

Optimisation
algorithm

Model-based algorithm allows for convergence within a smaller
number of iterations than metaheuristics and is more robust than
direct search.

No. of
iterations

60 – 120 in a model-based algorithm depending on the complexity of
the building model.

Results List of results at each iteration is preferable to a single optimum
allowing the user to choose a result that balances with other objectives
of building design.

CFD settings A coarse mesh with a low number of iterations is preferable in order to
save time on large building models. Be sure results are precise and
that the solution can reasonably converge within a selected number
of CFD iterations. RANS turbulence models such as RNG k – ε provide a
good balance between accuracy and time.

Table 5-1: Recommendations for the setup of a computational FSIO method

128

5.1 Answers to Research Questions

This section will seek to answer the research questions established at the
beginning of the thesis.

Main question:

How can computational methods be used to accurately and
efficiently calculate wind load on a complex geometry building

and optimise the geometry to reduce wind responses in the
early design phase?

The product of the thesis, namely the FSIO tool, was developed using
computational methods in order to solve the issue of easy calculation of the wind
loading on more complex geometry buildings at an early design stage as posed
in the question. Based on research, this did not yet exist at least not in an easy to
use and widely applicable way. The parametric and single environment nature of
its development makes it an efficient process compared to traditional methods.
The verification step in section 4 showed it’s comparativeness to the Eurocode
and the CFD validation in section 3.2.2 shows comparativeness to scaled
boundary layer wind tunnel tests thus establishing the level of accuracy of the tool.
In the optimisation tests, each one was able to reduce wind-induced responses
relative to the original geometry solely by manipulating the external massing of
the building. This is key for an early design phase as detailed structural plans are
not made yet and geometry is continuously being changed. Using this tool is
another method of implementing performance-based design where design
decisions are made not only on aesthetics but how they contribute to certain
performance objectives, in this case, structural response but also sustainability by
reducing material use.

Sub-questions:

What are the existing methods for wind load analysis and how
do they consider complex geometry buildings? Where do they

fall short?

As explored in the research, the two main methods for calculating wind-induced
responses are the relevant building codes, in this case, EN1991-1-4 plus national
annex, and boundary layer wind tunnel tests. The Eurocode reduces the highly
dynamic nature of wind loading to equivalent static functions in an analytical
process. However, upwards of 20 equations need to be solved and it can be a
complicated process to choose the correct equations and values for the specific

129

case. The main issue, however, is that it does not consider the specific geometry
of the building being calculated. Buildings these days are complex and will
continue to be designed that way as technology improves. The Eurocode still,
however, only gives guidance for standard shapes with the only variables based
on geometry used are the height and width of the building. The verification study
(Section 4.2) showed that the FSI analysis was able to capture the unique loadings
induced by the geometry of the building being analysed while the EN values were
more general. EN1991-1-4 is aware of its shortcomings in that area which is why
clause 1.5 allows the use of physical wind tunnel tests. However, performing these
tests is a highly specialised field requiring experts who can appropriately set up
the scaled model and the wind tunnel. It is also a time consuming and very
expensive process making it impractical for most projects to do repeated tests in
an early design phase and even then, it would be a trial and error process as to
what shape is better.

What kinds of geometries are more suitable for dealing with
high wind loads? What geometries should be avoided?

The shape of a building, particularly a high-rise, can have a big effect on the level
of wind-induced response. The strategies given in section 2.2.4 can help reduce
the static and dynamic loads due to the wind. Tactics like softening corners,
tapering, and varying cross-sectional shape can help particularly with delaying
flow separation and thus vortex shedding. This is an advantage for more complex
geometry buildings. The sharp corners of traditional rectangular shaped towers
induce flow separation that can have negative dynamics effects on the tower. In
the optimisation tests (Section 3.4) the geometries that arose as a result of the
optimisation algorithm were usually more rounded and smoother. In the case of
the Absolute Tower, the wind load was reduced by twisting the tower so that the
long axis of the cross-section was parallel to the wind in addition, to expanding
the short axis a bit. The Nanchang tower optimisation produced a more rounded
tower at the top as opposed to the concave geometry of the original design. In
general, the shape should allow wind to flow smoothly around it as easily as
possible, however, with the increasing complexity of building shapes the rule of
thumb design strategies may not always be the best or only option. For example,
in the Nanchang Tower optimisation, it was expected that the bottom portion
should be rounded and smoothed out for better performance, but it was shown
that the sharper contracted plan shape also produced optimal results. The
advantage of the developed FSIO method is that you also have exact numerical
results for many different options so you know exactly how well they perform
relative to others so a user can choose what is preferred. While these rule-of-
thumb strategies may be a good starting point it is more valuable to have

130

numerical indicators of performance especially in situations where wind reactions
are critical such as supertall towers.

What responses (deflections, vibrations, reaction forces) do
building structures give to wind loading?

Wind flow induces pressure on a building surface. This occurs as positive pressure
(pushing the building) at the front where the flow impinges the façade and also as
negative pressure (pulling the building) on the rear due to drag. These forces
cause deflection in the direction of flow but also base overturning moments and
thus stresses in the structure. The other effect is in the crosswind direction
perpendicular to the air flow which causes dynamic swaying motions that can be
uncomfortable for building occupants. The higher the building the more
pronounced these effects can be as seen by the analyses of the 135m Ardmore
residence versus the 170m high Absolute Tower versus the 303m high Nanchang
Tower. The magnitude of wind forces is much greater in the Nanchang Tower. At
such heights, lateral stability trumps vertical stability as the chief structural
problem. Attention must be paid to add stiffness to the building structure to
reduce such horizontal motion but geometry can play an even bigger role to avoid
motions in the first place.

How can Computational Fluid Dynamics (CFD) be used to
analyse the effects of wind on a building? How efficient is it

compared to current calculation methods? How accurate is it
compared to current calculation methods?

CFD simulates the wind and its impact on an obstruction. This includes the
pressure induced on the building surface. Thus, as seen in the many analyses run
in this thesis, it can be used to determine the effect of wind on a structure in a
computational method rather than having to simulate in a physical wind tunnel
test. While it is a complicated field and takes knowledge to set up the simulation
properly with regards to parameters like meshing, turbulence model, etc. it has
the benefit of being able to do this within a computer program making it versatile
especially as a parametric tool like Butterfly within Grasshopper. CFD is still,
however, a time-consuming process with a high computational cost. For the
optimisation tests, the time for each iteration was about 1.5 to 2 hours which was
only achieved by using a coarse mesh setting with 2000 max iterations on a fairly
powerful computer. Even with this time reduction over the previous CFD
simulations in section 3.2.2 and 3.2.3, each optimisation took 1 – 2 days to run.
While it may not seem efficient, it is when compared to the cost and total time for

131

setting up and performing physical wind tunnel tests with the added benefit of
being able to intelligently optimise using a computational algorithm instead of
relying solely on educated guessing and trial and error to improve performance
after a wind tunnel experiment. These benefits also apply over the Eurocode
calculations with the added advantage of greater individualised accuracy for the
geometry.

The validation study (Section 3.2.2) showed how CFD compares to a wind tunnel
test. There is some discrepancy in values obtained with the parameters of mesh
size and turbulence model playing the largest role in determining the level of
accuracy. A finer mesh can make it much more accurate, but this must be weighed
against the time it takes to complete the simulation. For this thesis, a balance had
to be struck between these two objectives. It has been determined that for early-
stage design the absolute accuracy is less important compared to the precision of
results and time taken. The precision of the Butterfly simulations as shown by the
results of the mesh size sensitivity analysis (Figure 3-16) allows it to be used
confidently in a repetitive application like optimisation where, at least for early-
stage design, relative improvements in objective fitness is deemed more
important than absolute accuracy to guide geometric strategies for reducing
wind-induced responses. It is, however, quite accurate when compared to EN
calculations when the relevant factors are applied as seen in section 4. One can
conclude that it is even more accurate when looking at the specific geometries of
the buildings as the results showed the effects of each building’s geometry on the
induced wind load.

How can CFD, structural analysis, and optimisation be
incorporated into a single, easy to use and efficient,

computational process?

The development portion of the thesis focused on answering this question. The
result was a computational method that could simulate wind effects on the
structure of a parametrically defined geometry and optimise said geometry to
reduce those effects. This shows the power of computational processes today and
how existing tools can be made more useful by combining them. This is already
done in other industries so it logical that the building industry should also step
forward and use the technological power available to improve current workflow.

In this thesis, the method was implemented in Grasshopper. This was successful
not only because of the host of plugins available but also the visual scripting
method and parametric nature of the tool. This allowed the widely different
plugins of Butterfly, Karamba, and Opossum to be combined in a single
procedure. Moreover, the parametric nature makes it so that it is versatile so that

132

almost any complex high-rise geometry could be input. Much scripting, in
Grasshopper and with custom C# and Python script components, had to be
implemented in order to make this as flexible as possible. Settings like mesh size
were parametrised and the usability of the whole tool was improved to the point
where only two toggles are required for operation. While it is still not perfect with
errors arising particularly because of Butterfly meshing it is able to be easily used
by someone with some knowledge of Rhinoceros and Grasshopper.

