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Abstract

Energy flexibility is the ability to change power production or consumption over time. It is
required for a power system to function properly, to balance supply and demand. Currently,
the largest providers of energy flexibility in the Netherlands can be found on the supply side
and consist mainly out of fossil fueled power plants. As these are set to phase out in the near
future and be replaced by mainly variable renewable energy sources, such as wind and solar,
the necessity for energy flexibility on the demand side is set to be increased. Therefore, a new
role is expected to arise in the power system, namely that of the aggregator. Aggregators will
combine small scale energy flexibility providers and provide this aggregated energy flexibility
to the power system.

In this MSc thesis, the focus lies with a power scheduling Electric Vehicle (EV) aggregator.
Considering that the number of EVs will increase in the near future, the lack of control over
charging a large fleet of EVs may result in an overloaded distribution grid. The charging
behavior of a large fleet of EVs, connected in a Vehicle to Grid (V2G) setting, is formalized
as a Model Predictive Control (MPC) optimization problem. Allowing power consumption
to be shifted within a finite prediction horizon. To optimally valorize the energy flexibility
of the fleet and respect the limits of the distribution grid, the control problem is extended to
include spatial information and network constraints. The goal is to develop multiple control
algorithms to solve this control problem using distributed optimization.

The contributions of the work in this MSc thesis are threefold. First, the ability to optimally
valorize the energy flexibility is increased by including spatial information in the distribution
grid, represented as subsets of the fleet, such that congestion management services can be
provided. Secondly, a parallel implementation of a coordinated distributed MPC is developed
using resource allocation with feasible iterations for binary on/off input systems. Thirdly, a
hierarchical MPC algorithm is developed using virtual batteries to represent the aggregated
behavior of a fleet of EVs, for which new tight constraints are derived to better represent the
EV fleet.

To conclude, numerical experiments are performed in closed loop to study the behavior of the
developed algorithms with respect to a centralized benchmark. The experiments show that
for a growing EV fleet, the hierarchical algorithm remains at the same approximate error with
respect to the benchmark. This, while the distributed algorithm approaches the benchmark
very well, with limited communication and in relatively short computation times with respect
to the benchmark. For a growing number of subsets using the same amount of EVs, the
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ii Abstract

hierarchical algorithm is able to come up with a feasible solution reasonably fast. Whereas,
the distributed algorithm shows a drastic decrease in computation time as multiple smaller
problems are now solved. Both algorithms achieve this at increasing costs. Future work is
expected to further improve the hierarchical algorithm such that it will be able to outperform
the distributed architecture in practical applications.
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Chapter 1

The Power Scheduling Electric Vehicle
Aggregator

This chapter motivates the aggregation of energy flexibility of a fleet of Electric Vehicles (EVs)
and their control by means of power scheduling. By the aggregation, the charging costs can be
minimized and the ability arises to provide congestion management services, therefore value
is created. The power scheduling problem for an electric vehicle aggregator is introduced and
the chapter concludes with the statement of research objectives and contribution, based on
the conclusions drawn in the literature survey, and the outline of the rest of this thesis.

1-1 Changes in the Energy System

In conventional electric power grids, large electricity generation units meet the fluctuating
demand by adjusting their power output. With the transition towards variable renewable
energy sources, e.g. wind and solar energy, the power grid faces new challenges. As renewable
generation is highly dependent on weather conditions, its predictability and controllability is
limited and plants are smaller and distributed in general. The result is that the ratio between
controllable and uncontrollable generation (i.e. renewables) will therefore decrease. This
causes a decrease in supply flexibility, which in turn challenges the balance between supply
and demand.

Another trend in the power system is the increasing electric load, with transportation shifting
towards electric, demand is expected to increase, which especially challenges the maximum
power rating of the lower voltage grids [1, 2].

1-1-1 Creating Value through Aggregating Energy Flexibility

The ability to shift or change power consumption or production over time is defined as energy
flexibility [3], and simply referred to as flexibility within this thesis. An example of energy
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2 The Power Scheduling Electric Vehicle Aggregator

Figure 1-1: Energy flexibility in two forms, 1) a load shift and 2) a temporary discharge into the
grid, with the resulting profile on the right, with PTU as Program Time Unit, from [3]

flexibility is shown in Figure 1-1. It can be understood as the flexibility available within the
electricity system to match supply and demand, at all times. This balance in the supply
and demand is required for an electricity system to function properly. Currently, the largest
providers of energy flexibility in the Netherlands can be found on the supply side and consist
mainly out of fossil fueled power plants. As these are set to phase out and replaced by mainly
variable renewable energy sources, such as wind and solar, the necessity for energy flexibility
on the demand side is set to be increased. The latter even further increasing demand energy
flexibility due to their limited ability to adapt their power production over time.

The increase of the flexibility demand was studied in [4] and is shown in Figure 1-2 as a
function of the participation of variable renewable energy sources in the electricity supply.
As a result, a flexibility gap arises. One of the options to introduce new flexibility means
is by aggregating large numbers of small flexible resources, of which the energy flexibility is
currently not fully utilized.

The aggregation of small demand flexibility, also called demand response or demand side
management, may include the power for heating, ventilation, air conditioning, home electricity
storages, and many others. By aggregating these small flexible resources, a portfolio of energy
flexibility can be created that can be used to act on the arising flexibility gap. It is expected
that a new role will arise within the energy system, namely that of the aggregator [3]. The
aggregator will be responsible for the management of a portfolio of energy flexibility providers.
Furthermore, the aggregator will valorize the aggregated flexibility of its portfolio.

The main potential customers of an aggregator are mentioned by the Universal Smart Energy
Framework (USEF) in [3] and are shown in Figure 1-3. The flexibility provider is shown
on the left, the aggregator in the middle and the potential customers on the right. The
aggregator will financially reimburse the providers, here prosumers, for offering their flexibility
and potentially sell the aggregated flexibility to the customers. Here, selling flexibility means
shifting or changing the original consumption or production schedule to the request of the
customer. By aggregating energy flexibility, new flexibility becomes available to the energy
system and thus value is created.

