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A B S T R A C T

The state-of-the-art in wind-farm flow-physics modeling is Large Eddy Simulation (LES) which makes accurate
predictions of most relevant physics, but requires extensive computational resources. The next-fidelity model
types are Reynolds-Averaged Navier–Stokes (RANS) which are two orders of magnitude cheaper, but resolve
only mean quantities and model the effect of turbulence. They often fail to accurately predict key effects,
such as the wake recovery rate. Custom RANS closures designed for wind-farm wakes exist, but so far do not
generalize well: there is substantial room for improvement. In this article we present the first steps towards
a systematic data-driven approach to deriving new RANS models in the wind-energy setting. Time-averaged
LES data is used as ground-truth, and we first derive optimal corrective fields for the turbulence anisotropy
tensor and turbulence kinetic energy (t.k.e.) production. These fields, when injected into the RANS equations
(with a baseline 𝑘–𝜀 model) reproduce the LES mean-quantities. Next we build a custom RANS closure from
these corrective fields, using a deterministic symbolic regression method to infer algebraic correction as a
function of the (resolved) mean-flow. The result is a new RANS closure, customized to the training data. The
potential of the approach is demonstrated under neutral atmospheric conditions for multi-turbine constellations
at wind-tunnel scale. The results show significantly improved predictions compared to the baseline closure,
for both mean velocity and the t.k.e. fields.
1. Introduction

Offshore wind farms have the potential to become the sustainable
future power plants of North-Western Europe. For instance, the Dutch
government projects a growth towards 11.5GW of installed offshore
capacity by 2030, entailing that a large part of the North Sea will be
filled with wind farms [1].

Accurate wind turbine wake models are important because they
facilitate optimizing energy yield and turbine loading during the design
and operation phases of a wind farm. There exist a multitude of
models that attempt to model wake effects, varying in physical fidelity,
accuracy, and computational cost. They range from simple engineering
models to complex computational fluid dynamics codes. Generally,
engineering models are not accurate enough if significant wake inter-
action is present [2,3]. The state of the art is Large Eddy Simulations
(LES) which is a high-fidelity Computational Fluid Dynamics (CFD)
method where most of the scales of turbulence are resolved whilst the
effect of the unresolved on the resolved scales is modeled. However,
this type of simulation requires extensive computational resources:
one wind speed and direction simulation of the Lillgrund wind farm
can take between 160𝑘 and 3000𝑘 processor hours depending on how
the turbines are modeled [4,5]. The next-fidelity model types are
Reynolds-Averaged Navier–Stokes (RANS) models which require about
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two orders of magnitude less computational time (because they model
all turbulence scales) resulting in coarser meshes and direct equations
for the mean quantities — without a need for time-averaging the
simulation as is necessary for LES. Of course, sometimes also transient
quantities are of interest and the atmospheric boundary layer is inher-
ently transient. Nonetheless, RANS models provide useful information
for time-averaged quantities over short intervals. For both RANS and
LES the range of scales present, ranging from the boundary-layer on
the turbine blades to the height of the atmospheric boundary layer, is
too large to be fully resolved. Generally, actuator models are used to
model the presence of wind turbines [2].

In this article, we aim to extend the capabilities of RANS turbulence
models for wind turbines under quasi-steady conditions. Currently, the
most commonly used RANS model in this setting, namely the 𝑘–𝜀
model, has crippling structural shortcomings. It over-predicts the eddy
viscosity in the near wake which leads to an over-prediction of the
wake recovery, and it fails to account for the effects of turbulence
anisotropy [2]. There are two main reasons why the model does not
perform well in the near wake: (i) the eddy-viscosity assumption is
invalid in the near wake region, and (ii) the direct effect of the
turbine on the turbulence mean quantities is not modeled [6]. Sev-
eral modifications to the baseline 𝑘–𝜀 model have been proposed in
vailable online 17 November 2021
his is an open access article under the CC BY license (http://creativecommons.org/l

https://doi.org/10.1016/j.compfluid.2021.105213
Received 11 June 2021; Received in revised form 7 October 2021; Accepted 18 Oc
icenses/by/4.0/).

tober 2021

http://www.elsevier.com/locate/compfluid
http://www.elsevier.com/locate/compfluid
mailto:j.steiner@tudelft.nl
https://doi.org/10.1016/j.compfluid.2021.105213
https://doi.org/10.1016/j.compfluid.2021.105213
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.105213&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Fluids 233 (2022) 105213J. Steiner et al.

s
e

the literature. Most approaches aim at extending the baseline Linear
Eddy Viscosity Model (LEVM) by either adding additional terms to the
transport equations or by directly adding an eddy-viscosity limiter in
the momentum equation. For example, El Kasmi and Masson [7] used
a modified version of the 𝑘–𝜀 model which introduces an additional
ource term that is proportional to the square of the turbulent kinetic
nergy production rate in the transport equation for 𝜀. The source term

is only non-zero close to the rotor because they argue that this is the
area where non-equilibrium effects are important. This source term is
intended to suppress the overproduction of turbulent kinetic energy in
the near wake where strong shear gradients are present. Prospathopou-
los et al. [8] apply an eddy-viscosity limiter (Durbin limiter) based on
a realizability constraint. Réthoré [6] used two different eddy-viscosity
limiters based on a realizability constraint, and the adverse pressure
gradient in the near wake region. Van der Laan et al. [9] developed
a model named the 𝑘 − 𝜀 − 𝑓𝑃 model with a limiter that reduces the
eddy-viscosity in regions with high-velocity gradients. The limiter is a
simplified version of a cubic non-linear eddy viscosity model (NLEVM)
and is applied directly in the relation for the eddy viscosity. In a follow-
up publication, van der Laan et al. [10] compare this eddy-viscosity
limiter to the one from Shih and Durbin, all for the 𝑘–𝜀 model. They
recommend the use of either the 𝑓𝑃 or the Shih limiter since the Durbin
limiter is very sensitive to ambient turbulence levels.

Full NLEVMs have also been used in turbine wake modeling: Gomez-
Elvira et al. [11] and van der Laan et al. [12] used a NLEVM which
yielded improved predictions of velocity and Reynolds stresses. How-
ever, the models they devised showed numerical instabilities for high
turbulence intensities and fine meshes. Cabezon et al. [13] went fur-
ther, using a Reynolds Stress Model (RSM) which again improved
predictions at the cost of robustness.

While all of these models offer some improvements over the stan-
dard 𝑘–𝜀 model, the improvements are case dependent, some of them
require turbine and/or case specific tuning parameters, some of them
are not numerically robust and at this point, the influence of atmo-
spheric stratification is not considered. Further, most of these models
aim only at improving the shortcomings of the eddy-viscosity assump-
tion, they do not directly consider the effect of actuator forcing on the
turbulence equations.

In this publication we take a different approach to improve the un-
satisfactory baseline model, namely this work aims to further develop
the data-driven framework introduced by Schmelzer et al. [14] Sparse
Regression of Turbulent Stress Anisotropy (SpaRTA). This framework
has, until now, only been applied to simple 2d testcases with Reynolds
numbers below 50,000. Data-driven turbulence modeling is a recent
development in the fluid-dynamics community and its merit has gener-
ally been restricted to relatively simple two-dimensional flows [15–19].
Data-driven approaches to turbulence modeling can be divided into two
broad categories based on the underlying regression model: either using
(a) extremely general models with a very large number of parameters,
such as artificial neural networks and random forests [15,20–24]; or
(b) and methods using symbolic algorithms such as sparse regression
and Gene Expression Programming (GEP) which tend to result in
concise, inspectable models [14,25–28]. While the former ‘‘black-box’’
approaches were the first to be applied to turbulence modeling, and
are capable of capturing very complex models, the result is expensive
to incorporate into a CFD solver, and often makes the solver highly
unstable. As a result most such models are used as a corrective step
rather than as true turbulence closures [15,20]. Symbolic algorithms
avoid these pitfalls due to the simplicity and comprehensibility of the
resulting expressions.

A critical aspect of data-driven modeling is the location in the gov-
erning equations at which the baseline model is modified: some authors
scale the turbulent kinetic energy production term in the LEVM [17,
21]; others introduce a correction to the anisotropy tensor, thereby
transforming an LEVM into a NLEVM [15,20]. In this publication, we
2

use both an anisotropy correction and a source term in the transport
equation for the turbulent kinetic energy, following SpaRTA [14]. This
has the benefit of correcting both the directionality and the magnitude
of the Reynolds stress tensor (RST), as well as accounting for model-
form errors in the transport equation for 𝑘. For wind engineering,
actuator models are used to model the effect of the turbine on the
flow, however in general actuator models do not model the effect
of the actuator on the turbulence [6]. Our approach is interesting
because it can implicitly correct for errors in the actuator model.
Furthermore SpaRTA uses deterministic symbolic regression, for which
the search space is constrained towards parsimonious algebraic models
using modern sparsity-promoting regression techniques [29,30].

In terms of novelty, the authors know of only two examples of
data-driven turbulence modeling applied to wind farms, namely those
from Adcock et al. [31] and King et al. [32]. The papers employ quite
a different approach to us, and do not go beyond a two-dimensional
model. Adcock et al. use an adjoint approach in a 2D RANS solver
with a mixing length turbulence model. They fit optimal mixing length
and thrust coefficient fields, which are generalized into a closure using
a Gaussian mixture model. King et al. use a similar adjoint-based
approach where they directly solve for an optimal eddy viscosity field
and then use Gaussian progress regression to parametrize the correction
beyond the training dataset. Some authors also use a hybrid approach
where an experimental dataset is infused into a RANS simulation to
gain information on regions or fields where it was not possible to
measure it experimentally. One example of such an approach within
the context of wind turbines is the one by Iungo et al. [33].

In this work, we use the SpaRTA framework and employ it to find
an improved 𝑘–𝜀 model using time-averaged LES data from a two-
and a three-turbine constellation at the wind-tunnel scale under neu-
tral ABL conditions. The two-turbine constellation is used as training
data and the three-turbine constellation is used a test data. From an
application point-of-view, this represents a relatively limited data-set
— from which it is nevertheless possible to derive a novel RANS closure
that significantly improves the predictive capability of the baseline
model, generalizing well between the constellations. This is one of the
first publications to apply sparse regression for turbulence modeling to
high-Reynolds number, three-dimensional problems — demonstrating
the potential of SpaRTA and similar methods for industrial problems.
There are only few other publications containing data-driven enhanced
turbulence models of high-Reynolds numbers and three-dimensional
problems, two examples are cited here [27,34].

