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Abstract
For the Multi-Agent Pathfinding (MAPF) problem,
a set of non-colliding paths must be found for
multiple agents. In Multi-Agent Pathfinding with
Matching (MAPFM), this problem is extended:
agents and goals are added to a team and each agent
has to navigate to a goal that belongs to the same
team. In this paper, two extensions of the EPEA*
MAPF solver will be discussed that enable it to
solve MAPFM problems. The first extension mod-
ifies the EPEA* algorithm to directly allow it to
solve MAPFM problem instances. The second ex-
tension generates all possible goal assignments for
each agent and runs EPEA* on these assignments.
This last extension is shown to have a superior per-
formance in most cases. The second extension is
also compared to extensions of other MAPF algo-
rithms.

1 Introduction
The Multi-Agent Pathfinding (MAPF) problem is the prob-
lem of planning paths for multiple entities without the enti-
ties colliding with each other. There are multiple real-world
applications for this problem, such as robot routing in ware-
houses or docks [1] and train routing on shunting yards [2].

In MAPF, the moving entities such as trains or robots are
called agents. Each agent has a starting location and a goal
location. A solution to a MAPF problem is a combination
of non-conflicting paths from start to goal locations. Solu-
tions are optimal if the sum of path lengths for all agents,
also called the Sum of Costs (SoC), is minimized [3]. Find-
ing a solution to the MAPF problem with a minimal SoC is
NP-hard [4].

Various algorithms have been proposed for solving the
MAPF problem. Current state-of-the-art algorithms are
Conflict-Based Search (CBS) [5] and Branch-and-Cut-and-
Price (BCP) [6]. Other algorithms include ICTS [7], M* [8]
A*+OD+ID [9] and EPEA* [10, 11].

An extension of the MAPF problem is the Multi-Agent
Pathfinding with Matching (MAPFM) problem, where each
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agent and each goal is assigned to a team. Each agent can
travel to each goal belonging to the same team. In this paper,
EPEA* will be used as a base algorithm for solving MAPFM
problem instances, because it is a relatively fast algorithm that
uses a very small amount of memory and can easily be ex-
tended upon.

There is a substantial number of real-world applications
for MAPFM. A classic example of this is a warehouse where
multiple robots are able to perform the same tasks. Simi-
larly, when a train has to depart from a shunting yard, the
precise train instance does not matter but the train type gen-
erally does.

To date, there are no existing EPEA*-based algorithms that
support matching. Ma et. al [12, 13] have researched extend-
ing the Conflict-Based Search (CBS) algorithm with match-
ing by developing an algorithm called Conflict-Based Min-
cost-flow (CBM). In this research, the problem is reduced to
a multi-commodity flow problem. However, there is no evi-
dent way to combine a reduction to a multi-commodity flow
problem with an A*-based algorithm such as EPEA*. In ad-
dition, CBM minimizes the makespan instead of the SoC, so
the CBM algorithm is not directly applicable to the MAPFM
problem.

The objective of this research is to find a way to extend
EPEA* to acquire an algorithm that finds optimal solutions to
the MAPFM problem. This is accomplished by introducing
two new extensions, called heuristic matching and exhaustive
matching, and comparing them with each other.

This paper will first give a formal definition of the MAPFM
problem, followed by a description of EPEA*. Then, an
overview of the EPEA* algorithm will be given, followed by
a description of the heuristic matching and exhaustive match-
ing extensions. After that, the extensions are compared with
each other and with MAPFM solvers based on other MAPF
algorithms in terms of runtime performance and memory us-
age.

2 Multi-Agent Pathfinding with Matching
Because Multi-Agent Pathfinding with Matching (MAPFM)
is an extension of the standard MAPF problem, the defini-
tion and terminology of MAPF will first be introduced. This
definition will then be extended to MAPFM.
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2.1 The MAPF Problem
Input
To model the input of a MAPF problem with k agents, the
following terminology is used [3]:

• G is an undirected graph. The EPEA* implementation
uses a 4-connected grid which eases the generation of
problem instances and the comparison and testing of the
algorithms.

• s is a list of length k where si is the starting location for
agent ai.

• g is a list of length k where gi is the goal location for
agent ai.

Solution
A solution to the MAPF problem is a set of paths πi, where
each path corresponds to an agent ai. A path is a list of ver-
tices that defines the location of each agent at every time step.
It has the following properties:

• The first vertex πi[0] = si

• The last vertex πi[|πi|] = gi

The agents stay at their goal after their path is completed, so
other agents can still collide with them. This is called stay-at-
target [3].

Constraints
Several constraints could be considered when finding paths
for all agents [3]. In this research, only two constraints will
be considered:

• Vertex conflict - A vertex conflict occurs when two
agents are at the same vertex at the same time t, that
is πi[t] = πj [t] ∧ i 6= j.

• Edge conflict - An edge conflict occurs when two agents
travel along the same edge at the same time step t. In a 4-
connected grid this corresponds to swapping the agents,
that is πi[t] = πj [t+ 1] ∧ πi[t+ 1] = πj [t] ∧ i 6= j.

Objectives
A MAPF problem can have different objective functions [3]:

• Makespan - A MAPF algorithm with minimal
makespan as an objective minimizes the length of the
longest path, maxi |πi|.

