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Abstract

Technical Summary
This thesis considers the thin-film equation ∂t u = −∂x (|u|n∂3

x u) with respect to time t ≥ 0 and one dimen-
sional space x ∈ R where n > 0. A special case of the thin-film equation is when the initial condition is
u0(x,0) = cδ(x). A solution with this initial condition is called a source type solution. A source type solu-
tion describes how a viscous droplet spreads over a solid flat surface with volume c > 0. Source type solutions
are expected to have a self-similar form with u(x, t ) = t−α f (µ), µ = xt−α and α = 1

n+4 which reduces the
equation into an ordinary boundary-value problem (| f (µ)|n f ′′′(µ))′ = α(µ f (µ))′ with µ f (µ) → 0 as µ→±∞
and

∫ ∞
−∞ f (µ)dµ = c. A solution of this boundary-value problem is called a self-similar solution. This thesis

presents a detailed discussion of the paper by Bernis, Peletier & Williams [4] on the existence and uniqueness
of self-similar solutions to the thin-film equation together with its qualitative properties. Here, existence
will be proven by using a shooting method. Additionally, the thin-film equation will be derived from the
Navier-Stokes equations using a lubrication approximation. Furthermore, a numerical construction of the
self-similar solution is presented to visualize its behavior. The results demonstrate that the solution exhibits
key qualitative features such as compact support and conservation of mass.

Non-Technical Summary
This thesis explores how a liquid droplet spreads over a flat surface, for instance, a droplet of oil spreading
out on a flat table. The thesis focuses on a mathematical model called the thin-film equation, which helps
to describe the spreading process of a droplet. The solution to this problem is expected to spread out in a
predictable pattern over time, which is called a self-similar solution. This means that even though the droplet
gets wider and thinner over time, the universal shape of the droplet stays the same. This kind of behavior
makes it much easier to study and understand complex spreading processes, because only one shape needs to
be understood, not how it changes at every moment. To understand this better, the thesis reviews a scientific
paper by Bernis, Peletier, & Williams [4] which proves that a mathematical self-similar solution exists and
is unique. Proving uniqueness is also important as this gives scientists and engineers confidence that they
are using the right model. The self-similar solution will also be simulated on a computer. The simulations
demonstrate that the droplet behaves as expected, that is, it is spreading symmetrically while keeping the
same total amount of liquid.

Y. H. Boesveld
Delft, June 2025
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1
Introduction

In this thesis, we study the existence and uniqueness of nonnegative source type solutions of the one dimen-
sional thin-film equation {

∂t u =−∂x (|u|n∂3
x u) in S =R×R+,

u(x,0) = u0(x) for x ∈R,
(1.1)

where n is a positive constant. A solution of equation (1.1) with initial condition

u0(x) = cδ(x) for x ∈R, (1.2)

where δ denotes the Dirac mass centered at the origin and c a nonzero constant, is called a source type solu-
tion. For this thesis, c > 0 shall be assumed.

The thin-film equation describes how a fluid that is very thin in height compared to the length travels over
time on a one-dimensional flat solid surface. It provides the height u(x, t ) depending on the location x and
time t . The source type solution is a special type solution of the thin-film equation which describes how a
droplet spreads over time on the surface. Here c denotes the volume of the droplet.

The exponent n is called the mobility exponent and is related to the boundary condition in the original
Navier-Stokes equation, which is also called the slip condition. The focus of this thesis lies on the values
between 0 < n < 3. For n ≤ 0 the fluid travels with infinite speed, while for values 0 < n < 1, the film can
become negative, meaning it goes through the surface. Since the absolute value term |u|n is used, mathemat-
ical analysis can still be done for the values 0 < n < 1, even though it is not physically justified. It will even be
shown in section 1.3 that nonnegativity holds for source type solutions. For the value n = 1, there is free slip,
meaning that the surface provides no friction in the tangential direction. For n = 3 (no slip) and n > 3, the
free boundary of the film cannot move [16]. In section 1.1, we will be show that the derivation is only valid
for 0 < n ≤ 3. For values 1 < n < 3, the fluid has partial slip, meaning that it moves slower at the surface. See
Figure 1.1 for a visualization. In chapter 3, it will also be mathematically proven that the self-similar solution
does not have a non-trivial solution for n ≥ 3.

1.1. Derivation of the thin-film equation
In this section the thin-film equation will be derived, following [6, 22, 23]. A derivation from a more physical
viewpoint can be found in [3]. The thin-film equation can be derived from the incompressible Navier-Stokes
equations. The incompressible Navier-Stokes equations describe how a fluid moves in three dimensions in
time assuming that the fluid has constant viscosity (Newtonian), is mass conserved and the density remains
constant. For the thin-film equation it is assumed that the fluid is uniform in the direction perpendicular to
the plane concerning the height and x direction meaning that the Navier-Stokes equations can be reduced to
two dimensions. The thin-film equation will be derived using a lubrication approximation. This means that

1



2 1. Introduction

Figure 1.1: Schematics of the flow fields v close to the liquid–solid interface for different values of the mobility exponent n. Adapted
from [13].

one dimension is much smaller compared to the other dimension which can be used to simplify the Navier-
Stokes equations. For the thin-film equation the height is much smaller than the length of the fluid.

Consider a fluid with a free surface y = h(x, t ) that lies on a flat area. The governing equations for the in-
compressible Navier-Stokes equations are the velocities u and v concerning the x and y direction and the
pressure p which is normalized by the density of the fluid. The incompressible Navier-Stokes equations are
given by

∂t u +u∂x u + v∂y u −µ(∂2
x u +∂2

y u)+∂x p = 0,

∂t v +u∂x v + v∂y v −µ(∂2
x v +∂2

y v)+∂y p = 0,

∂x u +∂y v = 0.

(1.3)

Here, µ is the kinematic viscosity, which describes how easily a fluid flows per unit mass or per unit density.
For a derivation of the Navier-Stokes equations, see for instance [9].

Figure 1.2: Schematic of the liquid thin-film, where liquid, gas and solid are shown. Adapted from [13].

To work with the equation, boundary conditions must be specified for the solid-liquid and liquid-gas inter-
faces, as shown in Figure 1.2. On the solid-liquid interface, it is required that the fluid cannot go through the
solid. This means that the velocity v , which goes in the y direction, should be zero. So

v = 0 when y = 0. (1.4)

Imposing a no-slip boundary condition at the solid-liquid interface (u = 0 when y = 0) leads to infinite en-
ergy dissipation near the contact line, where the contact line represents the place the liquid, gas and solid
meet. Therefore, to let the liquid slip on the surface, a non-zero velocity in the x direction is allowed which is
proportional to derivative ∂y u

u −k(h)∂y u = 0 when y = 0. (1.5)
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Here k(h) = λ3−nhn−2, where λ represents the slip length which indicates how far you have to go below the
surface for the fluid’s velocity to be zero and n ∈ (0,3) is the mobility exponent which was discussed before.

On the liquid-gas interface, we require that the fluid moves smoothly. Therefore, the tangential component
of the shear stress should be continuous, meaning that the tangential forces between the liquid and gas are
balanced. This can be done using

∂y u = 0 when y = h. (1.6)

At the liquid-gas interface, there is a pressure jump proportional to the mean curvature of the interface which
is called Laplace’s law. This is denoted as

p0 −p = γ∂2
x h when y = h, (1.7)

where p0 is the constant air pressure and γ the liquid-gas surface tension constant.

Furthermore, a kinematic boundary condition is employed which ensures that the fluid stays on the free
surface

∂t h +u∂x h = v when y = h. (1.8)

Now that all necessary boundary conditions are considered, the thin-film equation will be derived. It is as-
sumed that the thickness of the fluid H in the y direction is very small compared to the length of the fluid L
in the x direction. Defining U as the velocity scale of u, V as the velocity scale of v , P as the pressure scale of
p, and T as the time scale of t , the following transformations will be applied:

x → Lx, y → H y, u →U u, v →V v, p → P p, t → T t .

Note that the time scale T can be seen as how long it takes for the fluid to travel length L with velocity U . So
T can be described as

T = L

U
.

The Reynolds number, defined as

Re = U H

ν
,

is also small.

Inserting these transformations in (1.3) and using that H ≪ L and Re ≪ 1, results in

µ∂2
y u −∂x p = 0 for 0 < y < h,

−∂y p = 0 for 0 < y < h,

∂x u +∂y v = 0 for 0 < y < h,

(1.9)

with

P = LU

H 2 .

The second equation of (1.9) tells us that the pressure p is constant with respect to y . Using condition (1.7)
gives
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p = p0 −γ∂2
x h for 0 < y < h.

Differentiating p with respect to x gives

∂x p =−γ∂3
x h for 0 < y < h.

Substituting ∂x p using the first equation of (1.9) results in

µ∂2
y u =−γ∂3

x h for 0 < y < h.

Integrating this equation over (y,h) with respect to y and dividing both sides by µ gives, using the Fundamen-
tal Theorem of Calculus A.1, ∫ h

y
∂2

y u d z =
∫ h

y
−γ
µ
∂3

x h d z

=⇒ ∂y u
∣∣

y=h −∂y u =−(h − y)
γ

µ
∂3

x h

=⇒ ∂y u = (h − y)
γ

µ
∂3

x h.

(1.10)

Here, condition (1.6) is used. Integrating this over (0,h) with respect to y and using condition (1.5) gives∫ h

0
∂y u d z =

∫ y

0
(h − y)

γ

µ
∂3

x h d z

=⇒ u − u|y=0 = (hy − 1

2
y2)

γ

µ
∂3

x h

=⇒ u =
(
hy − 1

2
y2

)
γ

µ
∂3

x h + k(h)∂y u
∣∣

y=0 .

Using (1.10) for k(h)∂y u
∣∣

y=0 results in

u = γ

µ

(
hy − 1

2
y2 +hk(h)

)
∂3

x h.

The averaged horizontal velocity can now be calculated using

ū = 1

h

∫ h

0
u d y.

Therefore, we arrive at

ū = γ

µ

(
1

3
h2 +hk(h)

)
∂3

x h. (1.11)

Integrating the third equation of (1.9) over (0,h) with respect to y and using the conditions (1.4) and (1.8)
gives ∫ h

0
∂x u +∂y v d y = 0

=⇒ ∂x

(∫ h

0
u d y

)
+ v |y=h − v |y=0 = 0

=⇒ ∂x

(∫ h

0
u d y

)
+∂t h + u∂x h|y=h = 0

=⇒ ∂x (hū)+∂t h + u∂x h|y=h = 0.
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Note that, since H ≪ L, ∂x h varies slowly in the x direction and so we can neglect this value. Therefore, using
(1.11) and k(h) =λ3−nhn−2, we arrive at

γ

µ
∂x

((
1

3
h3 +λ3−nhn

)
∂3

x h

)
+∂t h = 0.

When rescaling the variables, the constants can be eliminated. Furthermore, for n ∈ (0,3), the term hn domi-
nates over the h3 term if h ≪λ. Thus, we arrive at the thin-film equation

∂x (hn∂3
x h)+∂t h = 0.

Note that u is used in this thesis for the height instead of h.

1.2. Applications of the thin-film equation
Applications of the thin-film equation are usually found in the field of fluid dynamics. An important appli-
cation is spin coating, a mechanism used to apply thin-films to substrates. During spin coating, a liquid is
deposited onto a flat substrate, which is then rapidly spun. This results in a thin-film covering the substrate
uniformly. Spin coating is widely used in many industries, especially in photolithography for making semi-
conductors and nanotechnology devices [15].

Applications also arise in biology. An example is that it helps to understand cell spreading. This is because
cell spreading has, in some sense, similar properties to the spreading of a droplet [17]. Another example lies
in the pulmonary surfactant dynamics in the lungs. The alveoli, which are small air sacs in the lungs, are
lined by a thin-film coated with surfactant, a substance that reduces surface tension to keep the alveoli open.
A small percentage of firstborn babies have not produced enough surfactant yet, which causes the alveoli to
collapse, making it much harder to breathe. To solve this, synthetic lung surfactant can be delivered in the
form of a droplet to the lungs. Modeling this process helps predict the behavior of the fluid [10].

1.3. Mass conservation and nonnegativity
In [5], equation (1.1) was also studied for a more general case. They studied the equation in a cylinder QT0 =
Ω× (0,T0), where Ω is a bounded interval. They also assumed that u0 ∈ H 1(Ω), meaning that

∫
Ωu2

0 d x <∞
and

∫
Ω(∂x u0)2 d x <∞, and that ux = uxxx = 0 on the lateral boundary. For this, they proved a weak positivity

property:

u0(x) ≥ 0 =⇒ u(x, t ) ≥ 0 in QT

and a conservation law: ∫
Ω

u(x, t )d x =
∫
Ω

u0 d x for 0 < t < T0.

In view of these results, it is natural that this should also hold for the extensionΩ=R assuming that uxxx → 0
as x → ±∞ for all t > 0. Now δ(x) ∉ H 1(R), but the sequence of Gaussian’s which approximates δ(x) in a
distributional sense as t → 0,

ft (x) = 1p
2πt 2

e−
x2

2t2 ,

is smooth and satisfies ft (x) ≥ 0 and ft (x) ∈ H 1(R) for all t > 0. In particular, cδ(x) is a nonnegative distribu-
tion, since cδ(ϕ(x)) ≥ 0 for all ϕ ∈C∞

c (R) with ϕ≥ 0. Here, C∞
c (R) represents the functions that are infinitely

differentiable and have compact support, see Definition 2.4. The volume of the approximated initial data ft

is ∫ ∞

−∞
c ft d x = c
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for all t > 0. Hence by continuity, the limiting function u should also satisfy the conservation law for all t > 0∫ ∞

−∞
u(x, t )d x = c. (1.12)

1.4. Self-similar solutions
Due to the scaling properties of equation (1.1) with initial condition (1.2) and the conservation law (1.12),
solutions of equation (1.1) are expected to have a self-similar form

u(x, t ) = t−α f (µ), µ= xt−β. (1.13)

Now, to be consistent, it should also follow the conservation law (1.12)∫ ∞

−∞
u(x, t )d x = c

=⇒
∫ ∞

−∞
t−α f (xt−β)d x = c

=⇒ t−α+β
∫ ∞

−∞
f (µ)dµ= c.

Here, a change of variables µ= xt−β is used. To hold for all t > 0, we have

α=β.

It is now substituted in equation (1.1). For ∂t u, using the product rule,

∂t u =−αt−α−1 f (µ)+ t−α f ′(µ)(−αxt−α−1)

=−αt−α−1 f (µ)−αµt−α−1 f ′(µ)

=−αt−α−1(µ f (µ))′.

For ∂3
x u,

∂3
x u = t−4α f ′′′(µ).

This yields
∂x (|u|n∂3

x u) = (t−nα| f |n t−4α f ′′′(µ))′t−α

= t−α(n+5)(| f |n f ′′′(µ))′.

To have ∂t u =−∂x (|u|n∂3
x u), it should hold that

t−α−1 = t−α(n+5).

Therefore, their powers should be the same. This can be used to find α

−α−1 =−α(n +5)

=⇒α= 1

n +4
.

(1.14)

To satisfy the initial condition (1.2), we note that supx ̸=0δ(x) = 0. Therefore, for x ̸= 0,

lim
t→0+

u(x, t ) = 0.

If x ̸= 0, the variable µ behaves as

lim
t→0+

µ= xt−α =±∞,
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where the sign of ∞ depends on the sign of x. This means that

0 = lim
t→0+

u(x, t ) = lim
µ→±∞ t−α f (µ).

Since t−α→∞ as t → 0+, the only way this limit can be zero is if f decays faster than t−α. t can be written as

t =
(

x
µ

) 1
α

using (1.13). So

t−α f (µ) =
(

x

µ

)− α
α

f (µ) = µ

x
f (µ).

Therefore,

lim
µ→±∞µ f (µ) = 0. (1.15)

Using (1.13) with (1.14) and (1.15), equation (1.1) can be reduced to{
(| f (µ)|n f ′′′(µ))′ =α(µ f (µ))′ for −∞<µ<∞,

µ f (µ) → 0 as µ→±∞,
(1.16)

which satisfies the integral condition ∫ ∞

−∞
f (µ)dµ= c. (1.17)

When f is a solution of the given equation, it means that f is continuously differentiable and
∫ ∞
−∞ | f |d x <∞

( f ∈C 1(R)∩L1(R)) such that f ′′′ exists and is continuous when f ̸= 0 and | f |n f ′′′ ∈C 1(R).

Note that for a broad class of initial conditions, including the source type solutions, solutions to the thin-
film equation are expected to evolve toward a self-similar form due to scaling properties, although it has not
yet been proven analytically for general n. Understanding and analyzing self-similar solutions is still relevant
since this reduces the problem to studying one universal shape independent of time. In [8], convergence
to the unique source type self-similar solution was established for strong solutions with more general initial
data u0 ≥ 0 under certain conditions when n = 1. The source type self-similar solution is conjectured to act
as a universal attractor for a certain class of initial data satisfying suitable conditions, such as nonnegativity,
finite mass, and sufficient decay. Outside this class, different asymptotic behaviors or self-similar profiles
may emerge. The focus of this thesis therefore lies in studying the existence and uniqueness of source type
self-similar solutions of equation (1.16).

1.5. Overview
This thesis is mostly based on the paper “Source type solutions of a fourth order nonlinear degenerate parabolic
equation” by Bernis, Peletier & Williams [4]. In this paper, the following main theorems will be proven for
nonnegative even self-similar solutions:

Theorem 1.1. If n ≥ 3, then there exists no non-trivial solution for equation (1.16).

Theorem 1.2. If 0 < n < 3, then there exists precisely one nonnegative even solution of equation (1.16). This
solution has compact support. If 0 < n ≤ 2, uniqueness holds without assuming that u is even.

The main goal of this thesis is to expand the content of [4] by rewriting it and providing more details to the
proofs. Note that these theorems prove that there exists a nonnegative source type solution for equation
(1.1) which is unique if and only if 0 < n < 3. The solution of equation (1.16) also has compact support, see
Definition 2.4. The paper of Bernis, Peletier & Williams [4] state that that there is no explicit closed-form
formula for f (µ), except when n = 1, which is found by [21]
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f (µ) =
{

1
120

(
a2 −µ2

)2
on (−a, a),

0 elsewhere,
(1.18)

where a5 = 225c
2 . They did, however, proof estimates of how f (µ) behaves near the boundary of its compact

support for 0 < n < 3, which will be shown in chapter 7.

The structure of this thesis is as follows. In chapter 2, the prerequisite knowledge in this thesis is presented.
In chapter 3, Theorem 1.1 will be proven. In chapter 4, relevant preliminary results will be proven about
equation (1.16), which helps to set up the existence proof. In chapter 5, a solution is constructed using the
shooting method when 0 < n < 3. In chapter 6, we will prove uniqueness for even self-similar solutions when
0 < n < 3, and we will also show that every solution is even for 0 < n ≤ 2, thereby completing the proof of The-
orem 1.2. In chapter 7, the self-similar solution will be numerically constructed using the shooting method
derived in chapter 5. In chapter 8, a conclusion will be given.