Its implementation within Rhino/Grasshopper, a tool already widely used in the
building industry, further adds to its value and versatility. However, by following
the steps and guidelines detailed here this method could be applied in other
software as well. Grasshopper, while incredibly useful and easy to use, does have
its limitations. Using other software for the CFD, FEA, and optimisation
components and combining them together into this method may present
opportunities for integrating functionality or performance improvements that are
not achievable in Grasshopper.

How can having wind load analysis in an early design phase
improve building performance?

The optimisation runs (Section 3.4) showed the reduction in needed structural
material as a result of knowing the wind-induced responses on the structure and
optimising the geometry to lessen the impact. In a building project, such a
reduction in material saves cost but also lowers the carbon footprint of the project
which are valuable objectives to achieve. The FSI analysis of a building in an early
stage can also tell if the wind-induced deflection or stresses are too great and thus
the geometry can be manipulated to improve it. This is more efficient than waiting
until a design is in a more finalised stage and then do the analysis using Eurocode
or wind tunnel methods and having to increase the number or size of structural
elements to resist reactions. This, however, creates the situation where the
optimised geometry of the building may have strayed too far from the original
architectural intent of the building which a designer and/or client may not accept.
It is useful to have options rather than a single optimum. Thus, the method is
useful in producing a list of input variables and their resulting performance from
which the stakeholders can choose from. The sub-optimal solutions are still
valuable as many aspects of the building have to be addressed not just wind
loading.

133

5.2 Further Improvements

While the development and testing of the FSIO method were successful there are
still a number of areas that can be further improved upon within the development
of the Grasshopper based tool itself and the research process.

• The FSIO tool works by analysing the structural response due to static wind
loads. However, as shown in the research, dynamic loads are arguably more
important for very tall high-rises. This tool could be further improved by
implementing a method for analysing the dynamic effects of wind and using
that as an optimisation objective.

• Only one wind direction was looked at in this study however, the ability to
analyse the impact of multiple wind directions would be much more
valuable as this can have a big effect on the performance.

• The tool could be further validated by using a case study of a complex
geometry high-rise building for which physical wind tunnel tests have been
performed. One could then analyse the building with the FSIO tool to
determine the accuracy and then optimise the building’s geometry to
ascertain how much improvement could be made over the original.

• Model-based optimisation, specifically RBFOpt in Opossum, was chosen as
the optimisation algorithm due to its favourable reviews in benchmark
studies and its ability to converge an optimisation problem in a relatively
small number of iterations. However, it is not known for sure whether this is
truly the best for this specific case especially as there was little found
research on CFD optimisation. In further work, a benchmark study could be
performed using different algorithms to determine which is best for this
method.

BIBLIOGRAPHY

136

ANDERSON, J. D. 1995. Computational fluid dynamics : the basic with
applications, New York, McGraw-Hill.

AYNSLEY, R. M. 1999. Shape and Flow: The Essence of Architectural
Aerodynamics. Architectural Science Review, 42, 69-74.

AYNSLEY, R. M., MELBOURNE, W. H. & VICKERY, B. J. 1977. Architectural
aerodynamics, London, Applied Science Publishers.

BERNARDINI, E., SPENCE, S. M. J., WEI, D. & KAREEM, A. 2015. Aerodynamic
shape optimization of civil structures: A CFD-enabled Kriging-based
approach. Journal of Wind Engineering and Industrial Aerodynamics, 144,
154-164.

BLOCKEN, B. 2014. 50 years of Computational Wind Engineering: Past, present
and future. Journal of Wind Engineering and Industrial Aerodynamics, 129,
69-102.

BUNGARTZ, H. J. & SCHÄFER, M. 2006. Fluid-structure interaction : modelling,
simulation, optimisation. Berlin: Springer-Verlag.

CHRONIS, A., TURNER, A. & TSIGKARI, M. 2011. Generative fluid dynamics:
integration of fast fluid dynamics and genetic algorithms for wind loading
optimization of a free form surface. Proceedings of the 2011 Symposium
on Simulation for Architecture and Urban Design. Boston, Massachusetts:
Society for Computer Simulation International.

CLANNACHAN, G., LIM, J., BICANIC, N., TAYLOR, I. & J. SCANLON, T. 2009.
Practical Application of CFD for Wind Loading on Tall Buildings.

COCHRAN, L. & ASCE. COMMITTEE ON STRUCTURAL WIND, E. 2012. Wind
issues in the design of buildings. Reston, Va.: American Society of Civil
Engineers.

CONN, A. R., SCHEINBERG, K. & VICENTE, L. N. 2009. Introduction to derivative-
free optimization, Siam.

COOK, N. 2007. Designers' Guide to EN 1991-1-4 Eurocode 1 - Actions on
Structures, General Actions, Part 1-4: Wind Actions, ICE Publishing.

DONALDYTONG 2012. Burj Khalifa. In: KHALIFA.JPG, B. (ed.). commons:
Wikipedia.

EKICI, B., CUBUKCUOGLU, C., TURRIN, M. & SARIYILDIZ, I. S. 2019. Performative
computational architecture using swarm and evolutionary optimisation: A
review. Building and Environment, 147, 356-371.

EVINS, R. 2013. A review of computational optimisation methods applied to
sustainable building design. Renewable and Sustainable Energy Reviews,
22, 230-245.

137

FEBLOWITZ, J. C. 2010. Confusing The Wind: The Burj Khalifa, Mother Nature,
and the Modern Skyscraper. Inquiries Journal/Student Pulse [Online], 2.
Available: http://www.inquiriesjournal.com/a?id=124.

FRANKE, J., HELLSTEN, A., SCHLÜNZEN, H. & CARISSIMO, B. 2007. Best
Practice Guideline for the CFD Simulation of Flows in the Urban
Environment.

FRANSOS, D. & LO GIUDICE, A. 2015. On the use of computational simulation in
the determination of wind loads on structures: design experiences and food
for thought.

GREGSON, S. 2018. Nelder-Mead Optimisation Component in Grasshopper.
London, UK.

HOLMES, J. D. 2007. Wind loading of structures, New York, Taylor and Francis.

HOSCH, W. 2018. Navier-Stokes Equation [Online]. Encyclopædia Britannica:
Encyclopædia Britannica, inc. Available:
https://www.britannica.com/science/Navier-Stokes-equation [Accessed
December 20 2018].

HUANG, S., LI, Q. S. & XU, S. 2007. Numerical evaluation of wind effects on a tall
steel building by CFD. Journal of Constructional Steel Research, 63, 612-
627.

ILUNGA, G. & LEITÃO, A. 2018. Derivative-free Methods for Structural
Optimization.

IRWIN, P. A. 2009. Wind engineering challenges of the new generation of super-
tall buildings. Journal of Wind Engineering and Industrial Aerodynamics,
97, 328-334.

MAHER, M. L., POON, J. & BOULANGER, S. 1996. Formalising Design
Exploration as Co-Evolution. Springer US.

MELBOURNE, W. H. 1980. Comparison of measurements on the CAARC standard
tall building model in simulated model wind flows. Journal of Wind
Engineering and Industrial Aerodynamics, 6, 73-88.

MELILLO, J. M., RICHMOND, T. & YOHE, G. W. 2014. Climate Change Impacts
in the United States: The Third National Climate Assessment [Online].
Washington: U.S. Global Change Research Program. Available:
http://nca2014.globalchange.gov/ [Accessed December 31 2018].

MENDIS, P., NGO, T., HARITOS, N., HIRA, A., SAMALI, B. & CHEUNG, J. 2007.
Wind loading on tall buildings.

138

MENG, F.-Q., HE, B.-J., ZHU, J., ZHAO, D.-X., DARKO, A. & ZHAO, Z.-Q. 2018.
Sensitivity analysis of wind pressure coefficients on CAARC standard tall
buildings in CFD simulations. Journal of Building Engineering, 16, 146-158.

MENTER, F. R. 2009. Review of the shear-stress transport turbulence model
experience from an industrial perspective. International Journal of
Computational Fluid Dynamics, 23, 305-316.

MOHOTTI, D., MENDIS, P. & NGO, T. 2014. APPLICATION OF
COMPUTATIONAL FLUID DYNAMICS (CFD) IN PREDICTING THE WIND
LOADS ON TALL BUILDINGS-A CASE STUDY.

NEN, N. S. I. 2005. Eurocode 1: Actions on structures - Part 1-4: General actions -
Wind actions. NEN-EN1994-1-4:2005. NEN.

NEN, N. S. I. 2011. National Annex to NEN-EN 1991-1-4+A1+C2: Eurocode 1:
Actions on structures - Part 1-4: General actions - Wind actions. NEN-EN
1991-1-4+A1+C2. NEN.

OXMAN, R. 2006. Theory and design in the first digital age.

PREISINGER, C. 2013. Linking structure and parametric geometry. Architectural
Design, 83, 110-113.

RAHMAN, M. M., KARIM, M. M. & ALIM, M. A. 2007. Numerical investigation of
unsteady flow past a circular cylinder using 2-D finite volume method.
Journal of Naval Architecture and Marine Engineering, 4, 27-42.

