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Subsurface flow simulation is vital for many geoscience applications, including geoenergy 
extraction and gas (energy) storage. Reservoirs are often highly heterogeneous and naturally 
fractured. Therefore, scalable simulation strategies are crucial to enable efficient and reliable 
operational strategies. One of these scalable methods, which has also been recently deployed in 
commercial reservoir simulators, is algebraic multiscale (AMS) solvers. AMS, like all multilevel 
schemes, is found to be highly sensitive to the types (geometries and size) of coarse grids and 
local basis functions. Commercial simulators benefit from a graph-based partitioner; e.g., METIS 
to generate the multiscale coarse grids. METIS minimizes the amount of interfaces between coarse 
partitions, while keeping them of similar size which may not be the requirement to create a coarse 
grid. In this work, we employ a novel approach to generate the multiscale coarse grids, using 
unsupervised learning methods which is based on optimizing different parameter. We specifically 
use the Louvain algorithm and Multi-level Markov clustering. The Louvain algorithm optimizes 
modularity, a measure of the strength of network division while Markov clustering simulates 
random walks between the cells to find clusters. It is found that the AMS performance is improved 
when compared with the existing METIS-based partitioner on several field-scale test cases. This 
development has the potential to enable reservoir engineers to run ensembles of thousands of 
detailed models at a much faster rate.

1. Introduction

One of the main challenges in computational geosciences for flow and transport simulations is that the reservoir is highly hetero-

geneous and naturally fractured. This will become computationally very expensive to solve at the fine (high-resolution) scale, because 
of the large number of cells and nonlinearities to be resolved. In addition, because of the uncertainties involved in geoscience ap-

plications, several forward simulations have to be run on many possible realizations [1]. As such, advanced simulation methods are 
crucial to enable safe, efficient and reliable operational strategies at field-scales. To address this, algebraic multi-scale methods [2–8]

were developed and evolved in the past decade to accelerate both academic and commercial reservoir simulators. Their performance, 
however, is highly dependent on the choice of local “basis functions”, used to map between the fine- and coarser-scale systems [9]. 
These basis functions form partitions of unity, and are enriched once fractures are present [10].
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Fig. 1. Schematic of graph clustering in reservoir simulation using algebraic multiscale methods.

In the recent era, machine-learning methods are being widely used in the reservoir flow modeling applications like using smart 
finite elements [11] or employing a physics-informed neural network to model the Buckley-Leverett problem to understand the 
drainage of gas into a water-filled porous medium [12]. To reduce the computational time and complexity of the system, several 
multiscale methods with different definitions are prevalently, such as upscaling material properties [13], algebraic multiscale meth-

ods [4] or FE2 methods for composites [14]. Few authors in recent years have used machine learning in the area of algebraic 
multiscale or multigrid methods [15–20]. A deep neural network was used in the geometric multigrid method, by considering every 
operation as a network layer [19]. Recently, a graph-based neural network (GNN) was employed to train algebraic multi-grid prolon-

gation operator for linear systems using a single GNN [21], reinforcement learning [22] and encoder-decoder-based idea of pooling 
to coarsen the mesh graph [23]. A surrogate model was also developed to generate basis functions in the multiscale solver [24].

Based on the literature, most of the work is focused on employing machine learning to improve prolongation operators or optimize 
the AMG solvers. However, enhancing the solver performance using machine learning to find the location of the coarse grid cells in 
the reservoir domain was never attempted. Traditionally, commercial simulators, use the graph cut methods such as METIS package 
[25] to partition the fine-scaled domain into a coarse-scale system based on the connectivity of the cells. The improvement in the 
performance of the partitioning can be indirectly reflected in reducing the total number of Newton iterations in each timestep. The 
METIS package minimizes the number of edges between partitions (coarse block cells) while keeping the partitions of similar size. 
This is an important consideration for parallel computing; however, it might not be important for a multiscale sequentially fully 
implicit (SFI) solver. To tackle this, in this work, unsupervised graph-based learning algorithms are employed to cluster the fine-scale 
domain into a coarse-scale system. The schematic of the approach is shown in Fig. 1.