2
Prerequisites

The following chapter gives an overview of the necessary knowledge needed for the analysis of self-similar
solutions of the thin-film equation (1.16). This is done by stating the essential definitions and theorems,
without giving the proof. These results can also be found in the literature. For each definition and theorem,
an example of a book or article where it can be found is mentioned. Additional definitions and theorems that
are less central to the main text are collected in Appendix A.2.

2.1. Definitions
Definition 2.1. (Uniformly bounded) [7] A sequence of functions { fn}, where each fn : D → R, is said to be
uniformly bounded if, there exists a K > 0 such that | fn(x)| ≤ K for all x ∈ D and n ∈N.

Definition 2.2. (Equicontinuity) [7] A sequence of functions { fn}, where each fn : D →R, is said to be equicon-
tinuous if, for every ϵ > 0, there exists a δ > 0 such that | fn(x)− fn(y)| < ϵ, whenever x, y ∈ D satisfy |x − y | < δ

for all n ∈N.

Definition 2.3. (Lipschitz continuity) [7] Let f : D →R. f is said to be Lipschitz continuous in D if, there exists

a K > 0 such that | f (x)− f (y)| ≤ K |x − y | for all x, y ∈ D. Or rather,
∣∣∣ d f

d x

∣∣∣≤ K for all x ∈ D.

Definition 2.4. (Compact support) [12] A function f is said to be compactly supported if there exists a compact
set M for which f is zero outside of the set M.

2.2. Theorems
Theorem 2.1. Picard-Lindelöf Theorem [26] Consider the following initial value problem

y′(t ) = f(t ,y(t )), y(t0) = y0.

Suppose f ∈C (U ,Rn), where U ⊂Rn+1 is open and (t0,y0) ∈U . If f is locally Lipschitz continuous in the second
argument on a neighborhood D = [t0 −a, t0 +a]×B(y0,b) ⊂U , then there exists a unique local solution y(t ) ∈
C 1(I ) to the initial value problem, where I is an interval containing t0.

Theorem 2.2. (Continuous dependence) [20] Consider the following initial value problem

y′(t ) = f(t ,y(t )), y(t0) = y0.

Suppose f(t ,y(t )) is continuous on an open set E ⊂Rn+1, and that for every (t0,y0) ∈ E, the initial value problem
has a unique solution y(t ) ≡µ(t , t0,y0). Then the solution mapµ(t , t0,y0) is continuous in (t0,y0) ∈ E and t ∈ I ,
where I is an open interval which is the maximal interval of existence of µ.

9
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Theorem 2.3. Arzelà-Ascoli Theorem [11] Let X be a compact set and let { fn} be a uniformly bounded, equicon-
tinuous sequence of real-valued functions in X . Then { fn} has a subsequence that converges uniformly in X to
a continuous function f in X .



3
Nonexistence

3.1. Simplifying equation (1.16)
In this chapter, the following equation is considered

{(|u|nu′′′)′ = (xu)′ for −∞< x <∞,

xu(x) → 0 as x →±∞.
(3.1)

This equation uses α = 1 to make computations easier. Equation (1.16) can be rewritten to equation (3.1)
using the following rescaling:

f (µ) = ku(lµ), kn l 4 =α. (3.2)

Here, k scales the height of the solution and l scales the width of the solution. To determine the criterion for
k and l such that it corresponds toα, f (µ) = ku(lµ) can be substituted into equation (1.16) to get the equality.
This means that all results proven for equation (3.1) also apply to equation (1.16). Note that there is only one
k and l possible that also satisfies the mass conservation law (1.17). To determine the unique values of k and
l , we observe that the solution to equation (3.1) should be in L1(R), otherwise the mass conservation integral
would not be valid. This condition can then be used to deduce the value of l

∫ ∞

−∞
f (µ)dµ= c

=⇒
∫ ∞

−∞
ku(lµ)dµ= c

=⇒ k

l

∫ ∞

−∞
u(y)d y = c

=⇒ k|u|1
l

= c

=⇒ k|u|1
l

= c

=⇒ l = k|u|1
c

.

Here, change of variables is performed with y = lµ and | · |1 denotes the norm in L1(R). To derive k, the
condition from (3.2) is used

11
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kn l 4 =α

=⇒ kn
(

k|u|1
c

)4

=α

=⇒ kn+4

(
|u|41
c4

)
=α

=⇒ kn+4 =α
(

c4

|u|41

)

=⇒ k =
(
αc4

|u|41

)1/n+4

.

This ensures that there is a unique k and l for which the mass conservation law holds.

Suppose u is a solution of equation (3.1). When u is a solution to the given equation, it means that u is
a continuously differentiable function (u ∈ C 1(R)) such that u′′′ exists and is continuous when u ̸= 0 and
|u|nu′′′ ∈C 1(R). If u is now substituted into equation (3.1) and integrated, we obtain, using the Fundamental
Theorem of Calculus A.1, ∫

(|u|nu′′′)′ d x =
∫

(xu)′ d x

=⇒ |u|nu′′′ = xu +C ,

where C ∈R is an integration constant. To determine the constant, the condition xu(x) → 0 as x →∞ is used.
If C ̸= 0, the term |u|nu′′′ dominates as x →∞, since |u|nu′′′ ≈ C for large x. This means that for large x we
have |u|n ̸= 0 if C ̸= 0 and therefore u ̸= 0. So limx→∞ u(x) ̸= 0. This contradicts the condition that xu(x) → 0
as x →∞ and hence C = 0. If u ̸= 0, the equation can be written as

u′′′ = xu

|u|n . (3.3)

If u > 0, we obtain
u′′′ = xu1−n . (3.4)

3.2. Proving there exists no non-trivial solution when n ≥ 3
Using equation (3.4), the nonexistence theorem will be proven.

Theorem 3.1. If n ≥ 3, then equation (3.1) has no non-trivial solution.

To prove this, a helping result is needed to help prove this statement.

Lemma 3.2. Suppose n ≥ 3. Let x0 ≥ 0 and let u be a solution of (3.4) in a neighborhood of x0 such that
u(x0) > 0. Then u(x) > 0 for all x ≥ x0 and
(a) u can be continued to the entire half-line [x0,∞).
(b) limx→∞ u(x) =∞.

Proof. First, (a) will be proven using contradiction. Suppose that there exists a maximal right-neighborhood
of existence [x0, a) with a <∞, so u cannot be extended further. Since u is nonnegative and n ≥ 3, if u → 0
at a certain point in the interval [x0, a), the right-hand side of equation (3.4) diverges, causing u′′′ to diverge.
This means u > 0 on [x0, a). Therefore, equation (3.4) can be used to get the following: u′′′ = xu1−n > 0. So
u′′′ has a constant (positive) sign on the interval [x0, a). This means that u(a−) = limx→a− u(x) and u′(a−) =
limx→a− u′(x) exist. To see why, note that u′′′ > 0 on [x0, a), meaning that u′′ is strictly increasing. This means
that limx→a− u′′(x) exists and is finite if u′′ is bounded above or is infinite if u′′ is not bounded above on the
interval [x0, a). Now, using the Fundamental Theorem of Calculus A.1, note that u′ is defined as

u′(x) = u′(x0)+
∫ x

x0

u′′(t )d t . (3.5)
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If u′′ is bounded above, the limit limx→a− u′′(x) = L is finite. This means that u′′ can be extended to [x0, a]
using u′′(a) = L. Since u′′ is increasing, u′′ is bounded above by L in [x0, a]. Therefore,

lim
x→a− u′(x) = u′(x0)+ lim

x→a−

∫ x

x0

u′′(t )d t

= u′(x0)+
∫ a

x0

u′′(t )d t

≤ u′(x0)+
∫ a

x0

L d t

= u′(x0)+L(a −x0) <∞.

If u′′ is not bounded, then limx→a− u′′(x) =∞. Depending on the growth rate of u′′, the integral in (3.5) di-
verges to ∞ or stays bounded. Therefore, the limit for u′ as x → a− also exists and is bounded or unbounded
depending on the growth rate of u′′. A similar argument, applied to u and u′, shows that the limit for u as
x → a− also exists.

Since u cannot be extended further than x = a, there are two options: (i) the solution blows up, i.e., |u| →∞
as x → a−, (ii) the solution tends to zero, i.e., u → 0 as u → a−, which causes a singularity due to the term u1−n

in equation (3.4). Both cases will be discussed.

If u(a−) = ∞ then, since n ≥ 3, u1−n → 0 as x → a−. This means that u′′′ → 0 when x → a− and so u′′ will
be bounded above in the interval [x0, a). Hence, using the previous argument, limx→a− u(x) will be finite.
This contradicts that u(a−) =∞.

Suppose u(a−) = 0. Since u > 0 and u → 0 as x → a−, u must be decreasing near a, so u′(a−) ≤ 0. Fur-
thermore, u′(x) can be written as

u′(x) = u′(x0)+
∫ x

x0

u′′(x)d x.

Since u′′′ > 0, u′′ is increasing. Therefore, we obtain

u′(x) ≥ u′(x0)+
∫ x

x0

u′′(x0)d x

= u′(x0)+ (x −x0)u′′(x0).

This means that u′(x) is bounded below for any x ∈ [x0, a) and hence u′(a−) ≥−C for some positive constant
C . To check how the solution behaves near x = a, u′(a−) ≥−C will be integrated on both sides

lim
x∗→a−

∫ x∗

x
u′(t )d t ≥ lim

x∗→a−

∫ x∗

x
−C d t

=⇒ u(a−)−u(x) ≥−C (a −x)

=⇒ u(x) ≤C (a −x).

This result will now be used for equation (3.4). Using that u1−n ≥ C 1−n(a − x)1−n is valid near x = a, and
considering x ≥ x0, which is greater than 0, we obtain

u′′′ ≥ C̃

(a −x)n−1 ,

where C̃ = x0C 1−n . Integrating this near x = a with a small δ> 0 gives
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∫ x

a−δ
u′′′(t )d t ≥

∫ x

a−δ
C̃

(a − t )n−1 d t

=⇒ u′′(x) ≥ C̃

n −2

(
1

(a −x)n−2 − 1

δn−2

)
+u′′(a −δ)

=⇒ u′′(x) ≥ A

(a −x)n−2 +B ,

where A = C̃
n−2 and B =− C̃

(n−2)δn−2 +u′′(a−δ). To integrate this again, both n = 3 and n > 3 must be taken into
consideration. For n = 3, the integration gives∫ x

a−δ
u′′(t )d t ≥

∫ x

a−δ
A

(a −x)n−2 +B d t

=⇒ u′(x) ≥ A log

(
δ

a −x

)
+B x −B(a −δ)+u′(a −δ).

As x → a−, the logarithm will diverge to ∞ which means that u′(x) → ∞ as x → a−. This contradicts that
u′(a−) ≤ 0. For n > 3, the integral will be taken again∫ x

a−δ
u′′(t )d t ≥

∫ x

a−δ
A

(a −x)n−2 +B d t

=⇒ u′(x) ≥ A

n −3

(
1

((a −x)n−3 − 1

δn−3

)
+B x −B(a −δ)+u′(a −δ).

Here, u′ will again diverge to ∞ as x approaches a− which leads to a contradiction.

Since both cases (i) and (ii) lead to a contradiction, we can conclude that u can be continued to the half
line [x0,∞).

To prove (b), we note that limx→∞ u(x) exists using the same argument given in (a) for the existence of
limx→a− u(x). Suppose that limx→∞ u(x) = L <∞. Using equation (3.4), for large x, u′′′ ≈ xL1−n . This means
that limx→∞ u′′′(x) = ∞. So there exists some α and large C such that, for all x ≥ α, we obtain u′′′(x) ≥ C .
Integrating this on the interval [α, x] gives u′′(x) ≥ u′′(α)+C (x −α). This also means that limx→∞ u′′(x) =∞.
Repeating this argument for u′ and u gives limx→∞ u(x) =∞, which is a contradiction. Hence limx→∞ u(x) =
∞.

Note that we can prove the same results in Lemma 3.2 analogously for the left half line (−∞, x0], where x0 ≤ 0.

Now, Theorem 3.1 can be proven.

Proof. Suppose a non-trivial solution exists for equation (3.1) with n ≥ 3. By Lemma 3.2, limx→∞ u(x) =∞.
The condition xu(x) → 0 as x →∞ states that u should go to 0 as x approaches ∞ and therefore we arrive at
a contradiction. Hence there exists no non-trivial solution for equation (3.1) when n ≥ 3.

Remark. Note that, by applying the scaling argument of (3.2), it follows that equation (1.16) also admits no
non-trivial solution. This completes the proof concerning the nonexistence of a non-trivial solution for n ≥ 3.



4
Qualitative properties of solutions

Before we will prove existence and uniqueness for 0 < n < 3, some relevant preliminary observations will be
proven in this chapter about nonnegative solutions of equation (3.1). These insights will contribute to the
proof of existence and uniqueness.

4.1. Compactly supported solutions
First, we will proof that a nonnegative solution u is compactly supported, see Definition 2.4. To prove this,
the following lemma will be used.

Lemma 4.1. Let u be a nonnegative solution of equation (3.1) and let u(x0) = 0 for some x0 ≥ 0. Then u(x) = 0
for all x ≥ x0.

Proof. Let x0 ≥ 0 and suppose on the contrary that there exists a point x1 > x0 such that u(x1) > 0. Define the
most left point where u > 0 as

ζ0 = inf{x < x1 : u > 0 on (x, x1)}.

Since u(x0) = 0, it implies that ζ0 ≥ x0. Since u is continuous and nonnegative, it means that u(ζ0) = 0. To
show that u′(ζ0) = 0, we will discuss two cases. If ζ0 > x0, we have that u = 0 on the interval [x0,ζ0] which
implies that u′(ζ−0 ) = 0. Also, u′(ζ+0 ) = 0 by continuity of u′. Therefore, u′(ζ0) = 0. If ζ0 = x0, then since
u(x0) = 0, continuity implies that u′(x0) > 0 would lead to u(x) < 0 for some x < x0, violating nonnegativity.
Similarly, u′(x0) < 0 would imply that u(x) < 0 for some x > x0, again contradicting nonnegativity. Therefore,
it must be that u′(ζ0) = 0.

Now, the Mean Value Theorem A.2 states that, since u(ζ0) = 0 and ζ0 < x1, there exists a point ζ1 ∈ (ζ0, x1)
such that

u′(ζ1) = u(x1)−u(ζ0)

x1 −ζ0
> 0.

Using equation (3.4), we have that u′′′ > 0 on (ζ0, x1) because u > 0 on that interval. Therefore, u′′ is increasing
on the interval (ζ0, x1). Since u′(ζ0) = 0 and u′(ζ1) > 0, it follows that u′′(ζ1) > 0. Given that u′′′ > 0, u′′
remains positive and continues to increase on (ζ1, x1). Consequently, u′ > 0 on (ζ1, x1), implying that u is
strictly increasing on (ζ1, x1). Moreover, since u > 0 and is strictly increasing, the positivity of u′′′ will persist
beyond x1, ensuring that both u′′ and u′ continue to increase and so remain positive for all x > ζ1. As a result,
u(x) ≥ u(ζ1) > 0 for all x > ζ1. This contradicts that xu → 0 as x →∞. Hence u(x) = 0 for all x ≥ x0.

Note that, using the same arguments, we can also show that u(x) = 0 for all x ≤ x0 with x0 ≤ 0 if u(x0) = 0.

With this, we can prove that a nonnegative solution u is compactly supported.

15
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Lemma 4.2. Let u be a nonnegative non-trivial solution of equation (3.1). Then

u(x) =
{
> 0 on x ∈ (a−, a+),

= 0 elsewhere,
(4.1)

where −∞< a− < 0 < a+ <∞.

Proof. To prove this, Lemma 4.1 states that if there is a point a− ≤ 0 and a+ ≥ 0 such that u(a−) = u(a+) = 0,
u(x) = 0 for all x ≤ a− and x ≥ a+. If u(0) = 0, this implies that u(x) = 0 for all x. This cannot happen by the
assumption that u is a non-trivial solution. So a− < 0 and a+ > 0. It remains to prove that a− and a+ are finite.
We will prove it for a+, since the proof is analogous for a−.

Suppose that a+ =∞. This implies that u > 0 for all x > 0. As a consequence, using equation (3.4), u′′′ > 0 for
all x > 0. This means that u′′ is strictly increasing for all x > 0 and so limx→∞ u′′(x) = L exists. If L > 0, there
exists an α such that for all x ≥α, u′′(x) ≥ L

2 . Using the same argument as in Lemma 3.2(b), this will result in

limx→∞ u(x) =∞, violating xu → 0 as x →∞. Suppose L < 0. This means that u(x) should be lower than L
2 at

a certain point, since L
2 > L for L < 0. So there exists an α such that for all x ≥ α, u′′(x) ≤ L

2 . Again, using the
same argument as in Lemma 3.2, but this time with a negative coefficient, this results in limx→∞ u(x) =−∞,
violating nonnegativity. Therefore, L = 0. As u′′ is strictly increasing for all x > 0, this implies that u′′ < 0 for
all x > 0. So u′ is strictly decreasing for all x > 0.

Now, either u′(0) ≤ 0 or u′(0) > 0. If u(0)′ ≤ 0, since u′ is strictly decreasing, there exists an x0 ∈ [0,∞) such
that u′(x0) ≤−C < 0 for all x > 0, where C is a positive constant. Integrating this gives∫ x

x0

u′(t )d t ≤
∫ x

x0

−C d t

=⇒ u(x) ≤ u(x0)−C (x −x0).

An x can now be found such that the right-hand side becomes zero:

u(x0)−C (x −x0) = 0

=⇒ x = x0 + u(x0)

C
.

As u(x0)
C > 0, a finite point further than x0 can be found such that u

(
x0 + u(x0)

C

)
≤ 0. Therefore, a+ <∞. This

contradicts that a+ =∞. If u′(0) > 0, it is not clear yet if there exists an x0 ∈ [0,∞) such that u′(x0) ≤−C < 0 for
all x > 0. Since xu → 0 as x →∞, there must exist a large constant M such that u(0) > u(x) for all x ≥ M . Since
u is continuous on the set [0, M ], the Extreme Value Theorem A.3 states that there should be a maximum
value in [0, M ]. Therefore, there exists an xmax ∈ [0, M ] such that u′(xmax ) = 0. Since u′ is strictly decreasing,
u′ would become negative for all x > xmax . The argument used for u′(0) ≤ 0 can now be applied to conclude
again that a+ <∞, which is a contradiction. Therefore, a+ <∞ and Lemma 4.1 can be applied.

