Acceleration of hybrid CPU-GPU query
execution engine 1in Arrow Format

Version of September 18, 2023

Kexin Su

Acceleration of hybrid CPU-GPU query
execution engine in Arrow Format

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Kexin Su
born in Chongqing, China

%
TUDelft

Quantum Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft, the Netherlands
www.ewl.tudelft.nl

www.ewi.tudelft.nl

©2023 Kexin Su. All rights reserved.

Acceleration of hybrid CPU-GPU query
execution engine in Arrow Format

Author: Kexin Su
Student id: 5591597

Abstract

General-purpose GPUs, renowned for their exceptional parallel processing capabilities
and throughput, hold great promise for enhancing the efficiency of data analytics tasks. At
the same time, recent developments in query execution engines have integrated the support
of OLAP operations in a way that benefits from the zero serialization overhead provided
by the Apache Arrow memory format. In this project, our objective is to perform a study
to evaluate the acceleration potential on GPUs of Arrow-based query execution engines,
specifically with libcudf, a C++ GPU DataFrame library with Arrow format. With this
purpose, we design and implement four micro-benchmarks for different operators to un-
derstand the characteristics of workloads that result in high acceleration, and their possible
bottlenecks and limitations. When we exclude data transfer durations, inherently paral-
lelizable workloads exhibit high potential for GPU acceleration. However, this advantage
diminishes considerably when considering data transfer overheads. Stemming from these
micro-benchmark outcomes, we designed an on-the-fly scheduler at the operator level to
dynamically accelerate query execution engines in a hybrid CPU/GPU system. The sched-
uler can decide whether to distribute an operator on the CPU or GPU based on the input
data location, data volume, data-related parameters, and the operator type so that we can
accelerate query execution engines in a hybrid CPU-GPU system according to a statistics
cost model. The conclusion is that, with the scheduler, we achieve a maximum of 4.88x
speedup for Filter Operator, 2.52x speedup for Sort Operator, and 1.52x speedup for Copy
Operator when handling an array of 1e8 in length.

Thesis Committee:

University supervisor: Dr. Zaid Al-Ars, CE/QCE/EWI/TUD, TU Delft
Committee Member: Dr. Asterios Katsifodimos, WIS/ST/EWI/TUD, TU Delft
Committee Member: Yongding Tian, CE/QCE/EWI/TUD, TU Delft

K.su-1@student.tudelft.nl

Preface

Many thanks to Zaid.
Dedicated to my family.

Contents

[Preface] iii
Contents v
(I Introduction| 1
[LIT Motivationl. o v i 2
[1.2 Thesisgoall 2
M370uling - - oo 2
2 Background| 5
2.1 CPU-GPU hybrid computing| 5
D27AIOW . . o o o 6
D3 ACEIO - o o o o e 8
ZATTBCUdll . - - o oo 8
3 Core concepts| 11
3.1 Query execution €ngINe| it e e e e e e e e 11
..................................... 13
B3 Schedulerl v 16
4 Methodology| 19
4.1 SystemSetupl e e e e e e e e 20
4.2 Benchmarks| 21
43 Acceleratonmodelsl o oL 27
4.4 Otheroperators| L e 31
IS Scheduler design and evaluation| 37
5.1 Design|. o oL 37
[5.2 Implementation| 40
5.3 Evaluationofthe scheduled 43

CONTENTS

6__Conclusions| 49
|6.1 Answer research questions| 49
6.2 Futureworkl 50

Bibliography 51

vi

Chapter 1

Introduction

Nowadays, GPUs (graphics processing units), which were originally designed for graphics pro-
cessing purposes, have increasingly been used for general computing purposes. A modern CPU
can only have dozens of cores, however, a modern GPU can have thousands of cores, which
makes them naturally suited to perform parallel operations. Furthermore, GPUs have a much
higher memory bandwidth than CPUs, allowing them to process data at a higher throughput.
Given these advantages, GPUs are promising to be the next-generation query execution plat-
form for big data Online Analytical Processing (OLAP).

Nevertheless, the memory capacity of a GPU is typically more limited than what a contem-
porary CPU can directly access. As a result, GPUs can only process data sets that fit within
their memory constraints. This becomes particularly evident in big data applications where the
vast amount of data surpasses the preloadable limit of the GPU. Similarly, in streaming data
applications that demand real-time processing, data can’t be preloaded onto the GPU either.

In situations where it’s not feasible to directly preload data into GPU memory, unlike the
case of CPUs which have a direct link to CPU memory, GPUs need to transfer the input data
from CPU to GPU via the PCle bus. Unfortunately, the PCle bus offers a bandwidth that’s
considerably lower—almost two orders of magnitude less—than that of the GPU’s memory
bandwidth. This limitation suggests that, for applications that are data-intensive, it is not always
worth distributing tasks from CPU to GPU. Moreover, even for compute-intensive applications,
GPUs and CPUs are specifically suitable for different types of operators. Therefore, to get the
highest possible performance in a hybrid CPU-GPU system, it’s vital to strategically distribute
operators between CPUs and GPUs.

Hybrid CPU-GPU computing is used in a wide range of applications that require intensive
processing performance, such as High-Performance Computing [[1]], Machine Learning and Ar-
tificial Intelligence [2]], and Scientific Computing [3l]. Hybrid CPU-GPU computing can provide
significant performance benefits for many applications that require high computational perfor-
mance, enabling faster and more efficient processing of complex tasks.

1

1. INTRODUCTION

1.1 Motivation

The Apache Arrow community is one of the game changers who want to leverage the power of
hybrid CPU-GPU computing to improve the performance of data science applications.

In recent years, Apache Arrow has gained a lot of attention and popularity because it ad-
dresses some of the key challenges faced by big data and machine learning applications. It
provides an efficient in-memory data format that can be shared across multiple programming
languages and platforms which enables fast and efficient data transfer with less overhead be-
tween different systems and hardware, including GPUs.

Efforts have already been put into using GPUs to accelerate data science applications with
Arrow. For example, researchers have already accelerated big data applications on GPUs to
increase the throughput for searching, transforming, and merging data generated by Al and
simulation workloads in Arrow formats [[1]. Also, big data ingestion and reformatting can benefit
from acceleration with dedicated hardware systems such as GPUs and FPGAs [4].

In this thesis, we will focus on using GPUs to accelerate Acero, a C++ query execution
engine that is a sub-project under Apache Arrow. It uses the Arrow format as its core data
representation in memory, allowing it to benefit from easy integration with accelerators. This
engine is used to perform OLAP tasks on streaming big data sets that could require significant
processing time. Accelerating these types of workloads can both improve the performance of
these applications as well as increase the efficiency of system utilization.

1.2 Thesis goal
The main goal of the thesis is formulated as follows:

* Perform a study to evaluate the acceleration potential on GPUs of the Arrow Acero query
execution engine

To fulfill the stated goal, a few research questions must be answered:

* Is it possible to accelerate Acero in a hybrid CPU-GPU system?

* What are the characteristics of workloads that result in high acceleration and what are the
possible bottlenecks?

e What are the limitations of speedup achievable using CPU-GPU systems?

1.3 Outline

Chapter [2] contains detailed background information about the CPU-GPU hybrid computing,
Apache Arrow, Acero, and Rapids libcudf.

Chapter 3 further explains some glossaries in the thesis context to present the core concepts,
i.e., what is a query execution engine, what is the operator model in the query execution engine,
and what a scheduler is in a query execution engine.

2

1.3. Outline

Chapter [contains the benchmark result of the CPU-GPU hybrid accelerated query exe-
cution engine. This micro-benchmark result serves as the primary basis for the design of the
scheduler in the next chapter.

In Chapter [5] the architecture design and implementation detail of the scheduler will be
presented. Morever, we will give an evaluation of the scheduler with the error metrics and the
speedup ratio between using GPU acceleration and not using GPU acceleration.

In Chapter [6| we will answer the research questions that come up in Chapter [I] list the
contributions and discuss future work.

Chapter 2

Background

Chapter [2] contains detailed background information about the CPU-GPU hybrid computing,
Apache Arrow, Acero, and Rapids libcudf.

2.1 CPU-GPU hybrid computing

Due to their massive parallel computing power, GPUs are considered as next-generation high-
performance computing engines with a large amount of CUDA cores, high bandwidth device
memory, and scalability.

One of the first efforts to use GPUs to accelerate data-centric applications is to preload the
complete dataset in GPU memory [5]. This approach has the advantage of vastly reducing data
transfers between host and device. In addition, since the GPU RAM has a bandwidth that is
roughly 16 times higher than the PCle Bus (3.0), this approach is very likely to significantly
increase performance. It also simplifies transaction management, since data does not need to be
kept consistent between CPU and GPU.

However, the approach has some obvious shortcomings: First, the GPU RAM (up to =~ 80
GB, NVIDIA ampere A100, the 80GB version) is rather limited compared to CPU RAM (up to
~ 4 TB, CPU AMD EPYC 7702P) as shown in Figure 2.1} meaning that either only small data
sets can be processed, or that data must be partitioned across multiple GPUs. Second, a pure
GPU database cannot exploit full inter-device parallelism, because the CPU does not perform
any data processing.

Moreover, Both CPU and GPU have distinct advantages tailored to specific applications. As
said, GPUs were initially used for graphics rendering, which means their multitude of cores are
optimized for executing simple operations concurrently. GPUs leverage SIMD (single instruc-
tion, multiple data) to explore massive parallelism. On the other hand, the CPUs, despite having
fewer cores, are more complex and are adept at tasks that resist parallelization, such as serial
tasks or those with intricate control flow instructions [6]. This distinction is highlighted in sub-
figures (a) and (c) of Figure[2.1] As a result, relying solely on a CPU or GPU for processing can
lead to considerable performance pitfalls in various contexts.

Based on more recent research [7, 8], GPUs are generally viewed as co-processors to over-
come the above drawbacks. The emergence of hybrid CPU-GPU query engines, which distribute

5

2. BACKGROUND

w 19.5 1448 s 1.34 4096

By) =9

o i Q 0.705 =]

s | 6.86 = s IS

h] 19 & - 40

(il 0 qg —
CPU GPL CPU GPU CPU GPU CP1T GPU

(a) Aggregate performance (FP32) (b) Memory bandwidth (¢ Serial performance (FP32) (d) Memory size

Figure 2.1: Performance comparison between a CPU AMD EPYC 7702P and a GPU NVIDIA
ampere A100 [6l p. 3]

certain operations to GPU cores while retaining some on CPU cores, has gained traction lately,
driven by the growing need for enhanced computing performance.

However, a challenge with this hybrid strategy is the frequent data transfers from the CPU
to the GPU via PCle for each query. Transferring data over PCle can be nearly two orders of
magnitude less efficient than the GPU memory bandwidth and typically lags behind the CPU
memory bandwidth. As a result, the PCle transfer time becomes the bottleneck and limits per-
formance gains.

2.2 Arrow

Apache Arrow [9] is designed to boost building high performance applications adept at handling
and transferring vast datasets. It aims at enhancing the performance of analytical algorithms and
the efficiency of moving data between different systems or programming languages.

At the heart of Apache Arrow is its in-memory columnar format — a standardized, language-
independent specification for in-memory representing structured, tabular datasets in-memory.
This column-centric structure enhances data processing efficiency, as it often circumvents need-
less data transfers in analytic tasks compared to row-wise format. Morever, it paves the way
for vectorized operations that can process multiple values simultaneously. Arrow further boasts
the capacity for zero-copy data sharing across diverse programming languages and systems,
markedly enhancing data transfer performance.