The data, which are stored in the reservoir, are translated to a graph which captures the connectivity between the cells into the 
edge weights of the graph (transmissibility) and the node weights (pore volume). Using graph clustering, communities are detected 
and further translated to the coarse grid. Graph clustering has been extensively used in the past to find communities based on 
connectivity between the nodes or edge weights and also node weights for different applications such as image segmentation [26], 
load balancing in parallel computing, very large scale integration systems (VLSI) [25], genetic mapping [27,28] and social networks 
[29].

Popular graph-based clustering algorithms include spectral clustering [30–32], hierarchical clustering [33], modularity-based 
methods [34,35] and neural-network-based methods [36]. The spectral algorithm involves the computation of eigenvalues and 
vectors with approximate methods such as the Nystrom and Lanczos algorithms. The obtained eigenvectors can be sensitive to the 
approximation error that contributes to the poor quality of the results and does not scale well to large test cases. Neural-network-based 
algorithms need extensive training and testing data, which is not appropriate in this application mainly because the performance is 
case dependent due to high heterogeneity and insufficient data available to train the network.

In this work, the two chosen advanced algorithms to compare with METIS are the Louvain algorithm [35] and Multi-level 
Regularized Markov clustering (MLR-MCL) [37]. The Louvain algorithm is based on modularity optimization while the Markov 
clustering algorithm is iteratively employed until its stochastic matrix is converged. The Louvain algorithm, a recursive method that 
2

builds on previous work [38–42] and variants of Markov clustering algorithms based on random walk [43–45] have been previously 
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implemented in different applications extensively. This work presents the first attempt to employ unsupervised clustering algorithms 
within algebraic multiscale methods to accelerate reservoir simulation. This is different from traditional surrogate models or neural-

network-based models that generally require a lot of training and testing data to obtain a generic model suitable to all simulation 
cases.

The paper is organized in the subsequent manner. Initially, a brief explanation is given about the mass conservation system used to 
calculate pressure, as well as the algebraic multiscale solver utilized in this study. Following that, the graph-based clustering methods 
are introduced, providing detailed explanations of two employed algorithms: Louvain and Markov clustering. Various numerical 
experiments are conducted, gradually escalating in complexity, where these two algorithms are employed. The performance of the 
solver is then compared to the established METIS package. Lastly, the paper concludes with final remarks.

2. Governing equations

In this work, the conservation of mass equation for single-phase incompressible flow is solved to compute fluid pressure across 
the reservoir. It reads as

−∇(𝝀 ⋅∇𝑝) = 𝑞 +∇(𝜌𝑔𝝀 ⋅∇ℎ). (1)

Here 𝑝 is the pore pressure, 𝜆 is the positive definite mobility tensor, 𝑞 is the source term, 𝑔 is the gravitational acceleration, ∇ℎ
is the depth and 𝜌 is the density of the fluid. The conservation of mass equation is solved to compute the pressure in the reservoir 
domain as dictated by the location of the wells.

Applying finite volume (FV) discretization scheme and integrating the mass conservation equation over a control volume, the 
fine-scale FV system can be used to solve for incremental pressure (Δ𝑝). In the residual format, it can be written as

𝑱Δ𝑝 = 𝒓 (2)

To improve the computational efficiency and solve for larger testcases, an algebraic multiscale system is employed as presented in 
the next section.

3. Multiscale solver

In this section, the AMS method which was extensively researched in the past, is briefly elaborated. Recently, the AMS method 
was also released in the commercial simulation space [46,47,7]. The approximate incremental fine-scale pressure 𝑝𝑓 can be written 
in terms of incremental coarse-scale pressure 𝑝𝑐 using the prolongation operator 𝑷 as

Δ𝑝𝑓 = 𝑷Δ𝑝𝑐 . (3)

The prolongation operator is 𝑷 = [𝑁1, 𝑁2...𝑁𝐻 ] where the number 𝐻 is the number of coarse blocks in the domain (user defined) and 
𝑝𝑓 is the approximate fine-scale pressure solution obtained from AMS. This number and locations of the coarse grids are obtained 
from unsupervised learning methods in this work. The pressure increment is computed as

(𝑹𝑱𝑷 )Δ𝑝𝑐 =𝑹𝑟. (4)

Here 𝑹 is the restriction operator. The prolongation operator is computed from the finite volume Restriction matrix 𝑹𝐹𝑉 that is 
given by

