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Abstract
The growing satellite congestion in the Earth orbits increases the risk of Kessler Syndrome, that could potentially
hinder humanity’s activities in space. One of the ways to tackle the problem is Active Debris Removal (ADR)
and On­Orbit Servicing (OOS) missions with the capture phase of another spacecraft performed using a satellite
equipped with robotic manipulator. Robotics solutions are good candidates for the application in on­orbit servicing
and active debris removal missions. Due to the heritage in previous missions in which the robotic arms were used
mainly operated by astronauts or in a semi­autonomous mode, and also given the possible technology transfer
from terrestrial robotics autonomous systems, the space robotics are foreseen to have high potential in space for
applications in close proximity operations between two spacecraft. The GNC system for such a mission is one of
the main challenges due to the strict safety requirements and precision, moreover the complexity increases with
any uncertainty of the target spacecraft state. Agility and precision in coupled position and attitude control are
critical to ensure an operation free of collisions between the servicer spacecraft and the target. The challenge lies
mainly in the close rendezvous, reach and capture phase, as all the mission phases prior to close rendezvous
phase function are similar to single satellite mission without robotic subsystem.

This research project aims to propose a control system solution of a robotic spacecraft specifically for the reach
phase of the OOS space mission, when the close rendezvous phase is successfully finished and the spacecraft
starts the reach maneuver towards the target. Majority of proposed solutions for control system concerns free­
floating mode in which the controller of the s/c base is turned off and only the manipulator’s controller is active.
This project aimed to investigate the combined controller approach for OOS mission reach phase in which both
the base and robotic manipulator are actively controlled by a single control system that coordinates all sensor
data and the actuation. The project boundaries were set such that the initial condition is assumed that the chaser
spacecraft is few meters away from the target and the initial relative position and velocity with respect to the target
is kept constant, the end of the reach phase is when the end­effector reaches the grasping point. In order to focus
uniquely on control system design certain simplifying assumptions were taken with respect to the guidance and
navigation capabilities. Moreover, the capture maneuver itself is out of scope of this work, for this reason contact
dynamics were not included in the model.

The multi­body dynamics were defined with the SpaceDyn toolbox in Matlab and the advanced control strategy
was chosen, Model Predictive Control (MPC). The objective of the project was to investigate the application of
MPC for the design of the combined controller. For this purpose firstly a variety of MPC architectures was studied
in order to preliminary choose the best candidate for the robotic s/c system. The final decision was also supported
by a trade­off study. The advantage of MPC is the optimization­based strategy, a straightforward definition of the
constraints and the dynamics prediction within the future horizon. A nonlinear model predictive control (NMPC)
based on successive linearization approach was developed, the linear dynamics prediction model is obtained in
every simulation step by linearizing the nonlinear dynamics around the current operating point. The optimization
problem was constructed as quadratic problem with the primary goal of end­effector position reference tracking
and other secondary goals and it was modelled with Yalmip toolbox interface. Finally, the NMPC controller and
the plant model were put together in a feedback loop and tested for different scenario cases.

The final results show that the reachmaneuver can be successfully accomplished as long as the weights tuning
procedure is performed carefully. The final position error of end­effector is very small and remains in the acceptable
performance limits. The constraints imposed by the definition of the MPC problem are well respected, and the
optimization problem is converging in every iteration. The main improvement point of the designed control system
is that it requires to be re­tuned for changing initial conditions, the s/c base position and attitude and manipulator
configuration. Further extensions of the project would be very interesting, including complete integration with a
proper guidance and navigation capabilities, adding low­level control level and extending the dynamics model
such that it accounts for the contact dynamics and capture maneuver. All in all, the project results are a good
starting point for the future development of the combined controlled strategies for OOS missions. This study was
performed in collaboration with the German Aerospace Center DLR within RICADOS (Rendevous, Inspection,
Capture and Detumbling by Orbital Servicing) project.

iii





Preface
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1
Introduction

This thesis work aimed to contribute to the technology development applicable to on­orbit servicing and active
debris removal mission or any other type of orbital activities which entail close proximity operations between
two spacecraft where the control system for the autonomous manipulation of robotic arm is required. In order
to formulate research objectives firstly the state­of­the­art was reviewed to gain extensive knowledge about the
research topic and currently proposed solutions. The review of literature, the motivation supporting the choice of
the research topic and finally the definition of the main research question and the sub­questions are presented in
this Chapter 1. The research project was performed in collaboration with German Aerospace Center (Deutsches
Zentrum fur Luft­ und Raumfahrt / DLR).

Firstly, Section 1.1 describes the motivation for this research work and puts it into the context of the past
and on­going projects. In Section 1.2 the more detailed look into the literature review in this research domain
is presented, specifically focusing firstly on the definition of ADR and OOS missions and different approaches
towards the control of the system consisting of a s/c base and the robotic manipulator depending on which control
system is active. Next, it gives a more detailed look at the current GNC solutions for close proximity operations and
robotic manipulator with major focus on the control capabilities. Further, the review of existing implementations
of the Model Predictive Control method in Space field and Robotics is presented. Finally, it is underlined that this
thesis project was performed in the framework of RICADOS project of DLR ­ Rendevous, Inspection, Capturing
and Detumbling by Orbital Servicing. Thus this system was described and the general DLR heritage in space
robotics and OOS was reviewed.

The literature review concluded in formulation of the main research question which is presented in Section
1.3, the sub­goals to be achieved were linked to the findings from the review phase and they allowed to orient the
work process.

1.1. Motivation
The rendezvous and proximity operations (RPO) also referred to as close proximity operations (CPO), have always
been an intrinsic part of space activities since the very beginning of space era, considering Apollo times with the
Lunar orbit rendezvous, the generation of Soviet space stations with the crew flight, a transfer of astronauts to
e.g. Mir station, and finally the successful on­orbit assembly of the International Space Station. Despite not being
a new concept, RPO however has a quickly emerging categories of new applications, for which the technology
must be re­assessed or developed from scratch given the very unique challenges.

One of the applications belongs to the domain of active debris removal (ADR) addressing the increasing need of
limiting the number of non­functional objects orbiting the Earth. According to the newest space environment report
released by ESA [1], the estimated number of objects orbiting our planet is 30025, considering both the traceable
objects of a known nature and the unidentified, covering all the Earth orbits. The GEO and LEO orbits, identified
as protected regions, are estimated to enclose 2210 objects according to the report. Since the beginning of space
operations in late 50’s, the number of objects in the Earth orbits had been constantly growing. The increasing
orbital congestion with the man­made objects puts the operational satellites as well as the future missions at
higher risk of collision ­ at the high orbital velocities, even a collision with small debris can cause a chain reaction,
hence likely produce numerous debris, which is known under the name of Kessler syndrome.[2] It is clear, that
non­functional satellites are one of the main potential sources of such a cascade effect, hence it is highlighted that
every mission design shall account for the end­of­life/disposal phase. In case of the satellite malfunction during
its operational life, telecommanding a disposal maneuver might be impossible, and the only way to dispose a
satellite from its orbit is active removal by another satellite, which is addressed by the emerging ADR missions.
Moreover, the sustainable aspects of the orbital environment are evaluated in the frame of on­orbit servicing (OOS)
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missions, whose aim is to provide the life extension services, on­orbit recycling and generally perceived servicing
of a satellite, which can extend the mission operational time of a traditionally designed satellite without a need of
launching a new one. Their potential has been already proved in extensive studies [3, 4] with many agencies and
researchers currently working on related technology development projects.

The expected sustainable transition of the space activities with increasing collective approach to safeguarding
of space environment is highlighted by UNOOSA in theGuidelines for the Long­term Sustainability of Outer Space
Activities [5], as well is a part of expected ESA’s Technology Strategy [6]. It is identified as a target goal to increase
Europe’s contribution to space debris by 2030, including development of technologies necessary for the successful
active removal of space debris by 2025, such as advanced GNC for CPO, in­space robotics and servicing.

Figure 1.1: Canadarm2 [7] on the International Space Station (Credits:CSA)

Since servicing another spacecraft demands dexterous ability of the system, the robotic manipulator payload
of the servicing spacecraft is identified as the best candidate to perform such a task [8]. Although the orbital
robotics have already been demonstrated in­flight they had a very low level of autonomy. The first demonstration
of the robotic arm manipulation in space was performed by DLR in a project ROTEX in 1993 [9, 10]. The technol­
ogy has been successfully used on­board Space Shuttle with its Canadarm and on­board ISS with its derivative
Canadarm2 [7], and is being evaluated for the new implementations such as ADR, on­orbit servicing and assem­
bly. [11, 12] Nevertheless, the mentioned manipulators had no autonomous capacity and had been controlled by
astronauts on­board or form the ground.

The primemotivation of this work is to support the technology development in these mission domains, involving
the robotic manipulations control, that are foreseen to play an important role in shaping the future of Earth orbital
environment and space exploration.

1.2. Background
The relevance of the on­orbit servicing and active debris removal missions in ensuring sustainable access to
space is very clear. In order to understand what is the current state of the art in this domain a literature study
was performed. In this Section 1.2 the more detailed information regarding the definition of ADR and OOS mis­
sions is given. Firstly, in Section 1.2.1 the history of close proximity operations in space missions is presented,
which is important to understand the existing CPO applications and technical solutions. Different definitions of
OOS missions are explained along with the description of the mission phases with the main focus on the reach
and capture phase. The major challenge slowing down the transition from theory to practice is development of
advanced GNC capabilities that would guarantee the maneuver safety, precision and collision­free operation. The
existing GNC solutions for well­known applications are briefly presented and the technology gaps identified are
described. The main interest is in the control technology solutions applied to relevant missions or solutions be­
ing currently investigated. The advanced control technique based on the future prediction of the dynamic system
evolution called Model Predictive Control (MPC), is of a high interest for potential application in robotic capture of
OOS/ADR mission. The review of MPC applications in space and robotics research area is presented in Section
1.2.2. This research work was performed under supervision of German Aerospace Center (DLR) in the framework
of RICADOS project and for this reason an overview of the DLR heritage in space robotics and OOS is briefly
presented along with a bit closer look into RICADOS project in Section 1.2.3.

1.2.1. Proximity Operations in Space Missions
In next paragraphs themost important aspects of the proximity operations in spacemissions are presented in order
to clearly define the context of the project and the possible relevant applications. Firstly, the historical background
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of the on­orbit servicing missions is presented and different definitions of OOS mission types and service classes
are explained. OOS/ADR space mission involves specific phases which are briefly introduced. Moreover, the
methodology for capture and removal of the target satellite depends on the characteristics of a debris, such
as the knowledge of its physical properties and docking interface. The classification of target spacecraft non­
cooperativeness for capturing is described. Next, overview of past missions and on­going projects is presented
with a special focus on missions incorporating the robotic arm manipulations. Differences between the control
strategy for a robotic satellite system are further explained.

Definition of ADR/OOS
Initially, in 80­90s on­orbit servicing was considered as not having enough financial feasibility to prove advan­
tageous over launching new mission [3], along with lacking the matured technology required to safely perform
such missions. Since then the space sector has been evolving ­ an increasing number of involved agents, such
as universities and private companies, the new types of space missions, e.g. flying formations, communication
constellations, and also the changing paradigm to sustainability of an orbital environment contributed to positive
re­evaluation of on­orbit servicing.

The OOS missions can be defined as a type of mission during which one spacecraft (usually referred to as a
servicing satellite, or a chaser spacecraft in more general way) is giving service to another spacecraft (called a
client or target spacecraft/satellite). These missions can be primarily divided into three different types: observation,
motion and manipulation [13]. The first one, observation, concerns the inspection of another satellite or orbital
structure performed by another spacecraft. The approaching satellite is equipped with the vision system, which
enables taking the pictures representing the state of a possibly failed satellite (a missile, or another human­made
space object) and down­linking this data for the assessment to be performed by the engineers on ground. The
goal of the motion type of OOS mission is to assist another satellite enabling its re­location or station­keeping.
Usually this type of mission is required if a spacecraft receiving service is not capable of performing maneuver on
its own i.e. when its fuel has been depleted. The re­location from the operational orbit into the Earth atmosphere,
is essentially the controlled de­orbiting, hence the active debris removal type of missions can be assigned to this
category of OOS. The last service class, manipulation, is the most complex as it involves the close approach to
the client spacecraft, capture and repair while maintaining a client e.g. with the use of a robotic arm.

Service class Examples of services
Observation Remote inspection

Motion
Station keeping
Relocation
Disposal and de-orbiting

Manipulation

Refueling
Maintenance
Repair and retrofit
Docked inspection

Table 1.1: OOS service classes [13]

There are many motivations which prove feasibility of on­orbit servicing and its benefits. Firstly, repair of a
malfunctioning spacecraft evidently enables the continuation of its mission, which otherwise would have to be
aborted causing great financial loss. The repair can involve e.g. replacement of a mechanical part enabling the
solar panel deployment in case of the drive mechanism malfunction, or a complex repair of a scientific instrument
on­board the client. Secondly, the fuel depletion has a significant impact on satellite operations, hence refuelling
offers the life extension service to the mission. Another potential use case is the orbital replacement of a unit,
e.g. the atomic clock in navigation satellites, the lifetime of this type of mission is directly constrained by the
decreasing precision of a clock, hence its replacement would allow the continuation of a service discarding the
need of launching a new satellite. Moreover, servicing paradigmmay potentially transform the traditional approach
towards mission and satellite design encouraging reducing design redundancy, thus driving down the production
cost, as a potential repair or unit replacement would be available in orbit [4].

In order to assess the applicability of OOS, not only the technical feasibility shall be confirmed, but also the
economic viability shall be analysed [3]. This type of mission are justified if the satellite replacement cost outweighs
the cost of the service, as was e.g. the case with the Hubble Space Telescopemultiple repairs during which a costly
scientific instrument was serviced by astronauts. Nevertheless, it is foreseen that when the OOS technologies will
be well established, design of he future assets which includes the servicing as an intrinsic part of the mission,
could be more cost­effective [3].

Lastly, ADR missions, which fall under category of OOS, gain an increasing recognition. Disposal of a space­
craft has two main motivations ­ decreasing ground casualty risk associated with uncontrolled reentry if the space­



4 1. Introduction

craft is estimated not to fully demise upon an atmospheric reentry, secondly given the already existing problem
of space debris it shall be ensured that a new debris is not generated. In the end­of­life, satellites in GEO are
maneuvered into a higher graveyard orbit, where they do not pose any potential risk for the operational space­
craft. The standard practice for satellites end­of­life (EOL) in the lower parts of LEO is to leave it in its operational
orbit, the orbit decay due to the atmospheric drag will naturally lower down the perigee and cause a re­entry of
a satellite. If a time required to perform a natural re­entry is too long, de­orbiting maneuver is usually a preferred
strategy which ensures the satellite is disposed in the end of life. The problem occurs when the satellite is not able
to perform such a maneuver, due to malfunction, and continues orbiting the Earth remaining a potential source of
debris generation, which currently is the case of ENVISAT, the European observational satellite whose mission
ended following the unexpected loss of contact in 2012. It gave birth to many debris removal studies performed
in the scope of e.Deorbit mission [14], and other ADR­related activities performed by Clean Space at ESA.

Figure 1.2: Artistic visualisation of the ENVISAT capture (Credits:ESA)

A space mission for OOS and ADR consists of similar phases. Firstly, the standard launch and early orbit
phase (LEOP), far rendezvous phase, close rendezvous phase and inspection fly around usually followed by syn­
chronisation phase in which the rotational axis of the chaser satellite shall match the rotational axis of the target
spacecraft. Next, depending on the specificities of the mission, in ADR the following phases are: capturing, sta­
bilization of a stack configuration and removal phase. In manipulation type of OOS mission it would be capturing,
servicing and release phase. The entire mission is performed under ground control continuous supervision, with
capacity of teleoperation. These phases can be performed either autonomously or remotely controlled by ground­
based mission operations. Capturing phase plays a crucial role in the entire mission process. Conceptually, many
methods for space debris capturing have been proposed. The ADR missions can be further classified in terms of
different capture method, the investigated solutions such as net, harpoon, tentacles, robotic arm and others are
presented in the review [15]. Due to the extensive heritage from robotics and automation industry, the robotic arm
is identified as the most mature and plausible solution for the near future. Unlike OOS, a target satellite of ADR
mission is usually uncooperative and unprepared, which is also the case of ENVISAT. It essentially means that
an object is incapable of maintaining or transferring the attitude information and it does not have neither grappling
fixture for capturing nor navigation aids. The paper [15] presents four different classes of non­cooperativeness
depending on which information on the target is available, and if it is prepared or not for the capture. The proposed
classification is presented in the table 1.2. Clearly, higher level of target satellite cooperativeness, hence more
certainty in the information of its state vector and characteristics of the grasping interface, decreases technical
complexity and risk of the mission. Also, the methodology for capture and removal depends on the characteristics
of a debris, therefore the mission is usually designed having a specific debris (dysfunctional satellite, upper stage
of the rocket etc) in mind.

Class Physical properties Docking interface Characteristics
A Known Available Fully known, satellite is prepared captured
B Known Non-existent Restricted compatibility with the capture

C Unknown Available
Dockable, dynamical behaviour unpredictable
prior to close rendezvous

D Unknown Non-existent Undetermined

Table 1.2: Classification of non-cooperativeness for capturing [15]
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Overview of ADR/OOS missions
The on­orbit servicing missions have been already performed in space, with the best example of Space Hubble
Telescope which was serviced five times during manned missions. The first robotic systems used in space can
be traced back to the first deployment of the Shuttle Remote Manipulator (SRMS) from the cargo bay of the
Space Shuttle Columbia in 1981 [8]. The International Space Station (ISS) assembly was performed with the
use of robotic arms, nevertheless they were controlled directly by astronauts or ground control centre without
autonomous capabilities. Another successfully functioning robotic system is Canadarm2 on the ISS. The overall
survey of on­orbit servicing concepts and investigated technologies is presented in [3], and also shows state of
the art in assembly robotics such as the Ranger telerobotics system at University of Maryland (1995), Skyworker
robot (2001) and first version of NASA’s Robonaut (2002). The more up­to­date state of the orbital robotics tested
on ground was analysed in [8]. A review of engineering developments throughout the human history in the domain
of OOS is also presented by Wei­Jie Li et al. in [16]. The authors review more than 130 launched or proposed
spacecraft missions in the area of OOS, which were divided onto regular scale and large scale spacecraft. All
the major aspects are addressed being the historical view on spacecraft missions and space robotics programs
developed by main actors in Europe, USA, Russia, China, Canada, Japan and others. The concepts of Large
Space Systems such as Space Shuttle Program, Space Solar Power Station and Large Space Telescope are
presented with different assembly methodologies for all these structures. The authors present a good overview of
an analysis of the mission and technology architecture from the systems engineering point of view. The on­orbit
studies are currently performed by majority of space agencies and relevant institutes ­ NASA [4], DARPA [17],
DLR [18] further described in detail in Section ?? due to its high relevance. ESA with its Clean Space Office is
working on studies such as Space Servicing Vehicle and recently launched OMAR study [19, 20].

The technology investigated under the OOS frame can be easily transferred into ADR missions, as there are
many commonalities between both of them, such as the relative navigation for far and close rendezvous ap­
proach and robotic capture technology for grasping a target satellite. To this day, there have been many studies
and in­orbit technology demonstrations, however none of them have ever been implemented in a real mission
with uncooperative target yet. The most relevant to mention are RemoveDEBRIS [21], e.Deorbit mission [14]
and Restore­L technology demonstration mission [22] which was recently announced to develop into an OSAM­1
mission scheduled in 2023 [23]. Astroscale is preparing for the upcoming mission Elsa­D [24] technology demon­
stration this year with the magnetic capture system. In October 2019, the European ClearSpace­1 mission was
announced [25], led by a Swiss consortium in collaboration with ESA and industrial partners, ClearSpace­1 aims
the capture and removal of a payload adapter, the VESPA, an ESA­owned object. Due to the initial phase of
the mission, the capture solution has not been officially presented yet. The mission is foreseen to be launched
in 2025­26 being the first European ADR mission. It is clear that the future of OOS/ADR missions is recognized
worldwide.

The numerous studies and efforts done towards making OOS/ADR operational have been introduced, one
of the most relevant lessons learnt are derived from the Japanese mission Engineering Test Satellite VII (ETS­
VII) launched in 1997 by the National Space Development Agency of Japan (NASDA) and secondly the mission
Orbital Express launched in 2007 by The Defense Advanced Research Projects Agency (DARPA)/NASA [26,
17]. ETS­VII spacecraft was equipped with a 6DOF manipulator arm and successfully completed multiple on­
board experiments for the autonomous rendezvous/docking validating the robotics technology in space. The latter
consisted of a variety of experiments, such as robotic servicing tasks, verification of free­flying space robot coupled
dynamics with a coordinated control between the manipulator’s reaction and the satellite’s response and capture
of a target satellite. The coordinated control (in different sources named also a collaborative control) means
that the on­board attitude control system of a chaser platform and a robotic arm control system are distinct and
independent, however they collaborate by feeding each other with the anticipated motion and related disturbance.
Both controllers are active during the arm operations, satellite base anticipates a disturbance due to the robotic arm
dynamics, and reacts to it with the feed­forward compensation signal. The mission requirements on the attitude
control were maintained by reaction wheels and the gas jet thrusters were the actuators compensating the robot
arm’s reaction. Teleoperation of the robotic arm was performed in two different modes ­ the telemanipulation and
supervised control, the ETS­VII robot arm had three following control modes: arm tip position, joint angle and
compliance control mode. All of them were successfully verified in orbit, during the mission [27].

The Orbital Express mission, consisting of a servicing spacecraft with the 6DOF rotary joint robotic arm and its
manipulator control unit, demonstrated successfully on­orbit servicing of spacecraft including rendezvous, trans­
fer of battery and CPU modules, and transfer of propellant. The arm operations were pre­scripted and fully au­
tonomous. The control strategy for the robotic manipulation phase was different with respect to ETS­VII ­ the
manipulator was operating on a free­floating base, once the target satellite has been acquired by the visual sys­
tem of the servicing spacecraft, the satellite platform transitioned to free drift and the robotic arm performed a
visual servo operation to track and capture the object. Hence, the attitude control system of a satellite was turned
off during the manipulations and no compensation of the angular momentum due to the manipulator dynamics was
performed. The platform’s attitude was perturbed during the manipulator’s operations, and only corrected after an
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arm motion script had completed, using its reaction wheels [28]. This approach clearly has its advantages and
disadvantages, indeed it makes the control strategy more simple to handle as only the motion of an arm and its
actuators are considered in the manipulation phase. On the other hand, it does not depict fully the dynamics of a
whole system as the resulting motion of the satellite’s base remains a subject to disturbance. If mission constraints
and requirements do not impose very strict demands on the spacecraft attitude during the robotic manipulations
(due to e.g. pointing requirements for the communication antenna position, sun­pointing for power generation etc.)
the free­drift of the base might be acceptable. However the question remains, to what extent a delayed actuation
of the satellite’s attitude control system can effectively counteract the produced disturbances meeting the mission
requirements, upon the end of the manipulation phase. Depending on the physical characteristics of the spacecraft
and the mission requirements the accumulated attitude error might be exceeding the allowable limits, in such a
case the coordinated control strategy could be a preferable option. Another control strategy which is being inves­
tigated since recently is combined control, as defined by ESA in [29]. It concerns the system in which the chaser
platform and the robot system are controlled by a single control system that coordinates all sensor data and the
actuation, both the satellite’s and the arm, to obtain the desired chaser motion and robot system configuration.
This strategy has been investigated already in [30] within the research project in DLR, RICADOS.

The study ”Combined control for robotic spacecraft and manipulator in servicing missions”, COMRADE, is the
most recent work on the development of the combined controller strategy [31]. The authors designed a control
system with the use of 𝐻∞ and nonlinear compliance control for the synchronization phase, reach and capture
maneuver, grappling and stabilization.The external input to their controller was both the relative reference tra­
jectory for the gripper and the chaser setpoint. Furthermore, a very good overview of GNC solutions for robotics
manipulator in space is presented in a survey [32].

1.2.2. Review of MPC Applications in Space & Robotics
This section presents the survey of existing applications of MPC in Space and Robotics research areas. The main
objective of the literature review presented in this section was to identify the already existing solutions in order to
firstly understand what is the current state of the art, if there are any proposed applications of MPC into the space
robotic system and secondly to collect a relevant set of references for the more high­level applications in other
spaceflight fields and robot manipulators to facilitate the further trade­off of the controller design choices during
the research period.

General Space Applications
The versatility of the predictive technique and its constant spreading in industry due to advances in science,
technology and market makes it a mature technology for guidance, navigation and control applications in the
aerospace sector. Some of the applications for which MPC is considered are planetary rover path planning, LTV
MPC for wheel momentum damping by thrust orientation mechanism, LTI MPC for stabilization, Hybrid MPC for
navigation of small UAVs, decentralized LTV MPC for formation flying and others [33]. The predictive techniques
are implemented both for the guidance problem, when the trajectory is a solution of an optimization constrained
problem, and for the control problem itself for which the control input values are found based on the knowledge
of the future dynamics evolution.

The work [34] proposes the MPC application for powered descent guidance and control for thrust vectoring
control, the formulated LTI MPC problem is solved via QP optimizer with the use of an accelerated dual gradient
projection, which is an algorithm suitable for embedded applications. The control framework is used to optimally
steer the vehicle towards a desired state; the trajectory is a controller’s outcome and not a flight reference or
constraint. The controller performance was further evaluated via performance­in­the­loop simulations on the pro­
cessor running at 1GHz, the C code was generated directly from Simulink. Due to CPU architecture/scheduler,
there might be spikes in the recorded task execution time if the CPU resources are assigned to a different pro­
cess, then the MPC task is suspended and resumed when the CPU is newly available; this wait time translates
in delays in the execution of the MPC code that can lead to a violation of the maximum step time constraint. The
possible time delays due to preemptive scheduling of CPU shall be taken into account when performing analysis
of controller performance, as it might pose an important constraint in a real system.

Interestingly, ESA with DLR had a very detailed look into the possible MPC integration into Space projects.
German Aerospace Center developed an extension called MPCTOOL within the ORCSAT project (2009­2011)
[35] with large emphasis on real­time implementation capabilities of MPC. Some of the applications identified were
orbit synchronization and impulsive hopping, both manuevers relevant for space mission far and close rendezvous
phase. The main features of the toolbox are further explained in [35]; Another toolbox was developed for ESA
within ROBMPC project (Robust MPC for Space Constrained Systems) for linear time­varying (LTV), MPCSoft.

The predictive control was also proposed for the spacecraft rendezvous in Mars Sample Return scenario
in [36], the LTV controller based on linear programming optimizer was employed for autonomous capture. The
time­varying model was chosen as the equations used for the trajectory prediction model describing the relative
motion on an arbitrary elliptical orbit have time variations due to J2 effects. The integer decision variables were
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avoided to prevent increasing complexity of the optimizer; it is handled by solving multiple instances of continuous
optimizations at each control step. There are 4 different MPC controllers designed, such that the rendezvous is
divided into 3 phases with an additional controller to perform CAM during the final moments of RDz; in such a
way the MPC controller is able to function in the given finite computational resources. For the forced terminal
translational guidance phase (FTTG), which is the guidance from the final holding point at 100m to a position
3m from the target where it can capture the target on a free drift trajectory, the MPC controller maintains target
pointing and handles attitude regulation to an externally provided setpoint with the use of thrusters. The controller
is implemented using the QP­based LTV­MPC controller block from MPCTOOL, a linearised quaternion­based
predictionmodel is used for the relative attitude control. Furthermore the authors describe design of MPC controller
for every phase, each of the designed MPC controllers has a common output function to convert the Δ𝑉 into finite­
duration thrust pulses in the inertial frame.What is interesting, the authors present the possible avionic architecture
which could be able to cope with the MPC needs, particularly the selection of the Central Processing Unit (CPU)
is the key for the MPC embedded implementation. It is of high importance to take into account available space­
qualified processor computational performances, as it is usually much more constrained than a performance of
the workstation.

Predictive control solution is also proposed for application such as vision­based spacecraft landing for which
the nonlinear MPC is tested and successfully achieves the real­time performance also with the noisy estimates
of the state [37]. The nonlinear dynamics of the model were solved via nonlinear programming problem in this
study. The work presented in [38], proposes a linear tube­based MPC for the spacecraft approach maneuver to
a free­tumbling target, which allows to guarantee feasibility and stability of the system in the presence of the un­
certainty in the chaser state, that normally could potentially remove guarantees of stability from classical model
predictive methods. The tube­based MPC concerns the generation of a bundle or a tube of trajectories, each
of them corresponding to a particular realization of the uncertainty. The authors of the paper propose the solu­
tion which allows robustness of the MPC controller, in contrast of the conventional MPC which is not capable of
handling additive and multiplicative disturbances. They define the control problem as one of tracking, rather than
regulation. Furthermore, the definition of the uncertainty in the chaser state is explained. The classical attitude
control problem of a spacecraft can be also solved with MPC. The authors of [39] apply the explicit linear pre­
dictive controller to a micro­satellite attitude control system with the thrusters and reaction wheel actuators, that
allows to decrease computation effort to a table­lookup. This approach is advantageous given limited power and
computational resources and also allows to take into account constraints. The interesting point is that authors
utilize the bang­bang modulation scheme with dead­zone in order to account for the on­off nature of the actuating
thrusters. Another work presents a linear implicit MPC controller for a spacecraft attitude problem with reaction
control system and reaction wheels [40]. The authors also derive in detail a stability condition to prove that the
closed­loop system becomes input­to­state stable. As can be seen, there is a huge variety of the potential MPC
solutions for applications in spaceflight and its advantages are increasingly recognized. From the presented work,
the preliminary ideas on the controller formulation for this project can be created.

Robotic Manipulator Applications
The current state­of­the­art of the predictive control for terrestrial robotic manipulator in general, and specifically
for the on­orbit servicing mission has been analysed. The predictive control of robotic manipulators is proposed
in variety of studies as it allows for considering the restrictions on the manipulator performance such as limitation
in the position, speed, acceleration of the motors and the maximum torque available, when finding the optimal
control input. In study [41] a multivariable constrained predictive controller is designed and tested with the use
of a linearized model of the general nonlinear dynamics of the robotic manipulator. Reference tracking control
of a 2­DOF manipulator modelled with the use of the Lagrange­Euler method was achieved with constraints on
control rate. The authors of [42] propose an efficient approach for nonlinear MPC of a m­link industrial robot
manipulator for a set point trajectory, and compare its performance with the frequently used computed torque
control. The inverse and direct dynamic robot models were obtained from the Lagrangian equation. In design,
the predicted future output error was taken into account, such that the applied control variable 𝑢 consists of three
terms, due to the tracking position error, the term for disturbance rejection and the last term corresponding to
a model compensation. The controller robustness was tested in the case of disturbance rejection and model
mismatch with efficient results.

Close Proximity Operations and Robotic Capture Phase
The MPC architecture is identified as a good candidate for the close proximity operations involved in the on­
orbit servicing mission. To start with, the experimental evaluation of MPC for approach and docking maneuvers
is demonstrated in [43]. This control strategy deals well with constraints imposed on the maneuver for trajectory
planning which include thrust constraints, a LoS constraint linearized through polyhedral approximation and an
obstacle avoidance constraint linearized through a rotating hyperplane. The evaluated algorithms are used to
control the vehicle position, the control problem concerns only translational motion fof the center of mass for the
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close rendezvous phase, nevertheless the formulation of the cost function from this work and the performance
metrics are of interest. A linear MPC with a QP solver was chosen for this application; it is defined as a setpoint
MPC – it takes the difference of the 𝑥 in the current step with 𝑥𝑡, the targeted final condition. The authors defined
four performance metrics: control effort, time to complete the maneuver, constraint handling and computational
cost.