Several studies have highlighted the benefits of using the Arrow format for data processing
and transfer. In the context of data processing, research has been made to use Apache Arrow
to expedite in-memory genomics data processing [10]. In terms of data transferring, Arrow
Flight—a service that conveys data across networks in the Arrow format—can realize significant
enhancements, achieving up to an order-of-magnitude improvement [11] for query frameworks
such as Dremio.

Apache Arrow is made for standardization. In the absence of a standard columnar data for-
mat, every database and language would need to devise and implement its own unique internal
data structure, leading to inefficiencies in data storage. Furthermore, transferring data between
different applications with different data formats entails expensive serialization and deserial-
ization operations. Such processes contribute to significant overheads, with serialization and
deserialization consuming more than 80% of the time spent in accessing data [[11]. Additionally,
common algorithms must often be reimplemented for each data format.

6

2.2. Arrow

Parquet

Cassandra

Figure 2.2: High overhead resulting from communicating between big data platforms [9]

Impala

Parguet

Cassandra Kudu

Figure 2.3: In-memory communication using the Apache Arrow standardized data format [9]

Arrow’s in-memory columnar data structure provides a ready-made answer to these chal-
lenges. Systems incorporating or compatible with Arrow can exchange data with minimal over-
head, given that all of them adopt a consistent memory structure. There’s no need to craft
custom connectors for every distinct system. Beyond these efficiencies, a uniform memory for-
mat encourages the consistent use of algorithm libraries, even spanning different programming
languages. Figures[2.2]and 2.3]illustrate the efficiency gains when using the Apache Arrow data
format to bridge communication among various big data platforms.

2. BACKGROUND

2.3 Acero

Acero [12], a subset of the Apache Arrow project, addresses the challenge where repeatedly call-
ing compute functions directly isn’t practical due to memory or computational time constraints.
Such actions lead to the complete materialization of intermediary data. The Arrow C++ imple-
mentation introduces Acero, a streaming query engine, to allow the formulation and execution
of computations, even with arbitrarily large inputs, optimizing resource consumption. Acero is
adept at OLAP tasks and gains an edge with zero serialization overhead with the Arrow memory
format.

Acero is designed to be a query execution engine rather than a fully-featured query engine.
This implies it lacks features like a query parser and optimizer, concentrating solely on com-
putations without serving as a complete database server or solution. This targeted emphasis
renders Acero versatile, adaptable, and reusable. While it can cater to classical relational alge-
bra, Acero is also equipped to handle advanced functionalities such as window functions and
unique domains like time series.

To gauge Acero’s performance, we’ve run a benchmark result of TPC-H Q1 for Acero, a
recognized metric for assessing query performance, presented in Table 2.1] The TPC-H QI
benchmark script can be found within Acero’s codebase|'| For comparison, we’ve also provided
the results for PostgreSQL and SparkSQL [13]] at scale factors of 1 and 10. Table [2.1] presents
the performance times in milliseconds for the TPC-H Q1 benchmark at scale factors of 1 and 10
for Acero, PostgreSQL, and SparkSQL. PostgreSQL and SparkSQL have significantly longer
execution times than Acero at the scale factor of 1 and 10.

Scale Factor | Acero Time (ms) | PostgreSQL Time(ms) | SparkSQL Time(ms)
1 143 24289 3539
10 1395 241404 22487

Table 2.1: Acero TPC-H Q1 benchmark

Acero implements Substrait “consumer” interface, allowing it to accept a standard Substrait
plan. As Substrait provides an open standard for execution plans, it simplifies the process of
crafting intricate execution plans for Acero. Internally, Acero’s execution plan is represented by
the ExecPlan, which takes the form of a directed graph composed of operators.

In Acero, the building blocks are the operators, known as ExecNodes. Several common
operators are already in place to generate, transform, or consume batches of data (ExecBatch)
in Arrow format. Additionally, an interface exists to develop and register customized opera-
tors. Each ExecNode works with batches received from upstream nodes (its inputs) and, once
processed, forwards these batches to downstream nodes (its outputs) through the graph’s edges.

2.4 libcudf

A primary obstacle in data-centric applications is managing vast quantities of data through suc-
cessive processing stages. This leads to numerous intermediary data modifications that require

Uhttps://github.com/apache/arrow/blob/main/cpp/src/arrow/acero/tpch_benchmark.cc

https://github.com/apache/arrow/blob/main/cpp/src/arrow/acero/tpch_benchmark.cc

2.4. libcudf

LEELIDETES

Copy & Convert

Copy & Convert

Load Data

Figure 2.4: Before CuDF [9]

Read Data

Figure 2.5: After CuDF [9]

further storage and processing. Such intricacies present difficulties when attempting to leverage
GPUs in data science applications.

Moreover, Python has established itself as the de-facto programming language for construct-
ing data processing pipelines and implementing algorithms in the data science realm. Yet, there’s
an absence of a Python API for data manipulation directly on the GPU. This necessitates the use
of CUDA C/C++ for GPU acceleration in data science tasks, complicating the deployment of
these applications on GPUs.

Rapids is motivated by the above challenges. It is an open-source data science platform that
aims to leverage the power of the Arrow format as well the power of GPUs. In order to address
the data movement and transformation challenge in data science applications, which limits GPU
acceleration potential, data movement overhead can be reduced using the zero-copy standard
Arrow in-memory format.

2. BACKGROUND

Therefore Rapids comprises multiple libraries for data processing and analysis. One notable
inclusion is cuDF, a Python-based data frame library optimized for GPUs and compatible with
the Arrow format. As illustrated in Figure [2.4] prior to cuDF’s introduction, diverse program-
ming languages and systems, whether based on CPUs or GPUs, necessitated data copying and
conversion, leading to burdensome serialization and deserialization overheads. However, with
Apache Arrow offering a standardized format, data sharing becomes seamless and is depicted
in Figure 2.5] Furthermore, cuDF’s Pandas-like API is intuitively designed for data scientists,
offering enhanced GPU-driven data processing speeds.

libcudf serves as the foundational C++ library underpinning CuDF. This C++ library facili-
tates GPU-based data manipulation operations such as loading, joining, aggregating, and filter-
ing. At its core, a GPU DataFrame is columnar data implemented in Arrow memory format.
libcudf is built based on CUDA, a general-purpose programming model provided by NVIDIA,
employs RMM for memory management. It’s strategically designed to leverage the full power
of GPU cores, ensuring optimal throughput.

10

Chapter 3

Core concepts

Chapter 3 further defines and discusses important concepts used in the context of this thesis, i.e.
what is a query execution engine, what is the operator model in the query execution engine, and
what a scheduler is in a query execution engine.

3.1 Query execution engine

Data management is an advanced field with many interrelated concepts. In this section, we aim
to provide a definition of the terms “database”, ”query engine”, and “query execution engine”,
which will help use these terms consistently throughout the remainder of the text.

Figure [3.1| presents a block diagram of various components included in a database manage-
ment system. A database management system is a software stack used to store, manage, query,
and retrieve data stored in a database, which we will abbreviate as “database” in the following
text. In general, it includes three main components: client communication manager, query en-
gine, and transactional storage manager. In addition, other components are also included such as
the process manager and many others. A database efficiently manages and stores an organized
collection of data that is stored in a computer system and is used to support various applications
and business processes.

A query engine, on the other hand, is a software component that allows users to query in a
database and retrieve specific information.

Database users interact with the database through the client communication manager and
submit queries. The query engine processes these queries, and the transactional storage manager
interacts with the storage to manage transactions.

In simpler terms, a database is like a warehouse where data is stored, while a query engine
is like a search engine that allows users to find specific information within that warehouse.
The query engine interacts with the data in the database by sending queries to it and receiving
responses based on the data stored in the database. In this sense, a query engine can be part of a
database, and replaceable by another query engine. Query engines give us the power to exploit
massive data and analyze them. The goal of the query engines is to process the input query,
executes the query, and give the answer to the query.

11

3. CORE CONCEPTS

Database

Client Communication Manager

Query Parser
Logical Plan

Query Optimizer Shared

Process Components
Manager Physical Plan and
X Utilities

CQuery Execution Engine

Query Runtime

Transactional Storage Manager

Figure 3.1: Database vs query engine vs query execution engine

Query engines are complex systems themselves that have many components including the
parser, the optimizer, the execution engine, and runtime. Depending on the specific implemen-
tation of the execution engine, other components can be included as well.

Figure [3.2]shows how the Spark query engine process a query, which consists of two stages:
front end and back end. In the front-end stage, the query parser parses the SQL query and only
checks for SQL syntax errors. In case of a syntax error, an exception will be raised, otherwise
the parser generates an unresolved plan that represents the query. The analyzer then analyzes
the plan against the data sources to resolve issues such as column name, table name, etc, and
if resolved correctly, it generates a logical plan. Then, the query optimizer applies a number of
optimization rules (such as filter combination and push down) to reduce the complexity of the
plan. This results in an optimized logical plan.

And in the back-end stage, the planner does the physical planning, selects an optimal phys-
ical plan according to a cost model. Finally, the query execution engine executes the physical
plan.

The query execution engine is a component of the overall query engine. It processes a phys-
ical query plan, represented as a directed acyclic graph comprising execution operators. Each

12

3.2. Operators

Parser - Analyzer . Optimizer - Planner Cuery

m\ ; p . i Execution
o
Unresolved ' Optimized J Physical 2 Selected RDDs
Logical Plan | Logical Plan g Logical Plan plans E —» Physical Plan (DAGS)
7]
o
©

Figure 3.2: Phases of query planning in Spark SQL [14! p. 6]

operator, whether it’s a ’group by’, ’filter’, ’join’, or another type, either produces, transforms,
or consumes the data it encounters. As data traverses the edges of this graph, it is acted upon by
these operators.

Acero [12] is such a query execution engine. Table [3.1] includes a comparison between
Acero and other data management and processing systems to show common and unique aspects
of Acero.

Acero and Velox are query execution engines, which means they focus only on the com-
pute, receiving a physical plan as input, and executing it. Both do not have a query optimizer
but expect to receive an optimized plan as input. These specific two engines are both arrow-
native, however, Velox is owned by Facebook and implemented its own Arrow utilities, Acero,
a sub-project of Apache Arrow, is integrated within libarrow . Even though any Apache Ar-
row implementation can work with the C data interface, opting for non-default implementations
might introduce performance overheads. Therefore, relying solely on the default libarrow im-
plementation might lead to more compact binaries and potentially superior performance.

SparkSQL is a query engine capable of processing SQL queries and possesses its own query
optimizer. Unlike traditional RDBMS, Relational Database Management System, SparkSQL
does not provide support for ACID (Atomicity, Consistency, Isolation, Durability) properties,
which guarantee data integrity despite errors. DataFusion is another query engine that supports
computing on Apache Arrow in-memory data format.

PostgreSQL and DuckDB are both examples of RDBMS that provide support for the ACID
properties of database transactions. However, DuckDB also includes support for the Apache
Arrow in-memory data format, allowing for efficient data exchange with other systems. On the
other hand, PostgreSQL inherently employs a row-wise storage approach, wherein data is stored
sequentially by rows, as opposed to columnar storage systems that organize data by columns.

3.2 Operators

Operators in a query execution engine are the building blocks of query processing. They are
the basic computational units that perform specific operations on data, such as filtering, sorting,
aggregation, joins, and projections.

