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SHORT WAVES

1.1.

Introduction

Aim and scope

The course '"'short waves'" deals with a class of gravity surface waves
in water, Such waves can broadly be classified into two categories,
depending on the ratio of a typical wavelength (L) to the mean water-
depth (h). If L/h is much greater than 1 (L/h >>), we speak of

"long waves", If L/h is not much greater than 1, we speak of 'short
waves'". Tides, and flood waves in rivers, are examples of long waves.

Wind-generated waves and ship-waves are examples of short waves,

There are certain differences in the properties of long waves and

short waves which have led to different mathematical theories, for
which reason the two categories are usually treated separately.

For a treatment of long waves, reference is made to the course on
nearly~horizontal flows. As the name implies, the present course deals
with short waves. Its aim is to give an introduction to the hydro-
dynamic aspects of such waves, with applications in coastal and harbour

engineering.

The present course is restricted to long-crested, periodic waves.
Wind-generated waves are more complicated in structure and appearance.
Their description requires spectral and statistical methods, which are
not treated here, Instead, reference is made to a special course on

those topics.

The treatment adopted in this course holds a middle course between

a one-sided emphasis on fundamentals,and an exclusive cook-book style

of presenting recipes. The mathematical theory of sinusoidal, progressive
waves is presented in some detail, since that is basic for an under-
standing of wave phenomena. More complicated situations are treated

with less mathematics, either because it is not available (wave

breaking) or it is deemed to be outside the scope of this course

(wave diffraction). Calculus and elementary fluid mechanics are

supposed to be known.




1.2, Long waves vs. short waves, and their relation to other classes

of flows in hydraulics

Different classes of flows in hydraulics can be distinguished,
depending mainly on the relative importance of the various terms

in the momentum balance.

As regards the balance of vertical momentum, a major distinction

can be made between flows in which the vertical accelerations are

absent or negligible, and flows in which they are significant.

In steady-flow open-channel hydraulics, these classes of flows are
‘referred to as uniform or gradually varied steady flows (backwater

curves), and rapidly varied steady flows (flow through an orifice,

over a weir crest, etc.).

In gradually varied flows, the rate of change of velocity with
distance is low, by definition. In other words, the radius of curva-
ture of the streamlines in the vertical plane is large compared to
the flow depth. This implies that the vertical accelerations are
insignificant, and that the pressure distribution is virtually

\ hydrostatic. Thus, the wave-induced pressure is uniform throughout
\thnger cal. The pressure gradients which accelerate or decelerate
the flow horizontally tend to create and maintain a vertically uniform
profile of horizontal velocity. Although this implies the development
of bed resistance, and a boundary layer type departure from uniform-
ity of the velocity profile, it is nevertheless meaningful to deal
with the vertically-average flow velocity. Thus, the vertical coordinate

is effectively eliminated from the problem as an independent variable.

In rapidly varied flow, the situation with respec¢t to all of the

aspects referred to above is just the opposite.

The differences between gradually varied and rapidly varied steady
flows are the same as those between long waves and short waves
respectively. (Indeed, long waves are nothing but unsteady, gradually
varied flows). They have been collected in Table 1.1 and illustrated

in Fig. 1.1.




Flow property

Gradually varied
steady flows,
and long waves

Rapidly varied
steady flows,
and short waves

Vertical curva-
ture of stream-
lines

Vertical
acceleration

Pressure dis-

tribution

Flow velocity
profile

Bed resist-
ance -

Weak
Insignificant
Approx. hydro-
static

Approx. uniform

(apart from
bottom-induced
boundary layer)

Significant

Strong

Significant

Significantly
non-hydro-
static

Significantly
non-uniform

Insignificant

.

Table 1.1
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Fig. 1.1. Pressure (p) and velocity (u) profiles in

long waves

(a)

and short (b)




1.3. Assumptions in theory for short waves

In the following chapters, only the most elementary theory of short
waves will be presented. In other words, all effects which are not
essential to the phenomenon of short gravity surface waves in water

will be ignored. This leads to the following set of assumptions:

non-viscous fluid of constant density (incompressible and

homogeneous) in field of gravity

stress—~free upper surface

no surface tension

. rigid, impermeable, horizontal bottom
periodic, long-crested waves which progress without change in shape
1.4. Parameters '

The independent parameters which are sufficient to describe the wave
motion corresponding to the preceding assumptions (except for an

arbitrary, uniform velocity of translation) are listed below:

. mass density (p)
gravity acceleration (g)
mean depth (h)
wave height (H)

. wave length (L)

L crest
. ’\Me\anwiiLevel (MWL)
I ———
trough
g <::> h
V
bottom
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Fig. 1.2.

The relative depth h/L is important with respect to the effect of the
bottom on the wave motion, as indicated in the preceding paragraphs.
The ratio H/L, the so-called wave steepness, is a measure of the
relative intensity of the wave motion. It cannot exceed a certain

limiting value of the order of 10_1, because of wave breaking.




.|

In order to describe the wave motion in a unique manner, we must
specify a reference system. We will choose it such that relative to
that system, the horizontal velocity below the level of the wave
troughs has an average vaiue equal to zero. We use orthogonal axes,
with the x-axis horizontal, positive in the direction of wave advance,
and with the z-axis positive upwards, with z=0 in the mean water

level (MWL), as indicated in Figure 1.3. The free surface elevation

_» ¢ “pressure p

z = -h
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above MWL is denoted by n, so that the equation of the free surface
is z=n(x,t) , in which t is time. This equation can be reduced to a
simpler form by recognizing that the wave form advances with a speed

(say c) in the positive x-direction:
z=N (x ~ ct) (1.1)

The time between passage of successive wave crests past a point
x=const is called the wave period, written as T, which is related to

L and ¢ by the identity
L=¢T (1.2)

Note that L is independent of our choice of reference system, where-

as ¢ and T are not,

The dependent variables characterizing the flow field are the x- and
z-components of the flow velocity, and the pressure, denoted as

u, ¥ and p respectively.




Basic equations

In this chapter, the basic equations governing the wave motion under

the assumptions listed above will be formulated,

Condition of incompressibility

It follows from the assumed incompressibility of the water that the

net volume flow through an arbitrary, submerged closed control surface
must be zero. Equivalently, we can say that the volumetric strain rate
must be zero. Both viewpoints lead to the following constraint on the

velocity field (in two dimensions):

ou = ow _
fu,dv_y (2.1)

Dynamic equation

A statement of Newton's second law of motion should in the case
considered here include only pressure gradients and gravity as force

terms. This leads to

du 19
at ~ p ai (2.2%)
dw 19
= ; az -g (2.22)
du . .
The symbol at denotes a total acceleration, as experienced by a

fluid particle. It consists of a local contribution, expressing the
temporal change of velocity in a fixed point, and a convective
contribution, expressing the variation in flow velocity at fixed time
between neighbouring points in space. In other words, the convective
term arises because the particle moves into a region where the velo-
city is different from where it was initially. This is written as
follows, recognizing that x=x(t), z=z(t) if we follow a particle:

du _du  dudx Judz
dt = 9t  9x dt 9z dt

d
Following a particle implies %% = u and E% = W, 80 that
du ou Ju Ju
— e -+
t -5t " Ysx T Yoz (2.3%)
Nzt S

total = local + convective




L dw
and similarly for ac’

(2.32)

The equations (2.2x) and (2.2z) do not have a symmetric form, because
of the appearance of g in (2.2z). The two equations can be written in
a similar ifrm by substituting g = g%(gz) in (2.2z), and by adding a

zero-term Sg(gz) to (2.2x). Together with a substitution of (2.3), and

using the fact that p = constant, this gives

ou ou ou 9

So T Ut Vas t 3y (pt €9 = 0 (2.4x)
and

w9 dw 9

s w o (B ga) =0 (2.42)

Boundary conditions

We will state only boundary conditions at the free surface and at the
bottom. (For a complete formulation, conditions at lateral boundaries
should be specified also, which in the case considered here take the

form of a statement of spatial periodicity:)

Kinematic boundary conditions for a non-viscous fluid merely state that

no fluid particles cross a surface bounding the fluid., This gives
w=0 at z= -h (2.5)

and
—_—= W at z=n(x,t)

which can be expanded in a manner similar to (2.3):

%% + u%% = w at z=n(x,t) (2.6)

Dynamic boundary conditions deal with stresses. The bottom is assumed
to be rigid, for which reason no dynamic boundary condition needs to
be given at the bottom. The condition of a stress-free upper surface

can be written as

p=0 at z=n(x,t) 2.7)




(The fact that the shear stresses at the surface are zero need not be
stated since the fluid is assumed to be non-viscous, which is to say

that shear stresses are zero everywhere.)

. .Condition of irrotationality

Due to the velocity gradients, fluid particles can rotate about their
axes as they move. The velocity of rotation in the (x,z)-plane is

ow Ju

= - 2.8

y ox Bz) ( )
Under the conditions assumed (in particular: no viscosity), it can be

shown that the rotation of each fluid particle is constant:
Yy - o (2.9)

(Conservation of angular momentum.,) Therefore, motions starting from
rest, in which initially Qy = 0 for all particles, will be irrotational:

dw  du
_ 1 (oW _ou, _
Qy =3 (Bx 3z) =0 (2.10)

(Note: in a real (viscous) fluid, rotation can be generated at the
boundaries. Due to the oscillatory nature of the flow under waves,
the wave-induced boundary layer thickness remains relatively small.
Outside that thin layer, the wave-induced motion is virtually
irrotational. This is a more satisfactory justification for (2.10)
than the reasoning given above, which was based on the assumption

of zero viscosity.)

The condition of irrotationality ensures the existence of a scalar
function, the so-called velocity potential, written as @, such that
its defivative in any one direction equals the component of flow

velocity in that direction:
(2.11)

This potential has no obvious physical meaning, but its use simplifies
the mathematics because an unknown vector quantity (the velocity) is

replaced by an unknown scalar quantity (the potential).

Substitution of (2.11) into (2.1) gives

52 92 : )
ang’+ a;ﬁ =0 (2.12)




which is the so-called Laplace equation.

Substitution of (2.10) and (2.11) into (2.4x) gives

3 op du . Ow 9

8 op P -
3% G t U T Vox T G 9® =0

or
%{Ox(g—f)*'%ox(uz + wW2) + (-g-+ gz) } = 0 (2.13x%)

A similar equation is obtained from (2.4z). This implies that the
quantity in the brackets has the same value throughout the fluid.
In an undisturbed region, it equals zero because each of the three
terms in parentheses is zero there. Therefore, the quanity in the

brackets is zero everywhere:
ox %%-+ % ox(uz + w?) + (%—+ g.z) =0 (2.14)

This is the so-called Bernoulli equation for unsteady flow,

Finally (2.11) can be substituted into the boundary conditions,

which gives

gg =0 at z= -h (2.15)

2, %‘3%2 =2 et w6 (2.16)
and

Bt (D + Drren=0 at =nxn (2.17)
Linearization

Despite the simplification obtained by the introduction of a velocity
potential, it has not yet been possible to obtain an exact solution

to the preceding equations in closed form for a periodic wave. This is
due to the nonlinear character of the free surface conditions (2.16)
and (2.17). Not only do these equations contain product terms of
dependent variables, but they have the added complexity of being

prescribed at the free surface, which itself is an unknown.