• Sum of Costs (SoC) - A MAPF algorithm with mini-
mizing the sum of costs as objective tries to minimize
the total path length,

∑
i |πi|.

In this research, the SoC is minimized because it is the
most common objective function in search-based MAPF al-
gorithms [3].

2.2 The MAPFM Problem
The Multi-Agent Pathfinding with Matching (MAPFM) ex-
tends the MAPF problem by introducing teams of agents.
Starting locations in s and goal locations in g no longer cor-
respond to a specific agent, but rather to a team. There are K
teams. Each team j has:

• kj starting locations sji for i = 1..kj .

• kj goal locations gji for i = 1..kj

The number of starting locations kj is equal to the number of
goal locations for each team.

In the solution, an agent with starting position sxi can
travel to any goal gyj as long as x = y, meaning that they are
in the same team.

3 EPEA*
This section gives an overview of the existing A*, PEA* and
EPEA* algorithms that serve as a foundation of the MAPFM
extensions described in Section 4.

3.1 A*
A* is a heuristic-based search algorithm that is commonly
used for the single-pair shortest path problem1. An effective
heuristic for MAPF A* is the Sum of Costs (SoC) heuristic.
It is defined as the sum of all individual agent heuristics:

h(n) =

k∑
i=1

h′(ai) (1)

where h(n) is the heuristic of an A* node n and h′(ai) is
the individual agent heuristic for agent ai. The individual
agent heuristic is the single-pair shortest path distance from
the agent to the goal. This distance is needed for every agent
every time a node is expanded. Since agents can have the
same position in different nodes, the same distance is often
calculated multiple times. Therefore, the single-pair shortest
path distance is precomputed for every agent. An effective
way of precomputing this is to start a breadth-first search at
the goal location and running the search until it has found a
distance for all traversable locations in the grid.
An A* node contains:

• The state of the grid, that is the positions of the agents

• The heuristic h(n)

• The cost of reaching the node c(n)

• A reference to the parent of the node. This is necessary
for retrieving the set of paths once the optimal solution
has been found.

The A* nodes are ordered in increasing order by f(n) =
c(n) + h(n), that is the sum of cost and heuristic. The node
with the lowest f(n) is expanded first.

3.2 Partial Expansion A*
Partial Expansion A* (PEA*) reduces the space complexity
of A* by collapsing the nodes in the frontier [14]. In addi-
tion to the properties mentioned in Section 3.1, a PEA* node
also stores the value f(n). Initially, f(n) = c(n) + h(n), as
described before.

When a child node n′ is generated, only the nodes with
f(n′) = f(n) are added to the frontier and the other nodes
are discarded. The algorithm keeps track of the lowest f(n′)
of the discarded children and increases the parent node value

1The single-pair shortest path problem is the problem of finding
the shortest path from a single source to a single goal location



Moves ∆f(n)
NORTH, EAST 0

WAIT 1
SOUTH, WEST 2

Figure 1: An example of a PDB-table

f(n) to f(n′). The parent is reinserted into the frontier if
at least one child was discarded, which causes it to act as a
placeholder for the discarded child nodes. This prevents the
child nodes from taking up space in the frontier.

3.3 Enhanced Partial Expansion A*
A big flaw in PEA* is that it takes a significant amount of
time to generate the child nodes and to check for conflict-
ing moves. Because numerous child nodes are immediately
discarded, PEA* often has to do this multiple times for the
same node. Enhanced Partial Expansion A* (EPEA*) solves
this problem by using an Operator Selection Function (OSF)
to determine which operators (agent moves) will produce a
node with the desired f(n) before the node is generated [10,
11, 15].

Before the main search starts, a Pattern Database (PDB) is
constructed. This pattern database contains a table for each
agent for each possible location in the grid. For that loca-
tion, the heuristic values for all possible agent moves are re-
trieved from the stored heuristic data. The change in node
value ∆f(n) = ∆h(n) + 1 is stored for each direction. The
results are then sorted on increasing ∆f(n) and the directions
are grouped by ∆f(n)-values. An example of such a table
can be found in Figure 1. During the A* search, the OSF is
used to select a direction from the PDB for each agent such
that ∑

∆f(n′) = f(n)− c(n)− h(n) (2)

In other words, it finds the combination of moves that will
result in the desired ∆f(n′) value [11].

3.4 Independence Detection
Independence Detection (ID) [9] can be used as an extension
of EPEA*. ID starts by planning a path for each agent in-
dividually, without considering collisions with other agents.
When two individual paths are in conflict with each other, the
paths are discarded, the corresponding agents are grouped and
ID runs EPEA* on the agents in the group. When two groups
have conflicting paths, all paths that belong to the groups are
discarded, the groups are merged and ID runs EPEA* on the
new group to find a set of non-conflicting paths.

The effectiveness of ID is dependent on the problem in-
stance on which it is run. ID will improve the runtime only if
it is able to prevent having to plan all agents together.

4 EPEA* with Matching
In this section, the MAPFM extensions to EPEA* are dis-
cussed. First, an approach called heuristic matching is in-
troduced, followed by an exhaustive matching approach to-
gether with several optimizations for the exhaustive matching
approach.

4.1 Heuristic matching
One way of solving the MAPFM problem using EPEA* is
to adapt EPEA* to also take MAPFM problem instances as
input. This can be achieved by modifying the heuristic func-
tion.