Table lists 9 of the most common types of operators implemented in a query execution
engine. Each engine implements these operators internally using specific functions. In Acero,

13

3. CORE CONCEPTS

Table 3.1: Comparison of data management and processing systems

Query]
Data system | Definition Input Arrow | Columnar | Opti- Distributed Streaming ““_c WWME&EB ACID
mizer guag
Acero A.M:oQ exect Physical Yes Yes No No Yes C++ No
tion engine Plan
Velox O.:oQ exect Physical Yes Yes No No Yes C++ No
tion engine Plan
SparkSQL Query engine | SQL No Yes Yes Yes Yes Scala No
DataFusion Query Engine | SQL Yes Yes Yes No Yes Rust No
Object-
PostgreSQL oriented SQL No MM%V\ de- Yes No itself No C Yes
RDBMS
Table-
DuckDB oriented SQL Yes Yes Yes No Yes C++ Yes
RDBMS

14

3.2. Operators

each of these functions is called an execution node (or ExecNode). The table also lists the
ExecNode function name corresponding to the listed operator.

Table 3.2: Common operator types and corresponding Acero ExecNodes

Operator

Description Acero ExecNode
type
A starting point for constructing a streaming execution source
plan, involving sourcing data from a file, iterating through ’
Source) ..) table_source,
an in-memory structure, or acquiring data via a network
. scan
link
Provides an option to define data filtering criteria, select-
Filter ing rows for which the specified expression holds true. filter
.. Merges multiple tables or data streams using a shared at- .
Projection . project
tribute.
. Calculates aggregate metrics like count, sum, average,
Aggregation . aggregate
max, or min for a set of rows.
. Orders the rows in a dataset or data stream according to .
Sorting . . order_by_sink
specified attributes.
. Combines two or more tables or data streams into a single .
Union union
table or data stream;
. . Splits data into windows based on time or specific criteria | .
Windowing . . in progress
and performs operations on each window.
The join operation merges rows from two or more tables
by aligning them on a shared field or group of fields, and
Join it’s a standard procedure in relational databases and vari- | hash_join
ous data processing platforms.
. s . . s sink,
The execution plan’s concluding step yields the query’s . .
) . . . consuming_sink,
. ultimate result set. The sink operation takes in the output .
Sink order_by_sink,

from prior steps in the plan and delivers the final outcome
to the user.

select_k_sink,
table_sink

Operators are organized in a physical plan, which represents the sequence and interdepen-
dence of the operators essential for executing a specific query. Query execution engines interpret
the physical query plan as a directed acyclic graph, with each node representing an operator. Ev-
ery query operator may possess zero, one, or several input and output operators. These operators
are classified into three primary categories based on their usage, as referenced in [[15]].

* Producer operators like the scan operator to generate a dataset from a source. They do
not have input operators, they stand as the primary task initiators in a plan. Their function
is to organize data retrieval from sources like in-memory tables, network sockets, or disks.
They segment the data into batches, allocate a task for each batch, and forward the data to
their subsequent output nodes.

* Transformer operators Such as the filter, project, order_by_sink, hash_join operators,

15

3. CORE CONCEPTS

these transform data from one set to another. They process data in batches, receiving each
batch from their preceding input operators.

* Consumer operators like the sink or sum aggregate operator to apply the aggregate op-
eration to the collection and produce a result.

Apart from being categorized by their usage, the operators can also be classified into two
types

* Computing-intensive operators involve extensive processing even if the data set is rela-
tively small, such as the hash_join operator.

* Data-intensive operators operate on a large data set, like the aggregate operator.

The selection and sequencing of operators play a pivotal role in influencing the performance
of the query execution engine. Consequently, optimizing the query execution plan is an impor-
tant task for query optimization.

Additionally, in a hybrid CPU-GPU environment, the distribution decision for operators is
vital for the query execution engine. As highlighted in the previous paper [16], GPUs are better
suited for compute-intensive tasks over data-intensive ones. Hence, redirecting operators that
demand extensive computation on limited data sets to the GPU is a key strategy.

3.3 Scheduler

GPU can not accelerate all operators at all scenarios, not just because some operators have more
logic that make them hard to be paralleled. But also because of additional materialization or
data transfer overhead between CPU and GPU, even for the same operators, the data size and
the current location of data will also affect the effect of GPU acceleration.

In a CPU-GPU hybrid query execution engine, the scheduler is responsible for managing the
execution of queries on both CPU and GPU resources in a coordinated and efficient manner.

The purpose of the scheduler in a CPU-GPU hybrid environment is to distribute the operators
to the appropriate resources (i.e., CPU or GPU) to optimize performance and throughput. For
example, certain operators may be more efficiently executed on a CPU, while others may benefit
from GPU acceleration.

In a CPU-GPU hybrid query execution engine, the scheduler needs to consider various as-
pects when assigning resources and orchestrating query execution. This includes the current
availability of CPU and GPU resources, the nature of the query and its demands, as well as the
system’s setup.

The scheduler, through smart distribution of operators between the CPU and GPU, ensures
optimal query execution with minimal resource contention and bottlenecks. The objective is to
maximize query performance and throughput by harmoniously utilizing the advantages of both
CPU and GPU.

One way of categorizing the scheduler is by the scheduling time [[6]. The scheduling time
indicates when a task is allocated to a specific processor by the system. This can either be

16

3.3. Scheduler

static, predetermined prior to program execution, or dynamic, adjusted as the program runs. The
processor usage partially determines the scheduling time. In specialized systems, scheduling
is invariably static, defined by the system’s design. On the other hand, generic systems might
adopt either a static or dynamic approach. There’s also the possibility of a hybrid scheduling
system that initially makes static decisions regarding CPU and GPU resource allocation during
query optimization but adjusts them dynamically during the query’s execution, influenced by
factors like data locality and processor workload. The underlying rationale for these scheduling
decisions stems from the system’s scheduling strategy, which we delve into subsequently.

Another way of categorizing the scheduler is by the scheduling strategy [6]]. The scheduling
strategy outlines the criteria a query processing system uses when assigning a task to a partic-
ular processor. Again, processor usage plays a role in shaping this strategy. While specialized
systems base their scheduling decisions predominantly on the task’s characteristics, generic sys-
tems consider these traits too. However, generic systems also incorporate additional metrics,
such as anticipated task costs derived from a cost model, data locality, and the current load on
the processor.

17

Chapter 4

Methodology

Chapter @] contains the benchmark result of the CPU-GPU hybrid accelerated query execution
engine. This micro-benchmark result serves as the primary basis for the design of the scheduler
in the next chapter. Acero is a query execution engine running on CPUs, focusing on computing
the data with the Apache Arrow memory format. It takes a physical plan and executes each
operator described in Section [3.2]We intend to utilize GPU acceleration to enhance the perfor-
mance of Acero. As mentioned in the background section, libcudf is a C++ library that underlies
CuDF, and it furnishes a C++ GPU DataFrame library capable of loading, joining, aggregating,
filtering, and manipulating data, built on top of the Arrow memory format.

The operators Acero uses are the same as the compute kernels of the compute functions
of Apache Arrow. We can find computational units in libcudf that correspond to these compute
functions. Moreover, libcudf does some performance optimizations for these operators on GPUs.
One large improvement is with regard to the CUDA memory allocation. Since many query
execution operators require temporary allocations and most libcudf operators are not performed
in place, therefore, there are many column allocations and deallocations. However, cudaMalloc
and cudaFree are expensive operations as they are synchronous processes that will block the
device. libcudf optimizes this by developing RMM (RAPIDS Memory Manager). RMM reduces
the frequent temporary memory allocation overhead by using large cudaMalloc allocation as
memory pools and using streams to enable asynchronous malloc/free.

Therefore, in order to accelerate Acero with GPU, we can leverage the computational units
in libcudf to replace and accelerate the compute functions in Apache Arrow. We first benchmark
the performance of these operators on CPU and GPU separately in order to understand the char-
acteristics of these operators and the maximum potential acceleration rate that can be achieved.
Furthermore, we developed four micro-benchmarks for each operator to take the data transfer
time into account. Later in the next chapter, we will use this result to design and implement an
on-the-fly scheduler to decide, given the current location, data input, and operator type, whether
it is better to distribute the operator to the CPU or the GPU.

19

4. METHODOLOGY

4.1 System setup

This section provides an overview of the system environment used for the study. This infor-
mation is crucial to better understanding the context in which the research was conducted. The
system setup used for the experiments is summarized in Table which provides an overview
of the hardware and software components. It includes the operating system, kernel version,
CPU, GPU, memory, and versions of key software components.

As listed in the table, the operating system used for the study is Ubuntu 20.04.6 LTS, with
kernel version 5.11.0-46-generic. The CPU used is an Intel Xeon Gold 6342 with 11 cores,
while the GPU is an NVIDIA A10. The NVIDIA driver version is 515.43.04. The system has a
total of 86GB of memory available.

The table also lists the version numbers for key software components used in the study.
These include CuDF version 22.08.00, Arrow version 8.0.0, CUDA version 11.7, and GCC
version 9.4.0.

Table 4.1: System setup information

Component Version/Details
Operating System Ubuntu 20.04.6 LTS
Kernel Version 5.11.0-46-generic
CPU Intel Xeon Gold 6342 @ 2.80GHz (11 cores)
GPU NVIDIA A10

GPU Memory 24GB GDDR6
GPU Memory Bandwidth 600 GB/s

CUDA Cores 72

PCle Gen4 Memory Bandwidth 64 GB/s

NVIDIA Driver Version 515.43.04

Memory 86GB

CUDF Version 22.08.00

Arrow Version 8.0.0

CUDA Version 11.7

GCC Version 9.4.0

20

4.2. Benchmarks

4.2 Benchmarks

4.2.1 Local performance of Acero and libcudf

Firstly, we assess the performance of the corresponding compute kernels separately in Acero
and libcudf while only including the execution time (i.e., without data transfer time). We im-
plemented the experiments in C++ by generating a random decimal array with elements ranging
from O to 9 given an array length and applying the same operator type of Acero and libcudf to
the same input array.

The Copy Operator copies the elements from an array in one memory location to another
array in a different memory location. The Filter Operator, as the name suggests, provides an
option to define data filtering criteria based on a given expression. It selects rows where the
given expression evaluates to true. For our experiment, we select the numbers that are smaller
than 3, therefore the result data set will be only 30% of the input array. The Sort Operator sorts
the array in ascending order.

Figure and Figure are the performance measurements of the Copy Operator. Fig-
ure [4.1b]is a zoom-in version of Figure {.Ta| to emphasize the break-even point. The x-axis in
the figure is the array length, which is up to 1e8. We refer to the array length as the data volume
in the following chapters. The y-axis is the time cost in milliseconds.

It can be observed that, when the data volume is small (below 1e5 elements), the CPU Copy
Operator (i.e., the Acero Copy Operator) costs less time than the GPU Copy Operator (i.e., the
libcudf Copy Operator). This is because the GPU has a large overhead as it needs to initiate the
kernel. However, as the data volume increases, when the length of the array is around 1e5, the
GPU Copy Operator outperforms the CPU Copy Operator.

As can be seen in Figures and {.1d] and Figures and [.Tf] the same pattern also
applies to the Filter Operator and Sort Operator, respectively. However, the break-even point
of the Filter and Sort Operators comes much earlier than the Copy Operator at 3e4 and 5e4,
respectively, which means the Filter Operator and Sort Operator on the GPU will outperform the
CPU at a relatively smaller data volume compared to the Copy Operator.

In all figures, the CPU execution time increases much faster than the GPU, although GPU
time does increase slightly in all cases. This results in a rather large acceleration potential for
the GPU on these operators.

Figure .22 and Figure 4.2b| provide a visual representation of the acceleration rate that we
can achieve by using a GPU instead of the CPU. This acceleration rate can be defined as follows:
;;:Z: Lot zjf ij g% g[’; 49 for a given data volume. The figures show that as the data volume
goes up, the acceleration rate of GPU over CPU becomes increasingly prominent since the GPU
initialization overhead becomes marginal compared to the total execution time. The figures also
show that this acceleration rate converges to a specific value that represents the acceleration
potential of the GPU over CPU. When the data volume reaches an amount of around 1e7, the
GPU is able to achieve acceleration of more than two orders of magnitude on the Copy Operator
and Filter Operator. The acceleration curves continue to increase beyond a data volume of
1e8 which is the memory capacity limit of the GPU. This indicates that for these operators,
memory bottlenecks are the limiting factors for the acceleration potential. In contrast, for the
Sort Operator, the figure shows that the acceleration converges towards a value of around 12x.