The predictive control applied to a robotic manipulator mounted on a satellite has been proposed by research
community in the course of past years. In one of the most recent studies, the control of free­flying system is
proposed for a simultaneous capture and detumble of a space object by Josep Virgili­Llop and Marcello Romano
[44]. The paper presents mainly the aspects related to design of the system guidance, the problem solution is
obtained by solving a collection of convex programming problems, making the approach suitable for onboard
implementation and real­time use. The manipulator configuration and base­spacecraft attitude at capture, as well
as the manipulator motion during the final seconds of the maneuvre is pre­set and not subject to optimization.
To reduce the control effort of the chaser, the base­spacecraft is operated, during the pre­set manipulator motion
period, in a translation­flying/rotation­floating mode, where the base spacecraft attitude is left uncontrolled. In the
paper the authors present in detail the derivation of the kinematics and dynamics equations, as well as formulations
of linear and angular momenta of the chaser and combined system. The objectives of both the maneuvers are
encoded with a unified set of terminal constraints, once the capture is finalized, the requirements to detumble the
stack configuration system are already met when the manipulator’s motion is gradually stopped. Both maneuvers
are constrained in order to achieve the goal which is a zero post­capture angular momentum on the combined
chaser­target system. The constraint on the chaser’s attitude and manipulator’s motion is a zero relative velocity
between the chaser’s end­effector (EE) and target grappling fixture, which implies simply that the position and
velocity of the EE shall match the position and velocity of the grasping point on the target. When it comes to the
optimization, the cost to be minimized is formulated as a quadratic expression; in optimization constraints the
authors implement limit on the chaser’s control, a maximum force constraint, and a keep­out zone constraint.
The first step is optimization of the system­wide translation, the second step is optimization of the internal re­
configuration. The authors give a throughout overview of the mathematical formulation of the convex programming
problem.

In the work [45], the capture maneuver itself (from the study introduced in the previous paragraph) is ex­
plained in more detail. A sequential convex programming procedure, overcoming the presence of non­convex
constraints and nonlinear dynamics is presented. The definition of the system constraints, optimal control prob­
lem, the convergence proof and an explicitly convex line­of­sight formulation are clearly presented by the authors.
The mathematical formulation of the problem convexification is also explained, which might be a good reference.

The author of the thesis [46] proposes two control algorithms based on the predictive control for the planar
system composed of a satellite platform and 2­link manipulator with rotational joints, a generalized predictive
controller and a dual­mode MPC. The system is assumed to be free­floating and the control input vector of the
system consists only of two control torques of manipulator joints. The control problem was defined as a tracking
problem with objective for the outputs 𝑦 to follow a reference trajectory. The interesting point is the inclusion of
the perturbation terms which are introduced to the first 𝑛𝑐 control inputs, their values are determined by the MPC
through an optimization process; as a result the prediction model for state and the formula for the control input take
another form, called transient mode, for these terms; if the control horizon is larger than 𝑛𝑐 the remaining terms
are defined by the standard prediction model, they are further called terminal mode, hence the name dual­mode
MPC.

Lastly, the recent work, performed by researchers from the Space Research Centre in Warsaw Poland, pro­
poses a control system for free­floating space manipulator based on NMPC [47, 48]. The authors develop non­
linear model of the system with a manipulator (with n rotational joints) mounted on a satellite; in this free­floating
system the position and orientation of the satellite is not controlled during the capture maneuver, the motion of
the manipulator influences state of the satellite. The detailed derivation of equations of motion from the Lagrange
equation is presented, in which the generalized coordinates vector 𝑞 includes the position vector of the satellite, its
orientation and the vector of joint angles (based on the models in [49]); the simplified planar case is considered,
in which the satellite is equipped with a manipulator that has 2 DOF, the full system has 5DOF (three for s/c).
According to the nature of a free­floating system the manipulator­equipped satellite is not using its thrusters and
momentum wheels during the motion of the manipulator, the control vector is composed solely of driving torques
in manipulator joints. The proposed control system consists of two blocks ­ trajectory planning module and model
predictive controller. In the first module, the optimization criterion used was a quadratic norm connected with the
power consumption of manipulator motors, the authors propose for later improvement to include the term allowing
for reduction of reaction torques and forces induced by motion of the manipulator in order to reduce changes of
satellite orientation. The objective of MPC is to compute velocities of manipulator joints that will minimize an error
between the measured EE velocity and reference EE velocity; however the reference EE trajectory is given as a
set of EE positions and the gain matrix is introduced in order to define the EE position error, instead of velocity
error, into the formulated definition of the manipulator joints velocities. In the second module, the NMPC is used
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for assuring realization of the selected manipulator trajectory; as the first module already performed the global
trajectory optimization the control torques minimization in a short time scale is skipped during operation of NMPC
to reduce the computational effort. The authors confirm the performance of the designed system via simulations,
accounting for the limited knowledge of system parameters, and adding white noise to control torques applied at
the manipulator joints to simulate disturbances that could be experienced by the real system.

1.2.3. DLR heritage in Space Robotics and OOS
DLR has a very strong expertise in technologies directly related to the development of OOS­robotic systems,
which proves a successful execution of three pioneering space robots orbital experiments [50]. The first remark­
able mission dating back to 1993 was the Robot Technology Experiment (ROTEX), was one of the important
milestones of robot technology in space which was flown on the Space Shuttle Columbia. The robotic 6­axis
manipulator, was located on board the Shuttle, during the mission it successfully proved operation under variety
of operational modes: teleoperation on board (astronauts control), teleoperation from ground and sensor­based
off­line programming controlled remotely from ground control, hence becoming the first remotely controlled space
robot system [10]. The ROTEX objective was to validate the robotics technology under zero gravity, sensor­based
control features and control operations on different autonomy levels­ full autonomy till the man­machine coopera­
tion. Its multi­sensory gripper worked faultlessly during the mission, performing also operations proving servicing
capabilities such as assembly, ORU exchange and ground­controlled capture of the free­flying object. The chal­
lenges of the robotics operations controlled directly by ground are mainly the large and varying time delays were
treated with the predictive simulation in the ground control, which included the robot’s sensory behaviour, proved
to compensate for this time delay. With this experiment, DLR remarkably gained the forefront of European space
robotics expertise.

GETEX, was a German Technology Experiment performed on board ETS­VII satellite, the DLR’s telerobotic
and programming system was implemented to control the robotic manipulator of the Japanese satellite in April
1999. The satellite was equipped with a robotic manipulator, as is explained in section 1.2.1. Several experiments
were performed, which enabled successful verification of the telerobotic ground control station function during the
control of the robot arm. The peg­in­hole experiment with the vision and force control scheme was performed,
as well as the variety of robotic maneuvers verifying the dynamics models of the free­floating space robots. The
manipulator performed maneuvers firstly with the attitude control system of the satellite switched off under as­
sumption of no external forces acting on the free­floating robot. The results helped to realize that the external
disturbances acting on a spacecraft in LEO must be accounted for in a correct modeling of the manoeuvres [51].

In order to verify the design of a light­weight torque­controlled robotic joints in real space environment, the
experiment ROKVISS, standing for the Robotics Component Verification on the International Space Station, was
performed in 2005 becoming the second space robot mission after ROTEX performed by DLR. The experiment
mission was achieved with a successful installation of the robotic hardware components on the outside of ISS in
2005, which allowed the verification of different control modes on a full spectrum from high system autonomy to the
telepresence mode by the ground control engineers via a direct radio link operations. In telepresence mode, the
on­orbit manipulator was controlled as a slave, by the corresponding manipulator at the ground station via a force­
feedback device in a real­time, generating force and position changes as control commands for the joints. The joint
controller structure allows implementation of position, torque or impedance control. Not only the joint dynamics
changes, but also the impact and contact dynamics upon the influence of harsh space environment (tempera­
ture variations, space radiation) were assessed [18]. Another relevant project is in­flight technology demonstrator
DEOS, Deutsche Orbitale Servicing Mission, which was an OOS mission demonstrator of rendezvous, capture
and de­orbiting techniques of an uncooperative satellite. The two satellites were to be launched together into a
LEO orbit at 550 km altitude and perform the operations in the orbit, the servicing satellite is equipped with the
light­weight manipulator. One of the challenges with respect to operations is the continuity of a communication link
from ground to LEO, the DEOS servicer spacecraft was to be equipped with an inter­satellite link to a geo­relay as
an alternative to direct space­to­ground communication. Nevertheless, the mission has never been launched and
the studies were cancelled after definition phase [52]. The more detailed review of DLR’s robotics technologies
for on­orbit servicing are found in the [50].

The most recent project, successfully finished, is an On­Orbit Servicing End­to­End Simulation, which is a
large distributed simulation environment for verification of rendezvous and docking/berthing robotics systems [53].
It meets the main objective of simulating the mission as close to real conditions as possible including the space
segment, with software and hardware simulators, and ground segment with its communicational and operational
infrastructure. The overview of the system is shown in the figure 1.3.
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Figure 1.3: End-2-end simulation overview, derived from [54]

Software satellite simulator (SASI) is the first part of space segment, it consists firstly of simulation­specific
components and mission­specific components. The first one is the multi­body satellite dynamics numerical simu­
lation of the translational and rotational motion of servicer and client spacecraft. The latter includes the simulation
of the servicer’s subsystems: thermal, power and AOCS systems in the satellite bus as well as the TM/TC sys­
tem compatible with the space standardization on data handling which allows communication link with the ground
control center [54]. Next, the simulator for space segment consists of two hardware­in­the­loop simulators, which
both have interfaces to the software satellite simulator. Firsty,the close range rendezvous phase, with distance
between servicer and target satellite below 20m, is simulated in EPOS 2.0, the European Proximity Operations
Simulator located at the German Space Operations Center (GSOC). EPOS test bed consists of two 6DOF KUKA
robots simulating the motion of a servicer and a client satellite. The servicer is mounted on a rail system to sim­
ulate its translation motion towards the target, it is equipped with rendezvous sensors (cameras, LIDAR) which
allow for the relative navigation implementation. The tumbling motion of the client is simulated with the mounted
target mockup, as shown in the figure 1.4. At the hold point at 3.2m distance (target body origin to servicer body
origin), the GNC control system transits into stand­by and since then the simulations are performed in OOS­Sim,
the On­Orbiting Servicing Simulator located at the Robotics and Mechatronics Center [55]. The OOS­Sim similarly
consists of two 6DOF KUKA robots, simulating a target and a chaser spacecraft, the chaser being equipped with
an on­board robotic payload ­ a 7DOF robotic manipulator simulating motion to capture the grasping point on the
target satellite. The detailed description of the facilities can be found in [53].

The ground segment simulator consists of three consoles in the control room for the GNC rendezvous, satellite
operations, and robotic systems, from which the operations (as for a real servicing mission) can be performed.
During the simulations the operations are supervised from the facility control room where the engineers can di­
rectly send commands to the servicer satellite in the way they would be transferred in real mission conditions,
such that the time delay and transmission limits are taken into account. In console, telemetry data is visualized, it
also enables the generation of commands to be sent to the payload on­board, e.g. in the GNC console the image
processing parameters can be changed via the telecommands. The robotics console supports two type of opera­
tions: teleoperation mode and telepresence mode, the first one enables the nominal preprogrammed control of the
robotics payload, whereas the latter allows the direct control of the manipulator remotely from ground using haptic
and visual feedback devices. A telepresence approach is necessary to allow the operator on­ground to control
manipulator directly to handle the possible failures and not predefined actions. The robotic console communicates
with the robotics on­board controller via the uplink­ and downlink stream, the high­level commands sent by ground
are decomposed into elementary operations for execution on the robotics real­time motion controller, according
to the task­directed programming approach developed at DLR [56]. The more detailed communication between
all the parts of the end­2­end simulator are described in the [53].
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Figure 1.4: EPOS 2.0 testbed at GSOC. Figure 1.5: OOS-Simulator at RMC.

The unique End­2­End simulation environment is the only known simulation which allows testing in conditions
very similar to the real mission, allowing for two different modes of robotic manipulator control. In this environment,
the project RICADOS is being developed by DLR which is a system providing robust and reliable operations for
all the previously described phases, it is further described in next Section.

RICADOS
The RICADOS system (Rendezvous, Inspection, Capturing and Detumbling by Orbital Servicing) exploits the
End­to­End simulation environment, it provides robust and reliable operations in all the phases included in E2E.
The major goal of the project is to make the whole system as close to reality as possible to simulate and verify
several scenarios in realistic manner, i.e. the operations are performed completely from ground. Moreover, for this
project a new control strategy for the final robotic capture phase is being implemented, called a combined control.
It refers to such a controller set­up that the satellite attitude control system and robotics controller are merged
into one controller handling the sensors input from both systems and coordinating all actuators of the satellite
platform and robot joints, to obtain the desired chaser motion and robot system configuration. It is expected to
provide better performance with respect to the free­floating control strategy in which the AOCS system is switched
off, especially for the capture of the uncooperative and tumbling target [11]. The main challenge of the controller
is to ensure robustness to system uncertainties ­ plant parameters inaccuracies, deviations of nominal actuator
performances, sensor feedback noise etc. For the controller implementation the solution is based on 𝐻∞ control
technique, the first design was already tested in the OOS­Sim and for the controller design is further described in
the [30] thesis report.
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1.3. Research Overview
The research undertaken for this work is aimed at extending the analysis and understanding of the model pre­
dictive control application for space robotic capture systems, currently available in the literature. The research is
application­driven with the objective of implementing the MPC controller for the combined controller task in the
frame of RICADOS project at DLR. Prior to research, a throughout review of the previous works was carried out
during the literature study and critical knowledge gaps in the current research body were identified as presented
in the previous section.

Research Questions

The main research objective of this thesis project is:
to increase the technology readiness level of the combined control strategy for the on­orbit servicing
mission reach phase by designing and optimizing the system controller with the model predictive archi­
tecture and testing its performance via numerical simulations.

From the identified knowledge gaps in the literature, the central question towards which thesis project would be
oriented is:

How can the performance of the reach phase of an on­orbit servicing mission be improved by
implementing a combined controller with the model predictive architecture?

The main research question is further broken down into more traceable research questions and sub­questions
to be answered directly during the project. These can be stated as sub­goals answering research sub­questions.
The accomplishment of all sub­goals will imply that the main goal is met.

1. What model of the kinematics and dynamics of the system composed of the arm and of the spacecraft shall
be developed and implemented in the controller design?

2. What constraints, relevant for the reach phase, shall be taken into account during the design of the controller?
3. Which type of the Model Predictive Control (MPC) strategy shall be implemented?

(a) Which type of the MPC is the best candidate to account for different frequencies, performance specifi­
cations, admissible uncertainties of the both subsystems (AOCS and the robotic manipulator)?

(b) Why is this architecture the best candidate for potential implementation?
(c) Shall the optimization of the control effort be performed on­line or offline, what are the advantages and

disadvantages of each of them?
(d) How can the MPC architecture be implemented?

4. How should the combined controller of the system be designed with the chosen MPC architecture?

(a) What simplifications shall be taken?
(b) How can the implementation be verified?
(c) What case studies shall be tested?
(d) How the communication interface with ground can be accounted for?
(e) Does the selected method and developed architecture meet the control performance requirements?

The research questions were set up based on the identified gaps during the literature study period. Question
1. concerns the model of the kinematics and dynamics of the system to be implemented in the controller design.
In previous works it was seen that either the planar system was considered [46] or free­floating dynamics were
modelled [47]. The only work proposing the combined control and full actuation of both the robotic arm and the
s/c base was within COMRADE project [31], the authors used the internally available models (GNCDE, an inte­
grated GNC development and verification environment [57]) considering fuel slosh modes and other parametric
variations. The proposed control solution by them was 𝐻∞ and nonlinear compliant control. It is not straightforward
how such a complex dynamics model could be used for the prediction model required for MPC optimal control,
for this reason the model of dynamics and kinematics of the robotic spacecraft system shall be defined. The plant
architecture and dynamics definition are introduced in Section 3.1.

Next, one of the advantages of MPC is that in design process it is very straightforward to consider constraints.
This can help the controller to find a solution while respecting the system limits. Question 2. relates to this, the
overview of the constraints relevant for the reach phase will be presented in Chapter 2. The authors of [47] for
example proposed a scheme of a nonlinear model predictive control, however their dynamic definition was different
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than what is targeted for in this project and no constraints were considered. The work on convex optimization­
based guidance, presented in [58], introduces constraints such as keep­out zone, line­of­sight and force input
bounds. Their constraints definition is also reviewed for the context of this research work. Before a proper design
of the controller, the type of the model to be used shall be concluded. In parallel the trade­off concerning choice of
MPC type is performed which is addressed by Question 3. and it is presented in Chapter 4. Question 3a), 3b) and
3c) are leading to the finalization of the MPC choice trade­off table which will allow for the structured reasoning to
support the choice. Question 3d) concerns the implementation of MPC architecture, the mathematical formulation
as well as finalization of the software choice, the proposed software is briefly introduced in Section 4.9.

Furthermore, Question 4. with its sub­questions concerns the controller design itself. As was proved in the
literature study, only the cases of a free­floating spacecraft control were identified with some MPC applications.
The control of a free­flying system with MPC was not found to be present in the current body of knowledge, only
with different control technique [31]. Therefore, it is interesting to investigate its design with the model predictive
method to see if it could potentially improve the performance. Question 4a) concerns the simplifications of the
combined controller. It was important to start with a simple version of the system and gradually add complexity
to it, instead of starting off with too complex problem. The assumptions limiting the complexity of the controller
for this project scope are set up. Next, the verification of the design is addressed by Question 4b), in this stage
of the project it will be further specified and all the run simulations with objective of design verification will be
described. Next, Question 4c) addresses the nominal simulations tests to prove the robustness of the controller
to uncertainty. The results of the tested case scenarios are presented in Chapter 5.

Important aspect for the integration in RICADOS is communication with the ground segment. Thus, the con­
troller design shall enable receiving of the telecommands from ground for the manual change of AOCS mode and
also downlink the information for ground engineers who supervise the operation. The data encryption is out of
scope of this study, however the simple identification of what data coming from controller could be sent to the
ground console is expected to be identified. It could further allow testing in the RICADOS project context. It is
addressed by Question 4d), and the brief discussion is presented in Section 5.3 aiming in proposing the solution
to activate and tune the controller from the ground.

Finally, the conclusions from the work are presented. The tracking performance of the controller shall be criti­
cally analysed with respect to the expected performance for such a mission, it is addressed by Question 4e). The
interpretation of the simulation results along with the comments on the design and computational complexity will
be elaborated. The main conclusions on the system behaviour, and the applicability of MPC in this type of system
are necessary for possible future developments.





2
Review of Control Solution Limitations In

Robotic OOS Missions
This Chapter presents a brief overview of the most important aspects of a space mission which shall be kept
in mind when designing the controller for reach phase with the robotic arm deployment. In order to design and
test the controller in the way to bring it as close to the real conditions as possible, a variety of factors should be
considered. Here they are divided into the spacecraft architecture constraints, operational mission constraints and
environment constraints. Finally, the required performance criteria for reach maneuver are presented.

In general, to ensure the success of the performance of the control system for the chaser spacecraft, one must
take into account several features that will affect its design. These can be subdivided into system and mission
drivers. Among system drivers, one finds both the use of sensors and actuators. These will introduce errors into
the GNC loop due to their implementation, operating frequency, mounting errors, etc. which should be modelled
and their influence studied. In addition, the different performances which they can achieve will significantly influ­
ence the control and state estimation of the spacecraft equipped with a robotic arm. Regarding the software of
the chaser, one finds that the operating rate of the complete subsystem will affect the performance of the GNC
algorithms, as the dynamics may be changing at a faster rate than the one the controller can achieve. Addition­
ally, the optimization algorithm to be used will have an influence on the outcome ­ different considered algorithms
may show slight differences that could propagate with the trajectory itself. Finally, the environment and dynamic
models developed for the design of control system will influence its actual performance, as insufficient modelling
will lead to an incorrect design unable to perform correctly in real conditions [59] [60].

2.1. Spacecraft Architecture Constraints
There are certain limitations imposed on the design of a control system due to the characteristics of the system
equipment, software and the interactions between both. This section is further divided into two subsections, the
first one describing the aspects related to the hardware constraints and the second describing the limitations due
to modelling uncertainties. During the thesis research, it was decided which constraints are important to be taken
into account for the controller design in the reach phase by including them as constraints in the controller definition.

Hardware Constraints
The system performance is limited by the characteristics of its elements. The robotic OOS mission consists of
a sensor suite for the relative navigation (camera and LIDAR system), the conventional sensors suite of the
satellite platform (inertial measurement unit, star sensors, Earth sensors, GPS), the joint torque sensors of the
robotic arm and touch sensors on the gripper fingers. None of the measurements provides the exact value, as the
sensors hardware itself is not ideal. Therefore the signal cannot be treated by a controller with 100% trust and the
noise components usually are added to the output signal. All the actuators, thrusters, reaction wheels and joint
torque motors are characterised by a limited performance which should be also accounted for. For thrusters, it is
impossible to produce an infinitely large thrust, the desired value of thrust is not immediately achieved upon the
controller command and also the thrust profile is not a linear function. The rise time and the small variations from
the nominal value are the sources of the error with respect to the desired behaviour. In the similar way, the reaction
wheels and joint torquers have limited performance which is the case for all the electromechanical systems.

In order to achieve a desired performance and robustness of the control system, some computations must be
performed online to ensure responsiveness to the uncertainties, such as external disturbances and the hardware
malfunctions, to which the system is subject during the process. Another part of the required computations can be
performed offline and then stored onboard keeping in mind though that data storage is limited by finite memory.
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The real­time achievable computations are limited by two main factors ­ the onboard processing capabilities and
the distribution of the computing power. The control of the plant during the reach phase is not the only process to be
executed on board, all the other subsystems must remain functional such as e.g. thermal control, communication,
power generation and distribution. Therefore the control system is dependent on a variety of factors imposed by the
limitations of the OBDH subsystem, e.g. the computing power distribution between all the parallel processes, the
computer architecture, floating­point operations and others. The available computational power also influences
to what degree the plant model shall be simplified and therefore less accurate. Another limiting factor comes
from the power subsystem, it allows only for the limited energy storage on­board, its allocation between all the
subsystems might constrain the achievable performance of the actuators. Finally, the workspace definition of the
robotic manipulator informs about the achievable configurations, which by definition is the constraint on the set of
positions feasible to be achieved.

Modelling Uncertainties
In control system design, a mathematical representation of the physical system is required to map the inputs with
the outputs according to the system dynamics. First of all, the parameters such as inertia mass distribution and
the manipulator links’ masses might entail some errors due to rounding and time­dependent values (e.g. it can
be assumed that the system mass is invariant, however during thrusting the propellant is expelled and hence
the mass is decreasing). The simplifications in dynamics description, e.g. linearization of nonlinearities, are all
sources of uncertainties. The performance and stability of the control system may be severely affected by such
modelling errors or uncertainties. Secondly, the system representation depends on the chosen model type. The
authors of [61] summarize the main challenges of MPC control system design for aerospace systems. These
are identified in system modeling and problem formulation, accounting for safety aspects, such as robustness,
fault tolerance and time­delayed interactions and the implementation issues. They also introduce the common
model types and explain the limitations due to system modelling approaches with extensive literature review on
already existing aerospace applications. Depending on the model definition, the controller will be able to respond
in a robust way to disturbance signals and dynamic perturbations in more or less effective way. Furthermore, the
complexity inherent to MIMO systems also puts limitations on the achievable performance, these aspects can be
further investigated from the book [62]. The more complex system is, and theoretically closer to reality, the more
computationally burdensome it is, it must be kept in mind that the limited processing capabilities do not allow
for development of an overcomplicated system. The trade­off between the detailed description of the complex
dynamics vs the required simplifications was performed while working on first iterations of the controller design.

2.2. Operational Mission Constraints
Another aspect to be considered when designing the control subsystem, are the on­board data­handling (OBDH)
subsystem operations and the role of the Ground Segment in all the mission phases. The book on Spacecraft
Operations written by Thomas Uhlig, Florian Sellmaier andMichael Schmidhuber, fromGerman Space Operations
Center (GSOC) and other contributions from ESOC, is referred to [13].

During the reach phase operations, the ground station engineers supervise the operations on the basis of
received information about the current spacecraft status. The downlinked data is usually processed on­ground in
order to get a physical understanding of the situation in which the spacecraft is. In the same way, this commu­
nication is implemented in the OOS­Sim simulator. From the initialization of the robotic arm deployment until the
capture of the target, the information about the spacecraft shall be constantly transmitted to ground. Besides the
regular healthy status parameters, which are transmitted during all the phases of the mission, the specific infor­
mation might be required depending on the characteristics of the phase. This data is transmitted to ground via the
telemetry parameters, that can contain status information (such as on/off flags), numerical data or binary data;
usually the telemetry information shall be coded into a binary format [13]. When designing the combined controller
for the reach phase, the interface with the ground shall be taken into account in terms of identifying what type
of information could be indicative of the current maneuver status. Another aspect to be considered is the uplink
data, the AOCS shall be able to react to the instructions included in telecommands. The typical commands that
are sent to the AOCS include e.g. setting the nominal attitude, commanding orbit control manoeuvre, power up or
down of a unit (sensor or actuator), reconfiguration into the redundant unit or change of the operational mode [63].
In order to understand the TM/TC protocols and how the data should be decrypted and then fed to the controller,
the books [13, 63] are referred to.

2.3. Environment Constraints
The orbital environment itself poses challenges that a terrestrial robotic manipulator and other systems do not
have to cope with. In general, the spacecraft operational environment has effect on space flight hardware due
to the vacuum, low gravity, radiation, solar pressure and temperature variations. These elements are intrinsic
to every spacecraft ­ for a control engineer they should not have such a big importance, as all the hardware
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components can be assumed to have been already space­qualified. The constraints of the spaceflight hardware
design due to the environmental aspects are detailed in [64], and can be referred to if necessary. Nevertheless,
the more important focus for a control engineer is on the disturbance forces, their estimated order of magnitude
and the constraining factors due to the mission geometry. The disturbances that act on the spacecraft in OOS
mission depend on the orbit type, e.g. force due to solar pressure is the predominant disturbance on a rendezvous
trajectory of a satellite in GEO, whereas the drag of the residual atmosphere is the predominant disturbance in
LEO [65]. The disturbance torques also origin from the gravity perturbations due to J2 effect and micro­gravity
effects. For the reach phase only, these external disturbances are often assumed to be negligible, because the
relative motion with respect to the target spacecraft is considered. Both chaser and target are in the same orbit
few meters away from each other. Therefore it can be assumed that the same disturbances act on both s/c and
thus they ”cancel” each other out.

2.4. Performance Requirements
In the available literature on the GNC for close proximity operations, the performance criteria were found specifi­
cally for the reach/capture maneuver. The two studies are taken as an example, first one is e.Deorbit mission, and
second one is the combined controller project COMRADE. The values are presented in tables below, they are
a good indicator of the final performance of the designed control system. Clearly, the performance requirements
considered in both projects are almost equivalent, the only difference is in the relative velocity. The final results
achieved after simulating the designed controller in a feedback loop (see Section 5) are compared to these values.

The GNC performance requirements for the rendezvous, synchronisation and capture phase were found in
the report from e.Deorbit mission (2017) [60]. The considered performance criteria for the chaser spacecraft are
the following:

Position [m] Velocity [m/s] Attitude [deg] Angular rate [deg/s]
0.05 0.01 2 0.5

Table 2.1: The GNC performance requirements; derived from [60]

Another study results, specifically concerning the combined controller of the robotic spacecraft (COMRADE),
were published recently (2021) [31]. The considered performance requirements are almost entirely identical with
the ones above, they are depicted in table below for clarity. The shown values are specifically for the reach/capture
phase only.

Relative position [m] Relative velocity [m/s] Relative attitude [deg] Relative attitude rate [deg/s]
0.05 0.005 2 0.5

Table 2.2: The control system performance requirements; derived from [31]





3
Free­Flying Dynamics Model

In this Chapter the description of the dynamical multi­body system is given. The modelling of the such a complex
system is not a trivial task, for this task the SpaceDyn toolbox was used. All the modelling choices, nomenclature
and valid assumptions are presented in this chapter.

Firstly, the plant architecture is described in Section 3.1. The robotic system being the manipulator is presented
in subsection 3.1.1 with the description of the joint axes, torques limits and the admissible range of rotational
joints angles. Next, the servicing spacecraft is presented in subsection 3.1.2. The modelling simplifications of its
attitude control system are explained and the other important aspects of the architecture. The modelling library
SpaceDyn is presented in Section 3.2 with detailed explanation on the implemented attitude convention and
coordinate systems. The final equations of motion of the system and the description of inputs and outputs are
given in Section 3.3. Last but not least, the state space model definition is used in the prediction model of the
MPC problem, therefore its formulation is given in Section 3.4 for clarity.

3.1. Plant Architecture
In this Section the definition of the system of interest is given. Having defined the required theoretical background
in previous sections, the technical aspects of the system composed of a spacecraft­base with a mounted robotic
arm can be presented. A robotic OOS mission is composed of two spacecraft ­ the servicer and the target, both of
which are discussed herein with a more detailed definition of the servicer. The section is divided into three parts,
firstly the aspects particular solely for the robotic system are given, next the spacecraft platform characteristics are
presented and last but not least the description of the most important aspects of the target satellite are presented.

3.1.1. Robotic System
The robotic arm of interest is a lightweight manipulator, the KUKA LWR robot, characterized by a light anthro­
pomorphic structure with 7 DOF, all rotational. The revolute joints are driven by compact brushless motors via
harmonic drives, the joints are equipped with position sensors on the motor and link sides, and with a joint torque
sensor [66]. For its control, desired joint torques are given as inputs. The manipulator, in its fully deployed config­
uration, is shown in the Figure 3.1, in which the Denavit­Hartenberg frames of the robot are presented.
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Figure 3.1: The KUKA LWR manipulator; derived from [66]

The robot controller unit (KRC2), as implemented in OOS­SIM, with the Fast Research Interface (FRI) software
provides the measurements at a 1 msec sampling rate of the links position 𝑞 and joint torques 𝜏 and accepts the
user input command as a desired joint position 𝑞𝐷, a desired joint velocity 9𝑞𝐷 or a user specified joint torque 𝜏𝑢𝑠𝑒𝑟.
Via the FRI library the robot is supplied with the set of the appropriate torque 𝜏 to be generated by the motors, for
the commanded task by the user. The values of the maximum torques are given in [67], ranging from 30Nm for
the joint 7,6 and 100Nm for joints 5,4,3 and 200Nm for joints 2 and 1. The admissible range of rotational joints
is ±170𝑜 for joints 1,3,5 and 7 and ±120𝑜 for the remaining joints [66]. Definitions of the system, the link and
the motor equations with identification of inertia matrices based on the numerical values provided by KR C2 are
presented in [66]. The good overview of the robotic arm architecture with the background on the development
process is presented in [68].

3.1.2. Servicing Spacecraft
The servicing spacecraft as implemented in RICADOS can be simplified to a cubic structure controlled by actuators
suite consisting of 24 thrusters and reaction wheels.The 3 thrusters positioned at each corner of the cubic base in
the way to enable thrust force in all three orthogonal directions, each of them providing max thrust of 10N yielding
max thrust in one direction of 40N.

The chaser satellite control and subsequent coupled control of the satellite platform with its robotic arm requires
the estimates of the system states based on the data from sensors. First of all, the relative navigation is performed
during all the phase based on the LIDAR 3D camera which provides the Line of Sight and range measurements
for pose estimation. During the capture phase itself, the target spacecraft can

The authors of [60] considered in chaser design, the navigation sensors suite comprising of the Inertial Mea­
surement Unit (IMU), start tracker, sun sensor and GPS. In the OOS­SIM the chaser is equipped with the camera
at the EE which provides the relative navigation with respect to a target based on images, if only the satellite
simulator is implemented simulating the real hardware system, the measurement of the camera is not available
and therefore the joint angles cannot be computed anymore. In such a situation the servicer s/c pose is obtained
directly by considering the states of the model available in the satellite simulator.

The values of the typical frequency for the attitude control cycle are important when considering the sampling
frequency of the controller so as the real­machine can handle. The typical frequency for the attitude control cycle
is about 2 Hz but higher frequencies up to 20 Hz are possible [AOCS˙02]. The behaviour of the controller will also
depend on the chosen sampling frequency, with which the controller is discretized. Too low sampling frequency
could induce oscillations in the system, aspects such as noise and sensors bias are also sources of the uncertainty
and shall be accounted for.