However, many approximate solutions are available. The simplest one is
based on the assumptions of relatively low waves (H/L<< 1 and H/h<<1),
in which case the nonlinear quadratic terms in the free surface
conditions are small compared to the linear ones, and the difference

in instantaneous elevation of the free surface (z=n) and its mean value
(z=0) is negligible as far as the boundary conditions are concerned.

Introducing these approximations in (2.16) and (2.17) gives

g _ o

Y =,5% at z=0 (2.18)
and

d

5%~+ gn =20 at z=0 (2.19)

A solution of the linearized equations, representing a progressive wave,
will be investigated in chapter 3. A review of some nonlinear approxi-

mations is given in chapter 4,




Linear theory of waves in constant depth

Surface profile

The linearized set of equations presented in chapter 2 has constant
coefficients, so that it admits sinusoidal waves as a solution,

We will in this chapter analyse such solution, starting from an
assumed sinusoidal profile progressing at a constant speed in the
positive x-direction. Using the symbols defined in chapter 1, the

equation of the free surface (1.1) can be written as

mxm)=-§sm{21u£ifin (3.1)

or,using (1.2),

1 . 27 2m
n(x,t) —21131n (T t - ETX) (3.2)

For brevity of notation, we now introduce

. the elevation amplitude:

1

a = E-H (3.3)

. the wave number:

2T
k = L (3.4)

. the (angular) wave frequency:

_zn
w = (3.5)
. the phase:
2 2
S(x,t) = ﬁ;t - EFX = wt - kx (3.6)

Using these, (3.2) can be written as
(x,t) = a sin (Wt - kx) = a sin S(x,t) (3.7)
and (1.2) as

CcC =

=le

(3.8)

The wavenumber k represents the phase change per unit propagation
distance (at a given instant), and the wave frequency represents the

phase change per unit time (at a fixed point). An observer, travelling

with velocity V, would see a phase increase per unit time given by




35S  9S dx _ 39S . .38 _
§+—8‘;E—5’£+V’E§—N—Vk (3.9)

If he would travel along with the wave form, e.g. by keeping up

with a wave crest, he would observe no phase change at all.

It follows from (3.9) that the velocity required for this to happen
is w/k, i.e. the velocity c¢. This is no surprise, of course, since c
was defined as the velocity of the wave form. The preceding viewpoint
was offered to emphasize that c represents the velocity of points of

constant phase, for which reason it is called the phase velocity.

Velocity potential

In this and the following paragraphs, we will investigate the flow
properties associated with the given surface profile (3.7). The kinematic
equations will be considered first, without giving any consideration

to the dynamics. The reason for making this separation explicit, apart
from the wish to work systematically, is that the kinematic solution
applies to waves in constant depth with a variety of dynamic surface

conditions (e.g., internal waves, waves under an ice cover, waves

. being influenced by surface tension, etc.). Therefore, the results have

a greater degree of generality than would have been the case if a
specific dynamic boundary condition, such as (2,19), would have been

used from the outset.

A resume of the kinematic equations is given below.

_ 99 _ 9n
2=0 T 32 T Bt (2.18)
52 9o
Bxg * Bzg =0 (2.12)
= : ‘ 98 _
Z==-h -+3Z = 0 (2.15)

We seek a solution for @ satisfying these equations, for a progressive
wave represented by (3.7). The solution for @ must vary sinusoidally
with x and t, although not necessarily in phase with N, and we must
allow for a variation of the amplitude of @, written as @, with =z,

Therefore, we try a solution of the form
@(x,z,t) = @(z) sin (Wt - kx + Q) (3.10)

where @(z) and o are to be determined. To this end, we substitute (3.10)




into (2.12), with the result

dzg

Gz - K @) sin (Wt - kx + a) = 0 (3.11)

(

This equation must hold for arbitrary x and t, which implies that

dz@
dz2

-k2 @ =0 (3.12)

This is a linear, second-order ordinary differential equation with
constant coefficients. Its general solution therefore is the sum of

two exponential functions:

~

B(z) = Alekz + Ay e 7

(3.13)

in which A1 and A, are constants, whose values are determined by the

boundary conditions. Use of the bottom boundary condition (2.15) gives

ag _ -kh -kh _
= =A ke A, ke =0 (3.14)
=~h
or
-2 kh
Ay = A e (3.15)

so that (3.13) can be written as

g(z) = 2 Al e ¥ Cosh k(h+z) (3.16)

Substitution of (3.7) and (3.16) into the kinematic surface condition

(2.18) gives

2A1e-kh k sinh kh sin (Wt - kx +a) = wa cos (Wt - kx) (3.17)

from which it follows that

24k e ¥ Sinh kh = wa (3.18)

and

(3.19)

Q
i
NE

Finally, substitution of the results (3.16), (3.18) and (3.19) into

(3.10) yields the following expression for the velocity potential:

_ Qg cosh k(h+z)

9(x,2,8) =" " ginh kb

cos (Wt - kx) (3.20)




3.3. Particle velocities

Partial differentiation of @ with respect to x and z, respectively, gives

o9 cosh k(h+z)

- = = T i w - 3‘21

3% u wa =inh kh sin(wt kx) ( )
and

8¢ sinh k(h+z)

= = = Wg ————————— wt - 3.22

0z v a sinh kh (wt kx) ( )
or

u =14 sin S and w =% cos S (3.23)

in which the amplitudes G and % are given by

_ cosh k(h+z)
4 = wa ~sinh kb (3.24)

and
sinh k(h+z)

sinh kh

£
1

(3.25)

It appears from the above that u and w in any fixed point are 90° out

of phase, This implies a rotation of the velocity vector,

In order to investigate the variation of the velocity amplitudes with z,
we first consider their values near the surface (z=0) and near the

bottom (z=-h):

4 wa/tanh kh and #=wa at 2z=0 (3.26)

151 wa/sinh kh and w=0 at z=-h (3.27)

The relative magnitudes of i near the surface and near the bottom

are dependent on kh only, in other words on the ratio h/L.

If kh>>1 (so-called deep water) and if élso k(h+z)>>1 (the upper region
of the deep water), we can approximate the hyperbolic functions in

(3.24) and (3.25) with exponential functions. This is because
cosh x = :—ZL-(ex + e_x) = %—ex (1 + e_zx). If x>>1, e.-2X <<1, in which

case cosh x = ex. The same holds for sinh x. (This approximation is

1
2
already good to well within 1% if x> 3.) Therefore, in the upper region
of deep water, (3.24) and (3.25) can be approximated as
kz
0 =® 2wa e (in deep water) (3.28)
The condition '"deep water" or "kh>>1" is often taken to be kh.;3,

~ 1
L>=,
or h/ >




If kh<<1l (so-called shallow water), which implies k(h+z)<<1 for all
points below MWL, the hyperbolic functions in (3.24) and (3.25) can
be approximated differently, using the fact that cosh x =1 and

sinh = x for x<<1. We then obtain the following approximations to

(3.24) and (3.25):

wa a Z
A _ - & = << 3.2
u Eﬂ' c h and v Wwa (1+H) for kh<<1l ( 9)
~ 1
The condition '"shallow water' or "kh<<1'" is often taken to be kh< 30
~ 1
< =
or h/L 20"

In the shallow-water approximation, the horizontal velocity does not
vary with z, In other words, a long-wave property is here recovered

as a special case (shallow water) of the short-wave theory.

Notice that in shallow water (kh<<1l), @ = (wa)/(kh)>>wa. Thus, a wave
of given elevation amplitude and frequency causes larger horizontal
velocitiesg if it isin shallower water. This is of importance with regard

to sediment transport, or wave-induced loads on structures.

A schematic drawing of vertical profiles of G is given in figure 3.1,
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Shallow Intermediate Deep
kh << 1 kh=0(1) kh >> 1

Figure 3.1




3.4, Particle paths

The equations given above enable us to calculate how the velocity in
a fixed point (constant x,z) varies with time. In this paragraph we
consider a given particle. In a physical experiment, we would do that
by labeling a particle, e.g. by introducing a small, neutrally
buoyant opaque, solid particle into the water. In a mathematical
description, we must also label the particle which we want to follow,
e.g. by its coordinates (xo,zo) at some previous time, or, for oscil-

latory motion, the coordinates of the mean position.

The displacements in the x- and z~-direction from the mean particle

position (xo,zo) are denoted as X(t) and [(t). Reference is made to

figure 3.2,
‘ position of
z displacement ! particle at time t
vector |
|
|
12(t)
[
(x ’ZO) l'
__________________________ 1
z
o I
:mean position
! of particle
]
|
|
j
X0 X
Figure 3.2

The displacements are equal to the time integral of the particle
velocity components. For relatively small displacements, as has
already been assumed, the actual particle velocity is approximately

equal to the velocity at its mean position at the same time. Thus,
1
X(t') = fJc u(x=x_,z=z_,t)dt (3.30)
and likewise for Z(t). Substitution of the preceding equations for

u and w gives

X(t) = =X cos (Wt - kx ) (3.31)

and




and
Z(t) = £ sin (wt - kx ) (3.32)
in which
~ 0 cosh k(h+ zg)
_ 8 _ 3,33
X=9% =2 cinh kn ( )
and

sinh k(h+ zg)
sinh kh

(3.34)

Y
I
g2

It can be seen from (3.31) and (3.32) that ¥ and { of any particle are90°
different 'in phase, and that the particle path during one wave cyle is an
ellipse, with its major axis horizontal, with length z&, and with its

minor axis vertical, with length Zi. A sketch is given in figure 3.3.
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Figure 3.3

In the upper part of deep water, i = %, so that also i = £, which means

that the particle paths there are circular.

Dispersion equation, wavelength and phase velocity

The results derived in the paragraphs 3.2 through 3.4 are based on
kinematic relations only. We will now introduce the dynamic surface
condition (2.19). In doing so, we restrict ourselves to free waves.
This determines a relation between wave frequency and wave number

(w and k), the so-called dispersion equation. Such equation is of
central importance in the mathematical description of waves and
vibrations. The form it takes in our case follows from the substitution
of (3.7) and (3.10) into (2.19), which gives the dispersion equation

for gravity surface waves (in the linear approximation):

w? = gk tanh kh (3.35)




At this stage we will revert to the use of wavelength (L = 27/k) and
waveperiod (T = 27T/w), which are used more in applications than wave-
number or frequency. Also, we introduce an auxiliary length, written

as Lo’ defined by

- gT?
LO = om (3.36)
Equation (3.35) can then be rewritten as
2Th
L = Lo tanh L (3.37)
, 2Th ‘ :
It follows that in deep water, where tanh I =1, the wavelength L

equals Lo' In water of any depth, the quantity LO is still defined,
but it does not in general equal the local wavelength, which is a

factor tanh 2Th/L smaller.

In order to facilitate the calculation of L for given h, g and T,

(3.37) is written in dimensionless form:

h 2Th
L tanh L (3.38)

b

L

o
Values of h/L which are solutions of this equation for given h/Lo

have been tabulated. Reference is made to Table 1.