21

4. METHODOLOGY

Copy Operator

® Copy_cpu Acero LJ

@ copy_gpu LibCuDF 4

350000

300000

250000 4

200000

150000

milliseconds

100000

50000 +

oA

T T T
0.0 0.2 0.4 0.6 0.8 1.0
data volume le8

(a) Copy Operator

Filter Operator

e filter_cpu Acero
500000 4 @ filter_gpu LibCubF

400000

300000

milliseconds

200000

100000

0.0 0.2 0.4 0.6 0.8 10
data volume le8

(c) Filter Operator

Sort Operator

700000 1 ® sort_cpu Acero L]

e sort_gpu LibCuDF ° o

600000

500000 -

400000 -

300000 A

milliseconds

200000

100000

oA

T T T
0.0 0.2 0.4 0.6 0.8 1.0
data volume le8

(e) Sort Operator

Copy Operator

250 4

0
<
2
s
5}
2
g
® copy_cpu Acero
® copy_gpu LibCuDF
0 T T T T
20000 40000 60000 80000 100000
data volume
(b) Copy Operator - zoom in
Filter Operator
500
e filter_cpu Acero
e filter_gpu LibCuDF
400 A °
*®
0
b
|
5
5
&
E
0 T T T T
20000 40000 60000 80000 100000
data volume
(d) Filter Operator - zoom in
Sort Operator
2000
® sort_cpu Acero
1750 4 ® sort_gpu LibCuDF
1500
1250 A
o)
=
2
S
E 1000 A
H .
£ 750 1 L)
]
500 °

T T T T 1
20000 40000 60000 80000 100000
data volume

(f) Sort Operator - zoom in

Figure 4.1: Local operators performance on CPU and GPU

22

4.2. Benchmarks

Potential acceleration rate (Exclude transfer time) o Potential acceleration rate (Exclude transfer time)

@ filter_acceleration []
] e copy_acceleration
@ sort_acceleration

w
&
=)

w
=3
5}

N
@
S

N
=3
S

H
I}
=)

H
15}
5]

v
=}

1+ o filter_acceleration
@ copy_acceleration
'Y ® sort_acceleration

B
.

Potential acceleration rate (Exclude transfer time)

Potential acceleration rate (Exclude transfer time)
w

T T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
data volume le8 data volume le6

(a) Acceleration rate (b) Acceleration rate - zoom in

Figure 4.2: Acceleration rate excluding data transfer time

This indicates the relative difficulty of implementing Sort Operators on the GPU due to the
difficulty of algorithm parallelization as a result of the use of many control instructions in the
algorithm. This means that compute bottlenecks are the limiting factors for the acceleration
potential for this operator.

The acceleration figures indicate the large acceleration potential of GPUs for common database
operators. However, these numbers are measured under ideal circumstances without data copy
times, which has to be further investigated to identify a more realistic acceleration potential.

4.2.2 Acceleration with data transfer

In Subsection #.2.1] we measured the operator performance separately with Acero on CPU and
with libcudf on GPU. The acceleration rates measured in Figure and Figure [4.2b| show how
promising Acero can be accelerated with the GPU.

As mentioned before, to achieve this acceleration, we need to transfer the data to another
location and then transfer the result back. However, the bandwidth of the PCI-¢ bus is relatively
slow and will limit the potential for acceleration. In order to quantify this, for each operator, we
design and implement four micro-benchmarks:

1. micro-benchmark#1 having the data input on CPU and executing the operator on CPU
with Acero

2. micro-benchmark#2 having the data input on CPU, transferring the input to GPU, execut-
ing the operator on GPU with libcudf, and transferring the result back to CPU

3. micro-benchmark#3 having the data input on GPU and executing the operator on GPU
with libcudf

4. micro-benchmark#4 having the data input on GPU, transferring the input to CPU, execut-
ing the operator on CPU with Acero, and transferring the result back to GPU

23

4. METHODOLOGY

milliseconds

milliseconds

Copy - input on the GPU

® Copy - micro-benchmark#4 GPU_CPU_GPU
@ Copy - micro-benchmark#3 GPU .

800000 4
600000 4
400000 4
200000 4
oA
00 02 0a 06 08 10
data volume 1le8
(a) Copy Operator from GPU
1e6 Filter - input on the GPU
® Filter - micro-benchmark#4 GPU_CPU_GPU)
101 @ Filter - micro-benchmark#3 GPU
0.8 4
0
2 06
S
&
E 0.4
0.2 4
0.0 4
0.0 02 04 06 08 10
data volume les
(c) Filter Operator from GPU
Sort - input on the GPU
® sort_gpu_cpu_gpu L
500000 1 @ sort_gpu
.‘./
@
400000 /.
#o
@ 3
300000 4 P4
200000 4
100000
o
0 1 2 3 4 5
data volume le7

24

(e) Sort Operator from GPU

milliseconds

milliseconds

milliseconds

Copy - input on the GPU

500
@ Copy - micro-benchmark#4 GPU_CPU_GPU
@ Copy - micro-benchmark#3 GPU
400 4
300 1
.
200 4
P]]) ®_q °®
e® ® so0e° . ee® © °%c00 LI
100 1 .
©e0000000%000000000 °%00e°%0%¢
0 T T T T T
1000 1500 2000 2500 3000 3500 4000
data volume
(b) Copy Operator from GPU - zoom in
Filter - input on the GPU
1000
® Filter - micro-benchmark#4 GPU_CPU_GPU
@ Filter - micro-benchmark#3 GPU
800
600
400 1
2001
8gsesseerneeentloeccccccccons
] T T y T T
1000 1500 2000 2500 3000 3500 4000
data volume
(d) Filter Operator from GPU - zoom in
Sort - input on the GPU
1000
® sort_gpu_cpu_gpu
e sort_gpu
800 4
600
400 +
200

2500 3000 3500

data volume

(f) Sort Operator from GPU - zoom in

Figure 4.3: Micro-benchmarks with data transfer from the GPU

4.2. Benchmarks

milliseconas

millseconads

milliseconas

Copy - input on the CPU

® Copy micro-benchmark#2 CPU-GPU-CPU L]
350000 [)
@ Copy micro-benchmark#1 CPU
300000
250000
200000
150000
100000
50000 +
oA
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
data volume le8
(a) Copy Operator from CPU
Filter - input on the CPU
@ Filter micro-benchmark#2 CPU-GPU-CPU
500000 1 @ Filter micro-benchmark#1 CPU
400000
300000
200000
100000
0
0.0 0.2 0.4 0.6 0.8 1.0
data volume le8
(c) Filter Operator from CPU
Sort - input on the CPU
300000 1 g sort_cpu_gpu_cpu F 4
e sort_cpu
250000
200000 f
150000 -
100000 o
50000 -
0
T T T T T T
o] 1 2 3 4 5

data volume le7

(e) Sort Operator from CPU

milliseconds

milliseconds
-
G
o
s

Copy - input on the CPU

50000
40000 -
30000 +
20000 1
10000 'Y
Copy micro-benchmark#2 CPU-GPU-CPU
Copy micro-benchmark#1 CPU
T

T T T T
0.25 0.50 0.75 1.00 125 1.50 175 2.00
data volume le7

(b) Copy Operator from CPU- zoom in

Filter - input on the CPU

1000
@ Filter micro-benchmark#2 CPU-GPU-CPU
@ Filter micro-benchmark#1 CPU L]
800 4 []
[
.
8 600 4 N
3 b4 .
T 4001 ~ ol
£ 0 %" .*l*.) [
° °
200
0 T T T T
20000 40000 60000 80000 100000
data volume
(d) Filter Operator from CPU - zoom in
Sort - input on the CPU
3000
® sort_cpu_gpu_cpu
e sort_cpu
2500
2000

=
o
o
S

T T
0.2 0.4 0.6 0.8 1.0
data volume le6

(f) Sort Operator from CPU - zoom in

Figure 4.4: Micro-benchmarks with data transfer from the CPU

25

4. METHODOLOGY

In Figure @], we measure micro-benchmark#3 (red line) and micro-benchmark#4 (blue
line). These benchmarks show the cases where the data is originally located on the GPU. For
all three operators we measured, micro-benchmark#3 costs less time than micro-benchmark#4
(starting at a similar time for small data volumes), with the difference becoming only larger with
the increase of data volumes. This can be explained by the fact that taking data copy time into
consideration in combination with a slower CPU execution leads to lower total execution times.
Based on these results, we can conclude that when the input data is located on GPU, it almost
always costs less time to execute the operator on GPU for these three operators except for very
small data volumes. This suggests the data transfer overhead is large enough that if we already
have our input data located on the GPU in one node of the query execution plan, we should
have as many consecutive operators executed on the GPU as possible. As this is the query-level
optimization that should be improved in the query optimization phase, it is out of the scope of
our operator-level optimization in the execution phase.

In Figure 4.4a] we show micro-benchmark#1 (blue line) and micro-benchmark#2 (red line)
for the Copy Operator. In Figure [d.4a) we can observe that though micro-benchmark#2 eventu-
ally shows an advantage over micro-benchmark#1 for the Copy Operator, it is not as apparent as
in Figure 4.Ta| which does not include the data transfer time over the PCI-e bus.

Figure4.4b|is a zoom-in version of Figure 4.4a) which indicates that for the Copy Operator, at
around le7, micro-benchmark#2 starts to over-perform micro-benchmark#1. That means with
the same amount of data volume, if the input data is originally located on the CPU when the
length of the data volume is over around 1e7, it is better to distribute the Operator to GPU in
order to have less overall time cost, even though that will include the overhead of transferring
the input data to the GPU and then transferring the result data back.

The break-even point where the GPU execution starts to over-perform CPU execution at 1e7
comes much later than 1e5 which is the break-even point we measured in Figure [4.Tb| where we
do not consider data transfer back and forth and only consider the local performance.

For the Filter Operator and Sort Operator, we can also observe that the data transfer time
reduces the potential acceleration achieved on the GPU due to data transfer delays, though it
is not that obvious as it is for the Copy Operator. Even though it includes the transfer time
over PCI-e bus, micro-benchmark#2 still has a significant advantage over micro-benchmark#1
as shown in Figure and Figure The break-even point at 7e4 in Figure and 5e5 in
Figure {.41] is not that much later than 3e4 in Figure f.1d| and 5e4 in Figure 4.1f] Compared to
the Copy Operator, this break-even point takes place two orders of magnitude later in time.

The results in Figure 4.3] show that as long as we have the data located on the GPU, then it
is always better to execute the operators on the GPU itself, which will result in increasing the
acceleration rate. On the other hand, Figure @ shows that if the data is located on the CPU,
then we need to have a more detailed acceleration model to evaluate the acceleration potential
of the GPU.

26

4.3. Acceleration models

4.3 Acceleration models

In order to include data transfer times (from CPU to GPU and back) into consideration in the
calculation of the potential acceleration, we define the real acceleration rate as:

e f
Real acceleration rate & — P “4.1)
t1;+124py +13,

where
* t.pu: the operator execution time on CPU.
t1;: the transfer time of input data from CPU to GPU over the PCI-e bus.
* 24,4 the operator execution time on GPU.

* t3,: the transfer time of output data from GPU to CPU over the PCI-e bus.