3.2. SpaceDyn Library
For the definition of the dynamics model the open source available toolbox SpaceDyn was used, it is a Matlab
based library for the kinematic and dynamic analysis and simulation of articulated multi­body systems with a
moving base. The system can be described in an environment with or without gravity (zero gravity approximation
of the motion in an orbit). The library was developed by Prof. Kazuya Yoshida affiliated with Tohoku University,
Japan. It consists of the set of Matlab S­functions ( system­functions) that allow for the modelling of the system.
The toolbox­specific description of the system consisting of multiple bodies and the definition of the dynamics with
the relevant frames is briefly given in the following sections [69].
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Model of the System
The system is composed of 𝑛 ` 1 bodies and connected by 𝑛 joints. Let the body 0 be a reference body, fur­
ther referred to also as a ’base’. Multiple branches can attach on any single body, a far as the system keeps a
topological configuration. There must be a single joint between two bodies. A terminal point or a point of interest
such as manipulator hand is called an endpoint. Each body, except body 0, can have one endpoint at maximum.
This framework allows to model a system such as e.g. a satellite equipped with multiple manipulator (branches),
however in this work the system considered has only one branch.

Force and Torque Inputs
The toolbox allows the force and control inputs to be applied on the centroid of the reference body as pfb, 𝜏𝑏q,
on each end­point as ℱℎ, and each joint as 𝜏𝑚. The definition of these torques and forces are open to user
programming, arbitrarily each joint can be either active or passive. The result of the computation of the forward
solution of dynamics with numerical integration are the position, velocity and acceleration of the centroid of the
reference body, each joint and each endpoint.

Attitude Representation
For the representation of attitude or orientation, the direction cosine matrices are used, coded with a symbol A,
such that e.g. A0 is the direction cosine matrix to represent the attitude of the body 0 with respect to the inertial
reference frame, and the orientation of the other bodies are assigned to the struct AA containing the respective
matrices for each of the remaining bodies. The advantages of direction cosine is singularity free, straightforward
derivation of the Roll­Pitch­Yaw angles, Euler angles, or quaternions and clear mathematical relationship with
angular velocity.

The Roll­Pitch­Yaw representation is also regularly used in the code flow, the respective angles are defined
with a symbol Q. For example, in order to express the twisting angles between two coordinate systems, the 𝛼
(roll) angle is considered around the 𝑥 axis, 𝛽 (pitch) around 𝑦 axis, then 𝛾 (yaw) around 𝑧 axis. The RPY angles
are used for the computation of the coordinate transformation matrices in the script ’rpy2dc’.

Direction Cosine and Coordinate Transformation Matrices
The direction cosine matrices Ci are commonly used to represent attitude or orientation of a body in the field of
aerospace engineering. On the other hand, the coordinate transformation matrices with the notation of IAi, are
commonly used in the field of robotics. These two are eventually the same, under the following transformation:

Ci “ iAI (3.1)

For the above definition of the link coordinate system, the three axis rotations are required in order to coincide
from the the frame of the joint 𝑖 ´ 1 {Σ𝑖´1}) to the frame of the next joint 𝑖 (Σ𝑖´1). The following equation allows to
obtain the necessary transformation between two frames:

tΣ𝑖u “ iCi´1tΣ𝑖´1u

“ r𝐶3p𝑞𝑖q𝐶3p𝛾𝑖q𝐶2p𝛽𝑖q𝐶1p𝛼𝑖qs𝑇tΣ𝑖´1u
(3.2)

where 𝐶1p𝛼𝑖q, 𝐶2p𝛽𝑖q, 𝐶3p𝛾𝑖q are direction cosine matrices ­ the coordinate transformations around each principle
axis and 𝐶3p𝑞𝑖q represents the coordinate transformation by angle 𝑞𝑖 around joint 𝑖; the 𝛾𝑖 angle corresponds to
an offset angle and is separated from a net rotation angle 𝑞𝑖. The RPY representation of the attitude of the link
0 is described in the same way, with the roll, pitch, yaw angles only. The direction cosines are redundant way to
represent attitude, but its advantage is that the relationship between attitude and angular velocity can be expressed
by a simple equation, such that:

9Ci “ 𝜔𝑖 × Ci (3.3)

where 9Ci is a time derivative of Ci. This relationship is used for the routine of singularity­free integration from
angular velocity to attitude.

Coordinate System
The inertial reference coordinate frame tΣ𝐼u considered shall be stationary or linearly moving with constant velocity
in the inertial space. It is not physically precise, but in practice the orbital fixed frame is considered as the inertial
frame when describing the relative motion of the two spacecraft during the close proximity operations. The relative
states of the chaser spacecraft are described in the LVLH frame co­ordinates, centered at the target. The LVLH
(Local Vertical Local Horizontal) frame is oriented such that z­axis is Earth­pointing, y­axis is negative to the orbit
normal and x­axis is forming a right­handed coordinate system. The orbital motion of the considered satellite is
such that the velocity vector is co­linear with the frame x­axis.
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Moreover, the moving coordinate frames fixed on each link of the articulated body and on the base are de­
fined. The orientation of principle axes is arbitrary, but it is recommended to orient these axes being parallel to the
principle axes of the body inertia. For the assignment of moving coordinate frames on other links, one of the way
commonly used in the field of manipulator kinematics is the Denavit­Hartenberg convention. This is known as ad­
vantageous in unique assignment of coordinate systems with minimum link parameters. However this convention
locates sometimes the coordinate origin away from the location of the actual joint and for the dynamic analysis
this is not reasonable. Therefore another set of rules was used, considering both the revolute and prismatic joints:

1. if joint 𝑖 is revolute:

• locate the origin of the coordinate frame on joint 𝑖 and fixed to the link 𝑖,
• set its 𝑧´axis to coincide with the joint rotation axis,
• orient its 𝑥­axis toward joint 𝑖 ` 1;

2. if joint 𝑖 is prismatic:

• locate the origin of the coordinate frame tΣ𝑖u on the point when joint 𝑖 has zero displacement and fixed
to the link 𝑖 ´ 1,

• set its z­axis to coincide with the joint displacement axis, with the positive direction,
• orient its x­axis toward joint 𝑖 ` 1

The system considered in this research work contains only the revolute joints, but the explanation of the system
for the prismatic joint was also kept for clarity.

Connection Graph Representation
In order to make practical use of the SpaceDyn functionalities the system consisting of the interconnected bodies
must be described in the way that is compatible with the toolbox convention. The toolbox adopts a method from
mathematical graph theory, with the simplifications regarding the additional rules on the assignment of link and
joint indices in order to allow the unique construction of two matrices ­ a connection index B and incidence matrices
S. The numbering of the bodies is relevant for the correct assignment of the data to the rows of the matrices. In
essence, the index number of a link 𝑖 in the physical connection between the base (link 0) and link 𝑗, must be
0 ă 𝑖 ă 𝑗. As for the indices numbers of the joints, they begin from 1, and the numbering is such that the joint 𝑖
that connects the joint 𝑗 (𝑖 ă 𝑗) is numbered 𝑗. There is always one single joint interconnecting two links. In this
way, for example the joint interconnecting link 0 and link 1 is joint 1, and the joint interconnecting the link 3 and
link 4 is joint 4. For further details, the [69] can be referred to.

Figure 3.2: Offset-free MPC controller structure;

System Specific Inputs
The following variables are defined with the values specific for the architecture. Initially the system consisting of
the s/c body and the 3 links manipulator (2 joints active) was tested, next the system was extended with one
more joint and link (4 links, 3 joints active). In the future work the system could be further extended in order to
achieve the full architecture, 7 links manipulator, however in this project it was assumed that activating three
joints out of seven will already allow to see how the designed controller is functioning, what is its performance and
the limitations. Below presented matrices and variables are representing the system consisting of the spacecraft
platform body and three links manipulator. With respect to the fully actuated 7 dof manipulator, in this system the
three links which are active are the 1st, 2nd and 4th link. The dimensions of the full system are considered, in the
way that the first link is as in the full system and its output first joint is active, the second link is as in the full system
and its output second joint is active, the third link is effectively the connection of the third and fourth link of the
full system, with the original third joint kept inactive and the output fourth joint active, which here is considered as
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the third joint. Next the end link consists of rigidly connected 5th, 6th, 7th links with all the respective joints kept
inactive.

The data of the RICADOS­specific parameters has been adjusted for the SpaceDyn use. It contains the Robot
struct of the size of the total number of the bodies ­ 1 satellite base and 7 manipulator joints. Each struct contains
fields with information about the mass, inertia matrix, center of mass and dimensions of the body expressed in the
link body reference frame. Therefore the required data to build the model using the SpaceDynMultibody Dynamics
toolbox consists of the following inputs for each body (8):

• Mass ­ mass of the link
• J ­ the inertia of a link with respect to the link’s center of mass, expressed in the link’s body reference frame.
• Com ­ the location of the center of the mass with respect to the link’s body reference frame, expressed in
link body reference frame.

• x ­ the position vector of the following joint with respect to the link’s body reference frame, expressed in link
body reference frame.

• A ­ the cosine direction matrix, the attitude of the following joint with respect to the link’s body reference
frame, expressed in link body reference frame. The z­axis is the revolute joint’s axis.

3.3. Dynamics
Dynamics of a rigid body space robot equipped with a 𝑛­DOF manipulator:

»

–

𝑀𝑡 𝑀𝑡𝑟 𝑀𝑡𝑚
𝑀𝑇
𝑡𝑟 𝑀𝑟 𝑀𝑟𝑚

𝑀𝑇
𝑡𝑚 𝑀𝑇

𝑟𝑚 𝑀𝑚

fi

fl

¨

˝

9𝑣𝑏
9𝜔𝑏
:𝑞

˛

‚`

»

–

𝑐𝑏
𝑐𝜔
𝑐𝑚

fi

fl “

¨

˝

𝑓𝑏
𝜏𝑏
𝜏𝑚

˛

‚`

ˆ

𝐽𝑇𝑏
𝐽𝑇𝑚

˙

ℱℎ (3.4)

with the components:

𝑀p𝑞q ∈ ℝp6`𝑛q×p6`𝑛q ∶ inertia matrix, (3.5)

𝑐p𝑞, 𝑣𝑏 , 𝜔𝑏 , 9𝑞q ∈ ℝp6`𝑛q×1 ∶ coriolis/centrigual terms, (3.6)

𝐽𝑏 ∈ ℝ6×6, 𝐽𝑚 ∈ ℝ6×𝑛 ∶ base and manipulator jacobian (3.7)

and the states and inputs:

𝑣𝑏 , 𝜔𝑏 ∈ ℝ3 ∶ base linear and angular speed (3.8)

𝑞 ∈ ℝ𝑛 ∶ angular position of manipulator joints (3.9)

𝑓𝑏 , 𝜏𝐵 ∈ ℝ3 ∶ base thrust force and torque (3.10)

𝜏𝑚 ∈ ℝ𝑛 ∶ manipulator joints torque (3.11)

ℱℎ ∈ ℝ6 ∶ force/moment on the end effector hand (3.12)

In the frame of this research, one of the project boundaries assumed in order to reduce the complexity is that
the end effector joint is not active, hence the forces and torques of the end effector hand, Fℎ, are not the active
inputs of the system. Moreover, the main goal of the controller, as later explained in section 4.4, is to bring the
end effector position to the capture point on the target spacecraft. With achieving this goal, the considered phase
is finished and the next phase of the capture and stabilization of the stack configuration can begin. These phases
are not in the frame of this project, hence the contact dynamics between the end effector and the target spacecraft
are not considered and as a result it is assumed that the external forces and torques Fℎ acting on the end effector
are negligible.

3.4. State Space Model
Given all the dynamics formulations and the implemented attitude representation, the state space can be formu­
lated by:

9𝑥 “ 𝑓p𝑥, 𝑢q “

¨

˝

9𝑣𝑏
9𝜔𝑏
:𝑞

˛

‚ (3.13)

x “ p𝑥𝑏 , 𝑄0, 𝑞, 𝑣𝑏 , 𝜔𝑏 , 9𝑞q𝑇 ∶ state vector (3.14)

u “ p𝑓𝑏 , 𝜏𝑏 , 𝜏𝑚q𝑇 ∈ ℝp6`𝑛q ∶ input vector (3.15)
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where every DoF is specified by a double integrator, except attitude dynamics. The 𝑄0 in the state vector is the
vector of RPY attitude angles, it is obtained from the direction cosines matrix 𝐴0 representing the orientation of
link 0, with respect to the chosen inertia reference frame. The forward dynamics of the system are computed with
integration by Runge­Kutta method with a constant time step. For the update of the attitude, from 𝐴0 to 𝐴0𝑛, the
Rodrigues formula for infinitesimal rotation is used. It is noted that 𝑣𝑏 , 𝜔𝑏 , 9𝑣𝑏 , 9𝜔𝑏 are defined in the inertia frame.



4
MPC Controller Detailed Design

The following Chapter describes the main core of the project ­ the design aspects of the MPC controller with
the implementation of the free­flying robotic spacecraft dynamics. The theoretical background presented in the
previous chapters was the initial baseline for performing an informed trade­off between different model predictive
control architectures. Next, the modelling phase was performed. In order to provide the prediction model for the
solver, and describe the objective function as a convex programming problem, the general procedure of successive
linearization was chosen. It consists of performing linearization of the dynamics around an operating point in
each iteration of the simulation, hence effectively the linear time varying model is obtained which is used for the
controller. After validation of the nonlinear continuous dynamics the jacobian linearization procedure was applied
and validated with respect to the results achieved with the nonlinear definition. In the frame of this work the model
is used twice ­ the original nonlinear model is used as plant for closed­loop testing and validation purposes. The
linearized version of the model is integrated as prediction model in the controller. The details of this procedure are
described in this Chapter.

Other design choices are further presented. They include the definition of the control objective and the cost
function with its primary and secondary goals, constraints handling ­ the definition and chosen numerical val­
ues, choice of the prediction and control horizon, and last but not least the procedure of tuning the weights and
scale factors. All these aspects are presented in details in this chapter with the proper explanation and reasoning
standing behind each modelling/design decision.

Firstly, in Section 4.1 the MPC design trade­off is presented with the explanation of the six factors considered,
the chosen weighting factors and the evaluation of each of the considered option. Following the description of the
dynamical system from Chapter 3, the system dimensions i.e. state, control vectors, mpc parameters and the time
constants are clearly given in section 4.2. In order to define the MPC optimal control problem the solver must have
an insight into the ”future” which is done with the means of the prediction model, its definition is given in Section
4.3. Firstly the procedure of linearization of the nonlinear dynamics model is explained, than the discretization
method and finally the generation of the prediction matrices. The control objective of this type of the mission,
specifically the capture phase, is explained in Section 4.6. In order to define properly the cost function to achieve
the control objective, the reference position of the end effector must be supplied to the solver. The generation
of the reference trajectory used in this project is described in Section 4.5. Next, the detailed definition of the
cost function is presented in Section 4.6. Each term of the function is given with its mathematical definition and
explanation of the method of computation. In Section 4.7 the constraints introduced to the solver are explained
and their formulation is given. One of the most important aspects of the design process was proper tuning of
penalty weights. The scale factors, weights and overall tuning approach are presented in Section 4.8. Finally, the
overview of the optimization problem modelling interface used in the project ­ YALMIP, is given in Section 4.9 and
the graphical representation of the complete feedback loop and necessary pre­computations is shown in Section
4.10.

25
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4.1. Initial Design Trade­off
As presented in the previous chapters, the model predictive control is a very vast topic and hence it comprises a
variety of architecture types. In order to assess which is the most promising for the application in this project, the
initial trade­off was performed taking into the account six factors with different weighting factors:

• Simplicity of the description ­ there is no direct correlation between ”more complex ­ worse choice”, however
every different aspect of mpc comes with its challenges which might be too complicated for this application
while not improving the overall performance.

• Model fidelity ­ all the potential simplifications of the model shall be done in such a way that the represen­
tation is accurate enough with respect to the real representation of the plant.

• Experience ­ a previous working experience with any specific type of mpc structure could be potentially
beneficial for progressing the work and understanding the complexities in depth. It is the least relevant
factor, therefore its weighting factor is the lowest.

• Optimization ­ depending on the definition of the problem one can get different types of optimization prob­
lems (convex and non­convex) which can require specific solvers use.

• Applicability to RICADOS and free­flying system ­ the dynamics of the system of concern are very com­
plex, yet the real­time solution requirement necessitates the model to be reduced enough to allow for the
application in real mission.

• Literature review ­ the revision of the existing research allowed to have clear view of the challenges iden­
tified by other researchers, and have the idea about how the similar problems are already (if) tackled.

while assessing the following three main aspects of the design:

• Dynamics prediction model ­ Linear Time Invariant, Linear Time Varying, Non­Linear
• Online/Offline computations ­ Explicit, Implicit
• Robust variants ­ Tube­based, Min­max

accounting also for the hybrid model for the sake of completeness. In figure 4.1 the Trade­off Table is presented.
The table shows an assessment of the aforementioned factors for each of the design aspects as described above.
The general comments regarding the awarded scores are briefly summarized and the final scores are presented.
The identified best design choice is to have the linear time varying dynamics prediction model, perform compu­
tations online ­ hence, the implicit mpc model is preferred, and for the eventual robust variant the tube­based
mpc was identified as more suitable for this application in comparison with min­max architecture. Nevertheless,
the robust aspects can be taken into account in many different ways and not only by these two specific design
architectures. Therefore less attention is paid to it at this point.

The hybrid model was discarded mainly due to its complexity of the mixed logical and continuous values in
the optimization problem that can be solved via mixed integer linear or quadratic programming, thus increases
complexity of the optimizer.
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Figure 4.1: The MPC choice trade-off table.
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4.2. System Dimensions
The dynamics equations 3.4­3.12 described in Chapter 3.3 are implemented for the system consisting of the
satellite platform equipped with three link manipulator. In total the system has 9 degrees of freedom ­ 6 DoFs of
the satellite, 3 DoFs of the manipulator joints. In order to describe the system as a state space model the state
vector and input vector are defined. They are presented in Section 3.4 and recalled below for clarity:

x “ p𝑥𝑏 , 𝑄0, 𝑞, 𝑣𝑏 , 𝜔𝑏 , 9𝑞q𝑇 ∶ state vector (3.14)

u “ p𝑓𝑏 , 𝜏𝑏 , 𝜏𝑚q𝑇 ∈ ℝp6`𝑛q ∶ input vector (3.15)

The dimensions of the state, control vectors, and other parameter required for the definition of the optimal
control problem in the MPC framework are defined in the struct ’dim’ and their values are as follows:

• 𝑛𝑥 “ 18 ­ state vector dimension (dim.nx)
• 𝑛𝑢 “ 9 ­ control input vector dimension (dim.nu)
• 𝑛𝑢𝑚_𝑞 “ 3 ­ number of active manipulator joints (dim.num_q)
• 𝑁 “ 20 ­ prediction horizon (dim.N)
• 𝑚 “ 1 ­ control horizon (dim.m)
• 𝑡 “ 18001 ­ total number of iterations in a simulation loop (dim.t);it is equal to length of the tparam.span vector
The values 𝑛𝑥, 𝑛𝑢, 𝑛𝑢𝑚_𝑞 are dependent only on the chosen dynamics model. The state vector (eq. 3.14)

consists of the positions and velocities of the s/c base, the attitude and angular velocity and manipulator joint
angular positions and joint rates. It is clear, that when we consider a three dimensional system, 𝑥𝑏 is a vector of
length 3, 𝑄0 is the vector of length 3, and the same holds for 𝑣𝑏 and 𝜔𝑏. Therefore, the minimum length of the
state vector 𝑛𝑥 “ 12. When the robotic subsystem is considered, angular position of each joint and the joint rates
become part of state vector, and their size depends on the number of active joints. The final model considered in
this project has 3 active manipulator joints, therefore 𝑞 is a vector of length 3 and 9𝑞 length is also equal to 3. All
these values combined clearly sum up to 18.

The prediction horizon 𝑁 and control horizon 𝑚 were chosen such that the solver has enough insight into the
plant dynamics ­ the sampling time of the prediction model is 0.01 sec, therefore with the 𝑁 “ 20, the solver has
insight into the first 0.2 sec of dynamics evolution which is sufficient considering the MPC frequency of 100 Hz
(updates every 0.01s). Similar values were found in the literature e.g. 𝑁 “ 30 in [70].

In the list above, some of the values are only exemplary and are the subject of tuning during the controller
design process. For example, in the first development phase of the model the satellite platform with a 2 link ma­
nipulator was implemented and tested. Thus, the number of active manipulator joints 𝑛𝑢𝑚_𝑞 “ 2 and the length of
state vector 𝑛𝑥 “ 16. In the final simulations results presented in this report the dimensions of the dynamics model
given here were used. With regards to the prediction and control horizon, the different values were tested. The
longer prediction horizon could potentially increase the accuracy of the reference tracking performance. However
as the prediction model implemented is a linearized model around an operating point (see Section 4.3) the further
away we get from this operating point, in terms of the dynamics propagation, the less accurate is the dynamics
description. Therefore, a balance between these two aspects must be found, and it is concluded that much longer
prediction horizons do not necessarily improve the controller performance.

Furthermore, the dimensions of the time parameters are defined in the struct ’tparam’. They are setting up the
total time of the simulation and the value of the sampling time which affects the quality of the prediction. All the
time constants are given in the seconds unit [sec]:

• 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 “ 0.01 ­ sampling time (tparam.sample)
• 𝑇𝑒𝑛𝑑 “ 180 ­ total time of the simulation (tparam.end)
• 𝑇𝑠𝑝𝑎𝑛 “ r0 ∶ 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 ∶ 𝑇𝑒𝑛𝑑s ­ vector of all the time steps (tparam.span)
• 𝑇𝑠𝑖𝑚𝑠𝑡𝑒𝑝𝑠 “ 𝑇𝑒𝑛𝑑{𝑇𝑠𝑎𝑚𝑝𝑙𝑒 “ 18000 ­ total number of simulation steps (tparam.simsteps)
The sampling time 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 is used for the discretization of the continuous dynamics. The total time of the

simulation 𝑇𝑒𝑛𝑑 is setting the total length of the maneuver such that the control loop simulation is run for this
specified time and the final position of the end effector shall be achieved by the end of the simulation. The reference
set of end­effector positions are computed for each simulation step from the span 𝑇𝑠𝑝𝑎𝑛, hence the look­up table
with the reference values to be tracked has the length of the total number of simulation steps 𝑇𝑠𝑖𝑚𝑠𝑡𝑒𝑝𝑠. The size of
the time vector is also used to pre­assign dimensions of the matrices that will store the values of the state vector
and control input sequence from all the simulation.

4.3. Prediction Model
The proper definition of the prediction model is necessary for the construction of the model predictive control
problem. The optimization solver has knowledge of the system coming only from the prediction model, therefore
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it is important to ensure that the valid information about the plant dynamics is passed to the solver. Depending
on the characteristics of dynamics that are captured by the prediction model, the definition of the optimal control
problem results convex or non­convex. For example if the prediction model is nonlinear, the overall definition of
an optimal control problem will be non­convex, hence the non­convex optimization problem then would need to be
addressed by the solver. For this reason it is important to keep in mind that the plant dynamics can be adequately
simplified in order to provide a prediction model that could lead to the definition of a convex optimization problem.

In general, the dynamics model used for prediction inside MPC has to fulfill two basic requirements:

1. It shall represent the spacecraft dynamics (including wheel­soil interaction with sufficient accuracy.

2. It shall provide a sufficient computational performance in order to open up a prospective for use within real­
time applications like the control of an on­orbit servicing spacecraft in real mission.

Accordingly, the goal was to provide a robotic spacecraft model with the minimum number of required states
and with representative dynamics. The nonlinear dynamics model of the plant described in the previous chapter
idealistically shall be equal to the model used in the prediction step in the controller. However with the use of non­
linear prediction model the cost function becomes much more complex and possibly non­convex. The solution to
a non­convex optimization problem is not a global solution, therefore defining the optimization problem is non­
convex should be rather avoided. Moreover the introduction of nonlinearities in the optimization problem increases
the computational burden. For these reasons the chosen strategy is to introduce the Nonlinear MPC (NMPC) with
the procedure of successive linearization around an operating point. Certainly this procedure allows to decrease
the computational burden related to solving an optimization problem, as the linear model allows to introduce it as
a linear or quadratic program, which has a single global solution. This approach has also disadvantages which
clearly is the mismatch between the real nonlinear model and its linearized version. Using only one linear model
for all the capture phase is not a good design choice as with every motion of the spacecraft the real system is less
and less represented by the linearized model and hence using it as prediction model would not yield the required
performance of the MPC controller. The idea is to perform linearization of the nonlinear model in every control loop
around the operating point being the current numerical value of the state vector, as determined by the spacecraft
sensors. This approach is further described in next sections. The linearization procedure is explained in Section
4.3.1, next the formula to discretize the continuous model is given in Section 4.3.2 and finally, the generation of
prediction matrices used in the OCP definition is given in Section 4.3.3.

4.3.1. Linearization of the nonlinear dynamics model
The linearization of the nonlinear dynamics model is done with the script ’dynmodel_linearization.m’. The Jacobian
linearization is performed around the current operating point p𝑥0, 𝑢0q with the method of small perturbations. The
matrices that are computed with the script are state space matrix 𝐴𝑐𝑡 and output matrix 𝐵𝑐𝑡 as in the linear state
space model formalism. The corresponding linear, continuous­time state space model (index ct) can be defined
at any operating point by:

9𝑥̃ “ 𝐴𝑐𝑡𝑥̃ ` 𝐵𝑐𝑡𝑢̃ (4.1)

with

• 𝑥̃ “ small state deviation from the operating point 𝑥0,
• 𝑢̃ “ small input vector deviation from the operating point 𝑢0,
• 𝐴𝑐𝑡 “ state matrix of linear continuous­time state space model at operating point p𝑥0, 𝑢0q,
• 𝐵𝑐𝑡 “ input matrix of linear continuous­time state space model at operating point p𝑥0, 𝑢0q.

Firstly the nominal value of the operating point is used ­ it is injected into the nonlinear dynamics model (script
’f_dyn’) which is described in the Chapter 3.

r𝑣𝑑01,𝑤𝑑01, 𝑞𝑑𝑑1s “ 𝑓_𝑑𝑦𝑛p𝑅0, 𝐴0, 𝑣0, 𝑤0, 𝑞, 𝑞𝑑, 𝐹0, 𝑇0, 𝐹𝑒, 𝑇𝑒, 𝑡𝑎𝑢q (4.2)

For the implementation of this procedure the operating point at time step k was selected as the latest config­
uration at time step k­1. Thus, we apply:

𝑢𝑜𝑝p𝑘q “ 𝑢p𝑘 ´ 1q

𝑥𝑜𝑝p𝑘q “ 𝑥p𝑘 ´ 1q

𝑢̃p𝑘q “ 𝑧𝑒𝑟𝑜𝑠p𝑛𝑢, 1q

𝑥̃p𝑘q “ 𝑧𝑒𝑟𝑜𝑠p𝑛𝑥, 1q

(4.3)
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The matrices 𝐴𝑐𝑡 and 𝐵𝑐𝑡 are numerically computed Jacobians:

𝐴𝑐𝑡 “
𝜕𝑓

`

xop,uop
˘

𝜕𝑥 ; 𝐵𝑐𝑡 “
𝜕𝑓

`

xop,uop
˘

𝜕𝑢 (4.4)

Firstly the more conservative approach towards linearization was applied by performing the differentiation of
the dynamics function with the use of matlab symbolic toolbox. Due to the computational burden this solution
was compared with a more simple approach ­ the Jacobian matrices are obtained using perturbations only. The
perturbation, of the value of 1e­4, is added successively to every term from the state vector and control input
vector of the operating point, next the values are injected into the nonlinear dynamics model and as a result the
vector of the acceleration 𝑓𝑝𝑒𝑟𝑡𝑢𝑟𝑏 is obtained. The state matrix 𝐴𝑐𝑡 is obtained

𝑓𝑜𝑝 “ r𝑣𝑑01;𝑤𝑑01; 𝑞𝑑𝑑1s; 𝑓𝑝𝑒𝑟𝑡𝑢𝑟𝑏 “ r𝑣𝑑02;𝑤𝑑02; 𝑞𝑑𝑑2s;

𝐴𝑐𝑡p
𝑛𝑥
2 ` 1 ∶ 𝑒𝑛𝑑, 𝑖𝑥q “

𝑓𝑝𝑒𝑟𝑡𝑢𝑟𝑏´𝑓𝑜𝑝
Δ𝑥p𝑖𝑥q

;

where 𝑖𝑥 “ 1 ∶ 𝑛𝑥 and the Δ𝑥p𝑖𝑥q “ 1𝑒 ´ 4 is the value of the perturbation of the 𝑖𝑥𝑡ℎ term of the state vector.
The output matrix 𝐵𝑐𝑡 is obtained in the similar manner, considering the dimensions of the control input vector
𝑖𝑢 “ 1 ∶ 𝑛𝑢 and the perturbations of the control input values with respect to the value of an operating point,
Δ𝑢p𝑖𝑢q “ 1𝑒 ´ 4.

𝐵𝑐𝑡p
𝑛𝑥
2 ` 1 ∶ 𝑒𝑛𝑑, 𝑖𝑢q “

𝑓𝑝𝑒𝑟𝑡𝑢𝑟𝑏´𝑓𝑜𝑝
Δ𝑢p𝑖𝑢q

;

It must be underlined that the continuous linear state space model obtained with this linearization procedure
is valid only in the vicinity of the operating point.

4.3.2. Discretization of the linear continuous model
The linear discrete­time state space model represented by the state matrix 𝐴𝑑𝑡 and input matrix 𝐵𝑑𝑡 is derived from
the respective matrices of continuous­time state spacemodel 𝐴𝑐𝑡 and 𝐵𝑐𝑡. The transformation of a continuous­time
system to a discrete time system is performed by the following operations:

𝐴𝑑𝑡 “ 𝑒𝐴𝑐𝑡𝑇𝑠 ; 𝐵𝑑𝑡 “ 𝐴´1
𝑐𝑡 p𝑒𝐴𝑐𝑡𝑇𝑠 ´ 𝐼q𝐵𝑐𝑡 (4.5)

Both operations apply the matrix exponential 𝑒𝐴𝑐𝑡𝑇𝑠 with the sampling time 𝑇𝑠. The discrete state space form is
finally:

𝑥̃p𝑘 ` 1q “ 𝐴𝑑𝑡𝑥̃p𝑘q ` 𝐵𝑑𝑡𝑢̃p𝑘q (4.6)

This discrete model of the system is implemented as a prediction model, the state vector is propagated for all the
prediction horizon using the values of the matrices 𝐴𝑑𝑡 and 𝐵𝑑𝑡 in current simulation step.

4.3.3. Prediction matrices generation
The update of the prediction matrices used in the optimizer is generated with the script ’predmodgen.m’. The
input to the function is the linearized discretized LTI model and the struct containing system dimensions (dim).
The below matrix 𝐴, 𝐵 are referring to the matrices 𝐴𝑑𝑡 , 𝐵𝑑𝑡 obtained in the previous subsection. The state solution
is as follows:

𝑥̃p𝑘q “ 𝐴𝑘𝑥0 `

𝑘´1

∑
𝑗“0

𝐴𝑘´𝑗´1𝐵𝑢p𝑗q

“ 𝐴𝑘𝑥0 `
“

𝐵 AB … Ak´1B
‰

»

—

—

—

—

—

–

𝑢 p𝑘 ´ 1q

𝑢 p𝑘 ´ 2q

…
𝑢 p0q

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.7)

In order to find a control solution with the model predictive control architecture, the evolution of state vector within
all the prediction horizon must be available when the optimizer is being run. The size of the prediction matrices
depends on the dimensions of the problem, the state space dimension, prediction horizon N and control horizon
m. The sequence of the state vectors and control inputs in further notation is marked with the bold sign.