The potential customers include Balance Responsible Parties (BRPs), which can use the en-
ergy flexibility for trading on spot markets or for their portfolio optimization. Distribution
System Operators (DSOs) can use it for grid management. Transmission System Opera-
tors (TSOs) can use it for maintaining balance between supply and demand, i.e. frequency
management. Since the balance management, which the TSOs are interested in, is typically
not dependent on spatial distribution and market based, an aggregator can bid its flexibility
into these reserve markets to help the TSO.

B.M. Kaas Master of Science Thesis



1-1 Changes in the Energy System 3

Figure 1-2: With growing variable renewable energy source participation, existing supply flexibility
decreases and the necessary flexibility grows, creating a flexibility gap, from [4]

Figure 1-3: The USEF model showing the potential customers of flexibility services, from [3]

1-1-2 Using Energy Flexibility for Congestion Management

The main focus among the potential customers for this thesis lies with the DSOs, which are
set with the responsibility to ensure the availability of the distribution grid (medium and low
voltage). The low voltage distribution grid is especially expected to be loaded closer to its
limits, as a result of the added demand of EV charging, [1, 2]. To ensure the availability of
the distribution grid, a DSO needs to prevent congestions from occurring. Which happens
when a part of the infrastructure, e.g. a transformer or distribution line, is loaded close to
its limits and as such might fail. These will be referred to as congestion points. When a
congestion point overloads, grid security, e.g. a fuse, will intervene. This is done for safety
reasons, and potentially increases the load on the surrounding infrastructure.

To prevent congestions from occurring, DSOs could use congestion management by energy
flexibility. The goal of congestion management is to prevent congestions from occurring, by
using price mechanisms and market forces. Since a power scheduling aggregator can control
the power interaction of its portfolio, it can incorporate congestion management constraints

Master of Science Thesis B.M. Kaas



4 The Power Scheduling Electric Vehicle Aggregator

(a) Schematic representation of part of the
distribution grid, from [5]

(b) Schematic representation of overview
of the distribution grid, from [6]

Figure 1-4: Schematic representations of the distribution grid

within its optimization. Here, power interaction is both the potential power consumption and
production of the portfolio.

A schematic representation of the distribution grid is presented in Figure 1-4, with both a
detailed figure for a single substation and the larger overview of the distribution grid. In
the shown detailed part of the distribution grid, EVs are connected to branches and the
branches are connected to the substation, both can act as a congestion point, in which the
latter is simply the combination of the branches. In the example, the substation is shown
to have a critical branch flow, i.e. this branch is close to congestion. The detailed part is
connected to the rest of the network as shown in the overview, in which the numbers indicate
the branches, connected to substations. The lower substations are then connected to higher
voltage substations. To be able to provide a congestion management service to DSOs, the
aggregator should know at which congestion point energy flexibility providers are connected.
This is incorporated in the aggregator setting by including subsets. Each subset represents all
energy flexibility providers connected to the corresponding congestion point. In the literature,
spatial information is often disregarded in aggregator problem formulations [6, 7] and only
a single overall network constraint is enforced. Yet, from the viewpoint of an aggregator,
especially this spatial information can be valuable, as it can be used to provide congestion
management services.

1-2 The Electric Vehicle Aggregator

In the setting of interest, the aggregator has direct control over a fleet of EVs. The EV owners
set the constraints, e.g. desired departure time and desired State of Charge (SoC), that have
to be met for their EV. Yet, the aggregator decides the power schedule over time by which
it will charge the EV. This allows the aggregator to optimally schedule the power demand
of the fleet according to varying prices and power availability. By using direct control, the

B.M. Kaas Master of Science Thesis



1-2 The Electric Vehicle Aggregator 5

Figure 1-5: Schematic representation of the aggregator setting with respect to potential energy
flexibility users and the EV fleet, which are divided over the subsets.

aggregator can also provide forecasts of its power interaction to DSOs and other potential
customers over time.

The aggregator can negotiate with the potential customers on how to utilize the available
energy flexibility, to optimize its profitability. These complex procedures are out of the scope
of this thesis and as such a split is performed within the aggregator. As a result, two coupled
agents are formed: the trading agent and the power scheduler. See Figure 1-5 for a schematic
representation of the aggregator.

Trading Agent

The trading agent performs the communication and negotiation about the available energy
flexibility with all potential users. Furthermore, internally, it provides the power scheduler
with a forecast on the constraints arising from the network and with a forecast on the electric-
ity buy and sell price, based on the negotiations it has had. The network constraints depict
the allowable power consumption over time, which can be given per congestion point or any
combination of congestion points (e.g. the whole EV fleet). The forecast on the electricity
buy and sell price will be used by the power scheduler to minimize the cost for the remaining
flexibility.

Master of Science Thesis B.M. Kaas



6 The Power Scheduling Electric Vehicle Aggregator

1-3 Problem Formulation of the Power Scheduler

In this thesis, the perspective of an EV aggregator is taken, which is responsible for the power
scheduling of a fleet of EVs connected to a particular part of a distribution network. The
control task is to determine the power schedule for each individual EV, such that both the EV
and network constraints are respected and the overall cost is minimized. In the following, all
constraints related to individual EVs are referred to as local constraints and those enforced by
the trading agent, related to the network, are referred to as global constraints. Typically, the
number of global constraints is significantly smaller than the number of EVs under control.
Furthermore, it is assumed the global constraints allow feasible power schedules to be found.
The control task will be applied in a discrete time setting, with a step size of τ = 0.25
hours, i.e. 15 minutes, which is a common duration of Program Time Units (PTUs) in energy
markets.