Recently, Huijing et al. [35] applied a predecessor version of
SpaRTA to the flow around bluff bodies at a similar Reynolds number.
The updated version of SpaRTA used in this publications, encompasses
alterations to make it more industrially applicable in the context of
wind engineering: (i) a distinction between corrections for the incom-
ing boundary layer and the turbine wakes including a procedure to
match the boundary conditions exactly, (ii) wall blending to disable
corrections near the wall where the baseline model works reasonably
well already, and (iii) a feature set that includes physically motivated
parameters such as the turbulence forcing.

The publication is structured as follows: in Section 2 we define
the entire methodology of the approach. Additive model-form error
terms within the 𝑘–𝜀 LEVM model are identified via the introduction
of corrections to the stress–strain relation and the turbulence trans-
port equations. The 𝑘-corrective-frozen-RANS approach to identify the
optimal corrections is explained. Then, the generalization of these
correction terms using an elastic net is introduced. In Section 3, the
results of the frozen approach, the training, and cross-validation of the
correction terms and the inclusion of the correction terms in the flow
solver are displayed. Finally, conclusions are drawn in Section 4.

2. Methodology

Our complete data-driven turbulence modeling chain, consists of

three main steps. First we define a set of cases and perform LES
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Fig. 1. Case constellation, turbine diameter is to scale.

Table 1
Case setup parameters.
Turbine

Diameter 𝐷 = 0.15 m
Hub height ℎℎ𝑢𝑏 = 0.125 m
Rotation speed 𝛺 = 1190 rpm

Inflow boundary layer

Velocity 𝑈
(

ℎℎ𝑢𝑏
)

= 2.2 m/s
Turbulence intensity 𝜎𝑈

(

ℎℎ𝑢𝑏
)

= 1.0%

Mesh

Domain size 5.4 × 1.8 × 0.46 m3

Resolution 360 × 120 × 64

simulations of those cases, to provide training and validation data.
This data serves as a target and ground-truth of the subsequent RANS
modeling efforts (Section 2.1). Secondly we solve for RANS corrective
fields (Section 2.2). There are fields, which when injected into a RANS
simulation of the training-cases, reproduce the LES mean-field and
turbulence intensity. Note that it is not sufficient to merely use the
LES-obtained Reynolds-stress tensor (RST) to correct the momentum
equation, as established by Thompson et al. [36] this does not neces-
sarily lead to the correct mean-flow. Rather, our procedure serves the
same purpose as field inversion in the work of Parish & Duraisamy [22],
but does not require an adjoint or an optimization. Thirdly, we use
sparse symbolic regression to discover a concise algebraic expression
approximating these corrective fields, using only local flow quantities
available in the RANS simulation (Section 2.3). The result is a new
turbulence closure model, customized to the training cases, which can
be used to make predictions for similar setups outside the training set.

2.1. Case definition and LES database generation

The first step in the proposed methodology is to set up a database
of cases that serve as a ground-truth, to both train- and validate new
closure models. For this publication, the database consisted of two
different cases. The same surface roughness and hub-height velocity
were used for both cases, but the turbine constellation was changed, as
visualized in Fig. 1. The turbine and inflow properties correspond to the
wind-tunnel experiment from Chamorro and Porté-Agel [37], the most
important parameters are listed in Table 1. As a consequence, variations
in the inflow conditions and the turbine operation conditions are not
considered in this publication, however this would be interesting to do
in the future. The authors choose to look at varieties of constellations
of turbines only since they consider it to be a more challenging general-
ization task — compared to parametric variation that might be tackled
with surrogate modeling.

For the CFD model, OpenFOAM-6.0 is used in conjunction with the
SOWFA-6 toolbox [38]. For the RANS solver, a modified 𝑘–𝜀 model
3

Table 2
Turbulence model parameters.
WALE model

𝐶𝑒 0.93
𝐶𝑘 0.0673
𝐶𝑤 0.325

𝑘–𝜀 model

𝐶𝜇 0.03
𝐶𝜀1 1.42
𝐶𝜀2 1.92
𝜎𝜀 1.3
𝜎𝑘 1.3

is the baseline closure; for the LES solver, the WALE model is used
to model the unresolved scales [39,40]. The closure coefficients used
here for the two models can be found in Table 2. Validation of both
turbulence models is carried out on the benchmark case from Chamorro
and Porte-Agél. Additionally, Xie and Archer’s results [41] are used
to determine an appropriate mesh resolution for the LES simulations.
SOWFA’s actuator disc model with the same turbine geometry, ro-
tational speed and force projection parameter is used in both the
RANS and LES simulations. The turbine geometry is detailed in Stevens
et al. [42]. No controller is used in the simulations, the turbine is run
at a fixed rotational speed 𝛺. For the force projection, the Gaussian
width is chosen to be twice the largest cell size in the rotor area
𝜖 = 0.03m [43]. For simplicity and to avoid interpolation errors, the
same mesh resolution was used for both RANS and LES throughout
the majority of the paper, though in practice the RANS simulations
could potentially be run at a slightly lower resolution at least in wall
normal direction. To clarify, while a coarser mesh would help reduce
the computational cost of RANS, the main cost reduction as compared
to LES comes from the fact that the RANS simulation is steady-state and
no time-averaging is necessary (as is the case with LES). At the end of
the publication in Section 3.5, a mesh convergence study is carried out
by varying the mesh density of the baseline and the corrected RANS
simulations. The ABL is modeled in the LES by means of a precursor
simulation with doubly periodic boundary conditions, and a uniform
body-force applied to achieve the desired hub height velocity. A zero-
flux condition was used at the top of the domain for both the precursor
and the simulations with turbines. In the latter, periodic boundary
conditions were used at the sides, a zero-gradient boundary condition at
the outlet, and at the inlet plane instantaneous fields from the precursor
are applied. At the ground, standard boundary conditions for a rough
wall are used, see . For both RANS and LES, second-order discretization
schemes are used in space with the exception of the convection terms
in the turbulence transport equations for the RANS model where an
first-order upwind scheme is used for numerical stability. The temporal
discretization for the LES simulations is a second order Crank–Nicolson
scheme.

Fig. 2 shows the validation of the models on the benchmark case
in terms of mean velocity and turbulence intensity. As expected RANS
over-predicts turbulence intensity and wake recovery as compared to
LES. Nevertheless, neither one of the models perfectly matches the
experiment, possibly also due to the relatively low Reynolds number
of the wind tunnel setup (the wall functions and the RANS turbulence
model are derived for higher Reynolds numbers). The boundary layer
height 𝛿 based Reynolds number of the wind tunnel experiment is
Re𝛿 = 𝑈∞𝛿∕𝜈 ≈ 930, 000 [37]. Further, the LES simulations show an
unphysical overshoot in the turbulent kinetic energy close to the wall.
The peak in the turbulent kinetic energy in the LES simulations is
a well documented problem for LES simulations with wall functions
for rough walls [44]. This is something that can be improved in
future publications. The authors would like to stress that the aim of
this publication is not to perfectly reproduce the experiments, but to
showcase the potential of a methodology that systematically improves
RANS based predictions using time-averaged LES data.
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Fig. 2. Validation of case setup and turbulence models through vertical and horizontal slices of the flow field up and downstream of the rotor plane in terms of velocity and
turbulence intensity, solid line corresponds to LES, dash dotted line corresponds to RANS, and dots belong to experimental results.
2.2. Discovery of optimal corrective fields

Given LES reference data for a given setup, we aim to find cor-
rections to the RANS equations in the form of frozen fields for that
same setup, such that RANS matches time-averaged LES in terms of
mean velocity and turbulence intensity. The core approach presented
here was developed by Schmelzer et al. [14], to which we add two
modifications specific to the wind-farm application.

The method is similar to the ‘‘frozen approach’’ for estimating
turbulence dissipation rates from LES results. Namely variables that
are known from LES are injected into model equations, and the values
of the remaining variables are deduced. Specifically, let LES quanti-
ties be denoted by a ⋆, so the LES mean velocity is 𝑈⋆, turbulent
inetic energy 𝑘⋆ and Reynolds stresses 𝜏⋆𝑖𝑗 , whereby both resolved
nd SGS modeled turbulence quantities are implied. Let the baseline
–𝜀 model be modified in two places: (i) in the momentum equation
dd a correction to the normalized anisotropy tensor, denoted �̃�𝛥𝑖𝑗 ,
nd (ii) in the equation for 𝑘 add a scalar correction term �̃� which

accounts for errors in the turbulent kinetic energy production and
other inconsistencies in the transport equation for the turbulent kinetic
energy. These correction terms are both spatially varying fields (tensor
and scalar respectively), and are embedded in the model as:

𝐷𝑘⋆

𝐷𝑡
= ⋆

𝑘 + �̃� − 𝜀 + 𝜕
𝜕𝑥𝑗

[

(

𝜈 + 𝜈𝑡∕𝜎𝑘
) 𝜕𝑘⋆

𝜕𝑥𝑗

]

, (1)

𝐷𝜀
𝐷𝑡

=
[

𝐶𝜀1
(

⋆
𝑘 + �̃�

)

− 𝐶𝜀2𝜀
]

⋅
𝜀
𝑘⋆

+ 𝜕
𝜕𝑥𝑗

[

(

𝜈 + 𝜈𝑡∕𝜎𝜀
) 𝜕𝜀
𝜕𝑥𝑗

]

(2)

here the production term is defined as
⋆
𝑘 ∶= 2𝑘⋆𝑏⋆𝑖𝑗𝑆𝑖𝑗 (3)

ith

⋆
𝑖𝑗 ∶=

𝜏⋆𝑖𝑗
2𝑘⋆

− 1
3
𝛿𝑖𝑗 = −

𝜈𝑡
𝑘⋆

𝑆⋆
𝑖𝑗 + �̃�𝛥𝑖𝑗 . (4)

The equation to calculate the eddy viscosity is the same as for the
aseline model, namely:

𝑡 ∶= 𝐶𝜇
𝑘⋆2

𝜀
. (5)

Given an initial guess for 𝜀 (e.g. from the baseline 𝑘–𝜀 model or just
a reasonable constant value), 𝜈𝑡 can be calculated from (5). Then, �̃�
can be computed directly from (1). Subsequently 𝜀 can be updated by
solving (2) with the most recent �̃�, and we iterate back and forth until
convergence. Then 𝑏𝛥𝑖𝑗 can be computed directly from (4).