4.4. Control Objective 31

x̃N “ 𝑇 ⋅ 𝑥0 ` 𝑆 ⋅ um (4.8)

where

• x̃N is a sequence of N state solutions deviations from the operating point 𝑥𝑜𝑝 starting from initial state 𝑥0,
subject to sequence of control inputs,

• um is a sequence of m control inputs;
• 𝑇 is a prediction matrix from initial state, it includes state matrices 𝐴𝑑𝑡
• 𝑆 is a prediction matrix from control input sequence, it includes state matrices 𝐴𝑑𝑡 and input matrices 𝐵𝑑𝑡
and the sequence of the vector is:

x̃N “

»

—

—

–

𝑥̃p1q

⋮
𝑥̃p𝑁q

fi

ffi

ffi

fl

um “

»

—

—

–

𝑢p1q

⋮
𝑢p𝑚q

fi

ffi

ffi

fl

,

Often in the literature, the size of the prediction horizon (𝑁) and the control horizon (𝑚) is equal, and then the
𝑢𝑚 is signed as 𝑢𝑁. In this project it is considered advantageous to have shorter control horizon with respect to
the prediction horizon, hence these variables are represented by different notation. In the script for the prediction
model generation, the following structures of the matrices and vectors is applied:

𝑇 “

»

—

—

—

—

—

—

–

𝐴
𝐴2

⋮
𝐴𝑁

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

𝑆 “

»

—

—

—

—

—

—

–

𝐵 0 0 0
𝐵𝐴 𝐵 0 0
⋮ ⋱

𝐵𝐴𝑁´1 𝐵𝐴𝑁´2 … 𝐵𝐴𝑁´𝑚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

In the script the matrices are saved in the struct predmodgen and recalled respectively predmod.T and pred­
mod.S. It must be again underlined that this prediction model operates not on the global values, but the local ’tilde’
values which are deviations from the operating point.

4.4. Control Objective
The objective of the controller is to perform a safe capture of the target. This objective is broken down into sub­
objectives, each having relevant meaning that shall be introduced to the solver. The components are mathemati­
cally described and put together in the optimization objective function, referred to as cost function.

The trajectory of the end­effector shall follow the reference trajectory provided from the guidance block. The
end­effector shall achieve a very good final performance in order to ensure safety capture of the target. The role
of the control system is to find the appropriate sequence of control inputs for the available actuators. It shall be
done in a way that the constraints on the upper and lower input bounds are considered, the safety aspects of the
mission are respected and the tracking error between the reference and current end­effector position is minimized.
Moreover, as in every space mission, it is desirable to minimize the fuel expenditure and power consumption. The
system shall be controlled in the most optimal way, such that all these aspects are considered and the required
change of its kinetic energy is minimal.

The detailed definition of the mathematical description of the cost function is given in the next sections. The
design process of this function consists of variety of aspects such as validation of the definition of each term,
validation of the linearization procedures, tuning of the weights and scaling factors. The detailed definition of the
cost function is presented in the subsection 4.6.

4.5. Reference Trajectory
Considering the whole GNC architecture, the reference trajectory definition is a task of the guidance block, it is
doing the determination of the path from the satellite’s current position to a target position. Usually determination
of the path and its evolution in time, hence the trajectory, is computed as a solution of an optimization problem
considering the system dynamics and constraints [71]. Next, the information is passed to the control block, which
shall track an optimal reference trajectory decreasing the error between the current position of the vehicle (as
determined by the control block) and the reference value, generated by the guidance subsystem a priori.

In this work, the focus was solely on the controller development, the scope of the work does not include a full
GNC loop design, therefore the generation of the trajectory is simplified. The reference trajectory that shall be
tracked is the end­effector trajectory, the evolution of its position is defined in the task space. It is assumed that
the given position of the EE is specifically the position of its TCP and no orientation is considered. Initially, the
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reference position was defined in the joint space, such that the controller objective was to follow the joint positions.
This is a very straightforward approach, which can be valid for a system with small number of DoFs, however it
takes away freedom of the configuration choice and hence is limiting the solution space of the optimization problem
(the controller cost function). Once the tracking problem described in the joint­space was successfully solved the
current definition of the problem was validated. Then, in next step, the reference trajectory was described in the
cartesian space, as follows.

1. The initial position of the end­effector 𝐸𝐸0 in the LVLH frame is derived from the initial state vector of the
chaser s/c and its known geometry via forward kinematics algorithm.

2. The coordinates of the capture point are known, they are defined in the LVLH frame of the target spacecraft.
It is assumed that the relative navigation of the chaser s/c during duration of all the maneuver allows the
estimation of the position of this point with perfect precision. Therefore, the relative distance between the
current end­effector position and the target position is known. This final position of the end effector, 𝐸𝐸𝑓, is
defined offline and is kept constant during the simulation.

3. The reference trajectory is generated prior to the control feedback loop as a look­up table of the size equal
to the number of the simulation steps (𝑇𝑠𝑖𝑚𝑠𝑡𝑒𝑝𝑠), such that there is a reference value of the 𝐸𝐸 position for
each step of the simulation. The interpolation between the initial and final 𝐸𝐸 position can be computed in
different ways. The two algorithms used are the linear and polynomial interpolation.

Linear
The linear interpolation between the initial end effector position 𝐸𝐸0 and the final position 𝐸𝐸𝑓 to be achieved
by the end of the maneuver is determined in the following way. The difference between the initial and the final
end­effector position is divided by the total number of simulation steps in order to obtain the value of a constant
increment Δ𝐸𝐸. The look­up table containing the reference positions in every simulation time step is constructed
by adding the increment value to the reference position from the previous step, starting with the initial position
𝐸𝐸0, as in the equation below.

Δ𝐸𝐸 “
𝐸𝐸𝑓 ´ 𝐸𝐸0
𝑇𝑠𝑖𝑚𝑠𝑡𝑒𝑝𝑠

𝐸𝐸p𝑘q “ 𝐸𝐸p𝑘 ´ 1q ` Δ𝐸𝐸
(4.9)

This procedure is performed separately for each coordinate 𝑥, 𝑦, 𝑧 of the end­effector position. It is clear that
in this way only geometry of the trajectory is taken into account, the equidistant separation results theoretically in
a constant velocity.

Polynomial function of 5𝑡ℎ degree
The 5th order polynomial interpolation of a trajectory is performed based on initial conditions and final conditions of
time, position, velocity and acceleration. The input to the function is the sampling time interval 𝑇𝑠𝑖𝑚𝑠𝑡𝑒𝑝𝑠, the initial
and final position of end effector 𝐸𝐸0 and 𝐸𝐸𝑓, both the initial and final velocity and acceleration are equal to zero.
This is due to the fact that it is assumed that the maneuver starts with relative velocity between two spacecraft
equal to zero and it is expected that by the end of the maneuver the motion should be fully decelerated and the
final position kept stationary. These six boundary conditions are used to construct the coefficients of a 5th order
polynomial function in every time step of the objective look­up table.

𝐸𝐸p𝑘q “ 𝐸𝐸p𝑡q “ 𝑎0 ` 𝑎1𝑡 ` 𝑎2𝑡2 ` 𝑎3𝑡3 ` 𝑎4𝑡4 ` 𝑎5𝑡5 (4.10)

The coefficients are computed in a loop depending on the time position 𝑇 “ 𝑡p𝑘q ´ 𝑡0 and its fraction of the
total maneuver time. This method is applied separately for each coordinate 𝑥, 𝑦, 𝑧 of the end­effector position.

4.6. Cost Function
The definition of the cost function is presented in this section. For the clarity we can distinguish between primary
goals and secondary goals, they are introduced in the objective function as separate terms. The function consists
of the summation of all the terms. In order to define the convex objective function for the present nonlinear problem,
the successive convexification approach is applied. It treats of linearizing all the nonlinear terms in every iteration
step in order to enable a construction of the convex quadratic programming problem. The linearization of the
dynamics is performed in the run time, in each simulation iteration, as explained in Section 4.3. The linearization
is performed around the operating point p𝑥𝑜𝑝, 𝑢𝑜𝑝q which is updated in every iteration with the value of the state
vector and the applied control inputs vector from the previous step. Therefore the optimization problem originally
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nonlinear due to the nonlinear dynamics, can be expressed as a quadratic program thanks to the successive
linearization.

In terms of reference and cost function we can distinguish between primary goals which are related to the
trajectory of the manipulator’s end effector and chaser’s rotational rate and secondary goals, which take the
system’s energy minimization and geometrical constraints into account.

Primary Goals
The primary optimization goal of the controller objective function of the robotic chaser s/c is optimal reference
position tracking of the end effector. The reference data input is the trajectory output form the guidance block, as
defined in the section 4.5. As the dynamics are defined in the joint space, the state vector includes the angular
position of the manipulator joints (𝑞), the mapping between the joint space and the manipulator cartesian space
must be done such that the end effector position can be defined in (𝑥, 𝑦, 𝑧) coordinates in LVLH frame during
the all motion evolution. To perform this mapping the forward kinematics (FK) algorithm is implemented. The FK
algorithm takes as input the current state vector ­ the position vector of the spacecraft base 𝑥𝑏 with respect to
LVLH frame, its orientation 𝑄0, and the angular positions of the mainpulator joints q. With the known geometry
of the manipulator, these inputs are sufficient to compute the current position of the end effector in cartesian
space. The FK function is nonlinear, in the objective function its linear mapping was implemented, such that the
jacobian linearization procedure around an operating point is computed in every simulation iteration. The obtained
Jacobian matrix 𝐶𝐹𝐾 “ 𝐽𝑓p𝑥𝑜𝑝q enables the linear mapping between the state vector x (𝑥 “ 𝑥𝑜𝑝 ` Δ𝑥), and the
function 𝑓𝐹𝐾p𝑥q:

𝐸𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 “ r𝐸𝐸𝑥 , 𝐸𝐸𝑦 , 𝐸𝐸𝑧s “ 𝑓𝐹𝐾p𝑥q ≈ 𝐸𝐸𝑜𝑝 ` 𝐶𝐹𝐾 ⋅ Δ𝑥 (4.11)

The validation of the linearization of the forward kinematics algorithm is presented in the appendix B. The quadratic
term representing this goal is finally formulated, as:

‖𝑄𝐸𝐸𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛pΔ𝐸𝐸𝑟𝑒𝑓 ´ 𝐶𝐹𝐾 ⋅ Δ𝑥𝑖q‖2 (4.12)

where 𝑄𝑒𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is the weight matrix, the penalty applied to the non­zero value of the term. The explanation of
the weight matrices construction and tuning is given in Section 4.8.2.

Secondary Goals
In order to drive the system in a desired direction, ensure the feasible configuration and attitude such that the
maneuver is performed safely with the navigation aid whereas minimizing the effort ­ fuel and power, other aspects
must be included in the cost function. The terms addressing these aspects are added to the definition of the
function, they are presented in the next subsections.

Energy minimization
Theminimization of the energy of the system, such that the goal is achieved with the minimum energy expenditure.
It is simply the penalty on the velocity squared, hence representing the minimization of the kinetic energy, defined
as the quadratic term The 𝑣𝑖 as in the equation below, is the vector of velocities of each of the body of the system.
It includes the linear velocity of the s/c platform, the angular velocity of it, and angular velocity of the manipulator
joints. The weighting matrix 𝑄𝑒𝑛𝑒𝑟𝑔𝑦 is applied, it has the weight values on its diagonal with all the other terms
equal to zero. The size of the matrix depends on the size of the problem, in case of the considered multi­body
system consisting of 9 degrees of freedom (3 translational of the base, 3 rotational of the base, 3 rotational of the
manipulator joints), the matrix will have size of 9×9 and the penalty is applied on every velocity (linear or angular).

‖𝑄𝑒𝑛𝑒𝑟𝑔𝑦𝑣𝑖‖2 “ 𝑣′𝑖 ⋅ 𝑄𝑒𝑛𝑒𝑟𝑔𝑦 ⋅ 𝑣𝑖 (4.13)

Control inputs cost minimization
The minimization of the control effort is included in the cost function as the term penalizing control action of every
active joint. The penalty matrix 𝑅 is a matrix with weight values on its diagonal and the other elements equal to
zero. As there are 9 degrees of freedom in the considered system, the matrix 𝑅 has size of 9 × 9.

‖𝑅𝑢𝑖‖2 “ 𝑢′𝑖 ⋅ 𝑅𝑢𝑖 (4.14)

Field of View (FoV)
The goal is to ensure that the navigation camera shall be pointing always into the marker aid on the target space­
craft. If the maneuver starts with a non­zero attitude of the chaser s/c with respect to the target, its angular position
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shall be reached such that the navigation marker aid is in the field of view of the camera and can be continuously
used as a reference for the spacecraft navigation. In order to define the FoV term in the cost function, the following
procedure is applied. Firstly two vectors are defined:

• V1: Vector passing through the navigation camera of the chaser and passing through the c.o.m of the base,
co­linear with the x­axis of the chaser base as defined in the body coordinate frame.

• V2: Vector passing through the marker aid, defined as the point in the target spacecraft co­linear with the
x­axis of the LVLH frame, and passing through the navigation camera of the chaser.

In Figure 4.2 these vectors are clearly shown. The vectors are normalized and then the dot product between them
is computed:

𝑉1 ⋅ 𝑉2 “ |𝑉1||𝑉2|𝑐𝑜𝑠p𝛼q (4.15)

which for the unit vectors becomes 𝑉1 ⋅ 𝑉2 “ 𝑐𝑜𝑠p𝛼q.

Figure 4.2: Definition of the FoV penalty term. Depiction of the system in 2D for clarity purposes only; the angle alpha
considered in the system is defined between two vectors in 3D.

The goal is to make these two vectors co­linear, which would mean that the camera is perfectly pointed to the aid
marker. However, in reality it is enough that the marker aid remains in the field of view of the camera, therefore the
goal is to minimize the difference: 𝑐𝑜𝑠p0q ´ 𝑐𝑜𝑠p𝛼q “ 1´ 𝑐𝑜𝑠p𝛼q “ 1´ 𝑓p𝑥q. The nonlinear function is dependent
on the current state vector, specifically the base position and orientation. In order to apply it into the objective cost
function, it is linearized around an operating point in every simulation iteration, such that an output matrix C is
obtained which allows for the linear mapping between the state vector (𝑥 “ 𝑥𝑜𝑝 ` Δ𝑥), and the function f(x):

𝑓p𝑥q ≈ 𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝 ` 𝐶𝐹𝑜𝑣 ⋅ Δ𝑥 (4.16)

where 𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝 is the value of the 𝑐𝑜𝑠p𝛼q at the oeprating point 𝑥𝑜𝑝.

1 ´ 𝑓p𝑥q ≈ 1 ´ p𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝 ` 𝐶𝐹𝑜𝑉 ⋅ Δ𝑥q (4.17)

Finally the quadratic term representing this goal is formulated, as:

‖𝑄𝐹𝑜𝑉p1 ´ 𝑐𝑜𝑠p𝛼qq‖2 ≈ ‖𝑄𝐹𝑜𝑉p1 ´ p𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝 ` 𝐶𝐹𝑜𝑉 ⋅ Δ𝑥qq‖2 (4.18)

where 𝑄𝐹𝑜𝑉 is the weight matrix, the penalty applied to the non­zero value of the term. The explanation of the
weight matrices construction and tuning is given in Section 4.8.2.

Complete definition of the cost function
Finally, all the terms are brought together and the complete definition of the cost function as a quadratic function
is obtained, as shown below.

min
𝑥𝑖 ,𝑢𝑖

𝑁´1

∑
𝑖“1

‖𝑄𝐸𝐸𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛pΔ𝐸𝐸𝑟𝑒𝑓 ´ 𝐶𝐹𝐾 ⋅ Δ𝑥𝑖q‖2 ` ‖𝑄𝑒𝑛𝑒𝑟𝑔𝑦𝑣𝑖‖2 ` ‖𝑄𝐹𝑜𝑉p1 ´ p𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝 ` 𝐶𝐹𝑜𝑉 ⋅ Δ𝑥𝑖qq‖2 ` ‖𝑅𝑢𝑖‖2 (4.19a)

s.t. 𝑥1 “ 𝑥𝑖𝑛𝑖𝑡 (4.19b)
𝑥𝑖`1 “ 𝐴p𝑖q𝑥𝑖 ` 𝐵p𝑖q𝑢𝑖 , for i = 1...N (4.19c)
𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥 , for i = 1...N (4.19d)



4.7. Constraints Handling 35

4.7. Constraints Handling
The most advantageous quality of MPC compared to other control architecture is the implementation of the con­
straints definition. They allow to ensure that the control solution found by an optimizer is within the real limits. In
design of this controller two main constraints are taken into account:

1. The limit on the magnitude of the control signals’ value ­ the value of the maximum and minimum thrust
force, reaction wheel torques and manipulator joints torques.

2. The range of the joints motion ­ the maximum and minimum allowable position angle of each joint is related
to the mechanical limits of the configuration.

3. The rate of change of the control input ­ what is the maximum value in both positive and negative direction,
by which the control signal can change in one step.

4. Approach cone ­ the geometrical limit on the position of the spacecraft base while approaching the target.

The mathematical definition of both constraints is described in next section. The global values of the magnitude
of control signals r𝑁,𝑁𝑚s and the range of joints position angles r𝑑𝑒𝑔s are based on the literature of the similar
systems.

As all the terms from the cost function are described based on the linearized model, the control input which is
the optimization variable to be found, is effectively the 𝑢̃ ­ deviation from the operating point 𝑢𝑜𝑝. Therefore all the
constraints must be updated in order to be limiting the 𝑡𝑖𝑙𝑑𝑎 values, and not the global values. The procedure to
do it is presented in the next subsections.

All the constraints are translated into an inequality equation that is injected into the optimization software:

𝐺 ˚ 𝑥𝑜𝑝 ` 𝐻 ˚ 𝑢̃ ` 𝐹 ˚ r𝑢𝑜𝑝; 𝑢̃s ` Ψ ≤ 0 (4.20)

such that the matrix G corresponds to the operating point 𝑥𝑜𝑝, matrix H corresponds to the optimization variable
𝑢̃, matrix F corresponds to the rate of change of the control input and Φ is the matrix of constants related to the
numerical values of the constraints.

Input Magnitude
The servicing spacecraft as implemented in RICADOS can be simplified to a cubic structure controlled by actuators
suite consisting of 24 thrusters and reaction wheels.The 3 thrusters positioned at each corner of the cubic base in
the way to enable thrust force in all three orthogonal directions, each of them providing max thrust of 10N yielding
max thrust in one direction of 40N. The values of the maximum torques of the manipulator revolute joints are given
in [67], ranging from 30Nm for the joint 7,6 and 100Nm for joints 5,4,3 and 200Nm for joints 2 and 1.

• 𝐹𝑢𝑏 =
“

40 40 40
‰

N

• 𝑇𝑢𝑏 =
“

40 40 40
‰

Nm

• 𝜏𝑢𝑏 =
“

200 200 100
‰

Nm

The upper (ub) and lower (lb) global bound of the control signals are represented by the following vectors:

𝑢𝑢𝑏 “
“

40 40 40 1 1 1 200 200 100
‰′ ;

𝑢𝑙𝑏 “
“

´40 ´40 ´40 ´1 ´1 ´1 ´200 ´200 ´100
‰′ ;

In general these vectors can be represented as the inequality equation as:
#

𝑢 ≤ 𝑢𝑢𝑏
𝑢 ≥ 𝑢𝑙𝑏

(4.21)

which is translated into:
#

𝑢 ≤ 𝑢𝑢𝑏
´𝑢 ≤ ´𝑢𝑙𝑏

(4.22)

The equations 4.21 and 4.22 are still expressed on the global control inputs and its values, they need to be
translated in the domain of deviation values as follow:

#

𝑢̃𝑢𝑏 “ 𝑢𝑢𝑏 ´ 𝑢𝑜𝑝
𝑢̃𝑙𝑏 “ 𝑢𝑙𝑏 ´ 𝑢𝑜𝑝

(4.23)
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#

𝑢̃ ≤ 𝑢𝑢𝑏 ´ 𝑢𝑜𝑝
´𝑢̃ ≤ ´𝑢𝑙𝑏 ` 𝑢𝑜𝑝

(4.24)

The matrix H corresponding to the 𝑢̃ depends on the dimension of the problem ­ the control horizon of the MPC
(𝑚) and the size of the control input vector (𝑛𝑢). The matrix H is constructed as follows:

𝐸p𝑛𝑢⋅𝑚q×p𝑛𝑢⋅𝑚q “

»

—

—

–

𝐼𝑛𝑢 0 … 0
0 𝐼𝑛𝑢 … 0
⋮ 0 ⋱ 0
0 0 0 𝐼𝑛𝑢

fi

ffi

ffi

fl

(4.25)

The identity matrix, with ones on its diagonal, is of the same size as the control vector 𝑛𝑢, the E matrix size is
the diagonal matrix with the

𝐻p2⋅𝑛𝑢⋅𝑚q×p𝑛𝑢⋅𝑚q “

„

𝐸
´𝐸

ȷ

(4.26)

The matrix Ψ contains the numerical values of the upper and lower bound of the 𝑢̃ which are equal to the right
side of the inequalities from the 4.24. As the 4.20 is inequality equation with the zeros on the right side, and the
matrices on the left side, it is clear that Ψ matrix equals to the values from the right side of the 4.24 multiplied by
´1.

Ψp2⋅𝑛𝑢⋅𝑚q×p1q “

»

—

—

—

—

—

—

–

´p𝑢𝑢𝑏 ´ 𝑢𝑜𝑝q

⋮
´p𝑢𝑢𝑏 ´ 𝑢𝑜𝑝q

´p´𝑢𝑙𝑏 ` 𝑢𝑜𝑝q

⋮
´p´𝑢𝑙𝑏 ` 𝑢𝑜𝑝q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.27)

It is clear that in this constraint the matrices 𝐺 and 𝐹 are not needed, therefore they are matrices containing
only zero components of the dimensions depending on the problem dimensions.

𝐺 “ 0p2⋅𝑛𝑢⋅𝑚q×p𝑛𝑥q (4.28)

𝐹 “ 0p2⋅𝑛𝑢⋅𝑚q×pp𝑚`1q⋅𝑛𝑢q (4.29)

Joints Range
The admissible range of rotational joints is ±170𝑜 for joints 1,3,5 and 7 and ±120𝑜 for the remaining joints [66].
Depending on how the multi­body system is modelled, according to the description in the Chapter 3, the numerical
values of the joints range are respectively extracted from these vectors. As the manipulator was modelled with
the joint 1,2 and 4 being active, hence the upper and lower bound on the range of the possible joint motion for all
the joints in the KUKA LWR robot consisting of 7 revolute joints is represented by the following vectors:

𝑞𝑢𝑏 “
“

170 120 120
‰

[deg];
𝑞𝑙𝑏 “

“

´170 ´120 ´120
‰

[deg];

In general these vectors can be represented as the inequality equation as:
#

𝑞 ≤ 𝑞𝑢𝑏
𝑞 ≥ 𝑞𝑙𝑏

(4.30)

which is translated into:
#

𝑞 ≤ 𝑞𝑢𝑏
´𝑞 ≤ ´𝑞𝑙𝑏

(4.31)

The equations 4.30 and 4.31 are still expressed on the global motion ranges and its values, they need to be
translated in the domain of deviation values as follow:

#

𝑞̃𝑢𝑏 “ 𝑞𝑢𝑏 ´ 𝑞𝑜𝑝
𝑞̃𝑙𝑏 “ 𝑞𝑙𝑏 ´ 𝑞𝑜𝑝

(4.32)
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#

𝑞̃ ≤ 𝑞𝑢𝑏 ´ 𝑞𝑜𝑝
´𝑞̃ ≤ ´𝑞𝑙𝑏 ` 𝑞𝑜𝑝

(4.33)

The angular position of the joints 𝑞 “
“

𝑞1 𝑞2 𝑞3
‰

is contained in the state vector 𝑥. It is clear that 𝑞 “ 𝑥p7 ∶ 9q

remains valid for all the control loop execution and therefore the constraint on the joints motion range can be
expressed as the function of the prediction model, state vector in the operating point 𝑥0 and the sequence of
control inputs um, as in the equation 4.8. In order to extract the 𝑞 from the state vector, the following matrix 𝑀 is
constructed:

𝑀p𝑛𝑢𝑚_𝑞q×p𝑛𝑥q “

»

–

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

fi

fl (4.34)

𝑞 “ 𝑀 ⋅ 𝑥 (4.35)

Accounting for all the joint positions within the prediction horizon 𝑁, the matrix M is extended as follows:

𝑀𝑁p𝑁⋅𝑛𝑢𝑚_𝑞q×p𝑁⋅𝑛𝑥q “

»

—

—

–

𝑀 0 … 0
0 𝑀 … 0
⋮ 0 ⋱ 0
0 0 0 𝑀

fi

ffi

ffi

fl

(4.36)

which allows writing the sequence of the joints positions for all the prediction horizon as the function of the se­
quence of the state vectors:

q̃ “ 𝑀𝑁 ⋅ x̃N (4.37)

Injecting the Eqn. 4.8 into Eqn. 4.35 one gets:

q̃ “ 𝑀𝑁 ⋅ p𝑇 ⋅ 𝑥0 ` 𝑆 ⋅ umq (4.38)

In order to write the joints range constraint the equation 4.38 is combined with the equation 4.33, such that:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

𝑀𝑁 ⋅ p𝑇 ⋅ 𝑥0 ` 𝑆 ⋅ umq ≤

»

—

–

𝑞𝑢𝑏 ´ 𝑞𝑜𝑝
⋮

𝑞𝑢𝑏 ´ 𝑞𝑜𝑝

fi

ffi

fl

p𝑁⋅𝑛𝑢𝑚_𝑞q

´𝑀𝑁 ⋅ p𝑇 ⋅ 𝑥0 ` 𝑆 ⋅ umq ≤

»

—

–

´𝑞𝑙𝑏 ` 𝑞𝑜𝑝
⋮

´𝑞𝑙𝑏 ` 𝑞𝑜𝑝

fi

ffi

fl

p𝑁⋅𝑛𝑢𝑚_𝑞q

(4.39)

Now it is clear that the joints range constraint can be defined according to 4.20, where matrix 𝐺, 𝐻 and Ψ corre­
spond respectively to:

𝐺p2⋅𝑁⋅𝑛𝑢𝑚_𝑞q×p2⋅𝑛𝑥q “

„

𝑀𝑁 ⋅ 𝑇
´𝑀𝑁 ⋅ 𝑇

ȷ

(4.40)

𝐻p2⋅𝑁⋅𝑛𝑢𝑚_𝑞q×p2⋅𝑛𝑢⋅𝑚q “

„

𝑀𝑁 ⋅ 𝑆
´𝑀𝑁 ⋅ 𝑆

ȷ

(4.41)

Ψp2⋅𝑁⋅𝑛𝑢𝑚_𝑞q×p1q “

»

—

—

—

—

—

—

–

´p𝑞𝑢𝑏 ´ 𝑞𝑜𝑝q

⋮
´p𝑞𝑢𝑏 ´ 𝑞𝑜𝑝q

´p´𝑞𝑙𝑏 ` 𝑞𝑜𝑝q

⋮
´p´𝑞𝑙𝑏 ` 𝑞𝑜𝑝q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.42)

It is clear that the matrix 𝐹 remains equal to zero:

𝐹 “ 0p2⋅𝑁⋅𝑛𝑢𝑚_𝑞q×pp𝑚`1q⋅𝑛𝑢q (4.43)
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Approach Corridor
In order to approach the target satellite in a safe way, the approach corridor is defined as the geometrical constraint
on the position of the chaser spacecraft base center of mass. The approach corridor is defined with respect to the
center of mass of the target satellite, that is considered as the tip of the cone. In this point the target satellite body
coordinate frame has its apex point. The cone axis is co­linear with the x­axis of the body reference frame, and the
cross­section of the cone is comprised fully in the y­z plane. The cone angle 𝛼 is a parameter that can be set, it is
assumed that the value 𝛼 “ 15deg is a good choice to create the approach cone for the close proximity approach
and capture. The radius of the cone section is a function of the distance from the beginning of the coordinate
frame as shown in figure 4.3. In mathematical terms it is defined as the linear function of 𝑥 with the slope of the
function equal to the tangent of the cone angle:

𝑅𝑐𝑜𝑛𝑒 “ 𝑡𝑔p10𝑜q ⋅ 𝑥 (4.44)

The definition of the constraint in the most straightforward way is the the quadratic inequality. The radius of
the cone section is a function of the x position in current step, and the position of the chaser coordinates in the
current step shall be inside the circle.

𝑟2𝑘 ≥ 𝑦2𝑘 ` 𝑧2𝑘 ⟶ p𝑡𝑔p𝛼q ⋅ 𝑥𝑘q2 ≥ 𝑦2𝑘 ` 𝑧2𝑘 (4.45)

As it is clearly seen, this equation results in the nonlinear inequality constraint. In order to comply with the
chosen approach, to define theOCP as a quadratic programming problem, there can be only the linear inequalities.
For this reason, the inequality in equation 4.45 is approximated with the set of linear inequalities. This constraint
has been expressed by a polyhedral approximation of the three­dimensional cone shape into a decahedron. [72]
The cone is divided into 10 planes such that the inequality constraint can be expressed for all planes of a tilt angle
in the y­z plane equal to p𝑘 ⋅ 𝛽q with 𝑘 ∈ t0, 9u and 𝛽 “ 36deg and a tilt angle 𝛼 in the x­z plane. Effectively, the
spacecraft is not penalized if its position is within the decahedron figure with the cross sections shown in figure
4.3.

Figure 4.3: Depiction of the polyhedral approximation of a cone in the approach corridor constraint.

4.8. Tuning
The process of controller tuning concerns determining values of the controller parameters such that it is possible
to achieve a desired output. Good balance between the numerical values of the parameters shall allow the opti­
mization of a process, such that all the aspects of the objective function are well understood and treated by the
solver. In order to achieve this balance, each term of the cost function, as explained in Section 4.6, preferably
shall be unitless and in the same order of magnitude. This can be achieved by introducing scaling factors. They
are chosen to represent a relevant physical value, such as e.g. the approximate span of a variable. The scale
factors are introduced to the cost function as divider of each term. The process is explained more in details in
the next subsection 4.8.1. Once the terms of the cost function are scaled and hence they have the same order
of magnitude, next step is to tune the values of the weight matrices. The balance between the penalty values
must be found such that the priority is given to minimizing the error of the reference tracking objective, and all
the remaining secondary goals are adequately tuned in order to represent the importance of each of the term.
This process is described in the subsection 4.8.2. Last but not least, it must be said, that the process of controller
tuning is not trivial, and is a very variable process as it depends on many factors including the dynamic behaviour
of the controlled process, the definition of the objective and the available knowledge of the system. Despite the
fact there is a variety of techniques developed to facilitate tuning, it remains a rather difficult and time­consuming
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process. By saying this, it is underlined that the numerical results and the described procedure presented in the
following subsections might not be the best, but it was certainly adequate enough to be applied into the control
system of interest. If there is more time to spend on further tuning it still could be continued.

4.8.1. Scale Factors
For the proper construction of the cost function, the scale factors for each plant input and output variable are
specified. It is a recommended practice to perform scaling of the variables especially if the certain variables have
much different magnitudes than others. The scale factor should be approximately equal to the span of the variable,
being the difference between its maximum and minimum value in engineering units. Performing scaling allows to
present the variables in the same order of magnitudes which facilitates the definition of weighting matrices for the
cost function, as the correlation between the increase of the weight and its physical meaning on the system is more
clear. The values of scale factors are based on the understanding of the system, its constraints and characteristics
of environment ­ the maximum disturbance expected, maximum control inputs available and the maximum control
error. A useful approach for scaling is to make the variables less than one in magnitude. This is done by dividing
each variable by its maximum expected or allowed change [62]. The maximum deviation from a nominal value
should be chosen by thinking of the maximum value one can expect, or allow, as a function of time. The scale
factors for the inputs and outputs of the plant are depicted in table 4.1 below. The value of each vector of scale
factors is tuned respective to each term of the cost function, as explained in Section 4.6.

𝐸𝐸𝑠𝑐𝑎𝑙𝑒 [m] r0.01, 0.01, 0.01s

𝑉𝑠𝑐𝑎𝑙𝑒 [m/s][rad/s] r0.01, 0.01, 0.01, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175s

𝐹𝑜𝑉𝑠𝑐𝑎𝑙𝑒 [­] r0.00060917s

𝑈𝑠𝑐𝑎𝑙𝑒𝑠 [N][Nm] r20, 20, 20, 20, 20, 20, 100, 100, 50s

Table 4.1: Scaling factor values related to each term of the cost function.