Remark. Note that Lemma 4.2 implies that u′(a+) = 0 since u′(x) = 0 for all x > a+, so by continuity of
u′, u′(a+) = 0. It also implies that limx↑a+ u′′(x) > 0, since u → 0 as x → a+ implies that u′′′ → ∞. But
limx↓a+ u′′(x) = 0, as u′′(x) = 0 for all x > a+. Therefore, u is not twice differentiable at x = a+. The same
result holds for a−.

4.2. Symmetric solutions
If the nonnegative solution u is symmetric, another property can be proven for u.

Lemma 4.3. Let u be a nonnegative non-trivial solution of equation (3.1) and let u(x) = u(−x) for all x ∈ R.
Then

u′(x) < 0 for 0 < x < a+.

Proof. Since u(x) = u(−x), we have u′(x) =−u′(−x). For x = 0, we obtain u′(0) =−u′(0). Therefore, u′(0) = 0.
Lemma 4.2 also implies that u′(a+) = 0 as seen in the remark. Since u > 0 on (0, a+), u′′′ > 0 using equation
(3.4). This means that u′ is strictly convex. By Definition A.3
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u′(αx1 + (1−α)x2) ≤αu′(x1)+ (1−α)u′(x2) for all x1, x2 ∈ [0, a+], α ∈ [0,1]. (4.2)

Suppose u′(x) has roots on the interval (0, a+). Let c be the first root on that interval, so u′(c) = 0. If x ∈ (0,c),
x can be written as

x =α ·0+ (1−α)c,

for some α ∈ [0,1]. Using (4.2), we obtain

u′(x) ≤αu′(0)+ (1−α)u′(c) = 0.

If x ∈ (c, a+), x can be written as

x =αc + (1−α)a+,

for some α ∈ [0,1]. Therefore,
u′(x) ≤αu′(c)+ (1−α)u′(a+) = 0.

This means that u′(x) ≤ 0 for all x ∈ [0, a+]. Now, choose x0 ∈ (0,c) and x1 ∈ (c, a+). This means that u′(x0) < 0
and u′(x1) ≤ 0 as c was the first root on the interval (0, a+). c can now be written as c = αx0 + (1−α)x1 for
some α ∈ [0,1]. By convexity

u′(c) ≤αu′(x0)+ (1−α)u′(x1) < 0.

This violates that u′(c) = 0. Therefore, u′ must have a constant sign on (0, a+). Since u(0) > 0 and u(a+) = 0,
we obtain that u′(x) < 0 on 0 < x < a+.

4.3. New formulation of the problem
For the existence of nonnegative solutions of equation (3.1) symmetry shall be assumed and later proved in
chapter 6 for 0 < n ≤ 2. Therefore, using all the results proven in this chapter, equation (3.1) can be reduced
to the following: find a number a > 0 and a function u ∈C 1([0, a])∩C 3((0, a)) such that

un−1u′′′ = x u > 0, for 0 < x < a,

u(0) = 1, u′(0) = 0,

u(a) = 0, u′(a) = 0.

(4.3)

To show that solving equation (4.3) leads to solving (3.1) and vice versa, both implications will be proven.

Suppose u is a solution of equation (4.3). If u is extended by u(x) = 0 for x > a and reflected at x = 0, u
will also be a solution of equation (3.1). If u is a nonnegative symmetric solution of equation (3.1), a scaling
function is considered

uh(x) = hαu
( x

h

)
. (4.4)

To solve h, the initial condition is considered. Since uh(0) = 1 is required to solve equation (4.3), the following
result holds:

hαu(0) = 1 = uh(0)

=⇒ h = u(0)−
1
α .

To solve for α, (4.4) will be substituted into equation (4.3)
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un−1
h u′′′

h = x

=⇒ hα(n−1)+α−3un−1
( x

h

)
u′′′

( x

h

)
= x

=⇒ hα(n−1)+α−3un−1(y)u′′′(y) = hy.

Here, a change of variables is performed with x = hy . To match equation (4.3), it must hold that

hα(n−1)+α−3 = h.

Therefore, their power should be the same. This can be used to find α

α(n −1)+α−3 = 1

=⇒α= 4

n
.

Hence finding a nonnegative symmetric solution u of equation (3.1) gives

uh(x) = h
4
n u

( x

h

)
, h = u(0)−

n
4 ,

as scaling function. Using Lemma 4.2, the restriction of uh(x) to [0,ha+] is a solution of equation (4.3) with
a = ha+.

Therefore, since solving equation (4.3) also yields a solution for (3.1), and solving (3.1) in turn leads to a
solution of equation (1.16), we will use equation (4.3) to establish the existence of a nonnegative symmetric
solution u.



5
Existence

5.1. The shooting method
To establish the existence of a solution of equation (4.3), we employ a shooting method. Equation (4.3) is
therefore converted into an initial value problem{

u′′′ = xu1−n u > 0, x > 0,
u(0) = 1, u′(0) = 0, u′′(0) =−γ,

(5.1)

where γ> 0 is a parameter that can be chosen appropriately. Now, for every γ> 0 there exists a local solution
u(x,γ) for equation (5.1) near x = 0 using the Picard-Lindelöf Theorem 2.1. This is because equation (5.1) can
be written as a system of first order Ordinary Differential Equations (ODEs) and, since u ≈ 1 near x = 0, the
system is locally Lipschitz continuous, see Definition 2.3. Therefore, the theorem implies that there exists a
unique local solution near x = 0. Now, the solution can be extended uniquely as long as the solution stays
positive and does not blow up, since the system remains Lipschitz continuous. Set

a(γ) = sup{x > 0 : u(·,γ) > 0 on [0, x)},

b(γ) = sup{0 < x < a(γ) : u′(·,γ) < 0 on [0, x)}.
(5.2)

The question of existence is now reduced to finding a number γ0 such that

u′(a(γ0)) = 0, (5.3)

where u′(a(γ0)) denotes the limit of u′(x) as x ↑ a(γ0). The reason why this γ0 still needs to be found is that,
even though the unique solutions can be extended as long as u > 0 for all γ > 0, it is not known if these
solutions satisfy Lemma 4.1 and Lemma 4.3. Therefore, the following sets are defined

S+ = {γ> 0 : u′(·,γ) = 0 before u(·,γ) = 0},

S− = {γ> 0 : u(·,γ) = 0 before u′(·,γ) = 0},
(5.4)

or, in terms of a(γ) and b(γ)

S+ = {γ> 0 : b(γ) < a(γ)},

S− = {γ> 0 : b(γ) = a(γ) and u′(a(γ)) < 0}.
(5.5)

S+ is a set that violates Lemma 4.3 and S− is a set that violates Lemma 4.1, since u(·,γ) = 0 before u′(·,γ) = 0
implies that u < 0 for slightly higher values.Therefore, R+ \(S+∩S−) ̸= ; implies that there exists a number γ0

such that (5.3) holds. Since the condition xu → 0 as x →∞ implied that Lemma 4.1 and Lemma 4.3 hold for
equation (3.1), an γ0 can be found which mimics xu → 0 as x → a(γ0)− which is not in S+ or S− and so it can
be concluded from Lemma 4.2 that a(γ0) <∞. Therefore, the existence of a solution is found for equation
(4.3). The following theorem will be proven:

19
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Theorem 5.1. Let S+ and S− be defined as in (5.4) and let 0 < n < 3. Then R+ \ (S+∩S−) is nonempty, since the
following assertions hold:

(a) S+∩S− is empty.
(b) S+ and S− are nonempty.
(c) S+ and S− are open.

(a) is true by definition. To show that (b) and (c) hold, more mathematical arguments are required.

5.2. Proving S+ is nonempty and open for 0 < n < 3 and S− is nonempty
and open for 0 < n ≤ 1

Proving that S+ is nonempty and open for 0 < n < 3 and S− is nonempty and open for 0 < n ≤ 1 will be done
first. This is because solutions in S+ are well defined on the interval of interest [0,b(γ)] for 0 < n < 3 as u > 0
on that interval. The same applies for S− when 0 < n ≤ 1 as u′′′ does not blow up as u → 0.

Lemma 5.2. S+ defined as in (5.4) is nonempty and open for 0 < n < 3.

Proof. To prove that S+ is nonempty, we note that u > 0 for the whole interval up to and including u′(·,γ) = 0.
Taylor expansion around x = 0 implies

u(x) = u(0)+xu′(0)+ x2

2
u′′(0)+ x3

6
u′′′(ζ),

where u′′′(ζ) is the remainder term with ζ ∈ (0, x). Since u′′′ > 0 for 0 < x < a(γ), we obtain the following by
filling in the initial conditions

u(x) ≥ 1− γ

2
x2. (5.6)

Note that u(x) ≤ 1 as long as u′(x) ≤ 0. Also note that u(x) > 0 when x <
√

2
γ by (5.6). For 0 < n ≤ 1, we have

u1−n ≥ u when u ≤ 1. So

u′′′ = xu1−n ≥ xu ≥ x(1− γ

2
x2).

To simplify the equation, since x ≥ 0, the following inequality is derived

1− γ

2
x2 ≥ 1

2

⇐⇒− γ

2
x2 ≥−1

2

⇐⇒γ

2
x2 ≤ 1

2

⇐⇒x2 ≤ 1

γ

⇐⇒x ≤
√

1

γ
.

This means that if x ≤
√

1
γ , then

u′′′ ≥ x(1− γ

2
x2) ≥ 1

2
x.

Integrating this two times and using the initial values gives
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u′ ≥−γx + 1

12
x3. (5.7)

The first positive root of (5.7) is

x ′
r oot =

√
12γ.

To satisfy x ′
r oot ≤

√
1
γ and so also x ′

r oot <
√

2
γ , γ will be derived

√
12γ≤

√
1

γ

=⇒ 12γ≤ 1

γ

=⇒ γ2 ≤ 1

12

=⇒ γ≤
√

1

12
.

And so there exists a γ> 0 such that γ ∈ S+ for 0 < n ≤ 1.

For 1 < n < 3, we have u1−n ≥ 1 when u ≤ 1. So

u′′′ ≥ x.

Integrating this two times and using the initial values gives

u′ ≥−γx + 1

6
x3. (5.8)

The first positive root of (5.8) is

x ′
r oot =

√
6γ.

In order to satisfy x ′
r oot <

√
2
γ , γ will be derived

√
6γ<

√
2

γ

=⇒ 6γ< 2

γ

=⇒ γ2 < 1

3

=⇒ γ<
√

1

3
.

Therefore, there exists a γ> 0 such that γ ∈ S+ for 1 < n < 3.

To show that S+ is open, it suffices to show that for every γ ∈ S+ there exists an r > 0 such that all γ̂ with
|γ− γ̂| < r implies γ̂ ∈ S+, see Definition A.2. Let γ ∈ S+. Since u > 0 for the whole interval up to and in-
cluding u′(·,γ) = 0, the unique local solution near x = 0 can be extended uniquely to this interval. Therefore,
Theorem 2.2 states that the solution depends continuously on the initial values, including γ. By continuous
dependence, slightly higher and lower values γ̂ of γ have the same property that u′ should be 0 before u, so
γ̂ ∈ S+. Hence S+ is open for 0 < n < 3.
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To prove that S− is nonempty and open, we will split the proof into two parts. In the first part where 0 < n ≤ 1,
equation (5.1) remains bounded when u approaches zero. In the second part where 1 < n < 3, equation (5.1)
becomes unbounded when u approaches zero. We will begin with the first part.

Lemma 5.3. S− defined as in (5.4) is nonempty and open for 0 < n ≤ 1.

Proof. First, we will prove that S− is open. In the set S−, u will be zero before u′. The unique local solution can
be extended while u > 0, but it will run into problems when u = 0, as xu1−n will not be Lipschitz continuous.
But since 0 < n ≤ 1, u′′′ → 0 when u → 0 using equation (5.1). This means that u′′′ stays bounded and u can
be continuously extended to u = 0 at x = a(γ). Therefore, continuous dependence also holds in this case. So
if γ ∈ S−, by continuous dependence, slightly higher and lower values γ̂ of γ have the same property that u
should be 0 before u′, so γ̂ ∈ S−. Hence S− is open for 0 < n ≤ 1.

To show that S− is nonempty, we note that u(x) ≤ 1 as long as u′(x) ≤ 0 and since 0 < n ≤ 1,

u′′′ = xu1−n ≤ x.

Integrating this two times and using the initial values gives

u′(x,γ) ≤−γx + 1

6
x3. (5.9)

Integrating this again gives

u(x,γ) ≤ 1− γ

2
x2 + 1

24
x4. (5.10)

The first positive root of the right-hand side of (5.10) is

xr oot =
√

6γ−
√

36γ2 −24.

If γ=
√

2
3 , the term 36γ2 −24 becomes greater or equal to 0. The only root when x > 0 of the right-hand side

of (5.9) is

x ′
r oot =

√
6γ.

For u′ to remain negative in the interval [0, xr oot ], it must hold that xr oot < x ′
r oot . This happens when γ>

√
2
3 .

Therefore,
(√

2
3 ,∞

)
⊂ S−. Hence S− is nonempty for 0 < n ≤ 1.

5.3. Analyzing a(γ) and b(γ)
It remains to show that S− is nonempty and open when 1 < n < 3. Since u′′′ blows up when u → 0, another
method is needed to prove this. For this, equation (5.1) will be rewritten to a second order ordinary differential
equation. Before this is done, a(γ) and b(γ) will be analyzed more closely which will help later on when the
second order ordinary differential equation is introduced.

Lemma 5.4. Let a(γ) and b(γ) be defined as in (5.2) and 0 < n < 3.
(a) If b(γ) < a(γ), then a(γ) =∞.
(b) If a(γ) =∞ for all γ> 0, then b(γ) → 0 as γ→ 0 and

p
γb(γ) →p

2 as γ→∞.

Proof. For (a), suppose that b(γ) < a(γ). Then u(b(γ)) > 0 and u′(b(γ)) = 0. Since u′ is negative for 0 < x <
b(γ), we obtain that u′′(b(γ)) ≥ 0. Now, u′′′ > 0 using equation (5.1) and therefore u′′ > 0 for all x > b(γ) which
results in u′ > 0 for all x > b(γ). So u will be strictly increasing and will never approach 0. Thus, a(γ) =∞.

For (b), suppose that a(γ) =∞ for all γ > 0. This means that u > 0 for all x > 0. So the unique local solution
near x = 0 can be extended on the whole interval x > 0 and therefore continuous dependence on compact
subsets holds on the whole interval by Theorem 2.2. For γ= 0, since u′′′ > 0 for all x > 0, we obtain u′′ > 0 for
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all x > 0. Therefore, u′ will also be strictly positive for all x > 0 and u′ will only hit zero at x = 0. In this case
b(γ) = 0. Hence by continuous dependence, b(γ) → 0 as γ→ 0.

To prove
p
γb(γ) →p

2 as γ→∞, a scaling argument is used. Set ξ=p
γx, then

uγ(ξ) = u(x) = u

(
ξp
γ

)
.

If u is a solution to equation (5.1), then uγ can be substituted into equation (5.1), where x becomes ξp
γ

. So uγ
is a solution of {

u′′′
γ = γ−2ξu1−n

γ uγ > 0, ξ> 0,
uγ(0) = 1, u′

γ(0) = 0, u′′
γ(0) =−1.

Note that for large γ we have u′′′
γ ≈ 0. So the limiting function at “γ=∞” is, by integrating u′′′

γ = 0 three times
and using the initial conditions

ū(ξ) = 1− ξ2

2
. (5.11)

This equation has a positive root
p

2, but since the assumption is that a(γ) =∞, the function is not well de-
fined anymore on [

p
2,∞). So analysis is done on [0,

p
2). We will now show that uγ → ū as γ→∞ uniformly

in C 3(K ) for any compact set K = [0,b] ⊂ [0,
p

2), meaning that up to and including the third derivative con-
verges uniformly (this is called a compactness argument). It suffices to show that for every sequence γm →∞,
we have that uγm → ū in C 3(K ) uniformly. Let {γm} be a sequence that goes to ∞. The Arzelà-Ascoli Theo-
rem 2.3 will be used to show that there exists a subsequence γmk such that uγmk

converges uniformly to ū

in C 3(K ). To use this theorem, it must be shown that uγm , u′
γm

, u′′
γm

and u′′′
γm

are uniformly bounded and
equicontinuous on the compact interval K , see Definition 2.1 and Definition 2.2.

To show this, we note that u1−n
γm

is bounded for all ξ > 0 and m ∈ N as uγm > 0. So on the interval K , there

exists an M > 0 such that |u1−n
γm

| ≤ M for all ξ ∈ K and m ∈ N. Now, γm > 0 for all m ∈ N, so there exists a

D > 0 such that γ−2
m ≤ D . Therefore, |u′′′

γm
| ≤ DbM <∞ for all ξ ∈ K = [0,b] and m ∈N. Hence u′′′

γm
is uniformly

bounded. To show that u′′
γm

is uniformly bounded on K , u′′′
γm

is integrated and its bound is used∫ ξ

0
u′′′
γm

d s =
∫ ξ

0
γ−2

m su1−n
γm

d s ≤
∫ ξ

0
DbM d s

=⇒ u′′
γm

(ξ) ≤ u′′
γm

(0)+DbMξ.

This implies that |u′′
γm

| ≤ |−1+Db2M | for all ξ ∈ K and m ∈N. So u′′
γm

is also uniformly bounded. Using the
same argument, it can also be shown that u′

γm
and uγm are uniformly bounded.

Next, we will show that u′′′
γm

is equicontinuous. For this, the derivative is taken of u′′′
γm

u′′′′
γm

= d

dξ
(γ−2

m ξu1−n
γm

) = γ−2
m u1−n

γm
+γ−2

m ξu−n
γm

u′
γm

.

Since uγm > 0 and u′
γm

> 0 are uniformly bounded, this means that u′′′′
γm

is also uniformly bounded by a
number A > 0. Using the Mean Value Theorem A.2 and uniform boundedness of u′′′′

γm
, for each ξ1,ξ2 ∈ K

with ξ1 ̸= ξ2 there exists a c ∈ (ξ1,ξ2) such that

|u′′′
γm

(ξ1)−u′′′
γm

(ξ2)| = |u′′′′(c)||ξ1 −ξ2| ≤ A|ξ1 −ξ2|.