Instead of using the distance to a single goal as an agent
heuristic, the distance from the agent to the closest goal of
the same team is used. The resulting agent heuristics are then
added together to produce the SoC heuristic value. For the
results to be optimal, the modified SoC heuristic has to be ad-
missible, which means that it should never overestimate the
distance to the goal. The agent heuristic never overestimates,
since it always gives the distance to the closest goal. The
SoC heuristic gives the cost of the optimal solution if col-
lisions would be allowed. Since collisions cannot decrease
the path length, this cost is a lower bound and it can never
overestimate, thus making it admissible. When an admissible
heuristic is used, A* generates optimal solutions [16].

In heuristic matching, the heuristic function is the same
for agents of the same team. Therefore, only one heuristic
function has to be computed for every team. An effective way
of doing this is by using a breadth-first search of the entire
grid, as can be seen in Algorithm 1. The breadth-first search
is modified to start with every goal of the team as a starting
location (Algorithm 1 line 5-7).

Algorithm 1 Team heuristic calculation

1: function PRECOMPUTE HEURISTIC(goals)
2: grid← 2d grid with all values set to∞
3: let Q be a queue
4: let explored be an empty set of locations
5: for all goal ∈ goals do
6: enqueue (goal, 0) into Q
7: end for
8: repeat
9: (loc, distance)← first element in Q

10: update location loc in grid with distance
11: add loc to explored
12: for all neighbour ∈ neighbours of loc do
13: if neighbour /∈ explored then
14: enqueue (neighbour, distance+ 1)
15: end if
16: end for
17: until Q = ∅
18: end function

4.2 Exhaustive matching
A different way of solving the MAPFM problem using
EPEA* is to split the MAPFM problem into multiple MAPF
problems. The key idea is to find every possible assignment
of goals to agents and to solve each assignment using EPEA*.
As a result, EPEA* needs to run M times:

M =

K∏
j=1

kj ! (3)

This can be made more efficient by pruning the A* search.
Since A* and EPEA* always expand the most promising



Algorithm 2 Exhaustive matching

1: function EXHAUSTIVE MATCHING(grid, starts, goals)
2: Calculate heuristic function h for every goal using

grid, goals
3: Calculate OSF for all goals using h
4: goal assignments ← all possible goal assignments

with their initial heuristic
5: Sort goal assignments on ascending initial heuris-

tic
6: best cost←∞
7: Initialize best solution
8: for all goal assignment ∈ goal assignments do
9: h← initial heuristic of goal assignment

10: if h ≥ best cost then
11: return best solution
12: end if
13: Run EPEA* on goal assignment
14: s← solution
15: c← cost
16: if c < best cost then
17: best cost← c
18: best solution← s
19: end if
20: end for
21: return best solution
22: end function

nodes first and the heuristic never overestimates, it will never
find a solution with a lower cost than the heuristic of the node
it is expanding. The exhaustive matching solver keeps track
of the cost of the best solution found so far. When the f(n)
value of the node being evaluated in the EPEA* algorithm
exceeds the cost of the best known solution, it is guaranteed
that the best solution of the goal assignment has a higher cost
than the best known solution of already evaluated goal as-
signments. Therefore, the EPEA* search is terminated and
the exhaustive matching continues with the next goal assign-
ment.

4.3 Exhaustive matching with sorting
When the optimal solution corresponds to the first goal as-
signment that is evaluated, the EPEA* search can be pruned
much more effectively than when it is the last goal assign-
ment that is evaluated. It is not possible to know beforehand
which goal assignment corresponds to the optimal solution.
However, it is possible to start with the most promising goal
assignments. How promising a goal assignment is, is deter-
mined by the initial SoC heuristic, which is defined as the
sum of distances for each agent towards their goal without
considering collisions.

Each goal assignment is stored together with the corre-
sponding initial heuristic (Algorithm 2 line 4). These assign-
ments are then sorted on the initial heuristic value and evalu-
ated one by one (line 5). Once the initial heuristic value ex-
ceeds the cost of the best known solution, the solution of the
remaining goal assignments will not improve the best known
solution, so this solution is guaranteed to be optimal (line 11).

Optimization I
A problem with exhaustive matching with sorting is the calcu-
lation of the initial heuristic. To calculate the initial heuristic
for a goal assignment, a single-pair shortest path needs to be
found for every agent. Calculating this can take a long time
which is unnecessary since the heuristic function is precom-
puted once the matching will be solved.

This problem is solved by immediately precomputing the
heuristic function when the matching is generated instead
of when the matching is evaluated. However, this solution
causes a new problem. Because of the factorial growth of goal
assignments with team size, there is an insufficient amount of
memory to store all precomputed heuristic functions.

In an initial attempt to repair this problem, a priority queue
was introduced for the goal assignments. This allows the
algorithm to only sort a predetermined number of goal as-
signments, thus limiting the number of precomputed heuris-
tic functions that have to be stored at once. However, it also
decreases the runtime performance of the algorithm.

Optimization II
In a second attempt to repair the problem of the factorial
memory requirements, the need to store different precom-
puted heuristic functions was removed altogether. This was
accomplished by introducing a single precomputed heuristic
function that can be used for all goal assignments.