The framework of Model Predictive Control (MPC) is used to solve the power scheduling
problem of the aggregator using receding horizon control with a finite prediction horizon. In
MPC, at each sample time t the problem is solved such that an input sequence is obtained
over a prediction horizon of N steps. When an optimal input sequence is found, the input for
the first step in the horizon is implemented and the process is repeated at the next sample
time, using updated information. The PTUs within the prediction horizon are indexed by k,
which takes the values k = {0, 1, . . . , N−1}.

Consider an environment that contains a constant number of Nj congestion points (indexed
by j) and a fleet of EVs (indexed by i). All EVs have an arrival and departure time and a
physical distribution network is considered in which each EV can connect to one congestion
point. Each EV is, therefore, part of only one subset within the power scheduler. The SoC
of EV i, within subset j, is denoted with Ej,i, with both j and i as subscripts.

Local Constraints

It is assumed that the EVs draw power at fixed rates, which is usually the case in practice [5]1.
In this thesis, single charging and discharging rates will be used, but the framework allows for
multiple fixed rates as well. Furthermore, charging and discharging can be interrupted and
resumed, but in order to avoid excessive switching, once a control action is applied it must
continue for at least the duration of a single PTU.

As direct control is used, the aggregator has the authority to determine the charing behavior
for each individual EV. It is assumed as long as each EV i within subset j is connected to
the power scheduler, it transmits all its relevant variables to the power scheduler, including
the current SoC, E0

j,i, desired final SoC, Eref
j,i , minimum and maximum attainable SoC, Emin

j,i

and Emax
j,i respectively, charging and discharging power, P c

j,i and P d
j,i respectively, charging

and discharging efficiency, ηcj,i and ηdj,i respectively, and the time when the EV is scheduled to
be disconnected, T dep

j,i . It is assumed that the responsible controller has a forecast of all EVs
1This is particularly true in case of connections with low power ratings. More generally, connections

compatible with the IEC 61851 standard could operate in a semi-continuous fashion, i.e. with a minimum
current output when charging and can then be modulated within a certain band. This requirement results in
models containing discrete variables and hence fits the proposed framework. However, to keep the description
concise this aspect is not considered.

B.M. Kaas Master of Science Thesis



1-4 Research Objectives 7

Figure 1-6: Simplified overall EV SoC envelope
Simplified with τ=1, ideal efficiencies (ηcj,i=ηdj,i=1) and equal power interacting values, i.e. P c

j,i=P d
j,i. For

this example, the EV arrives at T arr
j,i =3 and is set to depart at T dep

j,i =13.

which will be connected to it and their associated variables, including their expected arrival
time T arr

j,i and SoC upon arrival Earr
j,i , i.e. a deterministic setting is used.

In order to interpret these variables intuitively, the SoC envelope is introduced, which repre-
sents the allowed energy storage over time for the specified EV variables as stated before. A
simplified example of an overall SoC envelope is shown in Figure 1-6. For clarity, it is sim-
plified with ideal efficiencies and equal power interacting values for charging and discharging,
to limit the amount of possible SoC values. This simplification is only used for visualizing
the SoC envelope and is not taken advantage of in the control problem. The black solid lines
represent the overall SoC envelope, which can be found when the extremes are applied. The
upper limit, Eoverall,max

j,i , is found when full charging is applied from the very first moment,
until Emax

j,i is reached and the SoC is set to remain at that level. The lower limit, Eoverall,min
j,i ,

is found when the EV is set to full discharging until Emin
j,i is found, where the SoC remains

until it is forced to start charging such that is able to meet Eref
j,i by T dep

j,i , which is represented
by the red cross. The green dotted lines represent the effect of the SoC constraints and the
black circles represent the finite number of possible SoC values, which is a direct result of the
fixed charging and discharging rates. The possible values of Ej,i(k) within a SoC envelope
are also jointly referred to as the energy flexibility of an EV.

1-4 Research Objectives

The power scheduling optimization problem, the aggregator is set to solve, is formulated as
an Integer Linear Programming problem (ILP). For an ILP it is possible to obtain a global

Master of Science Thesis B.M. Kaas



8 The Power Scheduling Electric Vehicle Aggregator

optimum, yet since these belong to the class of NP-Complete problems, the computational
cost will grow very quickly when the problem size increases.

The main goal of this thesis is to develop and compare algorithms which enable the ILP
to be solved for large scale systems, by reducing the computation time, yet at the cost of
a potentially suboptimal solution. For the developed algorithms, the relation between the
solution quality with the related computational cost will be studied. The developed algorithms
will be compared to a centralized MPC algorithm, which will be used as a benchmark.

An architecture with some kind of coordinator or top node is most likely to arise, due to
the communication with the trading agent. Furthermore, as a result of the privacy sensitive
information the power scheduler deals with and to limit communicational demands, algorithms
with limited information sharing are beneficial. Although the use of relaxation techniques
and constraint softening have been proven useful, this thesis focuses on the use of feasible
iterations. I.e. any iteration which provides a solution to the problem, respects all constraints
and can be implemented in a closed loop setup. As a result, the algorithm can be stopped at
any time after the first solution to the problem is obtained, yet performance is most likely to
be further improved when more iterations are allowed. Using feasible iterations is also known
as Anytime MPC.

Since the goal is to study the control architecture of the power scheduler rather than the
practical implementation of such an architecture, the following initial assumptions are made:

1. All system states, Ej,i, are fully observable. This means that all EVs are equipped with
the necessary sensors. Disturbances are not taken into account.

2. All responsible controllers have a perfect forecast of all EVs which will be connected
to it and their associated variables, including their expected arrival time T arr

j,i and SoC
upon arrival Earr

j,i , i.e. a deterministic setting is used.
3. All controllers are able to communicate with the coordinator or top node without delays

and loss of information.