Real acceleration rate (Include transfer time) Accelerate Rate (Include transfer time)

@ filter_acceleration ® filter_accelerate
® sort_acceleration ® sort_accelerate
| @ copy_acceleration

@ copy_accelerate

Real acceleration rate (Include transfer time)
Accelerate Rate (Include transfer time)

T T T T T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.25 0.50 0.75 1.00 125 1.50 175 2.00
data volume le8 data size le7

(a) Real acceleration rate (b) Real acceleration rate - zoom in

Figure 4.5: Real acceleration rate including data transfer time

Figure [4.3] visualizes the real acceleration rate, i.e. the acceleration rate including the data
transfer time of the Copy Operator, Filter Operator, and Sort Operator. From the information
conveyed in Figure[4.5] we can see that all three operators potential acceleration rates are limited
largely by the PCI-e bus transfer time, which are reduced from over two orders of magnitude to
an acceleration range between 1x and 5x. All tested operators and their real acceleration rates
exhibit a pattern of ramping up from zero and converging to a constant value as the amount of
data increases.

We introduce a model to try to reason about the pattern of the acceleration rate and perfor-
mance bounds for our hybrid CPU/GPU execution engine shown in Figure [d.5a] as well as why
different operators converge to different acceleration rates. The model is defined as follows.

tcpu = Lsys * (N * Fepy * GCPU) (42)

where

27

METHODOLOGY

* Lgy,: the system load.
* N: data volume, i.e., the length of the input data array.

* Fepy: the CPU cycles needed for one unit of data volume.

. . . . 1
* Pcpy: how much time is needed for one CPU cycle, i.e &pye quency-Number of CPU Cores

tl; = Lsys *N*PPCIe 4.3)

where
* Lgy,: the system load.
* N: data volume, i.e., the length of the input data array.

. 1
* Ppcy,: how much time is needed to transfer one unit of data volume, i.€ percpandwidn

t2gpu = Lsys * (TinitGPU + N * Fgpy >kPGPU) (44)

where

Lyy: the system load.
e T.ircgpu: the time cost to initialize the GPU kernel.
* N: data volume, i.e., the length of the input data array.

* Fepu: The GPU cycles needed for one unit of data volume.

1
umber of GPU Cores

* Pgpy: how much time is needed for one GPU cycle, i.e Gprpe quencysN

t3, = sys ¥ OC*N*PPC[e 4.5)

where

28

* Lyy: the system load.

* o: the dynamic data-related parameters, such as cardinality and selectivity, which affects
the result data set. previous studies [17, [18] have provided many ways to estimate this
runtime operator-specific dynamic multidimensional parameters. According to that, we
assume that these parameters can be obtained as input.

* N: data volume, i.e., the length of the input data array.

. 1
* Ppcj,: how much time is needed to transfer one unit of data volume, i.e PCLe bandwidth

4.3. Acceleration models

tcpu

Real acceleration rate & ——<P*
t1;+124p, +13,

_ Lgys % (N * Fepy * Gepy)
Lyys % (N * Ppcy, + Tinisgpru + N * Fgpy * Ggpy + 0 N * Ppcy,)
simplified Fepy * Pepu

(4.6)

- Tini;gPU + Fopu * Popy + (14 @) * Ppcy,

We assume the system load Lyy,, though dynamic, equally affects all stages of the process,
therefore is simplified in Equation 4.6]

When N — O, T’"’}Vﬂ — oo, the denominator of Equation +oo, therefore the real
acceleration rate — 0. As N increases, T”“;Vﬂ decreases, the real acceleration rate ramps up;
When N — +oo, T’”‘;\Jﬂ — 0,

converges to Fepu * Pcpu
——— Creal = 4.7)

Real acceleration rate
Fopu * Popy + (14 @) % Ppcy,

In this equation, we can identify two types of parameters, operator-specific, and hardware-
specific.

e operator-specific constants: Fcpy, Fgpy, O

* hardware-specific constants: Pcpy, Popu, Ppci,

Therefore, the common pattern shown in Figure that the real acceleration rate ramps
up from zero and converges to a constant as the data volume increase can be explained by this
model.

In order to model the ideal potential acceleration rate for the different operators excluding
data transfer time, as shown in Figure@ we define a similar model as follows

. . def I¢
Potential acceleration rate = —-2%

Tepu
Lgys % (N Fepy * Gepy)
Lgys * (Tinzgru + N * Fgpy * Ggpu)
simplified Fepy * Pepy

" Ticru (4.8)
S+ Fepu * Popu
The potential acceleration rate will converge to
)) st Fepy % P,
Potential acceleration rate ———s 2 C potential = “CrUTICRU 4.9)

Fepu * Pcpu

Though in Figure[4.2] with our maximum experiment data volume, the potential acceleration

has not quite converged yet due to the memory limit of the GPU, can show a trend that ngtrém a <

29

4. METHODOLOGY

le ;ltfn’” a < Cgsfzﬁ .- Since Equation ?? contains operator-specific constants, it also explains why
different operators converge to different constants.

Intuitively, we know the Sort Operator has the highest number of instructions and branches.
Acero implements the Sort Operator as an O(n) counting sort when the data range is small and
as an O(n logn) std::stable_sort comparison-based sort for a bigger data range. The second is the
Filter Operator, and the last is the Copy Operator which is an all-memory operation. This can
be verified in Figure [4.6a) and Figure 4.6b| that both on CPUs and GPUs, Sort Operator takes the
most execution time, the second is Filter Operator, and the last is Copy Operator.

The GPU is a specialized processor and is built with a different philosophy from the CPU.
CPUs are more latency-focused while GPUs are throughput-focus. To achieve high through-
put, GPUs have many more cores that they are able to implement by reducing the size of each
core, making them much simpler. At the same time, in order to reduce the power consumption
of all these cores, they run slower than each core on the CPU so that it consumes less power.
In contrast, each core of the CPU is more complicated with a longer pipeline, more registers,
larger caches as well as branch prediction capabilities, so that it can run complex code effi-
ciently. Therefore, GPUs can accelerate parallelizable tasks better, while CPUs are better for

those tasks that are hard to parallelize or involve a lot of control flow instructions and branches
. . . FSort FFiIter FCUP)'
in the algorithm. That is the reason why -0 > FCF'ZZ?” > F%‘Zzy,
GPU GPU GPU
Filter CCOP)’

; : : Sort
hardware-specific constants, it explains C %0 ./ < C, 000 < Cotoniar-

When considering the data transfer time, the ideal potential acceleration rates (Cporenrialr) are
scaled down by different degrees with a ratio (D) to reach the real acceleration rates (Cyey;).

and because Pcpy and Pgpy are

. def C otential
Downgrade ratio D = —22“4

Creal
simpliga (14 o) * Ppcy, 4.10)
Feru * Pcru
operator execution time on CPU - Acero operator execution time on GPU - LibCuDF
3000001 o copy_cpu Acero F 4 300001 ® copy_gpu - LibCuDF ".

250000

200000

milliseconds

100000 -
50000 -

04

(a) CPU/Acero execution time comparison

30

150000 4

o filter_cpu Acero
® SOrt_cpu Acero

data volume

le?

milliseconds

25000

20000 -

15000

10000 1

5000 A

e filter_gpu - LibCuDF
® sort_gpu - LibCuDF

data volume

T
5
le7

(b) GPU/libcudf execution time comparison

Figure 4.6: Operator execution time comparison

4.4. Other operators

tli - input data transfer time - CPU to GPU t30 - result data transfer time - GPU to CPU
@ copy_tli . ® copy_t3o
00001 @ fiterti ° , s0000{ ® filter_t3o °
e sort tli T J e sort t3o
Y it)
o
o 40000
30000 'f"

*®
[4

30000 -

20000 4

milliseconds
milliseconds

20000 +

10000
10000 -

T T T T T T T T T T T T
0 1 2 3 4 5 o 1 2 3 4 5
data volume le7 data volume le?

(a) tlo - Input data transfer time comparison - CPU (b) t30 - Result data transfer time comparison -
to GPU GPU to CPU

Figure 4.7: Data transfer time comparison

From Equation4.10} we can note that there are two parts that affect D. One is o, the dynamic
data-related parameters that affect the data volume of the result data set. In our example, o of
Copy and Sort Operator is 1, but o of Filter Operator is 0.3 because the selectivity of Filter
Operator is 0.3, which is shown in Figure So the acceleration rate of the Filter Operator is
downgraded less fast than other operators.

The other part is %’ which indicates the proportion of data transferring time compared
with the GPU operator execution time. Because GPU Sort Operator execution time is one order
of magnitude larger than GPU Copy and GPU Filter Operator, its real acceleration rate decreases

relatively less than the two other operators. These two factors together result in C<°% < €507 <

Fils real real
ilter
Creal

4.4 Other operators

Some operators Acero uses are the same as the compute kernels of the compute functions of
Apache Arrow. Therefore in Chapter[d] we found computational units in libcudf that correspond
to these compute functions and performed the micro-benchmarks.

However, it is worth noting that some Acero operators can solely be executed within a query
plan. Given our objective to evaluate the GPU acceleration potential of the Arrow Acero query
execution engine at the operator level, we encounter the challenge of tightly integrating libcudf
with Acero in order to accelerate these specific Acero operators. This integration introduces
a higher level of implementation complexity. In the meantime, we also intend to gather mea-
surements that indicate the time required for these libcudf operators. As a result, we performed
and included these measurements of Left Join Operator and Group Aggregate Sum Operator
separately in this section.

Besides, we add the measurement of Scalar Aggregate Sum Operator in this section. This
is because it has a narrower x-range and a smaller data set size (ranging from 0 to 5¢7) than the
operators (range from 0 to 1e8) discussed in Chapter[4]to save GPU time.

31

4. METHODOLOGY

In the end, we compare the libcudf execution time of all the operators we discussed in the
thesis.

4.4.1 Left Join Operator

We constructed two GPU memory tables, each containing a single column of randomly gener-
ated 32-bit integers modulo N, where the length of each column is also N. We join these two
tables on that column with the libcudf operator cudf: :1eft_join. By varying N, we generated
data points depicted in [{4.8a]

It is important to highlight that the Left Join Operator can potentially produce an output
size larger than the input data size when the key is not unique. Consequently, we encountered
a CUDA out of memory error when N exceeded 14264264, while for other operators, we can
have N > 1e8. This underscores the limitation of the libcudf join operator in terms of GPU
memory utilization. Moreover, in a CPU/GPU hybrid query execution engine, dealing with large
result data sizes that need to be transferred back to the CPU can introduce significant overhead
compared to other operators.

Leftjoin Operator AggregateSum Operator

@ left_join_gpu LibCuDF ® aggregate_sum_gpu LibCuDF []

25000

50000 -
20000 -

40000

15000
30000 A

10000

milliseconds
milliseconds

20000

5000 4 10000

T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 12 14 o] 1 2 3 4 5
data volume le7 data volume le7

(a) libcudf Left Join Operator (b) libcudf Group Aggregate Sum Operator
Figure 4.8: Join Operator and Group Aggregate Sum Operator of libcudf

4.4.2 Group Aggregate Sum Operator

We conducted libcudf Group Aggregate Sum Operator on a value column containing N 32-bit
integers ranging from O to 9, with a key column of the same length, consisting of 32-bit integers
spanning from O to 2 i.e. three groups. The results for various values of N from 1 to 5e7
are presented in Figure #.8b] As we can see from this figure as well from Figure .10} Group
Aggregate Sum Operator exhibits the most pronounced dispersion and appears to be the most
adversely affected by cache-related effects. Interestingly, the Group Aggregate Sum Operator
has similar GPU efficiency to the more intricate Sort Operator, yet it falls much behind Scalar
Aggregate Sum Operator in performance. Further discussion of Figure 4.10| about this can be
found in Section A.4.41

32

4.4. Other operators

4.4.3 Scalar Aggregate Sum Operator

We carried out the same four micro-benchmarks as presented in Chapter[d} yielding Figure [4.94]
and Figure 4.9b] Both figures plot data volume on the x-axis against execution time in millisec-
onds on the y-axis. The former figure, Figure considers inputs located on the GPU. From
this, we deduce that for optimal performance, data computation should remain on the GPU as
much as possible when the input is on the GPU, which is the same conclusion in Chapter 4]

Nevertheless, Figure [4.9b] offers a differing perspective. For all operators in Chapter 4]
considering the data transfer times, the GPU eventually surpasses the CPU in performance.
However, this isn’t true for the Scalar Aggregate Sum Operator. Here, even libcudf outperforms
Acero, as illustrated in Figure where the x-axis represents data volume and the y-axis
depicts execution times for both Scalar Aggregate Sum Acero and Scalar Aggregate Sum libcudf
Operators.