RIOS, L. M. & SAHINIDIS, N. V. J. J. O. G. O. 2013. Derivative-free optimization:
a review of algorithms and comparison of software implementations. 56,
1247-1293.

SHIH, T. H., LIOU, W., SHABBIR, A., YANG, Z. & ZHU, J. 1994. A New k-(Eddy
Viscosity Model for High Reynolds Number Turbulent Flows - Model
Development and Validation.

SIMIU, E. & SCANLAN, R. H. 1996. Wind effects on structures : fundamentals and
applications to design, New York, John Wiley.

SIMON, H. A. 1973. The structure of ill structured problems. Artificial Intelligence,
4, 181-201.

SMITS, D. R. J. A. D. S. P. G. D. A. J. 2018. Drag of Blunt and Streamlined Bodies
[Online]. eFluids. Available:
http://www.efluids.com/efluids/bicycle/bicycle_pages/blunt.jsp [Accessed
11/12 2018].

STAM, J. 1999. Stable fluids. Proceedings of the 26th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co.

139

SUN, D., OWEN, J. S. & WRIGHT, N. G. 2009. Application of the k–ω turbulence
model for a wind-induced vibration study of 2D bluff bodies. Journal of
Wind Engineering and Industrial Aerodynamics, 97, 77-87.

TAMURA, T., NOZAWA, K. & KONDO, K. 2008. AIJ guide for numerical prediction
of wind loads on buildings. Journal of Wind Engineering and Industrial
Aerodynamics, 96, 1974-1984.

TARANATH, B. S. 2012. Structural analysis and design of tall buildings : steel and
composite construction. Boca Raton, Fla. [Washington, D.C.]: CRC Press;
International Code Council.

THE ́VENIN, D. & JANIGA, G. B. 2008. Optimization and computational fluid
dynamics. Berlin: Springer Verlag.

TURRIN, M., VON BUELOW, P. & STOUFFS, R. 2011. Design explorations of
performance driven geometry in architectural design using parametric
modeling and genetic algorithms. Advanced Engineering Informatics, 25,
656-675.

VAN HOOFF, T., BLOCKEN, B. & VAN HARTEN, M. 2011. 3D CFD simulations of
wind flow and wind-driven rain shelter in sports stadia: Influence of stadium
geometry. Building and Environment, 46, 22-37.

VONGSINGHA, P. 2015. Adaptive Façade for Windload Reduction in High-rise.
MSc., TU Delft.

WAIBEL, C., BYSTRICKY, L., KUBILAY, A., EVINS, R. & CARMELIET, J. 2017.
Validation of Grasshopper-based Fast Fluid Dynamics for Air Flow around
Buildings in Early Design Stage.

WAIBEL, C., WORTMANN, T., EVINS, R. & CARMELIET, J. 2019. Building energy
optimization: An extensive benchmark of global search algorithms. Energy
and Buildings, 187, 218-240.

WENDT, J. F., ANDERSON, J. D., JR. & VON KARMAN INSTITUTE FOR FLUID,
D. 2009. Computational fluid dynamics : an introduction. 3rd ed. ed. Berlin
;: Springer.

WORTMANN, T. 2017. Opossum: Introducing and Evaluating a Model-based
Optimization Tool for Grasshopper.

WORTMANN, T. 2018. Genetic evolution vs. function approximation:
Benchmarking algorithms for architectural design optimization. Journal of
Computational Design and Engineering.

WORTMANN, T., COSTA, A., NANNICINI, G. & SCHROEPFER, T. 2015.
Advantages of surrogate models for architectural design optimization.

140

WORTMANN, T. & NANNICINI, G. 2016. Black-box optimisation methods for
architectural design.

WORTMANN, T., WAIBEL, C., NANNICINI, G., EVINS, R., SCHROEPFER, T. &
CARMELIET, J. 2017. Are Genetic Algorithms Really the Best Choice in
Building Energy Optimization?

YAKHOT, V., ORSZAG, S. A., THANGAM, S., GATSKI, T. B. & SPEZIALE, C. G.
1992. Development of turbulence models for shear flows by a double
expansion technique. 4, 1510-1520.

YANG, D., REN, S., TURRIN, M., SARIYILDIZ, S. & SUN, Y. 2018. Multi-disciplinary
and multi-objective optimization problem re-formulation in computational
design exploration: A case of conceptual sports building design.
Automation in Construction, 92, 242-269.

YANG, D., SUN, Y., DI STEFANO, D., TURRIN, M. & SARIYILDIZ, S. Impacts of
problem scale and sampling strategy on surrogate model accuracy: An
application of surrogate-based optimization in building design. 2016 2016.
IEEE.

ZUO, W. & CHEN, Q. 2009. Real-time or faster-than-real-time simulation of airflow
in buildings. Indoor air, 19, 33-44.

6.1 Table of Figures

Figure 1-1: (Left) Absolute Towers by MAD Architects © Iwan Baan .. 12
Figure 1-2: (Right) Morpheus Hotel by Zaha Hadid Architects © Ivan Dupont 12
Figure 1-3: Methodology diagram ... 20
Figure 2-1: Boundary layer profiles (Cochran and ASCE. Committee on Structural Wind, 2012) . 24
Figure 2-2: Flow separation around a rectangular body in a free stream (Aynsley et al., 1977) ... 27
Figure 2-3: Flow separation at different values of Re (Simiu and Scanlan, 1996). 28
Figure 2-4: Pressure coefficient distribution on a rectangular prism (Holmes, 2007) 29
Figure 2-5: Variation of Cd with Re (Simiu and Scanlan, 1996) .. 30
Figure 2-6: Vortex Shedding (Taranath, 2012) ... 31
Figure 2-7: Burj Khalifa (Donaldytong, 2012)... 35
Figure 2-8: Classification of the Netherlands in wind areas (NEN, 2011) 38
Figure 2-9: Fluid flow calculated by RANS vs. LES turbulence models ... 45
Figure 2-10: CFD Procedure for estimating wind loads on structural frames (Tamura et al., 2008)

 ... 48
Figure 2-11: Optimisation interface and 4 fittest members (Chronis et al., 2011) 49
Figure 2-12: Example of optimisation results with Pareto front (yellow triangles) (Evins, 2013) ... 54
Figure 2-13: Nelder-Mead process (Gregson, 2018) ... 55
Figure 2-14: Surrogate model (response surface) of a Kriging based optimisation with input

variables on the x and y-axes and the objective variable is on the z-axis (Bernardini et al.,
2015). ... 56

Figure 2-15: Relationship between OPF, CDE, OPS, and CDO (Yang et al., 2018) 59
Figure 2-16: Computational procedure ... 63

141

Figure 3-1: Absolute Towers by MAD Architects © Iwan Baan (Left) and Jiangxi Nanchang
Greenland Central Plaza by SOM © SOM (Middle), and Ardmore Residence by UNStudio ©
Iwan Baan (right) .. 67

Figure 3-2: CFD workflow ... 67
Figure 3-3: Butterfly script .. 68
Figure 3-4: GH Wind Script .. 70
Figure 3-5: CAARC model dimensions .. 73
Figure 3-6: Pressure tap locations .. 73
Figure 3-7: Wind tunnel domain .. 74
Figure 3-8: Wind tunnel domain mesh from Butterfly .. 75
Figure 3-9: Domain mesh at building geometry from Butterfly showing grading 75
Figure 3-10: Analysis results ... 78
Figure 3-11: Graph of deviation per building side ... 78
Figure 3-12: Error between TJ(D) results and CFD analyses .. 79
Figure 3-13: Residuals plot of RNG kEpsilon analysis .. 80
Figure 3-14: GH Wind residuals graph ... 81
Figure 3-15: Pressure tap locations .. 82
Figure 3-16: Butterfly results .. 83
Figure 3-17: GH Wind results ... 84
Figure 3-18: Butterfly Snappy Hex Mesh (left) and GH Wind voxelization (right) 85
Figure 3-19: FSI translation algorithm workflow ... 86
Figure 3-20: FSI translation script ... 86
Figure 3-21: (a) Mesh from Butterfly with corresponding pressures, (b) division into segments, (c)

force vectors summed per segment and applied to centre point plus distance vector from
centre of the building, (d) force vectors and moment vectors applied to core beam 87

Figure 3-22: FEA workflow ... 88
Figure 3-23: Typical floor plan of Absolute Tower © MAD Architects .. 89
Figure 3-24: Karamba FEA script ... 89
Figure 3-25: FEM in Karamba (left) and deflected model (right) ... 90
Figure 3-26: Deflected model of core showing stresses .. 90
Figure 3-27: Optimisation workflow ... 92
Figure 3-28: User Input (UI) area of script and steps to run FSIO method 93
Figure 3-29: Absolute Tower model parameters ... 95
Figure 3-30: Results of Absolute Tower optimisation 1 ... 96
Figure 3-31: Absolute Tower optimisation 1 .. 97
Figure 3-32: Results of Absolute Tower optimisation 2 ... 99
Figure 3-33: Figure 3 26: Absolute Tower optimisation 2 ... 100
Figure 3-34: Nanchang Tower model parameters ... 101
Figure 3-35: Results of Nanchang Tower optimisation .. 102
Figure 3-36: Nanchang Tower optimisation ... 104
Figure 3-37: Ardmore Residence model parameters ... 105
Figure 3-38: Results of Ardmore Residence optimisation .. 106
Figure 3-39: Original vs. optimised plan layout ... 106
Figure 3-40: Ardmore Residence optimisation .. 107
Figure 3-41: Results of Absolute Tower optimisation 3 ... 109
Figure 3-42: Final FSIO method workflow.. 113
Figure 3-43: Full FSIO script ... 114
Figure 3-44: Total FSIO script overview ... 115
Figure 4-1: Areas for wind force, Fw, application ... 120
Figure 4-2: Absolute Tower EN/FSI calculation comparison ... 121

APPENDIX

144

7.1 Appendix 1 – Navier-Stokes equations

This appendix lists the full sets of equations for describing fluid motion (Wendt et
al., 2009).