1-5 Related Literature and Research Contributions

In literature, distributed architectures to solve the power scheduling problem of an aggregator,
is receiving more attention over time. In [5] and [6], algorithms have been proposed for the
overnight power scheduling of an EV fleet, i.e. one large scheduling problem is solved instead
of an MPC implementation. Furthermore, both publications rely on the mathematical basis
of the dual problem formulation, in which the coupling global constraints are dualized in the
objective function, resulting in infeasible iterations. In [7, 8], a very similar environment has
been used and an algorithm has been proposed which solves the optimization problem using
distributed MPC with resource allocation. Yet, the algorithm cannot be directly applied to
linear cost functions, which is the most natural and simple way to calculate the charging
costs and does not incorporate Vehicle to Grid (V2G). None of the algorithms found in
literature incorporate the spatial information of the EVs, to be able to better valorize the
energy flexibility.

As thesis contribution, congestion points are introduced in the aggregator power scheduling
problem to provide congestion management services. More realistic EV properties have been
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1-6 Outline 9

used, incorporating arrival and departures, unideal efficiencies and the derivations are all
provided for a V2G setting, which has not been seen often in literature. Furthermore, to be
able to better model the aggregated behavior of a fleet of EVs with fixed power rates, the
Virtual Battery (VB) constraints on both the power envelope and SoC envelope have been
improved from what was found in the literature [9, 10, 11]. Finally, to the best of the authors
knowledge, no MPC architecture comparison is available in the literature for fixed rate power
scheduling EV aggregators.

1-6 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents the binary input model for single EVs and the detailed formulation
of the optimization problem of the system within the framework of MPC as an ILP. The
Centralized Model Predictive Control (CMPC) algorithm is presented and discussed.

• Next, Chapter 3 presents the developed Distributed Model Predictive Control with
Resource Allocation (DMPC-RA) algorithm, which is a multi-agent MPC formulation
for integer input systems with limited information sharing between nodes with feasible
and good iterations, approaching the global optimal system behavior over time. The
detailed formulations are given and the nodal MPC problems are formulated as ILPs.

• Chapter 4 introduces the VB model, to represent the aggregated behavior of a fleet
of EVs using very limited information. Furthermore it explains how the optimization
problem for the system can be decomposed using VBs in a Hierarchical Decentralized
Model Predictive Control (HDe-MPC) architecture with a reference tracking scheme.
The architecture consists of a single the top MPC and multiple lower MPCs, of which
the problems are formulated as Mixed Integer Linear Programming problems (MILPs).

• In Chapter 5, the developed CMPC, DMPC-RA and HDe-MPC algorithms are com-
pared using numerical experiments for both open loop as closed loop behavior and
discusses their merits and limitations. Finally, in Chapter 6 the main conclusions of
this thesis are presented and recommended future work is discussed.
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Chapter 2

Centralized Model Predictive Control

In this chapter, the notation is introduced for the optimization problem of the system. A
Centralized Model Predictive Control (CMPC) architecture is assumed, such that all infor-
mation about the system is available within the large, single CMPC. The CMPC has a
limited prediction horizon over which information is available, about both the network con-
straints and the Electric Vehicle (EV) fleet behavior. The interaction between the trading
agent, the customers, EV fleet and the power scheduler were presented in Chapter 1. The
communication structure of the CMPC architecture with the EV fleet is shown in Figure 2-1.

Figure 2-1: Communication structure of the CMPC algorithm

2-1 Formulation of the Optimization Problem of the System

In order to be able to implement the specified control task of the power scheduler, it is
formulated as a MPC optimization problem. The constraints that are related to individual
EVs are referred to as local constraints and those that are enforced by the trading agent,
related to the network, are referred to as global constraints. Typically, the number of global
constraints is significantly smaller than the number of EVs under control.
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12 Centralized Model Predictive Control

For the sake of brevity and clarity, the design of the CMPC algorithm is presented for a single
sample time. The time step k=0, 1, . . . , N−1 will be used as the step within the prediction
horizon, in which N is the length of the prediction horizon in Program Time Units (PTUs).
Let the time steps within the horizon be in the set N={0, 1, . . . , N−1}.

Arrivals and Departures

An environment is used in which EVs are arriving and departing. If EV i is expected to be
connected to the aggregator within the current prediction horizon k∈N , the first time step is
denoted with karrj,i and the last time step is denoted with kdepj,i . Both karrj,i and kdepj,i are assumed
known to the MPC. If EV i was connected before the current sampling time, then karrj,i =0.
Likewise, if the EV is connected until the end of the prediction horizon or even beyond, then
kdepj,i =N−1.

With the first and last step defined for EV i, the set Nj,i consists of that part of the prediction
horizon during which the EV is connected. It is defined as,

Nj,i = {karrj,i , karrj,i +1, . . . , kdepj,i }. (2-1)

Furthermore, the set Ij(k) consists of all EVs connected to congestion point j at time step k
and is defined as,

Ij(k) = {i | connected to congestion point j, k≥karrj,i and k≤kdepj,i , ∀i}. (2-2)

The initial State of Charge (SoC) within the prediction horizon is assumed known, given as
E0
j,i and the minimum SoC at the end of the prediction horizon for EV i will be denoted as

EMPC,ref
j,i .

The variables karrj,i , k
dep
j,i and E0

j,i, E
MPC,ref
j,i , together with the set Nj,i will be used to denote in

which part of the overall SoC envelope an EV is currently, which was introduced in Figure 1-6.
The set Ij will be used for aggregated definitions.