The phase velocity ¢ can be expressed in terms of wavenumber k or wave-

length L by eliminating w between (3.8) and (3.35), with the result

3

gL 2rh_%

_ (& - 2mh :
c = (k tanh kh)“ = (21T tanh L ) (3.39)

Alternatively, we can eliminate k or L, with the result

- B o h, 8T 2rh
c =3 tanh (c ) = P tanh (CT ) (3.40)

By analogy with Lo’ we can define a velocity c, as
c = >— = %f' (3.41)

after which (3.40) can be written as

c=c tanh kh (3.42)




It follows that in deep water

— 8T _g _ 8Lo % |
c=c = o=, T (Zn') (kh>>1) (3.43)

By contrast, in shallow water (3.39) reduces to

c = (gh)% (kh<<1) (3.44)
which is the phase velocity of long waves of small amplitude.
Example

=2
Given: T=8s, h =10m, a = 1m, g = 9.8 m s
To be determined: L, ¢, @ near MWL, Q1 near bottom

-2
Solution: Lo =g T2/(27) = (1.56 m s )T2= 100 m
- h/Lo = 0,1 » Table - h/L = 0.141 -~ L =

10 m/0.1410 = 70.9 m (alternative: Table -~

tanh kh = 0.709 >~ L = Lo tanh kh = 70.9 m) »
-1
c =L/T = 8.9 m/s
QJZ“O =Wa/tanh kh = (217/88)(1 m)/0.709 = 1.11 m s—l.
-1
q ze-h = wa/sinh kh = (27/8s)(1m)/1.006 = 0.78 m s

. Pressure

Having determined the velocity potential, we can calculate the
pressure from the Bernoulli equation (2,14). Neglecting the term

-Zl-(u2 + w?), this can be written as
d
p +pgz = - pg% (3.45)
In the absence of the waves, the pressure is denoted as P,; it is
hydrostatic:

P, = — P8z (3.46)

Denoting the wave-induced pressure by p+, we have

p=p +Pp (3.47)

P, = —'95;' (3.48)
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Substitution of (3.20) for @, and use of the dispersion equation

(3.35), gives

P = ﬁ+ sin (Wt - kx)

+
in which
s cosh k(h+z)
b, = Pea cosh kh

In deep water, (3.50) reduces to

6 = pga &% (kh>>1)

+
In shallow water it reduces to

p, = Psa (kh<<1)

in which case (3.49) becomes

P, = PgN (Kh<<1)

which is just a statement of hydrostatic pressure, a condition which

is assumed a priori in theories for long waves.

(3

(3.

(3.

(3.

(3.

.49)

50)

51)

52)

53)

A sketch showing the pressure distribution under a wave crest and under

a wave trough is given in figure 3.4.
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Figure 3.4
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3.7. Energy content and energy transfer

An essential property of waves is their capacity of transferring energy
from one region of space to another. Therefore, notions of energy content

and energy transfer are important to an understanding of wave propagation,

In the preceding paragraphs, we considered the variations of characteristic
properties of the wave motion with the vertical coordinate and with the
phase. When dealing with energy, it is useful to consider the wave field

in a more global or integral manner, by defining phase-averaged, verti-
cally-integrated quantities. This is done for the energy content (E) as

well as for the energy transfer rate (P).

The time-averaged, vertically-integrated kinetic emergy of the waves

per unit horizontal area is defined as

- ni 2 2 '
Ek = ih 5 p(u? + w2) dz (3.54)

in which the overbar denotes a time-average. Substitution of (3.21) and
(3.22) for u and w, and retaining only terms proportional to a2? (so-
called second-order terms), we find

E, = % p(wa)2 (k tanh kh)_l (3.55)

This result is based on the kinematic part of the solution only; it is
therefore valid regardless of the dynamic surface condition. However,
if we restrict ourselves to free gravity surface waves, we can use the

dispersion equation (3.35), in which case (3.55) can be written as

=1 2
E =7 pga (3.56)

The time-averaged, vertically integrated potential energy of the waves

per unit horizontal area is defined as

Iy 0 _1 =
Ep = f£ pgzdz - {h pgzdz = 5 PgN (3.57)

Substitution of (3.7) for n yields

_1 2
_ 3.58
Ep 2 pga ( )

Notice that Ep = Ek' This is no coincidence; it is a general property
of free waves (in the linear approximation). Instead of following the
route we have taken, we could have established (3.55) and (3.58) first,
after which the dispersion equation would follow from equating E_ to

k
Ep. This is Rayleigh's method, usually applied for calculating the
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natural frequencies of a vibrating system.

The total time-averaged, vertically integrated wave energy per unit

horizontal area is defined as

E=ZE_ +E (3.59)

which gives

E = % oga? = % ogH? (3.60)

k
international system of units.

-2
The dimension of Ep’ E and E is energy/area , or Jm in the

We next consider the energy transfer through a vertical plane of

unit width, normal to the propagation direction (thus, x = const),

which extends from bottom to surface. Water particles crossing this plane
(at a velocity u) carry kinetic and potential energy with them °
(%-p(u2 + w2) + pgz per unit volume), and as they cross the plane the
pressure (p) is doing work on them (at a rate pu per unit area).

It follows that the rate at which energy is transferred across a unit

area of the plane x = constant is given by

{p + pgz + %—p(u2 + w2) hu (3.61)

The time-averaged, vertically integrated energy transfer rate per

unit width is now defined as

P = [2 {p + pgz + %-p(uz + w2)} u dz (3.62)

Retaining only second-order terms, this can be approximated as

[0 J—
P=J p_udz (3.63)

Substitution of (3.21) , (3.49) and (3.50) gives

P = Enc: (3.64)

in which, by definition,

kh

1
—_— =< <
sinh 2 kh (2 n =1) (3.65)

n=t4
T2

In deep water, n = whereas in shallow water, n = 1 (see Table 1

E;

as a function of kh),
-1

The dimension of P is power/(crest)length, or Wm in the interna-

tional system of units,
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Example (cont'd)

Data: see page 3.9,

To be determined: E and P.

-3 -2 -2
Answer: E = l-pgaz = %»(1035 kgm ) (9.8 ms ) (1m2 =5.,1kIim .

2
h/LO = 0.1 =+ Table > n = 0,810 ~ nc = (0,.810) (8.9 ms_l)
-1 -2 -1 -1 -1
= 7,2 ms > P=Enc= (5,1 kdm ) (7.2 ms ") = 36.8 kdJ s m
- 36.8 kW m _.

Wave trains and wave groups

The preceding results will now be used to calculate the velocity of
propagation of a wave train, generéted by a periodic disturbance some
finite.time ago, into a region of calm. The transition zone between
the region of calm and the region of established wave motion is called

the front of the wave train, We want to calculate its velocity, denoted

as Uf (f for "front").
Consider the situation at two different times, t = t{ and t = t{ + At:

_ =U, calm

| ---"Nitront at t = tq

The region to the right of cross~-section I-I contains more energy at

t =ty + At than at t = tl,the gain being (per unit width):

EAx = EUf At (3.66)
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It has acquired this additional energy as a result of the energy

transfer through the cross-section I-1 in time At, which equals
P At (3.67)

(per unit width). Equating the two gives

P : '
= = 3.68
Uf E ( )

or, using (3.64)

Uf = nc (3.69)

The conclusion is that the wave front travels at a speed P/E, or nc,
which in general differs from the phase velocity c. In deep water,

1
nc equals By
in calculating the arrival time at some location of waves from a distant

c, or gT/(4m). It is the velocity nc which should be used
disturbance (e.g. swell from a distant storm).

The fact that Uf <c (except in shallow water) implies an advance of
individual waves (wave crests) through the wave train, relative to the
wave front, When such waves have arrived at the front, their amplitude

goes to zero and they lose their identity.

So far, we considered the speed of propagation of a wave disturbance
into a region of calm. However, the arguments and the results apply
equally to a disturbance propagating into a region with a pre-existing
wave motion, In other words, disturbances (modulations) of a wave field
travel with the velocity nc. This applies also to the modulations in
which the amplitude varies slowly between a maximum and a minimum

(possibly zero), in which case we speak of wave groups.

A particular kind of wave groups is obtained by adding two periodic
wave systems of slightly different frequency and wavenumber, traveling

in the same direction:

n-= nl + N, = a, sin S_ + a_ sin S2 (3.70)

with

S1 = u&t - klx , S2 = ubt - kzx (3.71)

The phase difference between the two systems is

88 = S2 - S1 = (Swt - (§k)x (3.72)




in which

W= w, - << = - k_ <<
§ wz wl wl and Sk kz k1 k1 . (3.73)

Points of phase reinforcement (maximum amplitude) alternate with points

of phase cancellation (minimum amplitude), as sketched in figure 3.5.
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Figure 3.5 (source: Groen and Dorrestein, 1976)

The velocity of propagation of the groups, the so~called group velocity,

denoted by cg, can be calculated from the condition of constant phase

difference between ”1 and nzz

) 9
at(GS) * o, ax(SS) =0 (3.74)
Using (3.72), this gives
- Sw _ dw
°e T 5k  dk (3.75)
Substitution of the dispersion equation (3.35) and carrying out the

differentiation gives

c = nc (3.76)
g

in which the factor n is the same one as in (3.65). In other words,

we see that the group velocity dquk, calculated on the basis of purely
kinematic considerations (as above) has the same value as the propagation
velocity P/E which was calculated on the basis of energy considerations.
This is no coincidence: a wave group can be considered as an energy
packet. The energy is where the group is, or vice versa. In what follows
we will no longer make the distinction between the wave (front) propa-
gation velqcity and the group velocity, but use the name and symbol

(cg) of group velocity throughout. The equation for the energy transfer

rate (3.64) is then written as

P = Ec 3.77
g ( )




Damping of waves by bottom resistance

In this paragraph, an estimate will be made of wave damping by bottom
resistance. (Damping by bottom motion, or by percolation into a porous
bottom, or by direct action of viscosity in the bulk of the water is

usually less significant.)

Denoting the shear stress at the bottom by Tb’ and the particle velocity
just outside the thin bottom boundary layer by u , we can express the

average power dissipated per unit area (D) as

D=Tu (3.78)

Assuming a turbulent boundary layer, we write

T, = Cr pub |u

b (3.79)

b |

in which Cr is a (dimensionless) resistance coefficient. It is a function
of the ratio of particle displacement amplitude (ib) to bottom rough-
ness, and of a boundary layer Reynolds number. A typical value of Cr

-2
for field conditions is 10

Substitution of (3.79) and (3.21) into (3.78) gives

4 wa 3

=371 ¢ Plinn W (3.80)

Having estimated the power dissipated per unit area, we now calculate
the amplitude decay which is caused by that dissipation. To do that,
we consider the energy contained in a volume of unit width, between

two cross-sections x = x_ and Xy = X, + §x. The rates of energy transfer

1 1
through these cross-sections are denoted by P1 and Pz, where
dp
Py = P1 + a;~6x. The difference (P1 - Pz) is equal to the power dissipated

over the length 0x, which equals DSx (per unit width), so that the

energy balance becomes

dp
o +D=20 (3.81)

Substitution of (3.80), (3.64) and (3.60) gives

da 4 Wa 3
pgnca =+ 2 G PG kY T © (3.82)

which can be written as

da
a2 T Bdx =0 ~ (3.83)




in which R is a (dimensional) constant given by

B ='§ﬁ Cr (w/sinh kh)a/(gnc) (3.84)

or, using (3.8) and (3.35), by

4 k2
-4 3.85
B 37 Cr n(sinh kh)2 (cosh kh) ( )

Finally, integration of (3.83) yields

1 _ 1 -
Tey e I B(x - x,) (3.86)

which indicates a hyperbolic decay of the amplitude with propagation

distance. An alternative formulation of (3.86) is

2 -1+ Ba, M)t (3.87)
a 1
1
in which a = a(x), a, = a(xl) and Ax = x - Xy This shows that the

relative decay rate depends not only on B, but also on the initial
amplitude: higher waves are damped more rapidly (relative to the initial
value) than lower waves. This is a consequence of the assumed quadratic

bottom shear stress law (3.79).