This implies that u′′′
γm

is Lipschitz continuous and therefore also equicontinuous. Using the same argument
with the Mean Value Theorem and uniform boundedness for u′′

γm
, u′

γm
and uγm , we can conclude that they

are also equicontinuous.
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Now, since uγm , u′
γm

, u′′
γm

and u′′′
γm

are uniformly bounded and equicontinuous on the compact interval K ,
the Arzelà-Ascoli Theorem can be applied and so there exists a subsequence {γmk } such that uγmk

→ ū in

C 3(K ) uniformly. Note that, since γm →∞, it means that for every subsequence {γml }, we have γml →∞. Us-
ing the same arguments, it implies that for all subsequences {γml }, there exists a further subsequence {γmlk

}

such that uγmlk
→ ū in C 3(K ) uniformly. So by Theorem A.6, uγm → ū in C 3(K ) uniformly. Since the sequence

{γm} was taken arbitrarily, it holds for all sequences and therefore uγ→ ū in C 3(K ) uniformly as γ→∞.

To prove limγ→∞
p
γb(γ) = p

2, it will be shown that liminfγ→∞
p
γb(γ) ≥ p

2 and limsupγ→∞
p
γb(γ) ≤ p

2.

Define ξ0 as u′
γ(ξ0) = 0. For liminfγ→∞

p
γb(γ) ≥p

2, we note that ū′ =−ξ which is always negative for ξ> 0.

Since uγ → ū uniformly in C 3(K ) for any compact set K = [0,b] with b < p
2, it follows that for all ϵ > 0 and

all ξ ∈ [0,
p

2), there exists a γ∗ such that for all γ> γ∗, |uγ(ξ)− ū(ξ)| < ϵ and |u′
γ(ξ)− ū′(ξ)| < ϵ. Therefore, for

sufficiently large γ and ξ < p
2, we have uγ ≈ ū = 1− ξ2

2 > 0 and u′
γ ≈ ū′ = −ξ. The derivative for large γ is

negative when ξ ∈ (0,
p

2). As ū is well defined on ξ ∈ [0,
p

2), it means that for large γ, the turning point for u′
γ

becoming nonnegative is at least on ξ0 ≥
p

2. So liminfγ→∞ ξ0 =p
γb(γ) ≥p

2.

To show limsupγ→∞
p
γb(γ) ≤p

2, we claim that for a fixed δ ∈ (0,
p

2)

liminf
γ→∞ u′

γ(
p

2+δ) ≥ 0. (5.12)

Suppose this is not the case, so liminfγ→∞ u′
γ(
p

2+δ) < 0. Let {γn} be the sequence where this holds. The

value ξ=p
2−δ is on the interval [0,

p
2) and so u′

γn
(
p

2−δ) → ū′(
p

2−δ) =−p2+δ< 0 as γn →∞. Also for

large n, u′
γn

(
p

2+δ) < 0 by the contradiction assumption. So for large n, as u′′ is monotone increasing

u′
γn

≤−C < 0 on (
p

2−δ,
p

2+δ).

Now, even though ū is only well defined as a limiting function on the interval [0,
p

2), uγn approaches 0 if
ξ→ p

2 for large n. And since uγn is well defined for all ξ > 0, it means that, since uγn is strictly decreas-
ing on the interval (

p
2−δ,

p
2+δ), uγn will become negative. This contradicts that a(γ) =∞ and so (5.12)

must hold. This does not prove yet that limsupγ→∞
p
γb(γ) ≤ p

2 as liminfγ→∞ u′
γ(
p

2+δ) can be 0 and so

there exists a subsequence {γn} where u′
γn

(
p

2+δ) approaches zero, but may never actually reach zero. So

liminfγ→∞ u′
γ(
p

2+δ) > 0 is needed.

Note that u′′
γ is increasing and so by the Mean Value Theorem there exists a c ∈ (

p
2−δ,

p
2+δ) such that

u′
γ(
p

2+δ)−u′
γ(
p

2−δ)

(
p

2+δ− (
p

2−δ))
= u′′

γ(c) ≤ u′′
γ(
p

2+δ).

Then for sufficiently large γ and using (5.12), u′
γ(
p

2−δ) ≈ ū′(
p

2−δ) = −p2+δ and u′
γ(
p

2+δ) ≥ 0. This
implies

liminf
γ→∞ u′′

γ(
p

2+δ) ≥
p

2−δ
2δ

.

As u′′
γ is increasing, for large γ and ξ≥p

2+δ it holds that

u′′
γ(ξ) ≥ u′′

γ(
p

2+δ) ≥
p

2−δ
2δ

.

Integrating u′′
γ on the interval (

p
2+δ,

p
2+2δ) for large γ gives∫ p

2+2δ

p
2+δ

u′′
γ d s ≥

∫ p
2+2δ

p
2+δ

p
2−δ
2δ

d s

=⇒ u′
γ(
p

2+2δ) ≥ u′
γ(
p

2+δ)+
p

2−δ
2

≥
p

2−δ
2

.
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Therefore,

liminf
γ→∞ u′

γ(
p

2+2δ) ≥
p

2−δ
2

> 0.

This means that u′ must cross u′ = 0 somewhere on the interval (
p

2,
p

2+2δ) for a large enough γ as u′′ is
monotone increasing. So ξ0 <

p
2+2δ for large γ. Since δ may be chosen arbitrarily small, we conclude that

limsupγ→∞ ξ0 =p
γb(γ) ≤p

2.

Since liminfγ→∞
p
γb(γ) ≥p

2 and limsupγ→∞ =p
γb(γ) ≤p

2, we have proven that limγ→∞
p
γb(γ) =p

2.

With Lemma 5.4, a bound can be formulated for b(γ).

Lemma 5.5. Let a(γ) and b(γ) be defined as in (5.2) and 0 < n < 3. Define I = {γ> 0 : a(γ) =∞}. Then

M1 = sup
γ∈I

b(γ) <∞.

Proof. Suppose to the contrary that there exists a sequence {γk } ⊂ I such that b(γk ) → ∞ as k → ∞. Now
if γk → ∞, by Lemma 5.4(b),

p
γk b(γk ) → p

2. But if b(γk ) → ∞, it must mean that γk → 0 contradicting
γk →∞. Furthermore, if γk → 0, by Lemma 5.4(b), it must mean that b(γ) → 0, contradicting b(γk ) →∞. So
{γk } must be bounded and stays away from zero. The Bolzano-Weierstrass Theorem A.5 then states that {γk }
has a convergent subsequence {γkl

} which converges to γ∗ > 0 and also b(γkl
) →∞ as l →∞. By the same

logic as the compactness argument in Lemma 5.4(b) where a(γ) =∞, we have

u(·,γkl
) → u(·,γ∗) as k →∞ in C 3(K ) uniformly,

where K is any compact subset of [0, a(γ∗)), since for x ≥ a(γ∗) the solution crosses u = 0 and leads to irreg-
ularities for u′′′. This means that on K , b(γkl

) → b(γ∗) as l →∞ and so b(γ∗) =∞. Suppose that a(γ∗) =∞,
then γ∗ ∈ I . An argument similar as in the proof of Lemma 4.2 will be used. As u′′′(·,γ∗) > 0 for all x > 0, it
means that u′′(·,γ∗) is strictly increasing for all x > 0, so limx→∞ u′′(x,γ∗) = L exists. If L > 0, it would mean
that limx→∞ u(x,γ∗) =∞ and so u′(·,γ∗) must have switched from negative to positive in finite time and so
b(γ∗) <∞, which is a contradiction. If L < 0, limx→∞ u(x,γ∗) = −∞. So u(·,γ∗) crosses 0 in finite time, con-
tradicts a(γ∗) =∞. So L = 0. As u′′ is strictly increasing for all x > 0, this would mean that u′′ < 0 for all x > 0.
So u′ is strictly decreasing for all x > 0. The proof of Lemma 4.2 then shows that a(γ∗) should be finite and so
contradicting a(γ∗) =∞.

Since a(γ∗) <∞, using the same argument steps as in Lemma 5.4(b), it can be shown that b(γkl
) → a(γ∗) as

l →∞. But this would mean that since b(γkl
) → b(γ∗) as l →∞, b(γ∗) <∞, which contradicts that b(γ∗) =∞.

Hence supγ∈I b(γ) <∞.

A bound for a(γ) is now also formulated.

Lemma 5.6. Let a(γ) and b(γ) be defined as in (5.2) and 0 < n < 3. Define J = {γ> 0 : a(γ) <∞}. Then

M2 = sup
γ∈J

a(γ) <∞.

Proof. Suppose to the contrary that there exists a sequence {γk } ⊂ J such that a(γ) →∞ as k →∞. It will be
shown that γk is bounded and stays away from zero. If γk → 0 we note that, since it was proved that S+ is open
and nonempty in Lemma 5.2 for small γ, it would mean that for large k, b(γk ) < a(γk ). Lemma 5.4(a) implies
that a(γk ) =∞. By definition, a(γk ) <∞ for all k, so this is not possible. If γk →∞, the same scaling argument
as in Lemma 5.4(b) can be used. We now note that uγk is defined on [0,

p
γk a(γk )) instead of [0,∞). Since

γk →∞, using the same compactness argument, the solution uγk converges uniformly to the same limiting
function (5.11) in C 3(K ), where K = [0,b] ⊂ [0,

p
2). Since ū has a zero on

p
2, it means that

p
γk a(γk ) →p

2
as γk →∞. But that would imply that a(γk ) → 0, which contradicts that a(γk ) →∞. Therefore, {γk } must be
bounded and stays away from zero.
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The Bolzano-Weierstrass Theorem A.5 states that {γk } has a convergent subsequence {γkl
} which converges

to γ∗ > 0 and also a(γkl
) →∞ as l →∞. So again by the compactness argument in Lemma 5.4(b)

u(·,γkl
) → u(·,γ∗) as k →∞ in C 3(K ) uniformly,

where K is any compact subset of [0, a(γ∗)). As a(γkl
) →∞, it means that u(·,γ∗) > 0 for all x > 0. So a(γ∗) =

∞. As in the proof of Lemma 5.5, a(γ∗) =∞ leads to a contradiction because limx→∞ u′′(x,γ∗) = L exists and
should be L = 0. This means that u′′ < 0 for all x > 0, since u′′ is strictly increasing. The proof of Lemma 4.2
then shows that a(γ∗) should be finite and so contradicting a(γ∗) =∞. Therefore, there cannot exist such a
sequence and hence supγ∈J a(γ) <∞.

5.4. Reformulating equation (5.1)
Now that these bounds are proven, equation (5.1) will be rewritten into a second order ordinary differential
equation. u will be an independent variable, while (u′)2 becomes a dependent variable. This is possible
as u′′(0) = −γ < 0, so u′ < 0 initially. This means that u is strictly decreasing on the interval [0,ξ], where
ξ = min{a(γ),b(γ)}. Set θ = u(ξ,γ). Then θ = 0 if a(γ) = b(γ) and 0 < θ < 1 if a(γ) > b(γ). As u is strictly
monotone and continuous on the interval interval [0,ξ] ([0,ξ) if θ = 0), we obtain that u is bijective on that
interval. So an inverse can be defined σ : [θ,1] → [0,ξ] where

σ(u(x,γ)) = x for 0 ≤ x ≤ ξ. (5.13)

Note that the σ is defined on (θ,1] → [0,ξ) if θ = 0. σ has the following properties

σ(u) > 0, σ′(u) < 0 for θ < u < 1 and σ(1) = 0. (5.14)

Next, define y : [θ,1] → [0,∞) by
y(u,γ) = (u′(σ(u),γ))2. (5.15)

As σ(u(x,γ)) = x and u′ < 0 on [0,ξ], taking the square root on both sides gives

u′(x,γ) =−√
y(u,γ). (5.16)

Differentiating this twice using the chain rule and (5.15) and (5.16) gives

u′′(x,γ) = 1

2
y ′(u,γ), u′′′(x,γ) =−1

2

√
y(u,γ)y ′′(u,γ). (5.17)

If u is a solution of (5.1), substituting these new variables gives{
y ′′+φ(u)y− 1

2 = 0 θ < u < 1,

y(1,γ) = 0, y ′(1,γ) =−2γ,
(5.18)

where

φ(u) = 2u1−nσ(u).

For the boundary conditions we have u = 1 at x = 0. So using (5.17)

u(0,γ) = 1 =⇒ σ(1) = 0,

u′(0,γ) = 0 =⇒ y(1,γ) = (u′(σ(1),γ))2 = (u′(0,γ))2 = 0,

u′′(0,γ) =−γ and u′′(0) = 1

2
y ′(1,γ) =⇒ y ′(1,γ) =−2γ.
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The sets S+ and S− can now also be reformulated. Since θ was defined as θ = u(ξ,γ), if θ > 0, it means that
u(ξ,γ) > 0 while u′(ξ,γ) = 0. So all γ with this property are in S+. If θ = 0 and limu→0+ y(u,γ) > 0, it means
by (5.16) that limx→ξ− u′(x,γ) < 0 while limx→ξ− u(x,γ) = 0. So if γ has this property, it means that it is in S−.
The desired solution is therefore characterized as θ = 0 and limu→0+ y(u,γ) = 0. Even though θ = u(ξ,γ) is not
a fixed boundary, we have more structural information available at θ. Equation (5.18) is therefore easier to
work with as we now also have a second order ordinary and we can obtain bounds easier for the function y
However, it should be noted that the function σ(u), which appears in the coefficient φ(u), is not given explic-
itly. It depends implicitly on the original solution u(x,γ) through inversion. Therefore, the equation retains
some complexity due to the implicit nature of σ.

Before equation (5.18) is used to prove S− is nonempty and open for 1 < n < 3, we proceed to derive bounds
for y .

Lemma 5.7. Let y be a solution of equation (5.18) and let 0 < n < 3. Then

y(u,γ) < 2γ(1−u) for θ < u < 1.

Proof. Sinceσ(u) > 0 on (θ,1) by (5.14), it follows thatφ(u) > 0 on (θ,1). Also, u′ < 0 on (θ,1) and soφ(u)y− 1
2 >

0. Using equation (5.18), we have y ′′ < 0 on (θ,1). So y ′ is strictly decreasing. Therefore,

y ′(u,γ) > y ′(1,γ) =−2γ on θ < u < 1.

Integrating this over (u,1) with u > θ gives

∫ 1

u
y ′(s,γ)d s >

∫ 1

u
−2γd s

=⇒ y(1,γ)− y(u,γ) >−2γ(1−u)

=⇒ y(u,γ) < 2γ(1−u).

Where y(1,γ) = 0 using the boundary condition of equation (5.18). Therefore, the strict inequality holds on
(θ,1).

The following two functionals will now be defined

E(u) = 1

2
(y ′)2 +2φ(u)

p
y ,

G(u) = (y ′)2

2φ(u)
+2

p
y .

(5.19)

If y is a solution of equation (5.18), then

φ′(u) =−2(n −1)u−nσ(u)+2u1−nσ′(u).

Note that φ′(u) < 0 on (θ,1), since σ′(u) < 0 on (θ,1). Computing the derivatives of E and G gives, using
equation (5.18) for y ′′ and the chain rule,
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E ′(u) = (y ′)y ′′+2φ′(u)
p

y + y ′φ(u)y− 1
2

= y ′(−φ(u)y− 1
2 )+2φ′(u)

p
y + y ′φ(u)y− 1

2

= 2φ′(u)
p

y ,

G ′(u) = 4(y ′)y ′′φ(u)−2(y ′)2φ′(u)

4(φ(u))2 + y ′y− 1
2

= 2(y ′)(−φ(u)y− 1
2 )φ(u)− (y ′)2φ′(u)

2(φ(u))2 + y ′y− 1
2

=−y ′y− 1
2 − (y ′)2φ′(u)

2(φ(u))2 + y ′y− 1
2

=− (y ′)2φ′(u)

2(φ(u))2 .

(5.20)

As φ′(u) < 0 on (θ,1), we obtain

E ′(u) < 0 and G ′(u) > 0 for θ < u < 1. (5.21)

Using this, the following bound can be proven:

Lemma 5.8. Let y be a solution of equation (5.18) and let 0 < n < 3. Then

(y ′)2 +4φ(u)
p

y > 4γ2 for θ < u < 1.

Proof. Since E ′(u) < 0 on (θ,1), it means that E(u) is strictly decreasing on (θ,1). Now using the boundary
conditions of equation (5.18)

E(1) = 1

2
(y ′(1,γ))2 +2φ(1)

√
y(1,γ) = (−2γ)2

2
+2 ·0 ·p0 = 2γ2.

So on (θ,1) we have

E(u) = 1

2
(y ′)2 +2φ(u)

p
y > E(1) = 2γ2.

Therefore, on (θ,1) we obtain

(y ′)2 +4φ(u)
p

y > 4γ2.

5.5. Proving S− is nonempty and open for 1 < n < 3
With equation (5.18) and the bounds that were proven for y , b(γ), and a(γ), we can finally be prove that S− is
nonempty and open for 1 < n < 3.

Lemma 5.9. S− defined as in (5.4) is nonempty for 1 < n < 3.

Proof. Using Lemma 5.8 on θ < u < 1

(y ′)2 +4φ(u)
p

y > 4γ2

=⇒ (y ′)2 > 4γ2 −4φ(u)
p

y

=⇒ (y ′)2 > 4γ2 −8u1−nσ(u)
p

y .

(5.22)

Note that σ(u) is a strictly decreasing function as u is also strictly decreasing. This means that the highest
value is σ(θ) = ξ, where ξ= min{a(γ),b(γ)}. If a(γ) =∞, using Lemma 5.5, it means that ξ≤ M1. If a(γ) <∞,
using Lemma 5.6, it means that ξ≤ M2. Therefore, σ(u) ≤ M <∞ on θ < u < 1, where M = max{M1, M2}. This
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means that −σ(u) ≥−M .

Using Lemma 5.7 on θ < u < 1 we get

y(u,γ) < 2γ(1−u)

=⇒√
y(u,γ) <√

2γ(1−u)

=⇒ −√
y(u,γ) >−√

2γ(1−u)

=⇒ −√
y(u,γ) >−√

2γ.

(5.23)

Filling this in (5.22) gives

(y ′)2 > 4γ2 −8u1−nσ(u)
p

y

> 4γ2 −8Mu1−n√
2γ

= 4γ2

(
1−

(
2

γ

) 3
2

Mu1−n

)
.

(5.24)

Now, to see for which values the term 4γ2 dominates, the inequality

(
2

γ

) 3
2

Mu1−n < 1

2

is solved. Therefore, since 1 < n < 3

(
2

γ

) 3
2

Mu1−n < 1

2

⇐⇒u1−n < 1

2M

(γ
2

) 3
2

⇐⇒u >
(
γ

3
2

2
5
2 M

) 1
1−n

⇐⇒u > (2−
5
2 M−1)

1
1−n γ

3
2(1−n)

⇐⇒u > (2
5
2 M)

1
n−1 γ−

3
2(n−1) .