Decision Variables

The control signal the aggregator assigns to EV i, connected to congestion point j, is repre-
sented by the binary variables ucj,i(k), udj,i(k)∈{0, 1}, for time step k.

ucj,i(k) =
{

0, EV is not charging
1, EV is charging

udj,i(k) =
{

0, EV is not discharging
1, EV is discharging

(2-3)

with which the input vector is defined as,

uj,i(k) =
[
ucj,i(k)
udj,i(k)

]
∀k∈Nj,i (2-4)
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2-1 Formulation of the Optimization Problem of the System 13

Only one mode can be activated at the same time, hence a constraint needs to be added as,[
1 1

]
uj,i(k) ≤ 1, ∀k∈Nj,i. (2-5)

Clearly, the three arising modes are charging ucj,i(k)=1, udj,i(k)=0, discharging ucj,i(k)=0, udj,i(k)=
1 and idle ucj,i(k)=udj,i(k)=0. This can be rewritten in set notation, such that uj,i(k) is con-
strained to lie in Uj,i(k), which is defined as,

Uj,i(k)=
{[

1
0

]
,

[
0
1

]
,

[
0
0

]}
. (2-6)

Dynamics of the System

A binary input model is used to represent the power interaction of the EVs, as in [6] and
used in simplified form in [7, 5]. Let Ej,i(k) denote the SoC of the i-th EV, connected to
congestion point j. It is affected by charging and discharging. In the model, P c

j,i and P d
j,i

denote the constant charging and discharging power respectively, and ηcj,i and ηdj,i represent
the charging and discharging efficiency, respectively. The SoCs for the next time step can
then be calculated as,

Ej,i(k+1) = Ej,i(k)+
[
τP c

j,iη
c
j,i −τP d

j,i
1
ηdj,i

] [ ucj,i(k)
udj,i(k)

]
∀k∈Nj,i, (2-7)

or equivalently,
Ej,i(k+1) = Ej,i(k)+Bj,iuj,i(k) ∀k∈Nj,i. (2-8)

State of Charge Constraints

The overall SoC constraints are set by the EV user. At each sample time, the energy flexibility
options within the prediction horizon are updated, based on the overall constraints and the
current SoC, E0

j,i. The minimum SoC at the end of the horizon, EMPC,ref
j,i , has already been

introduced. The variables Emin
j,i and Emax

j,i define the allowable minimum and maximum SoC
respectively. When karrj,i >0, the initial value is set to E0

j,i=Earr
j,i , which is the SoC when the

EV arrives and connects to the aggregator.

For simplified settings, i.e. τ=1 hour, the charging and discharging efficiencies are ideal
(ηcj,i=ηdj,i=1) and P c

j,i=P d
j,i, then the energy flexibility options of an individual EV within a

MPC prediction horizon can be represented as in Figure 2-2 by forming a MPC SoC envelope
[9, 10, 11]. Since the SoC values are predicted for the next time step, they are shown for
one step out of the prediction horizon. In this example the prediction horizon is N=9 PTUs
and the same EV is used of which the overall SoC envelope was presented in Figure 1-6. The
magenta vertical lines depict the current prediction horizon and the black solid lines represent
the MPC SoC envelope predictions, starting at the initial SoC. The red cross is not know to
the CMPC, but represents the overall Eref

j,i at T dep
j,i . The circles represent all finite number

of possible SoC values and the blue dotted line represents a feasible power schedule. The
derivation of this MPC SoC envelope will be introduced subsequently.
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14 Centralized Model Predictive Control

(a) Simplified MPC EV SoC envelope for t=2. (b) Simplified MPC EV SoC envelope for t=6.

Figure 2-2: Simplified MPC EV SoC envelopes
Simplified with ideal efficiencies (ηcj,i=ηdj,i=1) and equal power values, i.e. P c

j,i=P d
j,i. A prediction horizon of

N=9 PTUs is used.

If more realistic settings are used for visualizations, yet still using τ=1 hour, the MPC SoC
envelope shown in Figure 2-2a would become much more complex, a limited example is shown
in Figure 2-3. The latter envelope can be found when a realistic discharging efficiency is used,
i.e. ηdj,i<1, or different values for charging and discharging are used, i.e. P c

j,i 6=P d
j,i. In contrast

with the ideal settings, a subsequent charging and discharging PTU no longer ends up at
the same SoC at which was started. With ideal settings and equal charging and discharging
power values, P c

j,iη
c
j,i−P d

j,i
1
ηdj,i

=0, yet this does not hold for more realistic settings and in fact

when using ηdj,i<1 the result would be, P c
j,iη

c
j,i−P d

j,i
1
ηdj,i

<0. As such, new viable SoC values
arise over time with respect to the ideal settings.

For clarity, only the first three steps are shown in the realistic MPC SoC envelope example in
Figure 2-3. One can see the new viable SoC values arise over time, just below previous viable
SoC settings, since typically ηdj,i still has values between 0.8−0.95. The orange dotted line is
the tight set for the MPC horizon. The blue shaded area is unreachable in this example for
realistic settings. For the argument of clarity, the simplified MPC SoC envelope will be used
for further visualizations.

The dynamics of the system, (2-8), incorporate this difference in behavior between ideal and
more realistic settings, therefore the MPC SoC envelope can be defined using these dynamics.
Based on the current values of E0

j,i, E
MPC,ref
j,i , the MPC SoC envelope can be formed by

calculating the respective diagonal slopes of the envelope. For the top of the envelope, starting
at E0

j,i the energy flexibility grows towards Emax
j,i with EMPC,min,slope

j,i (k+1), until it reaches
Emax
j,i . On the bottom of the envelope, EMPC,min,slope

j,i (k+1) starts at E0
j,i and decreases until

Emin
j,i is reached. On the bottom right, EMPC,ref,slope

j,i (k+1) denotes the slope with which the
SoC needs to rise, such that EMPC,ref

j,i at kdepj,i +1 is met. Since SoC predictions are constrained,
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2-1 Formulation of the Optimization Problem of the System 15

Figure 2-3: Realistic MPC EV SoC envelope, with new viable SoC levels arising over time
SoC envelope with possible SoC values for the first three steps. The envelope can be found when a realistic

discharging efficiency is used, i.e. ηdj,i<1, or different values for charging and discharging are used, i.e.
P c

j,i 6=P d
j,i. A prediction horizon of N=9 PTUs is used.

k+1 is used and the three slopes are defined as,

EMPC,min,slope
j,i (k+1) = E0

j,i−τ(k+1−karrj,i )P d
j,i

1
ηdj,i

∀k∈Nj,i

EMPC,max,slope
j,i (k+1) = E0

j,i+τ(k+1−karrj,i )P c
j,iη

c
j,i ∀k∈Nj,i

EMPC,ref,slope
j,i (k+1) = EMPC,ref

j,i +τ(k+1−kdepj,i )P c
j,iη

c
j,i ∀k∈Nj,i.