The values shown in the table have respective physical meaning. The 𝐸𝐸𝑠𝑐𝑎𝑙𝑒 values equal to 1r𝑐𝑚s is the
acceptable position error; The scale factor 𝑉𝑠𝑐𝑎𝑙𝑒 for the kinetic energy minimization term is equal to 1r𝑐𝑚{𝑠𝑒𝑐s for
the linear velocity of the base, 1r𝑑𝑒𝑔{𝑠s “ 0.0175r𝑟𝑎𝑑{𝑠s for the rotational velocity of the base and 1r𝑑𝑒𝑔{𝑠s “

0.0175r𝑟𝑎𝑑{𝑠s for the angular velocity of the manipulator joints. These values represent the assumed maximum
allowable velocity of each of the degree of freedom. The scale factor 𝐹𝑜𝑉𝑠𝑐𝑎𝑙𝑒 for the field of view term is equal to
the values of the following expression: 𝐹𝑜𝑉𝑠𝑐𝑎𝑙𝑒 “ 1 ´ 𝑐𝑜𝑠p2𝑜q, such that it is compatible with the definition of the
term from cost function (1 ´ 𝐶𝐹𝑜𝑉 ⋅ 𝑥𝑖). It is representing the preferred allowable error, such that the deviation of
2 degrees is acceptable. Last but not least, the scale factor 𝑈𝑠𝑐𝑎𝑙𝑒𝑠 applied on the control minimization term has
value of 20r𝑁s for the thrust control input, 20r𝑁𝑚s for the torque of the base and 100r𝑁𝑚s for the first and second
manipulator joint and 50r𝑁𝑚s for the third joint. These values were determined simply by taking the half of the
upper bound of the control inputs values, in this way it can be interpreted as expected magnitude of each input
signal. Clearly the value is bounded by the constraint upper and lower bound, not by the scale factor, however it
is preferred not to reach the boundary values and any deviation further from the mean value is penalized more.

Finally, definition of the cost function as in equation 4.19 is augmented with the scale factors, such that they
are dividers of each of the terms. The complete definition of equation, as implemented in the controller script, is
given below in equation 4.46.

min
𝑥𝑖 ,𝑢𝑖

𝑁´1

∑
𝑖“1
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(4.46)

The values of the scale factors are kept constant during all the control loop simulation. Setting different numer­
ical values would effectively result in different balance between cost function terms. In case of project extension,
it would be recommended to run sensitivity study to see how different scale factor values affect the result of the
optimization problem.
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4.8.2. Weights
The priority of each term of the cost function is balanced with weighting factor, such that the higher the value the
more important it is to achieve a certain sub­goal. It is directly affecting the optimization process, the term with
higher penalty will have more drastic effect in the increasing the value of the objective function which shall be
minimized. The weighting factors are translated into the weight matrices in order to match the size of the problem,
such that the quadratic term including the multiplication of the weight matrix and an expression to be minimized in
the equation 4.46 results in the scalar value. The chosen values of the weighting factors are put on the diagonal
of the null matrix of an appropriate size. The values of the weights applied on each penalty term from the cost
function are given below. The balance between these values was found in a tuning procedure in earlier simulations
which is further described in subsection 4.8.3.

𝑊𝐸𝐸𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 “ r𝑊𝐸𝐸𝑥 ,𝑊𝐸𝐸𝑦 ,𝑊𝐸𝐸𝑧s “ r50, 50, 50s, (4.47)

𝑊𝐹𝑜𝑉 “ 50, (4.48)

𝑊𝑒𝑛𝑒𝑟𝑔𝑦 “ r𝑊𝑣𝑏 ,𝑊𝜔𝑏 ,𝑊𝜔𝑚s “ r10, 10, 10s, (4.49)

𝑊𝑢 “ r𝑊𝑓𝑏 ,𝑊𝜏𝑏 ,𝑊𝜏𝑚s “ r50, 50, 50s (4.50)

The vectors of diagonal values are used to create the matrices of appropriate size, e.g. the weighting matrix
applied on the term penalizing the error between the current and reference position of end effector is the following:

𝑄𝐸𝐸𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 “ 𝑑𝑖𝑎𝑔p𝑊𝐸𝐸𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛q “

»

–

𝑊𝐸𝐸𝑥 0 0
0 𝑊𝐸𝐸𝑦 0
0 0 𝑊𝐸𝐸𝑧

fi

fl (4.51)

In the same manner, the remaining weighting factors are applied to construct the penalty matrices of the
following sizes:

𝑄𝐸𝐸𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ ℝ3×3

𝑄𝐹𝑜𝑉 ∈ ℝ1

𝑄𝑒𝑛𝑒𝑟𝑔𝑦 ∈ ℝp6`𝑛q×p6`𝑛q

𝑅 ∈ ℝp6`𝑛q×p6`𝑛q

4.8.3. Tuning approach
Initial simulations were run with ht first guess of the weights values such that the highest weight was related to
the EE reference position tracking 𝑊𝐸𝐸𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 differed by two order of magnitude with respect to other weights.
This value was chosen, because EE term is the primary objective of the cost function, and it is required from the
controller to have good tracking performance. The result was not satisfactory, indeed the tracking was very good,
but it resulted in very high extension of the robotic arm and high attitude change of the s/c base. Many iterations
of the simulations with ”guessed” weight values were run and it was observed that not only the magnitude of the
weights is affecting the solver performance but also the relation between weights of each term ­ the ratio between
them.

Next, in order to simplify the tuning procedure and make it more clear, the baseline simulation with all unit
weights was run. It allowed to clearly see which term has the highest contribution into the overall value of the
objective function. It was observed that the highest contribution has EE term, therefore there is no need of dras­
tically increasing the weight value. The weights of remaining terms were increased and only the energy­related
term was kept lower. After running few more simulations, the values presented in the section above were found
and allowed to reach very satisfactory performance.

In general, the tuning procedure performed for this project was to a major extent based on trial and error. If the
more powerful machine was used for the computations, some grid search technique or learning algorithms could
be used to find the best numerical balance between all the weights in more automated way.
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4.9. Optimization Modelling Yalmip
Once the mathematical definition of an optimization problem is formulated, in the way explained in section 4.6, it
must be set up in the understandable way for the optimization solver. In order to do so, the optimization problem
can be formulated with the use of the available modelling engines. Some of the available toolboxes enabling an
interface between the mathematical definition of an optimization problem and the solver are CasADi ­ an open­
source tool for nonlinear optimization and algorithmic differentiation, CVX ­ a Matlab­based modeling system
for convex optimization, ForcesPro ­ a software enabling generation of a tailor­made solvers from a high­level
mathematical description of an optimization problem, and YALMIP ­ a free Matlab toolbox for rapid prototyping
of optimization problems [73]. Due to the open­source characteristics, the easiness of the optimization problem
modelling and last but not least a prior experience with the toolbox, the latter one YALMIP was implemented in
this research project.

The modelling approach and general use of the toolbox is very straightforward. The user defines the con­
straints and objective functions using intuitive and standard matlab code, and the Yalmip performs an automatic
categorization of the optimization problem based on the provided mathematical definition. One of the core ideas
in YALMIP is to rely on external solvers for the low­level numerical solution of optimization problem, whereas the
main focus is on the efficient modelling and high­level algorithms. The yalmip­specific variable is ’sdpvar’ and it
is used to define the optimization variable, it is a symbolic decision variable. It is very convinient as all the matlab
operators can be applied also on sdpvar objects, therefore the creation of e.g. diagonal matrices can be easily
performed using the ’diag’ matlab function. The user defines constraints, objectives and solver options. The solver
choice can be defined by the user or left to YALMIP, then the problem is solved and the solution obtained.

4.10. Final Control Loop
All the components of the controller design as described in the previous sections make up the final control loop.
In a space systems engineering usually we refer to a complete GNC system, which comprises the guidance,
navigation and control block. In essence, the guidance block task is to determine the reference trajectory that shall
be followed, it says ’where to go’, the navigation block determines the current position of the spacecraft, it says
’where it is’, and the control block determines the specific actions of the actuators system to be executed in order to
meet the position goal. In the Figure 4.4, the control block is only shown, as during the project development it was
assumed that the main focus is on the controller design, the reference trajectory is determined by the guidance
block for an entire motion, hence there is no additional feedback loop updating the guidance online, and last but
not least it was assumed that the knowledge about the spacecraft position and its manipulator joints is perfect,
hence there was no focus on navigation part.

The diagram in the Figure 4.4 consists of two parts: 1) Data Initialization and Pre­computations, 2) NMPC
Feedback Control Loop and the Dynamics Simulation. The first concerns the set­up of the problem ­ the input
model data is used to construct the dynamical model compatible with the SpaceDyn architecture, the initial con­
ditions and the values of parameters required for the construction of the MPC problem are set. The reference
trajectory is computed (see Section 4.5 ), it is an input to the control system in the form of a look­up table. The
second part of the diagram, the NMPC Feedback Control Loop and the Dynamics Simulation, depicts the feedback
loop which consists of the three main parts:

• NMPC ­ Successive Linearization; in this block the operating point is updated, the dynamics model is lin­
earized around this operating point and the functions ­ forward kinematics and field of view, are also lin­
earized in order to obtain the matrices necessary for the objective function construction.

• Optimization block; all the parameters obtained are used to construct the optimal control problem. The cost
function is updated, the inequality constraints are defined with respect to the values of the operating point.
The quadratic programming problem is defined in a yalmip interface and solved with the use of quadprog
solver.

• Nonlinear Plant Model; the nonlinear model of the plant dynamics is used, it is equal to the definition of the
model that is linearized in every iteration step. The mis­match between the prediction model and the plant
model comes from the linearization procedure only. The first control input sequence from the computed
optimal solution is injected into the continuous dynamics model and integrated to obtain the state vector
values at the next time step.
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5
Controller­in­the­loop Case Scenarios

Results
In this Chapter, the results from the simulations of the designed controller will be presented. The modelled dynam­
ics with the designed controller in the loop were tested for different scenarios depending on the initial conditions
and values of the penalty matrices. In order to achieve a good reference tracking performance, the definition of
the cost function and MPC parameters must be properly tuned. This is not a straightforward task, especially for
such a complex system, however preliminary results of the tuning are presented here and conclusions from the
effect of the change of weights values on the overall performance of the controller can be reached. Firstly the
simulation with unit weight for each term of the cost function is presented, next the results from the simulation with
the tuned weights are shown. The proper tuning of weights clearly allows to decrease the end­effector position
error during all the simulated motion.

In Section 5.1 the table with the parameters values specific for each scenario is presented. Next, the plots
of the position, velocity, attitude and angular rate during all the simulated maneuver for each body of the system
are shown and described. The required input data to the simulation contains the parameters of the multi­body
system derived from the RICADOS project data. The data includes the information for every link of the robotic
satellite system. Therefore if only few joints are considered active, the non­actuated joints are assumed to be a
rigid connection between two consecutive links. This input data was described in Section 3.2. In this Section, the
data are pre­processed in order to be compatible with the format required for a proper definition of the system
dynamics with SpaceDyn toolbox. Last but not least, the initial conditions and MPC specific parameters such as
value of the weight matrices, scale factors etc are set by the user before running the simulation control loop. The
values of input parameters for each presented scenario are given in a table 5.1.

In Section 5.2 the timing statistics of the simulations are given. It is clear that the solver takes very little time to
find the solution of an optimization problem, however the overall control loop is time­consuming. The required time
is an important constraint especially in real­time applications, and the consequences of designing too complex
solver that results in longer computation times could be that it is not suitable to be used in real­time space mission.

Last but not least, in Section 5.4 the performance metrics of end­effector position tracking are given in terms
of the root mean squared error and the mean absolute error. With these numerics performance analysis is very
straightforward and allows to choose the best design candidate. Results of the simulations and comparison be­
tween them is addressed also in this Section as well.

5.1. Scenario cases
The input data of the presented scenarios is given in table 5.1 below. In next sections, the results of the simulations
are shown in the figures. The most representative results were chosen that validate the functioning of the designed
controller for the on­orbit servicing type of mission.

The scaling factors used for the cost function definition in all the scenarios are the same and are equal to
the values in table 4.1. Therefore only the penalty weights are tuned with this approach. The initial condition is
described with an initial value of a state vector 𝑥0 “ r𝑅0; 𝑄0; 𝑞; 𝑣0;𝑤0; 𝑞𝑑s ; It is assumed that the beginning of the
reach maneuver phase follows the end of the close rendezvous phase. Therefore in order to make the transition
as safe as possible, and change the required parameters of the controller, the robotic spacecraft decelerates to
keep the position in the hold stop. In this moment, the data could be down­linked to the control center to e.g.
allow the user­based activation of the maneuver phase or parameters up­link if necessary. For this reason it can
be assumed that the relative velocity between the chaser and target spacecraft is zero. Therefore, the velocity­
related terms in the initial value of a state vector are always equal to 0 and in table 5.1 the values of the base
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position, attitude and joints angular position are only presented.
In the table the 𝑁 stands for the length of a prediction model,𝑚 is the control horizon, 𝑇𝑠 is sampling time used

both for the discretization of the dynamics prediction model for the MPC formulation, and for the plant dynamics.
The frequency of the MPC controller is also equal to 𝑇𝑠. The time during which the maneuver should be accom­
plished is another parameter, it is the simulation time given in the table. The generation method of the reference
trajectory is also specified (refer to Section 4.5) as it has influence on the tracking performance.

Scenario 1 concerns the simulation with the unit values of all the penalty weights, Scenario 2 is the simulation
with tuned weights for the same initial conditions that shows how the performance is improved thanks to tuning.
Next Scenario 3 is a comparison between two simulations run for the same input data and parameters values
but different method of the reference trajectory generation. First, the linear interpolation is used to generate the
reference trajectory, as explained in Section 4.5. It is compared to the other method ­ the interpolation with the
use of 5𝑡ℎ order polynomial function, as explained in Section 4.5. The plots showing results of every scenario are
presented in next section.

Table 5.1: Data of the simulated scenario cases.

Scenario 1 Scenario 2 Scenario 3

Ts [s] 0.01 0.01 0.01
N [ ] 10 10 10
m [ ] 1 1 1

Simulation time [sec] 180 180 90

Reference trajectory [ ] poly5 poly5 linear/poly5
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The initial conditions of the scenarios were chosen such that the characteristics of the simulated motion are as
close to the real space mission as possible. It was assumed that the last hold point before performing the reach
and capture maneuver is 4.5 meters away (the distance between the s/c base c.o.m. and the target s/c c.o.m).
This value was chosen as it is long enough to perform the maneuver with extension of the robotic arm, but not too
short, therefore the translational motion of the base is expected and not only of the manipulator.

The simulation time of 3 minutes (180 seconds) is chosen, which should be physically achievable time for
performing the maneuver. As an example, in the study [74] the authors consider proximity operations at geosyn­
chronous orbit. They consider few hold points ­ one at 10 meters away from the target spacecraft, where s/c stays
for 10 minutes and then approaches the last hold point along the capture axis 1 meter away from the grapple
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point on the target. They considered 3 minutes to perform this maneuver, which effectively results in the approach
rate equal to 5 cm/sec. Considering the same amount of time for shorter distance in this work will result in lower
value of the approach rate which could be potentially preferable for safety reasons. When considering the distance
between the x­coordinate of the initial end­effector position 𝐸𝐸0 and the x­coordinate of the grapple point 𝐸𝐸𝑒𝑛𝑑
(defined in the target reference frame), the average approach rate is 1.744 cm/sec, see below:

|Δ𝐸𝐸𝑥|

180 “
| ´ 3.557𝑚 ´ p´0.4178𝑚q|

180𝑠𝑒𝑐 “ 1.744r𝑐𝑚{𝑠𝑒𝑐s

The initial angular position of the robotic manipulator joints is such that the arm is already extended in the
beginning of the phase: the first joint is in its nominal position, while second joint is 𝑞2 “ 45𝑜 and third joint
𝑞3 “ 90𝑜. Following the definition of the plant model, see Section 3.1, the rotation axis of the first joint, if the s/c
base is not rotated, is co­linear with the 𝑧 axis of the body reference frame. The non­zero angular position of this
joint results in the non­zero y­coordinate of the end­effector position. The grasping point positioned on the target
spacecraft is co­linear with x­axis, therefore it is preferable to keep the position of the end­effector also co­linear
with the x­axis. Moreover, the motion of the manipulator around the z­axis of the servicing s/c body frame would
result in the non­zero 𝑦 coordinate of the end­effector. It would cause additional disturbance on the satellite base,
which potentially could induce the rotational motion of the base and hence require the counteracting action of the
torquers.

Last but not least, the non­zero attitude of the servicing spacecraft with respect to the target spacecraft was
chosen, the initial roll angle is equal to ´5𝑜, whereas pitch an yaw are zero. In real space mission, before starting
the reach and capture phase, the attitude synchronisation is performed such that the attitude and angular rate of
the servicing s/c is matching the target spacecraft. However in order to test if the controller is able to compen­
sate the attitude offset, the tested scenarios begin with this non­zero attitude. The initial position of the servicing
spacecraft is presented in figure 5.1 below.

Figure 5.1: Initial condition for scenarios 1-3.
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5.1.1. Scenario 1 ­ Baseline definition with unit weights

In order to get a good overview of how the change of the weight value for each cost function term affects the
overall performance of the controller, firstly a scenario with all the unit weights is run. It is assumed that the choice
of the scale factors values made during the controller design is kept constant. These values were chosen based
on the informed guess what the value of the allowable position error and of the expected average value of velocity
should be. This modelling choice is valid for every case scenario presented in this Section.

Figure 5.2 presents the evolution of the motion of the servicer spacecraft base, the center of mass is con­
sidered. The position vector 𝑅0 is defined in the LVLH frame centered at the target spacecraft, as explained in
Section 3.2. The servicer is approaching from the negative x­axis side ”behind” the target spacecraft, therefore the
relative ­x coordinate has negative value. The initial position in which the motion starts is 4.5 meters behind the
target spacecraft in negative x direction, the y and z coordinates are equal to zero. The objective function of the
optimal control problem includes the reference positions of the end­effector but not of the base c.o.m. Therefore
the base motion is an available degree of freedom of the system, the evolution of the motion of the base is the
choice of an optimizer. In figure below it can be observed that the motion is performed along all the three axes,
with the longest distance along x­axis, which was expected because firstly the servicer needs to approach the
target in order to achieve the final EE position. The linear velocity 𝑉𝑥 is in the range 0 ´ 1.5r𝑐𝑚{𝑠s which is a rea­
sonable value ensuring the safety of the maneuver. The 𝑉𝑧 reaches the highest amplitude of 6r𝑚𝑚{𝑠s, the change
of position in the z direction is much slower compared to x direction. By the end of the maneuver the position of
the base is 45r𝑐𝑚s in the z direction. Motion along y­axis is negligible. Linear velocity profile in each direction is
such that the body decelerates while approaching the end of the maneuver.

Figure 5.2: Scenario 1 - Spacecraft base position and linear velocity in LVLH frame.

Next, figure 5.3 below shows the evolution of the spacecraft base angular motion in RPY convention. The
attitude is defined in the body reference frame of the spacecraft co­linear with LVLH. The initial attitude is non­
zero only around y axis, the initial pitch 𝑝 “ ´5deg, which is equal to ­0.0873 rad. During the simulated maneuver,
the pitch angle grows positive and achieves the largest value by the end of the motion equal to 0.22 rad = 12.61
deg. It can be seen in figure 5.8 how the term related to Field of View cost evolves during the simulation. The
highest value is reached for the initial condition, during the second part of the motion there is another peak value
and next the value of the FoV term decreases almost to zero. Despite the pitch angle is growing, it keeps a good
pointing angle with respect to the target navigation aid markers due to the fact that the position of the base is
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moving along the positive z axis. All together, the increase of the pitch angle is not linearly correlated with the
value of the FoV term, as the position of the spacecraft base also influences the relative pointing between two
satellites. The angular motion around x and y axis is negligible, the highest value achieved among these two axes
is the roll angle in the 125th second equal to ´0.003rad ≃ ´0.1719deg.

Figure 5.3: Scenario 1 - Spacecraft base attitude and angular velocity in body frame.

In figure 5.4 the arm motion is presented, which is the evolution of an angular position of the manipulator
joints. The plant architecture was presented in Chapter 3, it is clear that each of the three joints is a revolute
joint. The angular position is given in the moving coordinate frame fixed in each link. From the figure it is clear
that the first joint is only slightly actuated, its motion is negligible. The main difference in the angular position is
in the second joint 𝑞2, with the initial angular position 45 deg, and the final position ­45 deg. The overall change
during all the simulated motion is around 90 degrees in this joint. The angular rate 9𝑞2 highest amplitude is equal
to 0.02rad/sec “ 1.15deg/sec. The initial condition of the third joint 𝑞3 is 90deg, during the simulated maneuver
it keeps growing until it reaches the angular position of 1.82rad “ 104.23deg in the 90𝑡ℎ. Then it rotates in the
opposite direction and reaches the final angular position of 1.42rad “ 81.36deg. The motion of the joints is very
smooth, the initial oscillations clearly seen in the angular velocity profile are quickly dumped and the evolution of
the velocity is a smooth function during the entire motion.

The evolution of the control inputs for each degree of freedom is presented in figure 5.5. The control input
values are found by the solver as a solution of an optimization problem. The values of the control input from the
first stage of an MPC problem are taken directly from the solver output and injected into the plant model. The first
plot presents the evolution of the thrust force in each of the three directions, the second plot shows the evolution
of the torques acting around each of the main body axis and last but not least, a plot of the value of the torque
applied in each of the manipulator active joints is shown. From the plots it is clear that when initializing the capture
phase and the motion of the system assuming the stationary initial conditions and null value of the initial control
inputs, the beginning of the control response has oscillatory characteristics. This behaviour settles down very
smoothly after the first 20 seconds of simulated motion and for the remaining simulation time the control input
evolution is very smooth. We can see that the value of the force and torque applied on the s/c base remain in a
proximity of zero for the majority of the motion whereas the highest values are reached only at the beginning of
the motion. Interestingly, from the evolution of the manipulator joint torques, it is clear that the solver decides to
apply an actuation mainly on the second and third joint with the value of torque in the first joint close to zero for
the entire motion.
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Figure 5.4: Scenario 1 - Spacecraft arm joints angular position and angular rate in joint frames.

Figure 5.5: Scenario 1 - Control inputs.
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The resulting position of the manipulator end­effector during the simulated motion is presented in figure 5.6
below. The end­effector remains in the same x­z plane, it is clear from the plot that the y coordinate is equal to
zero during all the motion. It is quite a logical result consistent with the plots that were presented before. The only
way to induce the change of y coordinate is the motion of the first joint 𝑞1 or the servicer base roll or yaw angle
change. Each of these three angular positions were shown to be negligible, hence the end­effector y coordinate
remains constant during all the simulated motion. In the plot, the x­ and y­coordinates of the final position of the
end­effector are marked with circles. It is clear that the desired position is not reached, the exact value of the offset
is clearly seen in figure 5.7 which shows the end­effector position error evolution for every simulation step. The
error for every axis is computed by subtracting the value of the reference position in 𝑘𝑡ℎ simulation step from the
value of the position output from the simulation in this step:

𝐸𝐸𝑒𝑟𝑟𝑜𝑟p𝑘q “ 𝐸𝐸𝑠𝑖𝑚p𝑘q ´ 𝐸𝐸𝑟𝑒𝑓p𝑘q (5.1)

The plots in figure 5.7 show the error evolution for each of the three coordinates, clearly the y coordinate error
is equal to zero. The highest amplitude of an error is achieved in the 120 second in x coordinate, the error is equal
to ´45cm, which means that the position of end­effector was ”behind” the reference position for his simulation
step by this distance. Such error is definitely too large for this type of a mission with high safety requirements.
However, this high error happens one minute before the end of the maneuver, and the final position accuracy is
much better. The final end­effector position error in x­coordinate is equal to ´11cm and in z­coordinate 6cm. This
is not acceptable error range and clearly leads to overshoot of the capture point by the end effector. As far as
the x­coordinate error is negative, the poor tracking performance should not cause major risk, however a positive
value of the error means that the end­effector position is closer to the target spacecraft than expected, and it could
potentially lead to a collision. In order to increase the tracking performance it is clear that the weights shall be
tuned, and with the current design and unit weights only, the tracking objective cannot be achieved with a desired
performance.
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Figure 5.6: Scenario 1 - End-effector position coordinates in LVLH frame.

In figure 5.8, the contribution of each term from the cost function to the overall value of the function is presented
in plots. It is clear that the highest contribution has the end­effector position error of x­coordinate at t = 120 s. When
the position tracking performance is better, this cost function term decreases. Next, the field of view related cost
has impactful value on the overall function, however the magnitude is slightly smaller than the EE cost. The
energy cost and control inputs cost have the lowest contribution. It is very clear from the plots, that the designed
cost function is correctly depicting the ongoing changes in the plant dynamics and reference position errors. The
optimization solver is minimizing the overall value of the function while looking for the best solution, therefore it
is important to validate that the cost function represents what the design intention was. In figure 5.9, the overall
value of the cost function is presented.
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Figure 5.7: Scenario 1 - End-effector position error.
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Figure 5.9: Scenario 1 - Cost function overall.

In order to visualize the motion of the controlled servicer, a 3Dmodel provided by DLR is used. It represents the
multi­body system as is available in the OOS­Sim on­orbit servicing simulator. The data from matlab simulation,
specifically the state vector in current simulation step, is provided to the visualization function which updates with
the same sampling time as the control loop. Hence, the motion of the spacecraft can be seen in real time during
the simulation. In figure 5.10, the position of the servicer achieved by the end of the simulated motion is shown.
On right we see the servicer spacecraft equipped with the robotic arm and on the left the target satellite to be
captured. The black line is the reference trajectory starting from the initial EE position in the top right and finishing
on the LAR ring of the target which is considered the capture point.

Figure 5.10: Scenario 1 - Final capture position from the simulation viewer.
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5.1.2. Scenario 2 ­ Baseline definition with tuned weights

The results of the simulation for the weights values of the scenario 2 (see table 5.1) are presented in this section.
As it was seen in the outcome from the simulation of scenario 1, the reference position tracking of an end­effector
was very poor. For this reason the weight on the EE term from cost function is increased from 1 to 50. Next, the
weight on the term related to the Field of View and the weight on the control inputs are increased to the value of 50
and term related to the energy ­ velocity, is increased to 10. The simulation was run with these weight values and
the outcomes are shown below. Overall, the main control objective ­ the end­effector reference position tracking is
achieved with much better performance. Therefore it is confirmed that proper weight tuning is the most essential
part of the design required to achieve good performance of the controller.

Figure 5.11 presents the evolution of the motion of the servicer spacecraft base, with the center of mass being
considered. It can be observed that the motion is performed along all three axes, with the longest distance along
x­axis. The motion profile is very similar to scenario 1, with the main difference being in the y­direction: the total
change of the position by the end of the motion is from 𝑦0 “ 0m to 𝑦𝑓 “ 1mm, whereas in the scenario 1 it was
0.6mm. The velocity 𝑉𝑦 shows much more oscillatory behaviour compared to the results of scenario 1 in figure 5.2.
It is not a desired characteristics of the motion, nevertheless the value of the velocity is very low, in the submilimiter
range therefore it should not have a great impact on the overall system behaviour. The velocity profiles are very
similar to scenario 1 and approaching the end of the maneuver the body decelerates in each direction.

Figure 5.11: Scenario 2 - Spacecraft base position and linear velocity in LVLH frame.

Next, figure 5.12 shows the evolution of the spacecraft base angular motion in RPY convention. The attitude
is defined in the body reference frame of the spacecraft collinear with LVLH. The initial attitude is non zero only
around y axis, the initial pitch 𝑝 “ ´5deg, which is equal to 0.0873 rad. During the simulated maneuver, the pitch
angle grows positive and achieves the largest value by the end of the motion equal to 0.24rad “ 13.75deg. The
angular motion around x and y axis is negligible, the highest value achieved among these two axes is the roll
angle in the 110𝑡ℎ second of the motion equal to ´0.0032rad ≃ ´0.1833deg. The angular positions evolution in
each of the three axis is similar to the scenario 1, however in figure 5.12 we can see more oscillatory behaviour in
the first half of the simulated motion especially comparing the plots of the angular velocity 𝜔𝑥. When comparing
the angular velocity 𝜔𝑧 with the outcome of the scenario 1 in figure 5.3 it is clear that the oscillatory behaviour in
the velocity profile of the scenario 2 is much longer and is damped only at t = 100 s of the motion.
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Figure 5.12: Scenario 2 - Spacecraft base attitude and angular velocity in body frame.

Figure 5.13: Scenario 2 - Spacecraft arm joints angular position and angular rate in joint frame.
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In figure 5.13 the armmotion is presented, which is the evolution of an angular position of themanipulator joints.
Similarly to scenario 1, the motion of the first joint 𝑞1 is negligible as during the whole simulated maneuver the
maximum angular position is only ´0.004rad. The angular position of each joint during the motion has practically
the same profile as in scenario 1, with the main difference being slight oscillatory motion in the very beginning of
the maneuver. The largest change of the angular position is in the second joint 𝑞2, with the initial angular position
45deg and the final position ´45deg. The range of the angular velocity is the same as for the scenario 1, and the
highest amplitude of 9𝑞2 is equal to 0.002rad/sec. Despite the motion profile being so similar to scenario 1 with unit
weights, it is clearly seen in figure 5.16 that the tuned weights enabled to reach much better performance of the
end­effector position.

Next, the evolution of the control inputs for each degree of freedom is presented in figure 5.14. The control
input values are found by the solver as a solution of an optimization problem. The first plot presents the evolution
of the thrust force in each of the three directions, the second plot shows the evolution of the torques acting around
each of the main body axis and the third presents the value of the torque applied in each of the manipulator active
joints is shown. The profile of the control inputs is clearly similar to the scenario 1, with the main difference being
much higher amplitude of the torque 𝜏 applied on the second joint of the manipulator 𝑞2. It reaches the value of
12Nm in the very beginning of the motion, whereas the peak of the 𝜏2 in scenario 1 has value of 2.2Nm only. Each
plot of the applied actuation on the base in terms of force and torque settles down very smoothly after the first 40
seonds of simulated motion. We can see that the value of the force and torque applied on the s/c base remain in
a proximity of zero for the majority of the motion, whereas the highest values are reached only in the beginning
of motion.

Figure 5.14: Scenario 2 - Control inputs.

The most interesting result achieved as a consequence of the tuned weights is an improved tracking perfor­
mance of the reference end­effector position. The position of the manipulator end­effector during the simulated
motion is presented in figure 5.15 below. The evolution of each coordinate is very similar to the scenario 1, how­
ever the main difference is seen in the second part of the motion in the value of the 𝐸𝐸𝑥. The value of the x
coordinate is growing slightly quicker, compared to scenario 1, and most importantly achieves the final required
position very well. In the plot, the x­ and y­ coordinates of the reference final position of the end­effector are marked
with circles. The improvement of reference position tracking performance can be better seen in figure 5.16 which
shows the end­effector position error defined as in equation 5.1. The magnitude of the error for every axis is much
smaller compared to scenario 1: the highest amplitude of an x­coordinate error is equal to ´11.5cm and and of
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an z­coordinate error is equal to 3.7cm. These values for the scenario 1 were equal to ´45cm and 15cm respec­
tively. Not only is the decrease of the error amplitude an improvement but more importantly, the final position is
achieved with a very small error allowing a safe capture of the target point. The final end­effector position error
in x­coordinate is equal to 0.37cm and in z­coordinate 0.008cm which is considered very low for this time of the
precision maneuver.
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Figure 5.15: Scenario 2 - End-effector position coordinates in LVLH frame.
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Figure 5.16: Scenario 2 - End-effector position error.
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In figure 5.17, the contribution of each term from the cost function to the overall value of the function is pre­
sented in plots. With the increased weights, the absolute value of the FoV term in the initial condition is much
higher than for the unit weight in scenario 1. The optimization solver tries to decrease this value as quick as pos­
sible, which is the cause of the initial oscillations in the motion seen in figures 5.11 and 5.12. In the second part of
the motion, the highest value is of the EE cost due to the peak of the EEx position error. In figure 5.18 the overall
value of the cost function is presented.
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Figure 5.17: Scenario 2 - Cost function terms.
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Figure 5.18: Scenario 2 - Cost function overall.
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Last but not least, the final position can be visualized with the use of the aforementioned 3D model. Similarl
to figure 5.10, the final position of the servicer spacecraft with respect to the target is presented below in figure
5.19. When comparing to the visualization of scenario 1, it is very clear that the target point is captured in case of
scenario 2.