7.1.1 Euler Equations (Inviscid Flow)

Inviscid flow is a flow where the dissipative, transport phenomena of viscosity,
mass diffusion and thermal conductivity are neglected (Wendt et al., 2009).

145

7.1.2 Navier-Stokes Equations (Viscous Flow)

These equations describe viscous flow, i.e. flow that includes the dissipative
transport phenomena of viscosity and thermal conduction. The additional
transport phenomena for mass diffusion is not included as we are describing a
homogenous, nonreactive gas (Wendt et al., 2009).

146

147

7.2 Appendix 2 – CFD validation

7.2.1 CFD Validation results

Test TJ(D) BF_1 BF_2 BF_3 FFD

Turbulence
model N/A kEpsilon realizableKE RNGkEpsilon v = 0.1
Cell size (m) N/A 0.98755 0.98755 0.98755 5
no. of cells N/A 615 120 615 120 616 120 1 728 000
Iterations N/A 30000 30000 30000 600
Time N/A 41.7h 37.4h 42.6h 9.2h

P
re

ss
ur

e
co

ef
fi

ci
en

t,
 C

p

F r
o

nt

1 0.61 0.83 1.75 0.62 0.21

2 0.87 0.97 1.84 0.81 0.30

3 0.89 0.99 1.83 0.84 0.31

4 0.89 0.97 1.75 0.81 0.30

5 0.63 0.83 -1.76 0.62 0.19

Le
ft

6 -0.84 -1.12 -1.23 -0.71 -0.23

7 -0.87 -0.89 -1.07 -0.72 -0.15

8 -0.89 -0.66 -1.08 -0.68 -0.12

9 -0.89 -0.53 -1.57 -0.58 -0.10

10 -0.94 -0.43 -4.32 -0.57 -0.09

R
ea

r

11 -0.71 -0.38 -3.85 -0.38 -0.09

12 -0.68 -0.36 -3.78 -0.35 -0.09

13 -0.66 -0.35 -3.85 -0.34 -0.09

14 -0.66 -0.36 -4.32 -0.35 -0.09

15 -0.72 -0.38 -1.54 -0.38 -0.09

R
ig

ht

16 -0.92 -0.43 -1.07 -0.56 -0.09

17 -0.86 -0.52 -1.05 -0.59 -0.10

18 -0.83 -0.65 -1.05 -0.68 -0.11

19 -0.83 -0.87 -1.20 -0.73 -0.14

20 -0.80 -1.19 -1.73 -0.73 -0.23

148

7.2.2 Cp of turbulence model sensitivity analysis

From Meng et al. (2018) courtesy of co-author Baojie He.

NO. Standard RNG Realizable SST BSL TJ

1 0.64203 0.62405 0.63719 0.63694 0.58418 0.56343

2 0.86740 0.86104 0.86992 0.86719 0.91843 0.79758

3 0.90867 0.90675 0.91301 0.90807 0.96502 0.85394

4 0.86497 0.86535 0.87009 0.86424 0.91862 0.80929

5 0.63260 0.63569 0.63846 0.62679 0.58465 0.57070

6 -0.74235 -0.69798 -0.72661 -0.71705 -0.85334 -0.71434

7 -0.77215 -0.71447 -0.75695 -0.78587 -0.86121 -0.69435

8 -0.76761 -0.70998 -0.77649 -0.80605 -0.90704 -0.77940

9 -0.70157 -0.61904 -0.72372 -0.69233 -0.80108 -0.74728

10 -0.70472 -0.59103 -0.69386 -0.71559 -0.62045 -0.80001

11 -0.59608 -0.54242 -0.58018 -0.53124 -0.47155 -0.53354

12 -0.59200 -0.55271 -0.55210 -0.51010 -0.46453 -0.48526

13 -0.59372 -0.55831 -0.53055 -0.50280 -0.46287 -0.46526

14 -0.58985 -0.55684 -0.54639 -0.49055 -0.46459 -0.47758

15 -0.56329 -0.55188 -0.57858 -0.49106 -0.47147 -0.53031

16 -0.62959 -0.65635 -0.67693 -0.65882 -0.62179 -0.77697

17 -0.65807 -0.67288 -0.71664 -0.62373 -0.80337 -0.75293

18 -0.73689 -0.76660 -0.76871 -0.68804 -0.90974 -0.73697

19 -0.73556 -0.76476 -0.74908 -0.69438 -0.86563 -0.70081

20 -0.68510 -0.74364 -0.74132 -0.66100 -0.85862 -0.68082

148

7.2.2 Cp of turbulence model sensitivity analysis

From Meng et al. (2018) courtesy of co-author Baojie He.

NO. Standard RNG Realizable SST BSL TJ

1 0.64203 0.62405 0.63719 0.63694 0.58418 0.56343

2 0.86740 0.86104 0.86992 0.86719 0.91843 0.79758

3 0.90867 0.90675 0.91301 0.90807 0.96502 0.85394

4 0.86497 0.86535 0.87009 0.86424 0.91862 0.80929

5 0.63260 0.63569 0.63846 0.62679 0.58465 0.57070

6 -0.74235 -0.69798 -0.72661 -0.71705 -0.85334 -0.71434

7 -0.77215 -0.71447 -0.75695 -0.78587 -0.86121 -0.69435

8 -0.76761 -0.70998 -0.77649 -0.80605 -0.90704 -0.77940

9 -0.70157 -0.61904 -0.72372 -0.69233 -0.80108 -0.74728

10 -0.70472 -0.59103 -0.69386 -0.71559 -0.62045 -0.80001

11 -0.59608 -0.54242 -0.58018 -0.53124 -0.47155 -0.53354

12 -0.59200 -0.55271 -0.55210 -0.51010 -0.46453 -0.48526

13 -0.59372 -0.55831 -0.53055 -0.50280 -0.46287 -0.46526

14 -0.58985 -0.55684 -0.54639 -0.49055 -0.46459 -0.47758

15 -0.56329 -0.55188 -0.57858 -0.49106 -0.47147 -0.53031

16 -0.62959 -0.65635 -0.67693 -0.65882 -0.62179 -0.77697

17 -0.65807 -0.67288 -0.71664 -0.62373 -0.80337 -0.75293

18 -0.73689 -0.76660 -0.76871 -0.68804 -0.90974 -0.73697

19 -0.73556 -0.76476 -0.74908 -0.69438 -0.86563 -0.70081

20 -0.68510 -0.74364 -0.74132 -0.66100 -0.85862 -0.68082

149

7.3 Appendix 3 – Sensitivity analysis

7.3.1 Sensitivity analysis results - Number of iterations - Butterfly

Test RNG_30k RNG_10k RNG_5k

Turbulence
model RNGkEpsilon RNGkEpsilon RNGkEpsilon
Cell size (m) 0.987552 0.987552 0.987552
no. of cells 615 120 615 120 615 120
Iterations 30000 10000 5000
Time 42.6h 15.7h 6.95h

P
re

ss
ur

e
co

ef
fi

ci
en

t,
 C

p

Fr
o

nt

1 0.62 0.62 0.62
2 0.81 0.81 0.81
3 0.84 0.84 0.84
4 0.81 0.81 0.81
5 0.62 0.62 0.62

Le
ft

6 -0.71 -0.71 -0.71
7 -0.72 -0.72 -0.72
8 -0.68 -0.68 -0.68
9 -0.58 -0.58 -0.58

10 -0.57 -0.57 -0.57

R
ea

r

11 -0.38 -0.38 -0.38
12 -0.35 -0.35 -0.35
13 -0.34 -0.34 -0.34
14 -0.35 -0.35 -0.35
15 -0.38 -0.38 -0.38

R
ig

ht

16 -0.56 -0.57 -0.57
17 -0.59 -0.59 -0.59
18 -0.68 -0.69 -0.68
19 -0.73 -0.73 -0.73
20 -0.73 -0.73 -0.73

149

7.3 Appendix 3 – Sensitivity analysis

7.3.1 Sensitivity analysis results - Number of iterations - Butterfly

Test RNG_30k RNG_10k RNG_5k

Turbulence
model RNGkEpsilon RNGkEpsilon RNGkEpsilon
Cell size (m) 0.987552 0.987552 0.987552
no. of cells 615 120 615 120 615 120
Iterations 30000 10000 5000
Time 42.6h 15.7h 6.95h