(2-9)

Using these slopes, the bounds on the energy flexibility for an EV within the horizon are
defined by,

EMPC,min
j,i (k+1) = max

(
EMPC,min,slope
j,i (k+1), Emin

j,i , E
MPC,ref,slope
j,i (k+1)

)
∀k∈Nj,i

EMPC,max
j,i (k+1) = min

(
EMPC,max,slope
j,i (k+1), Emax

j,i

)
∀k∈Nj,i

(2-10)

which constrain the value of Ej,i(k+1) as,

EMPC,min
j,i (k+1) ≤ Ej,i(k+1) ≤ EMPC,max

j,i (k+1) ∀k∈Nj,i (2-11)

The set containing the EV energy flexibility options within the MPC horizon for step k+1 is
then defined as,

EMPC
j,i (k+1)={Ej,i(k+1) | Ej,i(k+1)=Ej,i(k)+Bj,iuj,i(k),

EMPC,min
j,i (k+1)≤Ej,i(k+1)≤EMPC,max

j,i (k+1) and
Ej,i(karrj,i )=E0

j,i ∀uj,i(k)∈Uj,i(k), ∀k=Nj,i}.

(2-12)

for which holds that the MPC SoC envelope will always be a mathematical subset of the
overall SoC envelope of an EV.
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16 Centralized Model Predictive Control

Global Constraints

The global constraints affect the available resources for the subsets and represent the conges-
tion management constraints. Each subset represents a low-end congestion point (e.g. a low
voltage station or distribution line) and combinations of subsets can represent a congestion
point higher up in the physical architecture (e.g. a medium voltage station), see Figure 1-4.
The matrix ΛCM

k consists of the prediction of activated constraints for step k, in which both
single subsets as combinations of subsets can be constrained and the vector PCM

k consists of
the respective power values by which the combination is constrained. The vector Uk is the
combination of all binary input vector for step k and the block diagonal matrix ΦCM

k consists
of the power values related to Uk, with a row per subset. The detailed definitions of these
variables are given in Appendix A and omitted here for brevity. The global constraints for a
single time step k can be jointly represented as,

ΛCM
k ΦCM

k Uk ≤ PCM
k . (2-13)

For example, in an environment with two subsets, with respectively one and two EVs, of
which both the sum of the two subsets is constrained by PCM

k (1) and the first subset is also
constrained by PCM

k (2), then for time step k, this results in,

[
1 1
1 0

]
︸ ︷︷ ︸

ΛCM
k

[
P c

1,1 −P d
1,1 0 0 0 0

0 0 P c
2,2 −P d

2,2 P c
2,3 −P d

2,3

]
︸ ︷︷ ︸

ΦCM
k



uc1,1
ud1,1
uc2,2
ud2,2
uc2,3
ud2,3


︸ ︷︷ ︸

Uk

≤
[
PCM
k (1)
PCM
k (2)

]
︸ ︷︷ ︸

PCM
k

(2-14)

Cost Function

The power scheduler receives the internal buy and sell price forecasts, respectively pb(k) and
ps(k), for all k∈N from the trading agent. Each EV wants to minimize its cost of charging
and the cost function of the aggregator is simply the summation of all the individual charging
costs from all EVs. The charging cost of a single EV is calculated as the summation of its
costs of charging minus the revenues from discharging. The cost Jj,i for a single EV connected
to congestion point j is then

Jj,i=
∑

k∈Nj,i

fTj,i(k)uj,i(k), (2-15)

in which the EV cost vector fj,i(k) is defined as,

fTj,i(k)=
[
τP c

j,ip
b(k) −τP d

j,ip
s(k)

]
(2-16)

where τ is the duration of a PTU and P c
j,i and P d

j,i are the charging and discharging power
respectively. As a result, the cost function of the power scheduler can be written as,

minimize
∑
k∈N

Nj∑
j=1

∑
i∈Ij(k)

fTj,i(k)uj,i(k). (2-17)
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Centralized MPC Optimization Problem

To simplify the notation, Appendix A presents the detailed derivation in which all variables
are joined over the prediction horizon, over all the subsets and all EVs. The input vector
containing all binary variables over the whole prediction horizon becomes U. All local con-
straints (2-5), (2-8) and (2-11) are joined and rewritten using substitution, such that they
can be written as constraints on the input vector, which is presented in set notation as U∈U .
All global constraints (2-13) are joined and can be written as ΛCMΦCMU≤PCM and all cost
vectors are combined such that they can be written as f . The global constraints will be left
out of the set U to keep a clear distinction between the local and global constraints. Using
these more compact definitions, the CMPC optimization problem, solved at each sample time
and with a limited horizon of N PTUs, can be formulated as,

minimize
U

fTU

s.t. U∈U
ΛCMΦCMU≤PCM

(2-18)

The cost related to the solution of the optimization problem for the system is also referred
to as the performance. Optimal performance is achieved when the cost cannot be further
minimized for the current sample time.

2-2 Conclusions

In this chapter, the MPC optimization problem of the system is defined in detail as large
scale Integer Linear Programming problem (ILP), using binary inputs to represent the fixed
charging and discharging rates in (2-18). The local constraints are those related to the
individual EVs and put in set notation for brevity. The global constraints are those provided
by the trading agent, related to the network. In (2-14), an example is given on how multiple
congestion management constraints can be enforced on single subsets or combinations thereof.
The energy flexibility MPC SoC envelope has been introduced for a single EV, for both a
simplified and more realistic setting in Figure 2-2 and Figure 2-3 respectively.