Define

A = (2
5
2 M)

1
n−1 , v = 3

2(n −1)
, u0(γ) = Aγ−v . (5.25)

Note that u0(γ) → 0 as γ→∞. So for large γ, filling this in (5.24) on u0(γ) < u < 1 gives

(y ′)2 > 4γ2

(
1−

(
2

γ

) 3
2

Mu1−n

)
> 2γ2. (5.26)

On u0(γ) < u < 1 we have

(y ′)2 > 2γ2

=⇒ |y ′| >p
2γ

=⇒ y ′ <−p2γ or y ′ >p
2γ.

(5.27)

If y ′ >p
2γ, we would have that y ′ > 0 on u0(γ) < u < 1. But then limu→1− y ′(u,γ) ̸= −2γ. So by continuity of

y ′, this cannot hold and so y ′ < −p2γ on u0(γ) < u < 1. By continuity of y ′, we obtain y ′(u0(γ),γ) ≤ −p2γ.
Integrating this over (u0(γ),1) and using y(1,γ) = 0 gives
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∫ 1

u0(γ)
y ′(u,γ)du <

∫ 1

u0(γ)
−p2γdu

=⇒ y(1,γ)− y(u0(γ),γ) <−p2γ(1−u0(γ))

=⇒ y(u0(γ),γ) >p
2γ(1−u0(γ)) =p

2γ−p
2Aγ1−v .

To bridge the interval (θ,u0(γ)), define

u1 = inf{θ < u < 1 : y ′ < 0 on (u,1]}. (5.28)

Since y ′(u0(γ),γ) < 0 by (5.27), we obtain that u1 < u0(γ) by continuity. Since y is strictly decreasing on
(u1,u0(γ))

y(u1,γ) > y(u0(γ),γ) >p
2γ−p

2Aγ1−v . (5.29)

Suppose that u1 = θ. If 1 < n ≤ 5
2 we have v ≥ 1, which implies that for large γ, limu→0+ y(u,γ) > 0. If 5

2 < n < 3
we have 0 < v < 1, meaning that 1− v > 0. However, since the first term has a γ of order 1, the first term will
outgrow the second term which will also result in limu→θ+ y(u,γ) > 0 for sufficiently large γ. Since θ > 0 im-
plies that y(θ,γ) = 0, we obtain that θ = 0. So this means that S− is nonempty by the reformulation. Therefore,
we assume that u1 > θ.

Suppose that S− is empty and so θ > 0 or θ = 0 and y(θ,γ) = 0 for all γ> 0. Now for u < u1 and using (5.19), we
obtain

G(u) = (y ′(u,γ))2

2φ(u)
+2

√
y(u,γ)

=⇒ (y ′(u,γ))2 = 2φ(u)
(
G(u)−2

√
y(u,γ)

)
.

By (5.21), G ′(u) > 0 on (θ,1). So

(y ′(u,γ))2 = 2φ(u)
(
G(u)−2

√
y(u,γ)

)
=⇒ (y ′(u,γ))2 < 2φ(u)

(
G(u1)−2

√
y(u,γ)

)
=⇒ (y ′(u,γ))2 < 2φ(u)G(u1).

Computing G(u1) using (5.19) and using that y ′(u1,γ) = 0 by definition, the following holds

(y ′(u,γ))2 < 2φ(u)G(u1)

< 2φ(u)

(
(y ′(u1,γ))2

2φ(u1)
+2

√
y(u1,γ)

)
< 4φ(u)

√
y(u1,γ).

Using (5.23) and σ(u) ≤ M gives

(y ′(u,γ))2 < 4φ(u)
√

y(u1,γ)

< 8u1−nσ(u)
√

y(u1,γ)

< 8
√

2γMu1−n .

Taking the square root gives

(y ′(u,γ))2 < 8
√

2γMu1−n

=⇒ |y ′(u,γ)| < 2
7
4 γ

1
4
p

Mu
1−n

2

=⇒ y ′(u,γ) >−2
7
4 γ

1
4
p

Mu
1−n

2 and y ′(u,γ) < 2
7
4 γ

1
4
p

Mu
1−n

2 .
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So on (θ,u1)

y ′(u,γ) < 2
7
4 γ

1
4
p

Mu
1−n

2 .

Integrating over (θ,u1) yields∫ u1

θ
y ′(u,γ)du <

∫ u1

θ
2

7
4 γ

1
4
p

Mu
1−n

2 du

=⇒ y(u1,γ)− y(θ,γ) < 2

3−n
2

7
4 γ

1
4
p

Mu
3−n

2
1 − 2

3−n
2

7
4 γ

1
4
p

Mθ
3−n

2

=⇒ y(u1,γ) <Cγ
1
4 u

3−n
2

1 −Cγ
1
4 θ

3−n
2 + y(θ,γ),

where C = 2
3−n 2

7
4
p

M > 0. Since u1 < u0(γ) and 3−n
2 > 0 for 1 < n < 3

y(u1,γ) <Cγ
1
4 u

3−n
2

1 −Cγ
1
4 θ

3−n
2 + y(θ,γ)

<Cγ
1
4 u0(γ)

3−n
2 −Cγ

1
4 θ

3−n
2 + y(θ,γ)

=C Aγ
1
4 − v(3−n)

2 −Cγ
1
4 θ

3−n
2 + y(θ,γ),

where the definition of u0(γ) is used (5.25). The power of γ in the first term can now be rewritten as

1

4
− v(3−n)

2
= 1

4
−

3
2(n−1) (3−n)

2

= 1

4
− 3(3−n)

4(n −1)
=α,

(5.30)

where the power of γ in the first term is denoted as α. Note that α < 0 when 1 < n < 5
2 and 0 ≤ α < 1, when

5
2 ≤ n < 3. Also, since θ ≥ 0, we obtain that Cγ

1
4 θ

3−n
2 > 0. Therefore,

y(u1,γ) <C Aγα+ y(θ,γ).

Furthermore, by assumption S− is empty, so y(θ,γ) = 0. So

y(u1,γ) <C Aγα. (5.31)

Now, (5.29) and (5.31) contradict each other for large γ. To see this, note that for 1 < n ≤ 5
2 we have v ≥ 1, so

the second term in (5.29) goes to zero or 1 for large γ, while the first term has a γ of order 1. Since (5.31) has
a power of α< 1, it would mean that, for γ large enough, (5.29) will overtake (5.31) which cannot happen by
the strict inequality. The same also applies when 5

2 < n < 3. Even though, 0 < v < 1, (5.29) will still overtake
(5.31) for sufficiently large γ. Thus, there must exist a γ such that θ = 0 and limu→0+ y(u,γ) > 0. Thus, S− is
nonempty.

Lemma 5.10. S− defined as in (5.4) is open for 1 < n < 3.

Proof. Let γ0 ∈ S−. Then, by the reformulation of S−, θ(γ0) = 0 and y(0,γ0) > 0. It must be shown that for
γ in the neighborhood of γ0, it should also satisfy θ(γ) = 0 and y(0,γ) > 0 and so γ ∈ S−. As u′

γ0
< 0 for

[0,1), it means that y(u,γ0) = (u′
γ0

)2 > 0 on the same interval. So there exists a positive number c such that

y(u,γ0) > 4c for 0 ≤ u ≤ 1
2 .

Since u(·,γ), depends continuously on γ as long as u > 0 by Theorem 2.2, σ(u) also depends continuously
on γ as long as u > 0. So a solution y(u,γ) of equation (5.18) also depends continuously on γ for 0 < u ≤ 1.
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Therefore, as γ→ γ0, y(u,γ) → y(u,γ0) on θ(γ) < u ≤ 1. Since θ(γ0) = 0 by definition, we obtain that θ(γ) → 0
as γ→ γ0.

Let δ > 0 be a small positive number. Let γ be a number that is close enough to γ0 such that θ(γ) < δ and
y(δ,γ) > c. This is possible as θ(γ) → 0 when γ→ γ0 by the previous argument and since δ> 0, it implies that
there is continuous dependence on y(δ,γ). So we can get close enough such that |y(δ,γ)− y(δ,γ0)| < 3c. And
since y(δ,γ0) > 4c, this implies that y(δ,γ) > c. Integrating equation (5.18) over (u,δ) gives∫ δ

u
y ′′(s,γ)d s =−

∫ δ

u
φ(s)y− 1

2 (s,γ)d s

=⇒ y ′(δ,γ)− y ′(u,γ) =−
∫ δ

u
φ(s)y− 1

2 (s,γ)d s

=⇒ y ′(u,γ) = y ′(δ,γ)+
∫ δ

u
φ(s)y− 1

2 (s,γ)d s.

Integrating this again over (u,δ) gives∫ δ

u
y ′(s,γ)d s =

∫ δ

u
y ′(δ,γ)d s +

∫ δ

u

(∫ δ

s
φ(r )y− 1

2 (r,γ)dr

)
d s

=⇒ y(δ,γ)− y(u,γ) = y ′(δ,γ)(δ−u)+
∫ δ

u

(∫ δ

s
φ(r )y− 1

2 (r,γ)dr

)
d s

=⇒ y(u,γ) = y(δ,γ)− y ′(δ,γ)(δ−u)−
∫ δ

u

(∫ δ

s
φ(r )y− 1

2 (r,γ)dr

)
d s.

To tackle the double integral, Fubini’s Theorem A.4 is used

y(u,γ) = y(δ,γ)− y ′(δ,γ)(δ−u)−
∫ δ

u

(∫ δ

s
φ(r )y− 1

2 (r,γ)dr

)
d s

= y(δ,γ)− y ′(δ,γ)(δ−u)−
∫ δ

u

(∫ r

u
d s

)
φ(r )y− 1

2 (r,γ)dr

= y(δ,γ)− y ′(δ,γ)(δ−u)−
∫ δ

u
(r −u)φ(r )y− 1

2 (r,γ)dr

= y(δ,γ)− y ′(δ,γ)(δ−u)−
∫ δ

u
(r −u)2σ(r )r 1−n y− 1

2 (r,γ)dr.

(5.32)

Observe that as long as y(u,γ) > c and noting that σ(u) ≤ M , we obtain∫ δ

u
(r −u)2σ(r )r 1−n y− 1

2 (r )dr <
∫ δ

u
(r −u)2Mr 1−n 1p

c
dr.

Integrating the right-hand side for n ̸= 2 gives∫ δ

u
(r −u)2Mr 1−n 1p

c
dr = 2Mp

c

∫ δ

u
(r −u)r 1−n dr

= 2Mp
c

(
δ3−n

3−n
− u3−n

3−n
− uδ2−n

2−n
+ u3−n

2−n

)
.

For 2 < n < 3, the last three terms are less than 0 and so∫ δ

u
(r −u)2Mr 1−n 1p

c
dr < 2M

(3−n)
p

c
δ3−n for 0 < u < δ.

For 1 < n < 2, the fourth term is greater than 0, but since u < δ and 2−n > 0

uδ2−n

2−n
> u3−n

2−n
.
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This means that for 1 < n < 2∫ δ

u
(r −u)2Mr 1−n 1p

c
dr < 2M

(3−n)
p

c
δ3−n for 0 < u < δ.

For n = 2, the integral is taken again∫ δ

u
(r −u)2Mr 1−n 1p

c
dr = 2Mp

c

∫ δ

u
(r −u)r 1−n dr

= 2Mp
c

(
δ3−n

3−n
− u3−n

3−n
−u log(δ)+u log(u)

)
.

Since δ> u and log(·) is a strictly increasing function

u log(δ) > u log(u).

Therefore, for n = 2, ∫ δ

u
(r −u)2Mr 1−n 1p

c
dr < 2M

(3−n)
p

c
δ3−n for 0 < u < δ. (5.33)

Also, note that limu→0+ u log(u) = 0. So for 0 < n < 3 the strict inequality holds. Since this term is greater than
0, a δ can now be chosen small enough such that

2M

(3−n)
p

c
δ3−n = 1

2
c. (5.34)

Furthermore, since δ> 0, by continuous dependence there exists a γ close enough to γ0 such that

|y(δ,γ)− y(δ,γ0)|+δ|y ′(δ,γ)− y ′(δ,γ0)| < c. (5.35)

Now, y0(u,γ) is subtracted from y(u,γ) and the absolute values are taken. Using (5.32) we get

|y(u,γ)−y(u,γ0)| =
∣∣∣∣y(δ,γ)− y(δ,γ)− y ′(δ,γ0)(δ−u)+ y ′(δ,γ)(δ−u)−

∫ δ

u
(r −u)φ(r )(y− 1

2 (r,γ)− y− 1
2 (r,γ0))dr

∣∣∣∣ .

By the triangle inequality for real numbers and integrals we obtain

|y(u,γ)− y(u,γ0)| ≤ |y(δ,γ)− y(δ,γ)|+ (δ−u)|y ′(δ,γ0)− y ′(δ,γ)|+
∫ δ

u
|(r −u)φ(r )(y− 1

2 (r,γ)− y− 1
2 (r,γ0))|dr.

Since (r −u) ≥ 0 and φ(r ) > 0 on r ∈ [u,δ], using the triangle equality again inside the integral gives

|y(u,γ)−y(u,γ0)| ≤ |y(δ,γ)−y(δ,γ)|+(δ−u)|y ′(δ,γ0)−y ′(δ,γ)|+
∫ δ

u
(r−u)φ(r )|y− 1

2 (r,γ)|dr+
∫ δ

u
(r−u)φ(r )|y− 1

2 (r,γ0)|dr.

Now, as long as y(u,γ) > c, using the strict inequality for the integral (5.33) and using that δ−u < δ gives

|y(u,γ)− y(u,γ0)| < |y(δ,γ)− y(δ,γ)|+δ|y ′(δ,γ0)− y ′(δ,γ)|+ 2M

(3−n)
p

c
δ3−n + 2M

(3−n)
p

c
δ3−n .

Using (5.34) and (5.35) yields
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|y(u,γ)− y(u,γ0)| < c +2 · 1

2
c = 2c. (5.36)

Using that y(u,γ0) > 4c on u ∈ [0, 1
2 ] and using (5.36) results in

y(u,γ) = y(u,γ0)− (y(u,γ0)− y(u,γ)) ≥ y(u,γ0)−|y(u,γ0)− y(u,γ)| > 4c −2c = 2c.

Since assuming y(u,γ) > c implied a stronger bound y(u,γ) > 2c, by a bootstrap argument, y(u,γ) can be
continued down to u = 0 and y(0,γ) ≥ 2c. Therefore, y(0,γ) > 0 so there exists a neighborhood of γ0 which
lies in S−. Hence S− is open for 1 < n < 3.

Having proved all these results, the main theorem can finally be proven.

Theorem 5.11. Suppose 0 < n < 3. Then there exists a solution of equation (4.3).

Proof. In the first section of this chapter it was argued that if there exists a γ0 with solution uγ0 of equation
(5.1) such that a(γ0) <∞ and u′(a(γ0)) = 0, there exists a solution to equation (4.3). It suffices to show that
R+ \ (S+∩S−) ̸= ;. Theorem 5.1 states that this is true with the help of Lemma 5.2, Lemma 5.3, Lemma 5.9
and Lemma 5.10. Therefore, a solution exists of the equation (4.3).

Remark. Note that if the nonnegative solution u of equation (4.3) is extended by u(x) = 0 for x > a and re-
flected at x = 0, by Lemma 4.2, this will yield a non-trivial nonnegative solution of equation (3.1). Using the
scaling argument of (3.2), it will result in a nonnegative solution of equation (1.16). This completes the proof
concerning the existence of a non-trivial nonnegative even solution when 0 < n < 3.



6
Uniqueness

To prove statements about the uniqueness of solutions, the following problem is considered: find two positive
numbers a and b and a function u ∈C 1([−b, a])∩C 3((−b, a)) such that

u′′′ = xu1−n u > 0, for −b < x < a,
u(−b) = 0, u′(−b) = 0, u(a) = 0, u′(a) = 0,
u(0) = 1.

(6.1)

The following two theorems will be proven:

Theorem 6.1. If 0 < n ≤ 2, there exists a unique nonnegative solution of equation (6.1). This solution is even.

Theorem 6.2. If 2 < n < 3, there exists a unique nonnegative even solution of equation (6.1).

These two theorems will be proven using a series of mathematical results.

6.1. Proving the solution is unique and even for 0 < n ≤ 1
The statements will first be proven for 0 < n ≤ 1.

Lemma 6.3. If n = 1, there exists a unique nonnegative solution of equation (6.1). This solution is even.

Proof. For n = 1, equation (6.1) becomes u′′′ = x. Using that the boundary values give u = 0 and u′ = 0 on
x = a and x =−b, u(x) can be written of the form

u(x) = 1

24
(a −x)2(b +x)2.

Differentiating this three times gives

u′′′(x) = x + b

2
− a

2
.

Note that u′′′(0) = 0 when u′′′ = x. Therefore,

0 = u′′′(0) = 0+ b

2
− a

2

=⇒ b

2
= a

2
=⇒ a = b.

Using that u(0) = 1, gives

35
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1 = u(0) = 1

24
(a −0)2(a +0)2

=⇒ 1 = a4

24
=⇒ 24 = a4

=⇒ a = 24
1
4 .

Therefore, u becomes the following unique solution

u(x) = 1

24
(24

1
4 −x)2(24

1
4 +x)2.

This solution is also even since

u(−x) = 1

24
(24

1
4 − (−x))2(24

1
4 + (−x))2 = 1

24
(24

1
4 +x)2(24

1
4 −x)2 = u(x).

Note that this result is the same as equation (1.18) when extended by u(x) = 0 for x > a and x < −a and
rescaled using (3.2).

Lemma 6.4. If 0 < n < 1, any solution of equation (6.1) is even.

Proof. For a function to be even, it must hold that every odd derivative is zero in x = 0. Let (u, a,b) be a
solution of (6.1). Suppose that u is not even. So there exists an odd derivative of u which is not zero in x = 0.
Define the function

v(x) = u(x)−u(−x). (6.2)

Then

v(0) = 0, v ′(0) = 2u′(0), v ′′(0) = 0 (6.3)

and using equation (6.1)

v ′′′(x) = x(u1−n(x)−u1−n(−x)). (6.4)

Note that all even derivatives are zero in x = 0 for v . For small x ̸= 0, the lowest nonzero odd derivative is
dominating. Suppose that, without loss of generality, the lowest nonzero odd derivative of u is greater than 0
(if the lowest odd derivative is lower than 0, a similar contradiction can be derived using u(−x) > u(x)). This
implies that v(x) > 0 for small x > 0. Therefore, using (6.2), u(x) > u(−x) for small x > 0. Since 0 < n < 1, the
function u1−n is increasing in u and so v ′′′ > 0 for small x > 0. Now, note that all derivatives below the lowest
nonzero odd derivative of v are zero at x = 0. Since v ′′′ > 0 for small x > 0, it follows that v ′′ > 0 for small x > 0
and thus v ′ > 0 for small x > 0. Consequently, v is increasing and remains positive on the entire interval x > 0,
as long as both u(x) and u(−x) are defined. Therefore, we conclude that u(x) > u(−x) holds throughout this
interval.