𝑹𝐹𝑉 =

{
1, if 𝑥𝑖 ∈Ω𝑏

𝑗

0, otherwise.
(5)

Here Ω𝑏
𝑗

is the 𝑗th coarse grid. The prolongation operator (𝑷 ) is computed iteratively by employing steady-state formulation which 
is computed from the Jacobians. Initially the prolongation operator is set as 𝑷 0 =𝑹

𝑇 , which is further modified iteratively as

𝑷
𝑛+1 = 𝑷

𝑛 −(𝜔𝑫−1
𝑏
𝐴𝑏𝑷

𝑛). (6)

Here 𝐴𝑏 is computed by regularizing the fluxes over the interface which is given by

𝑨𝒃 =
1
2

{
𝑱 + 𝑱

𝑇 − diag[(𝑱 + 𝑱
𝑇 )𝟏].

}
(7)

Here 𝑫𝑏 is the diagonal of 𝐴𝑏, 𝜔 is the relaxation factor,  is the function which modifies the incremental pressure ensuring that 
the basis function is limited to the support region. Once the prolongation operator is computed, the restriction operator is defined as 
𝑹 = 𝑷

−1 similar to finite element multiscale method. The detailed procedure can be found in [48,7,49].

For all the testcases, clusters were employed in the multiscale solver. Each cluster of cells forms a coarse block and will possess a 
corresponding basis function centered within it. The support of the basis function is the coarse block and includes a “halo” consisting 
of three layers of neighboring cells surrounding it. This halo overlaps with the support areas of adjacent basis functions, resulting 
in off-diagonal elements within the coarse-scale system. The thicker the halo, the bigger the support and overlap, consequently 
3

increasing the density of the coarse-scale stencil. While a dense stencil might offer a more accurate portrayal of the pressure problem’s 
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Fig. 2. Illustration of Louvain algorithm.

global nature, it can also lead to solving a more difficult rigid coarse linear system. The computation of the basis functions follows 
the iterative MsRSB procedure [48].

In the next section, graph clustering algorithms employed to generate the multiscale grid are elaborated.

4. Graph clustering algorithms

Graph clustering is a technique in data analysis and machine learning that involves grouping similar nodes in a graph into clusters. 
A graph is a mathematical representation of a network, consisting of a set of nodes and edges connecting them. Clustering allows 
us to identify groups of nodes that are densely connected to each other within the graph, while being sparsely connected to nodes 
outside the group. In this work the Louvain algorithm and MLR-MCL have been employed and are elaborated below.

4.1. Louvain algorithm

The Louvain algorithm is based on optimizing a parameter called modularity. It is suitable for directed and weighted graphs. It is 
already a proven scalable algorithm, which can cluster millions of nodes within seconds. Fig. 2 shows the schematic of the Louvain 
algorithm applied in multiscale methods.

Initially, the fine-scale domain is converted to a weighted and directed graph. Then, based on modularity optimization, the initial 
set of similar nodes are identified. Modularity is expressed as [50]

𝑀 = 1
2𝑚

∑
𝑖,𝑗

[𝐴𝑖𝑗 −
𝑡𝑖𝑡𝑗

2𝑚
]𝛿(𝜈𝑖, 𝜈𝑗 ) (8)

𝜈𝑖 is the community to which vertex 𝑖 is assigned, 𝛿(𝜈𝑖, 𝜈𝑗 ) = 1 when 𝜈𝑖 = 𝜈𝑗 else 𝛿(𝜈𝑖, 𝜈𝑗 ) = 0. Here 𝑡𝑖, 𝑡𝑗 are the sum of weights of edges 
attached to the nodes of 𝑖 and 𝑗, 𝐴𝑖𝑗 represents the weight of the edge between 𝑖 and 𝑗 nodes, 𝑚 = 1

2
∑

𝑖𝑗
𝐴𝑖𝑗 . The range of modularity 

is between 0 and 1. After modularity optimization, the nodes are aggregated to form a new cluster that results in a network with 
aggregated nodes. The pseudo-code of this algorithm can be seen in [35].