First, a new set of goals has to be obtained with each goal
assigned to a unique team, similar to a standard MAPF prob-
lem. The heuristic function can then be precomputed using a
breadth-first search from each goal, similar to the algorithm
described in Algorithm 1. The initial heuristic value for a
goal assignment can be calculated by performing a lookup in
the heuristic function for each goal, with the position of the
agent that is assigned to the goal.

When evaluating a goal assignment, each agent is inserted
into a team with only the assigned goal of the agent, which
gives the EPEA* solver the information of which goal to use
when retrieving the heuristic from the heuristic function.

Next to solving the problem of the large number of stored
precomputed heuristic functions, the single heuristic function
also improves the standard exhaustive matching algorithm.
Instead of precomputing a heuristic function for every goal
assignment, the heuristic function only has to be precomputed
once, thus removing the computational overhead caused by
calculating the heuristic multiple times.

Since the PDB for the OSF is also precomputed multiple
times, the algorithm was modified to also share the PDB be-
tween goal assignments. This does not save memory, because
only one PDB is stored at any time. However, sharing the
PDB does save the computation of constructing a PDB for
each goal assignment.

4.4 Exhaustive matching with sorting and ID
The addition of Independence Detection (ID) to exhaustive
matching is an optimization that aims to reduce the number
of matchings that have to be evaluated. This addition is de-
scribed in detail by [17], but this section will give a short
overview.

The idea is similar to the idea described in Section 3.4, but
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Figure 2: Comparison of different EPEA*-based MAPFM algorithms on maze maps and obstacle maps

Figure 3: A maze map (left) and an obstacle map (right)

it is now applied on teams of agents. First, the top-level ID
runs the exhaustive matching algorithm on every team. If the
resulting paths are conflicting, the teams are inserted into a
group and the exhaustive matching algorithm is executed on
the group to find a set of non-conflicting paths. This process
is repeated until a set of non-conflicting paths has been found.
When teams can be planned independently, the ID will reduce
the number of goal assignments that have to be evaluated.

5 Experimental Setup, Results and Discussion
The aim of this section is to assess the runtime and memory
performance of the developed extensions and their optimiza-
tions and to compare them with extensions based on other
MAPF algorithms. The setup of the experiments is discussed
first, after which the results of the experiments are discussed.

5.1 Random map generation
To evaluate the algorithms described above, a random map
generator was developed. The map generator always gener-
ates solvable connected maps (Appendix A contains a proof
of solvability). There are multiple different kinds of maps
that can be generated using the map generator, but during this
research, two kinds of maps were used:

• Maze maps - Maze maps have a high wall density and
are acyclic. The narrowness of the passages cause nu-
merous collisions, which makes this map a good candi-
date for testing how algorithms handle collisions.

• Obstacle maps - Obstacle maps have a low wall density
and are cyclic. Collisions can easily be avoided, so this
map is able to test the limits of the amount of goal as-
signments that the exhaustive matching algorithms can
handle.

An example of both map types can be seen in Figure 3. The
performance of the different matching algorithms was quan-
tified using 20x20 maze maps and obstacle maps generated
by the map generator.

5.2 Benchmarks
All runtime performance benchmarks were run in a virtual-
ized Linux environment with 12 cores running at 2.0 GHz
on an Intel Xeon E5 2683 v3 CPU. To save time, the algo-
rithm was run on 10 benchmarks simultaneously, because of
the number of threads that were available and the low RAM
usage. There was 8 GiB of RAM available, and the memory
usage stayed well within that during all benchmarks.
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The benchmarks were run using random maps generated
using the generator described in Section 5.1. All the imple-
mentations that are compared are implemented and executed
with Python 3, but the CBM-based implementation makes use
of a C++ library.

5.3 Results
Heuristic versus Exhaustive
The performance of heuristic matching and standard exhaus-
tive matching is very similar on maze maps. Figure 2a
and 2b show that exhaustive matching is able to solve a bit
more problems with fewer agents, but above a certain num-
ber of agents, the performance of exhaustive matching drops
slightly below the performance of heuristic matching.

A similar observation can be made on obstacle maps with
all agents in one team (Figure 2c), except that there is a big-
ger dissimilarity in performance. Exhaustive matching is able
to solve almost all problems with up to eight agents, while
heuristic matching only solves close to 50% of problems with
four agents. However, while exhaustive matching is unable to
solve problems with nine agents within the timeout, heuristic
matching still solves a very small number.

This phenomenon is due to the inner workings of heuristic
matching. Heuristic matching uses the distance to the closest
goal as a heuristic for each agent. When each agent has the
distance to a unique goal as a heuristic, there will seldom be
any collisions. However, when two agents are guided to the
same goal by the heuristic function, there will eventually be a
collision at the goal, causing ID to plan the agents together.

An example of a map that can be solved by heuristic match-
ing but cannot be solved by exhaustive matching can be seen
in Figure 5. There are multiple goal locations close to start-
ing locations and two-thirds of the agents can travel to their
closest goal for an optimal solution.2

Sorting
This section discusses the effect of sorting on the perfor-
mance of exhaustive matching. Figure 2a and 2b show a
clear difference between exhaustive matching with and with-
out sorting on maze maps.