If a ≤ b, then at x = a, since u > 0 on (−b, a), we have

u(a) = 0 and u(−a) ≥ 0.

But, since u(x) > u(−x) by (6.2), this implies that

0 = u(a) > u(−a) ≥ 0.
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This is a contradiction and so a > b must hold. This means that v ′′′ > 0, v ′′ > 0, v ′ > 0 and v > 0 on (0,b). Since
v(0) = 0, we obtain v(b) > 0. Using the boundary conditions of (6.1), we get

v(a) = u(a)−u(−a) =−u(−a),

v(b) = u(b)−u(−b) = u(b).

This implies that u(b) > 0 as v(b) > 0. Since a > b and v is increasing, we obtain

v(a) > v(b)

=⇒ −u(−a) > u(b) > 0

=⇒ u(−a) <−u(b) < 0.

So u(−a) < 0. But, since u > 0 on (−b, a), we arrive at a contradiction. Therefore, all even derivatives should
be zero at x = 0 for u. Thus, u must be even.

Lemma 6.5. If 0 < n < 1, the nonnegative even solution of equation (6.1) is unique.

Proof. Let (u1, a1, a1) and (u2, a2, a2) be two even solutions. Define

v = u1 −u2. (6.5)

Then

v(0) = u1(0)−u2(0) = 1−1 = 0,

v ′(0) = u′
1(0)−u′

2(0) = 0−0 = 0.

Assume for contradiction that u1 ̸= u2. If v ′′(0) = 0, then v(x) = 0. To show this, we note that v ′′′ is

v ′′′(x) = x(u1−n
1 (x)−u1−n

2 (x)).

This is a third order ordinary differential equation. Near x = 0, the right-hand side is locally Lipschitz con-
tinuous, as u1 ≈ 1 and u2 ≈ 1 near x = 0, and therefore it has a unique local solution by the Picard-Lindelöf
Theorem 2.1. Since v(0) = v ′(0) = v ′′(0) = 0, it means that v = 0 is the unique solution near x = 0. So v = 0 on
(−ϵ,ϵ) for small ϵ> 0. This implies that all derivatives are 0 on x = 0. Therefore, the Taylor expansion around
x = 0 gives

v(x) = v(0)+xv ′(0)+ x2

2
v ′′(0)+ x3

6
v ′′′(0)+ x4

4!
v ′′′′(0)+ . . .

= 0+x0+ x2

2
0+ x3

6
0+ x4

4!
0+·· · = 0.

This results in v(x) = 0. This gives u1 = u2, which is a contradiction. Therefore, v ′′(0) ̸= 0 must hold. We
assume that, without loss of generality, v ′′(0) > 0 (if v ′′(0) < 0, a similar contradiction can be derived using
u2 < u1). This implies that v ′ > 0 for small x ̸= 0 and so v > 0 for small x ̸= 0. Consequently, u1 > u2 for small
x ̸= 0 using (6.5). Using the definition of v ′′′, like the proof in Lemma 6.4 with a1 = a and a2 = b, it can be
deduced that v ′′′ > 0, v ′′ > 0, v ′ > 0 and v > 0 as long as u1(x) and u2(x) are both defined on the interval.
Moreover, the condition a2 < a1 can also be derived using the same argument as in the proof of Lemma 6.4.
Now,

v ′(a2) = u′
1(a2)−u′

2(a2) = u′
1(a2)−0 = u′

1(a2).

Since v ′ is strictly increasing on (0, a2), we have
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u′
1(a2) = v ′(a2) > v ′(0) = 0.

However, Lemma 4.3 states that u′
1(x) < 0 for 0 < x < a1. This is a contradiction and therefore the solution

must be unique.

6.2. Proving the even solution is unique for 1 < n < 3 and all solutions are
even for 1 < n ≤ 2

To prove the even solution is unique for 1 < n < 3 and all solutions are even for 1 < n ≤ 2, a helping result is
needed to help prove this.

Lemma 6.6. Let 1 < n < 3. Suppose that (u1, a1,b1) and (u2, a2,b2) are nonnegative solutions that satisfy equa-
tion (6.1) without the assumption u(0) = 1. Suppose that a1 = a2 = a and u1(0) ≥ u2(0). Then the difference
v = u1 −u2 has the following property:

{
either v ≡ 0 on [0, a],

or v(0) > 0, v ′(0) < 0 and v ′′(0) > 0.

Proof. Differentiating v three times and using equation (6.1) gives

v ′′′ = x(u1−n
1 −u1−n

2 ). (6.6)

Now, define the following function

Φ= v v ′′− 1

2
(v ′)2. (6.7)

The derivative of this function is

Φ′ = v ′v ′′+ v v ′′′− v ′v ′′ = v v ′′′.

Because n > 1, the function u1−n is decreasing in u. This means that if u1 ≥ u2, we have u1−n
1 ≤ u1−n

2 . So v
and v ′′′ are always opposite signs except when v = 0 or x = 0. This means that

Φ′ = v v ′′′ ≤ 0 on [0, a)

and thereforeΦ is decreasing on [0, a). As v ′′ evaluated in x = a may not even be defined, limx→a−Φ(x) will be
studied. It is known by the boundary conditions and by continuity that limx→a− v(x) = 0 and limx→a− v ′(x) =
0. To show that limx→a− v(x)v ′′(x) = 0, we must show that v ′′ is bounded near x = a. Since u1 and u2 are
solutions to equation (6.1) without the assumption that u(0) = 1, their third derivatives are both bounded near
x = a. So the difference v ′′′ must also be bounded near x = a. This implies that |v ′′′(x)| ≤ C for x ∈ [a −δ, a)
for some C > 0 and small δ> 0. Integrating this over the interval [a −δ, x) gives

v ′′(x) = v ′′(a −δ)+
∫ x

a−δ
v ′′′(t )d t .

Taking the absolute value and using the triangle inequality gives
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|v ′′(x)| =
∣∣∣∣v ′′(a −δ)+

∫ x

a−δ
v ′′′(t )d t

∣∣∣∣
≤ |v ′′(a −δ)|+

∣∣∣∣∫ x

a−δ
v ′′′(t )d t

∣∣∣∣
≤ |v ′′(a −δ)|+

∫ x

a−δ
|v ′′′(t )|d t

≤ |v ′′(a −δ)|+
∫ x

a−δ
C d t

= |v ′′(a −δ)|+C (x −a +δ).

Since |v ′′(a −δ)| is bounded, it follows that v ′′ is bounded near x = a. Therefore, Φ(x) → 0 as x → a−. Hence
Φ≥ 0 on [0, a).

Suppose Φ(c) = 0 for some c ∈ [0, a). Since Φ is decreasing and Φ ≥ 0 on [0, a), it follows that Φ(x) = 0 on
x ∈ [c, a). This implies that Φ′ = v v ′′′ = 0 on [c, a). As a result, v = 0 on (c, a) since v ′′′ = 0 only applies when
v = 0. Since v = 0 on an interval, it implies that all derivatives are 0 for ξ ∈ (c, a). The Taylor expansion around
the point x = ξ, suggests that v ≡ 0 on [0, a].

Suppose thatΦ> 0 on [0, a). Then on [0, a), by the definition ofΦ,

v v ′′ > 1

2
(v ′)2 ≥ 0.

This means that v and v ′′ have the same sign on [0, a) and are both nonzero. Since v(0) ≥ 0, it follows that v > 0
and v ′′ > 0 on the interval [0, a). To show that v ′(0) < 0, note that v ′′ > 0 on [0, a), so v ′ is strictly increasing
on this interval. Since v ′(a) = 0, it follows that v ′ < 0 on [0, a). Hence v(0) > 0, v ′(0) < 0 and v ′′(0) > 0. This
completes the proof where both cases are discussed.

With this lemma, the following two results will be proven.

Lemma 6.7. If 1 < n < 3, the nonnegative even solution of equation (6.1) is unique.

Proof. Let (u1, a1, a1) and (u2, a2, a2) be two even solutions. u1 will be scaled such that Lemma 6.6 can be
applied. To get the same boundary point a2, define

µ= a1

a2
, û1(x) =λu1(µx). (6.8)

So

u1(µx) = û1(x)

λ
. (6.9)

Now,

û1(a2) =λu1(µa2) =λu1

(
a1 ·a2

a2

)
=λu1(a1) = 0,

û1(−a2) =λu1(−µa2) =λu1

(
a1 ·−a2

a2

)
=λu1(−a1) = 0.

This implies that û1 is defined on [−a2, a2]. Since u1 satisfies equation (6.1), we obtain the equation

u′′′
1 (µx) =µxu1(µx)1−n . (6.10)

Now, using (6.8),
û′′′

1 (x) =λµ3u′′′
1 (µx).
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Using (6.9), we get

u1(µx)1−n =
(

û1(x)

λ

)1−n

=λn−1û1(x)1−n .

Therefore, using (6.10),

û′′′
1 (µx) ≡λµ3u′′′

1 (µx) =λµ4xu1(µx)1−n ≡λnµ4xû1(x)1−n .

To satisfy equation (6.1), we require

λnµ4 = 1.

Therefore,

λ=µ− 4
n =

(
a2

a1

) 4
n

.

Set v = û1 −u2. Since both û1 and u2 satisfy equation (6.1), without the assumption u(0) = 1, and both have
the boundary condition on a2, it only needs to be shown that û1(0) ≥ u2(0). At x = 0, since u1(0) = 1

û1(0) =
(

a2

a1

) 4
n

u1(0) =
(

a2

a1

) 4
n

.

Note that u2(0) = 1. If a1 > a2, −v satisfies the conditions of Lemma 6.6. If a1 ≤ a2, v satisfies the conditions
of Lemma 6.6. Now, by evenness, v ′(0) = 0. It follows that v ≡ 0 on [0, a2] by Lemma 6.6. This means that
û1 ≡ u2. Since û1(0) must be 1, it holds that

(
a2

a1

) 4
n = 1.

Therefore, a1 = a2 = a. This means that û1 ≡ u1 ≡ u2 on [0, a] and so on [−a, a] by evenness. Hence the even
solution is unique.

Lemma 6.8. If 1 < n ≤ 2, any solution of equation (6.1) is even.

Proof. Let (u, a,b) be a solution of equation (6.1). To apply Lemma 6.6, a similar function like in the proof of
Lemma 6.7 is used

u1 =
( a

b

) 4
n

u

(
−bx

a

)
. (6.11)

Now,

u1(a) =
( a

b

) 4
n

u

(
−ba

a

)
=

( a

b

) 4
n

u(−b) = 0,

u1

(
−a2

b

)
=

( a

b

) 4
n

u

(
ba2

ab

)
=

( a

b

) 4
n

u(a) = 0.

So the function is defined on [− a2

b , a] and satisfies equation (6.1) without the assumption that u1(0) = 1. Set
v = u1−u. This satisfies the conditions for Lemma 6.6 for either v or −v depending on whether a > b or a ≤ b.
Differentiating v on x = 0 gives
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v(0) =
(( a

b

) 4
n −1

)
u(0),

v ′(0) =−
(( a

b

) 4−n
n +1

)
u′(0),

v ′′(0) =
(( a

b

) 4−2n
n −1

)
u′′(0).

(6.12)

If n = 2, (6.12) yields that v ′′(0) = 0. So v ≡ 0 by lemma 6.6. This means that u1 ≡ u on [0, a] and so u1(0) = 1.
Using (6.11), we obtain a = b. Also, by the construction of u1, u1 ≡ u implies that u(−x) = u(x) on [0, a] and
therefore it holds on [−a, a]. Hence u is even. This proves the lemma for n = 2.

Next, suppose that 1 < n < 2. It will first be proven that a = b. Suppose by contradiction that a > b with-
out loss of generality (if a < b a similar contradiction can be derived using −v). It follows from (6.12) that
v(0) > 0. By Lemma 6.6, we obtain that v ′(0) < 0 and v ′′(0) > 0. Since n < 2, it must hold that u(0) > 0, u′(0) > 0
and u′′(0) > 0 by (6.12). Since u′′′ > 0 on (0, a) by equation (6.1), it implies that u is strictly increasing on (0, a).
Since u(0) > 0, it means that u(a) > 0, which is a contradiction with the boundary condition u(a) = 0. There-
fore, a = b. Therefore, v(0) = 0 by (6.12). So v ≡ 0 on [0, a] by Lemma 6.6. Hence u(−x) = u(x) on [−a, a] using
the same argument with n = 2. Thus, u must be even.

All these results combined prove Theorem 6.1 and Theorem 6.2.

Remark. Note that if the unique nonnegative even solution u of equation (6.1) is extended by u(x) = 0 for x > a
and x < −a, by Lemma 4.2, this will yield in a unique nonnegative even solution of equation (3.1). Using the
scaling argument of (3.2), it will result in a unique nonnegative even solution of equation (1.16). Using the
same transformations, we have also proven that every solution is even for equation (1.16) when 0 < n ≤ 2. This
completes the proof concerning the uniqueness of a nonnegative even solution when 0 < n < 3 and the proof
that all solutions are even when 0 < n ≤ 2.





7
Constructing self-similar solutions

numerically

In this chapter, the self-similar solution of equation (1.16) will be constructed numerically using the shoot-
ing method. This is done by searching for a γ0 where the solution of equation (5.1) satisfies the properties
of equation (4.3). In chapter 5 and 6, it was shown that this γ0 is existent and unique. When γ0 is found,
the solution of equation (4.3) with that corresponding γ0 will be extended by u(x) = 0 for x > aγ0 and will be
reflected at x = 0. Using the scaling argument of (3.2), this will result in a unique nonnegative even solution
for (1.16). Methods and results in this chapter can be found in more detail in [14].

To solve equation (5.1), we will rewrite the equation as a system of equations. This is done by defining the
functions u1, u2 and u3 as

u1 = u, u2 = u′, u3 = u′′.

Then

u′
1 = u2, u′

2 = u3, u′
3 = xu1−n

1 .

Therefore, the equation can be written as

u(x) =
u1(x)

u2(x)
u3(x)

 , u′(x) = F(x,u) =
 u2(x)

u3(x)
x u1(x)1−n

 , (7.1)

with initial condition

u(0) =
 1

0
−γ

 . (7.2)

7.1. Stability analysis
First, we check the analytical stability. A system is called stable if a small perturbation of the parameters
(including the initial condition) results in a small difference in the solution. This results in numerical errors
not getting amplified as the solution evolves, ensuring that the numerical solution stays close to the true
solution. Analytical stability is obtained when all the eigenvalues have nonpositive real part. Since equation
(7.1) is nonlinear, the stability can be checked locally in the point (x̂, û) by computing the Jacobian matrix in
that point and computing the eigenvalues. The Jacobian matrix is defined as

43
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J(x̂, û) =


∂F1

∂u1

∂F1

∂u2

∂F1

∂u3
∂F2

∂u1

∂F2

∂u2

∂F2

∂u3
∂F3

∂u1

∂F3

∂u2

∂F3

∂u3

 .

Evaluating this in the point (x̂, û) gives

J(x̂, û) =
 0 1 0

0 0 1
(1−n)x̂û−n

1 0 0

 .

Computing the eigenvalues yields

det

 −λ 1 0
0 −λ 1

(1−n)x̂û−n
1 0 −λ

= 0

=⇒ −λ3 + (1−n)x̂û1
−n = 0

=⇒λ3 = (1−n)x̂û1
−n .

For 0 < n ≤ 1, this results in

λ= r, λ= r e
2
3 iπ, λ= r e

4
3 iπ,

where
r = ∣∣(1−n)x̂û1

−n∣∣ 1
3 . (7.3)

For 1 < n < 3, this leads to

λ= r e iπ, λ= r e
1
3 iπ, λ= r e

5
3 iπ,

where
r = ∣∣(1−n)x̂û1

−n∣∣ 1
3 . (7.4)

By shifting the root by 2π
3 in the complex plane, we observe that there are always eigenvalues with positive

real part, except when n = 1, where all the eigenvalues are zero. Consequently, the solution is not analytically
stable for 0 < n < 3, except at n = 1. Although the solution is analytically unstable for 0 < n < 3 (except at
n = 1), numerical integration can still provide valuable insight into the system’s behavior. By carefully select-
ing the numerical methods and controlling the step sizes, we aim to approximate the solution trajectories
and investigate whether the computed solutions retain the qualitative properties established analytically in
chapter 4.

7.2. The numerical integration method
Next, a numerical integration method will be chosen. A built-in Scipy function will be used to integrate the
system in steps of size∆xn , where∆xn differs for each step. Since it is an approximation, u will be denoted as
w. This built-in function uses the Runge-Kutta (RK4) method which approximates the solution wn+1 at step
xn+1 by using the approximated solution wn evaluated in the previous step xn . This method is defined as

wn+1 = wn + 1

6
(k1 +2k2 +2k3 +k4),

where k1 to k4 are given by
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k1 =∆xn F(xn ,wn),

k2 =∆xn F(xn + 1

2
∆xn ,wn + 1

2
k1),

k3 =∆xn F(xn + 1

2
∆xn ,wn + 1

2
k2),

k4 =∆xn F(xn +∆xn ,wn +k3).

For w0, the initial condition is used. Note that this is the explicit RK4 method. The built-in function also has
an implicit RK4 method, but this method is much more computationally expensive, while giving identical
results as the explicit RK 4 method, see Figures A.1–A.8. Therefore, the explicit RK4 method is used.

The RK4 method has a local truncation error of O (∆x4
n), see Definition A.4. The local truncation error in-

dicates the new error per integration step. Since ∆xn is typically smaller than 1, higher-order methods like
RK4 generally yield a lower error per timestep compared to lower-order methods. The built-in function also
uses local extrapolation such that the local truncation error becomes O (∆x5

n). Using the amplification ma-
trix Q(A∆xn) of the RK4 method, numerical stability can be acquired when |Q(A∆xn)| ≤ 1, which controls or
dampens errors that are caused by small perturbations. However, since our eigenvalues λ have positive real
parts, analyzing stability is not meaningful in our case. Instead, we will use a small step size and observe the
behavior of the numerical solution.

7.3. The bisection method
To find the γ0 numerically, the bisection method is used. In the proof of Lemma 5.2, it was shown that γ
should be small enough in order to be in the set S+ and in the proof of Lemma 5.3 and Lemma 5.9 it was
shown that γ should be large enough in order to be in the set S−. This means that there is a transition point γ0

such that all values below γ0 are in S+, while all values above γ0 are in S−. Therefore, two initial solutions will
be used. One solution where γ will be chosen small enough such that the solution is in S+ and one solution
where γ will be chosen large enough such that the solution is in S−. Call γ+ the γ where the solution is in S+
and γ− the γ where the solution is in S−. This means that γ0 is in the interval (γ+,γ−). The bisection method
keeps dividing the interval into two equal parts and continues with the interval that contains γ0. Set γ0+ = γ+
and γ0− = γ−. A new approximation for γ0 is iteratively computed by

γm = γm+ +γm−
2

.