The Louvain algorithm outputs the number of clusters at each level of the dendogram. There are several parameters, such as 
the optimization tolerance, which is the minimum increase to enter a new modularity optimization, the number of aggregations, 
which is the level of the dendogram at which the user is requesting. These parameters affect the number and shape of the clusters. 
Depending on these parameters for each level of dendogram, different numbers of clusters are output. Accordingly, the user chooses 
the dendogram level to obtain a certain number of clusters. Once the number of clusters are output, the cluster number and the 
number of cells in the respective cluster will be employed to solve the algebraic multiscale system. In this work, the Louvain 
algorithm package deployed in the scikit network was employed [35,51,52]. The default values of parameters in these packages 
were reasonable to get a good estimate of the number of clusters. The edge and node weights employed for this algorithm are 
transmissibility and porosity, respectively. To accommodate the effect of transmissibility and porosity equally, all the weights are 
4

normalized.
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Fig. 3. Schematic of MLR-MCL algorithm.

Fig. 4. Coarse grid obtained from METIS (left) and MLR-MCL (right) simulation for this test case. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

4.2. MLR-MCL algorithm

MLR-MCL is the other method that was employed in this study, which uses expansion and inflation operators. The method 
performs deterministic random walks through the network graph using the two operators by converting one set to another set to 
identify the nodes that belong in the same cluster. In this work, an extension of Markov clustering which is Regularized multi-level 
Markov clustering as employed by [37] is used. The schematic can be seen in Fig. 3.

The graph based representation of the fine-scale domain is coarsened using edge-matching techniques, then the coarsest graph 
is obtained. By employing Markov clustering on the coarse graphs, aggregated clustered graphs are identified. Further, depending 
on the user conditions, the number of clusters are obtained. This is further translated to the coarse-scale domain. This algorithm is 
applicable to undirected and unweighted graphs. This algorithm is highly scalable which benefits the commercial solvers usability.

5. Numerical experiments

In this section, METIS, MLR-MCL and Louvain algorithm are compared based on the performance of the simulator. Pressure 
iterations of the linear solver and the time taken to solve for the pressure solution (𝑡𝑝) are the two parameters chosen for comparison. 
In the increasing level of complexity, the following test cases are ordered.

5.1. Test case A

This is a small homogeneous test case that has 300 fine grid cells and 100 coarse blocks from the METIS algorithm. Louvain 
clustering and Markov clustering also output 100 coarse blocks with similar coarse grid structure as seen in Fig. 4. The performance 
of the solver for different algorithms is shown in Table 1. Here the coarse blocks are grouped vertically (𝑧 direction) because of more 
dominant connections compared to the horizontal ones. In the vertical (𝑧) direction, there are 3 cells, while in the horizontal (𝑥 and 
𝑦) directions, there are 10x10 cells each. The various colors within the grid indicate distinct coarse cells that have been clustered in 
the 𝑧 direction. This implies that each coarse block cell consists of 3 finer cells. Upon visual inspection, it’s evident that the quantity 
of coarse block cells is consistent across all three algorithms, and they are also arranged in the same manner, aligning with the 
5

𝑧-direction. The computational performance and the time shown by all the algorithms are similar.
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Table 1

Comparison of solver performance for different algorithms with number of fine 
cells = 300 cells. 𝑁𝑐 is the number of coarse cells and 𝑡𝑝 is the time taken to solve 
for pressure solution.

Algorithm Linear pressure iterations 𝑡𝑝 [s] 𝑁𝑐

METIS 854 0.7 100

Louvain 867 0.6 100

MLR-MCL 867 0.6 100

Fig. 5. Permeability fields in 𝑥, 𝑦 and 𝑧 directions from left to right respectively for this testcase.

Table 2

Comparison of solver performance for different algorithms with number of fine cells = 79423. (EW: 
Edge weight, NW: Node weight). Here 𝑀 is modularity. Lowest linear pressure iterations and least 
pressure solution time is bolded.

Algorithm Linear pressure iterations 𝑡𝑝 [s] 𝑁𝑐

METIS 507 35.1 4019

METIS (+EW) 531 38.7 4700

METIS (+EW + NW) 541 35.4 4200

Louvain [𝑀 = 0.67] 654 32.8 3028

Louvain (+EW) [𝑀 = 0.965] 786 38 3516

Louvain (+EW + NW) [𝑀 = 0.978] 693 34.2 3206

MLR-MCL 580 37.8 4415

The effect of adding weights to METIS and Louvain algorithms did not show any improvement in the performance of the solver 
because of a highly simplified testcase. This simple testcase builds confidence in the employed algorithms because of similar compu-

tational performance compared to traditional algorithm METIS.