The resulting fields satisfy the modified 𝑘–𝜀 equations, with the LES
data as a solution.

In practice, two adjustments are made to this procedure to address
issues specific to the wind-farm application: (i) blending of the cor-
rection terms to zero at the bottom and the top of the domain, and
(ii) an atmospheric boundary-layer correction which only varies in the
direction perpendicular to the wall.
4

Table 3
Blending parameters for the blending function 𝐹𝛽 .

Parameter Value Parameter Value

𝛼 4 𝑧lower,𝐴𝐵𝐿 0.01 m
𝑧mid 0.23 m 𝑧lower,wake 0.05 m
𝑧max 0.46 m
𝑧upper,all 0.4 m

Blending of the turbulence correction terms
The blending term at the top and the bottom of the domain is

introduced to avoid interaction between the correction terms and the
boundary conditions. The blending term 𝐹𝛽 employed in this publica-
tion is a simplified version of the one used by Menter [45] for the
blending of the 𝑘–𝜀 and the 𝑘 − 𝜔 model into the 𝑘 − 𝜔 SST model.
It is formulated as

𝐹𝛽 (𝑧) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tanh
[(

𝑧
𝑧lower,𝛽

)𝛼]

𝐟𝐨𝐫 𝑧 ≤ 𝑧mid

tanh
[(

𝑧max−𝑧
𝑧max−𝑧upper,𝛽

)𝛼]

𝐟𝐨𝐫 𝑧 > 𝑧mid

(6)

where the exponent 𝛼 determines how fast the blending transitions
between 0 and 1, 𝛽 ∈ {ABL,wake} is used to distinguish between
the different blending applied to the correction terms for the ABL and
for the main simulation, 𝑧mid and 𝑧max are related to the domain di-
mensions, and finally, 𝑧lower,𝛽 and 𝑧upper,𝛽 are domain specific threshold
parameters. In [45] the lower bound for the blending is chosen accord-
ing to the nondimensional wall distance. But since in this publication a
relatively simple case with uniform surface roughness and flat terrain
is used, this is not necessary. Generally, different blending terms can
be used for all the correction terms. However, in this particular case,
using two different blending functions between the ABL and the wake
correction worked well. The parameters used here are found in Table 3.
The wall blending for the ABL corrections was chosen such that the
correction is zero in the first cell center.

Matching RANS boundary-layer profiles to LES
In the undisturbed ABL, LES and the baseline RANS model give

different profiles for mean-velocity and turbulent kinetic energy. Even
though the LES precursor profile is set as the RANS inflow, it evolves be-
fore contact with the turbines. As such, if the profiles are not matched,
the RANS corrective fields that are discovered will necessarily include
some component that corrects the ABL mismatch, and some other
component to correct the turbine wake. We prefer to separate these
corrections, and so first match the ABL profiles. To achieve this two
modifications are applied: (i) the boundary condition representing
the ground for the two simulations is made consistent, and (ii) the
velocity profiles away from the boundaries are adjusted through a one-
dimensional RANS closure correction varying as a function of wall

normal distance only.



Computers and Fluids 233 (2022) 105213J. Steiner et al.

b
a

w
l
b
v

𝑢

p
a
d
b
c

w
s
𝐒
T
w
t
e
w
i
t
f

𝑏

Matching the boundary condition at the wall is complicated by
the use of wall models in both LES and RANS. In particular both use
equilibrium assumptions and the log-law for a rough wall to determine
skin-friction. They assume that first cell is in the log-layer, so that e.g.

𝜏𝑥𝑧 ≃ −𝜌𝑢2⋆

ut they estimate 𝑢⋆ differently. In the LES, the time averaged velocity
t the first cell 𝑈1 at height 𝑧1 above the wall, is used to estimate an

average friction velocity, using

𝑢LES⋆ ≃
𝜅𝑈1

log(𝑧1∕𝑧0)
,

here 𝜅 is the Karman constant and 𝑧0 is the roughness height. The
ocal instantaneous wall friction is then computed using a Schumann
oundary condition. On the other hand, RANS relates the local friction
elocity to the turbulent kinetic energy in the first cell

RANS
⋆ ≃ 4

√

𝐶𝜇
√

𝑘1

and then uses the log-law to determine an expression for the eddy
viscosity there. For consistency we require that in the RANS boundary-
condition

𝐶𝜇 =
(

𝑢LES⋆
)4 ∕𝑘21,

and we choose 𝐶𝜇 = 0.055 to satisfy this equation based on the LES
precursor.

The model parameter 𝐶𝜇 appears also in the definition of the eddy
viscosity and it has a large influence on the turbulent kinetic energy. In
fact, in this role it can be used to regulate the turbulence intensity at
hub height. In the standard 𝑘–𝜀 model [46] the recommended value is
𝐶𝜇 = 0.09, but for atmospheric boundary layers a value of 𝐶𝜇 = 0.03 is
often suggested [47]. As a consequence, in the remainder of this work,
the baseline RANS simulations will use 𝐶𝜇 = 0.03, and the corrected
simulations 𝐶𝜇 = 0.055.

In addition in RANS, we used the standard equilibrium-assumption
boundary-condition for epsilon [46]:

𝜀 =
𝐶3∕4
𝜇 𝑘3∕2

𝜅𝑧0
.

Having matched boundary conditions between RANS and LES, the
rofiles of 𝑈 and 𝑘 still do not match sufficiently well. The frozen
pproach described above is applied using the LES precursor as a
ata source, and a RANS simulation of a flat-plate with fully periodic
oundary conditions on the sides of the domain (a 1D domain). Two
orrections for the ABL 𝑏𝛥,𝐴𝐵𝐿𝑖𝑗 and 𝑅𝐴𝐵𝐿 are obtained that eliminate

remaining differences almost everywhere.
Fig. 3 shows the resulting profiles from the frozen approach and

then the profiles in case the corrections are propagated (referred to
as a corrected simulation). For corrected cases the domain forcing is
chosen such that the hub height velocity matches. The velocity profiles
between the frozen and the corrected RANS simulation match very well,
but the turbulent kinetic energy profiles do not match well close to the
wall. In fact, the unphysical overshoot in the turbulent kinetic energy
is also observed in the corrected RANS simulations, even though the
peak was removed from the LES reference data. However, the turbulent
kinetic area in the rotor wake matches well between LES and corrected
RANS, and this is what is relevant for this publication.

Full formulation of correction terms
Finally, now the full formulation for the correction terms can be

written as

�̃� = 𝐹wake ⋅ 𝑅 + 𝐹𝐴𝐵𝐿 ⋅ 𝑅𝐴𝐵𝐿 (7)

�̃�𝛥𝑖𝑗 = 𝐹wake ⋅ 𝑏
𝛥
𝑖𝑗 + 𝐹𝐴𝐵𝐿 ⋅ 𝑏𝛥,𝐴𝐵𝐿𝑖𝑗 (8)

with blending terms 𝐹𝛽 , ABL correction terms 𝑅𝐴𝐵𝐿, 𝑏𝛥,𝐴𝐵𝐿𝑖𝑗 and wake
𝛥

5

correction terms 𝑅, 𝑏𝑖𝑗 . In the next section, generalized expressions for
the wake correction terms are inferred. Contrary to the wake correction
terms, the ABL correction terms can be used as-is. However, this means
that they are not general and need to be recomputed if one of the
following parameters changes: surface roughness, inflow velocity, and
– depending on how strong Coriolis effects are – wind direction.

2.3. Learning of correction terms

Once the optimal wake correction terms 𝑅 and 𝑏𝛥𝑖𝑗 are known,
a generalized expression for the correction terms is inferred using a
deterministic symbolic regression method similar to the one presented
in Schmelzer et al. [14]. For this, the generalized nonlinear eddy
viscosity formulation as proposed by Pope [48] is used. Assuming that
the anisotropy tensor depends only on the local strain rate 𝑆𝑖𝑗 =
1
2

(

𝜕𝑗𝑈𝑖 + 𝜕𝑖𝑈𝑗
)

and rotation rate tensors 𝛺𝑖𝑗 = 1
2

(

𝜕𝑗𝑈𝑖 − 𝜕𝑖𝑈𝑗
)

, then
an almost perfectly general mapping has the form

𝑏𝛥𝑖𝑗
(

𝑆𝑖𝑗 , 𝛺𝑖𝑗
)

=
10
∑

𝑛=1
𝑇 (𝑛)
𝑖𝑗 𝛼𝑛 (I) (9)

here 𝑇 (𝑛)
𝑖𝑗 are integrity basis tensors, and 𝛼𝑛 ∶ R5 → R are ten, arbitrary

calar-valued functions of the five invariants I. In practice, invariants of
and 𝜴 prove insufficient to represent the required correction 𝑏𝛥 [20].
herefore in the following we use invariants of the set {𝐒,𝜴,𝐀𝑝,𝐀𝑘}
ith identity matrix I where 𝐀𝑝 = −I × ∇𝑝 and 𝐀𝑘 = −I × ∇𝑘,

hereby making pressure- and 𝑘-gradients available to the model, see
.g. [49]. The resulting, already large, feature-space is supplemented
ith additional nondimensional scalar features q listed in Appendix A,

ncluding – for instance – actuator forcing 𝑞𝐹 . So, finally each 𝛼𝑛 in
his work is potentially a function of 𝑛𝐹 ≃ 60 features. Such that Pope’s
ormulation is extended to

𝛥
𝑖𝑗
(

𝐒,𝜴,𝐀𝑝,𝐀𝑘,q
)

=
4
∑

𝑛=1
𝑇 (𝑛)
𝑖𝑗 𝛼𝑛 (I,q) . (10)

Also note that only the first four tensors of the integrity basis
were used, because our results and also those from van der Laan
et al. [12,50] suggest that the main shortcoming of the 𝑘–𝜀 model –
under neutral stratification at least – is not necessarily the turbulence
anisotropy (Boussinesq assumption), but the magnitude of the eddy
viscosity. As such, the dominant tensor correction term is the strain
rate tensor. Second-order corrections are significantly smaller, and
corrections formed by the next 3 basis tensors are sufficient. When 10
base tensors were used in the regression procedure, the higher-order
tensors were only selected in models of very high complexity. This
suggests that the addition of these tensors is not needed for capturing
the main effects — in these flows.