P
re

ss
ur

e
co

ef
fi

ci
en

t,
 C

p

F r
o

nt

1 0.62 0.62 0.62
2 0.81 0.81 0.81
3 0.84 0.84 0.84
4 0.81 0.81 0.81
5 0.62 0.62 0.62

Le
ft

6 -0.71 -0.71 -0.71
7 -0.72 -0.72 -0.72
8 -0.68 -0.68 -0.68
9 -0.58 -0.58 -0.58

10 -0.57 -0.57 -0.57

R
ea

r

11 -0.38 -0.38 -0.38
12 -0.35 -0.35 -0.35
13 -0.34 -0.34 -0.34
14 -0.35 -0.35 -0.35
15 -0.38 -0.38 -0.38

R
ig

ht

16 -0.56 -0.57 -0.57
17 -0.59 -0.59 -0.59
18 -0.68 -0.69 -0.68
19 -0.73 -0.73 -0.73
20 -0.73 -0.73 -0.73

150

7.3.2 Sensitivity analysis results - Number of iterations – GH Wind

Test FFD_600 FFD_400
Turbulence
model v = 0.1 v = 0.1
Cell size (m) 5 5
no. of cells 1 728 000 1 728 000
Iterations 600 400
Time 9.2h 5.7h

P
re

ss
ur

e
co

ef
fi

ci
en

t,
 C

p

Fr
o

nt

1 0.62 0.62
2 0.81 0.81
3 0.84 0.84
4 0.81 0.81
5 0.62 0.62

Le
ft

6 -0.71 -0.71
7 -0.72 -0.72
8 -0.68 -0.68
9 -0.58 -0.58

10 -0.57 -0.57

R
ea

r

11 -0.38 -0.38
12 -0.35 -0.35
13 -0.34 -0.34
14 -0.35 -0.35
15 -0.38 -0.38

R
ig

ht

16 -0.56 -0.57
17 -0.59 -0.59
18 -0.68 -0.69
19 -0.73 -0.73
20 -0.73 -0.73

150

7.3.2 Sensitivity analysis results - Number of iterations – GH Wind

Test FFD_600 FFD_400
Turbulence
model v = 0.1 v = 0.1
Cell size (m) 5 5
no. of cells 1 728 000 1 728 000
Iterations 600 400
Time 9.2h 5.7h

P
re

ss
ur

e
co

ef
fi

ci
en

t,
 C

p

Fr
o

nt

1 0.62 0.62
2 0.81 0.81
3 0.84 0.84
4 0.81 0.81
5 0.62 0.62

Le
ft

6 -0.71 -0.71
7 -0.72 -0.72
8 -0.68 -0.68
9 -0.58 -0.58

10 -0.57 -0.57

R
ea

r

11 -0.38 -0.38
12 -0.35 -0.35
13 -0.34 -0.34
14 -0.35 -0.35
15 -0.38 -0.38

R
ig

ht

16 -0.56 -0.57
17 -0.59 -0.59
18 -0.68 -0.69
19 -0.73 -0.73
20 -0.73 -0.73

151

7.3.3 Sensitivity analysis – Mesh size – Butterfly

Test MAD_1 MAD_2 MAD_3 MAD_4 MAD_5

Turbulence
model RNGkEpsilon RNGkEpsilon RNGkEpsilon RNGkEpsilon RNGkEpsilon

Resolution Coarse Medium Fine Super Fine XXFine
Cell size (m) 4.18 2.96 2.09 1.48 1.08

no. of cells 176545 236050 346647 525640 732422
Time 5.7h 6.3h 8.6h 14.5h 20.3h

Iterations 10000 10000 10000 10000 10000

C
p

 a
t

p
re

ss
u

re
 t

ap

Fr
on

t

0 0.04 0.06 0.01 0.01 0.01

1 0.29 0.27 0.19 0.18 0.23

2 0.16 0.14 -0.21 -0.29 -0.29

3 0.09 0.01 -0.32 -0.35 -0.36

4 0.47 0.49 0.36 0.29 0.39

5 0.17 0.18 0.18 0.18 0.17

6 0.38 0.40 0.46 0.43 0.42

7 0.65 0.65 0.58 0.59 0.62

8 0.71 0.78 0.80 0.79 0.79

9 0.86 0.91 0.92 0.92 0.94

10 0.04 0.09 0.09 0.05 0.05

11 0.07 -0.05 -0.06 -0.04 -0.04

12 -0.1 -0.25 -0.49 -0.50 -0.39

13 0.53 0.56 0.60 0.55 0.45

14 0.5 0.51 0.37 0.33 0.38

R
ea

r

15 -0.38 -0.37 -0.35 -0.31 -0.31

16 -0.37 -0.36 -0.33 -0.29 -0.29

17 -0.39 -0.56 -0.59 -0.49 -0.62

18 -0.59 -0.55 -0.53 -0.53 -0.51

19 -0.49 -0.48 -0.48 -0.45 -0.49

20 -0.36 -0.34 -0.32 -0.28 -0.28

21 -0.36 -0.35 -0.31 -0.28 -0.29

22 -0.39 -0.38 -0.32 -0.23 -0.18

23 -0.58 -0.55 -0.55 -0.52 -0.53

24 -0.45 -0.40 -0.40 -0.37 -0.38

25 -0.38 -0.40 -0.35 -0.31 -0.30

26 -0.38 -0.37 -0.35 -0.31 -0.32

27 -0.45 -0.49 -0.65 -0.64 -0.71

28 -0.58 -0.53 -0.54 -0.50 -0.50

29 -0.5 -0.46 -0.42 -0.41 -0.44

152

7.3.4 Sensitivity analysis – Mesh size – GH Wind

Test MAD_6 MAD_7 MAD_8
Turbulence

model FFD FFD FFD
Resolution Medium Fine SuperFine

Cell size (m) 10 8 6
no. of cells 390830 1423254 1824912

Time 3.4h 7.1h 11.8h
Iterations 400 400 400

C
p

 a
t

p
re

ss
u

re
 t

ap

Fr
on

t

0 -0.01 0.05 -0.02
1 0.02 0.06 -0.24
2 0.00 0.07 -0.21
3 -0.05 0.10 -0.05
4 -0.02 0.21 -0.06
5 0.06 0.07 -0.04
6 0.11 0.21 -0.10
7 0.03 0.25 -0.11
8 0.18 0.23 -0.12
9 0.18 0.25 -0.16

10 0.00 0.00 -0.15
11 -0.02 -0.01 -0.26
12 -0.02 -0.05 -0.35
13 0.05 0.13 -0.31
14 0.01 0.10 -0.41

R
ea

r

15 -0.01 -0.05 -0.08
16 0.00 -0.03 0.05
17 -0.01 -0.03 -0.03
18 -0.04 -0.03 -0.43
19 -0.05 -0.03 -0.39
20 0.00 -0.03 -0.08
21 0.00 -0.02 0.02
22 0.00 -0.02 -0.09
23 -0.01 -0.03 -0.21
24 -0.04 -0.03 -0.28
25 -0.01 -0.05 -0.06
26 -0.01 -0.03 0.00
27 -0.02 -0.03 -0.13
28 -0.03 -0.03 -0.22
29 -0.05 -0.04 -0.17

153

7.4 Appendix 4 – Hand calculations

Hand calculations for verifying FEA

 Loads
Node Forces[kN] Moments [kNm] Core Dimensions [m]

1 919.26 -333.55 Height 8.60
2 1117.24 3946.49 Width 8.00
3 1041.29 11350.61 Thickness 0.40
4 1073.93 -7067.46
5 1810.17 -5958.61 E [kN/m2] = 3.60E+07
6 2260.92 1780.07

 d between pts [m] d from base [m]

1 15.41 15.41 I [m4] = 139.3061
2 30.91 46.32
3 29.45 75.77
4 24.50 100.27
5 25.59 125.86
6 29.34 155.20
7 14.22 169.42

 Total height 169.42

 Deflection [m] My [kNm] 831220.6

1 0.0036 Mz [kNm] 3717.56
2 0.0368 Max stress [MPa] 25.66
3 0.0859
4 0.1464
5 0.3644
6 0.6390

Total 1.2761

154

7.5 Appendix 5 – Eurocode calculation

Wind force (Fw) calculation for Absolute Tower using EN1991-1-4

EN = NEN-EN1991-1-4:2005

EN-NA = Netherlands National Annex to NEN-EN1991-1-4+A1+C2

Basic wind velocity, vb = 30 m/s

Building height, h = 170m

Building width, b = 40.13m

Height above ground, z = 76.29m

𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 · 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 · 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒) · 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Fw = 927.85 N/m2

Where:

qp(z) = Peak velocity pressure at height z (eq. 1)

cf = Force coefficient (eq. 2)

cscd = Structural factor (eq. 3)

Aref = Reference area of structure = 1m2

𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧) = [1 + 7 · 𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧)] · 1
2

· 𝜌𝜌𝜌𝜌 · 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚2 (𝑧𝑧𝑧𝑧) (eq. 1)

qp(z) = 1487.124 N/m2

Where:

Iv(z) = Turbulence intensity at height z (eq. 1.1)