Figure 5.19: Scenario 2 - Final capture position from the simulation viewer.
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5.1.3. Scenario 3 ­ Comparison of reference trajectories output

The performance of the controller and the achieved results depend not only on the tuned weights, but also on the
characteristics of the reference trajectory supplied to the controller. A proper design and definition of the reference
function is a task of the guidance block. It is usually defined as an optimization problem updated online based on
the current measurements from the navigation. In this work however, the only focus is on the controller, therefore
the reference trajectory passed to the control system is a synthetic data generated offline ­ before running the
simulation with MPC controller in the loop. The reference trajectory in this work was generated in two distinct
ways ­ performing interpolation with a linear function or polynomial function of the 5𝑡ℎ degree, as explained in the
section 4.5. The difference between the outcome of the simulation run for these two reference trajectories with
the input data of the scenario 3 (see table 5.1) are presented in this section.

Figure 5.20 presents the evolution of the motion of the servicer spacecraft base. The data related to the
simulation run with the reference trajectory from the linear interpolation is shown in the purple plot, and the data
from the interpolation with polynomial function is shown in the dark blue plot. In both simulations the weights have
the same values and all the other parameters are equal. The difference between the two is very apparent. The
linear velocity 𝑉𝑥 of the ’poly5 traj’ data reaches much higher amplitude and then decreases until it achieves zero
value by the end of the simulation. It is clear that by the end of the maneuver the base fully decelerated in x
direction. The 𝑉𝑥 of the ’linear traj’ keeps on growing during all the simulated maneuver. It doesn’t reach as high
amplitude, but by the end of the motion it doesn’t change its growing behaviour and the simulation ends with
the 𝑉𝑥 “ 3cm/s. It is a very high value and the failure to decrease the relative velocity of the servicer s/c base
could potentially lead to collision. The evolution of 𝑉𝑦 for both versions has small values in submiliter range and
oscillatory behaviour with higher amplitude for the ’poly5 traj’. The linear velocity of the base in z direction 𝑉𝑧 has
similar evolution as the velocity along x direction. The ’poly5 traj’ 𝑉𝑧 reaches the highest amplitude of 2cm/s and
then decreases until it achieves zero value by the end of motion. Clearly highest point of the ’linear traj’ output
data is two times smaller and it has a value of 1cm/s. The velocity settles around this value with a slight decrease
by the end of the motion finishing the maneuver with the value of 0.95cm/s.

Comparing the plots for these two reference trajectories it is already clear that the main advantage of the
trajectory generated with the polynomial function is that it forces the solver to find such solution of the optimization
problem that by the end of the maneuver the motion is decelerated. It is very important from the point of view of
the mission safety.

Figure 5.20: Scenario 3 - Spacecraft base position and linear velocity in LVLH frame.
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Figure 5.21: Scenario 3 - Spacecraft base attitude and angular velocity in body frame.

In figure 5.21 the angular motion of the s/c base is shown. Clearly the ’poly5 traj’ data of the angular velocity
in all three directions has more oscillatory characteristics with the largest amplitude differences in motion around
x and z axes. The higher peaks compared to ’linear traj’ however are not worsening the overall performance and
stability as they still operate in very small range ­ the highest angular position peak of the ’poly5 traj’ is for the
yaw angle and is hardly equal to 0.005rad ≃ 0.29deg. For both types of trajectory data, the pitch angle (y axis)
achieves the highest values compared to x and z axes with the final angular position of about 0.3rad ≃ 17.1deg.

Next, the motion of every active joint of the spacecraft robotic arm is shown in figure 5.22 below. The difference
between the ’poly5 traj’ and ’linear traj’ data is very clear. The angular motion of the first joint 𝑞1 is very small and
remains in the subdegree range, with higher angular position amplitude for ’poly5 traj’ simulation. The second joint
𝑞2 angular position evolves from 45deg to about 50deg, the ’linear traj’ angular position data evolution is roughly
a linearly decreasing function while the ’poly5 traj’ has largest angular position change in the middle phase of the
simulatedmotion and in the initial and final phase it hasmore settled behaviour ­ for the first 35 seconds the position
oscillates about the initial value, and for the 65 ­ 90 seconds it has the constant value of ´1rad “ ´57.8deg. Last
but not least, the third joint 𝑞3 motion is clearly different for each of the generated reference trajectories. The 9𝑞3
of the ’linear traj’ has higher positive amplitude which makes the position increase faster compared to ’poly5 traj’.
Next, it settles down and the angular rate value is about ´0.01rad/s “ ´0.57deg/s beginning in 30𝑡ℎ second until
the end of the motion. This angular rate evolution results in constantly decreasing function of the angular position
from the 20𝑡ℎ second until the end of the motion. The ’poly5 traj’ data of the third joint has different behaviour. The
angular rate profile has a bit lower amplitude in the beginning, which makes the angular position increase more
slow. In the second half of the simulated motion it has negative value, while in the last 20 seconds it has positive
value. This behaviour results in an non­monotonic function, the angular position is decreasing in the interval of 35
to 65 seconds, and increasing in the interval of 65 to 90 seconds.

In figure 5.23 the plots of the end­effector position errors for evey coordinate in each simulation step is shown.
The error was computed with the equation 5.1. Despite the larger oscillations of the motion of the coordinates
respective to the ’poly5 traj’ data, the final EE position is such, that the reference tracking error is much smaller
than for the ’linear traj’ scenario. The x error is equal to 5.4mm and z error equal to ´2.8mm. The respective data
of the ’linear traj’ is x error equal to ´15.7mm and z error equal to 7.8mm.
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Figure 5.22: Scenario 3 - Spacecraft arm joints angular position and angular rate.
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Figure 5.23: Scenario 3 - End-effector position error.

From the presented figures it is very clear how different definition of the reference trajectory can influence
the overall behaviour of the dynamical system and the final reference position tracking performance. Due to the
decelerating behaviour by the end of the motion, and better reference tracking performance, the ’poly5 traj’ is
advantageous and for this reason it was implemented for the other simulated scenario shown in this report.
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5.2. Timing statistics
In order to analyse the designed MPC control system and simulation loop with the implementation of the quadratic
programming solver, the timing statistics are considered. It is important to ensure that the required time by the
solver, to perform the on­line computations and find the solution of an optimization problem, is lower that the
sampling time. The timing statistics are crucial when considering the applicability of the designed system in the real
space mission, in which the software is run on the onboard processor and it must be ensured that the optimization
output is fed to the AOCS and Robotic management system with the required frequency.

This work fully simulation­based, which was coded with high level language, matlab. It cannot be directly
implemented in real machine as it is, but there are few ways in which the designed controller could be implemented
as an embedded code with the hardware­in­the­loop. Automatic generation of C code from matlab code, or the
direct design of the simulation in C/C++ code are the two options. The low­level languages have another quality
­ the compilation time is faster than in high­level languages. For this reason, the analysis of the computation time
for the control system designed and tested in matlab will allow to reach valid conclusions, if the computation time
of the simulation run in matlab is acceptable, it can be concluded that the respective system run with C code will
have similar or better performance.

In table 5.2 the time it took to perform specific computations is shown for each presented scenario. The solver
time and yalmip time, is the extracted information that the solver returns in matlab. ’Solver time’ concerns the total
time it took the solver to find a solution of an optimization problem, therefore it is specifically the time required to
find this solution by quadprog solver. ’Yalmip time’ refers to time necessary to construct an optimization problem.
As explained in Section 4.9, the YALMIP toolbox provides interface to facilitate the modelling, the yalmip­specific
variable ’sdpvar’ is used and all the components of the MPC problem, constraints, objective function, upper and
lower bounds, are modelled. All the equations and mathematical formulas are defined before calling the solver,
however some time is needed for yalmip to understand the matlab­based problem description and translate it in
an understandable way for the optimization solver. Last, but not least, the value ’sim loop time’ refers to the total
computation time of the simulation loop with the MPC re­construction in every iteration, input of the control vector
into the plant model, dynamics propagation and successive linearization around an operating point (see fig. 4.4).

Table 5.2: Solver computation time.

Scenario 1 Scenario 2 Scenario 3 (linear) Scenario 3 (poly5)

solver time [sec] 73.737 75.044 26.810 41.431

yalmip time [min] 34.131 34.269 7.815 11.724

sim loop time [h] 10.000 9.947 2.195 3.357

Firstly, it must be underlined that the units of each of the three time values are different, solver time is in sec­
onds, yalmip time in minutes, and sim loop time in hours. Logically, the longest time is the ’sim loop time’, however
it was not expected to take matlab as long as it did to perform all the operations. The time compared to yalmip
time is almost 18 times longer than the respective yalmip time for the scenario 1, which means that this computa­
tion time difference was required by the linearization of the dynamics nonlinear algorithm, FoV algorithm and FK
algorithm, creation of the predictive model and the propagation of the dynamics with the use of the nonlinear plant
model. It is difficult to say which aspect required the most computational time, the reason could be matlab, any
limitations of the hardware system it is ran on (16 GB of RAM of the computer which was used for the simulations)
or the dynamics model is too heavy for this application. If more time would be available, all these aspects could
be investigated starting firstly with the transition from matlab to low­level language and then comparing the time
statistics.

When it comes to the solver time values, they are very well below the maximum allowable value for all the
scenarios. In scenario 1 the average solver time per simulation step is 0.0041 sec, in scenario 2 it is equal to
0.0042 sec, in scenario 3 (linear) it is 0.003 sec and scenario 3 (poly5) it is 0.0046 sec. It is clear that each of the
values is less than the assumed sampling time between the simulation steps which is equal to 𝑇𝑠 “ 0.01sec. The
respective average values of the ’yalmip time’ are by one magnitude larger than the acceptable maximum for the
scenario 1 and 2, 0.1138 sec for scenario 1 and 0.1142 sec for scenario 2. Scenario 3 ’yalmip time’ is shorter due
to the shorter simulated maneuver time, however when looked into the average yalmip time for every iteration it
is also lower ­ 0.0521 sec for the ’linear’ case and 0.0782 sec for the ’poly5’ case.

Moreover, the required number of solver iterations of every simulation step was looked at. If the optimization
is performed on board, it is expected that the solver is able to reach the solution within finite number of iterations.
In order to limit this number, the solver settings were set such that the maximum number of iterations is equal to
50. In figure 5.24 below, it is clear that the number of iterations solver took in every step was much smaller than
the given threshold.
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Figure 5.24: Solver iterations for simulated scenario 2.

In conclusion, it is very promising to see that the quadprog requires such little time to solve the optimization
problem for every analysed scenario. It re­assures that the definition of the objective function and constraints
is all­together well defined as a quadratic programming problem for being solved by the chosen solver. Another
interesting point to investigate could be to compare other modelling toolboxes such as CVXGEN or Forcespro,
they both support the quadprog solver solution, so the solver time should be rather expected to be similar however
maybe it could resuls in shorter time required for setting up the optimization problem.
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5.3. Communication with Ground
Last but not least, as it was explained in the introduction to the research (see Section 1) that in real on­orbit
servicing space mission clearly the ground segment plays an active role during the reach phase. Although the
maneuver is fully autonomous, the system still should provide collision avoidance maneuver (CAM) capability
and contingency modes in case of any hardware or software failure. This could be done with designing an FDIR
system ­ Fault, Detection, Identification and Recovery. These aspects are related to the development of on­board
software and monitoring of the system. During all the mission phases, the ground engineers are supervising
the mission progress. Firstly shortly after orbit insertion, LEOP phase takes places. During this phase operation
engineers monitor and control various satellite subsystems to ensure all the modules are activated correctly,
satellite appendages are fully deployed and orbit and attitude control maneuvers are tested. This is part of every
space mission, and similar activities are carried out when transitioning to another mission phase.

Specifically in the context of on­orbit servicing mission, when the servicing spacecraft is already in very close
proximity of another the collision risk is very high. This is the main reason why all the close proximity operations
must be carried out carefully and a continuous communication with the ground must be kept established. During
reach maneuver, the presence of reception antennas must be ensured such that the contact with the ground is
continuous during all the required time. Ground engineers should be able to up­link the data and command the
satellite to stop the maneuver and retract in any moment if such a situation would be required.

For this purpose, it is proposed to down­link the following information that could allow ground engineers to
have a good insight into what is going on during the reach maneuver and interrupt it in case it is needed.

• Value of the cost function, with specific values for each term. Knowing the values of the weights and scaling
factors and also the state vector from the sensors, the information about the error of each cost function term
can be derived.

• Information from the rotary joints encoders about the measured position change, the estimated relative
position of the chaser obtained by filtering the data from the visual sensors and the navigation sensors on
board.

• Diagnostic data from the on board computer, telemetry data as in a regular other phase of a space mission.
It allows to understand if not only the control system, but also all the other subsystems are working correctly
during this phase.

• Low­level data from the optimization solver, such as e.g. the number of solver iterations required to get the
solution.

Based on this data, and the position, attitude coming from the sensors it is possible to understand from ground
what is going on with the system. It should be possible for ground engineers to activate these modes from ground:

• Collision Avoidance Maneuver,
• Retract from the reach maneuver,
• Update the reference trajectory and provide it to the controller,
• Communicate with other s/c subsystems if needed,

The communication link with ground segment could potentially be tested in a DLR facility, GSOC. Due to covid
and limitations of the physical presence in the facility, this phase of the research project was discarded.
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5.4. Simulation results and analysis
The designed control system was tested and run for many different scenarios. In this report only few of them were
presented, which best serve the purpose of illustrating the tuning procedure and the final performance achieved.
As is clearly seen in the plots showing the results of scenario 1, the achieved performance was not satisfactory
and much better performance was achieved thanks to tuning process.

The final position of end­effector reached during the simulation of the scenario 2 data has very small error with
respect to the reference position of less than 0.5 cm, which is a very good result. Nevertheless, it can be seen that
the overall performance of the end­effector position tracking during the simulation could still be improved as e.g. in
the figure 5.16. In this figure we can see that the largest error is achieved around t = 105 s and it is equal to ´11.5
cm. It coincides with the highest amplitude of the 𝑉𝑧 linear velocity of the s/c base and also the local minimum
of the angular velocity of the third joint 9𝑞3. Clearly, the negative error indicates, that the current EE position is
”behind” the reference position, therefore the overall motion of the end effector in x direction was slower than the
synthetic reference velocity needed to precisely achieve the reference position. It would be interesting to further
analyse this behaviour to understand if there is any correlation between the weight on the energy term from cost
function applied on the velocity of the q3 and the EEx position error.

In order to compare the performance of different simulations, it is useful to define the erorrs indicating the
accumulated reference tracking error throughout all the simulation. For this reason, the performance metrics are
defined which are presented in table 5.3 below. There are two values computed ­ MAE, mean absolute error and
RMSE, root mean squared error, which allow to better analyze the overall tracking performance of the controller
during all the simulation. These values are computed using the error of the end­effector position with respect to
the reference position of every 𝑘𝑡ℎ step of the simulation. The errors are computed separately for each of the
three axes.

Table 5.3: End Effector position error metrics.

Scenario 1 Scenario 2 Scenario 3 (linear) Scenario 3 (poly5)

RMSE𝑥r𝑚s 0.265422 0.062823 0.014377 0.020479

RMSE𝑦r𝑚s 0.000173 0.000185 0.000262 0.000487

RMSE𝑧r𝑚s 0.089285 0.023897 0.010753 0.014062

MAE𝑥r𝑚s 0.211229 0.047481 0.013583 0.016279

MAE𝑦r𝑚s 0.000139 0.000008 0.000144 0.000343

MAE𝑧r𝑚s 0.077181 0.018744 0.006138 0.008733

Analysis of these metrics make it easier to formulate final conclusions. It is clear now, that not only the final
end­effector position error is much better in scenario 2 compare to scenario 1, but also each of the two metrics for
every axis have lower values for scenario 2. Especially the difference is seen when comparing the RMSE𝑥 and
MAE𝑥 values. It is clear that the tuning allowed to drastically improve the tracking performance.

The comparison between scenario 3 for the reference trajectory generated with linear function and polynomial
function was done in subsection 5.1.3, where it was clearly shown that the advantage of the polynomialy obtained
reference trajectory is the decelerating capability by the end of the motion. However, from the table 5.3 above
we can see that the reference tracking performance metrics are slightly worse compared to linearly obtained
reference trajectory. The difference is is very small and, what is more, the end­effector position reached in the end
of the simulation is very precise for both scenarios. For this case, the difference is very small and it is definitely
advisable to already account for the required deceleration of the maneuver in the reference trajectory. It is clear
now, that it comes with a certain cost of decreasing the reference tracking performance during all the simulated
motion, however the achieved performance is still within the acceptable limits.

The results of the three presented scenarios can be analysed with respect to the performance requirements
from the table 2.2 and table 2.1. In figure 5.11 we can see that the velocity is in the range of the values presented
in the tables. Only 𝑉𝑥 is exceeding the limit in the second half of the maneuver at t = 80­160 s. The angular
rate of the spacecraft base during the maneuver is within limits for all three directions with exception of the 𝜔𝑦
in the first 10 seconds of the motion. In figure 5.12, in the plot ”S/C base angular velocity 𝜔𝑦” it is seen that
in the very beginning of the maneuver there is some oscillatory motion and the highest peak is achieved at t =
3 s, with the value 𝜔𝑦 “ 23 × 10´3rad/s. The value of the angular rate in this time step is exceeding the limit
0.023rad/s “ 1.15deg/s ą 0.5deg/s however the peak quickly decreases and the value settles down within the
range ±0.3deg/s which is within the considered performance requirements. Regarding the tracking precision,
the error of the end­effector can be considered. The performance criteria from the table 2.2 limit the allowable
position error to 0.05m. The end­effector position error is shown in figure 5.16, it is clear that the x­coordinate
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and z­coordinate have the highest contribution to the overall position error. This figure shows the position error
in every time step with respect to the value from the reference trajectory look­up table. The error of x­coordinate
reaches two maxima, at t = 5 s, it is equal to 𝑒𝑟𝑟𝑥 “ 0.055m and at t = 105 s, it is equal to 𝑒𝑟𝑟𝑥 “ ´0.12m. The
error of z­coordinate reaches two maxima, at t = 8 s, it is equal to 𝑒𝑟𝑟𝑧 “ ´0.071m and at t = 125 s, it is equal to
𝑒𝑟𝑟𝑧 “ 0.037m. Clearly these values are exceeding the limits, nevertheless these two peaks occur more than a
minute before the end of the maneuver and the final position accuracy is very good. In the end of the maneuver
the respective errors are equal to 𝑒𝑟𝑟𝑥 “ 0.005m and 𝑒𝑟𝑟𝑦 ≈ 0m only.

Moreover, according to the table 5.3 and presented performancemetrics, it is clear that themean absolute error
(MAE) for the scenario 2 is kept within the required limits. The highest MAE is for the x axis: 𝑀𝐴𝐸𝑥 “ 0.0475m
and is only slightly below the accepted error value. With these values it can be concluded that the developed
architecture in this tested scenario meets the control performance requirements in major part of the maneuver,
however not entirely. The final position of end­effector is achieved with a very good accuracy.





6
Conclusions and recommendations for future
Final conclusions form the work are presented in this Chapter based on the methodology and results described
in the report. The scope of the performed work was limited due to the thesis framework and its requirements.
Therefore the critical overview of the achieved objectives, limitations and possible extensions of the project is
presented. It is concluded that themajor research objective was achieved with this work, and the recommendations
for future are presented.

Firstly in Section 6.1, the Research Questions presented in Chapter 1 are analysed and answered based on
the performed work and the results. The final conclusions are formulated based on the results of simulations
presented in Chapter 5, experience with modelling of the system dynamics and definition of the control problem,
and the throughout understanding of the available optimization andmodelling software as well as the current state­
of­the­art of the relevant literature. Finally in Section 6.2 the recommendations for the future work and potential
extensions of the project are presented, which include majorly an improvement of the modelling, full GNC loop
integration and testing in hardware facility.

6.1. Research conclusions
In order to formulate the conclusions, the research questions are repeated in this section with the critical overview
of the achieved results and how they are linked to the objectives. The central research question steering the
direction of the project was formulated as:

How can the performance of the reach phase of an on­orbit servicing mission be improved by
implementing a combined controller with model predictive architecture?

The relevant current status of the worldwide research addressing the design of the optimal control problem of
the robotic spacecraft was analyzed during the literature study period and it was concluded that the focus of the
available work was mainly on the free­flying system (when the s/c base is not actuated) or on the formulation of
guidance problem with MPC architecture, not control problem. Therefore, the research begun with the assumption
that this work could potentially contribute to the current state of the knowledge related to the MPC control problem
of the robotic spacecraft during proximity operations with the active actuation of the satellite base. In order to
understand how the MPC control system shall be designed, the workflow was broken down into sub­goals to be
achieved. Subsequent list of follow­up sub­goals was proposed that allowed to break down the research problem
into the list of objectives to be achieved to finally lead to the main research question. The accomplishment of all
sub­goals implies that the main goal is met.

In order to provide the control methodology to perform on­orbit servicing maneuver, first, the system of interest
(to be controlled) must be properly defined. In case of the application of the model predictive control algorithm,
it concerns the definition of both, the dynamics of the plant and of the predictive model. Both of them are not
necessarily equivalent, which is also the case of this research project ­ the plant model is a nonlinear continuous
dynamics system, whereas the implemented prediction model is a linearized and discretized system. With respect
to this task, the first sub­goal was formulated as:

1: ”What model of kinematics and dynamics of the system composed of the arm and of the spacecraft shall be
developed and implemented in the controller design?”

The answer to this question is not trivial. First of all, proper description of the multi­body dynamics system in
general is a complicated task. Moreover when the body is in the orbital motion with respect to another satellite body,
the dynamics description becomes complicated. The approach taken in this project included certain simplifications.

67
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First of all, the question of how to approach the modelling of the free­flying system had to be answered. The
control system was developed in Matlab (due to prior personal experience), therefore the plant dynamics definition
had to be modelled such that it is compatible with the control loop presumed to be defined in matlab. In the
modelling phase many approaches were targeted before the final model was achieved. The model could be
either designed in Simulink or scripted in Matlab. In order to maintain clarity of the design process, firstly the
simplifed two dimensional model was defined. It consisted of the point mass with 2­link manipulator. The system’s
dynamics were described directly in matlab script with equations of motion derived from the Langrangian of the
system. The equations of motion derived in this way take a very complicated form with every additional degree of
freedom, which also makes it very prone to human error and further increases the challenge of proper validation
and verification. For this reason, the available toolboxes that could enablemodelling of the orbital free­flying robotic
system were looked at. The SpaceDyn was chosen, which is a free available toolbox consisting of the matlab
scripts published by Japanese research group from Tohoku University [69]. The advantages of using the toolbox
are: a very straightforward definition of the multibody system which is the baseline of the dynamics definition, clear
unproblematic integration with matlab and optimization solvers due to its easy structure consisting purely of matlab
scripts and . The detailed description of the toolbox features were analysed, as described in Section 3.2, and it
was concluded that SpaceDyn capabilities shall meet the requirements of the project. Thanks to these features
the toolbox eases the modelling process ­ there is no need to re­invent the wheel if the part of the work can be
based on the available toolboxes. As the project boundaries were clearly defined, and the designed controller is to
be applied specifically for the autonomous control of the robotic s/c during reach phase, some simplifications were
applied. The far rendezvous approach phase was not considered, and all the reach phase is performed in a very
close proximity of the target spacecraft. It was assumed that both chaser and target spacecraft in the beginning
of the phase are moving in the same orbit with only a very small difference of true anomaly. The main simplifying
assumption was to consider the target body reference frame as an inertial frame in which the relative motion of
the chaser spacecraft was defined. This assumption can be made for the very short maneuver only, because
otherwise the orbital dynamics must be considered. In order to verify the definition of the dynamics and kinematic
(forward and inverse) the multibody system consisting of the main base and two links with revolute joints were
firstly defined and tested. Next, the model was extended with third link, and again validated. The application of
SpaceDyn toolbox in the modelling process in general is very clear, as all the scripts are well defined and it is very
straightforward to trace back dependencies of the functions and variables.

Another assumption applied during the modelling followed from the design choice that the combined control
system, subject of this research work, will operate on high level only. It means that the objective of the combined
control system is to perform control allocation within all the available actuators ­ thrusters, reaction wheels and
joint actuators without specifying which thruster of all 24 available is actuated and what precisely is the input (value
of the voltage or current signal). The force acting on the spacecraft base was assumed to be applied on the c.o.m.
of this body link, the same applied for the torques inducing rotational motion of the base. This clear definition of
the system boundaries determines the requirements of the level of the detail of the dynamics description of the
plant model. Given the fact that the designed controller would operate on high level only, there was no need to
consider dynamics of the actuators itself. In case of the full GNC design and detailed controller design, the lower
level system solving optimization problem concerning thrusters allocation and reaction wheels allocation could be
designed. Moreover, the multibody system considered in the final simulations consisted of 3 manipulator links. In
further phase of the project it would be interesting to see how the system consisting of more active manipulator
joints, and hence more links, is behaving. Last but not least, it is important to mention that the considered reach
phase does not include the final hard capture itself. For this reason, the contact dynamics were not considered.

Next, in order to bring the designed control system as close to the real space mission conditions as possible,
the constraints of the system had to be accounted for. In order to identify them, the second sub­goal was formu­
lated as:

2: ”What constraints, relevant for the reach phase, shall be taken into account during the design of the controller?”

These constraints are described in Section 2 in terms of spacecraft architecture constraints, operational mis­
sion constraints, environment and the reach/capture task control limitations. Then the constraints related to the
s/c architecture itself, such as upper and lower bounds on the control signals were formulated mathematically in
order to apply them in the MPC controller. They were described in Section 4.7. The most important constraint is
the upper and lower boundary on the allowable control input values. Moreover, due to geometry of the plant, and
especially the robotic arm, it must be ensured that the manipulator motion will never be such that a self­collision
will occur. In other words, we do not want to crash with the target spacecraft and also must ensure that there will
be no collision between bodies of the multi­body dynamic system. For this reason the constraints limiting the al­
lowable joint angular positions were introduced, such that in case the joint position have either positive or negative
extreme value from the possible boundary range, they will neither collide one with another nor with the s/c base.

Once the plant dynamics and the system constraints were well understood, the first approaches towards the
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MPC controller design weremade. The general design of the controller and choice of themost suitable architecture
were addressed within the third sub­goals formulated as the following question: ”Which type of the Model Predic­
tive Control (MPC) strategy shall be implemented?”. This question was further broken down into sub­questions
to facilitate the direction of the research and ensure all the most important aspects of the controller design are
considered. The questions related to this sub­goal are repeated below and each of them is commented based on
the presented research work.

3 (a): ”Which type of the MPC is the best candidate to account for different frequencies, performance specifica­
tions, admissible uncertainties of the both subsystems (AOCS and the robotic manipulator)?”

Based on the literature study of the characteristics of on­orbit servicing missions and requirements, the critical
overview of the possible MPC types was made in order to identify their advantages and disadvantages with
respect to the specified application of combined controller. The MPC choice trade­off table presented in figure 4.1
identified the major types of MPC considered for the project. Firstly, different types of dynamics prediction model
were looked at, there are three different possible definitions LTI, LTV or NL. The nonlinear dynamics (NL) definition
uses the most accurate representation of the plant model, the predictions should be the most accurate compared
to linearized description. On the other hand, it comes with a lot of challenges when it comes to the MPC design, its
validation and overall the system could result too complex. Moreover, the use of NL dynamics is directly affecting
the possible type of an optimization problem, such that usually with NL dynamics a non­convex optimization
problem is achieved which is not very desirable. Non­convex problem can find solution in local minima instead of
global, and can have higher resulting computational complexity. In general, always convex optimization problems
are much more desirable, for this reason linear models LTI and LTV were also considered. The LTI is the easiest
most handy definition, it simplifies the description of the prediction model and usually leads to convex optimization
problem. However there are certain limitations coming from it, such that if only one model is used during all
the reach phase, the accuracy of the prediction model with respect to the real system is decreasing because the
equations of motion of free­flying space robots are dependent on the configuration, s/c orientation and manipulator
joint angles, in current steps. This poses a very big limitation on the possible achievable performance of the system.
To counteract it, another option is to update a linear model by performing linearization of the nonlinear dynamics
around an operating point of the current position. Such approach effectively results in a linear time­varying model
(LTV), therefore the advantages of the linear prediction model with respect to the convex optimization problem
type are kept, whereas the model accuracy is much better compared to LTI.

When designing the simulation with controller in the loop, if we want to account for different operating frequen­
cies of the AOCS and robotic system, it can be done by setting different frequency of the update of the current
position of the manipulator joints, and of the s/c base attitude to the block performing linearization of the dynamics.
The nominal design of the control in the loop in this project considers sampling time equal to 0.01 sec and is equal
for both subsystems. It was assumed that we have the perfect knowledge of the state vector in every simulation
step, and the possible disturbances and signal noise that lead to inaccuracies of the model are somehow ac­
counted for when doing linearization procedure.

3 (b): ”Why is this architecture the best candidate for potential implementation?”

During the trade­off of the MPC type, factors taken into account were: simplicity/complexity, model fidelity,
optimization aspects, applicability to RICADOS free­flying system and the coverage in literature, see section 4.1.
For reasons explained in that section and also in the paragraph above, it was concluded that the MPC problem
shall have linear prediction dynamics updated in every simulation step based on the current state vector. It results
in a linear time­varying model, which allows to keep a good level of model fidelity and description accuracy despite
a time­varying configuration of the system. Moreover, the safety concerns related to close proximity operations
rather require the design of a control system such that its behaviour is possible to be verified, validated, and the
proposed control signal is a unique solution. For these reasons it is important to construct a convex optimization
problem. This is achieved in the easiest way by constructing a quadratic programming problem.

3 (c): ”Shall the optimization of the control effort be performed on­line or offline, what are the advantages and
disadvantages of each of them?”

This question was addressed following the trade­off, as presented in Section 4.1. We can differentiate between
the explicit and implicit MPC definition. The first concerns the division of the optimization problem into critical re­
gions, construction of sub­domains and solution of an optimization problem offline, whereas the latter concerns
online solution of an optimization problem. If the computing power is very limited, the explicit MPC is very advan­
tageous for some systems as it allows to solve optimization problem a priori, and during the controlled motion only
the reference input signal values are read form the look­up table based on the feedback law. However, for very
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complex dynamics of free­flying space robot, the proper division into sub­domains while keeping required level
of model accuracy is very difficult, the complexity of this task increases for higher dimensionality of the problem.
Moreover, the larger number of the critical regions, the higher is memory requirement. Due to the fact that there
are many solvers available allowing for the real­time computations and due to the complexity related to proper
design of explicit MPC, it was concluded that much more interesting option is an implicit MPC.

3 (d): ”How can the MPC architecture be implemented?”

When the conclusions were reached about the type of MPC problem, the implementation method had to be
identified. The overall simulation with control in the loop is graphically presented in figure 4.4. As mentioned earlier,
the work presented is fully based on the matlab scripts. The MPC architecture was designed as an NMPC problem
with successive linerization. In this way the linear dynamics model is constructed in every time step based upon
the received feedback information of the current state of the plant. The Jacobian linearization procedure was
applied, as explained in section 4.3. In order to construct a quadratic programming problem, the cost function
terms were defined as quadratic terms and constraints as linear functions, see Section 4.6 . The construction of
the optimization problem was formulated with the use of a modelling engine YALMIP. It is a matlab toolbox for rapid
prototyping of optimization problems making the optimization modelling much easier, as explained in Section 4.9.

In this stage, the plant dynamics were defined, the MPC design choices were throughoutly analysed and fi­
nally all the aspects were combined together in order to provide a closed­loop system with the controller and
plant model and simulate the OOS reach maneuver. This objective is entailed in the fourth research sub­goal
defined as follows: ”How should the combined controller of the system be designed with the chosen MPC archi­
tecture?”. It refers not only to MPC design choices but also to the proper integration of the controller with the
simulated dynamics, definition of the reference data and performance assessment necessary for the validation
of the system applicability for this scenario. In order to identify these aspects, the fourth sub­goal is broken down
into sub­questions commented below.