Although the derived problem in (2-18) can be easy to solve conceptually, it will encounter
an enormous computational cost for large scale systems, i.e. for a large fleet of EVs. This
motivates the aforementioned goals, as discussed in Chapter 1, to develop the two coordinated
distributed approaches, which will be presented in the following chapters.
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Chapter 3

Distributed Model Predictive Control
using Resource Allocation

In this chapter, a Distributed Model Predictive Control with Resource Allocation (DMPC-RA)
algorithm is developed, to solve the power scheduling problem defined in Section 2-1. The
DMPC-RA architecture is a multi-agent MPC formulation for integer input systems with
limited information sharing between nodes with feasible iterations, approaching the global
optimal system performance over time. It comprises of a coordinator role and multiple MPCs,
each responsible for the control of one subset.

The communication structure of the developed DMPC-RA algorithm is shown in Figure 3-1.
The coordinator optimizes the resource allocation, based on limited information from the
subset MPCs. The resource allocation represents the amount of resources made available
to each subset, represented by the auxiliary variable γ. Subsequently, the subset MPCs
optimize the power schedules for their Electric Vehicles (EVs), using the allocated resources.
Since only limited information is available to both the coordinator and subset MPCs, the
resource allocation coordination algorithm is solved over a number of iterations such that in
each following iteration, resources can be shifted from one subset to another to improve global
system performance.

The aim is to achieve global optimal system performance. Yet, due to the discrete jumps in
the behavior of the system, it is in general very hard to reach global optimality in a distributed
setting, especially when active network constraints are applied and only feasible iterations are
used. The goal of this chapter is to derive the DMPC-RA algorithm such that global optimal
system performance is approached for an increasing number of iterations. The coordinator
only has information on a high-over level, as such it has no detailed information about any of
the EVs. At the start of each sampling time, the trading agent provides the coordinator with
a forecast of activated network constraints, i.e. the coupling between subsets ΛCM and the
vector of corresponding maximum values PCM. The coordinator is set with the responsibility
to ensure these global constraints are met.
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20 Distributed Model Predictive Control using Resource Allocation

Figure 3-1: Communication structure of the developed DMPC-RA algorithm

The subset MPCs only have local information and have availability over the price signals pb
and ps, such that they can optimize the power schedules of the EVs within their subset and
minimize their operational cost.

Given an initial resource allocation, represented by γj for each subset j, the subset MPCs
solve their optimization problem. Subsequently, they let the coordinator know to what extent
they would benefit from extra resources, represented by ψj and their current cost function
value, represented by Jj . The coordinator then evaluates if the global system performance
has improved and calculates a new resource allocation.

The rest of this chapter is organized as follows. First, an overview of the decomposition
method is discussed in Section 3-1. In Section 3-2, the rationale and challenges in resource
allocation for binary input systems are discussed. Furthermore, the section presents the
derivation of the communicated variables γj ,ψj and the necessary iterative procedures to
approach global optimal performance. In Section 3-3 the combined algorithm for coordinator
and subset MPCs is presented. To conclude, Section 3-4 presents the conclusions of the
chapter.

3-1 Decomposing the Optimization Problem of the System

To use a distributed MPC architecture, the optimization problem defined (2-18) has to be
decomposed. Since the dynamics, cost functions and local constraints are defined per EV,
only the global constraints have to be decoupled. The decoupling of the global constraints is
obtained by introducing the auxiliary scalar variable γj , representing the maximum available
resources for subset j. Given γj , each subset MPC j will optimize its power schedule, while
not using more than the allocated resources.
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3-1 Decomposing the Optimization Problem of the System 21

The iteration procedure allows for the shifting of resources from one subset to another, such
that the global cost is decreased. The coordinator is responsible for calculating the optimal
resource allocation and assesses the global performance. Let z be the iteration counter.
As defined previously, ΛCM

k and PCM
k represent the coupling between subsets and their con-

straining values for k respectively. Let γj(k) be defined such that,

ΛCM
k


γj=1(k)
γj=2(k)

...
γj=Nj (k)

 = PCM
k ∀k∈N

γj(k) ≥ 0 ∀j,∀k∈N .

(3-1)

which will be jointly referred to as the decoupled global constraints in the following. As a
result of (3-1), the available resources PCM

k will always be divided over the subset MPCs,
which can locally decide whether to make use of these resources or not. The subset MPCs
only have information on their own γj(k) over the horizon, represented as γj . While the
coordinator has knowledge over the entire resource allocation, denoted by γ. The resource
allocation vectors are defined as,

γ=


γk=0
γk=1
...

γk=N−1

 , γk =


γj=1(k)
γj=2(k)

...
γj=Nj (k)

 ,γj=


γk=0,j
γk=1,j

...
γk=N−1,j

 . (3-2)

The combined vector for the overall system γ, will be referred to as the resource allocation,
i.e. the division of all available resources over all subsets for the entire horizon. The vector
γj , will be referred to as the allocated resources for subset j. The set of feasible γj(k) for time
step k, G(k), is defined as,

G(k) = {γj(k) | γj(k) ≥ 0 and ΛCM
k γk = PCM

k , ∀j,∀k∈N} (3-3)

Subset MPC Problem

To have a compact notation, the subset variables are combined over the horizon, with the
detailed definitions presented in Appendix A. The resulting input vector is represented as
Uj . It is constrained to lie in the set Uj , which represents all local EV constraints. The EV
cost vectors are joined in fj and the power values corresponding to Uj , are joined in ΦCM

j .
When reviewing the centralized problem in (2-18), and as a result of (3-1), the effect of the
decoupled global constraints on the subset input vector Uj is given as,

ΦCM
j Uj ≤ γj (3-4)

which will be left explicit as it is still related to the network and not individual EVs. The
subset MPC optimization problem can then be formulated as,

Jj(γj) = minimize fTj Uj

s.t. Uj ∈ Uj
ΦCM
j Uj ≤ γj

(3-5)
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with Jj(γj) as the cost for a given amount of γj resources and in which ΦCM
j Uj gives the

amount of resources consumed by subset j per step in the horizon as a column vector.