5.2. Test case B

The reservoir is medium sized, geometrically complex and heterogeneous in nature in this testcase. The number of fine-cells 
is 79423 and the number of coarse block cells are slightly different for different algorithms. The permeability fields in 𝑥, 𝑦 and 𝑧
direction are shown in Fig. 5. The range of permeability is between 0.1 mD to 1000 mD with relatively low permeability along the 𝑧
direction compared to the other two directions. The permeability range is similar for 𝑥 and 𝑦 direction. The coarse blocks obtained 
from the three algorithms are shown in Fig. 6. The performance of the solver and the number of coarse blocks for different algorithms 
are shown in Table 2.

The coarse blocks as shown in Fig. 6 depict the grids for METIS, Markov clustering and Louvain clustering. The coarse grids look 
similar for METIS and MLR-MCL; however, the coarse grids for Louvain algorithm show nonuniform-sized coarse blocks with different 
numbers of fine cells. The METIS algorithm was found to have the fewest linear pressure iterations, but the Louvain algorithm was 
found to have the least pressure solution time. This means that the pressure solver performance was improved. The number of coarse 
blocks for these algorithms are slightly different, which could be causing the change in the performance of the pressure solver.

To gain a deeper insight into the distinctions within the coarse grid arrangement of these algorithms, a statistical assessment is 
conducted across these datasets. This comparison is visualized through violin plots, depicted in Fig. 7. These visualizations illustrate 
how the distribution of fine-scale cells varies for METIS when considering weight inclusion, for Louvain with weight consideration, 
6

and for the MLR-MCL algorithm. Within these plots, the median is denoted by a white dot, the mean is represented by a blue line, 
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Fig. 6. Coarse grids obtained from the clustering algorithms for this testcase.

Fig. 7. Violin plots of test case B showing the distribution of finescale cells for each of the algorithm employed. The white dot and the blue horizontal line represents 
the median and mean respectively. The black box represents 25 to 75 percentile of the data. Figs. 7e, 7f and 7g shows the distribution in log scale for Louvain 
7

algorithm.
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Fig. 8. Bandwidth of the matrix obtained from the three algorithms.

Table 3

Comparison of solver performance for different algorithms with number of fine 
cells = 584220. The highlighted numbers show the lowest pressure iterations and 
least pressure solution time.

Algorithm Linear pressure iterations 𝑡𝑝 [s] 𝑁𝑐

METIS 10957 5835.6 11.7 k

Louvain 8765 5009.8 12.02 k

MLR-MCL 9317 4828.8 12.04 k

and the interquartile range is shown by a black box. Moreover, the plots also display the mean and standard deviation values for 
each case. As seen in Figs. 7a, 7b, and 7c, these plots display the distribution of fine-scale cells for the METIS algorithm without any 
weights, with edge weights (EW), and with both edge and node weights respectively.

It’s evident that in the cases of METIS and METIS (+EW), the data exhibits a higher-tailed distribution on both sides, with sparser 
distribution in the central region. Disregarding the outliers, the median (represented by a white dot) indicates that there are roughly 
20+ cells in the coarse cell region. When node weights (porosity) are included, the distribution becomes more heavily tailed, with 
certain outliers showing a high number of fine-scale cells in coarse cells.

Turning to the Louvain algorithm (Fig. 7d), it shows a centered distribution with heavier tails, wherein numerous coarse cells have 
large number of fine-scale cells compared to other algorithms. To enhance the clarity of this data, a logarithmic distribution of cells 
is presented, wherein the distribution shows to approximate a normal distribution. This trend remains consistent across all variations 
of the Louvain algorithm, even when edge and node weights are included. This adherence to log-normal distribution signifies that 
the algorithm tends to favor large number of fine-scale cells within coarse grids. This is in line with existing literature [53] where 
modularity-based algorithms favor larger communities. In the case of the MLR-MCL algorithm (Fig. 7h), the distribution appears to 
be more uniformly distributed. The mean values for METIS and MLR-MCL algorithms are similar with a small standard deviation. 
However for Louvain algorithm, the mean value and standard deviation values are similar showing the skewness of the data. Another 
interesting observation is that the standard deviation is least for MLR-MCL algorithm compared to other algorithms which means 
that the distribution is less spread out and uniform spaced. The data also shows a larger quartile region (data from 25 percentile to 75 
percentile) for Louvain algorithm compared to METIS and the least for MLR-MCL algorithm showing the heterogeneous coarsening 
ratio distribution.