4 (a) ”What simplifications shall be taken?”

Some of the assumptions had already been taken when considering the best MPC type and its further imple­
mentation methods. Moreover, the dynamics modelling process was also based on assumptions. When it comes
to the general approach towards the integrated simulation with controller­in­the­loop, other aspects had to be
simplified. Firstly, the input data constructed before running the simulation (graphically presented in figure 4.4)
includes parameters that were assumed to be constant during all the simulation motion. They include the fol­
lowing: the weights and scaling factors are pre­defined and kept constant, the time parameters are also defined
during data initialization phase and they include the total maneuver time, constant sampling time equal, constant
frequency of the state vector feedback updates. If the project was to be continued, these aspects could potentially
be changed such that e.g. the total maneuver time is not pre­defined but depends on the achieved accuracy of the
end­effector position, if the final position is not close enough to the reference position more iterations of actuating
the control system shall be possible. Also, if the project would have longer timeline, the simulations could be run
with different sampling times. Clearly, the lower the sampling time, the higher the number of iterations required
for the same total maneuver time. It could significantly affect the computation time though.

Next, in order to simulate the maneuver with the designed controller in the loop, the reference trajectory of an
end effector must be available. The main objective of the MPC cost function is to follow the reference trajectory
which is normally an output from the guidance block. As the full GNC subsystem design was not within the scope
of this project, but control system only, the generation of the reference trajectory was simplified ­ based on the
known initial position of end­effector and desired final position, a simple interpolation function between two points
was applied in order to obtain look­up table with cartesian coordinates of EE position for every time sample of
the simulation, see Section 4.5. It is clear that with this approach, the reference trajectory is fully defined offline. It
has significant limitations, as there is no update capability of the reference trajectory based on the real position. If
the full GNC system was simulated, there should be a feedback loop not only between the navigation and control
block, but also guidance which would allow for the real­time updates of the trajectory based on the knowledge
of the position and attitude from the navigation system. Also, the definition of the trajectory in GNC systems is
usually defined as an optimization problem, and not a simple interpolation function.

Last but not least, it is assumed that the output of the propagated dynamics which is a state vector, is directly
supplied to the NMPC successive linearization block in every simulation step. It is based on the assumption that
we have the perfect knowledge of the plant dynamics and the perfect sensors, which in reality is very rarely the
case. However, this assumption was made here and no additional disturbances are added explicitly, because
already the linearization procedure introduces some mismatch between the plant model and prediction model
which brings the controller closer to real conditions.
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4 (b) ”How can the implementation be verified?”

Firstly, all the components of the MPC optimal control problem were verified: both the dynamics definition
and the quadratic optimization problem. Some of the quadratic terms contain nonlinear expressions which were
linearized ­ it was the case of the end­effector reference position term and field­of­view term. The validation of
the Jacobian linearization procedure was performed and the results of the validation were presented in Appendix
B and C. The controller and feedback loop design was an iterative process. Whenever a new functionality was
added or some numerical values were changed, the simple scenarios were run to check if the overall system still
behaves in an expected way after the introduction of a new feature. To give an example, when reference trajectory
term within the objective function was defined firstly it was constructed in joint space. The joint reference position
for every active joint was supplied to the controller. In this way the reference tracking capability of the system was
validated. The reference trajectory in joint space is very straightforward to follow, moreover it does not allow the
solver to choose the best manipulator configuration itself to meet the required position of end­effector. In order
to give more freedom to the solver, in next step the reference tracking task was formulated in task space. The
forward kinematics algorithm which maps the positions in joint space (as in the state vector) to cartesian positions
of EE in task space was linearized. It was verified, running both the linearized and original non­linear algorithm
for the same input data.

Next, upon running first simulations, it was observed how change of the cost function value is steering the
behaviour of the system in order to validate that the objective function was defined correctly and it is doing what it
is expected to. The output data from the solver such as the number of solver iterations, the value of cost function
and the solver time were looked at and helped to assess if this definition of the MPC could potentially be applied
in real­time systems (see Section 5.2). Last but not least, the motion was visualized in real time by injecting the
updated state vectors into the 3D visualisation of RICADOS system, which is a very convenient way to understand
behaviour of the simulated motion next to data plots analysis.

4 (c) ”What case studies shall be tested?”

There was a variety of case scenarios run during the design process, as explained in the paragraph above. It
was the most time­consuming part of the research work ­ to critically look at the designed system, gradually add
functionalities and test the implemented changes. Since these simulations contributed to verification and validation
of design choices but not to the final evaluation of the performance of the designed control system, they were not
included in the final report.

The presented results of the case studies in Chapter 5 aimed to show:

• how the final performance depends on the right definition and tuning of the optimal control problem,
• what is the reference tracking error to understand if it stays within acceptable limits for reach phase of OOS
mission or not,

• whether the controller is able to compensate the initial attitude offset of the chaser s/c base,
• whether the evolution of the proposed inputs values trajectories is smooth and allows getting satisfactory
results within the limits.

• to what extent the controller performance depends on the quality of the reference trajectory (normally out­
come of the guidance block)

Scenarios described in this report concern three cases. Firstly the unit weights were applied for each term from
the objective function to show the performance of the nominal design before the tuning procedure. Next, the
multi­iterative tuning process was carried out in order to find the numerical values of the weights to be used that
allow to get better performance. Last but not least, two different methods to get a synthetic reference trajectory
were applied, both of them are very simplified approaches. As the proper design of the guidance capability is
yet another vast research topic, the supplied reference trajectory of the end­effector was computed as a point­to­
point trajectory from the initial position of end­effector to the final grasping point using two different interpolation
functions. The goal was to see to what extent the overall performance of the controller depends on the quality of
the reference trajectory data.

In all these scenarios the initial conditions were the same, the initial attitude pitch angle offset was considered
so as to see if the controller is able to compensate it during the simulated maneuver. The relative position of the
chaser s/c and the target in the beginning of the simulated maneuver was chosen to be 4.5m away, such that
it closely resembles the initial conditions for the beginning of the reach maneuver in a real On­Orbit Servicing
mission.

The results presented in Chapter 5 show that indeed the performance of the controller is vastly dependent on
the values of weights and hence tuning procedure. The proposed definition of an optimal control problem is very
sensitive to these numerics, and therefore also not very robust for the much different initial conditions. With every
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meaningful change of the initial state vector, or change of the upper and lower boundaries of the allowable control
inputs, the tuning procedures must be repeated. It is not strictly an indicator that the proposed control system
is not applicable for OOS mission. Quite opposite, if the testing campaign would be further continued, it would
be a good idea to identify the subsets of all possible initial conditions and the respective values of the weights.
Moreover, in a real mission, while the chaser spacecraft is in the hold point and it is in stationary position relative
to the target, the communication with the ground can occur for as much time as needed. The only constraint is
the orbital position due to the required sun illumination for performing maneuver. In such a way, the exact position
of the chaser is known thanks to the sensors data and the weights can be tuned on the ground by engineers and
up­linked to the satellite on­board computer. This aspect is elaborated on in the next research sub­question.

All in all, the chosen case studies showed that the designed control system, if tuned properly can give a very
good tracking performance with the end­effector final position error not higher than 4 mm.

4 (d) ”How the communication interface with ground can be accounted for?”

The proposal of the way to do it was described in Section 5.3. It concerns specifically the information about the
progress of the maneuver and solver low­level data that could be down­linked to the ground in order to provide
information in real­time about the situation to operation engineers. Unfortunately due to a limited time and also
limited access to facilities the developed software was not implemented in the machine. Therefore, it could not be
tested in the end­2­end simulator, in the framework of RICADOS project where the link between ground segment
and space segment is artificially established such that the communication can be simulated (see figure 1.3).

4 (e) ”Does the selected method and developed architecture meet the control performance requirements?”

The design process of the control system for a robotic spacecraft was quite complex and involved many design
choices, assumptions and simplifications. The developed method was majorly based on the design choice to
construct the objective function as a quadratic program in order to ensure that there is only one optimal solution.
All the nonlinear algorithms were linearized for this reason. It would be interesting to compare the results with
another model predictive control architecture for the similar control system.

The results of the three presented scenarios were analysed with respect to the performance requirements from
the table 2.2 and table 2.1. In Section 5.4, the achieved results were compared with the values of position, velocity,
attitude and angular rate allowable errors from the literature. It is clear that overall, the developed architecture
meets the control performance requirements in major part of the maneuver, however not entirely. The final position
of end­effector is achieved with a very good accuracy, which is the most important criteria, only then the capture
maneuver can begin.

This research work would benefit form further extensions and running more simulations of different scenarios.
All in all, the presented work proved it has a very good potential for further improvements. The results achieved
are very satisfactory as for the current development status.
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6.2. Further recommendations
The technology development of Guidance, Navigation & Control system capabilities tailored for the On­Orbit Ser­
vicing and Active Debris Removal missions will certainly continue to grow. This research project aimed to make a
contribution to the technology for autonomous control of a robotic spacecraft mission in the close proximity phase.
Achieving the results presented herein required a thorough understanding of the theoretical system based on
the literature review, many attempts at the iterative design process and appropriately tuning the weighting ma­
trices. Still, the presented work was based on simplifying assumptions and would require more detailed analysis
to achieve more accurate results. It would be interesting to continue this project and e.g. compare it with the
controller developed within COMRADE project where the 𝐻∞ architecture was implemented [31]. Also, the full
GNC loop could be developed such that the guidance capability is not as highly approximated as it was done in
this project. A proper feedback loop between all the three components could be established, such that during the
maneuver there is a possibility of updating a reference trajectory online if needed. First of all, a variety of case
scenarios should be further tested to identify if the proposed control system is performing well with much different
initial conditions, e.g. when the chaser initial position is not perfectly aligned with the x­axis of the target. Next,
the software integration in the OOS­SIM facility for the hardware­in­the­loop tests could provide a valuable infor­
mation of how the controller behaves in this simulated environment. Due to limited accessibility to these facilities
this phase of the work was not conducted.

In summary, the most interesting aspects for further development could include:

• Integration in RICADOS simulator, performing hardware­in­the­loop testing campaign and simulating the link
with ground segment.

• Improvement of the modelling ­ sloshing fuel, specific geometry of the base, sensors uncertainty. Also model
disturbances due to sensors noise, measurement uncertainties and changing mass of the system due to the
fuel consumption.

• Add more detailed control allocation feature, such that the force and torque acting on the base is defined for
each actuator instead of considering the generalized force/torque acting around the center of mass.

• Add contact dynamics formulation and consider capture maneuver. It could be required to design a second
controller for the hard capture and switch between them when the reach phase is finished and the hard
capture begins.

• Design a low level control, such that the manipulator joint dynamics are modelled and the specific current
signal to be applied to each joint is computed.

• Development of a complete GNC loop and integrating this predictive combined controller into it. Allowing
the online update of the reference trajectory and communication with ground.
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A
Model Predictive Control ­ theoretical

background
This chapter presents the overview of the control theory to be implemented in the project. The Model Predictive
Control (MPC) has been chosen as a potentially good candidate for the optimized solution of spacecraft robotic
manipulator control problem given its extensive use in other industries since 90’s, as well as emerging applications
in space industry. In the next section A.1 the motivation standing behind this choice is further outlined, with the
standard formulation of the MPC problem in section A.1.1 and introduction to optimization in MPC in section
A.1.2. The section A.2 presents different MPC structures: offset­free, hybrid and distributed, subsequently the
comparison of implicit and explicit control laws is given.

A.1. Introduction and Formulation
The main purpose of this section is to provide the theoretical background of model predictive control (MPC) that
was implemented in the project, which is an advanced control technique enabling finding an optimal control solution
to the problem while satisfying a given set of constraints. This control technique was chosen as a candidate to
investigate its possible application onto design of a combined controller in the frame of RICADOS project, to see
how can it be implemented and how effectively it deals with the system and control task.

The first ideas of this technique can be traced back to the 1960s with an interest in the field starting in 1980s
mainly in the process industries [75]. By the end of 90s, the MPC had already industrial applications mainly in the
field of refining, petrochemicals as well as first implementations in automotive industry e.g. active steering of a car.
The MPC technique proved to be effective in the above­mentioned contexts due to its numerous advantages ­ it
allows optimizing the process within given set of constraints simultaneously predicting the evolution of its dynamics
and penalizing the undesired behaviour. It is clear, that optimizing a production process while minimizing other
parameters such as e.g. cost, employees working time and buy­to­fly ratio can tremendously increase the profit
which is of high importance in majority of industries nowadays. The dynamics prediction with the active control
have significant role in automatic control and hence, MPC is frequently implemented in autonomous vehicle online
path planning. Moreover, there is an increasingly growing interest in aeronautics and aerospace sector with many
already existing applications such as e.g. navigation of UAVs, formation flying control, spacecraft attitude control or
wheel momentum damping by thrust orientation mechanism. Especially in the last decade, the interest into space
applications is growing such as e.g. planetary rovers or orbital guidance and control [35]. Review of existing MPC
solutions in space sector is not covered in this section, it was presented in the Chapter 1.2.2 along with the MPC
applications for the robotic manipulators.

MPC is a feedback control strategy, which exploits a plant model to predict its likely future evolution and to
compute the (an almost) best control input. It is an optimal control technique which enables minimization of the
cost function while meeting the required objective. The main distinct feature of MPC is constraint handling, which
allows finding a control solution while respecting the hard and soft constraints enforced by the system such as e.g.
the limited performance of the actuators, limited process time, obstacle avoidance and others. It can be considered
already reasonably mature technology given more than 20 years of research, the vast scientific literature providing
overview on implementation of different approaches both off­line design and real­time code, further presented in
the Section A.2. However, the efficiency of MPC is a function of accuracy of the dynamical model used, sometimes
there might be no model available, or it is highly approximated, which might produce inconsistencies between the
real dynamics of a plant and modelled ones. It must be also pointed, that finding solution to an optimization
problem demands high memory storage of the processor and computation time which is increasing along with the
complexity of the model and its optimization variables. Nowadays, it is of less concern as the optimization solvers
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are getting faster, nevertheless the on­line computation will always remain limited by the processing power of the
computer, which in many cases has very limited performance as in satellite on­board computer.

The underlying MPC concept is to choose the ”best” control action based on the prediction of the process future
evolution by using its dynamical model, which is depicted in Figure A.1. The model­based optimizer, which is in
essence an MPC controller, contains two main items inside ­ a prediction model and an optimization algorithm.
The mathematical formulation of an MPC problem is given in next Section A.1.1.

Figure A.1: Controller structure; derived from [35]

A.1.1. MPC Formulation
In this section, firstly the receding horizon policy is presented which is an underlying principle of the considered
control technique. Next, the general formulation of MPC problem is given, with definition of variables, their dimen­
sions and algorithm sequence, as well as the cost function.

Receding Horizon Policy
The main idea standing behind the receding horizon policy, is presented in the figure A.2, where 𝑁 is predic­
tion/control horizon length and 𝑘 is a current time step in a discrete model; 𝑘 is a nonnegative integer denoting the
sample number, which is related to time by 𝑡 “ 𝑘Δ𝑡 in which Δ𝑡 is the sampling time. The optimization algorithm
computes the possible control input sequences consisting of 𝑁 control commands, among all possible control se­
quences the optimal one is selected. The evolution of the output is predicted for the next 𝑁 steps, parametrically
on the initial condition and the optimal control sequence. At time step 𝑘 only the first control input of the com­
puted optimal command sequence is applied to the system, 𝑢˚p𝑘q. The remaining optimal inputs are discarded,
and a new optimal control problem is solved at time step 𝑘 ` 1. The same procedure is repeated, the initial state
is considered to be the state from the previous step 𝑘, the control horizon 𝑁 length remains unchanged, which
subsequently results in 𝑘`𝑁`1 predicted control inputs with respect to the previous step 𝑘. New measurements
are collected from the plant at each time step 𝑘, the receding horizon mechanism provides the controller with the
desired feedback characteristics.

In some variants prediction horizon length (or output horizon) and control horizon length (or input horizon) are
not equal, they are referred to 𝑁𝑝 and 𝑁𝑚 respectively. If the 𝑁𝑝 “ ∞ it is referred to as the infinite horizon problem,
and similarly, if 𝑁𝑝 is finite, it is a finite horizon problem [75].
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Figure A.2: Receding horizon policy; derived from [76]

The basic MPC law is described by the following algorithm:

1. Get the new state x(k)
2. Solve the optimization problem
3. Apply only 𝑢p𝑘q “ 𝑢p𝑘 ` 0|𝑘q

4. k= k+1. Go to (a).

The formulation of a discrete­time dynamical systems of an arbitrary MPC problem is shown below in the
essence. Discrete time models are usually favorable if the system of interest is sampled at discrete times. If the
sampling rate is chosen appropriately, the behaviour between the samples can be safely ignored and the model
describes exclusively the behaviour at the samples times. In further parts of the report, the formulations for discrete
time models are given, as they are the most convenient way of depicting the underlying principles commonly found
in the literature and textbooks.

State Space Form
In the research literature MPC is formulated mainly in the state space form [75]. The general state space form of
a discrete­time dynamical system is presented, in which 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑝 denote the state, control input,
and output respectively, 𝑥0 is the initial state and 𝑘 ∈ 𝕀≥0 is a time­step of a discrete system. ℝ𝑛 denotes the set
of real­valued 𝑛´vectors. The equations on the right, in A.1, are a compact notation to be further implemented in
the document and are commonly used by MPC designers.

𝑥p𝑘 ` 1q “ 𝑓p𝑥p𝑘q, 𝑢p𝑘qq 𝑥` “ 𝑓p𝑥, 𝑢q

𝑦p𝑘q “ ℎp𝑥p𝑘q, 𝑢p𝑘qq 𝑦 “ ℎp𝑥, 𝑢q

𝑥p0q “ 𝑥0 𝑥p0q “ 𝑥0
(A.1)

State Solution
𝑥p𝑘q is a state at time 𝑘, starting from initial state 𝑥0, subject to control sequence u𝑘, where 𝜙 is a state solution
function. It is noted that bold notation means a ”sequence” which will be frequently used in further parts of the
report.

𝑥p𝑘q “ 𝜙p𝑘; 𝑥0;u𝑘q (A.2)

Control Input Sequence
A control input sequence is a vector of the computed optimal control commands, the subscript 𝑘 is the sequence
length. Hence, to find the state solution 𝑥p𝑘q from equation A.2, one needs to apply all the sequence into the
formula.

u𝑘 “ p𝑢p0q, 𝑢p1q, ..., 𝑢p𝑘 ´ 1qq “

»

–

𝑢p0q

⋮
𝑢p𝑘 ´ 1q

fi

fl ∈ ℝ𝑚⋅𝑘 (A.3)
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Discrete­Time Linear Dynamical Systems
For a linear dynamical system, the state space form and state solution are formulated in the following way:

𝑥` “ 𝐴𝑥 ` 𝐵𝑢
𝑦 “ 𝐶𝑥 ` 𝐷𝑢 (A.4)

𝑥p𝑘q “ 𝐴𝑘𝑥0 ` Σ𝑘´1
𝑗“0𝐴𝑘´𝑗´1𝐵𝑢p𝑗q

“ 𝐴𝑘𝑥0 `
“

𝐴𝑘´1𝐵 … 𝐴𝐵 𝐵
‰

»

—

—

–

𝑢p0q

⋮
𝑢p𝑘 ´ 2q

𝑢p𝑘 ´ 1q

fi

ffi

ffi

fl

“ 𝐴𝑘𝑥0 ` 𝒞𝑘u𝑘 “ 𝜙p𝑘; 𝑥0;u𝑘q

(A.5)

where 𝒞𝑘 is a controllability matrix; the formulation A.5 for the linear system is called a prediction model of the
system.

Constraints
In order to consider the physical limitations of the control input and desired states or outputs for reasons of safety,
operability, time criticality and others, the contraints are imposed on the system. The constraints are the main
feature that distinguishes MPC from the standard linear quadratic (LQ) control. The below given dimensions will
be kept consistent in the report. For further background in constraints definition, the textbook [76] is referred to.
The control 𝑢 is subject to the constraint 𝑢 ∈ 𝕌 ⊆ ℝ𝑚, where 𝕌 is compact and contains the origin in its interior,
the state 𝑥 is subject to the constraint 𝑥 ∈ 𝕏 ⊆ ℝ𝑛, where 𝕏 is closed and contains the origin in its interior, and
output 𝑦 is subject to the constraint 𝑦 ∈ 𝕐 ⊆ ℝ𝑝. The constraints usually are included by linear inequalities as
follows:

𝐹𝑥p𝑘q ≤ 𝑒, ∀𝑘 ≥ 0 (A.6)

𝐸𝑢p𝑘q ≤ 𝑓, ∀𝑘 ≥ 0 (A.7)

where the matrix 𝐹 and 𝑒 represents the upper/lower boundaries on the state, and the matrix 𝐸 and 𝑓 the
boundaries on the input. If one wants to consider fairly general form for a linear system, the following state­input
constraint formulation is chosen:

𝐹𝑥p𝑘q ` 𝐸𝑢p𝑘q ≤ ℎ, ∀𝑘 ≥ 0 (A.8)

The described previously input and state constraints are considered a set of hard constraints, which cannot
be violated during a whole evolution of the system. In case the constraints in some cases do not necessarily need
to be satisfied by some feasible solutions, they can be softened with the introduction of a slack variable 𝜖p𝑘q. The
constraints are relaxed in the following way, here an example of a state constraint:

𝐹𝑥p𝑘q ≤ 𝑒 ` 𝜖p𝑘q ,where 𝜖p𝑘q ≥ 0 (A.9)

As is discussed further, one then formulates a stage­cost penalty that weights how much one ’cares’ about
the state 𝑥, the input 𝑦 and the violation of the hard state constraint, which is given by 𝜖. The benefit of this
reformulation is that the state constraint cannot cause an infeasibility in the control problem because it can be
relaxed by choosing 𝜖; larger values of 𝜖 may be undesirable as measured by the stage­cost function but they are
not infeasible.

Cost function
In every optimization step, an objective function is minimized within given constraints and dynamics of the plant in
order to find an optimal control sequence. The cost function 𝑉p⋅q, in its essence, consists of two terms ­ a stage­
cost function 𝑙p𝑥p𝑘q, 𝑢p𝑘qq and a terminal cost term 𝑉𝑓p𝑥p𝑁qq which penalizes all predicted states and required
inputs to achieve these states, and the final state respectively.

𝑉𝑁p𝑥0,u𝑁q “ Σ𝑁´1
𝑘“0 t𝑙p𝑥p𝑘q, 𝑢p𝑘qqu ` 𝑉𝑓p𝑥p𝑁qq (A.10)

where 𝑥p𝑘q is as defined in prediction model (eqn. A.5). One of the most common formulation of the cost
function is a quadratic cost function similar to the LQR control problem.

𝑉𝑁p𝑥0,u𝑁q “ Σ𝑁´1
𝑘“0 t

1
2𝑥p𝑘q𝑇𝑄𝑥p𝑘q `

1
2𝑢p𝑘q𝑇𝑅𝑢p𝑘qu `

1
2𝑥p𝑁q𝑇𝑃𝑓𝑥p𝑁q (A.11)
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in which the weighting matrices 𝑄, 𝑅 and 𝑃𝑓 are the tuning parameters. The large values of matrix 𝑄 reflect the
intent to drive the state to the origin quickly at the expense of large control action, large values of 𝑅 matrix relative
to 𝑄 penalize the control, which effectively reduces the control action and slows down the rate at which the state
approaches the origin. The choice of the appropriate tuning parameters in the controller is not always obvious,
this challenge is as well intrinsic to the LQR control tuning. In order to guarantee that the solution to the optimal
control problem exists and is unique certain assumptions are made: the 𝑄, 𝑃𝑓 and 𝑅 are real and symmetric; 𝑄
and 𝑃𝑓 are positive semidefinite and 𝑅 is positive definite. Very often the matrices 𝑄, 𝑃𝑓 and 𝑅 are chosen to be
diagonal. One of the frequent strategy is to define matrix 𝑃𝑓 from the Discrete Algebraic Riccati Equation (DARE)
for the infinite horizon control problem.

It must be kept in mind that not always the finite horizon optimality ensures stability of the system, unless the
horizon is sufficiently large. However, the infinite horizon LQR is always stabilizing.

Optimal Control Problem Formulation
Given all the above definitions, finally the general formulation of an optimal control problem is presented, for a
horizon length 𝑁 and an optimization variable u𝑁

ℙ𝑁p𝑥0, 𝑡q ∶

$

’

’

’

’

&

’

’

’

’

%

min
u𝑁

𝑉𝑁p𝑥0,u𝑁q

s.t. system dynamics
system constraints
𝑥p𝑁q ∈ 𝕏𝑓

,where 𝑥p𝑡q “ 𝑥0is the current state (A.12)

where 𝕏𝑓 is a terminal constraint, a bound on the final state of the system. It is noted, that a terminal con­
straint is often omitted in the control problem definition and the actual computations, as it penalizes optimality
and increases computational effort [76]. The final state can be included also as a weighting factor on the terminal
cost in the following way: 𝛽𝑉𝑓p𝑥p𝑁qq, 𝛽 ≥ 1 large enough. The system dynamics come from the state solution
prediction model, and system constraints are defined accordingly to the process specifications, physical limits,
desired trajectory and others.

A.1.2. Optimization
The optimization problem is inherent to MPC, hence some focus must be given to the proper formulation of an
optimization problem and approaches towards its solution. The optimization problem objective is to minimize the
value of an objective function 𝑓p𝑢q with respect to the optimization variable 𝑢 of a problem, such that the inequality
constraints 𝑔p𝑢q and equality constraints ℎp𝑢q aremet. Themost generic form of an optimization problem is defined
as follows:

ℙ ∶

$

’

’

&

’

’

%

min
𝑢∈ℝ𝑛

𝑓p𝑢q

s.t. 𝑔p𝑢q ≤ 0
ℎp𝑢q “ 0

(A.13)

The 𝑔p𝑢q and ℎp𝑢q are in fact column matrices for which the (in)equality condition is applied element­wise for
every row function 𝑔𝑖p𝑢q and ℎ𝑗p𝑢q. The feasible set of solutions for the optimization problem can be formulated
as: 𝐹 “ t𝑢 ∈ ℝ𝑛|𝑔p𝑢q ≤ 0, ℎp𝑢q “ 0u.

Convex optimization
In order to ensure that the found optimal solution is global, it is favorable to formulate a problem as a convex
optimization problem, for which any locally optimal point is globally optimal (Proposition C.8 (Global optimality for
convex problems), [77], p.741). The problem ℙ is convex if:

1. 𝑓 is convex, e.g. 𝑓p𝑢q “ 𝑢𝑇𝑃𝑢 ´ 𝑝𝑇𝑢, 𝑃 ≻ 0
2. 𝑔𝑖 is convex, e.g. 𝑔𝑖p𝑢q “ 𝑎𝑇𝑖 𝑢 ´ 𝑏𝑖
3. ℎ𝑗 is affine, i.e. ℎ𝑗p𝑢q “ 𝑐𝑇𝑗 ´ 𝑑𝑗
A vector 𝑢˚ is called optimal, or a solution of the problem A.13 if it has the smallest objective value among all

vectors that satisfy the constraints. Very often in MPC formulations zero subscript is used to indicate optimality,
𝑢0. The textbook ([77], p.729­767), is further referred to for theoretical formulations of a variety of optimization
problems. Moreover, the textbook [78] is extensively treating the Convex Optimization problems, which are a
frequent formulation in the MPC.

A mathematical optimization problem is called a programming problem, and depending on the formulation of
its structure, which in MPC is the cost function, in the literature it is referred to as a Quadratic, Linear, Nonlinear
or Mixed­Integer Program which is shown in the Table A.1.
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Prediction model, constraints, cost MPC optimization problem
Linear model and constraints, quadratic costs (convex) Quadratic Program (QP)
Linear model and constraints, linear costs (e.g. infinity norms) Linear Program (LP)
Nonlinear models, constraints, cost Nonlinear Program (NLP)
Hybrid dynamical models Mixed-Integer Program (MIP)

Table A.1: Types of MPC optimization problems.

Optimality conditions
For any optimization problem with differentiable objective 𝑓p𝑢q and constraint functions 𝑔p𝑢q, ℎp𝑢q the following
theorem should hold to meet the optimality conditions of the problem.

[Theorem] 𝑢 is the local minimizer ⟹ ∃𝜆 ∈ ℝ𝑛𝑖𝑛𝑒𝑞
≥0 , 𝜇 ∈ ℝ𝑛𝑒𝑞 such that the Karush­Kuhn­Tucker (KKT) condi­

tions hold for the system:

∇𝑓p𝑢q `

𝑛𝑖𝑛𝑒𝑞

∑
𝑖“1

𝜆𝑖∇𝑔𝑖p𝑢q `

𝑛𝑒𝑞

∑
𝑗“1

𝜇𝑗∇ℎ𝑗p𝑢q “ 0 (A.14)

𝜆𝑖∇𝑔𝑖p𝑢q “ 0, ∀𝑖 ∈ t1, ..., 𝑛𝑖𝑛𝑒𝑞u (A.15)

in which the equation A.14 is a stationarity condition and the equation A.15 is a complementarity condition.
Moreover, a constraint qualification is required for the Karush­Kuhn­Tucker condition to be a necessary condition
of optimality for the optimization problem [76].

A.1.3. Feasibility
When setting up the optimization problem with the equality and inequality constraints, it is important to keep in
mind the feasibility of the problem at at each step 𝑘. Typically ones assumes feasibility at time 𝑡 “ 0 and chooses
cost function and the stability constraints such that feasibility is preserved at the following time steps [75]. It could
be done e.g. by treating the constraints involving state components as soft constraints and the input constraints
as hard; relaxing the state constraints removes the feasibility problem [75, p. 5]. Due to the presence of noise,
disturbances, and numerical errors keeping state constraints as hard is impractical. As the inputs are generated
by the optimization procedure, the input constraints can always be regarded as hard. The further assumptions for
feasibility of robust control, can be found in the handbook [77].

A.1.4. Stability
Another aspect to be always considered is that the controlled system must be stable. In the literature many tech­
niques used to enforce stability can be found, which are briefly summarized below. Frequently, in order to proof
stability of the system the cost function (as defined in A.10) is considered as Lyapunov function and the stability is
proved by showing the Control Lyapunov Function (CLF) decrease, defined in the figure A.3. The stability check
can be done by continuously computing the value of 𝑉𝑓p𝑓p𝑥, 𝑢qq ´ 𝑉𝑓p𝑥q ≤ ´𝓁p𝑥, 𝑢q in each simulation step 𝑘 of
the system.

Figure A.3: Controller structure; derived from [76]

The techniques for enforcing stability of the MPC system are presented in the survey by A.Bemporad and
M.Morari [75], they include:
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• Terminal Constraint ­ imposing the stability constraint such that the final state is steered to the origin 𝑥p𝑡 `

𝑁𝑝|𝑡q “ 0; such constraint could yield infeasibility issues as it might require a large control effort, the domain
of attraction is also limited to the set of initial states that can be steered to 0 in 𝑁𝑝 steps. The terminal
constraint can also drastically decrease the performance.

• Infinite Output Prediction Horizon ­ in case the output horizon 𝑁𝑝 “ `∞, no stability constraint is required
for asymptotically stable systems.

• Terminal Weighting Matrix ­ putting a weighting factor 𝑃𝑓 on the final state in eqn. A.10 such that it is solution
of a Riccati equation can guarantee stability without the addition of stability constraints.

• Invariant Terminal Set ­ relaxing the terminal constraint into the terminal set such that 𝑥p𝑡`𝑁𝑝|𝑡q “∈ Ω, the
Ω set is invariant and such that the constraints are fulfilled inside this set.

• Contraction Constraint ­ decreasing of the state 𝑥p𝑡q in some norm ∥ 𝑥p𝑡 ` 1|𝑡q ∥≤ 𝛼 ∥ 𝑥p𝑡q ∥, 𝛼 ă 1, is
required explicitly rather than relying on the optimal cost 𝑉p𝑡q as a Lyapunov function.

For further stability properties of discrete time systems the Appendix B from the book [77] will be referred to,
which provides theoretical background of stability theory. The further discussion concerning which technique for
stability proof is appropriate for the project will be done during the controller design in an iterative manner.