An analogous modeling approach is taken for the correction term
𝑅, now explicitly using the 𝑛𝐹 features I,q:

𝑅
(

𝐒,𝜴,𝐀𝑝,𝐀𝑘,q
)

= 2𝑘𝑆𝑖𝑗

4
∑

𝑛=1
𝑇 (𝑛)
𝑖𝑗 𝛼𝑅𝑛 (I,q) + 𝜀 ⋅ 𝛽𝑅 (I,q) . (11)

The main difference being that two types of terms are used: one
that mirrors a correction to the turbulence production and one that
represents a more general scalar correction. The scalar term is scaled
with the turbulent dissipation 𝜀 and note that the immediate vicinity
of the wall is excluded from the training by 𝐹wake. The motivation
for these two separate corrections is to capture both errors in the
production term itself (which in many flows is the dominant term),
as well as other model-form errors, notably the omission of the effect
of the rotor forcing on the turbulence. A detailed derivation of these
missing terms can be found in Rethore [6] and will not be repeated
here. They depended on the local values for the rotor forcing, the
velocity fluctuations, and the pressure gradient, and do not have the
shape of a production term.

The task of the supervised machine-learning algorithm, is then to
𝑅 𝑅
find a suitable formulation for the functions 𝛼𝑛, 𝛼𝑛 , and 𝛽 based on
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Fig. 3. Matching of ABL profiles between the frozen RANS, the baseline RANS and, the corrected RANS simulations. The one-dimensional profiles for the velocity, the turbulent
kinetic energy and the two correction terms are shown. The scalar correction term is normalized with the Boussinesq turbulent kinetic energy production at hub height.
the dataset available from LES, including the corrections discovered by
the frozen approach in the previous section. This is now a standard
regression problem, albeit with a high-dimensional input space and
a large number of data-points (determined by the total number of
mesh-points in the training LES simulations). We consider many well-
known machine-learning methods unsuitable for this problem, notably
both artificial neural networks and random-forests, produce complex
nonsmooth models, are prone to overfitting, expensive to evaluate,
and unlikely to be well-trained in the entire relevant subspace (given
limited training data). Rather we prefer regression techniques that
ensure relatively simple closed-form expressions (see for example the
models discovered in the next section, (15) and (16)).

In this work we use sparse regression [14]. The 𝑛𝐹 input features
re used to build a large library of 𝑛𝐿 candidate (basis) functions
𝓁1,…𝓁𝑛𝐿 ). This is done by recombining features with each other (up
o a maximum of three features), and applying exponentiation by −1,
− 1

2 , 1
2 , and 2. This already results in a library exponentially larger than

𝐹 . The scalar functions are then represented as:

𝑛(𝐈) ≃
𝑛𝐿
∑

𝑘=0
𝜃𝑛𝑘𝓁𝑘(𝐈). (12)

In principle, a least-squares approach (possibly 𝐿2-regularized)
could be used here to find the coefficients �̂�. However, this yields
massively complex models prone to overfitting the data. Practically,
due to multi-collinearity in the input data, large coefficients 𝜃 result
with cancellation between terms. Such models are unsuitable for im-
plementation in CFD models as they are numerically stiff. Hence, a
sparsity promoting approach is used here which sets most of the 𝜃𝑘
o zero, this is achieved by a loss-function with a both 𝐿1- and 𝐿2-
egularization, i.e. an elastic net [51]. However the number of features
nd data-vector is large enough that feature- and library reduction is
equired as a preliminary step. Note that both (10) and (12) are linear
n the coefficients �̂� ∈ R10⋅𝐿, and therefore for a given data-set of size

we can find a matrix 𝐶 ∈ T𝑁 × R10⋅𝐿 (where T is here the space of
× 3 tensors), such that (10) and (12) are encapsulated by
𝛥 = 𝐶𝛩.

The outline of the procedure is as follows:

1. Preprocessing using a mutual information to eliminate fea-
tures, building the library, and then cliqueing (identifying sets
of colinear functions) to reduce the library.

2. Model discovery using an elastic net to identify important
library functions. By varying regularization parameters 𝜆 and 𝜌,
the result is an array of models with a variety of complexity and
accuracy. The optimization problem is:

min
𝛩

[

‖

‖

‖

𝐶𝛩 − 𝐛𝛥‖‖
‖

2

2
+ 𝜆𝜌 ‖𝛩‖1 + 0.5𝜆(1 − 𝜌) ‖𝛩‖

2
2

]

(13)

where 𝐛𝛥 is the target anisotropy correction at the 𝑁 mesh-
6

points.
3. Remove unnecessary functions from the library by eliminating
all basis functions for which the corresponding 𝜃 = 0 for each of
the models found in (ii). The matrix 𝐶 → �̃� and 𝛩 → �̃� are also
reduced.

4. Model calibration using Ridge regression to identify the mag-
nitude of the model coefficients for the previously derived array
of corrections. Again a regularization parameter 𝜆𝑅 is used to
encourage small coefficients:

min
𝛩

[

‖

‖

‖

�̃�𝛩 − 𝐛𝛥‖‖
‖

2

2
+ 𝜆𝑟 ‖𝛩‖

2
2

]

(14)

I.e. in steps (iii) and (iv), the sparsity information from the elastic
net is retained, and the coefficient values are discarded. A more detailed
description of the approach is given by Schmelzer et al. [14].

The preprocessing step is a novelty with respect to [14], necessitated
by the increased feature set and data size used here. Mutual information
(MI) between the input features and the correction terms was calculated
a priori to determine if a feature was relevant for the regression [52].
This involved treating the data-set as samples from random variables
describing the features and the corrections, and estimating their MI us-
ing a kernel density estimator, following [53,54]. MI has the advantage
of measuring the amount of information (in bits) obtained about the
output, given an observation of the input. As such it does not rely on
any model (linear or otherwise), or any assumptions about the form of
the random variables. This is in contrast to e.g. correlation coefficients,
which by their linearity assumption are wholely unsuited for feature
selection for nonlinear models.

The cliqueing procedure is motivated by the high multi-colinearity
obtained by default within the library. Specifically we compute the
correlation coefficient between all pairs of library functions, and then
group them by finding cliques whose correlation with each other all
exceeds the cut-off of 0.99. Finding cliques is an established problem in
graph theory [55]. We then select the algebraically simplest member of
the clique to represent the clique, and discard the remainder, knowing
that the data is in any case insufficient to distinguish them. Here – in
contrast to MI – a linear measure of correlation is adequate, because
members of the candidate library are combined linearly in (12).

Finally, since the models are explicit expressions for the correction
terms, they can be directly integrated into the RANS solver.

3. Results and discussion

This section shows the application of the proposed methodology to
the previously described dataset. Resulting flow fields with the optimal
and the learned correction terms are shown and discrepancies are
discussed in detail.

The models obtained from the regression procedure are explicit,
hence they can be directly integrated into the RANS solver. However,
in order to study the errors of the optimal corrections from the k-
frozen approach, the errors introduced by the sparse regression, and the
errors in the final coupled models separately, we consider three kinds

of corrections. To avoid confusion short definitions are listed below:
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Table 4
List of non-dimensionalized physical features used in the model discovery phase and
their precise definition. The features that are not Galilean invariant are marked with †

ID Description Raw feature Normalization

𝑞𝛾 Shear parameter
‖

‖

‖

‖

𝜕𝑈𝑖

𝜕𝑥𝑗

‖

‖

‖

‖

𝜀
𝑘

𝑞𝜏 Ratio of total to normal Reynolds stresses ||𝑢′𝑖𝑢
′
𝑗 𝐵𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

|| 𝑘
𝑞𝜈 Viscosity ratio 𝜈𝑡 100𝜈
𝑞†𝑇 𝐼 Turbulence intensity 𝑘 1

2
𝑈𝑖𝑈𝑖

𝑞†𝐹 Actuator forcing ‖

‖

𝐹𝑐𝑒𝑙𝑙
‖

‖

1
2
𝜌0𝐴𝑐𝑒𝑙𝑙 ‖𝑈‖

2

• Frozen (or optimal) refers to correction terms obtained from the
frozen procedure of Section 2.2.

• Fixed refers to the correction term that results from applying a
trained model to the LES flow field. This is generally a good rep-
resentation of the optimal correction, but includes errors due to
the inability of the elastic-net to represent the optimal correction
with the given features.

• Coupled refers to a correction term that is a function of the
flow field. I.e. it changes as the flow-field changes, e.g. at every
iteration of the flow solver. In this sense it is a genuine turbulence
model, operating independently of LES data.

.1. Flow field with optimal correction terms

The optimal correction terms are derived for the training case A.
ubsequently, the (static) optimal corrections are integrated into the
ANS turbulence models for this setup. The results obtained from this
re referred to as ‘‘frozen’’ or ‘‘optimally corrected’’ RANS. Figs. 4 and
show the wake development as predicted by the LES, the baseline

ANS, and the frozen RANS simulations using vertical slices through
he flow field. The horizontal slices can be found in the appendix in
igs. 15 and 16. Optimally corrected RANS represent the best-case
cenario that can be obtained when using this methodology. In the
ext subsection, the generalized models for the correction terms will
ntroduce additional errors. The results in the figure show that indeed
he optimal correction terms lead to an almost perfect match between
ES mean and frozen RANS velocity and turbulent kinetic energy fields.

The relative importance of the different frozen correction terms
or the prediction of the velocity and turbulent kinetic energy field
s also visible from Figs. 4 and 5, respectively. Some conclusions can
e drawn from the selective inclusion of the correction terms. The
ree-stream corrections 𝑅𝐴𝐵𝐿 and 𝑏𝛥,𝐴𝐵𝐿𝑖𝑗 do not have much effect on

the velocity field, but they slightly reduce the overprediction of the
turbulent kinetic energy. Of course, this is closely tied to the choice
of 𝐶𝜇 . The anisotropy correction term 𝑏𝛥𝑖𝑗 is more important than the
scalar correction terms 𝑅. If only a correct prediction of the velocity
field is necessary, then the scalar term 𝑅 can be neglected. However,
the scalar correction term 𝑅 does yield some improvement for the
prediction of the turbulent kinetic energy over the case where only the
tensor correction term 𝑏𝛥𝑖𝑗 is used.