The damping considered here is due to bottom resistance; the decay rate
is therefore increasing with decreasing relative depth, as can also
4 -2
be verified by inspection of (3.85) (B 37 C,p ~ as kh > 0).

Example (cont'd)

Data: T = 8 s,h = 10 m (as above); a1 =2 m, Cr = 10 , Ax = 3 km

To be determined: a at Xy = X, + Ax
Solution: h/Lo = 0.1 » Table > sinh kh = 1,006, cosh kh = 1,419,
=,810, kh = .886 ~ k = 0.0886 m - 5

a=2m/1.17 = 1,70 n.

ng

> B=2.9x10°mn?2 Ba AX = 0.17 ~
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h/Lo h/y kh tanh kh sinh kh cosh kh KS n

0 0 0 0 0 1 m 1

. 005 .02836  .1782 L1764 <1791 1.0159 1.692 .9896
.010 .0k032  .2533 2480 .2560 1.0322 1.435 97192
.015 .0hoéh  .3119 . 3022 .3170 1.0490 1.307 9690
. 020 05763  .3621 . 3470 .3701 1.0663 1.226 .9588
. 025 L0648 L LOTO . 3860 18l 1.08ko 1.168 .9L88
.030 .07135 L4483 4205 L63h 1.1021 1.125 9388
.035 07748  .LB68 4517 .506k 1.1209 1,092 .9289
.0k4o .08329  .5233 L1802 SLT5 1.1401 1.06L 9192
.0l5 .08883  .5581 5066 5876 1.1599 1.042 .9095
. 050 .09k16  .5016 .5310 L6267 1.1802 1.023 .8999
.055 .09930  .6239 .5538 6652 1.2011 1.007 .8905
. 060 . 1043 .6553 .5753 .7033 1.2225 .9932 .8811
. 065 . 1092 .6860 .5954 LTh 11 1.24k47 .9815 .8719
.070 L1139 L7157 614 L7783 1.2672 L9713 8627
. 55 . 1186 . Th53 6324 8162 1,2908 L0622 .8537
. 000 <1232 LTTW 6493 .8538 1.3149 0548 .8LL8
.085 1277 . 8026 .6655 .8915 1.3397 .9L481 . 8360
090 L1322 .3306 .6808 .9295 1.3653 .9h22 8273
. 095 . 1366 . 8583 .6953 L9677 1.3917 L9371 .8187
.100 .1k10 .8858 .7093 1,006 1.4187 L0327 .8103
. 110 . 1496 .94k00 .7352 1,085 1.4752 . 9257 .T937
.120 . 1581 .9936 .7589 1.165 1.5356 .9204 LTTT6
. 130 . 1665 1.046 . 7804 1.248 1.5990 .9169 L7621
.1k0 .17h9 1.099 .8002 1.33L 1.667 .9146 SThT
. 150 . 1833 1.152 .8183 1.4h2) 1.7hO .9133 .T325
. 160 <1917 1.20L4 . 8349 1.517 1.817 .9130 .T18k
.1go .2000 1.257 .8501 1.614 1.899 .913L .TO50
» 160 .2083 1.309 .8640 1.716 1.986 .91k5 .6920
.190 L2167 1.362 8767 1.823 2.079 .9161 6796
.200 .2251 1414 . 8884 1.935 2.178 .9181 6677
.210 .2336 1.468 . 8991 2.055 2.285 .9205 .6563
.220 2421 1.521 .9088 2.178 2.397 .9231 .6L456
230 .2506 1.575 .9178 2.311 2.518 .9261 .6353
.2ko .2592 1.629 .9259 2.450 2.6L47 .9291 .6256
.250 .2679 1.683 .9332 2.599 2.784 .9323 6164
.260 L2766 1.738 .9400 2.755 2.931 .9356 6076
270 2854 1.793 .9L61 2.921 3.088 .9390 5994
.280 .29k2 1.849 .9516 3.097 3.254 .9423 .5917
.290 .3031 1.905 L9567 3,284 3.433 .9L56 5845
.300 .3121 1.961 L9611 3.483 3.624 .9490 STTT
.320 .3302 2.075 .9690 3.919 4, oks .9553 .5655
.3k0 . 3468 2.190 L9753 4,Lh13 L, 525 .9613 .5548
. 360 L3672 2.307 .980k b.o7h 5.072 L9667 . 5L457
.380 .3860 2.425 .9845 5.609 5.697 o717 .5380
.400 .L050 2.544 L9877 6.329 6.407 L9761 .521hL
420 Iy 2.665 .990L T.146 7.215 .9798 .5258
ko 4Lk 2.786 .992k 8.075 8.136 .9832 .5212
160 .14628 2.908 .99k 1 9.132 9.186 . 9860 .5173
.480 1822 3.030 .9953 10.32 10.37 .9385 .5142
.500 .5018 3.153 . 9964 11.68 11.72 .9905 .5115

111.

Table 1.




Diffraction of waves around breakwaters

Introduction

A wave train which meets an obstacle such as a breakwater or an offshore
platform may be reflected backward and in lateral directions, but the wave
crests can also bend around the obstacle and thus penetrate into the zone

to the lee of the obstacle. This phenomenon is called diffraction. The degree
of diffraction which occurs depends on the ratio of a characteristic lateral
dimension of the obstacle (e.g. the length of a detached breakwater) to

the wavelength,

For coastal and harbour engineers, the phenomenon of diffraction is important
since it determines the shelter afforded by breakwaters and jetties. Sketches
of the wave crest pattern are given below, for the diffraction around a

detached breakwater and for the diffraction through a gap between two break-

waters. The reflected waves are omitted in these sketches.

exposed
zone

lee exposed lee exposed lee
zone zone zone zone zone

The mathematical theory of diffraction is outside the scope of this course.
Only the assumptions and some results will be mentioned here, and a
graphical approach to the problem of diffraction around breakwaters will be
presented which can be applied in cases of relatively simple geometry, as
sketched above. Cases of complicated geometry, particularly those involving
multiple diffractions and reflections, require a scale model or a numerical

mathematical model. These will not be dealt with here.
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5.2. Assumptions

The assumptions made in the mathematical theory are the same as those used

in the linear, potential-flow theory for free, two-dimensional, periodic,
progressive gravity surface waves, with the exception of the two-dimensionality.
In particular, it is stressed that the depth has been assumed constant.

The obstacle around which the waves diffract is supposed to extend vertically
from the bqttom through the free surface, and to be rigid and impermeable

(which implies that it is fully reflecting).

The assumptions listed above allow a solution for the velocity potential in

the form

_ wa(x,y) cosh k(h+z) _
d(x,y,2z,t) = ” ~inh kb cos{wt-¥ (x,y)} (5.1)

with an associated surface elevation given by
n(x,y,t)= a(x,y) sin{wt-¥(x,y)} (5.2)

The frequency w and the wavenumber k obey the dispersion equation (3.35).

The amplitude a(x,y) and the phase Y(x,y) are unknown functions, to be
determined from the governing equations and the boundary conditions
specifying the incident waves (usually long-crested, constant amplitude)
and the shape, size and orientation of the obstacle (inplan view). The
mathematical solution can be visualized by plots of isolines of a(x,y) and
Y(x,y). The former are usually presented in dimensionless form, by plotting

isolines of the so-called diffraction factor K_:

D
K (x,y) = 23030 (5.3)

in which a_ is the amplitude of the incident waves where these are not
disturbed by the obstacle. Plots of isolines of Y(x,y) give the crest pattern,
since a wave crest is the locus of points which at any instant have the

same phase.

Analytical diffraction solutions are available only for obstacles with
a highly idealized geometry, such as an elliptical or circular cylinder,
or a semi-infinite, straight screen. In'the latter case, the presence of

the screen (or breakwater) can be expressed by the boundary condition

v = %% =0 atX>0,Y =0 ' (5.4)
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where (X,Y) are coordinates along the breakwater and normal to it. Eq. (5.4)

7

vreakwater

implies that in the mathematical model the screen or breakwater is of zero
thickness, straight, semi-infinite in extent, rigid and impermeable. The
applicability of the results for this idealized representation to diffraction

around real breakwaters will be discussed later (paragraph 5.7).

The solution to the problem of diffraction of a uniform wave train around
a breakwater represented by (5.4) was first given by Sommerfeld. A graphiccal
presentation of his solution will be given in the following paragraphs,

after a brief discussion of the effects of reflection.

5.3. Influence of reflection

The solution derived by Sommerfeld consists of the sum of two terms, which
can be considered as the diffracted, incident wave field and the diffracted,

reflected wave field, as sketched below:

break&éter

’/////)\fji/// breakwater
\
/\
/\

—

\

An inspection of the two parts of the Sommerfeld solution shows the following

points:

The diffraction of the incident waves and that of the reflected waves
are mathematically expressed by the same function, the so-called Fresnel

integral.
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The amplitude of the diffracted,reflected waves is relatively small
on the lee side of the breakwater (except very near the breakwater

itself).

The first of these two points suggests that the diffraction of an
abruptly cut-off wave system has a universal pattern. If so, it is
sufficient to consider only the diffracted incident waves to study that
pattern. The second point implies that this gives a good approximation

to the actual solution in the region on the lee side of the breakwater.

For the reasons indicated above, only the diffraction of the incident wave
field will be considered in what follows, with neglect of the reflection.

A graphical procedure will be described with which this part of the solution
can be obtained. It is pointed out that the same graphical procedure can

be applied to the reflected waves if this is considered necessary in order
to obtain the complete solution. If the breakwater is only partially
reflecting, the second part can be multiplied with an appropriate reduction
factor (the reflection coefficient) before it is added to the first part,
representing the incident waves. (Note: the isolines of KD given in the
Shore Protection Manual (CERC, 1975) are based on the complete Sommerfeld

solution, i.e. with 100% reflection.)

Huygens' principle

The graphical presentation of the Sommerfeld solution can be explained
qualitatively by using Huygens' principle, according to which an advancing
wave front can be considered as a sequence of elementary wave sources,

each of which radiates energy in a circular pattern.

Jiource
front
U
e

The wave disturbance at some point P can be determined by adding the

contributions from the various sources which can reach it. If this
summation is carried out over all the sources from -® to +~, the
undisturbed, incident wave motion is recovered. If a breakwater is present,

the summation is carried out only over those sources which can reach P by
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wave rays, i.e. by straight lines if the depth is constant. This explains

why and how Huygens' principle can be used in diffraction studies.

Cormu spiral

It appears from the above that it is necessary to construct graphically the

resultant of a large number of sinusoidally varying quantities, as in

np(t) = ? aj cos (wt + Wj) (5.5)

in which the index j indicates the number of an elementary source.