ρ = Air density = 1.225 kg/m3

vm2 = Mean wind velocity at height z (eq. 1.2)

155

𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧) = 𝑘𝑘𝑘𝑘𝐼𝐼𝐼𝐼
𝑐𝑐𝑐𝑐0(𝑧𝑧𝑧𝑧)·ln� 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧0�

 (eq. 1.1)

Iv(z) = 0.2307

Where:

kI = Turbulence factor = 1.0 (EN 4.4)

co = Orography factor = 1.0 (EN-NA A.3)

z = height above ground

z0 = Roughness length = 1m

𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧) = 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧𝑧𝑧) · 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜(𝑧𝑧𝑧𝑧) · 𝑣𝑣𝑣𝑣𝑏𝑏𝑏𝑏 (eq. 1.2)

vm(z) = 30.47 m/s

Where:

cr(z) = Roughness factor

vb = Basic wind velocity

𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟(𝑧𝑧𝑧𝑧) = 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 · ln � 𝑧𝑧𝑧𝑧
𝑧𝑧𝑧𝑧0
� (eq. 1.2.1)

cr(z) = 1.0157

Where:

kr = Terrain factor

z = height above ground

z0 = Roughness length

156

𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟 = 0.19 · � 𝑧𝑧𝑧𝑧0
𝑧𝑧𝑧𝑧0,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

�
0.07

 (eq. 1.2.2)

kr = 0.2343

Where:

z0 = Roughness length

z0,II = Roughness length for terrain category II = 0.05m

𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓,0 · 𝜓𝜓𝜓𝜓𝜆𝜆𝜆𝜆 (eq. 2)

cf = 0.5890

Where:

cf,0 = Force coefficient without free-end flow for a circular cylinder (EN 7.9.2 –
figure 7.28 using Re (eq. 2.1))

ѱλ = End-effect factor = 0.68 (EN 7.13)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑏𝑏𝑏𝑏∙𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒)
𝜈𝜈𝜈𝜈

 (eq. 2.1)

Re = 1.32E+08

Where:

Re = Reynold’s number

b = Building width

v(ze) = Peak wind velocity at height z

ν = Kinematic viscosity of air = 1.5E-6 m2/s

157

𝑣𝑣𝑣𝑣 = �
2·𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝
𝜌𝜌𝜌𝜌

 (eq. 2.1.1)

v = 49.2743 m/s

Where:

qp(z) = Peak velocity pressure at height z

ρ = Air density = 1.225 kg/m3

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 = 1+2·𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝·𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)√𝐵𝐵𝐵𝐵2+𝑅𝑅𝑅𝑅2

1+7·𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠) (eq. 3)

cscd = 1.0593

Where:

R2 = Resonance response factor

B2 = Background factor

kp = Peak factor

Iv(zs) = Turbulence intensity at reference height for structural factor 𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠 = 0.6 · ℎ

𝑅𝑅𝑅𝑅2 = 𝜋𝜋𝜋𝜋2

2·𝛿𝛿𝛿𝛿
· 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿�𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛1,𝑚𝑚𝑚𝑚� · 𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠�𝑛𝑛𝑛𝑛1,𝑚𝑚𝑚𝑚� (eq. 3.1)

R2 = 0.9227

Where:

δ = Total logarithmic decrement of damping

SL = Wind power spectral density function at reference height zs at the natural
frequency of the building, n1,x

Ks = Size reduction function at natural frequency, n1,x

158

𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠 + 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚 + 𝛿𝛿𝛿𝛿𝑑𝑑𝑑𝑑 (eq. 3.1.1)

δ = 0.0851

Where:

δs = Logarithmic decrement of structural damping = 0.08 (EN F.5 – Table F.2)

δa = Logarithmic decrement of aerodynamic damping

δd = Logarithmic decrement of damping due to special devices = 0

𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓·𝜌𝜌𝜌𝜌·𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)
2·𝑛𝑛𝑛𝑛1·𝜇𝜇𝜇𝜇𝑒𝑒𝑒𝑒

 (eq. 3.1.1.1)

δa = 0.0051

Where:

cf = Force coefficient

vm(zs) = Mean wind speed at zs

n1 = Natural frequency of building = 46/h (EN F.2)

μe = Equivalent mass per unit area = 347.4 kg/m3 ∙ b (Vongsingha, 2015)

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧,𝑛𝑛𝑛𝑛) = 6.8·𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧,𝑛𝑛𝑛𝑛)

�1+10.2·𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧,𝑛𝑛𝑛𝑛)�
5
3�
 (eq. 3.1.2)

SL(z,n) = 0.1015

Where:

fL(z,n) = Non-dimensional frequency determined by natural frequency n1,x

159

𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧,𝑛𝑛𝑛𝑛) = 𝑛𝑛𝑛𝑛·𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧)
𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧) (eq. 3.2.1)

fL(z,n) = 1.3926

Where:

n = Natural frequency of the building

L(z) = Turbulence length scale at height z

Vm(z) = Mean wind speed at height z

𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧) = 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡 · � 𝑧𝑧𝑧𝑧
𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡
�
𝛼𝛼𝛼𝛼

 (eq. 3.2.1.1)

L(z) = 157.284

Where:

Lt = Reference length scale = 300m

zt = Reference height = 200m

𝛼𝛼𝛼𝛼 = 0.06 + 0.05 · ln(𝑧𝑧𝑧𝑧0)

𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛) = 1

1+��𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦·𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦�
2+(𝐺𝐺𝐺𝐺𝑧𝑧𝑧𝑧·𝜙𝜙𝜙𝜙𝑧𝑧𝑧𝑧)2+�2𝜋𝜋𝜋𝜋·𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦·𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦·𝐺𝐺𝐺𝐺𝑧𝑧𝑧𝑧·𝜙𝜙𝜙𝜙𝑧𝑧𝑧𝑧�

2 (eq. 3.1.3)

Ks(n) = 0.1569

Where:

Gy = 5/18 (EN C.2 – Table C.1)

Gz = ½ (ENC.2 – Table C.1)

𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦·𝑏𝑏𝑏𝑏·𝑛𝑛𝑛𝑛
𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)

 & 𝜙𝜙𝜙𝜙𝑧𝑧𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑧𝑧𝑧𝑧·ℎ·𝑛𝑛𝑛𝑛
𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)

cy = cz = Decay constants = 11.5 (EN C.2)

160

𝐵𝐵𝐵𝐵2 = 1

1+32·�� 𝑏𝑏𝑏𝑏
𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)�

2
+� ℎ

𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)�
2
+� 𝑏𝑏𝑏𝑏

𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)· ℎ
𝐿𝐿𝐿𝐿(𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠)�

2 (eq. 3.2)

B2 = 0.4166

Where:

L(zs) = Turbulence length scale at reference height zs

𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝 = �2 · ln(𝜈𝜈𝜈𝜈 · 𝑇𝑇𝑇𝑇) + 0.6
�2·ln(𝜈𝜈𝜈𝜈·𝑇𝑇𝑇𝑇)

 (eq. 3.3)

kp = 3.3223

Where:

ν = Up-crossing frequency

T = Averaging time for the mean wind velocity = 600 s

𝜈𝜈𝜈𝜈 = 𝑛𝑛𝑛𝑛1,𝑚𝑚𝑚𝑚�
𝑅𝑅𝑅𝑅2

𝐵𝐵𝐵𝐵2+𝑅𝑅𝑅𝑅2
 (eq. 3.3.1)

ν = 0.2239

Where:

n1,x = Natural frequency of the building

R2 = Resonance response factor

B2 = Background factor

161

7.6 Appendix 6 - Scripts

Custom Python and C# scripts used in the FSIO tool.

7.6.1 Blockage ratio calculation

1. """Provides a scripting component.
2. Inputs:
3. WTpoints: Corner Points from Wind Tunnel Component
4. Geo: The geometry
5. Output:
6. BRatio: Blockage Ratio"""
7.
8. __author__ = "ErronEstrado"
9. __version__ = "2019.01.21"
10.
11. import rhinoscriptsyntax as rs
12. import Rhino.Geometry as rg
13. import math
14.
15. def CreateTunnelBox(pts):
16. ptStart = pts[0]
17. ptEnd = pts[6]
18. box = rg.BoundingBox(ptStart, ptEnd)
19. return box.ToBrep()
20.
21. def TunnelBoxIntersection(box, bldg):
22. bBox = bldg.GetBoundingBox(False)
23. BrepBox = bBox.ToBrep()
24. props = rg.VolumeMassProperties.Compute(BrepBox)
25. centerPt = props.Centroid
26. pln = rg.Plane(centerPt, rg.Vector3d.ZAxis, rg.Vector3d.XAxis)
27. result = rg.Intersect.Intersection.BrepPlane(box, pln, 0.001)[1]
28. crv = rg.Curve.JoinCurves(result)
29. return crv
30.
31. def BuildingIntersection(bldg):
32. bBox = bldg.GetBoundingBox(False)
33. BrepBox = bBox.ToBrep()
34. props = rg.VolumeMassProperties.Compute(BrepBox)
35. centerPt = props.Centroid
36. pln = rg.Plane(centerPt, rg.Vector3d.ZAxis, rg.Vector3d.XAxis)
37. result = rg.Intersect.Intersection.BrepPlane(bldg, pln, 0.001)[1]
38. crv = rg.Curve.JoinCurves(result)
39. return crv
40.
41. def ComputeBlockageRatio(tunnel, bldg):
42. bldgArea = rg.AreaMassProperties.Compute(bldg).Area
43. TunnelArea = rg.AreaMassProperties.Compute(tunnel).Area
44. result = bldgArea/TunnelArea
45. return result
46.
47. TunnelBox = CreateTunnelBox(WTpoints)
48. TunnelCrv = TunnelBoxIntersection(TunnelBox, Geo)
49. BldgCrv = BuildingIntersection(Geo)
50.
51. BRatio = ComputeBlockageRatio(TunnelCrv, BldgCrv)