2An interactive version of the solution can be found at https://
mapf.nl/solutions/2609

Figure 5: An example of an obstacle map with nine agents in a
single team that can be solved using heuristic matching but cannot
be solved by exhaustive matching within two minutes. Squares are
starting locations and flags are goal locations.

What stands out in Figure 2a, where all agents are in the
same team, is the steady decline in the percentage of maps
solved with exhaustive matching, whereas exhaustive match-
ing with sorting maintains a high solving percentage up to
problems with eight agents. The difference is smaller when
agents are divided over three teams, as can be seen in Figure
2b.

An interesting observation is that the performance of ex-
haustive matching with sorting deteriorates when agents are
split into three teams on maze maps. Maze maps generally
cause a high number of collisions because of the narrow pas-
sages and lack of alternative routes due to the acyclicity of
the maps. This causes the initial heuristic to be a less precise
indicator of the cost of the solution. As a result, the efficiency
of exhaustive matching is reduced.

When all agents belong to the same team, the decrease in
efficiency is covered up by the sorting. With sorting exhaus-
tive matching, agents of the same team generally do not col-
lide because if this were the case, a goal assignment where
the goals of the colliding agents are swapped would have a
lower heuristic value causing it to be evaluated earlier.3

Figure 2d shows that sorting also improves performance
on obstacle maps with agents divided over three teams. How-
ever, on obstacle maps with all agents in one team, there is
very little difference between exhaustive matching with and
without sorting, as can be seen in Figure 2c. Because of the
openness of obstacle maps, the number of collisions is limited
and the lower level ID is able to evaluate a goal assignment
very quickly. However, for nine agents there is such a large
number of goal assignments that it is not possible to evaluate
enough of them to guarantee an optimal solution within the
timeout.

The effect of sorting is still visible when looking at the
number of evaluated goal assignments. Exhaustive match-
ing with sorting is able to keep the average number of evalu-
ated goal assignments close to one, whereas without sorting it
grows exponentially, as indicated by Figure 4. Note that the
evaluated goal assignments for normal exhaustive matching
are still far below the total number of goal assignments due

3Technically it is still possible for agents to collide, but only if
agents are routed through the same passage at the same time or if an
agent has to avoid a different collision.

https://mapf.nl/solutions/2609
https://mapf.nl/solutions/2609
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Figure 6: Comparison of different MAPFM algorithms on maze and obstacle maps. Lines are labelled with the MAPF algorithm on which
the algorithm is based.

to pruning. With 7 agents, exhaustive matching evaluates ap-
proximately 11 goal assignments on average, while the total
number of goal assignments is 7! = 5040.

Independence Detection
Figure 2a and 2c show that the addition of ID has no visible
effect when all agents are in the same team. This is expected,
since matching ID always plans teams together and does not
influence the operation of the matching algorithm. On maze
maps with agents divided over three teams (Figure 2a), there
is also no difference between matching with and without ID.

This is due to the fact that the collisions are the limiting
factor on maze maps with three teams rather than the number
of goal assignments, as discussed in the previous section. ID
reduces the number of goal assignments that have to be eval-
uated, but since the algorithm is not limited by the number
of goal assignments, there is no difference in the number of
problems that can be solved.

The only scenario where the effect of ID is visible is on
obstacle maps with agents divided over three teams, as can
be seen in Figure 2d. Without ID, the algorithm is not able to
solve any instances with 14 agents or more. However, ID is
still able to solve over 20% of problems with 17 agents.

Comparison with other MAPF algorithms
CBMxM CBMxM is a matching algorithm based on CBM
[18]. CBMxM is able to solve a lot more problems within the
timeout than the exhaustive matching solvers in most cases.
Figure 6a and 6c show that CBMxM can solve all instances
when all agents are in the same team. However, with agents

spread over three teams on maze maps, the performance is a
bit worse than the performance of EPEA*, as can be seen in
Figure 6b. Figure 6d shows CBMxM has a much higher per-
formance on obstacle maps with three teams, where it outper-
forms exhaustive matching solvers.

The high performance of CBMxM is due to the fact that it
makes use of min-cost flow, allowing it to solve single-team
problems in polynomial time. With a higher number of teams,
the benefit of this decreases, which is why it performs worse
when agents are divided into three teams.
Exhaustive matching solvers The solvers that are based
on exhaustive matching all have a very similar performance.
Next to EPEA*, the exhaustive matching solvers are

• The A*+OD+ID MAPFM solver [17].
• The M* MAPFM solver [19].
• The ICTS MAPFM solver [20].

While these solvers take a similar approach, a few differences
in performance are still visible. Figure 6a and 6b show that
on maze maps, EPEA* is able to maintain a higher solving
percentage with a higher number of agents. However, M*
and ICTS eventually surpass both EPEA* and A*+OD+ID
on instances with all agents in the same team because the
solved instances only go to zero for instances with ten or more
agents, while A*+OD+ID and EPEA* are unable to solve any
instance with nine agents within the timeout. Figure 6c shows
the same effect.

The plot in Figure 6d demonstrates the effect of the match-
ing ID of A*+OD+ID and EPEA*. M*, which does not have
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Figure 7: Comparison of the memory that was used for solving maze
problems with agents divided over three teams. The lines represent
the mean value and the coloured surfaces around them represent the
range from the minimum amount to the maximum amount of mem-
ory used.

matching ID, is unable to solve problems with 14 agents or
more, while EPEA* and A*+OD+ID still can.