At time t=0, (5.5) reduces to

0) = 2 5.6
T%( ) ] aj cos Wj ( )

The quantity al cos q& can be represented as the projection, on a reference

axis, of a vector with length a enclosing an angle Wl with the reference

1’
axis:

The same holds for a2 cos Wz. The sum (a1 cos Wl + a

from the resultant of the two vectors, which

o COS Wz) can be obtained

//,7 res, 71 res.
,/’//'/C a
- / / 2

in turn can be obtained conveniently by drawing the second vector

from the end point of the first one, as shown in the sketch on the right.
This can be extended to any number of vectors. The result for t#0 can be
obtained by rotating all vectors through an angle wt. This operation need
not be carried out; it is sufficient to realize that it can be done, and

that the length of the resultant vector represents the amplitude of the

sum in (5.5).




We now return to the case of a straight incident wave front approaching
a point P, In absence of any obstacle, the situation is symmetric about

the normal on the front through P. The wave front is divided into sources

of equal strength, numbered j=1,2,3,.... to the right of the projection
(P') of P on the front, and j=-1,-2,-3,.... to the left of P'.
ﬂ J= ] [l 1 L—ll .T. ?h lz :13 [l L. )| i ] front
H

P

|

)

|

|

]

|

]

|

i

]

]

!

e P

Let the contribution of source 1 to np(t) be represented by a vector,
Source 2 is at a greater distance from P, so that its contribution to np(t)
will lag in phase behind the contribution from source 1, and have a smaller
amplitude. The vector representing the second contribution is therefore
rotated clockwise with respect to the vector from source 1, and it is
shorter. Continuing in this fashion to the right of P', (to j=+x), a
sequence of vectors is obtained of monotonically decreasing length, rotated

clockwise with respect to the previous one. In this

e
@, - Ve /
2T )
P s
O @ - P
\‘:i// oo ."2-1 +00
.‘."3 i

manner a spiral is formed (a smooth curve in the limit of infinitesimal
source dimensions), whose limit point corresponds to the sources at +o,
The contributions from the sources to the left of P' (to j = -®) are
obtained by simply adding the mirror image of the spiral about the point

corresponding to P'. The result is called the Cornu spiral.




The sum of the contributions from all the sources (from -® to +) gives

the undisturbed, incident wave, with respect to amplitude (am) as well as
phase. In the Cornu spiral, this is represented by the vector drawn from

the 1limit point '"-" to the limit point "+", The length of this vector
represents a_, and its orientation represents the phase of the incident wave

at P.

It can be seen that through the procedure described above, the incident

wave front, extending from -» to +», is mapped onto the spiral, with a
one-to-one correspondence between (point) sources on the front, as '"seen"
from P, and their images on the spiral. This correspondence can be formulated

quantitatively as follows.

Let Q be an arbitrary point on the incident wave front, at a known distance
rQ from P. Its image on the Cornu spiral for point P can be determined from

the phase difference between the contributions to Np from the sources at P’

and at Q, which is

AWP,Q= 2m ﬂ%i (5.7)

in which y is the distance (P'P). This phase difference equals the angle

enclosed between the tangents to the Cornu spiral in the images of P' and Q,

~ -~
denoted by P'and Q. Thus, knowing Iy vy and L, AWP.Qcan be calculated from

"t {'/JPO .
E Q R //\. PR Ea
T: //' ) -7 ﬁ ) Ti
v L) Z
ol 7 'y
- v +00

(4
(5.7), and this determines uniquely the point Q on the spiral, knowing that

it must be between 5' and the limit point "+o" (see sketch),

In practice, it is more convenient to work with fractions of cycles, given

by (r-y)/L, than with angles. For this reason, a parameter W is used, defined
by

= Iy
W= (5.8)




Values of W have been plotted along the copy of the Cornu spiral provided
with these lecture notes. (To avoid cluttering of the figure, points with
equal decimal value of W have been cbnnected by dashed curves.) To give

an example, consider a point R such that rR—y = %>L, or %t = %. This means

n~ v
that AWP'R— T/2, and that R is the first point on the spiral between B’

) ns
and "+" where the tangent to the spiral is normal to that at P . It can be

located as the point where W = 0.25,

Application to single breakwater

The preceding results will now be applied to determine the wave amplitude
in a point near a single breakwater around which diffraction occurs, as

sketched below

e

o/ O\
7NE
AP

¢ \

P \

y

(1) A y- coordinate is defined in the direction of propagation, with its
origin (y=0) in the breakwaterhead Q.

(2) The value of W = (r-y)/L is calculated, where r is the radial distance
from Q to the point P considered, and y is the y- coordinate of P,

(3) The image (53 of Q on the Cornu spiral is determined, using the value
of W calculated in (2), taking care that 6 is in the proper half of

~
the spiral (in the example shown, between P, and '"+x"),

1
(4) The vector sum is determined of the contributions from all those sources
of the incident wave front which can reach P via straight lines (which
can be "seen" from P). In the example given, it is the vector drawn
from the limit point "-%" to 5. The length of that vector represents the
wave amplitude at P, to a scale determined by the fact that the distance

between the two limit points represents a_.
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Example
) / //‘ / //
/ ~
/ . // /// g Ol'oo = 300’ L = 100 m!
é , 7 Q a_=3m
4 <. r\
|\ 30°
200m |\ a =2 a =9
N P P
! \ 1 2
P i \
————— \— ——¢— P
1 00m 2
Ny
P1: r =200 m } W= r-y _ 0.26
y = (200 m) (cos 30°) = 174 m

Q (W = 0.26)

/A

g
//, res,

@

~
Resultant = vector from @ to "+»", with length 39 mm., Distance between limit
points is 198 mm, which represents a = 3 m, Thus:

39

aP = Tos (3 m) =0.58m
1
P.: r = (200 m) V2 = 283 m , -
2 ( ) } w=2Y-0.00
y = (200 m) (cos 30° + sin 30°) = 274 m L

res.

.09)

5

W

Il
o

Resultant = vector from'& to "+o", with length 175 mm, Thus,

174

P2 198

a (3m) = 2,61l m
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Note that the image of the breakwaterhead on the spiral depends on the

point of observation (P, or Pz).

1
If the procedure described above is repeated for all points on a line
across the line separating the lee zone from the exposed zone (the so-called

shadow line), the following picture emerges:

/’/\Q
- \
A X5 0 B . _c
\
0
A B ¢

Instead of a discontinuity in wave amplitude, which would exist if
diffraction did not occur (KD = 0 along AB, KD = 1 along BC), we see

a smooth transition, with a value KD = 0.5 along the shadowline. Inside
the shadow zone the amplitude decreases monotonically with increasing

distance from the shadow line, and in the exposed zone it oscillates ,
increasingly rapidly but with decreasing amount around the value 1.

The first and largest maximum of K_ is approximately 1.17; it occurs

D
for W20.36. This value of W (or any other) occurs not in one point only,
but in a locus of poinfs which can be determined by noting that r = WL+y,

or

<2 = w2 + 2wy (5.9)



which is the equation of a parabola if W = const. The

7«\

= const>0

shadow line, where W = 0, is a reduced parabola.

For completeness' sake, it is repeated that the procedure described above
can also be applied to the waves which are reflected off the breakwater.
The resultant vector, possibly reduced in length to allow for partial
reflection, can be added to the one representing the diffracted incident
waves, after rotating it through a certain angle so as to achieve that
both resultants have the same reference phase angle. The details of that

operation are not described here.

Generalizations

The Sommerfeld theory of diffraction has been derived on a certain set of
assumptions, listed in paragraph 5.2, In this paragraph we shall review
the assumptions pertaining to the breakwater, and point out how these can

be relaxed so as to widen the field of practical applications.

The thickness of the screen, or the width of the breakwater, is theoretically

zero, Practically, it is sufficient if it is small relative to the wave-

length., Within that finite width, the sides need not be vertical.
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The reflection was assumed to be 100% in the theory, but since its influence
is relatively small anyway in the zone away from the area which is directly
exposed to the reflected waves, this condition can be dropped. In fact, in
the procedure described in the preceding paragraph, the reflection is
neglected entirely, and this approximation is better as the actual reflection

coefficient is smaller.

The breakwater is theoretically rigid. This is a fairly realistic assumption
for conventional breakwater structures such as those of the caisson-type

or rubble-mound breakwaters. Needless to say, the Sommerfeld theory cannot
be applied to compliant breakwaters (e.g. of the floating type) since these
transmit wave energy to the lee zone by their own motion. A similar state-

ment applies to the permeability.

Finally, we consider the geometry of the breakwater in plan view,.
Theoretically, it is a semi-infinite, straight line. However, in the approxi-
mation given above, in which the effect of reflection is neglected, the value
of KD in a point is determined exclusively by the value of W, and by the

fact whether the point is inside or outside the shadow zone. The orientation
of the breakwater relative to the incident waves does not affect KD. In this
approximation, the diffraction is purely an edge effect (using a terminology
from diffraction of light waves around the edge of a screen). In other words,
the approximation described in paragraph 5.6 would apply to the diffraction
of a uniform incident wave field which is somehow cut off abruptly. This
makes it plaunsible that the breakwater which causes the cut-off need not

be straight, or infinite in extent. In fact, diffraction around more than
one breakwaterhead can be described by the above method, applied to each
head separately, provided it is still a reasonable approximation that each
breakwaterhead is approached by a more or less uniform wave train. This is
the case if each breakwaterhead is in the exposed zone, sufficiently far

away (say a few wavelengths or more) from the shadow lines through the other

breakwaterheads.

Examples of diffraction around more than one breakwaterhead have been
given in the sketch in paragraph 5.1, showing a breakwater gap and a
detached breakwater. The calculation of the diffraction through a gap

will be illustrated in the following.
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Example

From known breakwater geometry, incident wave direction and wavelehgth,

and location of P, calculate

I r._-y
I I II II
W = =
I ~——£———-and W2 L

Say (for example) that WI = 0.25 and WII = 0.40,

o) |
%/dn (W= 0.40)

(W= 0.25)

Resultant of sources reaching P = vector from 61 to 5 which appears

I’
to have a length of 255 mm, so that KD = 255/198 = 1.28.

Note that in case of diffraction through a gap, there is one point in which
KD is greater than anywhere else. It is determined by the longest vector

connecting two points of the Cornu spiral. It occurs for WI = wII ~ 0.39,

(i.e., at the intersection of two parabolas of We 0.39, one for each

breakwaterhead), and the corresponding KD =K 1,34,

~
D max =
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Nonlinear theories for waves in constant depth

Introduction

No exact solution to the equations presented in chapter 2 has been
found which would represent periodic, irrotational waves of permanent
form. This is due to the nonlinear terms in the free surface boundary
conditions., In the linear approximation, these nonlinear terms were
neglected entirely. In nonlinear theories, they are taken into account
by approximation. Numerous nonlinear theories have been developed, with
different methods and different degrees of approximation. In this

chapter, a brief, mainly qualitative overview of these is presented.

A nonlinear theory for irrotational water waves was first developed
by Stokes (1847). His theory, to be dealt with in par. 4.2 below, is
in principle applicable to waves in water of arbitrary depth relative
to the wavelength, but it turns out that for shallow-water waves the

results are realistic only if the wave height is exceedingly small.

A second category of theories has been developed especially for

shallow-water conditions, These will be considered in paragraph 4.3.