3.2. Learning of correction terms

The results presented in the following are based on the datasets for
constellation A & B as presented in Fig. 1. Case A is used for the training
of the models and case B is used to cross-validate the learned correction
terms. Note that case B is more complex than case A because it includes
one more turbine and one of the turbines is yawed with respect to
the incoming flow. The training dataset does not include the entire
dataset of case A, rather only entries centered around the turbines
wake are used. This helps avoid overfitting and reduce the dataset
somewhat. The exact criteria for inclusion in the training dataset are
𝑥𝑟𝑜𝑡𝑜𝑟 − 1.0𝐷 < 𝑥 < 𝑥𝑟𝑜𝑡𝑜𝑟 + 20.0𝐷, 𝑦𝑟𝑜𝑡𝑜𝑟 − 1.5𝐷 < 𝑦 < 𝑦𝑟𝑜𝑡𝑜𝑟 + 1.5𝐷, and
7

.05m < 𝑧 < 𝑧𝑟𝑜𝑡𝑜𝑟 + 1.5𝐷. s
able 5
ist of invariants used in the model discovery phase and their precise definition.
Invariant ID Definition

𝐼1 𝑆2

𝐼2 𝜴2

𝐼19 𝜴𝐴𝑘𝑆2

𝐼25 𝐴2
𝑘𝑆𝜴𝑆2

𝐼35 𝐴𝑝𝐴𝑘𝑆2

Tensor ID Definition Normalization

𝑆 1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖

)

𝜀
𝑘

𝜴 1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝑢𝑗
𝜕𝑥𝑖

)

𝜀
𝑘

𝐴𝑘 −𝐼 × ∇𝑝 𝜀
√

𝑘
𝐴𝑝 −𝐼 × ∇𝑘 𝜌0 ‖𝑢∇𝑢‖

Following the methodology outlined previously, the feature set used
to construct a library of basis functions is based on the results of the
mutual information analysis between features and correction terms.
A list of the input feature set divided into physical parameters and
invariants that were obtained as a result of the preprocessing step can
be found in Tables 4 and 5, respectively. The full list of physical features
and invariants used as an input to the mutual information algorithm
can be found in Appendices A and B. Additionally, only the first four
tensors of the integrity basis are used where 𝑇 (1) = 𝑆, 𝑇 (2) = 𝑆𝛺−𝛺𝑆,
𝑇 (3) = dev

(

𝑆2), 𝑇 (4) = dev
(

𝛺2) and where dev is the deviatoric part
of the tensor. Applying the cliqueing algorithm to the library of basis
functions that was constructed from the reduced feature set, further
reduced the size of the library by around a factor of 6.

Subsequently, the three-step regularization methodology is applied
to determine, first which candidate functions are important, and sec-
ondly what the magnitude of these coefficients should be. The result
is a very large number of potential models: Fig. 6 shows the results
of this process for both the anisotropy correction 𝑏𝛥𝑖𝑗 and the scalar
correction term 𝑅. The left side of the figure illustrates the trade-off
between the anticipated robustness and the model accuracy by showing
the influence of the Ridge regularization parameter 𝜆𝑅 on the mean and
maximum error of the model on the training dataset. The right side of
the figure visualizes the trade-off between the model complexity and
the model accuracy by highlighting the number of terms of the model.
But the results are not straight-forward and only limited trends can
be identified. In general, more complex models are seen to give better
predictions for both correction terms, but this is not always the case.
The trend with respect to an increasing regularization parameter 𝜆𝑅 is
different for the two correction terms. For the anisotropy correction 𝑏𝛥𝑖𝑗
igher regularization correlates with a higher mean error but a lower
aximum error. For the scalar correction term 𝑅 higher regularization

generally leads to both higher mean and maximum error.
Because the model discovery and calibration phase generate many

models and because it was difficult to pick which models should to be
selected for further investigation, the three-dimensional Pareto front in
terms of mean error, maximum error, and model complexity was com-
puted. This is indicated in Fig. 6 by black outlines. Going forward only
the models which are a member of the Pareto front are investigated.
Since the number of Pareto optimal models is still of the order of around
500, a further automated selection procedure is necessary. Cliqueing
was again applied, this time to predictions of complete models, and
models that were too similar were discarded.

The effect of this procedure is visualized in Figs. 7 and 8 for 𝑅 and
𝑏𝛥 respectively. The figures show the spread of Pareto-optimal models,
the subselection of models obtained from the cliqueing, and finally the
models selected for implementation in the CFD solver. The anisotropy
correction is visualized by means of its effect on the turbulent kinetic
energy production 𝛥

𝑘 = 2𝑘𝑏𝛥𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

. Our experience shows that this is a
ood indicator for the accuracy of the anisotropy correction term, and
ubstantially easier to visualize.
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Fig. 4. Comparison between LES, RANS baseline, and frozen RANS with selective inclusion of the different components of the (frozen) correction terms. Vertical slices of the
elocity field up and downstream of the rotor plane of the two turbines of case A.
Fig. 5. Comparison between LES, RANS baseline, and frozen RANS with selective inclusion of the different components of the (frozen) correction terms. Vertical slices of the
urbulent kinetic energy field up and downstream of the rotor plane of the two turbines of case A.
Fig. 7 shows the predictions for the scalar correction term 𝑅. It can
be seen that the entire selection of the spread of models can be reduced
to about 20 models. The four models highlighted in color are the ones
that will be implemented in the CFD solver in the next section. The
four models were selected based on accuracy and complexity. Further,
also the models named [𝑅]1 and [𝑅]2 contain terms with both negative
and positive powers of the input features, whereas the models named
[𝑅]1,𝑟𝑒𝑑 and [𝑅]2,𝑟𝑒𝑑 (as in reduced) only contain terms with positive
powers. This was done because the negative powers negatively affected
the convergence of the models once implemented in the CFD model. For
the 𝑅 term this effect was not always present, but for the anisotropy
correction term 𝑏𝛥𝑖𝑗 none of the models including negative powers lead
to convergence. As such they are not discussed further.

Fig. 8 shows the spread of the model prediction for the anisotropy
prediction. Again, with a reduced set of about 10 models, the entire
spread of results can be covered. Two models were selected for further
investigation as a trade-off between accuracy and complexity. All of
the models contain only positive powers of the input features. Going
forward the two selected models will be referred to as

[

𝑏𝛥𝑖𝑗
]

1
and

[

𝑏𝛥𝑖𝑗
]

2
.

.3. Robustness of correction terms

The correction-learning methodology employed in this publication
s completely decoupled from the CFD model. This significantly sim-
8

lifies the regression as compared to an online approach where the
terms are trained while coupled with the CFD model. However, this
also means that once a coupling with the CFD solver is constructed, the
correction terms may not be the same as predicted during the learning
stage. Further, at this point, there is no clear criteria or methodology
to determine the stability of a correction model a priori. Hence simple
testing and cross-validation is the most immediate strategy.

Experience with the framework has shown that models that are very
complex, i.e. above about 50 terms, tend not to converge for either one
of the correction terms. Furthermore, in models trained on our data,
the Ridge regression parameter should be at least 𝜆𝑅 ≥ 0.001 to assure
convergence not only on the training but also on test datasets.

To make the assessment of the models structured, the robustness
of the two correction terms is assessed separately before implementing
both terms simultaneously in the turbulence model. For example, the
robustness of the model for 𝑅 can be assessed by using the frozen
correction for 𝑏𝛥𝑖𝑗 , and vice versa. In Figs. 9 and 10 the robustness of
the previously selected correction terms is shown for the scalar and the
anisotropy correction models on the training setup so case A.

Fig. 9 compares the optimal correction terms for 𝑅 with the one
obtained when coupled with the CFD model and the fixed one obtained
during the learning phase with no coupling to the CFD solver. Ideally,
the coupled and the fixed term would overlap perfectly. However, as
visible from the figure, this is not the case and the effect is more or
less pronounced for the different pictured correction models. The dis-
crepancy between the coupled and the fixed terms is larger in regions
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Fig. 6. Scatter plot of all the models obtained for both correction terms. Members of the three-dimensional Pareto front with respect to mean and max error, as well as model
complexity are highlighted in black. The coloring of the elements is according to the magnitude of the Ridge 𝜆𝑅 penalization parameter and the model complexity 𝑛𝐶 . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Spread of trained models for 𝑅 for Case A. The subscript 𝑅𝑎,𝑟𝑒𝑑 refers to models whose terms only contain positive powers. Vertical slices at the rotor plane at different
streamwise stations. The model spread is for all models that are Pareto optimal. The models selected during the cliqueing post-processing step are shown explicitly either in color
or in dark gray. The models selected for further investigation are highlighted in color. Finally, the optimal correction term is shown in black. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
where the optimal term has high gradients. If the discrepancy between
the two terms is too large, the model not only becomes inaccurate but
may also lead to an unstable coupling once both correction terms are
introduced simultaneously.

Fig. 10 shows the same analysis for the two selected model for
the anisotropy correction 𝑏𝛥𝑖𝑗 in terms of the modified turbulent kinetic
energy production term 𝛥

𝑘 = 2𝑘𝑏𝛥𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

. Again, in regions where the
optimal correction term and its derivative are large, the disparity
between the fixed and the coupled term is largest. Nevertheless, both
terms lead to a converging simulation and hence will be further tested
going forward.
9

3.4. Flow field with learned correction terms

Finally, now that model selection and assessment of model robust-
ness have been carried out, both correction terms can be implemented
simultaneously while coupled to the RANS flow field. The models will
be tested on case B, since they were trained on case A. The vertical
profiles of velocity and 𝑘 are shown in Figs. 11 and 12 for case B.
For comparison, also the baseline model, the frozen case, and the flow
field with fixed learned correction terms are shown. For the cases
with the fixed correction terms, only the spread between all possible
combinations of the correction terms is shown.



Computers and Fluids 233 (2022) 105213J. Steiner et al.

t

t

Fig. 8. Spread of trained models for 𝑏𝛥, visualized using 𝛥
𝑘 for case A. Vertical slices at the rotor plane at different streamwise stations. The model spread is for Pareto optimal

models. The models selected during the cliqueing post-processing step are shown explicitly either in color or in dark gray. The models selected for further investigation are
highlighted in color. Finally, the optimal correction term is shown in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 9. Spread of fixed and coupled corrections 𝑅 for the training case A via vertical slices at the rotor plane up and downstream of the two turbines. The subscript 𝑅𝑎,𝑟𝑒𝑑 refers
to models whose terms only contain positive powers.
Fig. 10. Spread of fixed and coupled corrections 𝑏𝛥𝑖𝑗 in terms of 𝛥
𝑘 for the training case A via vertical slices at the rotor plane up and downstream of the two turbines.
As is visible from the figures, the spread between the simula-

ions with the fixed correction terms is smaller than the spread for

he simulations where the correction terms are coupled to the RANS
10
velocity field. This is quite logical given the results from the robustness

analysis. Nevertheless, all the shown models yield a solid improvement

over the baseline model in the wake region. No results for the scalar
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Fig. 11. Comparison between LES, RANS baseline, frozen RANS and corrected RANS models via vertical slices of the velocity field up and downstream of the rotor plane for the
hree turbines of case B.
Fig. 12. Comparison between LES, RANS baseline, frozen RANS and corrected RANS models via vertical slices of the turbulent kinetic energy field up and downstream of the
rotor plane for the three turbines of case B.
f

correction term [𝑅]2,𝑟𝑒𝑑 are shown because this term would lead to
diverging simulations on both the test and training case, even when
strong underrelaxation was used.