Memory
An important benefit of EPEA* is the low amount of memory
that is required. An implementation of exhaustive matching
can also be used with a limited memory availability because
only one instance of EPEA* is run at a time. Figure 7 shows
a comparison of the average value of the maximum mem-
ory usage of the solver on 200 maze maps for each number
of agents. When the solver is not able to solve the problem
within a two minute timeout, the maximum memory usage
up to the timeout is included in the data. The data shows
that EPEA* outperforms A*+OD+ID in terms of memory on
maze maps with agents divided over three teams.

6 Conclusion
This paper discusses extending EPEA*, allowing it to solve
a problem in which pathfinding is combined with matching,
called MAPFM. Heuristic matching and exhaustive matching
are introduced as extensions of EPEA*. The results show
that exhaustive matching is the faster extension in almost all
scenarios.

Next to that, a number of improvements in the form of sort-
ing and independence detection of the exhaustive matching
approach were discussed and compared. The results show
that sorting is able to improve the performance of exhaus-
tive matching in every case. Independence detection is also
able to improve performance on open maps with the agents
divided into multiple teams.

When compared to other MAPFM algorithms, the EPEA*
based solver described in this paper has a similar performance
to the other exhaustive matching solvers, with it performing
better in most cases on maze maps. However, CBMxM per-
formed a lot better than the exhaustive matching solvers in
most scenarios.

It should be noted that these results were generated on a
specific type of map, with only a few parameters being varied.
For example, the effect of the map size on the algorithm has
not been tested. Theoretical analysis and anecdotal evidence
suggests that CBMxM scales badly with an increase in map

size, while this does not have a big impact on the performance
of EPEA* and other algorithms. This is yet to be confirmed.

7 Future work
The main focus of this research was to extend EPEA* with
matching to make it more useful in real-world applications.
While the proposed extensions provide a good foundation,
there are a number of optimizations that can still be explored.

A possible optimization of the heuristic matching approach
is to calculate the min-cost matching when calculating the
heuristic instead of directly using the distance to the clos-
est goal for each agent. This prevents the problem of mul-
tiple agents being guided towards the same goal. However,
this does make the heuristic calculation more complex, which
especially affects algorithms with partial expansion such as
EPEA*, since node expansions are more common compared
to a regular A* solver. Whether this is a useful addition has
yet to be determined.

Additionally, improvements could be made to EPEA* with
exhaustive matching. The option of caching sub-solutions
that are found in the ID of EPEA* has yet to be explored.
This increases the memory requirements for the algorithm,
but can also prevent unnecessary executions of EPEA*.

It might also be worth looking at improving the pruning
of exhaustive matching. When a goal assignment is evalu-
ated where the low-level ID finds an edge conflict in paths
of agents that belong to the same team, the evaluation of the
matching can be ceased since the goal assignment where the
goals assigned to the individual agents are swapped will al-
ways lead to a superior solution. Whether this influences per-
formance has yet to be determined. It could be argued that
it is not very common for edge conflicts to occur in exhaus-
tive matching with sorting, since the goal assignment with
the goals swapped will have a lower or equal heuristic value,
causing it to be evaluated earlier.

Next to improving the efficiency of matching EPEA*, its
usefulness could also be improved. There are real-world ap-
plications that require more flexibility in the problem defini-
tion. An example is the routing of trains on shunting yards,
where trains have to visit certain waypoints while travelling
to the goal where they are cleaned or serviced. An optimal
algorithm already exists for A*+ID+OD [21] so it is worth
exploring if this can also be adapted to EPEA* because of the
similarity of the algorithms.

8 Reproducibility
To facilitate the reproducibility of this research, the Python
codebase for the MAPFM algorithms described in this paper
has been made publicly available on GitHub.4 The code is
available under the MIT license and readers are encouraged
to use or extend the code. The randomly generated bench-
mark maps and unprocessed results of the benchmarks are
also available in this repository.

4https://github.com/jaapdejong15/matching-epea-star

https://github.com/jaapdejong15/matching-epea-star
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A Generating feasible maps
By JONATHAN DÖNSZELMANN AND JAAP DE JONG

For experiments in this paper, MAPFM instances (some-
times called maps) are randomly generated. To generate these
random maps, we created a program called the Multi-Agent
Pathfinding instance generator (MPIG) which creates these
maps. We designed MPIG to always create maps that are fea-
sible. In this appendix, we show how MPIG works, and how
MPIG can guarantee that each map is feasible by providing a
generic procedure that can be used to solve any map gener-
ated by MPIG.

To simplify the explanation, we first demonstrate the pro-
cess of generating feasible MAPF instances.

A.1 Properties of a feasible MAPF instance
MAPF instances are feasible whenever it is possible for every
agent to reach their goal. MPIG ensures that this is always
possible, by guaranteeing that every generated map has the
following two properties:

1. Every map is connected. There are no disconnected sub-
graphs.

2. Maps with k agents and k goal vertices contain at least
k vertices with three or more neighbours (i.e. vertices
where at least three adjacent vertices are traversable).
From now on, these locations will be called branch ver-
tices. Branch vertices are important because at these lo-
cations, agents can pass each other as can be seen in
Figure 8.