To understand how strong the coupled system is, connectivity bandwidth of the matrix is studied. Connectivity bandwidth means 
the average number of off-diagonals among the rows. The higher the bandwidth means the stronger is the coupled system. Fig. 8

shows the variation of numbers of coarse cells with the connectivity bandwidth of the algorithms. Fig. 8a shows higher bandwidth 
compared to the Fig. 8b because the output of the Louvain algorithm shows many large coarse blocks adjacent to the much smaller 
ones.

The Louvain algorithm optimizes the number of coarse blocks based on the modularity parameter. So based on adding weights 
(edge and node), the ease at which the clusters could be identified is reflected in parameter modularity. When edge and node weights 
are accounted for, the modularity of the Louvain algorithm increases as seen in Table 2, which suggests that it is easier to coarsen the 
computational grid. However, this trend was not observed in the computational solver performance. This could be case dependent 
or, because the solver is highly complex, the inclusion of weights was not a dominant factor.

5.3. Test case C

This is a medium-sized reservoir with 584220 fine cells and with heterogeneous permeability fields as shown in Fig. 9a. The 
resulting coarse block from METIS is shown in Fig. 9b. Visually it is not possible to see the difference in the coarse grids obtained 
from different algorithms. The performance of the solvers is shown in Table 3.

Similar to the previous testcase, the number of linear pressure iterations are least for the Louvain algorithm. The pressure solution 
is also low for the MLR-MCL and Louvain algorithms compared to the traditional METIS algorithm. The number of coarse blocks are 
8

roughly the same obtained from the algorithms. The difference in the number of coarse blocks is less than 3%.
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Fig. 9. Permeability (x direction) and coarse grid obtained from METIS.

Fig. 10. Violin plots of test case C showing the distribution of finescale cells for each of the algorithm employed. The white dot and the blue horizontal line represents 
the median and mean respectively. The black box represents 25 to 75 percentile of the data. Fig. 10d shows the distribution in log scale for the Louvain algorithm.

The dissimilarities in the coarse grid structures of each of these algorithms are illustrated through violin plots, as depicted in 
Fig. 10. In this particular test case, the representation showcases the distribution of fine-scale cells within the coarse grid for METIS 
without weights, MLR-MCL, the Louvain algorithm, and its logarithmic distribution (no weights), as displayed in Figs. 10a, 10b, 10c, 
and 10d, respectively.

Similar to the prior test case, the Louvain algorithm demonstrates a distribution with heavy tails, revealing a subset of coarse-

scale cells containing a considerable number of fine-scale cells. Conversely, the MLR-MCL test case shows a multimodal distribution 
in contrast to the METIS algorithm, which displays two prominent peaks. However, within this particular test scenario, the mean 
values were found to be similar. Nonetheless, akin to the preceding test case, the MLR-MCL algorithm exhibits the lowest standard 
deviation, indicative of a distribution with uniformly spaced characteristics.

Fig. 11 shows the bandwidth obtained from these algorithms. Though the connectivity bandwidth is higher for the Louvain 
algorithm there are few outliers which are mainly due to few large sized coarse blocks next to small sized coarse blocks.

5.4. Test case D

This is another testcase with 2.36 million cells that was solved for using 32 cores in parallel using openMPI. This is the refined 
version of the previous reservoir testcase. The performance of the solver is shown in Table 4.

Similar to the previous testcases, though the number of linear pressure iterations are lower for METIS algorithm, lower pressure 
solution time was observed with Louvain and MLR-MCL algorithms. The lower cost per iteration suggests that the clustering algo-

rithms produce higher quality coarse grids than METIS. The distinctions among these algorithms’ coarse grid structures are visualized 
through violin plots, illustrated in Fig. 12. The distribution is presented by selecting data from a randomly chosen CPU process. In 
9

this instance, the distribution of fine-scale cells obtained from the 6th, 15th, and 26th processes is represented by the first, second, 
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Fig. 11. Bandwidth of the matrix obtained from the three algorithms.