All the velocity profiles in Fig. 11 from simulations with the cou-
pled correction terms show significant improvement over the baseline
model. In fact, the spread between the different models is minimal and
the difference between the fixed and the coupled models is quite small.
However, the discrepancy with respect to the reference profile increases
further downstream akin to an error accumulation. Thus, it would be
interesting to test the models on a case with more turbines to see how
robust the enhanced models actually are.

In Fig. 12 the t.k.e. profiles are shown for the baseline and the
improved models. Here, the spread between the coupled and the fixed
models is larger, especially in the near wake of the second rotor.
Comparison between the results for the various enhanced models in-
dicates that the scalar correction term 𝑅 is what leads to the large
spread between the models in the wake of the turbine. As compared
to the velocity profiles, the discrepancy with respect to the reference
does not increase downstream which is encouraging. There is also an
unphysical underprediction of the t.k.e. close to the wall for the frozen
11
case which is not present in the enhanced simulations: it seems the
coupling with the flow field helps alleviate it. However, the t.k.e. close
to the wall is still lower than the one for the reference time-averaged
LES simulations, which show an unphysical overshoot there, so this
discrepancy is actually a positive. The peak in the t.k.e. in the LES
simulations is a well documented problem for LES simulations with wall
functions for rough walls [44]. The plan is to address this in further
publications.

According to the authors, overall the combination of the correction
terms [𝑅]1,𝑟𝑒𝑑 and

[

𝑏𝛥𝑖𝑗
]

2
yielded the best results and hence the full

ormulation for these correction terms is:

[𝑅]1𝑟𝑒𝑑 = 2𝑘𝑆𝑖𝑗 [ 1.4771 ⋅ 10−4 ⋅ 𝐼0.5
1 ⋅ 𝑞3.0𝜈 ⋅ 𝐓(1)

𝑖𝑗 − 1.9183 ⋅ 𝑞0.5𝑇 𝐼 ⋅ 𝑞
1.5
𝐹 ⋅ 𝐓(4)

𝑖𝑗 ]

+𝜀 [ 1.0970 ⋅ 101 ⋅ 𝑞0.5𝑇 𝐼 ⋅ 𝑞𝐹 ⋅ 𝐼0.5
1 + 6.1657 ⋅ 10−5 ⋅ 𝑞𝑇 𝐼 ⋅ 𝐼2.0

1 ⋅ 𝐼34
+ 8.3864 ⋅ 10−3 ⋅ 𝑞1.5𝑇 𝐼 ⋅ 𝐼25 − 1.7888 ⋅ 102 ⋅ 𝑞2.0𝑇 𝐼 ⋅ 𝐼25
− 1.3956 ⋅ 101 ⋅ 𝑞𝐹 ⋅ 𝑞0.5𝛾 + 2.5231 ⋅ 10−7 ⋅ 𝑞2.5𝑇 𝐼 ⋅ 𝐼

2.0
25

− 2.2330 ⋅ 𝑞𝐹 ⋅ 𝑞𝛾 − 5.2367 ⋅ 10−6 ⋅ 𝐼2.0
1 ⋅ 𝑞4.0𝜈

− 5.5597 ⋅ 10−2 ⋅ 𝑞3.0𝜈 ]
(15)
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Fig. 13. Mesh convergence study for the baseline and the corrected model. Shown are the vertical slices of the velocity field up and downstream of the rotor plane for the three
urbines of case B.
Fig. 14. Mesh convergence study for the baseline and the corrected model. Shown are the vertical slices of the turbulent kinetic energy field up and downstream of the rotor
plane for the three turbines of case B.
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and

[

𝑏𝛥𝑖𝑗
]

2
= [ 2.5095 ⋅ 10−2 ⋅ 𝑞0.5𝑇 𝐼 ⋅ 𝐼0.51 + 1.090 ⋅ 10−5 ⋅ 𝑞𝑇 𝐼 ⋅ 𝑞0.5𝐹 ⋅ 𝐼2.01

+ 3.4089 ⋅ 10−4 ⋅ 𝑞2.0𝑇 𝐼 ⋅ 𝑞0.5𝐹 ⋅ 𝐼2.01 − 4.0175 ⋅ 10−6 ⋅ 𝑞2.0𝑇 𝐼 ⋅ 𝐼2.01 ⋅ 𝑞𝜈
− 3.6356 ⋅ 10−5 ⋅ 𝑞2.0𝑇 𝐼 ⋅ 𝐼2.51 + 9.6825 ⋅ 101 ⋅ 𝑞3.0𝑇 𝐼 ⋅ 𝑞2.0𝜈

− 2.8904 ⋅ 103 ⋅ 𝑞3.5𝑇 𝐼 + 6.1482 ⋅ 10−2 ⋅ 𝑞0.5𝐹

− 9.4482 ⋅ 10−5 ⋅ 𝑞0.5𝐹 ⋅ 𝐼1 ⋅ 𝑞
2.0
𝜈 − 2.1767 ⋅ 10−3 ⋅ 𝑞2.5𝜈

+ 8.6126 ⋅ 10−4 ⋅ 𝐼0.51 ] ⋅ 𝐓(1)
𝑖𝑗

+[ − 9.4932 ⋅ 10−2 ⋅ 𝑞0.5𝑇 𝐼 ⋅ 𝑞𝐹 + 1.0716 ⋅ 10−2 ⋅ 𝑞0.5𝑇 𝐼 ⋅ 𝑞1.5𝐹

+ 6.3229 ⋅ 10−4 ⋅ 𝑞0.5𝑇 𝐼 ⋅ 𝑞2.5𝜈 + 6.3233 ⋅ 10−5 ⋅ 𝑞0.5𝑇 𝐼 ⋅ 𝑞3.0𝜈

+ 3.7871 ⋅ 10−4 ⋅ 𝑞𝑇 𝐼 ⋅ 𝐼34 + 7.5746 ⋅ 10−4 ⋅ 𝑞2.5𝑇 𝐼 ⋅ 𝐼18
− 1.7673 ⋅ 103 ⋅ 𝑞4.5𝑇 𝐼 + 4.8578 ⋅ 10−3 ⋅ 𝑞𝐹
− 4.1741 ⋅ 10−8 ⋅ 𝐼0.51 ⋅ 𝐼2 + 1.3261 ⋅ 10−6 ⋅ 𝐼1] ⋅ 𝐓

(2)
𝑖𝑗

+[ − 1.3262 ⋅ 10−3 − 2.7248 ⋅ 10−6 ⋅ 𝐼0.51 ⋅ 𝑞4.0𝜈

+ 6.5684 ⋅ 10−7 ⋅ 𝐼1 ⋅ 𝑞2.5𝜈 ] ⋅ 𝐓(3)
𝑖𝑗

− 3.5887 ⋅ 10−5 ⋅ 𝑞4.5𝜈 ⋅ 𝐓(4)
𝑖𝑗
12

(16) p
Table 6
Mesh convergence parameters.

Name Density 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧
Coarse 240 × 120 × 48
Reference (same as for LES) 360 × 120 × 64
Fine 540 × 240 × 64

The anisotropy correction term
[

𝑏𝛥𝑖𝑗
]

2
consists of 25 terms of which

1 are multiplied by the first tensor of Pope’s invariant basis, 𝐓(1) = 𝐒,
.e. the correction tensor is linear. Thus, this part of the correction
ensor is implemented in the turbulence model in a semi-implicit form,
nd the remaining non-linear terms are incorporated in a fully explicit
anner. The authors expect that this further increases the stability of

he numerical implementation.
Some of the coefficients for the two correction models have a very

mall magnitude, so it may seem that they are not necessary. However,
he influence of neglecting each coefficient was checked and the shown
oefficients all result in a change in the relative mean or maximum er-
or of at least three percent as compared to the full formulation shown
bove. Hence, all the shown terms have a non-negligible contribution.
evertheless, the models are quite complex and there is also at least
artial cancellation between the different terms.
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Table 7
Physics interpreted flow features. For each feature 𝑞𝑖 the physical description is denoted including the raw feature with its normalization. The
features that are not Galilean invariant are marked with †.
ID Description Raw feature Normalization

𝑞𝑄 Ratio of excess rotation rate to strain rate (Q criterion) 1
2
(‖𝜴‖

2 − ‖𝑆‖2) ‖𝑆‖2

𝑞†𝑇 𝐼 Turbulence intensity 𝑘 1
2
𝑈𝑖𝑈𝑖

𝑞𝑅𝑒𝐷 Wall distance based Reynolds number
√

𝑘𝑑
50𝜈

–
𝑞†𝜕𝑝𝜕𝑠 Pressure gradient along streamline 𝑈𝑘

𝜕𝑃
𝜕𝑥𝑘

√

𝜕𝑃
𝜕𝑥𝑗

𝜕𝑃
𝜕𝑥𝑗

𝑈𝑖𝑈𝑖

𝑞𝑇 Ratio of mean turbulent to mean strain time scale 𝑘
𝜀

1
‖𝑆‖

𝑞𝜈 Viscosity ratio 𝜈𝑡 100𝜈

𝑞†⟂ Nonorthogonality between velocity and its gradient |𝑈𝑖𝑈𝑗
𝜕𝑈𝑖

𝜕𝑥𝑗
|

√

𝑈𝑙𝑈𝑙𝑈𝑖
𝜕𝑈𝑖

𝜕𝑥𝑗
𝑈𝑘

𝜕𝑈𝑘

𝜕𝑥𝑗

𝑞†𝑘∕𝑘
Ratio of convection to Boussinesq production of TKE 𝑈𝑖

𝑑𝑘
𝑑𝑥𝑖

|𝑢′𝑗𝑢
′
𝑘𝑆𝑗𝑘|

𝑞𝜏 Ratio of total to normal Boussinesq Reynolds stresses ||𝑢′𝑖𝑢
′
𝑗 𝐵𝑆

|| 𝑘

𝑞𝛾 Shear parameter
‖

‖

‖

‖

𝜕𝑈𝑖

𝜕𝑥𝑗

‖

‖

‖

‖

𝜀
𝑘

𝑞†𝐹 Actuator forcing ‖

‖

𝐹𝑐𝑒𝑙𝑙
‖

‖

1
2
𝜌0𝐴𝑐𝑒𝑙𝑙 ‖𝑈‖

2

Fig. 15. Comparison between LES, RANS baseline and frozen RANS with selective inclusion of the different components of the correction terms via horizontal slices of the velocity
ield up and downstream of the rotor plane of the two turbines of case A.
Fig. 16. Comparison between LES, RANS baseline and frozen RANS with selective inclusion of the different components of the correction terms via horizontal slices of the turbulent
inetic energy field up and downstream of the rotor plane of the two turbines of case A.
.5. Mesh convergence with learned correction terms