The theories referred to above give explicit, analytical expressions
for the various coefficients needed in the formulation. The so-called
numerical theories give algorithms to evaluate the coefficients
numerically for any given specific set of input conditions. A few of

these numerical theories will be mentioned in par. 4.4.

The question of the validity of the various theories is taken up in

par., 4.5,

Stokes theory 2

Stokes (1847) employed a method of successive approximations, which

can roughly be described as follows.

The results of the linear theory are used to find a first approximation
to the neglected nonlinear terms. Taking these into account, corrections

to the first (linear) approximation of the solution are determined,




With these corrected approximations of the exact solution, a second
approximation of the nonlinear terms can be made, etc. If this process
converges, it can in principle be continued until the corrections
become sufficiently small. (A practical limit is soon reached because
the mathematical expressions become very lengthy as higher-order

approximations are worked out.)

A typical linear term is proportional to a cos S or a sin S, in which

"a" is the amplitude of the surface elevation in the linear approximation,
and S = wt - kx is the phase. Since the nonlinear terms consist of

product terms such as u?, the first approximation to these terms consists
of terms proportional to a? cos?S8 =-%a2 (1 + cos?8), and similar terms
with sin S, The same is true of the first correction to the linear
approximation of the exact solution. Continuing in this manner, one finds
successive approximations to the exact solution in the form of successive
terms of a power series in "a'" (terms proportional to a, a?, a3, etc.).

If "a" is sufficiently small (relative to L and h), each higher-order
term will be small compared to the lower-order terms, and if then the
series is terminated after a few terms, a useful approximation may have

been obtained.

As mentioned above, the mathematical expressions occurring in the
high-order approximations become quite lengthly. Application of the
theory has been made easier by the preparation of graphs and tables,
such as those of Skjelbreia (1959) for the 3rd order approximation,
in which all terms of order 3 and less retained and all others are

neglected,
In the following, some of the results will be mentioned, mainly in a
qualitative sense.A few equations of the second order theory will be

presented for purposes of illustration,.

Surface profile. The 2nd-order expression for the surface elevation can

be written as

n(s8) = fj; cos 8 + fj, cos S (4.1)
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in which
n, =a (4.2)
s = 1..p (cosh kh)(2 + cosh 2kh) 4.3
ne T wka (sinh kh)3 (4.3)

The reference point S=0 has been chosen in a wave crest. A sketch of

(4.1) is given in figure 4.1.

Figure 4.1,

The profile appears to have crests which are narrower and more peaked
than those of a cosine-profile, and . .ughs which are broader and
flatter. Consequently, the elevation of the wave crests is more than

one half of the waveheight above MWL, the excess being given by Na

(to second order). This is important for the calculation of wave forces
on structures in shallow water, or for the determination of the required
clearance between the deck of a platform above the design MWL (the so-

called "air-gap").

The asymmetry noted above can clearly be observed in real water waves,
The measured profiles appear to be very well predicted by the Stokes
2nd- or 3rd-order theory in case of deep-water waves, but the agreement
gets worse for the more shallow-water conditions. An indication for this
can be obtained from the theory itself, particularly from the ratio of
2nd-order amplitude to 1lst-order amplitude, which should be small for
the Stokes approach to be valid. In deep water, this ratio is (see

eqs. 4.2 and 4.3)

|:S>
[
1}

(ST

~ I _H >
ka 5 (kh>>1) (4.4)

=
-
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which is always small (approximately 0.2 at most), because breaking
limits the possible steepness of the waves. By contrast, in shallow
water said ratio becomes (see eqs. 4.2 and 4.3)

3 HL2 -2 HL?

322 ne 10 h3

2

(kh<<1) (4.5)

= 3

=3 a7 (ke =
. 4

If we require %, < 0.2?]1 then the following inequality must hold:

HL® >~ 59
h3

(4.6)

This.is a very strict requirement on H/L since L>>h in shallow water.
The ratio HL2/h® is often called the Ursell number, denoted by U:

- HLZ2

U Y (4.7)

If U is too large then the Stokes series diverges. One indication
of this is the appearance of a secondary maximum in the wave trough, as

sketched below:

n

/;\ . /‘2\ —s
*—\\\\\_____’,1F\\‘____—”,/' T

This is not observed in waves of permanent form.If it occurs in the
theory (which is the case if ﬁz > ﬁ1/4), it is an indication that the

theory is used outside the limits of its applicability.

Measurements of high waves of permanent form in shallow water show

profiles with long, flat troughs and narrow, peaked crests:

IIIIIIIIIIII/IIIIIIIIIIIIIIIIIlll/l/IIIIIII’lIIIIIIl/IIIIIIIII77

If such profile is to be represented as a sum of harmonic cos-terms
(cos S, cos 2S etc.) then many such terms would be required. This means
that the series would have to be evaluated to very high order,
Therefore, the Stokes series would be impractical for these conditions

anyway, even if it did not diverge.
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Particle velocities. In the nonlinear approximation, the particle

velocities are no longer symmetric about their mean value (which is
zero below the level of the wave troughs, in the reference system
chosen here). The horizontal velocities have an asymmetry which is
qualitatively similar to that of the surface elevation. Thus, the
velocity has greater absolute value under the crest than under the
trough., This can have a significant influence on the calculated wave
forces on piles, particularly in shallow-water conditions. The higher-
order terms in the series for the particle velocities decrease more
rapidly with distance below the surface than the lower-order terms.

Near=-bottom velocities are fairly well predicted by linear theory.

Particle paths. In the linear theory, particle paths were calculated

on the assumption that the differences in velocity of the particle
itself and that in its mean position could be neglected. This led to
a particle path which was symmetric about the vertical axis and about
the horizontal axis. In nonlinear theories, said differences are not
entirely neglected. The result is a particle path which is no longer
symmetric, The upper part is more strongly curved than the lower part,
and - which is more significant - the particle path is no longer
closed, but after one wave period the particle will have experienced

a net forward advance, as sketched below:

Thus, the waves cause a net mass transport (relative to our reference
system. Alternatively, we could have chosen a reference system such
that the net, vertically integrated mass transport would be zero.

In that case, the particles in the lower part of the vertical profile
would have a backward net velocity, and only those in the upper part a
forward net velocity.). To the 2nd order, the time-averaged velocity
of a particle of mean elevation Zo’ for deep-water conditions, is
given by

2kzq

u (z)) = (ka) (wa) e (kh >>1) (4.8)
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In intermediate depths and in shallow water, the Stokes prediction of

the mass transport velocities is not realistic, which is due to the
influence of viscosity. (Note that viscous effects are restricted to a
thin boundary layer only as far as the oscillatory part of the flow is
concerned.) A re-analysis of the mass transport in water waves, including

effects of viscosity, has been given by Longuet-Higgins (1983).

Energy content and energy transfer. In the lowest order of approximation

the energy content (E) and energy transfer rate are proportional to az.
The nonlinear corrections to this consist of terms proportional to a4,
a6, etc. The total energy of waves of a given height turns out to be less
than that predicted by the linear theory. This can be seen without
mathematical calculations for the average potential energy, which is

2 ~Z, 2
equal to 3 PgnN”. The ratio N“/H” decreases as the profile becomes more

spiky.

In deep water, the nonlinear corrections to E and P are significant only
for almost-breaking waves. They are more important in shallow water, but
in that case the Stokes series is not suitable except for very small

relative wave heights, as discussed above,

Dispersion equation and phasevelocity. In the 2nd-order Stokes approxima-

tion, the dispersion equation is the same as in the linear theory. In the
drd-order, a nonlinear correction term appears, proportional to the square
of the wave steepness; its effect is to increase the phase velocity, which
therefore in any depth becomes not only frequency-dependent but also
amplitude-dependent. Although the correction is relatively small (usually
a few % only), it can be significant when differences in phase velocity

are relevant, as is the case in wave groups.

Cnoidal theory

An approach to nonlinear waves in shallow water has been developed by
Boussinesq. The so-called Boussinesq equations describe waves in shallow
water, with some allowance for non-hydrostatic pressure, as would occur
under the crests, where the curvature is relatively strong even if the
wavelength is much larger than the depth. Thus, solutions to the Boussinesg
equations have some long-wave properties and some short-wave propertieé

as well,




The solutions of the Boussinesq equations representing periodic waves

of permanent form are described by means of a mathematical function with

the symbol "cn", for which reason such solutions are called 'cnoidal

waves", and the corresponding theory is called the "cnoidal theory".
Actually, different approaches and different degrees of approximation

have been developed for cnoidal waves, so that we cannot speak of "the"
cnoidal theory. In what follows, we mention some results of the
approximation used by Skovgaard et al. (1974) for the preparation of tables.
(Note: participants in this course are required to have a copy of these

tables.)

Before dealing with specifics, two general remarks are made. First, the
cnoidal theory is by its very nature restricted to shallow-water conditions,
for which the criterion h/Lo < 0.1 (or T (g/h)% > 8) is adopted. Second,

an important parameter in the theory is the Ursell number (U = HLz/hB, see
eq. 4.7). The cnoidal-type of mathematical functions describing the

solution for arbitrary value of U reduce to simpler forms in the two
limiting cases U0 and U +«~ The first of these corresponds to H/h-> 0
(since L/h>>1 in the cnoidal theory). The results in this case reduce

to those of the linear theory for shallow water. The second limiting case
corresponds to L/h->» (since H/h is finite; in fact, it has been assumed

that H/h<< 1). This givesrise to so-called solitary waves.

Surface profile. The shape of the surface profile as predicted by the

cnoidal theory depends on U only (see fig. 1 of Skovgaard et al, 1974),

For U0 it is sinusoidal, as expected (see above). With increasing value

of U, the crests become narrower and more peaked, and the troughs become
longer and flatter. Values of nmin/H have been tabulated as a function of

U, from which the relative crest elevation nmax/H can be determined.Predicted

profiles generally agree fairly well with measured profiles.

Particle velocities. In the lst-order cnoidal theory, the horizontal

particle velocity is roughly proportional to the surface elevation in the
same vertical, and it varies with distance from the bottom as a second-
degree parabola. Reference is made to Skovgaard et al., (1974) for

formulae for u and u , .
max min




- 50 -

Phase velocity. The phase velocity in the cnoidal theory is in order -

1

of - magnitude given by (gh)z, with a slight decrease due to the restricted
value of the ratio of wavelength to waterdepth (a frequency-dependent
effect, as in the linear theory for short waves) and a slight increase

due to the finite amplitude (a nonlinear effect).

Potential energy and energy transfer. The average potential energy per unit

2
area (E , eq. 3.57) is proportional to n . For a sinusoidal profile,

¥ .
n = H /8. For a cnoidal profile, whose shape depends on U, the ratio

BEr?/Hz is a decreasing function of U. It has been tabulated by
Skovgaard et al. (1974).

To the lowest order of approximation, the energy transfer rate in a
cnoidal wave is calculated from (3.63), with P, given simply by the
hydrostatic approximation p+ = pgn, and u by the linear long-wave

expression u = cn/h. This gives

2 2
pgen = B pgH ¢ (4.9)

~ [
P = Lh p, u dz

it

Actually, P, is not hydrostatic, and it is in absolute value less than
pgn at points below MWL. Therefore, (4.9) overestimates the energy

transfer rate. We shall return to this later,

Numerical theories

The theories referred to above yield analytical expressions for the
coefficients appearing in the assumed power series for the various depehdent
variables, to the order of approximation considered. The complexity of these
expressions increases rapidly with increasing order, for which reason
high-order analytical approximations are not feasible. It is however
possible to develop algorithms to evaluate the coefficients numerically.