162

7.6.2 Cell size selector

1. """Provides a scripting component.
2. Inputs:
3. _geo: The geometry
4. _quality: Mesh quality
5. 0 = Coarse
6. 1 = Medium
7. 2 = Fine
8. 3 = SuperFine
9. 4 = XXFine
10. Output:
11. cellSize_: Cell size"""
12.
13. __author__ = "ErronEstrado"
14. __version__ = "2019.01.25"
15.
16. import rhinoscriptsyntax as rs
17. import Rhino.Geometry as rg
18. import math
19.
20. bBox = _geo.GetBoundingBox(True)
21. Box = rg.Box(bBox)
22.
23. dim = Box.X.Length
24. if Box.Y.Length < dim:
25. dim = Box.Y.Length
26.
27. base = 10
28. n = math.sqrt(2)
29.
30. def quality(x):
31. return{
32. 0 : base,
33. 1 : base * n,
34. 2 : base * n * n,
35. 3 : base * n * n * n,
36. 4 : base * n * n * n * n
37. }.get(x,10)
38.
39. div = quality(_quality)
40. size = dim / div
41. cellSize_ = format(size, '.2f')

7.6.3 Horizontal plane to visualize velocity vectors

1. """Creates horizontal plane to visualize velocity vectors.
2. Inputs:
3. _WTpoints: Corner points of wind tunnel box
4. _geo: The geometry
5. _height: Height to make plane
6. Output:
7. srf_: The output surface"""
8.
9. __author__ = "Erron Estrado"
10. __version__ = "2019.01.28"
11.
12. import rhinoscriptsyntax as rs
13. import Rhino.Geometry as rg
14. from copy import copy
15.

163

16. def CreateTunnelBox(pts):
17. ptStart = pts[0]
18. ptEnd = pts[6]
19. box = rg.BoundingBox(ptStart, ptEnd)
20. return box.ToBrep()
21.
22. def GetSurface(brep, z, bldg):
23. face = brep.Faces[4].ToBrep()
24. srf = copy(face)
25. move = rg.Vector3d(0, 0, z)
26. srf.Translate(move)
27. centerPt = rg.VolumeMassProperties.Compute(bldg).Centroid
28. centerPt.Z = z
29. centerPln = rg.Plane(centerPt, rg.Vector3d.ZAxis)
30. centerScale = rg.Transform.Scale(centerPln, 0.3, 0.3, 1)
31. srf.Transform(centerScale)
32. return srf
33.
34. def IntersectSurface(bldg, srf):
35. cutter = copy(bldg)
36. cutSrf = srf.Split(cutter, 0.001)
37. return cutSrf[0]
38.
39. bldgBox = _geo.GetBoundingBox(True)
40. centerPt = bldgBox.Center
41. bldgPln = rg.Plane(centerPt, rg.Vector3d.ZAxis)
42.
43. scaling = rg.Transform.Scale(bldgPln, 1.1, 1.1, 1.0)
44. scaledBldg = copy(_geo)
45. scaledBldg.Transform(scaling)
46.
47. box = CreateTunnelBox(_WTpoints)
48. pln = GetSurface(box, _height, _geo)
49. srf_ = IntersectSurface(scaledBldg, pln)

7.6.4 Vertical plane to visualize velocity vectors

1. """Creates vertical plane to visualize velocity vectors.
2. Inputs:
3. _WTpoints: Corner points of wind tunnel box
4. _geo: The geometry
5. Output:
6. srf_: The output surface"""
7.
8. __author__ = "Erron Estrado"
9. __version__ = "2019.01.28"
10.
11. import rhinoscriptsyntax as rs
12. import Rhino.Geometry as rg
13. from copy import copy
14.
15. def CreateTunnelBox(pts):
16. ptStart = pts[0]
17. ptEnd = pts[6]
18. box = rg.BoundingBox(ptStart, ptEnd)
19. return box.ToBrep()
20.
21. def GetSurface(brep, x, bldg):
22. face = brep.Faces[3].ToBrep()
23. srf = copy(face)
24. move = rg.Vector3d(x, 0, 0)
25. srf.Translate(move)

164

26. centerPt = rg.VolumeMassProperties.Compute(bldg).Centroid
27. #centerPt.X = x
28. centerPt.Z = 0.0
29. scalePln = rg.Plane(centerPt, rg.Vector3d.XAxis)
30. scaling = rg.Transform.Scale(scalePln, 0.3, 0.6, 1)
31. srf.Transform(scaling)
32. return srf
33.
34. def IntersectSurface(bldg, srf):
35. cutter = copy(bldg)
36. centerPt = rg.VolumeMassProperties.Compute(cutter).Centroid
37. centerPt.Z = 0.0
38. scalePln = rg.Plane(centerPt, rg.Vector3d.ZAxis)
39. scaling = rg.Transform.Scale(scalePln, 1.1, 1.1, 1.01)
40. cutter.Transform(scaling)
41. cutSrf = srf.Split(cutter, 0.001)
42.
43. srfVel = cutSrf[0]
44. if rg.AreaMassProperties.Compute(cutSrf[1]).Area > rg.AreaMassProperties.Com

pute(cutSrf[0]).Area:
45. srfVel = cutSrf[1]
46. return srfVel
47.
48. boxBrep = CreateTunnelBox(_WTpoints)
49. box = rg.Box(rg.Plane.WorldXY, boxBrep)
50. position = box.X.Length / 2
51. surface = GetSurface(boxBrep, position, _geo)
52.
53. srf_ = IntersectSurface(_geo, surface)

7.6.5 Get façade surface from building geometry

1. using System;
2. using System.Collections;
3. using System.Collections.Generic;
4.
5. using Rhino;
6. using Rhino.Geometry;
7.
8. using Grasshopper;
9. using Grasshopper.Kernel;
10. using Grasshopper.Kernel.Data;
11. using Grasshopper.Kernel.Types;
12.
13.
14.
15. /// <summary>
16. /// This class will be instantiated on demand by the Script component.
17. /// </summary>
18. public class Script_Instance : GH_ScriptInstance
19. {
20. #region Utility functions
21. /// <summary>Print a String to the [Out] Parameter of the Script component.</s

ummary>
22. /// <param name="text">String to print.</param>
23. private void Print(string text) { /* Implementation hidden. */ }
24. /// <summary>Print a formatted String to the [Out] Parameter of the Script com

ponent.</summary>
25. /// <param name="format">String format.</param>
26. /// <param name="args">Formatting parameters.</param>
27. private void Print(string format, params object[] args) /* Implementation hid

den. */ }impl

165

28. /// <summary>Print useful information about an object instance to the [Out] Pa
rameter of the Script component. </summary>

29. /// <param name="obj">Object instance to parse.</param>
30. private void Reflect(object obj) { /* Implementation hidden. */ }
31. /// <summary>Print the signatures of all the overloads of a specific method to

 the [Out] Parameter of the Script component. </summary>
32. /// <param name="obj">Object instance to parse.</param>
33. private void Reflect(object obj, string method_name) { /* Implementation hidde

n. */ }
34. #endregion
35.
36. #region Members
37. /// <summary>Gets the current Rhino document.</summary>
38. private readonly RhinoDoc RhinoDocument;
39. /// <summary>Gets the Grasshopper document that owns this script.</summary>
40. private readonly GH_Document GrasshopperDocument;
41. /// <summary>Gets the Grasshopper script component that owns this script.</sum

mary>
42. private readonly IGH_Component Component;
43. /// <summary>
44. /// Gets the current iteration count. The first call to RunScript() is associa

ted with Iteration==0.
45. /// Any subsequent call within the same solution will increment the Iteration

count.
46. /// </summary>
47. private readonly int Iteration;
48. #endregion
49.
50. /// <summary>
51. /// This procedure contains the user code. Input parameters are provided as re

gular arguments,
52. /// Output parameters as ref arguments. You don't have to assign output parame

ters,
53. /// they will have a default value.
54. /// </summary>
55. private void RunScript(Brep _geo, ref object srf_)
56. {
57. BoundingBox bBox = _geo.GetBoundingBox(true);
58. double height = bBox.Max.Z;
59. List<Brep> surfaces = new List<Brep>();
60. List<AreaMassProperties> props = new List<AreaMassProperties>();
61.
62. foreach (BrepFace face in _geo.Faces)
63. {
64. Brep faceSrf = face.ToBrep();
65. Point3d centre = AreaMassProperties.Compute(faceSrf).Centroid;
66. if (centre.Z > 0.1 && centre.Z < height - 0.1)
67. {
68. surfaces.Add(faceSrf);
69. }
70. }
71.
72. Brep[] facade = Brep.JoinBreps(surfaces, 0.01);
73.
74. Brep flippedBrep = FlipBrep(facade[0]);
75.
76. srf_ = ExplodeBrep(flippedBrep);
77.
78. }
79.
80. // <Custom additional code>
81.
82. static Brep FlipBrep(Brep geo)
83. {
84. Box bBox = new Box(geo.GetBoundingBox(true));
85. double width = bBox.X.Length;