To guarantee the first property is satisfied, MPIG starts gen-
eration of maps at a single location, and neighbours of that
vertex are recursively expanded (by either adding obstacles
or traversable locations) to generate the rest of the map. Ob-
stacles are not created when this would cause a disconnected
subgraph to be created. The second property is guaranteed by
simply discarding a map and generating a new map whenever
there are fewer than k branch vertices. Discarding is used be-
cause chances are high that random maps contain more than
k branch vertices.

Some maps which do not have these two properties may
still be feasible, but this can not be guaranteed by the proof
given in Section A.2.

A.2 Proof of feasibility
In this section, it is proven that when maps are connected, and
there are at least k branch vertices, they are feasible. This
proof consists of the following three parts which will be con-
sidered separately:

1. Every agent can always travel to a branch vertex from
their starting location

2. When every agent is on a branch vertex, they can move
to reorder themselves such that every agent can be on
any of the branch vertices.

3. There exists a configuration of agents on branch vertices
that allows all agents to go to their goal.

Part 1 This part shows that all agents can travel to a branch
vertex without collision. First, it will be proven that there is
at least one agent that can travel to a branch vertex.

Theorem A.1. There is always at least one agent that can
reach a branch vertex without collisions.

Proof of Theorem A.1. Let v be a branch vertex and a1 be the
agent with the shortest path to v. Then, a1 can reach v without
collisions.

Theorem A.2. All agents can reach a branch vertex without
collisions.

Proof of Theorem A.2. There are at least k branch vertices.
Thus, there are enough branch vertices to accommodate all
agents. The process for every agent to reach this branch ver-
tex is as follows:

Step 1: a single agent moves to a branch vertex, which is
possible according to Theorem A.1.

Step 2: an attempt is made to move another agent ai to a
branch vertex. Two situations may occur:

1. Agent ai can move to a branch vertex u without obstruc-
tion.

2. Another agent aj which previously moved to a branch
vertex v obstructs ai from reaching a branch vertex u.

In the second situation, agent aj can instead move to vertex
u, freeing vertex v for agent ai.

Step 2 can be repeated until all agents reach a branch vertex
thus proving Theorem A.2.

Part 2
Theorem A.3. In every map, from every neighbour of a
branch vertex u, there exists a path to a non-branch vertex
that does not traverse u.

Proof of Theorem A.3. A proof by construction follows:
In the trivial map with a single branch vertex (see Figure

9), Theorem A.3 holds since each neighbour is a non-branch
vertex.

Every possible map with at least one branch vertex can be
derived from the trivial map by adding more open vertices
around it.

Adding a new vertex u can have one of three effects on
each neighbour v:

1. v has a single neighbour. Connecting to v makes v a
two-neighbour vertex. Theorem A.3 trivially holds for
v, because v is not a branch vertex.

2. v has two neighbours v1 and v2. Connecting to v makes
v a three-neighbour vertex, i.e. a branch vertex. If v1 or
v2 have fewer than three neighbours, then Theorem A.3
trivially holds. If v1 or v2 is a branch vertex, then they
must already be part of the map and Theorem A.3 holds
for v1 and v2. Since u is a branch vertex, it is possible to
pathfind to one of the remaining neighbours of u, which
are directly or indirectly connected to a non-branch ver-
tex. Since Theorem A.3 holds for all neighbours v1, v2
and u of v, it must now also hold for v.



Figure 8: Agents passing each other on three-neighbour nodes

3. v has three neighbours, v1, v2 and v3. Connecting to v
makes v a four-neighbour vertex. The same reasoning
used in effect 2 can be used to show that Theorem A.3
still holds for v.

Adding a new vertex u can also have one of the following
effects on u itself:

1. It can create a new two-neighbour vertex u by connect-
ing two vertices (shown in Figure 10). Since u has fewer
than three neighbours, Theorem A.3 still holds for u.

2. It can create a new three-neighbour vertex u by con-
necting three vertices (shown in Figure 10). A vertex
with which a connection is made (called v), can be in
one of three possible configurations for which Theorem
A.3 holds, as explained in the previous part of the proof.
Since Theorem A.3 holds for all neighbours of u, it also
holds for u itself since every neighbour is always directly
or indirectly connected to a non-branch vertex.

3. It can create a new four-neighbour vertex u by connect-
ing four vertices (shown in Figure 10). A vertex with
which a connection is made (called v), can be in one
of three possible configurations for which Theorem A.3
holds. The reasoning from the previous effect can be
used to show that Theorem A.3 also holds in this effect.

For the trivial map from Figure 9, Theorem A.3 trivially
holds. Every map with one or more branch vertices can
be constructed from the trivial map by adding vertices to it.
Adding vertices to a map for which Theorem A.3 holds, was
shown to exclusively create new maps for which the Theo-
rem still holds. If a map cannot be derived from the trivial
map, then it does not contain branch vertices. Theorem A.3
trivially holds for maps without any branch vertices.

Therefore, Theorem A.3 holds for all generated maps.

Figure 9: The trivial map with a single branch vertex

Consider the scenario where each agent is positioned on a
branch vertex. As a result of theorem A.3, each neighbour
of a branch vertex u has a so-called diversion vertex, which
is the non-branch vertex that is reachable from the neighbour
without visiting u.