In this manner, one can go to very high order (e.g. 100) so as to extend

the range of applicability of the theory and to increase the accuracy.
Theories in which this is done are called "numefical theories'., (Note that
this name does not imply a numerical solution of the basic differential

equation, e.g. by finite-difference methods or by finite element methods.)

A well-known numerical theory is the so-called streamfunction theory
developed by Dean (1965). Its use has been made relatively easy by the
preparation and publication of tables (Dean, 1974). These tables have
been made for engineering applications. Among others, they contain data

for phase velocity, particle velocities and accelerations, and wave forces




and moments on vertical cylinders. These quantities have been tabulated
for 10 relative depths (h/L0 in the range from 0.02 to 2) and 4 relative
; 1 1 3 . . : . .
wave heights (H/HmaX =z, 3, 4 and 1, in which Hmax is the maximum height
of a wave of permanent form of given length or period in a given waterdepth,

as discussed in par. 4.5).

Chaplin (1980) has developed an alternative version of the streamfunction
theory which gives greater accuracy for the very steep waves. He compared
his results and those given by Dean (1974) with the virtually exact

theory by Cokelet (see below). Dean's tabulated values were confirmed for
the lower three values of H/Hmax, but for H/Hmax = 1 significant deviations

were found (e.g., 30% error in maximum particle velocity).

A different numerical theory has been given by Cokelet (1977), who used
recurrence relations between coefficients of different order so as to extend
the solution to very high order. In addition, Cokelet used certain
mathematical techniques to improve the summation of the resulting series,
In so doing he was able to calculate various wave properties to an accuracy
of several decimal places, even for the highest possible waves, as was
verified by comparison with independently developed theories for this
special case, It appears that from a practical point of view, Cokelet's
work can be regarded as giving a virtually exact solution to the classical
problem of periodic, nonlinear, irrotational surface gravity waves of
permanenf form. If nothing else, his results can be used as a standard

of comparison for various more approximate theories. Cokelet has presented
tables of certain phase—indepehdent and average wave properties, but not

of instantaneous values such as particle velocities and accelerations, so
that use of his theory in engineering applicdtions will generally require

that a (fairly complex) computer program be written,

Regions of wvalidity

Before taking up the question of the validity of the various nonlinear
theories, the region in which periodic waves of permanent form can exist

is discussed.

With increasing wave steepness (H/L), the rat104umax/c increases, where
umax is the particle velocity at the wave crest. It can reach the value 1,
which is generally taken to be the limiting condition for waves of

permanent form. The crests become angular in this limit, with an angle of
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120°, The corresponding limiting steepness is a function of the relative
depth (h/L). The following approximate expression for this relationship

has been derived by Miche (1944):

H 2mh

- =20, 4,10

(L)max 0.14 tanh L ( )
In deep water this reduces to

H o

) £0.14 (kh >*1) (4.11)

L max

In this limiting case, the wavelength L is about 10% larger than it is in
2

the linear approximation (gT /(2T).

In shallow water, (4.10) reduces to

H
= = 0, << : .12
(h)max 0.89 (kh<<1) (4.12)

The region in the (h/L, H/L)-plane corresponding to values of H/L not
exceeding (H/L)max is the region in which waves of permanent form are
possible. Attempts have been made in the past to delineate certain sub-
regions in which certain approximate solutions would be most valid.

The following points are noted in this respect:

. FProm an academic point of view, a delineation of regions of validity
of approximations is hardly relevant after Cokelet presented a virtualiy
exact solution.

. There is no unique answer to the question which approximation, of any
given set of approximations considered, is most nearly valid for a
given combination of H/L and h/L. The answer depends on the parameters
used in the comparison (phase velocity, maximum crest elevation, etc.).

. From a practical point of view, the decision to use one or another
approximation depends not only on the accuracy which can be achieved,
but also on the accuracy which is needed, and the effort which can be
made. In this connection, it is noted that there is little point in
aiming at an accuracy of a few %, if the input conditions can be in

error by 10% or 20%.

It is clear from the above that there is no such thing as '"the best"

theory or approximation for a given (H/L, h/L). Therefore, at most a few

general guidelines can be given:

. If only theories are considered with published tables, then tﬁe choice
is virtually restricted to the linear theory, the Stokes 3rd-order

approximation, the cnoidal lst-order approximation, and Dean's stream




function theory (the latter only for H/Hmax > 1.

. Of these, Dean's theory is most widely applicable.

. A higher-order approximation is not necessarily better than a lower-
order one, because the series used may be divergent. For instance,
for large values of the Ursell number, the lst-order Stokes theory
(linear theory) gives a better approximation of particle velocities
than does the 2nd-order or 3rd-order Stokes approximation, The same is
true for cnoidal theories,
Nonlinearities are relatively more important for local values (e.g. crest
elevation, maximum particle velocities) than for overall properties
(phase velocity, average energy content, etc.).

. The relative magnitude of nonlinear terms decreases with increasing

distance below the free surface,
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CHAPTER 26

SURF SIMILARITY

J.A, Battjes

Civil Engineering Department
Delft University of Technology
Netherlands

ABSTRACT

This paper deals with the following aspects of periodic water waves breaking
on a plane slope: breaking criterion, breaker type, phase difference across

the surfzone, breaker height-to-depth ratio, run-up and set-up, and reflection.
It is shown that these are approximately governed by a single similarity para-
meter only, embodying both the effects of slope angle and incident wave steep-
ness, Various physical interpretations of this similarity parameter are given,
while its role is discussed in general terms from the viewpoint of model-

prototype similarity.
FLOW PARAMETERS

Consider a rigid, plane, impermeable slope extending to deep water or to
water of constant depth from which periodic, long-crested waves are approaching.
The wave crests are assumed to be parallel to the depth contours.

The motion will be assumed to be determined wholly by the slope angle a,
the still water depthd and the incident wave height H at the toe of the slope,
the wave period T, the acceleration of gravity g, the viscosity u and the mass
density p of the water; g, v and p are assumed to be constants. Effects ot surfac
tension and compressibility are ignored.

Let X be any dimensionless dependent variable, then

H
X:f(u,r,
0 0

r]a

. Re) (1)

in which Re is a typical Reynolds number, and

2
: T
LO :%r— » (2)

SURF SIMILARITY

i.e. the desp-water wavelengih of small-amplitude sinusoidal, longcrested
gravity surface waves with period T. The ratlo H/L, Is 4 wave steepness,
if we define this parameter in a generalized sense as the ratio of a wave
height to 4 wave length,

Variations in the flow regime are brought about mainly by variations of
a and H/LO, for the Reynolds number is usually larger than some minimum value
above which variations in its actual value do not significantly affect the
resultant motlon, while for waves breaking on the slope, the value of the
relative depth in front of the slope is not important either; this is well
established for the relative run-up [7] end the reflection coefficient [14],
for instance. So, in summary one can say that for waves breaking on the slope

(1) reduces to

X ¢ f(e, ‘;—5) . (3)

while it will be shown in the following that for many overall-properties
of the breaking waves (3) reduces further to

X £E) ()

in which § is a similarity parameter, defined by
- tan a (5)
(H/LO)

To the author's knowledge, this parameter was first used by Iribarren and
Nogales {8}, for determining whether wave breaking would occur, its more
general usefulness in the context of surf problems was suggested by Bowen

et al [3].
FLOW CHARACTERISTTICS DETERMINLD BY THE SIMILARITY PARAMETER £

Breaking criterion

Iribarren and Nogeles [8] have given an expression for the condition &t which
the transjtion occurs between non-breaking and breaking of waves approaching
a slope which is plane iuv the neiglbourhood of the still-weter line. They use

the shallow-water trochoidal theory for uniform, progressive waves. According

467
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to this theory, progressive waves are at the limit of stability if thelr
amplitude (}H) equals the mean depth (d). Thus, denoting the condition of
incipient breaking by the index "c",

B = 4 (6)
The depth dc at which this would occur is equated by Iribarren and Nogales
to the mean undisturbed depth in the one-quarter wavelength adjacent to the
still-water line, or

21
e 7 2 (

£l

L tana ) *+L tana . (7)
c c 8 ¢ c
The wavelength Lc is calculated as Tc ngc, so that
cle
dc =3 TC gdc tan . (8)
Elimination of dC between (6) and (8) gives

(TYg/H tan u)C = w2 (9)

or, substituting (2) and rearraunging,

y
= ) e
¢ eyt A

v 2.3 . (10)

Laboratory experiments by Iribarren and Nogales and others [8, 13] have
coufirmed the validity of (10}, with the proviso that § ) 2.3 corresponds to
a regime about halfway between complete reflection and complete breaking.
This quantitative agreement is considered to be fortuitous because one can
raise valid objections against the derivations on §everal scores. These pertain
to the numerical estimates used by Iribarren and Nogales, rather than to the
approach as such, For instance, the limiting height for waves in shallow water
is given by (6) as twice the depth, which is unrealistic. A height-to-depth
ratio of order one seems more reasonable. The author has elsewhere [1] suggested
more realistic values for the various numerical facteors 1n (6), (7) and (8),
which howaver happened to yield exactly the criterion (9) again. Eveun so, the

fact that (8) is correct not only qualitatively but also gquantitatively is still
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consldered to be somewhat fortuitous, because derivatlons such as these can be
useful tor indlcating the form in which the respective varidbles are to be
combined, but they cannot in general be expected to give correct quantitative
predlictions.

The derivation given by Irlbarren and Nogales suggests 4 physical inter-—
pretation of the parameter &, at least 1f wave breaking occurs (£ < Ec). Consgider
the local steepness of the breaking waves, Their celerity is proportional to
(gd)i, their wavelength to T(gd)i, and their steepness tao H/(T(gd)}*), or to
(H/gTQ)%, since H/d is of order ovne for waves breaking in shallow water, Thus,
the parameter £, given by

tan a 1 tan a

[ s = 5 (11)
/L, Von Ni7gT

is roughly proportional to the ratio of the tangent of the slope angle (the
slope "steepuess'") to the local steepness of the breaking wave, The criterion
for breaking given by Iribarren and Nogales can therefore be said to imply

that incipient breaking corresponds to a critical value of this ratio.

So far the parameter £ has been considered only in the context of a breaking
criterion, that 1s, as an aid in answering the question whether wave breaking
will occur. However, it also gives an indication of how the waves break. The
main types are surging, collapsing, plunging and spilling breakers [8, 15, 4].
These occur in the order of increasing wave steepness and/or decreasing slope
angle, The transition from one breaker type to another is of course gradual. The
values of a and H/L_  menticned in what follows should be cunsidered as indicating
the order of maguitude only of the values iu the transition ranges.

Galviu (4] has presented criteria regarding breaker types in terms ot an
"offshore parameter” HO/(LU tanQu), in which H, is a deep-watler wave hLeight
calculated from the motion of the generator bulkhead and the water depth, and
aun “inshore parameter” Hb/(gT2 tan w. The index "bL" reters to values at the
break point, which is tdken to be the most seaward location where some point
of the wave front is vertical, or, it this does not occur,y the location where
foam first appears 4t the crest,

-2
Galvin's cotfshore parameter cet be written as go , in which the index "O"
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refers to deep water (wave height). Converting the critical values of the

offshore parameter given by Galvin to values of £, gives

surgipg or collapsing if £g ? 3,3
plunging if 0.5¢ g, < 3.3
spilling if EO < 0.5

These results are based on experiments on slopes of 1:5, 1:10 and 1:20.