A.2. Overview of MPC structures
In this section the most important characteristics of different MPC structures are given. Firstly the general form of
the Output, Hybrid and Distributed MPC are given in order to present the limitations of each of them with the main
advantages and disadvantages, which is important to understand in order to perform the trade­off of them to be
used in the project. Moreover, there is another distinction in the MPC design in terms of the method for solving
an optimization problem. The implicit model predictive control performs optimization online, whereas the explicit
solves the optimization problem offline. These two approaches are also compared in this section.

A.2.1. Hybrid MPC
This strategy considers the system to be controlled that constitutes of the differential equations typically derived
from the physical laws governing the dynamics of the system, and also logic rules with operating constraints
which is a distinct characteristic of a hybrid system. The main motivation for the hybrid system is that such a
definition allows to describe a system’s behaviour which is characterised by continuous dynamics, continuous
and discrete inputs and the interconnection between logics and dynamics. The parts described by logic can be for
example the on/off switches, valves, car gears, speed selector or evolutions dependent on if­the­else rules and
others. Hybrid model shall be descriptive enough, but also simple enough for solving both analysis and synthesis
problems [76]. This type of system is denoted as mixed logical dynamical (MLD) system, it involves logic rules
which are described by the linear integer inequalities and also the continuous and logical variables which are part
of the mixed­integer linear relations. Due to the presence of integer variables, the resulting optimization problem
is solved through mixed integer linear or quadratic programming (MILP/MIQP) [79].

The major examples of the MLD systems are piece­wise linear systems which can approximate nonlinear
or discontinuous dynamics arbitrarily well; switched affine systems, in which the affine dynamics depend on the
current mode and during the dynamics evolution they are switched e.g. according to the state­update equation
consisting of the difference equation and the if­then­else conditions; event generators in which event variables are
generated by linear threshold conditions over continuous states, inputs and time; piece­wise linear output func­
tions, finite state machines, mode selectors and others. The main characteristics of each of them are summarized
in [80] and might be used for further reference in case such a design solution shall be chosen later. The most
generic MLD hybrid model can be defined in compact form as:

"

𝑥` “ 𝐴𝑥 ` 𝐵1𝑢 ` 𝐵2𝛿 ` 𝐵3𝑧
𝑦 “ 𝐶𝑥 ` 𝐷1𝑢 ` 𝐷2𝛿 ` 𝐷3𝑧 (A.16)

subject to:
𝐸2𝛿 ` 𝐸3𝑧 ≤ 𝐸4𝑥 ` 𝐸1𝑢 ` 𝐸5,

where 𝑥 “
“ 𝑥𝑐𝑥𝑑

‰

∈ ℝ𝑛𝑐 × 𝔹𝑛𝑑 , 𝑢 “
“ 𝑢𝑐𝑢𝑑

‰

∈ ℝ𝑚𝑐 × 𝔹𝑚𝑑 , 𝑦 “
“ 𝑦𝑐𝑦𝑑

‰

∈ ℝ𝑝𝑐 × 𝔹𝑝𝑑 and the discrete binary variable
𝛿 ∈ 𝔹𝑟𝑑 , where 𝔹 “ x0, 1y and the auxiliary real variable 𝑧 ∶“ 𝑥𝛿 ∈ ℝ𝑟𝑐 . Further, 𝑥𝑐 is the continuous component
of the system state and 𝑥𝑑 is the discrete component, the same holds for the output 𝑦 and the input control
command𝑢, collecting both continuous commands 𝑢𝑐 and binary (on/off) commands 𝑢𝑑. Such a hybrid model
can be the subject of structural constraints applied onto continuous variables (e.g. actuators saturation, safety
conditions etc): 𝒞 ∶“ tp𝑥𝑐 , 𝑢𝑐q ∈ ℝ𝑛𝑐 × ℝ𝑚𝑐 |𝐺𝑥𝐶 ` 𝐻𝑢𝑐 ` 𝜙 ≤ 0u.
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The MLD model can be converted into an equivalent piecewise affine form (PWA), which usually requires the
enumeration of all possible combinations of binary states, inputs and 𝛿 variables. However there are efficient
algorithms available for converting MLD models into PWA models avoiding such an enumeration.

$

&

%

𝑥` “ 𝐴𝑖𝑥 ` 𝐵𝑖𝑢 ` 𝑓𝑖
𝑦 “ 𝐶𝑖𝑥 ` 𝐷𝑖𝑢 ` 𝑔𝑖

𝑖 s.t. 𝐻𝑖𝑥 ` 𝐽𝑖𝑢 ≤ 𝐾𝑖
(A.17)

Other existing classes of hybrid models include the linear complementarity systems, extended linear comple­
mentarity systems and min­max­plus­scaling systems, which are furthered presented in [80]. According to the
theorem ([80], p.51) all the above classes of discrete­time hybrid models are equivalent (possibly under some
additional assumptions, such as boundedness of input and state variables).

Having defined the dynamical system, the MPC problem can be formulated. The MLD or PWA model of the
plant is used to predict the future behaviour of the hybrid system. The hybrid MPC requires online solution of
MILP/MIQP.

ℙ𝑁p𝑥0q ∶

$

’

’

’

’

’

&

’

’

’

’

’

%

min
u𝑁 ,𝛿𝑁 ,𝑧𝑁

𝑉𝑁p𝑥0,u𝑁q “
𝑁´1
∑
𝑘“0

t𝑙p𝑥p𝑘q, 𝑢p𝑘qqu

s.t. 𝑥p𝑘 ` 1q “ 𝐴𝑥p𝑘q ` 𝐵1𝑢p𝑘q ` 𝐵2𝛿p𝑘q ` 𝐵3𝑧p𝑘q, ∀𝑘
𝐸2𝛿p𝑘q ` 𝐸3𝑧p𝑘q ≤ 𝐸4𝑥p𝑘q ` 𝐸1𝑢p𝑘q ` 𝐸5, ∀𝑘
𝑥0 “ 𝑥p0q

, (A.18)

where the cost function is formulated as a quadratic stage cost and the state/output prediction is as for LTI
systems, with accounting for the discrete parts:

𝑥p𝑘q “ 𝜙p𝑘; 𝑥0,uk, 𝛿𝑘 , 𝑧𝑘q “ 𝐴𝑘𝑥0 ` 𝒞𝑘uk ` 𝒞𝛿𝑘 𝛿𝑘 ` 𝒞𝑧𝑘𝑧𝑘 (A.19)

where:
𝒞𝛿𝑘 ∶“

“

𝐵2 𝐴𝐵2 … 𝐴𝑘´1𝐵2
‰

, 𝒞𝑧𝑘 ∶“
“

𝐵3 𝐴𝐵3 … 𝐴𝑘´1𝐵3
‰

Hybrid MPC control problem can be written in a compact form, e.g. as a MIQP formulation of MPC:

ℙ𝑁p𝑥0q ∶

$

&

%

min
𝜉𝑁

1
2𝜉

𝑇
𝑁𝐻𝜉𝑁 ` 𝑥𝑇0𝐹𝜉𝑁

s.t. 𝐺𝜉𝑁 ≤ 𝑊 ` 𝑆𝑥0
, (A.20)

where the optimization vector 𝜉𝑁 is composed of the elements referring to the mixed­integer, binary and real
part:

𝜉𝑁 “
“

𝑢p0q,…,𝑢p𝑁´1q,𝛿p0q,…,𝛿p𝑁´1q,𝑧p0q,…,𝑧p𝑁´1q
‰𝑇

The MPC problem can be also formulated as MILP, which is proposed in ([80], p.69). Mixed­integer program­
ming despite being extensively covered in literature, still has some major drawbacks. First of all, the hybrid MPC
problem can loose its original boolean structure, it might be advantageous to combine symbolic with numerical
solver. Moreover, the computation time may be too long which makes it hardly applicable to the fast sampling
problems. The high level of software complexity makes MIP solver code difficult to certify, hence it is rather not
applicable for safety critical operations. The paper [79] gives a very good overview of the implementation of the
Hybrid MPC strategy on the example of the complex gas supply system. Moreover it presents the four major types
of MIQP which were applied successfully to medium and large application problems. For applications in which MIP
does not provide with satisfactory results in terms of computing time, performance, realistic level of complexity
etc the implementation of off­line solvers might be favoured, which is further elaborated in the section A.2.4.

The certain design strategies for the hybrid controller are further presented in the [80], such as augmentation
of the hybrid prediction model with integrators of output errors in order to account for measured disturbances, time
delays, formulation of an optimal control problem with prioritized constraints.

A.2.2. Distributed MPC
Another class of the MPC problem is distributed approach, in essence it is applied to multi­agent systems and
the main idea is to distribute the computation into all the agents ­ to break the big optimization problem into
few smaller ones in order to relief the computational burden. The overall plant control is accomplished by the
combined behaviour of the interacting local controllers. In such a way all the agents cooperate and share the cost
of computation, which is the main advantage of this approach. However such a formulation of the control problem
is suboptimal and is characterised by a possible performance loss.
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The optimal control problem is distributed in separable problems into each agent (subsystem), hence e.g. for
the system consisting of two agents there will be two optimal control problems. Each subsystems state vector
consists of 𝑥𝑖,𝑗, which is state of subsystem 𝑖 affected by input 𝑗. OCP of the agent 1 would be parametric in 𝑢2
in such a way that the cost function is optimized for the optimal sequence 𝑢1 given 𝑢2 and the same holds for the
agent 2 ­ the OCP would be parametric in 𝑢1 and the cost function is optimized for the optimal sequence 𝑢2 given
𝑢1. The further mathematical descriptions, relevant assumptions and convergence properties can be found in [76,
77] and might be addressed further in research if found relevant.

In [77], three control approaches are presented: decentralized, noncooperative and cooperative. Decentral­
ized approach assumes no communication between the agents, whereas noncooperative and cooperative control
requires the input sequences and the current states or state estimates for all the other local subsystems. All these
methods require the local controllers to optimize over only their local inputs, and the computational requirements
are identical. The distributed MPC is found in the literature to be applied into e.g. UAV formation flying, control
of swarms of spacecraft or cooperative satellite formation flying and also in some applications for cooperative
manipulation of the vehicle manipulator systems. The further overview of features and research opportunities of
the distributed MPC are presented in [81, 82]. Nevertheless, it is considered not to be useful for application into a
single robot manipulator system.

A.2.3. Offset­free MPC
As in many feedback controllers, the objective is to move the measured outputs of a system to a specified and
constant setpoint, which is known as setpoint tracking [77]. In case of any disturbances in the system, tracking
control must compensate for them so their effect on the controlled variable is mitigated, which is simply called dis­
turbance rejection. The MPC strategy presented in this section allows for compensation of nonzero disturbances
such that the selected controlled variables asymptotically approach their setpoints without offset, such a property
is known as zero offset.

A simple method to compensate for an unmeasured disturbance is to firstly account for the disturbance in
the model of the plant, use the measurements and based on them determine an estimate of the disturbance.
Finally find the inputs that minimize the effect of the disturbance on the controlled variables. The formulation of
the problem depends on which states that can be measured:

State Feedback
The formulation of the state feedback problem in which the state 𝑥 is directly measurable:

"

𝑥` “ 𝐴𝑥 ` 𝐵𝑢
𝑦 “ 𝐶𝑥 ` 𝑑 ` 𝑣 (A.21)

where 𝑑 is constant, unknown disturbance and 𝑣 is measurement noise, such that the expected value for the
random variable 𝑣p𝑡q is zero, 𝔼r𝑣p𝑡qs “ 0. In order to solve for such a system, one of the approaches is to design
an augmented system with the same dynamic structure as before, with an auxiliary immeasurable state 𝑑` “ 𝑑.
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In order to solve such a system, one must design a disturbance observer, since the state 𝑥 is directly measur­
able, one can design an observer for the ”state” 𝑑 only. The disturbance estimate 𝑑̂` for the next step is defined
with the Luenberger observer as:

𝑑̂` “ 𝑑̂ ` 𝐿p𝑦 ´ 𝑦̂q “ 𝑑̂ ` 𝐿p𝑦 ´ 𝐶𝑥 ´ 𝑑̂q (A.23)

The idea is to use the best future estimate of the disturbance in the current simulation step in order to find
the value of 𝑦𝑟𝑒𝑓 to be injected into the optimization problem formulation, where 𝑦𝑟𝑒𝑓 is a desired output setpoint
reference required for formulation of the reference tracking problem, such that 𝐶𝑥𝑟𝑒𝑓 “ 𝑦𝑟𝑒𝑓, the algorithm (A.24)
implemented to find the values of p𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓q is called an optimal target selector (OTS).

p𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓qp𝑑̂, 𝑦𝑟𝑒𝑓q ∈
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For the simple tracking problem without disturbance in the output neither the input, the OTS is solved offline
because 𝑦𝑟𝑒𝑓 is a given constant vector. However for the offset­free state feedback controller which must reject
the existing disturbance, the values of reference state and output vector are computed in every simulation step
using the updates of the disturbance estimates ­ the OTS is solved online. The cost function for such a problem
is defined as the steady­state target problem modified to account for the nonzero disturbance 𝑑̂ in the following
way:

𝑉𝑁p𝑥0, 𝑑̂, 𝑦𝑟𝑒𝑓 ,uNq “

𝑁´1

∑
𝑘“0

t𝑙p𝑥p𝑘q ´ 𝑥𝑟𝑒𝑓p𝑑̂q, 𝑢p𝑘q ´ 𝑢𝑟𝑒𝑓p𝑑̂qqu ` 𝑉𝑓p𝑥p𝑁q ´ 𝑥𝑟𝑒𝑓p𝑑̂qq (A.25)

The final definition of an optimal control problem has the same structure as in MPC regulation, with the main
difference that now the OCP is parametric in one additional variable, 𝑑̂.

Output Feedback
The system in which the state 𝑥 cannot be measured directly, the output feedback strategy can be implemented
which also enables disturbance rejection.

"

𝑥` “ 𝐴𝑥 ` 𝐵𝑢 ` 𝐵𝑑𝑑 ` 𝑤
𝑦 “ 𝐶𝑥 ` 𝐶𝑑𝑑 ` 𝑣 (A.26)

The matrices p𝐴, 𝐵q are controllable, p𝐴, 𝐶q are observable which is necessary to reconstruct the state from
input and output. As in the definition of the state feedback, 𝑑 is a constant unknown disturbance, 𝑤 is a state
disturbance with 𝔼r𝑤p𝑡qs “ 0, 𝑣 is a measurement noise 𝔼r𝑣p𝑡qs “ 0.

$

’

’

&

’

’

%

„

𝑥`

𝑑`

ȷ

“

„

𝐴 𝐵𝑑
0 𝐼

ȷ „

𝑥
𝑑

ȷ

`

„

𝐵
0

ȷ

𝑢 `

„

𝑤
𝑤𝑑

ȷ

𝑦 “
“

𝐶 𝐶𝑑
‰

„

𝑥
𝑑

ȷ

` 𝑣
(A.27)

In order to solve such a system, one must design an observer which will allow to reconstruct the full unknown
state r𝑥 𝑑s′. The Lueneberger observer which accounts for both the estimate of state and disturbance is defined
in the following way:
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Next, the OTS for the output feedback MPC is designed, the problem is solved online and for every simulation
step the algorithm takes the best current estimate of 𝑑̂ and 𝑥̂ to find p𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓q and feed the MPC regulator. The
OTS is parametric in 𝑦𝑟𝑒𝑓:

p𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓qp𝑑̂, 𝑦𝑟𝑒𝑓q ∈
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For the better depiction of the problem, based on the presented equations, the offset­free output MPC algo­
rithm is presented in the Figure A.4.
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Figure A.4: Offset-free MPC controller structure; derived from [77]

The offset­free formulation of MPC seems to be interesting for the considered orbital robotic system. The
disturbances of the plant, as described in the Chapter ??, are inevitable and their effect on the performance of the
controller must be addressed.

A.2.4. Explicit MPC
In the already given definitions, the optimal control problem was solved in every time step, if such an iterative
numerical procedure is implemented it is referred to as implicit MPC. Along with the increase of the modelled
system complexity growths the demand for computational resources. This problem can be partially mitigated if
the control law is defined offline, which is called explicit MPC.

The idea standing behind explicit MPC is to solve the optimization problem for all 𝑥p𝑡q within a given range of
ℝ𝑛., the explicit representation of the MPC feedback law is obtained off­line using parametric programming. The
state space is divided into multiple regions for which the optimization procedure is performed to find the optimal
solution within the specified region. Number of regions depends on the possible combinations of active constraints
whereas dependence on states is weaker. The explicit problem tends to have lower computation time compared
to QP­based implicit problem [35], as no on­line solver is needed in the MPC implementation, which requires only
the evaluation of a piecewise affine function. Determining explicitly the structure of MPC provides an insight into
the behaviour of the MPC controller in different regions of the state space, highlighting regions where saturation
occurs, where solver has multiple optima etc [83]. In order to solve the problem in the region the multiparametric
linear programming must be solved (mp­LP). The mp­LP subdivides the space of parameters into the so­called
critical regions (CRs), which are the set of all parameter vectors for which a certain combination of constraints is
active at the optimizer of the problem. For further mathematical description the work of Alberto Bemporad [83] is
referred to.

The main advantages of explicit MPC and the reasons for its appeal in the automotive and aerospace appli­
cations are:

• Simple execution code: explicit MPC is a lookup table of affine controllers, selected by linear inequalities.

• Basic operations: the controller implementation requires only sums, multiplications and comparisons.

• Predictability: the worst case number of operations is simple to compute.

On the other hand, explicit MPC requires less online computation, but the off­line construction of the feedback
law scales badly with increasing dimensionality of the problem. Moreover, the memory footprint of the explicit
solutions can easily violate limits of the available memory storage. Further comparison of the pros and cons of
both methods are presented in the [84].





B
Validation of the FK linearization

The linearization procedure of the forward kinematics nonlinear algorithm is presented in this appendix. The vali­
dation of the linearization is showed on two data sets. The results are presented in table B.1.

The Jacobian linearization is performed around the current operating point ­ the state vector 𝑥0, with themethod
of small perturbations (see section 4.3.1). The perturbation of the value 1𝑒 ´ 4 is added successively to every
term from the state vector, next the values are injected into the forward kinematics algorithm. The output of the
linearization function is the matrix 𝐶𝐹𝐾 which allows to map the state vector into the end­effector position. It is
important to note, that the linearized definition of the nonlinear algorithm operates around the deviations from the
operating point, and not the global value. To say precisely, the matrix 𝐶𝐹𝐾 is mapping the vector of deviation values
from the state vector operating point values Δ𝑥 to the vector of deviation values from the end­effector operating
point value Δ𝐸𝐸𝐿𝐼𝑁. The linearization procedure is performed in order to include the EE reference position tracking
goal term linear definition into the optimization cost function. It is underlined that the resulting definition of the goal
term (as described in 4.46) is working in the deviation values domain, and not the global values.

The obtained linear equation B.1 output is Δ𝐸𝐸𝐿𝐼𝑁, the deviation from the operating point 𝐸𝐸𝑜𝑝. In order to
obtain the current position of the end­effector using the linearized algorithm, the deviation value is simply added
to the operating point value, as in the equation B.2.

Δ𝐸𝐸𝐿𝐼𝑁 “ 𝐶𝐹𝐾 ⋅ Δ𝑥 (B.1)

𝐸𝐸𝐿𝐼𝑁 “ 𝐸𝐸𝑜𝑝 ` Δ𝐸𝐸𝐿𝐼𝑁 (B.2)

In order to validate the linearization procedure and assess how the magnitude of an error is changing with the
increasing value of the deviation from the operating point around which the linearization procedure was performed,
the error value is computed as shown below in equation B.3.

𝑒𝑟𝑟𝑜𝑟 “ 𝐸𝐸𝑁𝐿 ´ 𝐸𝐸𝐿𝐼𝑁 (B.3)

In order to verify the linearization procedure, the validation tests have been performed. The results are pre­
sented in table B.1. The linearization is performed around an operating point state vector 𝑥𝑜𝑝, two values of the
state vector were chosen for this test. Then, with the nonlinear forward kinematics algorithm, the end effector
position is obtained 𝐸𝐸𝑜𝑝. The errors are computed for three different conditions ­ three different values of the
Δ𝑥. Firstly, the values equal to the perturbation values 1𝑒 ´ 04, as applied in the linearization procedure, are
used. Next, higher values of the Δ𝑥 are tested. It is clear from the table, that the value of the error between the
end effector position vector obtained from a nonlinear algorithm and linearized algorithm is very small. For all the
three components, the error value remains in the submilimeter domain ­ specifically the x­position error is equal
to 0.297𝑚𝑚, y­position error is equal to 0.079𝑚𝑚 and the y­position error is equal to ´0.051𝑚𝑚. These values
are acceptable and they meet the required performance criteria for this type of the mission and precision ma­
nipulation. Next, the higher value of the state vector deviation Δ𝑥, by one magnitude, is applied. It is clear that it
results in much higher error values, the x­position error is again the highest and is equal to 3.69𝑚𝑚. The y­position
error equals to ´0.11𝑚𝑚 and the z­position equals to ´2.37𝑚𝑚. The increase of the error is the consequence of
applying the mapping matrix 𝐶𝐹𝐾 on the vector with higher values than the ones used as perturbation values in
the linearization. Such increase of an error was expected, the correlation between the increase of the deviation
value form the operating point with the increase of an end­effector position error is considered when designing an
optimization control problem by avoiding very large prediction horizon, which would result in increasing too much
the deviation vector. Last but not least, the deviation vector containing the values of 1r𝑐𝑚s for the base position
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deviation and 1𝑜 for the attitude deviation of the base and angular position deviation of the manipulator joints is
applied. It is clear that the resulting error is in a centimeters domain ­ the x­position error is equal to 3.695𝑐𝑚,
y­position error is equal to ´0.123𝑐𝑚 and z­position error is equal to ´2.382𝑐𝑚. Such values of the error are quite
high, and potentially could lead to the unsuccessful capture maneuver. For this reason it is important to keep in
mind that if the linearized version of the algorithm is used, its definition remains valid only for the values in close
proximity to the operating point.
The second value of the state vector implemented in the linearization validation tests gives very similar results.
The end effector position error due to linearization, for the small deviation from an operating point remains in the
submilimeter domain. The x­position error is equal to 0.448𝑚𝑚, the y­position error is equal to ´0.233𝑚𝑚 and
the z­position error is equal to ´0.1𝑚𝑚. For the higher values of the Δ𝑥 the error keeps on increasing. When the
deviation vector containing the values of 1𝑐𝑚 for the base position deviation and 1𝑜 for the attitude deviation of
the base and angular position deviation of the manipulator joints is applied, the resulting error is in a centimeters
domain in a similar way as for the first dataset. The x­position error is equal to 6.357𝑐𝑚, y­position error is equal
to ´5.549𝑐𝑚 and z­position error is equal to ´3.247𝑐𝑚. The same conclusions can be reached for this validation
test ­ the linearized algorithm is valid in the very close proximity of the operating point. When the state vector
deviation becomes higher the position error becomes bigger, its value of few centimeters is rather unacceptable
for the precision operations of the capture maneuver. In order to ensure that the linearized description of the cost
function is depicting well enough the real system, the balance between the value of a sampling time and the length
of prediction horizon must be found. The linearization shall be done in every simulation iteration step using the
updated value of an operating point in order to ensure that the linear algorithm is correctly describing the nonlinear
behaviour.
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𝑥𝑜𝑝 𝐸𝐸𝑜𝑝 [m] Δ𝑥 Δ𝐸𝐸𝐿𝐼𝑁 [m] 𝐸𝐸𝐿𝐼𝑁 [m] 𝐸𝐸𝑁𝐿p𝑥𝑜𝑝 ` Δ𝑥q [m] 𝑒𝑟𝑟𝑜𝑟 [m]
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Table B.1: Validation of the Forward Kinematics linearization algorithm





C
Validation of the FoV linearization

The linearization procedure of the field of view nonlinear algorithm is presented in this appendix. The validation
of the linearization is showed on two data sets. The results are presented in table C.1.

The nonlinear definition of the FoV term is as described in Section 4.6. The Jacobian linearization is performed
around the current operating point ­ the state vector 𝑥0, with the method of small perturbations (see section 4.3.1).
The perturbation of the value 1𝑒´4 is added successively to every term from the state vector, next the values are
injected into the algorithm computing the cosine angle between the two vectors as explained in the section 4.6.
The output of the linearization function is the matrix 𝐶𝐹𝑜𝑉 which allows to map the state vector into the value of
the cosine function. It is important to note, that the linearized definition of the nonlinear algorithm operates around
the deviations from the operating point, and not the global value. To say precisely, the matrix 𝐶𝐹𝑜𝑉 is mapping the
vector of deviation values from the state vector operating point values Δ𝑥 to the vector of deviation values from
the cosine function operating point value Δ𝐹𝑜𝑉𝑐𝑜𝑠. The linearization procedure is performed in order to include
the field of view term linear definition into the optimization cost function. It is underlined that the resulting definition
of the goal term (as described in 4.46) is working in the deviation values domain, and not the global values.

The obtained linear equation C.1 output is Δ𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁, the deviation from the operating point 𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝. In
order to obtain the current value of the cosine between two vectors using the linearized algorithm, the deviation
value is simply added to the operating point value, as in the equation C.2.

Δ𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁 “ 𝐶𝐹𝑜𝑉 ⋅ Δ𝑥 (C.1)

𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁 “ 𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝 ` Δ𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁 (C.2)

The performance metric is defined in order to assess the validity of the linearized definition, for this purpose
an error is computed. It is defined as a numerical difference in a value of the cosine function of the FoV angle
obtained with the nonlinear algorithm and the linear algorithm, as shown in equation C.3.

𝑒𝑟𝑟𝑜𝑟r´s “ 𝐹𝑜𝑉𝑐𝑜𝑠𝑁𝐿 ´ 𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁 (C.3)

In order to better understand the magnitude of the error, it is translated into the degrees unit such that the
difference between the angle obtained with the nonlinear algorithm and the angle obtained with the linear algorithm
is computed as shown in equation C.4.

𝑒𝑟𝑟𝑜𝑟r𝑜s “ 𝑎𝑟𝑐𝑐𝑜𝑠p𝐹𝑜𝑉𝑐𝑜𝑠𝑁𝐿q ´ 𝑎𝑟𝑐𝑐𝑜𝑠p𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁q (C.4)

Next, the validation tests have been performed in order to verify the linearization procedure. The input data
and the outcomes are presented in table C.1 below. The angular position values are always input to the algorithm
in radian unit, however in order to provide more reader­friendly description, some values are given in degrees
[𝑜] if found appropriate. The linearization is performed around an operating point state vector 𝑥𝑜𝑝, two values of
the state vector were chosen for this test. Then, with the nonlinear field of view algorithm, the value of the cosine
is obtained 𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝, and the value of the cosine 𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁 with the linear algorithm. The errors are computed
for three different conditions ­ three different values of the Δ𝑥. Firstly, the values equal to the perturbation values
1𝑒 ´ 04, as applied in the linearization procedure, are used. Next, higher values of the Δ𝑥 are tested. It is clear
from the table, that the error between the value of the cosine obtained from a nonlinear algorithm and linearized
algorithm is very small. The error value in degrees is very small it is equal to 0.00988𝑜. Therefore it is concluded
that for the value of the deviation from the state vector operating point equal to the value of the perturbation used
in the linearization process, the linear algorithm performance is very good and the error is negligible. Next, the
higher value of the state vector deviation Δ𝑥, by one magnitude, is applied. It is clear that it results in a higher
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error value, which is equal to 0.23958𝑜. The value of the error is low enough to remain negligible. The increase of
the error is the consequence of applying the mapping matrix 𝐶𝐹𝐾 on the vector with higher values than the ones
used as perturbation values in the linearization. Last but not least, the deviation vector containing the values of
1r𝑐𝑚s for the base position deviation and 1𝑜 for the attitude deviation of the base and angular position deviation
of the manipulator joints is applied. It is clear that the resulting error is much higher and it rises up to the value
of 2.47809𝑜. Nevertheless, this mismatch between the real value obtained from the nonlinear algorithm and the
value obtained from the linearized algorithm should not cause any major issues, as the goal of the field of view
term is to keep the target point within the visibility of the navigation camera and hence to minimize the angle
between the two vectors (see fig. 4.2) any small deviation is acceptable due to the fact it is still expected to remain
in the view cone of the navigation camera which usually for the close navigation camera has the aperture angle
of between 15­40 deg.
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𝑥𝑜𝑝 𝐹𝑜𝑉𝑐𝑜𝑠𝑜𝑝 Δ𝑥 Δ𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁 𝐹𝑜𝑉𝑐𝑜𝑠𝐿𝐼𝑁 𝐹𝑜𝑉𝑐𝑜𝑠𝑁𝐿p𝑥𝑜𝑝 ` Δ𝑥q 𝑒𝑟𝑟𝑜𝑟r´s 𝑒𝑟𝑟𝑜𝑟r𝑜s
»

—

—

—

—

—

—

—

—

—

—

—

—

–

´3𝑚
0
0
0
10𝑜
0
0
45𝑜
90𝑜

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0.76979

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0.0001𝑚
0.0001𝑚
0.0001𝑚
0.0001rad
0.0001rad
0.0001rad
0.0001rad
0.0001rad
0.0001rad

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0.00016 0.76995 0.76984 ´0.000114 0.00988

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0.001𝑚
0.001𝑚
0.001𝑚
0.1𝑜
0.1𝑜
0.1𝑜
0.1𝑜
0.1𝑜
0.1𝑜

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0.00311 0.77290 0.77024 ´0.002660 0.23958

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0.01𝑚
0.01𝑚
0.01𝑚
1𝑜
1𝑜
1𝑜
1𝑜
1𝑜
1𝑜

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0.03110 0.80089 0.77425 ´0.02664 2.47809

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´3𝑚
1𝑚
1𝑚
5𝑜
10𝑜
´5𝑜
30𝑜
60𝑜
45𝑜

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0.52557

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0.0001𝑚
0.0001𝑚
0.0001𝑚
0.0001rad
0.0001rad
0.0001rad
0.0001rad
0.0001rad
0.0001rad

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0.00014 0.52571 0.52547 ´0.000241 0.01616

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0.001𝑚
0.001𝑚
0.001𝑚
0.1𝑜
0.1𝑜
0.1𝑜
0.1𝑜
0.1𝑜
0.1𝑜

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0.00177 0.52734 0.52459 ´0.00275 0.18526

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0.01𝑚
0.01𝑚
0.01𝑚
1𝑜
1𝑜
1𝑜
1𝑜
1𝑜
1𝑜

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0.01767 0.54324 0.51581 ´0.02744 1.85286

Table C.1: Validation of the Field of View linearization algorithm


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Background
	Proximity Operations in Space Missions
	Review of MPC Applications in Space & Robotics
	DLR heritage in Space Robotics and OOS

	Research Overview

	Review of Control Solution Limitations In Robotic OOS Missions
	Spacecraft Architecture Constraints
	Operational Mission Constraints
	Environment Constraints
	Performance Requirements

	Free-Flying Dynamics Model
	Plant Architecture
	Robotic System
	Servicing Spacecraft

	SpaceDyn Library
	Dynamics
	State Space Model

	MPC Controller Detailed Design
	Initial Design Trade-off
	System Dimensions
	Prediction Model
	Linearization of the nonlinear dynamics model
	Discretization of the linear continuous model
	Prediction matrices generation

	Control Objective
	Reference Trajectory
	Cost Function
	Constraints Handling
	Tuning
	Scale Factors
	Weights
	Tuning approach

	Optimization Modelling Yalmip
	Final Control Loop

	Controller-in-the-loop Case Scenarios Results
	Scenario cases
	Scenario 1 - Baseline definition with unit weights
	Scenario 2 - Baseline definition with tuned weights
	Scenario 3 - Comparison of reference trajectories output

	Timing statistics
	Communication with Ground
	Simulation results and analysis

	Conclusions and recommendations for future
	Research conclusions
	Further recommendations

	References
	Model Predictive Control - theoretical background
	Introduction and Formulation
	MPC Formulation
	Optimization
	Feasibility
	Stability

	Overview of MPC structures
	Hybrid MPC
	Distributed MPC
	Offset-free MPC
	Explicit MPC


	Validation of the FK linearization
	Validation of the FoV linearization