For each γm , the solution will be constructed numerically. If u and u′ are simultaneously vanishing, γ0 is
found. If not, a new interval [γm+1+ ,γm+1− ] is created using γm+1+ = γm and γm+1− = γm− if the solution γm is in
S+, and γm+1+ = γm+ and γm+1− = γm if the solution γm is in S−. The bisection method makes sure γm converges
to γ0. Since u and u′ cannot be exactly zero when computed numerically, a very small bound is used in order
to check whether u and u′ become zero. This bound will be the stopping criterion.

7.4. The results
The self-similar solution will now be constructed using the methods described above. When γ0 is found, the
solution of equation (4.3) with that γ0 will be extended by u(x) = 0 for x > aγ0 and will be reflected at x = 0.
The solution is then scaled using the scaling argument of (3.2) to get the self-similar solution for equation
(1.16). The integral is calculated using a composite trapezoidal rule. The corresponding code is provided in
Appendix A.3. The results for c = 1, where c represents the volume, are given in Figures 7.1–7.8 and Table 7.1
for different n values.

In Table 7.1 the γ0 is given for multiple n values together with the value a where the solution becomes zero
along with the values for f and f ′ evaluated in the point µ = a. The fact that f and f ′ are numerically close
to zero at µ = a, and that mass is conserved to high precision, provides strong numerical evidence that this
is the self-similar solution of equation (1.16), up to a small numerical error. Note that the same values also
apply for µ=−a by symmetry.
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Figure 7.1: The numerical solution of the self-similar
thin-film equation for n = 0.1. Here, c = 1.

Figure 7.2: The numerical solution of the self-similar
thin-film equation for n = 0.5. Here, c = 1.

Figure 7.3: The numerical solution of the self-similar
thin-film equation for n = 1. Here, c = 1.

Figure 7.4: The numerical solution of the self-similar
thin-film equation for n = 1.5. Here, c = 1.

Figure 7.5: The numerical solution of the self-similar
thin-film equation for n = 2. Here, c = 1.

Figure 7.6: The numerical solution of the self-similar
thin-film equation for n = 2.5. Here, c = 1.

Figure 7.7: The numerical solution of the self-similar
thin-film equation for n = 2.9. Here, c = 1.

Figure 7.8: The numerical solution of the self-similar
thin-film equation for different n. Here, c = 1.
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n γ0 a f (a) f ′(a)
∫ ∞
−∞ f (µ)dµ

0.1 0.67506 3.87868 −2.1 ·10−9 −8.6 ·10−17 1.000001443
0.5 0.72822 3.20979 2.1 ·10−10 9.5 ·10−17 1.000002351
1.0 0.81650 2.57176 −1.4 ·10−8 5.6 ·10−17 0.999988783
1.5 0.94708 2.07448 3.4 ·10−11 1.7 ·10−16 1.000004076
2.0 1.16895 1.67889 2.7 ·10−10 −1.4 ·10−12 0.999999996
2.5 1.67716 1.33930 5.5 ·10−10 3.7 ·10−10 0.999994000
2.9 3.59439 1.00174 5.3 ·10−10 2.4 ·10−9 0.999967202

Table 7.1: The γ0 for different n values together with the value a where the solution becomes zero and the values for f and f ′ in the point
µ= a. The integral is also given which shows that mass conservation holds. Here, c = 1.

n γ0 a f (a) f ′(a)
∫ ∞
−∞ f (µ)dµ

0.1 0.67506 4.59044 −1.8 ·10−7 −6.1 ·10−14 1000.001
0.5 0.72822 6.91529 1.0 ·10−8 2.0 ·10−14 1000.002
1.0 0.81650 10.23836 −3.5 ·10−7 3.6 ·10−15 999.988
1.5 0.94708 13.64871 5.1 ·10−10 3.9 ·10−15 1000.003
2.0 1.16895 16.78887 2.7 ·10−9 −1.4 ·10−11 1000.003
2.5 1.67716 19.08639 3.8 ·10−9 1.8 ·10−9 1000.002
2.9 3.59439 18.26528 2.9 ·10−9 7.1 ·10−9 1000.006

Table 7.2: The γ0 for different n values together with the value a where the solution becomes zero and the values for f and f ′ in the point
µ= a. The integral is also given which shows that mass conservation holds. Here, c = 1000.

The self-similar solution is also computed for c = 1000. The results are given in Figures 7.9–7.16 and Table
7.2.

Although Table 7.2 shows slightly reduced accuracy in the computed integral and in the values f and f ′ at
µ= a, the results remain sufficiently accurate to support the conclusion that the numerical solution exhibits
the properties of the self-similar solution. Note that a larger mass c does not impact the γ0 value. This is
because the function is first solved for equation (5.1), and after that, it is rescaled to match the volume c.

In chapter 1, we mentioned that there is no closed form solution for equation (1.16) except when n = 1, which
is described in (1.18). Comparing the exact solution of equation (1.18) with the numerical approximation is
found in Figure 7.17 and Figure 7.18. The figures indicate that the exact closed form solution is the same as
our numerical approximation.

Observe that, even though the differential equation was not stable, we still obtain numerical solutions that
satisfy the qualitative properties such as compact support and mass conservation. This consistency enforces
the reliability of the computed results.

7.5. Behavior near µ= a
Even though both Table 7.1 and Table 7.2 show that the function value at µ = a drops to practically zero for
both f and f ′, Figure 7.7 and Figure 7.15 indicate that there is a sharp edge near µ= a for large n, while Figure
7.1 and Figure 7.9 indicate that the solution smoothly translates to zero near µ= a for small n, which is what
would be expected. This can be explained both mathematically and physically.

In the paper of Bernis, Peletier & Williams [4], the behavior near x = al is analyzed for a solution of equation
(4.3), where al = al denotes the boundary of the support of the solution, and l denotes the scaling coefficient
from (3.2). This is done by using results from [25]. As a result, the following theorem was proven.
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Figure 7.9: The numerical solution of the self-similar
thin-film equation for n = 0.1. Here, c = 1000.

Figure 7.10: The numerical solution of the self-similar
thin-film equation for n = 0.5. Here, c = 1000.

Figure 7.11: The numerical solution of the self-similar
thin-film equation for n = 1. Here, c = 1000.

Figure 7.12: The numerical solution of the self-similar
thin-film equation for n = 1.5. Here, c = 1000.

Figure 7.13: The numerical solution of the self-similar
thin-film equation for n = 2. Here, c = 1000.

Figure 7.14: The numerical solution of the self-similar
thin-film equation for n = 2.5. Here, c = 1000.

Figure 7.15: The numerical solution of the self-similar
thin-film equation for n = 2.9. Here, c = 1000.

Figure 7.16: The numerical solution of the self-similar
thin-film equation for different n. Here, c = 1000.
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Figure 7.17: The numerical self-similar thin-film solution
compared with the exact self-similar thin-film solution. Here,
c = 1.

Figure 7.18: The numerical self-similar thin-film solution
compared with the exact self-similar thin-film solution. Here,
c = 1000.

Theorem 7.1. Let u be a nonnegative solution of equation (4.3).
(a) If 0 < n < 3

2 , then there exists a constant ξ> 0 such that

u(x) ∼ ξ(al −x)2 as x → al .

(b) If n = 3
2 , then

u(x) ∼
(

3al

4

) 2
3

(al −x)2
(
log

(
1

al −x

)) 2
3

as x → al .

(c) If 3
2 < n < 3, then

u(x) ∼ B(al −x)
3
n as x → al ,

where

B =
(

n3al

3(3−n)(2n −3)

) 1
n

.

Note that the same behavior applies to solutions of equation (1.16), as rescaling does not effect the qualitative
behavior of the solution near the edge of the support, it only modifies the associated constants. This theorem
shows that for small n, the derivative will smoothly decay to zero as x → al . For large n, the exponent 3

n −1
becomes close to zero, and since (al −x) < 1 for values close to al , the solution exhibits a sharp cutoff despite
vanishing at x = al .

A more physical way to understand this is that when there is little or no slip at the surface, the fluid en-
counters high resistance near the free boundary. This leads to a sharp cutoff at the edge of the film, as the
fluid cannot easily move where it’s very thin. In contrast, with free slip, the resistance is lower, allowing the
solution to decay more smoothly towards zero near the free boundary.

Another interesting aspect to note is that for small values of c, the value a tends to be larger, while the maxi-
mum value f is smaller for small values of n compared to large n. For large c, the opposite is observed. This
can be understood by considering the effect of the nonlinear mobility | f |n . For small c, the function f is
small at the origin by mass conservation. For small n, the mobility | f |n remains relatively large even when f
is small, allowing the profile to diffuse more efficiently and spread further. For larger n, the mobility is much
more compressed for small f , resulting in a more localized and less spread-out profile. For large c, the func-
tion f is large at the origin by mass conservation. Therefore, the mobility | f |n increases rapidly as n increases.
Thus, for higher n values, the profile spreads more, which is in contrast to small c values.
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7.6. Behavior as n → 0
To study the behavior as n → 0 for self-similar solutions, we will compare it with the biharmonic heat equation
with a source type initial condition {

∂t u =−∂4
x u in S =R×R+,

u(x,0) = cδ(x) for x ∈R,
(7.5)

where c > 0. Observe that this equation corresponds to n = 0 for equation (1.1) which serves as a linear
reference for understanding the behavior of solutions as n → 0. The biharmonic heat equation also describes
a diffusive process, but one that spreads more slowly and smoothly than the regular heat equation. The
biharmonic heat equation also preserves mass conservation. We can solve the equation analytically using
Fourier transforms and known Fourier integral identities, drawing on definitions and results presented in [19].
The Fourier transform in space F [u(x, t )](ω, t ) = û(ω, t ) is defined as

F [u(x, t )](ω, t ) =
∫ ∞

−∞
u(x, t )e−iωx d x.

Taking the Fourier transform on both sides of equation (7.5) gives

F [∂t u(x, t )](ω, t ) = ∂t û(ω, t ),

F [−∂4
x u(x, t )](ω, t ) =−ω4û(ω, t ).

The initial condition becomes
F [cδ(x)](ω,0) = c.

This reduces the problem to

∂t û(ω, t ) =−ω4û(ω, t ).

Solving this results in

û(ω, t ) = ce−ω
4t .

Applying the inverse Fourier transform yields

u(x, t ) = c

2π

∫ ∞

−∞
e−ω

4t e iωx dω. (7.6)

Applying a change of variables ω= st−
1
4 gives

u(x, t ) = t−
1
4

c

2π

∫ ∞

−∞
e−s4

e i sxt−
1
4 d s.

Therefore, equation (7.5) has a self-similar form

u(x, t ) = t−
1
4 H(η), η= xt−

1
4 , (7.7)

where H(η) is defined as

H(η) = c

2π

∫ ∞

−∞
e−s4

e i sηd s.

Therefore, to compare the self-similar solution of the thin-film equation with the solution of the biharmonic
heat equation, we can set t = 1. At this time scale, the biharmonic heat kernel attains its canonical self-similar
profile, allowing us to directly compare the two solutions. We set n = 10−16 and we will solve the solutions for
both c = 1 and c = 1000. The results are shown in Figure 7.19 and Figure 7.20.
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Figure 7.19: The self-similar thin-film solution compared to
the biharmonic heat equation solution. Here, c = 1.

Figure 7.20: The self-similar thin-film solution compared to
the biharmonic heat equation solution. Here, c = 1000.

We observe that the self-similar solution remains positive, while the biharmonic heat equation solution de-
velops oscillations and takes on negative values. As a result, its peak at the origin is higher to ensure mass
conservation. Furthermore, the volume c does not change the shape of the solution. This qualitative differ-
ence in profile shape confirms that the limit n → 0 does not exist in a meaningful analytical sense. Therefore,
we can conclude that the nonlinear thin-film equation with n > 0 and the linear biharmonic heat equation
with n = 0 give rise to solution profiles that belong to fundamentally different classes, and that the biharmonic
heat equation cannot be viewed as a true limit of the thin-film equation as n → 0.





8
Conclusion

The main goal of this thesis was to expand the content of the paper from Bernis, Peletier & Williams [4] by
rewriting it and providing more detail to the proofs. The paper focuses on the existence and uniqueness of
nonnegative, even, source type self-similar solutions{

(| f (µ)|n f ′′′(µ))′ =α(µ f (µ))′ for −∞<µ<∞,

µ f (µ) → 0 as µ→±∞,

which satisfy the integral condition ∫ ∞

−∞
f (µ)dµ= c.

This is done by first proving that no non-trivial solution exists when n ≥ 3 and that for 0 < n < 3, the function
has qualitative properties such as compact support. After that, a shooting method is established to find a
solution that satisfies those qualitative properties. Furthermore, uniqueness is proven together with the fact
that all nonnegative self-similar solutions are symmetric for 0 < n ≤ 2.

This thesis also constructed the nonnegative symmetric self-similar solution numerically, which visualizes
how the self-similar solution looks and how it behaves. It also shows that the numerically constructed so-
lution indeed satisfies the qualitative properties which were proven analytically. Moreover, we analyzed the
behavior near µ = a to understand the sharp cutoff at the edge of its support as n gets larger and we also
studied the behavior as n → 0 where we concluded that the biharmonic heat equation cannot be viewed as a
true limit of the thin-film equation.

Furthermore, the one-dimensional thin-film equation was derived from the Navier-Stokes equations using
a lubrication approximation to give a more physical insight into how the solution behaves.
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Appendix

A.1. Self-similar solutions constructed using an implicit RK4 method

Figure A.1: The numerical solu-
tion of the self-similar thin-film
equation for n = 0.1 using an im-
plicit RK4 method. Here, c = 1.

Figure A.2: The numerical solu-
tion of the self-similar thin-film
equation for n = 0.5 using an im-
plicit RK4 method. Here, c = 1.

Figure A.3: The numerical solu-
tion of the self-similar thin-film
equation for n = 1 using an im-
plicit RK4 method. Here, c = 1.

Figure A.4: The numerical solu-
tion of the self-similar thin-film
equation for n = 1.5 using an im-
plicit RK4 method. Here, c = 1.

Figure A.5: The numerical solu-
tion of the self-similar thin-film
equation for n = 2 using an im-
plicit RK4 method. Here, c = 1.

Figure A.6: The numerical solu-
tion of the self-similar thin-film
equation for n = 2.5 using an im-
plicit RK4 method. Here, c = 1.

Figure A.7: The numerical solu-
tion of the self-similar thin-film
equation for n = 2.9 using an im-
plicit RK4 method. Here, c = 1.

Figure A.8: The numerical solu-
tion of the self-similar thin-film
equation for different n using an
implicit RK4 method. Here, c = 1.
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A.2. Additional definitions and theorems
Definition A.1. (Open and closed balls) [7] Let M be a set and r > 0. The set B(x,r ) = {y ∈ M : |x − y | < r } is
called the open ball around x with radius r . The set B(x,r ) = {y ∈ M : |x−y | ≤ r } is called the closed ball around
x with radius r .

Definition A.2. (Open set) [7] Let M be a set. The set M is called open if, for all x ∈ M, there exists an ϵ> 0 such
that B(x,ϵ) ⊂ M.

Definition A.3. (Convexity) [1] Let f : D → R. f is said to be a convex function if and only if, for all x1, x2 ∈ D
and α ∈ [0,1], we have

f (αx1 + (1−α)x2) ≤α f (x1)+ (1−α) f (x2).

Therefore, f is also convex if f ′′ ≥ 0. If there is a strict inequality for α ∈ (0,1), then f is called strictly convex.

Definition A.4. (O-symbol) [14] Let f and g be given functions. Then f = O (g (x)) for x → 0, if there exist a
r > 0 and M > 0 such that

| f (x)| ≤ M |g (x)| for all x ∈ [−r,r ].

Theorem A.1. Fundamental Theorem of Calculus [24] Let f be integrable on [a,b]. For each x ∈ [a,b], let

F (x) =
∫ x

a
f (t )d t .

If f is continuous at c ∈ [a,b], then F is differentiable at c and

F ′(c) = f (c).

Also, if F is differentiable on [a,b] and f is integrable on [a,b], then∫ b

a
f (x)d x = F (a)−F (b).

Theorem A.2. Mean Value Theorem [24] Let f be a continuous function on [a,b] that is differentiable on (a,b).
Then there exists at least one point c ∈ (a,b) such that

f ′(c) = f (b)− f (a)

a −b
.

Theorem A.3. Extreme Value Theorem [2] Let f be a continuous function on [a,b]. Then f is bounded and it
attains a c,d ∈ [a,b] such that f (c) ≤ f (x) ≤ f (d) for all x ∈ [a,b].

Theorem A.4. Fubini’s Theorem [18] Let B = [a1,b1]× [a2,b2] be a closed triangle on R2 and let f : B → R be
an integrable function. Then Ï

B
f (x, y)d(x, y) =

∫ b1

a1

{∫ b2

a2

f (x, y)d y

}
d x

=
∫ b2

a2

{∫ b1

a1

f (x, y)d x

}
d y.



A.3. Numerical solution code 57

Theorem A.5. Bolzano-Weierstrass Theorem [24] Every bounded sequence {sn} ⊂ R has a convergent subse-
quence.

Theorem A.6. [7] If every subsequence of {sn} has a further subsequence that converges to s, then {sn} converges
to s.

A.3. Numerical solution code

# S e l f −Similar Solutions to the Thin−Film Equation

# Implementing the Shooting Method

# The s e l f −similar solution f o r the thin −film equation i s constructed using numerical methods .
# In order to use i t , one should change the c value to i t s desired value
# and also add the desired n value with 0 < n < 3 in the l i s t nvalues .
# The l a s t codeblock returns a g i f which p l o t s the n values ranging
# from 0.1 to 2.9 with step s i z e 0.1 with the chosen c value .
# The code was made using a Jupyter Notebook f i l e .
# Each code c e l l i s enclosed between l i n e s s t a r t i n g with ######.

##############################################################

# Loading the needed packages

import numpy as np
import matplotlib . pyplot as p l t
from scipy . integrate import solve_ivp
from scipy . interpolate import interp1d
from matplotlib . animation import FuncAnimation
from scipy . f f t import f f t , i f f t , f f t f r e q
import warnings

warnings . f i l t e r w a r n i n g s ( " ignore " )

###############################################################

# Defining the parameters

#Defining the d i f f e r e n t 0 < n < 3
nvalues = [ 0 . 1 , 0 . 5 , 1 , 1 . 5 , 2 , 2 . 5 , 2 . 9 ]

# S e t t i n g the mass of the droplet
c = 1

#Defining the s t a r t i n g parameters gamma, where gamma_plus i s in S+ and gamma_minus i s in S−
gamma_minus = 10
gamma_plus = 0.001

# S e t t i n g the maximum step s i z e and xmax
Dx = 0.01
xmax = 1e6
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#Defining a bound f o r u and u_prime
bound = 1e−10

#Max i t e r a t i o n s f o r the b i s e c t i o n method
max_iter = 1000

###############################################################

# The Non− li ne ar System

def f ( x : f loat , n : f loat , u : np . ndarray ) −> np . ndarray :
" " "
The non− li ne ar system .