The inshore parameter used by Galvin, Hb/(gT2 tan o), is not equivalent
to the parameter g used here. However, a re-analysis of Galvin's data in
terms of £ = (Hb/Lo)-i tan ¢ showed that the classification of breakers as
plunging or spilling could be performed equally well with £, as with Galvin's

inshore parameter {1}, The following approximate transition values were found:

surging or collapsing if €y > 2.0
plunging if 0.4 < gy < 2,0
spilling if Eb < 0.4

The possibility of using a parameter equivalent to g as a breaker type
discriminator has also been noted by Galvin in a more recent review of breaker

characteristics [S].

Phase difference across the surfzone

Not only the form of a breaking wave varies with £, but the distance of the
break point from the mean water line as well, This distance, expressed in wave-
lengths, is estimated at roughly (db cot a)/(3T /EE;) ~ 0.8 5;1 , where we have
put Hb X db' Observations by the author on slopes between 1:3 and 1:25, with
E-values from 0.15 to 1,9, have indicated that his estimate {s qualitatively
correct, but that it is roughly 20% too high. With spilling breakers there are
at least two breaking or broken waves in the surf zone simultanecusly. This
number ranges from zero to two for plunging breakers. Collapsing breakers occur
almost at the instantaneous water's edge, so that there is at most one of these
present at any one time. Reference should be made in this connection to Kemp {10],
who points out that the total phase difference across the surf zone is indic-

ative of the type of wave motion, and of the corresponding equilibrium profile
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of sand or shingle beaches,

Breaker height-to-~depth ratio

The ratio of wave height to‘water depth at breaking is an important

parameter of the surf zone; 1t is here denoted by the symbol Yt

H
v, = b
b * T

db

(12)
The depth db is here defined as the still-water depth at the break point.

Values of Yy generally range between 0.7 and 1.2, Bowen et al [3) suggest
that Yp M3y be a function of £, only. The data presented by them are given in
fig. 1. In addition, data have been plotted from Iversen [9], from Goda (6],
and from unpublished results obtained by the present author.

It can be observed that the results from Bowen et al [3] form a separate group,
outside the range of the others. The reason for this is not known. The other
points in fig. 1 show a weak trend with EO' For values of £g less than about
0.2, in the range of spilling breakers, they are scattered about a value of

Yy A 0.8, while there is a slow increase with EO for higher values.

The scatter in the results may partly be due to the fact that for this
purpose the independent variables H/Lg and a cannot adequately be combined in
the single parameter £, However, even the values of Yy presented by various
authors for the same values of a and H/L0 show considerable scatter. This is
undoubtedly to some extent due to the difficulties and ambiguities inherent
in defining (experimentally) and measuring breaker characteristics. Another
factor contributing to the scatter may be the occurrence of parasitic higher-
harmonic free waves which are often inadvertently generated along with the
intended wave train. The secondary waves affect the breaking process in a manner
depending on the phase difference with the primary wave, which in turn depends
(among others) on the distance from the wave generator, This distance is not
commonly introduced as an independent variable, so that any effects which it

may have on the results can appear as unexplained scatter.

-Set-up, Tun~-up and run-down

The set-up is defined as the wave-induced heighit of the mean level of

the water surfdce above the undisturbed water level. Theoretical and experimental
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results [11, 3] indicate that the gradient of the set-up in the surf zone on
gently sloping beaches is proportional to the beach slope; the coefficlent of
proportionality is a function of y, the average height-depth ratio of the waves
in the surf zone. The maximum set-up s roughly equal to 0,3 ¥ Hb'

The run-up height R is defined as the maximum elevation of the waterline
above the undisturbed water level, A simple and reliable empirical formula for
the run-up height of waves breaking on a smooth slope has been given by Hunt
[7]. It can be written as

R
EE = £ for 0.1 < £ < 2,3 (13)

An investigation by Battjes and Roos [2] of some details of the run-up of
breaking waves on dike slopes (1:3, 1:5, 1:7), such as the mean velocity of
advance, particle velocities, layer thickness and so on, has shown that many
of these parameters are functions of £ only if normalized in terms of the
incident wave characteristics.

Measurements of the run-down height Rd (minimum elevation of the waterline
above the undisturbed water level) are very scarce, and, if available, not very
accurate since run-down is rather ill-defined experimentally. An analysis of
the measurements by Battjes and Roos [2], supplemented with unpublished data
gathered for this study, has indicated that in the experimental range
(cot a = 3,5,7,105 0.02 < H/Ly < 0.09; 0.3 < £ < 1.9) the run-down height Rd
is roughly equal to (1 - 0.4 E)Ru. In other words, the ratic of the variable
part of the vertical motion of the waterline (Ru - Rd) to the maximum elevation
above S.W.L. is approximately 0.4 £, It has a maximum value of about 1 for waves
in the transition from non—breakiﬁg to breaking, and decreases with decreasing

£. For very small £ the set-up constitutes the greater part of the run-up height.

Reflection and absorption

The relative amount of wave energy that can be reflected off a slope is
intimately dependent on the breaking processes and the attendant energy dissi-
pation. Because of this, and in view of the fact that these processes appear
te be governed to such a large extent by the parameter §, it is natural to try
1o relate the reflection coefficient to &,

The reflection coetficient r is defined as the ratio of the amplitude of

the reflected wave to the amplitude of the incident wave. The estimation of r
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on a slope generally takes place according to a procedure given by Miche [13]
who assumes that the reflected wave height equals the maxImum height possible
for a non-breaking wave of the given period on the given slope; in other words,
only the energy corresponding to the height in excess of the critical height
is assumed to be dissipated. This gives
) (HO/LO)c

<h © —ﬁ;7ig— if this is less than 1

(1y)

=1 otherwise,

in which (HO/LO)c is the critical steepness for the onset of breaking, for
which Miche uses an expression derived previously by him [12]. The index "th"
refers to "theoretical"”, The actual reflection coefficient will be smaller than
T due to effects of viscosity, roughness, and permeability. Miche recommends
a multiplication factor of 0.8 for smooth slopes.

Miche's assumption regarding the reflection coefficient can be expressed
in terms of £ and Iribarren and Nogales' breaking criterion, Substitution of
(5) into (14) gives

2
Ty T (E/Eé) if this is less than 1

(15)
=1 otherwise,

in which Eé is the critical value of § for the onset of breaking, as
distinguished from £.» the value given by Iribarren and Nogales for the con-
dition halfway between the onset of breaking and complete breaking (Ec ~ 2.3),
for which the reflection coefficient is about 0.5 [7, 81. So (15) becomes

2
ry0.lg if this is less than 1

(16)
=1 otherwise

An extensive series of measurements of the reflection coefficient of plane
slopes has recently been presented by Moraes [14], His results for slopes with

tan @ = 0.10, 0.15, 0.20 and 0.30 have been replotted in terms of r vs € in fig. 2.
The experimental points for the four slopes more or less coincide with each other

end with the curve representing eq. (16) for £ < 2.5, i,e. as long as the waves

break. For € < 2,5 they diverge, gentler slopes giving less reflection than

steeper slopes (at the same value of £).
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GENERAL COMMENTS REGARDING THE PARAMETER £

In the preceding paragraphs examples have been given of a number of
characteristic surf parameters for the determination of which it Is not
necessary to specify both a and H/LO, but only the combination tan u/(H/LO)i.

It may be useful to summarize them here: a breaking criterion, the breaker
type, the breaker height-to-depth ratio, the number of waves in the surf zane,
the reflection coefficient (therefore also the diserimination between progres-
sive waves and standing waves), and the relative importance of set-up and
run-up. They have been collected in Table 1. Characteristic values of  are
given in the upper row of the table, Each of the following rows indicates how
one of the parameters just mentioned varies with E.

The recognition of the possibility that several properties can roughly
be expressed as functions of § alone contributes to a more unified understanding
of the phenomena involved, Such understanding would be deepened by further in-
sight in the nature of the parameter £ itself, One interpretation has already
been mentioned in the preceding, when it was observed that { is approximately
proportional to the ratio of the tangent of the slope angle to the shallow-water
wave steepness. Also,i_l had been seen to be approximately proportional to the
number of wavelengths within the surf zone, This is In essence equivalent to
saying that £ is approximately proportional to the relative depth change across
one wavelength in the surf zone. This interpretation is obviously relevant to
the dynamics of the breaking waves, particularly with regard to their rate of
deformation. It makes it plausible that £ is of importance, but it does not
prove that £ serves as the sole determining factor for the (suitably normalized)
parameters of the surf. Indeed, there are valid arguments which throw doubt on
this possibility of full similarity. In this regard it is usetul to consider two
situations of different slope angle and wave steepness as a prototype and a
distorted scale model thereof. It is well known that Froudian model-prototype
similarity can be obtained even in distorted models, provided the assumption of
hydrostatic pressure distribution is valid both in the prototype and in the model,
Pertinent scale ratios (1) are given in Table 2, expressed in terms of the
horizontal and vertical geometrical scales and the scale of the gravitational

acceleration (unity).
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Variable Symbol Scale ratio
horizontal length L xl
depth - d Ad
gravity acceleration g Xg =1
b 1 tan \ =t
ottom slope a tan o = At
wave height H AH = Ad
wave length L AL R Ay
. 3 .

wave celerity cx(gd) Ao =2

; = N
wave period T = L/c AT = klkd

Table 2 - Scale ratios for a distorted long-wave model,

Since § is defined as

™
1t
—_
i
N
-
[
ot
[
=1
”

ST . (17)
its scale ratio is
P
AE = AT AH Atan a? (18)
which becomes, using the values given in Tabel 2,
- -3, -1 .
g T OO0 =1 (19)

In other words, a distorted long-wave model which is dynamically similar

to its prototype necessarily has the same £ as this prototype. Conversely,

a distorted wave-madel with the same value of ¢ as its prototype is similar
to this prototype if the pressure distribution in both is hydrostatic, This
is not the case in breaking waves in shallow water, where some effects of the
vertical accelerations must be taken into account due to the fact that the

surface curvature {s locally strong. Thus, the exlstence of similarity of the
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surf in distorted models I8 not proved, and must be doubted to the extent
that deviations from the long~wave approximations have a significant effect,
Such effects are certain-to be of importance for the details of the local
flow patterns, but this is not necessarily the case for overall properties of
the surf. The final check on this‘musc of course be obtained empirically,

In this regard it appears justified to draw the conclusion from the data
presented above that the factor £ is a good indicator of many overall proper-
ties of the surf zone, and may indeed be called a similarity parameter. The
importance of this parameter for so many aspects of waves breaking on slopes
appears to justify that it be given a special name. In the author's opinion
it is appropriate to call it the "Iribarren number" (denoted by "Ir"), in
honor of the man who introduced it and who has made many other valuable

contributions to our knowledge of water waves.
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Figure 1 - Height-depth ratio at breakpoint vs. the similarity parameter.
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Figure 2 - Reflection coetficient vs, the similarity parameter,