As pointed out by Van Der Laan [50], nonlinear eddy viscosity
odels can be prone to numerical instability when a fine mesh is used.
o check whether the results of the developed model correction terms
re actually grid-independent a mesh convergence study is carried out
oth for the baseline, as well as, the corrected model. The results for the
13
vertical velocity and the turbulent kinetic energy profiles are shown in
Figs. 13 and 14 for case B. The mesh properties are shown in Table 6.

The velocity profiles in Fig. 13 are insensitive to the mesh for both
the baseline and the corrected models. Hence, in terms of velocity
the results are close to mesh independent at the presented refinement
levels. There is more variation in the t.k.e., see Fig. 14, and the baseline
model, shows less sensitivity than for the corrected model. However,
even for the corrected model the difference between the reference and
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Fig. 17. Spread of learned model correction 𝑅 for case A through horizontal slices at the rotor plane at different streamwise stations as labeled in the subplots. The subscript
𝑅𝑎,𝑟𝑒𝑑 refers to models whose terms only contain positive powers. The model spread is for all models that are Pareto optimal as defined previously. The models selected during
the cliqueing post-processing step are shown explicitly either in color or in dark gray. The models selected for further investigation are highlighted in color. Finally, the optimal
correction term is shown in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 18. Spread of learned model correction 𝛥
𝑘 for case A through horizontal slices at the rotor plane at different streamwise stations as labeled in the subplots. The model spread

is for all models that are Pareto optimal as defined previously. The models selected during the cliqueing post-processing step are shown explicitly either in color or in dark gray.
The models selected for further investigation are highlighted in color. Finally, the optimal correction term is shown in black. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 19. Spread of fixed and coupled corrections 𝑅 for the training case A via horizontal slices at the rotor plane up and downstream of the two turbines. The subscript 𝑅𝑎,𝑟𝑒𝑑
refers to models whose terms only contain positive powers.
the fine mesh is small indicating that the mesh is fine enough and that
results are largely mesh independent.

Overall, these results are encouraging. The correction terms depend
on the normalized rotor forcing which in turn depends on the actuator
model, so there is an additional coupling loop in the prediction. Despite
this there is little variation between the results.

4. Conclusions

On a limited dataset, the proposed frozen k-corrective frozen-RANS
has demonstrated the potential for improving the predictions of the
14
mean velocity and turbulent kinetic energy. Based on time-averaged
LES data-optimal correction terms to the turbulence transport equation
of the RANS model were determined. The inclusion of these optimal
correction terms in the RANS model leads to a near identical match
between the RANS and the mean LES simulation. So this part of
the methodology is working well. Then, the generalization of these
terms through a sparse regression approach has yielded good results,
but model selection is key. Some of the investigated models showed
numerical instability once coupled with the RANS flow field. Hence, for
future research the aim is to better understand the unstable coupling
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Fig. 20. Spread of fixed and coupled corrections 𝑏𝛥𝑖𝑗 in terms of 𝛥
𝑘 for the training case A via horizontal slices at the rotor plane up and downstream of the two turbines.
Fig. 21. Comparison between LES, RANS baseline, frozen RANS and corrected RANS models via horizontal slices of the velocity field up and downstream of the rotor plane for
he three turbines of case B.
Fig. 22. Comparison between LES, RANS baseline, frozen RANS and corrected RANS models via horizontal slices of the turbulent kinetic energy field up and downstream of the
rotor plane for the three turbines of case B.
loops observed for some of the models which may be more likely to
be triggered on fine meshes. Further, the final models presented in this
publication are quite complex, because accuracy was prioritized over
simplicity when choosing a particular model. Cancellation between the
different terms of the complex models is observed. This is likely because
the dataset requires large corrections in the wake, and small/zero
15
corrections immediately outside — this seems to be partially achieved
by large terms which are canceled outside the wake. However, from a
practical stand point of view, in the future the authors would like to
investigate also simpler models, because they are easier to implement
and also physical interpretation of the terms is more accessible. Given
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Fig. 23. Mesh convergence study for the baseline and the corrected model. Shown are the horizontal slices of the velocity field up and downstream of the rotor plane for the
three turbines of case B.
Fig. 24. Mesh convergence study for the baseline and the corrected model. Shown are the horizontal slices of the turbulent kinetic energy field up and downstream of the rotor
lane for the three turbines of case B.
able 8
nvariant bases, number of symmetric and antisymmetric tensors for each invariant are
ndicated by 𝑛𝑠 and 𝑛𝐴, respectively. The invariant bases are the trace of the tensors
isted. The asterisk on a invariant bases indicates that also the cyclic permutation of
he antisymmetric tensors are included.
(𝑛𝑆 , 𝑛𝐴) Feature index Invariant bases

(1, 0) 1–2 𝑆2, 𝑆3

(0, 1) 3–5 𝜴2, 𝐴2
𝑝 , 𝐴

2
𝑘

(1, 1) 6–14 𝜴2𝑆, 𝜴2𝑆2, 𝜴2𝑆𝜴𝑆2

𝐴2
𝑝𝑆, 𝐴2

𝑝𝑆
2, 𝐴2

𝑝𝑆𝐴𝑝𝑆2

𝐴2
𝑘𝑆, 𝐴2

𝑘𝑆
2 , 𝐴2

𝑘𝑆𝐴𝑘𝑆2

(0, 2) 15–17 𝜴𝐴𝑝, 𝐴𝑝𝐴𝑘, 𝜴𝐴𝑘
(1, 2) 18–41 𝜴𝐴𝑝𝑆, 𝜴𝐴𝑝𝑆2, 𝜴2𝐴𝑝𝑆∗, 𝜴2𝐴𝑝𝑆2∗, 𝜴2𝑆𝐴𝑝𝑆2∗

𝜴𝐴𝑘𝑆, 𝜴𝐴𝑘𝑆2, 𝜴2𝐴𝑘𝑆∗, 𝜴2𝐴𝑘𝑆2∗, 𝜴2𝑆𝐴𝑘𝑆2∗

𝐴𝑝𝐴𝑘𝑆, 𝐴𝑝𝐴𝑘𝑆2, 𝐴2
𝑝𝐴𝑘𝑆∗, 𝐴2

𝑝𝐴𝑘𝑆2∗

(0, 3) 42 𝜴𝐴𝑝𝐴𝑘
(1, 3) 43–47 𝜴𝐴𝑝𝐴𝑘𝑆, 𝜴𝐴𝑘𝐴𝑝𝑆, 𝜴𝐴𝑝𝐴𝑘𝑆2, 𝜴𝐴𝑘𝐴𝑝𝑆2, 𝜴𝐴𝑝𝑆𝐴𝑘𝑆2

this, either the structure of the correction terms can be changed or pos-
sibly the inclusion of a classifier that helps distinguish between wake
and not wake may also be helpful. Simpler models could potentially
also benefit from better numerical stability. Further, a shortcoming of
the presented work is that the dataset is limited and at this point it is
unclear whether the models would generalize well to more turbines,
different turbine loading and inflow conditions.
16
Nevertheless, given that data-driven turbulence models are a rela-
tively new development in the fluid dynamics community and so far
they have only been applied to very fundamental cases, the obtained
results are already a step in the right direction. Of course, to apply
the methodology to more realistic conditions including atmospheric
stratification and real scale turbines, a lot of work is still necessary.
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Appendix A. Physical features

See Table 7.

Appendix B. Integrity basis and invariants

See Table 8.

Appendix C. Horizontal slices

See Figs. 15–24.

References

[1] https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/windenergie-op-
zee. [Accessed 2020].

[2] Sanderse B, Pijl SP, Koren B. Review of computational fluid dynamics for wind
turbine wake aerodynamics. Wind Energy 2011;14(7):799–819.

[3] Stevens RJ, Meneveau C. Flow structure and turbulence in wind farms. Annu
Rev Fluid Mech 2017;49(1):311–39.

[4] Breton S-P, Sumner J, Sørensen JN, Hansen KS, Sarmast S, Ivanell S. A survey
of modelling methods for high-fidelity wind farm simulations using large eddy
simulation. Phil Trans R Soc A 2017;375(2091):20160097.

[5] Ghaisas N, Archer C, Xie S, Wu S, Maguire E. Evaluation of layout and
atmospheric stability effects in wind farms using large-eddy simulation. Wind
Energy 2017;20(7):1227–40.

[6] Rethore P-E. Wind turbine wake in atmospheric turbulence, roskilde: riso
national laboratory for sustainable energy. [Ph.D. thesis], 2009, Riso-PhD, No.
53(EN).

[7] Kasmi AE, Masson C. An extended k–𝜖 model for turbulent flow through
horizontal-axis wind turbines. J Wind Eng Ind Aerodyn 2008;96(1):103–22.

[8] Prospathopoulos JM, Politis ES, Rados KG, Chaviaropoulos PK. Evaluation of the
effects of turbulence model enhancements on wind turbine wake predictions.
Wind Energy 2011;14(2):285–300.

[9] van der Laan MP, Sørensen NN, Réthoré P-E, Mann J, Kelly MC, Troldborg N,
et al. An improved k-𝜖 model applied to a wind turbine wake in atmospheric
turbulence. Wind Energy 2015;18(5):889–907.