Theorem A.4. An agent ai on a branch vertex v can always
be passed by another agent aj

Proof of Theorem A.4. The branch vertex v has three neigh-
bours v1, v2 and v3 (as shown in Figure 9). aj passing v
means that it is coming from one of the neighbours of v (say
v1) and needs to travel to another one of the neighbours (say
v2). For aj to travel from v1 to v2, ai must move out of the
way to v3. v3 can either be:

• A non-branch vertex. It is therefore empty because all
agents are on branch vertices. ai can simply move to v3
and let aj pass.

• A branch vertex. In this case, there may be an agent ak
on v3. If there is an agent on v3, it must also move out
of the way. Theorem A.3 shows that it is always possi-
ble to pathfind to a non-branch vertex from neighbours
of branch vertices. Since non-branch vertices are empty,
this provides a place for agents to move in to make room
for passing agents. Therefore, ak must move either onto
an empty vertex, or move onto a vertex with another
agent which after possible repetitions will always find an
empty diversion vertex to move onto. Figure 11 shows
how all agents move out of the way to diversion vertices
to allow the lime agent to pass.

After having encountered one of these two scenarios, agent
aj has moved to v, and ai has moved out of the way to v3.
For agent aj to now completely pass ai, aj must continue to
v3 (these steps are shown in Figure 12). However, if v3 is

Figure 10: Three different ways of connecting vertices. Red vertices
are added to maps.



Figure 11: An example of how an agent can pass other agents even
if there is no space between branch vertices

another branch vertex, another agent ak may be on it. Two
situations can now occur:

• ak can move out of the way just like aj did. Theorem
A.3 shows that this is always possible to find a diversion
vertex. ai can now also move back to v.

• ak can not move out of the way. Even though Theo-
rem A.3 shows that there is always a diversion vertex to
move out of the way, aj moving out of the way may have
taken up this diversion vertex. However, if both v2 and
v3 have the same diversion vertex, a connection must ex-
ist between v2 and v3. Because the definition of MAPF
allows following, it is now possible for ak to move out
of the way, following agents in front of ak in a chain.
The head of the chain is ai. ai moves back to v, in a way
making v the diversion vertex. This motion can be seen
in Figure 13

After this process, ai is back on v and aj has passed to
v3

Theorem A.5. Any two agents on adjacent branch vertices
(i.e. directly connected or connected with a corridor) can
swap places, both moving to the branch vertex where the
other agent was standing.

Proof of Theorem A.5.

Lemma A.6. The swapping of two agents ai and aj , posi-
tioned on branch vertices u and v respectively, is equivalent
to ai passing aj (or vice versa). After the passing, both agents
can move to the vertex where the other agent used to be with-
out conflict.

Theorem A.4 shows that an agent coming from one neigh-
bour of a branch vertex can always pass the branch vertex
to move to another neighbour of the branch vertex. Agents
ai and aj can swap by one of the agents passing the other

Figure 12: An example of how an agent can pass another agent.

Figure 13: An example of how agents can pass with a single diver-
sion vertex.

agent on its branch vertex and both agents moving back to
the swapped branch vertices without collision. This process
can be seen in Figure 14. There is always enough space for an
agent to pass another agent because of the diversion squares.

Therefore, two agents on adjacent branch vertices can swap
places.

Theorem A.7. If all agents are assigned to and located on a
branch vertex, they can move to create every other assignment
of agents to branch vertices.

Proof of Theorem A.7. Any permutation of a set of elements
can be created using only pairwise swaps by using the Stein-
haus–Johnson–Trotter algorithm [22].

Not all pairwise swaps are swaps between adjacent ele-
ments. However, any pairwise swap of two non-adjacent ele-
ments a and b can be performed by swapping all the elements
between a and b. The procedure

The proof of theorem A.5 shows that pairwise swaps of
agents on adjacent branch vertices are possible on any map.

Part 3
Theorem A.8. Every connected map with n agents on n
branch vertices is directly solvable from at least one assign-
ment p of agents to branch vertices.

Proof of Theorem A.8. Consider the scenario where every
agent is positioned on its corresponding goal. By theorem
A.2, the agents can all travel to branch squares without col-
lision. This results in an assignment p of agents to branch
squares.

Figure 14: An illustration of two agents swapping by passing each
other.



Theorem A.9. Every connected map with n agents and at
least n branch vertices is feasible.

Proof of Theorem A.9. By Theorem A.2, it is possible for ev-
ery agent to reach a branch vertex. By Theorem A.7, every
assignment of agents to branch vertices can be created. The-
orem A.8 shows that there is always an assignment for which
the map is solvable. Therefore, every map with at least n
branch vertices is feasible.

A.3 Solving MAPFM instances
Theorem A.10. Every connected MAPFM map with n agents
and at least n branch vertices is feasible.

Proof of Theorem A.10. A MAPFM instance can be decom-
posed into many MAPF instances by considering all possible
assignments of agents to goals, which can exhaustively be
searched. Theorem A.9 shows that every MAPF instance is
feasible. As a result, every possible assignment of agents to
goals of a MAPFM instance is also feasible. Therefore, all
MAPFM instances with n agents and n branch vertices are
feasible as well.
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