Table 4

Comparison of solver performance for different algorithms with number of fine cells = 2.36 million.

Algorithm Linear pressure iterations 𝑡𝑝 [s] Nc Elapsed time per iteration [s]

METIS 10775 1036.3 77.6 k 0.096

Louvain 12633 964.65 69 k 0.0763

MLR-MCL 11808 974.15 74.5 k 0.0824

Fig. 12. Violin plots of test case D showing the distribution of finescale cells for each of the algorithm employed. The white dot and the blue horizontal line represents 
the median and mean respectively. The black box represents 25 to 75 percentile of the data. Figs. 12b, 12e and 12h shows the distribution in log scale for Louvain 
algorithm.

and third rows respectively, corresponding to the METIS, Louvain, and MLR-MCL algorithms. Similar to previous test cases, the dis-

tribution for the Louvain algorithm is displayed in a logarithmic format due to its pronounced one-sided tail. Notably, the standard 
deviation consistently remains the lowest for the MLR-MCL algorithm similar to previous testcases.

Upon comparing the performance characteristics across all the aforementioned test cases, it becomes evident that, for simpler 
and smaller test cases (Testcase A and B), the performance of the Louvain or MLR-MCL algorithms is comparable to that of the 
traditionally employed METIS algorithm. Nevertheless, as the scale of the test cases increases (Testcase C and D), the performance of 
the MLR-MCL and Louvain algorithms appears to hold a competitive advantage over the METIS algorithm, exhibiting a performance 
10

gain of over 8%. This upper hand observed in larger test cases is a consequence of the relatively more pronounced impact of 
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employing a coarse scale grid. Although this percentage gain might seem modest, it holds significance in the context of commercial 
software aimed at solving complex problems for extensive test cases. Any enhancement in the performance of solving the coarse 
system, regardless of its size, is a valuable asset.

It is worth acknowledging that the scalability features and the automatic determination of the coarsening ratio by these algorithms 
satisfy the requirements of the task at hand. Considering that this marks the inaugural effort to improve the coarse grid structure 
within an algebraic multiscale algorithm applied to unstructured grids using clustering algorithms, it paves the way for potential 
avenues of research aimed at optimizing the upscaled grid using machine learning techniques.

6. Conclusion

This work revolves around the novelty of implementing unsupervised learning graph based methods to generate coarse block 
grids in the algebraic multiscale methods for the first time. This method could also be extended to other upscaling methods such 
as multigrid methods. Advanced algorithms such as the Louvain and Multi-level Regularized Markov clustering algorithms were 
implemented into a commercial reservoir simulator to run several test cases. A statistical analysis was also conduced to compare the 
coarse grid structure for different algorithms. These algorithms were found to be run conveniently on large test cases without any 
penalty on the computational performance. Few conclusions which are drawn based on this work are

• For small and simpler field test cases, conventional graph cut based algorithm such as METIS showed similar performance as 
Louvain and MLR-MCL algorithms. However, the unsupervised learning algorithms had an upper edge in terms of computational 
time for larger and heterogeneous test cases compared to traditional graph cut based METIS algorithm. Based on the violin plots, 
it could be seen that the Louvain algorithm showed more skewed data implying that the algorithm favors bigger coarsening ratio 
coarse grid cells and MLR-MCl algorithm showed a more uniform distribution.

• The advantage of these algorithms is that they are highly scalable and automatically determine the number of coarse blocks, 
eliminating the need for users to input this information as required in the METIS algorithm based commercial solvers. This is 
particularly beneficial for users who may not be familiar with multiscale methods.

• The impact of adding edge and node weights to the graph was evident in clustering metrics such as modularity and edge cut, 
showing higher modularity (easier clustering) when weights were included. However, despite this positive correlation, there 
was no noticeable enhancement in solver performance, possibly due to the heterogeneity of the testcases.

• In general, when dealing with large and heterogeneous test cases, these unsupervised graph-based methods demonstrate superior 
performance in generating a coarse grid structure compared to the conventional method known as METIS. This is evident in 
terms of improved computational efficiency.

The forthcoming research will focus on solving for saturation and mechanics in addition to pressure, with the aim of assessing their 
combined impact on the overall computational performance across various types of test cases.
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