[10] van der Laan MP, Andersen SJ. The turbulence scales of a wind turbine wake:
A revisit of extended k-𝜖 models. J Phys Conf Ser 2018;1037:072001.

[11] Gómez-Elvira R, Crespo A, Migoya E, Manuel F, Hernández J. Anisotropy of
turbulence in wind turbine wakes. J Wind Eng Ind Aerodyn 2005;93(10):797–
814.

[12] van der Laan MP, Sørensen N, Réthoré P, Mann J, Kelly M, Schepers J. Nonlinear
eddy viscosity models applied to wind turbine wakes. 2013, 514–525, 12.

[13] Cabezon D, Migoya E, Crespo A. Comparison of turbulence models for the com-
putational fluid dynamics simulations of wind turbine wakesin the atmospheric
boundary layer. Wind Energy 2011.

[14] Schmelzer M, Dwight R, Cinnella P. Discovery of algebraic reynolds-stress models
using sparse symbolic regression. Flow Turbul Combust 2019;10.

[15] Ling J, Kurzawski A, Templeton J. Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance. J Fluid Mech 2016;807:155–66.

[16] Durbin PA. Some recent developments in turbulence closure modeling. Annu Rev
Fluid Mech 2018;50(1):77–103.

[17] Duraisamy K, Iaccarino G, Xiao H. Turbulence modeling in the age of data. Annu
Rev Fluid Mech 2019;51(1):357–77.

[18] Xiao H, Cinnella P. Quantification of model uncertainty in rans simulations: A
review. Prog Aerosp Sci 2019;108:1–31.

[19] Kumar P, Schmelzer M, Dwight RP. Stochastic turbulence modeling in rans
simulations via multilevel monte carlo. Comput & Fluids 2020;201:104420.

[20] Kaandorp ML, Dwight RP. Data-driven modelling of the reynolds stress tensor
using random forests with invariance. Comput & Fluids 2020;202:104497.

[21] Tracey BD, Duraisamy K, Alonso JJ. A machine learning strategy to assist
turbulence model development.

[22] Parish EJ, Duraisamy K. A paradigm for data-driven predictive modeling using
field inversion and machine learning. J Comput Phys 2016;305:758–74.

[23] Singh AP, Duraisamy K. Using field inversion to quantify functional errors in
turbulence closures. Phys Fluids 2016;28(4):045110.

[24] Singh AP, Medida S, Duraisamy K. Machine-learning-augmented predictive
modeling of turbulent separated flows over airfoils. AIAA J 2016;55(08).

[25] Weatheritt J, Sandberg R. A novel evolutionary algorithm applied to al-
gebraic modifications of the rans stress–strain relationship. J Comput Phys
2016;325:22–37.
17
[26] Weatheritt J, Sandberg R. The development of algebraic stress models using a
novel evolutionary algorithm. Int J Heat Fluid Flow 2017;68:298–318.

[27] Weatheritt J, Zhao Y, Sandberg RD, Mizukami S, Tanimoto K. Data-driven scalar-
flux model development with application to jet in cross flow. Int J Heat Mass
Transfer 2020;147:118931.

[28] Zhang Y, Dwight RP, Schmelzer M, Gomez JF, Hickel S, hua Han Z. Customized
data-driven rans closures for bi-fidelity les-rans optimization. 2020.

[29] Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci
2016;113(15):3932–7.

[30] Rudy SH, Brunton SL, Proctor JL, Kutz JN. Data-driven discovery of partial
differential equations. Sci Adv 2017;3(4).

[31] Adcock C, King RN. Data-driven wind farm optimization incorporating effects of
turbulence intensity. 2018, 695–700, 06.

[32] King RN, Adcock C, Annoni J, Dykes K. Data-driven machine learning for wind
plant flow modeling. J Phys Conf Ser 2018;1037:072004.

[33] Iungo G, Letizia S, Zhan L. Quantification of the axial induction exerted by
utility-scale wind turbines by coupling lidar measurements and rans simulations.
J Phys Conf Ser 2018;1037(06):072023.

[34] Milani PM, Ling J, Eaton JK. Turbulent scalar flux in inclined jets in cross-
flow: counter gradient transport and deep learning modelling. J Fluid Mech
2021;906:A27.

[35] Huijing JP, Dwight RP, Schmelzer M. Data-driven rans closures for
three-dimensional flows around bluff bodies. Comput & Fluids 2021;225:104997.

[36] Thompson RL, Sampaio LEB, de Bragança Alves FA, Thais L, Mompean G. A
methodology to evaluate statistical errors in dns data of plane channel flows.
Comput & Fluids 2016;130:1–7.

[37] Chamorro LP, Porté-Agel F. Effects of thermal stability and incoming boundary-
layer flow characteristics on wind-turbine wakes: A wind-tunnel study.
Bound-Lay Meteorol 2010;136:515–33.

[38] Churchfield M, Lee S. Simulator for wind farm aerodynamics (sowfa).https:
//nwtc.nrel.gov/SOWFA.

[39] Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the
velocity gradient tensor. Flow Turbul Combust 1999;62:183–200.

[40] Sanz Rodrigo J, Churchfield M, Kosovic B. A methodology for the design and
testing of atmospheric boundary layer models for wind energy applications. Wind
Energy Sci 2017;2(1):35–54.

[41] Xie S, Archer C. Self-similarity and turbulence characteristics of wind turbine
wakes via large-eddy simulation. Wind Energy 2014;18(08).

[42] Stevens RJ, Martí nez Tossas LA, Meneveau C. Comparison of wind farm large
eddy simulations using actuator disk and actuator line models with wind tunnel
experiments. Renew Energy 2018;116:470–8.

[43] Martínez Tossas L, Leonardi S, Churchfield M, Moriarty P. A comparison of
actuator disk and actuator line wind turbine models and best practices for their
use. 2012, 01.

[44] Brasseur JG, Wei T. Designing large-eddy simulation of the turbulent boundary
layer to capture law-of-the-wall scaling. Phys Fluids 2010;22(2):021303.

[45] Menter FR. Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA J 1994;32(8).

[46] Launder B, Spalding D. The numerical computation of turbulent flows. Comput
Methods Appl Mech Engrg 1974;3(2):269–89.

[47] Sogachev A, Kelly M, Leclerc MY. Consistent two-equation closure modelling
for atmospheric research: Buoyancy and vegetation implementations. Bound-Lay
Meteorol 2012;145(2):307–27.

[48] Pope SB. A more general effective-viscosity hypothesis. J Fluid Mech
1975;72(2):331–40.

[49] Wang J-X, Wu J-L, Xiao H. Physics-informed machine learning approach for
reconstructing reynolds stress modeling discrepancies based on dns data. Phys
Rev Fluids 2017;2:034603.

[50] van der Laan P, Sørensen N, Réthoré P-E, Kelly M, Mann J. Efficient Turbulence
Modeling for CFD Wake Simulations [Ph.D. thesis]: Denmark, 2014.

[51] Zou H, Hastie T. Regularization and variable selection via the elastic net. J R
Stat Soc Ser B Stat Methodol 2005;67:301–20.

[52] Goderie M. Enhancement of data-driven turbulence models for wind turbine wake
applications [Master’s thesis], TU Delft; 2020.

[53] Moon Y-I, Rajagopalan B, Lall U. Estimation of mutual information using kernel
density estimators. Phys Rev E 1995;52:2318–21.

[54] Ver Steeg G, Galstyan A. Information-theoretic measures of influence based on
content dynamics. In: Proceedings of the sixth ACM international conference on
web search and data mining, Vol. 13. Association for Computing Machinery;
2013, p. 3–12.

[55] Alba RD. A graph-theoretic definition of a sociometric clique. J Math Sociol
1973;3(1):113–26.

http://refhub.elsevier.com/S0045-7930(21)00326-1/sb2
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb2
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb2
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb3
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb3
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb3
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb4
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb4
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb4
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb4
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb4
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb5
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb5
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb5
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb5
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb5
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb6
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb6
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb6
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb6
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb6
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb7
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb7
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb7
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb8
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb8
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb8
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb8
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb8
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb9
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb9
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb9
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb9
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb9
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb10
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb10
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb10
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb11
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb11
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb11
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb11
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb11
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb12
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb12
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb12
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb13
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb13
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb13
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb13
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb13
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb14
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb14
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb14
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb15
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb15
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb15
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb16
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb16
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb16
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb17
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb17
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb17
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb18
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb18
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb18
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb19
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb19
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb19
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb20
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb20
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb20
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb22
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb22
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb22
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb23
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb23
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb23
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb24
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb24
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb24
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb25
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb25
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb25
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb25
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb25
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb26
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb26
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb26
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb27
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb27
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb27
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb27
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb27
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb28
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb28
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb28
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb29
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb29
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb29
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb29
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb29
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb30
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb30
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb30
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb31
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb31
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb31
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb32
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb32
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb32
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb33
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb33
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb33
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb33
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb33
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb34
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb34
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb34
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb34
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb34
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb35
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb35
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb35
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb36
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb36
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb36
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb36
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb36
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb37
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb37
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb37
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb37
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb37
https://nwtc.nrel.gov/SOWFA
https://nwtc.nrel.gov/SOWFA
https://nwtc.nrel.gov/SOWFA
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb39
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb39
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb39
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb40
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb40
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb40
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb40
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb40
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb41
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb41
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb41
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb42
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb42
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb42
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb42
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb42
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb43
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb43
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb43
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb43
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb43
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb44
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb44
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb44
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb45
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb45
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb45
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb46
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb46
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb46
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb47
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb47
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb47
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb47
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb47
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb48
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb48
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb48
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb49
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb49
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb49
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb49
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb49
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb51
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb51
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb51
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb52
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb52
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb52
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb53
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb53
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb53
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb54
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb54
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb54
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb54
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb54
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb54
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb54
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb55
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb55
http://refhub.elsevier.com/S0045-7930(21)00326-1/sb55

	Data-driven RANS closures for wind turbine wakes under neutral conditions
	Introduction
	Methodology
	Case definition and LES database generation
	Discovery of optimal corrective fields
	Blending of the turbulence correction terms
	Matching RANS boundary-layer profiles to LES
	Full formulation of correction terms

	Learning of correction terms

	Results and discussion
	Flow field with optimal correction terms
	Learning of correction terms
	Robustness of correction terms
	Flow field with learned correction terms
	Mesh convergence with learned correction terms

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Physical features
	Appendix B. Integrity basis and invariants
	Appendix C. Horizontal slices
	References