Yet, when compared to other operators as shown in Figure #.9d| and Figure {.10] the Scalar
Aggregate Sum Operator is most efficient compared to other operators. Disregarding data trans-
fer times, the libcudf Scalar Aggregate Sum Operator can achieve a 40x speed up than Acero
Operator, as shown in Figure However, when transfer times are included, as seen in Fig-
ure the GPU doesn’t provide any acceleration for the Scalar Aggregate Operator. This
discrepancy can be attributed to the fact that while the potential acceleration rate Cposensiar in
Equation may be greater than 1, the real acceleration rate C,., as per Equation can be
less than 1 when the downgrade ratio in Equation [4.10]is large and when Cpoensiar is relatively
small. The downgrade ratio for Scalar Aggregate Operator is large because the GPU computing
time is very small compared to the data transferring time.

4.4.4 Comparison of operators

In Figure we compare the execution time of libcudf operators. The x-axis represents the
data volume, spanning from 0 to 5e7, while the y-axis indicates the execution time measured in
milliseconds. The execution time needed for these operators, in descending order, is as follows:
Left Join Operator > Group Aggregate Sum Operator > Sort Operator > Filter Operator >
Copy Operator > Scalar Aggregate Sum Operator.

Left Join Operator requires matching keys from two datasets. This involves searching for
each key from one dataset in another, implemented using hash tables. Hash table operations on
GPUs can lead to non-coalesced memory accesses (where memory reads/writes are scattered)
and might not utilize the full parallelism capabilities of GPUs.

Group Aggregate Sum Operator is based on hashing. In our experiment, with 72 CUDA
cores and only 3 groups, there is a potential for underutilization of the available parallel pro-
cessing capacity during the aggregation phase. The operator needs to hash the input into groups,
divide each group into smaller chunks, and assign each chunk to a separate CUDA core. Each
CUDA core will then calculate the sum for its assigned chunk in parallel. Once all cores have
computed the sum of their respective chunks, it needs to sum up these intermediate sums to get
the final sum for the entire group. This process can have random memory accesses, and might
require atomic operations.

33

4. METHODOLOGY

agg_scalar - input on the GPU

® agg_scalar_gpu_cpu_gpu .'
2500007 o agq scalar_gpu]
200000 ?ﬁ
[
@
S 150000 4 L]
=3
S
3
a
E 100000 -
50000 4
04 il
0 1 2 3 4 5
data volume le7

(a) Scalar Aggregate Operator from GPU

agg_scalar Operator

350004 @ agg_scalar_cpu Acero [] '
@ agg_scalar_gpu LibCuDF ‘
30000 - 9
,)
25000 4 /
4 - °
g 20000 +
1
o
2
= 15000 +
E
10000
5000 ®
04
0o 1 2 3 4 5
data volume le7

(c) Local performance of Scalar Aggregate Opera-

tor on CPU and GPU

Potential acceleration rate (Exclude transfer time)

250
?Ef e filter_acceleration
= ® copy_acceleration
& @ sort_acceleration
2 2004 a l I
< gg_scalar_acceleration
©
°
5
% 150
E
@
8
o
§ 100 4
€
u
]
g
8
o 50
]
=
3
2
]
4

data volume le7

(e) Acceleration rate excluding data transfer time -

Scalar Aggregate Operator included

milliseconds

agg_scalar - input on the CPU

® agg scalar_cpu_gpu_cpu []
@ agg_scalar_cpu L 4
40000 ° ()
°
b
30000 A
20000
10000 4
.
oA
0 1 2 3 4 5
data volume le7
(b) Scalar Aggregate Operator from CPU
operator execution time on CPU - Acero
300000 -
® copy_cpu Acero
@ filter_cpu Acero
250000{ @ Ssort_cpuAcero
agg_scalar_cpu Acero
200000
@
]
2
s
% 150000
E
100000
50000 4
0 - T T .
0 1 2 3 4 5
data volume le7

(d) Execution time of Acero operators - Scalar Ag-

gregate Operator included

Real acceleration rate (Include transfer time)

filter_acceleration
sort_acceleration
copy_acceleration
agg_scalar_acceleration

Real acceleration rate (Include transfer time)

data volume le7

(f) Acceleration rate including data transfer time -

Scalar Aggregate Operator included

Figure 4.9: Scalar Aggregator Operator

34

4.4. Other operators

Sort Operator causes scattered memory reads/writes, especially if the data distribution is not
favorable. Some sorting algorithms may also require synchronization steps, especially during
merging phases or when operating on shared data.

Filter and Copy are straightforward Operators. Filtering involves evaluating a condition for
each data item, and copying is just reading from one location and writing to another. Both of
these can be implemented with high degrees of parallelism and coalesced memory accesses.

Scalar Aggregate Sum Operator is the simplest form of aggregation, where values from
the entire dataset are combined. GPUs can efficiently compute this using parallel reduction
algorithms. The data access pattern here is coalescence, making memory access efficient.

operator execution time on GPU - LibCuDF
60000

« filter_gpu - LibCuDF
sort_gpu - LibCuDF

.
500004 + group_sum_gpu - LibCuDF * .
e left_join_gpu - LibCuDf . e "
s copy_gpu - LibCuDF .. /
o
400004 . agg scalar_gpu - LibCuDF o,).’:ﬁ
") . . ’o"‘ ; .
E e e gt g te. -l
. .
8 . . ‘. ‘,ﬁ“ " . . o%
g 3000079 . e et e et T2
= » -
£

data volume le7

Figure 4.10: Comparing the execution time of libcudf operators

35

Chapter 5

Scheduler design and evaluation

In this chapter, the architecture design and implementation detail of the scheduler are presented.
Chapter {4| presents statistical evidence that demonstrates the feasibility of accelerating Acero
using libcudf even when taking into consideration the significant overhead of the PCI-e bus. We
also modeled the real acceleration rate to explain why it ramps up from zero and converges to a
constant as the data volume increase for each operator, and why different operators converge to
different constants.

According to the micro-benchmarks result in Chapter 4] we have the idea that if the original
input data is on the CPU when the data volume is small, it is not worth distributing the operator
to the GPU to execute. Only when the data volume is bigger than a threshold, the GPU can
overcome the data transfer overhead to actually accelerate the operator. However, in real-world
execution, the data volume is not known until the runtime of the operator. Therefore in this chap-
ter, we aim to establish that Acero can be dynamically accelerated with an on-the-fly scheduler
at the operator level in a hybrid CPU-GPU system.

Given that both Acero and libcudf are complex systems that require significant implemen-
tation effort, we designed and implemented a scheduler to simulate the on-the-fly algorithm to
dynamically distribute the operators between the CPU and GPU instead of fully integrating the
libcudf into Acero.

Similar to other frameworks presented in the literature [19]], the scheduler in our study em-
ploys a framework that can learn the execution models for various operators with statistical
methods treating the underlying hardware system as a black box. This approach further allows
for the adaptation of a cost model based on the conditions during runtime. By leveraging this
framework, our scheduler provides a means of dynamically distributing the operators between
the CPU and the GPU on the fly.

5.1 Design

From Section 4.3] we know the estimation of execution time is a complex task since the total
execution time is influenced by many factors. Two of them are dynamic parameters during the
system runtime [19], namely, system load and data characteristics. Due to the inherent difficulty
in modeling these parameters, the process of effectively guiding a scheduling decision between

37

5. SCHEDULER DESIGN AND EVALUATION

CPUs and GPUs becomes challenging, with multiple ramifications. To overcome this issue, the
proposed framework considers the underlying system hardware as a black box and adopts a cost
model that adapts to the runtime conditions.

We define the problem as follows.

If the original location of the input is at the CPU memory, then

{tzcofg =1t if computing on CPU (1) G5.0)

tOPY = (CPU=>GPU 4 4 OPU 4 (GPU=>CPU if computing on GPU (2)

if the original location of the input is at the GPU memory, then

{ltcofﬂ = (FPU=>CPU | 4CPU 1 (CPU=>GPU if computing on CPU (1) 5.2)
tatag =177 if computing on GPU (2)

GPU if 1GP) < thy 5.3
CPU otherwise

where tiCP U=>GPU and tl-GP U=>CPU are time cost for the input data to be transferred from the

original location to the remote location. This input data transfer time is affected by the input
size, the hardware parameters and the system load.

tCPU s the operator compute time of Acero on CPU. is the operator compute time of
libcudf on GPU. In addition to the input size, the hardware parameters and the system load, the
computing time is also affected by the operator specific dynamic multidimensional parameters
such as cardinality and selectivity.

tCPU=>GPU and tGPU=>CPU are time cost for the result or the output data to be transferred
from the remote location to the original location. This output transfer time is affected by the
output size, the hardware parameters and the system load. The output size, in turn, depends on
the operator-specific dynamic data-related multidimensional parameters.

In summary, the total time cost is influenced by: the input size, the hardware parameters, the
system load and the operator specific dynamic data-related multidimensional parameters

We consider the hardware parameters as static and influence all stages. And we assume
the system load to be dynamic, hard to model, hard to measure and hard to influence [19].
Therefore, the problem has been simplified into modeling a black box function for each original
location and remote location combinations. The black box model uses the variables of input size
and operator-specific dynamic data-related multidimensional parameters to estimate the total
time cost. Moreover, previous research [17, [18] has provided many ways to estimate these
runtime operator-specific dynamic multidimensional parameters. According to that, we assume
that these parameters can be obtained prior to scheduling decisions and can be used as input
parameters for the operator execution model learned by our framework.

Therefore, for each combination of the original input location, computing location, and op-
erator, there is a black box function. The input variable of the black box function is the data
volume and the estimated runtime operator-specific dynamic multidimensional parameters, the
output is the estimation of the total time cost. To model these black box functions, various
techniques can be used, for example, using static analytical models or learning-based dynamic
approaches. To be flexible, with less overhead, and make it easier and faster to train, optimize,
and deploy, we opted to use earning-based approaches, specifically, two-degree least squares
polynomial models.

Preferred processor =

GPU
tC

38

5.1. Design

The decision model is then designed as shown in Figure [5.1] During runtime, we know the
current original input location (L,;, which can either be the CPU or the GPU), the Operator O,
the data volume N and the estimated runtime operator-specific dynamic multidimensional pa-
rameters (represented by the array o). There is a model pool for each combination of (L,;, O),
within it, there are two models (M,; .1,M,; 2) to estimate the total time cost for different com-
puting locations (L., L) separately. With each model within the model pool, we can estimate
the total time cost for each computing location (7,4 (Loi, Lc1,N,)) given the data volume N and
o. The decision component then uses Equation Equation5.2|and Equation [5.3[to decide the
computing location L. ; to execute the operator on. We keep track of the real execution time of
that computing location (Zyea(Loi,Lcj, N, o)) and add it into the online dataset for that model.
For every M,; ., there is a corresponding dataset D,; ;. The datasets are initialized during the
first system set up and new data points are added to the datasets during runtime to periodically
retrain the models.