Parameters :
x ( f l o a t ) : x value .
n ( f l o a t ) : n value .
u (np . ndarray ) : array with value u , u ’ and u ’ ’ at point x .

Returns :
f (np . ndarray ) : array with the values evaluated in the non− l in ear system at x .

" " "
u1 , u2 , u3 = u
return np . array ( [ u2 , u3 , x * f l o a t ( u1)**(1 −n ) ] )

###############################################################

# Time Integration

#These two functions make sure that the s o l v e r terminates when u or u ’ h i t zero
def u_is_zero ( x : f loat , y : f l o a t ) −> f l o a t :

return y [ 0 ]

u_is_zero . terminal = True
u_is_zero . direction = −1

def u_prime_is_zero ( x : f loat , y : f l o a t ) −> f l o a t :
return y [ 1 ]

u_prime_is_zero . terminal = True
u_prime_is_zero . direction = 1

def TimeIntegration (Dx : f loat , xmax : f loat , n : f loat , u_0 : np . ndarray ) −> tuple :
" " "
The time integration method . Uses the built −in scipy function " solve_ivp "
with standard method e x p l i c i t RK4 .

Parameters :
Dx ( f l o a t ) : update step s i z e .
xmax ( f l o a t ) : maximum x value before the function terminates .
n ( f l o a t ) : n value .
u_0 (np . ndarray ) : array with the i n i t i a l values .

Returns :
u_values , x_values , u , u_prime ( tuple ) : u_values and x_values a f t e r time integration
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and u and u_prime at the l a s t integration timestep .
" " "
sol = solve_ivp (

lambda x , y : f ( x , n , y ) ,
[ 0 ,xmax ] ,
u_0 ,
events =[ u_is_zero , u_prime_is_zero ] ,
r t o l = 1e−16 ,
a t o l = 1e−16 ,
max_step = Dx

)

return sol . y [ 0 ] , sol . t , sol . y [ 0 ] [ − 1 ] , sol . y [ 1 ] [ − 1 ]

###############################################################

# The Bisect ion Method

def Bisection (Dx : f loat , xmax : f loat , n : f loat , gamma_minus : f loat , gamma_plus : f loat ,
bound : f loat , max_iter : f l o a t ) −> tuple :

" " "
The b i s e c t i o n method . Used to find the c o r r e c t gamma such that u and u ’ become
simultaniously zero .

Parameters :
Dx ( f l o a t ) : update step s i z e .
xmax ( f l o a t ) : maximum x value before the function in TimeIntegration terminates .
n ( f l o a t ) : n value .
gamma_minus ( f l o a t ) : gamma value which i s in the s e t S −.
gamma_plus ( f l o a t ) : gamma value which i s in the s e t S +.
bound ( f l o a t ) : bound f o r u and u ’ which they need to s a t i s f y in order to find
the c o r r e c t gamma.
max_iter ( f l o a t ) : maximum number of i t e r a t i o n s of the b i s e c t i o n method before
i t terminates .

Returns :
u_values , x_values , opt_gamma, u , u_prime ( tuple ) : u_values of the optimal gamma
x_values of the optimal gamma and u and u_prime are the exact values at
the l a s t timestep of the optimal gamma.

" " "

#Defining the i n i t i a l values f o r S− and S+ and performing time integration
u_0_minus = np . array ([1 ,0 , −gamma_minus ] )
u_0_plus = np . array ([1 ,0 , −gamma_plus ] )

_ , _ , _ , u_prime = TimeIntegration (Dx = Dx, xmax = xmax , n = n , u_0 = u_0_plus )
_ , _ , u , _ = TimeIntegration (Dx = Dx, xmax = xmax , n = n , u_0 = u_0_minus )

#Defining the i t e r a t i o n parameter
i t e r = 0

#A while loop to keep performing the b i s e c t i o n method unti l i t h i t s the c o r r e c t gamma
#or max i t e r a t i o n s
while True :

#Defining a new gamma by taking the average of gamma+ and gamma− and
#performing time integration
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new_gamma = (gamma_minus + gamma_plus)/2
u_0 = np . array ([1 ,0 , −new_gamma] )
u_values , x_values , u , u_prime , = TimeIntegration (Dx = Dx, xmax = xmax , n = n ,

u_0 = u_0 )

# I f the c o r r e c t gamma i s found which s a t i s f y the bounds , the values are returned
i f u<bound and −u_prime<bound :

return u_values , x_values , new_gamma, u , u_prime

#Updating the i t e r a t i o n step and i f i t h i t s the max i t e r a t i o n s , the function terminates
i t e r += 1
i f i t e r == max_iter :

print ( "Max I t e r a t i o n s h i t " )
return u_values , x_values , new_gamma, u , u_prime

#Checking in which s e t our new gamma i s and updating our old gamma in order to apply
#the b i s e c t i o n method again
i f u < bound :

gamma_minus = new_gamma
else :

gamma_plus = new_gamma

###############################################################

# Mass Conversation

def TrapezoidalRule ( x_values : np . ndarray , u_values : np . ndarray ) −> f l o a t :
" " "
The trapezoidal rule f o r i n t e g r a l s . Uses the trapezoidal rule with composition .

Parameters :
x_values (np . ndarray ) : x values of the numerically approached ODE.
u_values (np . ndarray ) : u values of the numerically approached ODE.

Returns :
integralvalue ( f l o a t ) : value of the i n t e g r a l using trapezoidal rule .

" " "
res = 0
for i in range ( len ( x_values ) − 1 ) :

res += ( x_values [ i +1]− x_values [ i ] ) / 2 * (np . abs ( u_values [ i ] ) +np . abs ( u_values [ i + 1 ] ) )
return res

def Original_ODE ( c : f loat , alpha : f loat , x_values : np . ndarray , u_values : np . ndarray ,
HeatEquation : bool = False ) −> tuple :

" " "
Returns the o r i g i n a l ODE.

Parameters :
c ( f l o a t ) : mass of the droplet .
alpha ( f l o a t ) : s e l f −similar value .
x_values (np . ndarray ) : x values of the numerically approached ODE.
u_values (np . ndarray ) : u values of the numerically approached ODE.
HeatEquation ( bool ) : t h i s parameter i s used to change the grid s i z e when comparing
to the biharmonic heat equation . Standard value i s False .
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Returns :
new_x_values , new_u_values , support , l , k ( tuple ) : new_x_values i s an array of the new
x values , new_u_values i s an array of the o r i g i n a l u values , support i s the x value
where u and u ’ h i t zero f o r the o r i g i n a l ODE, l and k are the values that are needed
f o r the transformation to the o r i g i n a l ODE.

" " "

#Calculating the k and l value
norm1 = 2* TrapezoidalRule ( x_values = x_values , u_values = u_values )
k = ( ( alpha * c * * 4 ) /norm1 * * 4 ) * * ( alpha )
l = ( k*norm1) / c

#Determining the x value where u and u ’ h i t zero f o r the o r i g i n a l ODE
support = x_values [ −1]/ l

#Creating an interpolation function in order to get get the transformation function
# f ( x ) = k*u( l *x )
outside_support_x = np . linspace ( x_values [ −3] , support +10 , num = 100000)
outside_support_u = np . zeros (100000)
u_interp = interp1d (np . concatenate ( ( x_values [ : − 1 0 ] , outside_support_x ) ) ,

np . concatenate ( ( u_values [ : − 1 0 ] , outside_support_u ) ) , kind= ’ cubic ’ ,
f i l l _ v a l u e = ’ extrapolate ’ , bounds_error = False )

# Getting the new x and u values
i f HeatEquation :

new_x_values = np . linspace ( 0 , support+5*support , num = 3000)
else :

new_x_values = np . linspace ( 0 , support+support /10 , num = 300)
new_u_values = k* u_interp ( l * new_x_values )

#Mirroring the values by symmetry
new_u_values = np . concatenate ( ( new_u_values [ : : − 1 ] , new_u_values [ 1 : ] ) )
new_x_values = np . concatenate (( − new_x_values [ : : − 1 ] , new_x_values [ 1 : ] ) )

return new_x_values , new_u_values , support , l , k

###############################################################

# The Results

#Defining l i s t s where the optimal values w i l l be stored
u_zero = [ ]
u_prime_zero = [ ]
gamma_opts = [ ]
x_value_zero = [ ]
masses = [ ]

# Storing the support and x and u values f o r one plot with a l l n values
x_values_stored = [ ]
u_values_stored = [ ]
support_stored = [ ]

#A loop i s done f o r a l l the n values
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for n in sorted ( nvalues ) :

#Here the optimal gamma with the x and u values are calculated
u_values , x_values , gamma_opt, u , u_prime = Bisection (Dx = Dx, xmax = xmax , n = n ,

gamma_minus = gamma_minus,
gamma_plus = gamma_plus ,
bound = bound , max_iter = max_iter )

gamma_opts . append(gamma_opt)

#Here the orginal x and u values of the ODE are returned
alpha = 1/(n+4)
original_x_values , original_u_values , support , l , k = Original_ODE ( c = c , alpha = alpha ,

x_values = x_values ,
u_values = u_values )

u_zero . append(u*k )
u_prime_zero . append( u_prime*k* l )
x_value_zero . append( support )

#Here the mass i s calculated
masses . append( TrapezoidalRule ( x_values = original_x_values , u_values = original_u_values ) )

support_stored . append( support )
u_values_stored . append( original_u_values . t o l i s t ( ) )
x_values_stored . append( original_x_values . t o l i s t ( ) )

# P l ot t i n g the d i f f e r e n t n values
p l t . plot ( original_x_values , original_u_values )
p l t . t i t l e ( f "The s e l f − similar thin −fi lm solution when $n = {n} $" )
p l t . x label ( "$\mu$ value " )
p l t . y label ( " $f$ value " )
p l t . show ( )

# P l ot t i n g the d i f f e r e n t n values in one plot
for i , n in enumerate ( nvalues ) :

x_values_stored = np . array ( x_values_stored )
u_values_stored = np . array ( u_values_stored )

outside_support_x1 = np . linspace ( −max( support_stored ) −2 , x_values_stored [ i , 0 ] , num = 10)
outside_support_x2 = np . linspace ( x_values_stored [ i , − 1 ] , max( support_stored )+2 , num = 10)
outside_support_u = np . zeros (10)

p l t . plot (np . concatenate ( ( outside_support_x1 , x_values_stored [ i ] , outside_support_x2 ) ) ,
np . concatenate ( ( outside_support_u , u_values_stored [ i ] , outside_support_u ) ) ,
l a be l = f "$n = {n} $" )

p l t . xlim ( −max( support_stored ) −max( support_stored )/10 ,
max( support_stored )+max( support_stored )/10)

p l t . ylim ( −np .max( u_values_stored )/20 , np .max( u_values_stored )+np .max( u_values_stored )/20)
p l t . t i t l e ( f "The s e l f − similar thin −fi lm solutions for d i f f e r e n t $n$" )
p l t . x label ( "$\mu$ value " )
p l t . y label ( " $f$ value " )
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p l t . legend ( )
p l t . show ( )

# Printing the values
print ( " {: >10 s } | { : >23 s } | { : >23 s } | { : >23 s } | { : >23 s } | { : >23 s } " . format ( ’n value ’ ,

’gamma_0 ’ , ’ a ’ , ’ f ( a ) ’ , " f ’ ( a ) " , ’ i n t e g r a l of f ’ ) )
print ( "−" *140)
for n , gamma_opt, x_zero , u , u_prime , mass in zip ( nvalues , gamma_opts , x_value_zero , u_zero ,

u_prime_zero , masses ) :
print ( ’ { : >10 f } | { : >23.18 f } | { : >23.18 f } | { : >23.18 f } | { : >23.18 f } | { : > 2 3 . 1 8 f } ’ . format (n ,

gamma_opt, x_zero , u , u_prime , mass ) )

###############################################################

# Checking i f n = 1 corresponds to the a n a l y t i c a l solution

def f_n1 (mu: np . ndarray , c : f l o a t ) −> np . ndarray :
" " "
The exact closed form s e l f −similar solution when n = 1

Parameters :
mu (np . ndarray ) : mu values .
c ( f l o a t ) : the volume c .

Returns :
f (np . ndarray ) : array with the values evaluated in the exact closed form at mu when n =1.

" " "
a = (225* c / 2 ) * * ( 1 / 5 )
res = [ ]
for e l t in mu:

i f abs ( e l t ) > a :
res . append ( 0 )

else :
res . append(1/120*( a**2 − e l t * * 2 ) * * 2 )

return np . array ( res )

n = 1

u_values , x_values , _ , _ , _ = Bisection (Dx = Dx, xmax = xmax , n = n ,
gamma_minus = gamma_minus, gamma_plus = gamma_plus ,
bound = bound , max_iter = max_iter )

alpha = 1/(n+4)
original_x_values , original_u_values , support , _ , _ = Original_ODE ( c = c , alpha = alpha ,

x_values = x_values ,
u_values = u_values )

f1 = f_n1 (mu = original_x_values , c = c )
p l t . plot ( original_x_values , original_u_values , l a be l ="Numerical" )
p l t . plot ( original_x_values , f1 , l a be l =" Exact " , l i n e s t y l e = ’−− ’ , color= ’ red ’ )
p l t . t i t l e ( f "The numerical and exact s e l f − similar thin −fi lm solution at n = 1 compared" )
p l t . x label ( "$\mu$ value " )
p l t . y label ( " $f$ value " )
p l t . legend ( )
p l t . show ( )
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###############################################################

# Behavior as n tends to zero

# F i r s t we compute the s e l f −similar solution f o r a very small n s i z e

#Choosing a very small n to observe i t s behavior
n = 1e−16

u_values , x_values , _ , _ , _ = Bisection (Dx = Dx, xmax = xmax , n = n ,
gamma_minus = gamma_minus,
gamma_plus = gamma_plus ,
bound = bound , max_iter = max_iter )

alpha = 1/(n+4)
original_x_values , original_u_values , support , _ , _ = Original_ODE ( c = c , alpha = alpha ,

x_values = x_values ,
u_values = u_values ,
HeatEquation = True )

#Defining new parameters

#The number of gridpoints must be even f o r a Fourier transform
N = 2**10

#Length of the x values
L = support + 20

#Time
t = 1

#Grid space
dx = L / N

x = np . linspace ( −L , L , N)

#Defining the i n i t i a l condition
#At t = 0 , the mass i s concentrated at 1 point due to the dirac delta function
u0 = np . zeros (N)
u0 [N//2] = c / dx

#Computing the c o r r e c t wavenumbers f o r the f a s t Fourier transform (FFT)
k = 2 * np . pi * f f t f r e q (N, dx )

#Computing the solution in Fourier space
u0_hat = f f t ( u0 )
u_hat = u0_hat * np . exp( −k **4 * t )

#Applying the inverse FFT and ensuring we only take r e a l values
u = i f f t ( u_hat ) . r e a l

#Computing the i n t e g r a l to see i f mass conservation holds
i n t e g r a l = np .sum(u) * dx
print ( f " I n t e g r a l of u( x , t ) for the biharmonic heat equation at t = { t } i s : { i n t e g r a l } " )
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# P l ot t i n g the s e l f −similar solution and biharmonic heat equation next to each other
p l t . plot ( original_x_values , original_u_values , l a be l =" Sel f −similar solution " )
p l t . plot ( x , u , l ab e l ="Biharmonic" , l i n e s t y l e = ’−− ’ , color= ’ red ’ )
p l t . x label ( "x" )
p l t . y label ( " height " )
p l t . t i t l e ( "Source type s e l f − similar solution and Biharmonic heat equation " )
p l t . legend ( )
p l t . grid ( )
p l t . show ( )

###############################################################

# Animation

#n values that w i l l be plotted
n_values = np . linspace ( 0 . 1 , 2 . 9 , 29)
values = np . linspace ( 1 , 29 , 29)

# Storing the support and x and u values
x_values_stored = [ ]
u_values_stored = [ ]
support_stored = [ ]

#Going trough a l l the n_values
for n in n_values :

u_values , x_values , _ , _ , _ = Bisection (Dx = Dx, xmax = xmax , n = n ,
gamma_minus = gamma_minus,
gamma_plus = gamma_plus ,
bound = bound ,
max_iter = max_iter )

alpha = 1/(n+4)

original_x_values , original_u_values , support , _ , _ = Original_ODE ( c = c , alpha = alpha ,
x_values = x_values ,
u_values = u_values )

x_values_stored . append( original_x_values . t o l i s t ( ) )
u_values_stored . append( original_u_values . t o l i s t ( ) )
support_stored . append( support )

x_values_stored = np . array ( x_values_stored )
u_values_stored = np . array ( u_values_stored )

# I n i t i a l i z i n g the f i g u r e
x = np . linspace ( −np .max( x_values_stored ) −1 , np .max( x_values_stored )+1 , 500)
f i g , ax = p l t . subplots ( )
l ine , = ax . plot ( x , np . zer os_l ike ( x ) )
t i t l e = ax . s e t _ t i t l e ( " " )

ax . set_xlim ( −max( support_stored ) −1 , max( support_stored )+1)
ax . set_ylim ( −np .max( u_values_stored )/20 , np .max( u_values_stored ) + np .max( u_values_stored )/20)

ax . s e t _ x l a b e l ( "$\mu$ value " )
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ax . s e t _ y l a b e l ( " $f$ value " )

#Defining the updating step
def update ( i ) :

outside_support_x1 = np . linspace ( −max( support_stored ) −2 , x_values_stored [ int ( i − 1 ) , 0 ] ,
num = 10)

outside_support_x2 = np . linspace ( x_values_stored [ int ( i −1) , −1] , max( support_stored )+2 ,
num = 10)

outside_support_u = np . zeros (10)

l i n e . set_data (np . concatenate ( ( outside_support_x1 , x_values_stored [ int ( i − 1 ) ] ,
outside_support_x2 ) ) , np . concatenate ( ( outside_support_u ,
u_values_stored [ int ( i − 1 ) ] , outside_support_u ) ) )

t i t l e . s e t _ t e x t ( f "The s e l f − similar thin −fi lm solution with $c = { c } $ and $n = { 0 . 1 * i : . 2 f } $" )
return l ine , t i t l e

#Defining the animation
ani = FuncAnimation ( f i g , update , frames=values , i n t e r v a l =200 , b l i t =True )

#Saving the animation to the device
ani . save ( " Sel f −Similar_Solution . g i f " , writer=" pillow " )

###############################################################
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