166

86. if (bBox.Y.Length < width)
87. width = bBox.Y.Length;
88.
89. Surface srf = geo.Faces[0].ToNurbsSurface();
90.
91. Interval dom = new Interval(0, 1);
92.
93. srf.SetDomain(0, dom);
94. srf.SetDomain(1, dom);
95.
96. Vector3d normal = srf.NormalAt(0.5, 0.5);
97. normal *= width * 0.2;
98. Point3d pt = srf.PointAt(0.5, 0.5);
99. pt += normal;
100.
101. Brep cappedGeo = geo.CapPlanarHoles(0.01);
102.
103. if (cappedGeo.IsPointInside(pt, 0.01, false))
104. {
105. geo.Flip();
106. }
107.
108. return geo;
109. }
110.
111. static List<Surface> ExplodeBrep(Brep geo)
112. {
113. List<Surface> faces = new List<Surface>();
114.
115. foreach (Surface srf in geo.Faces)
116. {
117. srf.ToBrep();
118. faces.Add(srf);
119. }
120. return faces;
121. }
122. // </Custom additional code>
123. }

7.6.6 Vertical data grouping for FSI translation

1. using System;
2. using System.Collections;
3. using System.Collections.Generic;
4.
5. using Rhino;
6. using Rhino.Geometry;
7.
8. using Grasshopper;
9. using Grasshopper.Kernel;
10. using Grasshopper.Kernel.Data;
11. using Grasshopper.Kernel.Types;
12.
13.
14.
15. /// <summary>
16. /// This class will be instantiated on demand by the Script component.
17. /// </summary>
18. public class Script_Instance : GH_ScriptInstance
19. {
20. #region Utility functions

167

21. /// <summary>Print a String to the [Out] Parameter of the Script component.</s
ummary>

22. /// <param name="text">String to print.</param>
23. private void Print(string text) { /* Implementation hidden. */ }
24. /// <summary>Print a formatted String to the [Out] Parameter of the Script com

ponent.</summary>
25. /// <param name="format">String format.</param>
26. /// <param name="args">Formatting parameters.</param>
27. private void Print(string format, params object[] args) { /* Implementation hi

dden. */ }
28. /// <summary>Print useful information about an object instance to the [Out] Pa

rameter of the Script component. </summary>
29. /// <param name="obj">Object instance to parse.</param>
30. private void Reflect(object obj) { /* Implementation hidden. */ }
31. /// <summary>Print the signatures of all the overloads of a specific method to

 the [Out] Parameter of the Script component. </summary>
32. /// <param name="obj">Object instance to parse.</param>
33. private void Reflect(object obj, string method_name) { /* Implementation hidde

n. */ }
34. #endregion
35.
36. #region Members
37. /// <summary>Gets the current Rhino document.</summary>
38. private readonly RhinoDoc RhinoDocument;
39. /// <summary>Gets the Grasshopper document that owns this script.</summary>
40. private readonly GH_Document GrasshopperDocument;
41. /// <summary>Gets the Grasshopper script component that owns this script.</sum

mary>
42. private readonly IGH_Component Component;
43. /// <summary>
44. /// Gets the current iteration count. The first call to RunScript() is associa

ted with Iteration==0.
45. /// Any subsequent call within the same solution will increment the Iteration

count.
46. /// </summary>
47. private readonly int Iteration;
48. #endregion
49.
50. /// <summary>
51. /// This procedure contains the user code. Input parameters are provided as re

gular arguments,
52. /// Output parameters as ref arguments. You don't have to assign output parame

ters,
53. /// they will have a default value.
54. /// </summary>
55. private void RunScript(DataTree<System.Object> tree, int zDiv, ref object newT

ree)
56. {
57.
58. IList<GH_Path> paths = tree.Paths;
59. GH_Path lastBranch = paths[paths.Count - 1];
60. int lenZ = lastBranch.Indices[0];
61. int lenX = lastBranch.Indices[1];
62.
63. int zGrouping = (lenZ + 1) / zDiv;
64.
65. newTree = Grouping(tree, lenX, lenZ, zGrouping);
66.
67. }
68.
69. // <Custom additional code>
70. public DataTree<object> Grouping(DataTree<object> input, int xDim, int yDim, i

nt grouping)
71. {
72. DataTree<object> grouped = new DataTree<object>();
73.

168

74. for (int i = 0; i <= xDim; i++)
75. {
76. int ind = 0;
77. int counter = 0;
78.
79. for (int j = 0; j <= yDim; j++)
80. {
81. int[] getPath = {j, i};
82. int[] setPath = {ind, i};
83. object item = input.Branch(new GH_Path(getPath))[0];
84. grouped.Add(item, new GH_Path(setPath));
85. counter++;
86. if (counter > grouping)
87. {
88. ind++;
89. counter = 0;
90. }
91. }
92. }
93. return grouped;
94. }
95.
96.
97. //Return a BoundingBox that contains all the geometry you are about to draw.
98. public override BoundingBox ClippingBox
99. {
100. get
101. {
102. return BoundingBox.Empty;
103. }
104. }
105.
106. //Draw all meshes in this method.
107. public override void DrawViewportMeshes(IGH_PreviewArgs args)
108. {
109. }
110.
111. //Draw all wires and points in this method.
112. public override void DrawViewportWires(IGH_PreviewArgs args)
113. {
114. }
115.
116. // </Custom additional code>
117. }

	ABSTRACT
	CONTENTS
	1. INTRODUCTION
	1.1 Problem Statement
	1.2 Objective
	1.3 Research Questions
	1.3.1 Main question
	1.3.2 Sub-questions

	1.4 Methodology
	1.4.1 Research
	1.4.2 Develop
	1.4.3 Verify

	2. RESEARCH
	2.1 Wind Flow in the Environment
	2.1.1 Boundary layer
	2.1.2 Roughness length
	2.1.3 Turbulence

	2.2 Wind Actions on Structures
	2.2.1 Bluff and streamlined bodies
	2.2.2 Flow over a body
	2.2.3 Wind forces
	2.2.4 Geometric strategies to reduce wind response

	2.3 Calculation of Wind Loading
	2.3.1 Eurocode procedure
	2.3.2 Wind tunnel testing

	2.4 Computational Fluid Dynamics
	2.4.1 Navier-Stokes equations
	2.4.2 Turbulence models
	2.4.3 Fast Fluid Dynamics

	2.5 Fluid-Structure Interaction
	2.6 Optimisation
	2.6.1 Optimisation algorithms
	2.6.2 Optimisation Problem Formulation
	2.6.3 CFD based optimisation in buildings

	2.7 Conclusions

	3. DEVELOP
	3.1 Case Study Buildings
	3.2 CFD
	3.2.1 CFD script setup
	3.2.2 CFD validation
	3.2.3 Sensitivity analysis

	3.3 FSI
	3.3.1 Translation procedure
	3.3.2 Finite Element Analysis
	3.3.3 Conclusions

	3.4 Optimisation
	3.4.1 Optimisation setup
	3.4.2 Optimisation tests
	3.4.3 Conclusions

	3.5 Final Method and Tool

	4. VERIFY
	4.1 Eurocode Calculations
	4.2 Results
	4.3 Conclusions

	5. CONCLUSIONS
	5.1 Answers to Research Questions
	5.2 Further Improvements

	6. BIBLIOGRAPHY
	6.1. Table of Figures

	7. APPENDIX
	7.1 Appendix 1 - Navier-Stokes Equations
	7.1.1 Euler Equations (Inviscid Flow)
	7.1.2 Navier-Stokes Equations (Viscous Flow)

	7.2 Appendix 2 - CFD Validation
	7.2.1 CFD Validation
	7.2.2 Cp of turbulence model sensitivity analysis

	7.3 Appendix 3 - Sensitivity Analysis
	7.3.1 Sensitivity analysis - Number of iterations - Butterfly
	7.3.2 Sensitivity analysis - Number of iterations - GH Wind
	7.3.3 Sensitivity analysis - Mesh size - Butterfly
	7.3.4 Sensitivity analysis - Mesh size - GH Wind

	7.4 Appendix 4 - Hand Calculations
	7.5 Appendix 5 - Eurocode Calculation
	7.6 Appendix 6 - Scripts
	7.6.1 Blockage ratio calculation
	7.6.2 Cell size selector
	7.6.3 Horizontal plane to visualize velocity vectors
	7.6.4 Vertical plane to visualize velocity vectors
	7.6.5 Get facade surface from building geometry
	7.6.6 Vertical data grouping for FSI translation