Data volume N Parameters a
Operator O
Model Pool Test(Loi» L1, N, @)
7 »| Decision Component
Model My; 4 Model My; <o ‘
Original Location e e Test(bos L2, N.a)
L A A
oi "
train train
: : TreaiLoi Lei» N, @
1 | Dataset Dy; 1 Dataset Dy o | 14— real(Loi> Loj) Lej
: Datasets

Figure 5.1: Decision model overview

We adopt the modeling workflow described in Figure [5.2] which is similar to the modeling
workflow in this paper [19]]. It includes two phases: the training phase and the execution phase.

The initial training of the operators’ models should be done once the system is set up. At the
initial training phase, we ran the micro-benchmarks discussed in Section 4.2.2| varying the data
volume to get the time measurement for all data points and build datasets for each combination
of (O, Ly, Lcj). These datasets are used to fit the two-degree least squares polynomial models. As
we only want to prove the feasibility of the scheduler, we consider the runtime operator-specific
dynamic multidimensional parameters such as cardinality and selectivity, as fixed.

In the execution phase, we can use the models to guide the scheduling decisions (Figure[5.T).
Given the trained model, we first estimate the time it takes to execute the operator on the both
the CPU as well as the GPU. Then, the processor with the least estimated time will be selected,
and then used to execute the operator. During execution, we keep track of the runtime and add
it to our measurement database. Finally, the new measurement time will be used to periodically
retrain the model to better adapt to the current workload and input set.

39

5. SCHEDULER DESIGN AND EVALUATION

Training phase

A
> Estimate time for CPU/GPU

\ 4
Retrain online periodically Execution Phase Select CPU/GPU

Add measurement [« Execute on CPU/GPU [«

Figure 5.2: Modeling workflow

5.2 Implementation

The actual implementation of the scheduler is presented as a UML diagram in Figure [5.3]
The block diagram shows five different classes: scheduler.Scheduler, models.Operator, mod-
els.Location, models.ExecutionContext, and models.Algorithm. The main class is the Scheduler
Class. A demo code of using this scheduler is as listed below:

nnn

The scheduler use simple 2 degree Least squares polynomial models
to estimate duration given a 'ExecutionContext’
(which consists of four dimension - operator, the current data location, data
size, data parameters)
scheduler = Scheduler() # will load all dataset and first train all models
ctx = ExecutionContext (
operator=Operator.Copy, location=Location.CPU, data_size=500000,
data_parameters=None
)
print (scheduler.schedule(ctx)) # will output the location that takes least
estimate response time

nnn

The scheduler can also online retrain itself periodly, the default retrain period
is after every 10 times of measurements of that algorithm

40

5.2. Implementation

for i in range(10):
scheduler.add_execution_data (Operator.Copy, Location.GPU, Location.GPU, 100,
100, None)
will retrain after 10 times

In Figure we show the UML diagram of the scheduler to illustrate the structure of the
scheduler design. The design comprises five classes, with the scheduler class serving as the
main component. The scheduler class is tasked with initial training, periodic retraining, model
evaluation, and the scheduling of operators (Operator) based on the current execution context
(ExecutionContext). This execution context includes factors such as the current input location
(Location, either the CPU or GPU), data volume, and Operator-specific dynamic data-related
parameters. For every combination of (operator, origin location, and remote location), there ex-
ists a corresponding model paired with a dataset. The Model class is responsible for maintaining
datasets and the models. These models undergo an initial training phase and periodic retraining
as needed and will be used to predict the execution time.

41

5. SCHEDULER DESIGN AND EVALUATION

42

Scheduler

operators: List[Operator]
models: List[Model]

first_setup(cls, values):
retrain(self):
schedule(self, ctx: ExecutionContext):
add_execution_data(self, operator: Operator,
o origin: Location, remote: Location, data_size: int, duration: int,):

Operator Location

name: string CPU
data_parameters: np.ndarray GPU

ExecutionContext

operator: Operator

location: Location

data_size: int = None
data_parameters:: np.ndarray

Model

operator: Operator
origin: Location

remote: Location
dataset: Dataset
model: np.ndarray
online_dataset: Dataset
retrain_period: int = 10

first_train(cls, values):

retrain(self):

predict(self, data_size: int):

add_execution_data(self, data_size, data_paramters, duration):

Figure 5.3: Scheduler UML diagram

5.3. Evaluation of the scheduler

5.3 Evaluation of the scheduler
In this section, we evaluate the scheduler from three aspects:

1. The error metrics of the time estimation models for each micro-benchmark in Chapter [@to
evaluate how well the time estimation model is able to predict the total time cost it needs
for each micro-benchmark.

2. The error metrics of the scheduling decision to evaluate how well the scheduler is able to
decide whether the CPU or GPU is better to execute the operators.

3. The speedup ratio after dynamically distributing the operator work between CPUs and
GPUs with the scheduler.

5.3.1 Time estimation models evaluation

Chapter [3.3]illustrated that for each combination of (operator, original location, remote location),

. !
we execute a micro-benchmark to generate a dataset D' \“"")
o(riginal)

used to train the scheduler models. With each dataset D;((ZZ(ZZI)[)

for each operator that can be
, we trained a corresponding

statistics model Mzgig’;gg) to predict the estimated time cost. The statistics model is a polynomial
regression model with a degree of 2. We visualize these models in Figure [5.4] Figure [5.5]
Figure [5.6] for the Copy, Filter and Sort Operators, respectively. In each figure, subfigure (a)
visualizes the execution time in milliseconds (on the y-axis) for test data points across varying
data volumes (on the x-axis). It further presents the polynomial model fitted to the combination
of (Operator, origin input location=CPU, and compute location=CPU). Subfigures (b), (c), and
(d) follow a similar pattern, each representing different combinations of input and compute
locations.

The models generally fit well with the test data points, except for Figure[5.4c| which suggests
the GPU is significantly affected by the cache effects. In order to evaluate the error of the
predictive models, we introduce a number of error metrics. These error metrics are defined as

follows:

* Mean Squared Error (MSE): Average of the squared differences between predicted and
actual values, penalizing larger errors more heavily.

Y2 (xi — yi)?

MSE =
D]

54

* Root Mean Squared Error (RMSE): Square root of MSE (i.e., v MSE), providing a mea-
sure of the average magnitude of residuals in the original units of the response variable.

* Mean Absolute Error (MAE): Average of the absolute differences between predicted and
actual values, providing a metric that is not influenced by the scale of the data.

Y2 i —yil

MAE =
D]

(5.5)

43

5. SCHEDULER DESIGN AND EVALUATION

The error metrics of the polynomial regression models are given in Table These met-
rics have been normalized with the range of the y-axis. MSE, RMSE and MAE refer to the
normalized versions of MSE, RMSE and MAE, respectively.

In summary, the table shows that the models generally perform well when the operators are
conducted locally on the CPU or GPU. However, when the computing location is different from
the location where the original data is located, especially when moving data from the GPU to
the CPU, the models tend to have higher error metrics, indicating less accurate time estimates.

5.3.2 Schedule decision models evaluation

Given an operator and the current location of the input data, the scheduler will estimate the time
cost for distributing the operator between CPU and GPU, and make the decision according to

copy Operator -- input from cpu, compute on cpu

® test data points L")
300000 1 — fitted line of the model

250000

200000 A

150000 -

milliseconds

100000 -

50000 +

oA

0.0 0.2 0.4 0.6 0.8 1.0
data size le8

(a) Copy Operator Model — input from the CPU,
compute on the CPU

copy Operator -- input from gpu, compute on gpu

1600 o
@ testdata points []

—— fitted line of the model
1400 4

1200 4 [

1000 +

milliseconds
o
o
8

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
data size le8

(c) Copy Operator Model — input from the GPU,
compute on the GPU

copy Operator -- input from cpu, compute on gpu

250000 A
@ testdata points

—— fitted line of the model

200000 +

150000

milliseconds

100000 -

50000

0.0 0.2 0.4 0.6 0.8 1.0
data size leg

(b) Copy Operator Model — input from the CPU,
compute on the GPU

copy Operator -- input from gpu, compute on cpu

@ testdata points []
800000 1 —— fitted line of the model .’

600000 -

400000

milliseconds

200000 +

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
data size leg

(d) Copy Operator Model — input from the GPU,
compute on the CPU

Figure 5.4: Models of Copy Operator

44

5.3. Evaluation of the scheduler

filter Operator -- input from cpu, compute on cpu

@ test data points
500000 1 — fitted line of the model

400000

300000

milliseconads

200000

100000 -

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
data size le8

(a) Filter Operator Model — input from the CPU,
compute on the CPU

filter Operator -- input from gpu, compute on gpu

250001 @ test data points °
—— fitted line of the model
(] L

20000 .

15000

milliseconds

10000 -

)
50001 o

0.0 0.2 0.4 0.6 0.8 1.0
data size le8

(c) Filter Operator Model — input from the GPU,
compute on the GPU

filter Operator -- input from cpu, compute on gpu

140000 A
@ testdata points []

—— fitted line of the model
120000 -

100000 -

80000

60000

milliseconds

40000 -

20000 4

04

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
data size le8

(b) Filter Operator Model — input from the CPU,
compute on the GPU

1e6 filter Operator -- input from gpu, compute on cpu

104 ® testdata points [)
—— fitted line of the model .. .'

0.8 q

=4
o

milliseconds

14
kS

0.2 q

0.0 q

0.0 0.2 0.4 0.6 0.8 1.0
data size le8

(d) Filter Operator Model — input from the GPU,
compute on the CPU

Figure 5.5: Models of Filter Operator

the decision model in Equation[5.3]

This scheduling decision model can be viewed as a binary classification problem with labels
CPU and GPU, the predication labels are the decisions made according to the estimation time
cost, the true labels are the decisions that should be made according to the real time cost. This
allows us to represent the results of this evaluation as a confusion matrix as shown in Table[5.2]
along with the accuracy of the classification model.If N means the number of all data points,
and N|[predict = A,true = B] means the number of data points that the model predict as label A,
however the true label is B, the terms in Table[5.2]can be defined as the following equations:

N|predict=GPU ,true=GPU|

— N
I'N = N|predict=CPU ,true=CPU]
N

if the original data is on CPU (1)
if the original data is on GPU (2)

(5.6)

45

5. SCHEDULER DESIGN AND EVALUATION

sort Operator -- input from cpu, compute on cpu

6000001 @ testdata points

— fitted line of the model
500000

400000

300000 A

milliseconds

200000

100000 -

T
1.0
le8

T T T
0.4 0.6 0.8

data size

T T
0.0 0.2

(a) Sort Operator Model — input from the CPU,
compute on the CPU

sort Operator -- input from gpu, compute on gpu

® testdata points
500009 ___ fitted line of the model
40000 -
w
2 30000 |
s
1
i
E 20000
10000
04

T
1.0
1e8

T T T
0.4 0.6 0.8

data size

T T
0.0 0.2

(c) Sort Operator Model — input from the GPU,
compute on the GPU

sort Operator -- input from cpu, compute on gpu

@ testdata points
— fitted line of the model

250000 A

200000 A

150000

milliseconds

100000

50000 -

T
0.4
data size

T T
0.0 0.2

T
0.6

T
1.0
les

T
0.8

(b) Sort Operator Model — input from the CPU,

compute on the GPU

1e6 Ssort Operator -- input from gpu, compute on cpu

@ testdata points
1.0 { — fitted line of the model
0.8
7
Zos
S
3
E 04
0.2
0.0
T T T
0.0 0.2 0.4
data size

T
0.6

T
1.0
1e8

T
0.8

(d) Sort Operator Model — input from the GPU,

compute on the CPU

Figure 5.6: Models of Sort Operator

N|predict=CPU .true=GPU|

— N
FP= N{predict=GPU true=CPU]|
N
N{predict=GPU ,true=CPU]|
— N
FN = N{predict=CPU ,true=GPU|
N
Nlpredict=CPU ,true=CPU |
TP =

N
N{predict=GPU ,true=GPU|
N

Accuracy Score =

if the original data is on CPU
if the original data is on GPU

if the original data is on CPU
if the original data is on GPU

if the original data is on CPU
if the original data is on GPU

TN+TP

46

ITN+FP+FN+TP

5.7

(5.9)

5.9

(5.10)

5.3. Evaluation of the scheduler

Table 5.1: Evaluate the time estimate models

Operator Origin Remote = MSE RMSE MAE
copy cpu cpu 217.17 0.02 0.01
copy cpu gpu 142.90 0.02 0.01
copy gpu gpu 1333.14 0.04 0.02
copy gpu cpu 7.59 0.08 0.06
filter cpu cpu 33.77 0.01 0.00
filter cpu gpu 109.86 0.03 0.01
filter gpu gpu 1429.03 0.04 0.01
filter gpu cpu 170.28 0.09 0.02
sort cpu cpu 269.58 0.02 0.01
sort cpu gpu 15534 0.02 0.01
sort gpu gpu 6.07 0.01 0.00
sort gpu cpu 538.16 0.02 0.01

Table 5.2: Confusion Matrix and Accuracy Scores

TN FP FN TP Accuracy Score
copy fromcpu 0.6125 0.0275 0.0 0.3600 0.9725
copy from gpu 0.0 0.0 0.0 1.0 1.0
filter fromcpu 0.7150 0.0575 0.0 0.2275 0.9425
filter from gpu 0.0 0.0120 0.0 0.9880 0.9880
sort fromcpu 0.4164 0.1056 0.0 0.4780 0.8944
sort from gpu 0.0 0.0752 0.0 0.9248 0.9248

The accuracy scores for most of the scheduling decisions are quite high, indicating that the
model is performing well in making the correct choices between CPU and GPU based on the
estimated time costs. In particular, the model achieves perfect accuracy in decisions when the
original data is on GPU and the true decisions are almost all on GPU. Some decisions, such as
”Sort from CPU”, have slightly lower accuracy but are still well above 80%, suggesting that the
model is generally effective.

5.3.3 Speedup of dynamic scheduling evaluation

Here, we use our scheduler to schedule the operator dynamically and evaluate the speedup be-
tween the scheduled time cost and the time cost if the operator is executed at the original location.
We calculate the speedup ratio for 500 test data points for each combination of the operator and
original input data location and give a statistics table of the speedup ratios in Figure

For operators such as “copy from GPU,” "filter from GPU,” and “’sort from GPU,” dynamic
scheduling does not lead to any improvement as the speedup is consistently 1. This suggests that
executing these operations at the original location is just as efficient as dynamically scheduling
them.

The operators “copy from CPU,” filter from CPU,” and ”sort from CPU” experience en-

47

5. SCHEDULER DESIGN AND EVALUATION

Speedup Statistics for Different Operations
ke
o

"5

O SOLHLH
RS

©

Mean
std
Min
25%
50%
75%
Max

O D OLHH
RSN

A

Sort from CPU

Filter from GPU
Operations

Copy from CPU Copy from GPU Filter from CPU

Sort from GPU

Figure 5.7: Speedup statistics for various combinations of original locations of the data for

different operators

hancements through dynamic scheduling, with each showing varying levels of performance
boost. On average, these operators (Copy Operator, Filter Operator, and Sort Operator) record
speed increases of 1.10x, 2.48x, and 1.36x, and they attain peak speedups of 1.52x, 4.88x, and
2.52x, respectively. The sequence remains consistent when considering the standard deviation.
These standard deviation figures provide insight into the variability of the speedup outcomes.
A higher standard deviation value indicates a greater fluctuation in the speedup realized across

distinct data points.

48

Chapter 6

Conclusions

This chapter gives an overview of the project’s contributions. After this overview, we will reflect
on the results and draw some conclusions. Finally, some ideas for future work will be discussed.

6.1 Answer research questions

In order to achieve the primary objective of this thesis, it is necessary to address a number of
research questions.

e 1. Is it possible to accelerate Acero in a hybrid CPU-GPU system?

Yes, Acero is a query execution engine with Arrow data format and can be accelerated with
libcudf at the operator level. When disregarding the data transferring time, it demonstrates a
remarkable speedup of up to 300x for Filter Operator, 100x for Copy Operator, and 16x for Sort
Operator when handling an array of length 1e8. However, when accounting for data transfer
times, this promising acceleration rate diminishes significantly. In cases where the data volume
is small, the acceleration benefits are unable to offset the associated overhead. Consequently,
Acero is not suitable for GPU acceleration with small data volumes.

To address this challenge, we have developed an on-the-fly scheduler at the operator level.
This scheduler determines whether to allocate an operator to the CPU or GPU based on the input
data location and the type of operator involved. This approach enables us to accelerate Acero
within a hybrid CPU-GPU system, guided by a statistical cost model. The results are notable,
with a maximum speedup of 4.88x for the Filter Operator, 2.52x for the Sort Operator, and 1.52x
for the Copy Operator when processing an array of length 1e8.

* 2. What are the characteristics of workloads that result in high acceleration and what are
the possible bottlenecks

Without taking into account of the data transfer time, workloads that can be effectively
parallelized, such as Filter Operator, possess greater potential for benefiting from the GPU’s
substantial parallel processing capabilities and high throughput. Conversely, the queries that

49

6. CONCLUSIONS

have more complex branching structures can not fully exploit the instruction-level parallelism
offered by GPUs, leading to limited acceleration potential.

When factoring in data transfer times, the acceleration rate experiences a significant decline
across all operators primarily due to the PCI-e bus serving as the limiting factor in harnessing
GPU capabilities. This effect is especially pronounced for operators with short GPU execution
times in comparison to the data transfer time.

Furthermore, operators such as Filter Operator, where the size of the result dataset is smaller
than the input data size, exhibit a relatively smaller reduction in their acceleration rates.

* 3. What are the limitations of speedup achievable using CPU-GPU systems?

As previously mentioned, the most significant limiting factor is the memory bandwidth of the
PCI-e bus. Additionally, the relatively small size of GPU memory serves as another constraint
in fully realizing acceleration potential, given that both input and result data must fit within
it. Another factor contributing to the limitation is the relative difficulty in implementing some
operators on the GPU, stemming from the complexity of algorithm parallelization due to the use
of many control instructions within the algorithms.

6.2 Future work

According to the answers to the research questions, we propose future work directions that can
further be investigated.

In our research, the acceleration of the GPU is limited by the memory size of a single GPU.
This limitation could be addressed by splitting the input into partitions, executing these partitions
on a cluster of GPUs in parallel, and merging the output result. This requires Acero to have both
shuffle and partitioning capabilities in order to run operators on a cluster of GPUs. However,
Acero does not have shuffle and partition nodes yet, though this feature is identified as a high
priority for the developers. With this feature, multiple GPUs can be utilized and a shuffle can be
done. Therefore, one future research direction could be to distribute the acceleration of Acero
to multiple GPUs to remove the GPU memory limit.

Another open research question is related to how libcudf-Accelerated Acero measures up
against the standard TPC-H benchmark. In order to answer this question, a complete set of
operators of Acero needs to be implemented. By doing this, we can fully integrate and accelerate
Acero with libcudf and run the standard TPC-H benchmark to compare with other engines like
Spark, Flink, and Velox.

50

[4]

[6]

[7]

(8]

Bibliography

Jens Glaser, Felipe Aramburu, William Malpica, Benjamin Hernandez Arreguin, Matthew
Baker, and Rodrigo Aramburu. Scaling sql to the supercomputer for interactive analysis of
simulation data.

Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis. Dis-
tributed hybrid cpu and gpu training for graph neural networks on billion-scale heteroge-
neous graphs. In KDD 2022, 2022.

Nauman Ahmed, Tong Dong Qiu, Koen Bertels, and Zaid Al-Ars. Gpu acceleration of
darwin read overlapper for de novo assembly of long dna reads. BMC Bioinformatics,
21(13):388, Sep 2020.

Johan Peltenburg, Akos Hadnagy, Matthijs Brobbel, Robert Morrow, and Zaid Al-Ars.
Tens of gigabytes per second json-to-arrow conversion with fpga accelerators. In 2021
International Conference on Field-Programmable Technology (ICFPT), pages 1-9, 2021.

Sebastian Brefl, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter Saake.
Gpu-accelerated database systems: Survey and open challenges. Trans. Large Scale Data
Knowl. Centered Syst., 15:1-35, 2014.

Viktor Rosenfeld, Sebastian Brel3, and Volker Markl. Query processing on heterogeneous
cpu/gpu systems. ACM Comput. Surv., 55(1), jan 2022.

Peter Bakkum and Kevin Skadron. Accelerating sql database operations on a gpu with
cuda. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, GPGPU-3, page 94-103, New York, NY, USA, 2010. Association for
Computing Machinery.

Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. Relational query coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4), dec 2009.

Apache Arrow. Apache arrow overview, 2023.

51

BIBLIOGRAPHY

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

52

Tanveer Ahmad, Nauman Ahmed, Johan Peltenburg, and Zaid Al-Ars. Arrowsam: In-
memory genomics data processing using apache arrow. In 2020 3rd International Confer-
ence on Computer Applications Information Security (ICCAIS), pages 1-6, 2020.

Tanveer Ahmad. Benchmarking apache arrow flight - a wire-speed protocol for data trans-
fer, querying and microservices. In Benchmarking in the Data Center: Expanding to the
Cloud, BID’22, New York, NY, USA, 2022. Association for Computing Machinery.

Acero. Acero: A c++ streaming execution engine, 2022.
FLARE. Tpc-h on a single core, 2016.

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley,
Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. Spark
sql: Relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 15, page 13831394, New York,
NY, USA, 2015. Association for Computing Machinery.

A Shaikhha, M Dashti, and C Koch. Push versus pull-based loop fusion in query engines.
Journal of Functional Programming, 28, 2018.

Amir Shaikhha, Mohammad Dashti, and Christoph Koch. Push vs. pull-based loop fusion
in query engines. Journal of Functional Programming, 28, 10 2016.

Chungmin Melvin Chen and Nick Roussopoulos. Adaptive selectivity estimation using
query feedback. In Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’94, page 161-172, New York, NY, USA, 1994. Associa-
tion for Computing Machinery.

Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation using proba-
bilistic models. In Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, SIGMOD °01, page 461-472, New York, NY, USA, 2001. Associa-
tion for Computing Machinery.

Sebastian Bref3, Felix Beier, Hannes Rauhe, Kai-Uwe Sattler, Eike Schallehn, and Gunter
Saake. Efficient co-processor utilization in database query processing. Information Sys-
tems, 38(8):1084-1096, 2013.

	Preface
	Contents
	Introduction
	Motivation
	Thesis goal
	Outline

	Background
	CPU-GPU hybrid computing
	Arrow
	Acero
	libcudf

	Core concepts
	Query execution engine
	Operators
	Scheduler

	Methodology
	System setup
	Benchmarks
	Acceleration models
	Other operators

	Scheduler design and evaluation
	Design
	Implementation
	Evaluation of the scheduler

	Conclusions
	Answer research questions
	Future work

	Bibliography