Coordinator Problem

The aim is to achieve global optimal system performance. Therefore, the related overall
control problem can be defined by aggregating the subset control problems and including the
decoupled global constraints in (3-1) and using (3-5), the coordinator problem can be defined
as,

minimize
γ

Nj∑
j=1

Jj(γj)

s.t. ΛCMγ = PCM

γ ≥ 0

(3-6)

which also holds for multiple congestion management constraints, under the mild condition
that ΛCM and PCM allow ΛCMγ = PCM. The coordinator only has limited information about
the subset MPC problems, which is limited to the value of the cost function Jj(γj) and an
indication whether the subset would benefit from extra resources. The iterative procedure to
approach global optimality, referred to as resource allocation coordination, is presented in the
next section.

3-2 Resource Allocation Coordination with a Single Global Con-
straint

This section will introduce the general rationale of the resource allocation coordination archi-
tecture. For clarity the derivations will be given for a single overall global constraint, provided
by the trading agent, as a row vector for each step k, i.e.

ΛCM
k ∈ {0, 1}1×Nj ∀k∈N . (3-7)

Furthermore, for now, it is assumed the coordinator is able to find feasible resource allocations
γzj , for all j and z.

3-2-1 Primal Decomposition

First, inspiration is found in the field of convex optimization. Given a convex problem, with
continuous input signals, the decomposition as presented in Equations (3-1), (3-5) and (3-
6) is commonly known as primal decomposition. In primal decomposition, the coordinator
problem can be solved efficiently using a subgradient method. This is a simple iterative
method for solving convex optimization problems. More specifically, given a convex problem
with decision variable γ, classical subgradient methods search for the solution to the problem
by using the following iteration:

γz+1 = Π (γz−ξzh(γz)) , (3-8)
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where z is the iteration step, h(γz) denotes a subgradient of the objective function of the
problem at γz, ξz denotes the step size at z and Π(·) denotes the projection onto the con-
strained solution space. For convex problems it can be derived that in (3-5), a subgradient of
Jj(γj) for step k is given by −λj(k), with λj(k) as the Lagrangian Multiplier corresponding
to the decoupled global constraint for step k, given as ΦCM

k,j Uk,j ≤ γj(k) [12, 8]. In particular
the subgradient method is given as,

γz+1
j (k) = ΠG(k)

γzj (k)+ξz
λzj (k)− 1

Nj

Nj∑
h=1

λzh(k)

 , ∀j (3-9)

where ΠG(k) is the projection onto G(k), such that for all iterations (3-1) holds. ξz is a
diminishing step size that satisfies,

ξz > 0, lim
z→+∞

ξz = 0,
+∞∑
z=1

ξz = +∞,
+∞∑
z=1

(ξz)2 < +∞ (3-10)

to guarantee, for a convex problem, the global optimum is found [12].

3-2-2 Resource Allocation for Binary Input Systems

Since the power scheduling problem as defined in (2-18) is not convex but an Integer Linear
Programming problem (ILP), Lagrangian Multipliers are hard to obtain. For that reason,
an alternative has been developed. The following sections will present the design of the
DMPC-RA algorithm for binary input systems. Global optimality cannot be guaranteed
in finite time, but using feasible iterations performance is shown to be approaching global
optimality.

To represent the Lagrangian Multiplier behavior for binary input systems, the auxiliary vari-
able ψj(k) will be used from here on. The main purpose of ψj(k) in this setting is to indicate
how much a subset would benefit from extra resources. In [7],[8, Ch7] a definition for ψj(k) is
presented for use in a DMPC-RA architecture for hybrid systems. Yet, for a linear cost and
linear global constraints, this ψj(k) definition becomes independent of the calculated input
vector. Therefore, it is not suitable for the current setting.

Since no suitable definition for ψj(k) is known for linear cost functions, the following para-
graphs will introduce the criteria which should be met.

Resource Allocation Update Function and Stopping Criterion Analysis

To come up with a good definition for ψj(k), first, the update function for the resource alloca-
tion and stopping criterion are presented and analyzed. The update function for the resource
allocation as presented in (3-9) can be used, yet now with ψj(k) instead of a Lagrangian
Multiplier. The update function for γz+1

j (k) then becomes,

γz+1
j (k) = ΠG(k)

γzj (k)+ξz
ψzj (k)− 1

Nj

Nj∑
h=1

ψzh(k)

 . (3-11)
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24 Distributed Model Predictive Control using Resource Allocation

A common stopping criterion in resource allocation algorithms is,

∑
k∈N

Nj∑
j=1

∣∣∣ γz+1
j (k)−γzj (k)

∣∣∣ < ε, (3-12)

meaning that the absolute value of the change in allocated resources is strictly smaller than
the predefined error tolerance ε. To assess how this influences ψzj (k), assume the projection
operator is inactive, i.e. a feasible γz+1

j (k) is found when the projection operator is omitted.
Then, the stopping criterion can be rewritten as,

∑
k∈N

Nj∑
j=1

∣∣∣∣∣∣ ψzj (k)− 1
Nj

Nj∑
h=1

ψzh(k)

∣∣∣∣∣∣ < ε

ξz
. (3-13)

This stopping criterion only holds if all individual ψzj (k) are close enough to the system
wide average, given as 1

Nj

∑Nj

j=1 ψ
z
j (k). If this happens it means that all subsets are equally

disadvantaged. Therefore, ψzj (k) should be defined such, that the difference, between ψzj (k)
and the system wide average, converges to zero, only when the system approaches the global
optimal solution.

Globally Unconstrained Solution

When the decoupled global constraint, ΦCM
j Uj ≤ γj , is omitted in the subset MPC problems

and infinite resources are assumed, then a direction and distance between the current solution
and the globally unconstrained solution can be found, as is done in [7]. Then, the free cost
J free
j , and input vector Ufree

j , are defined as,

J free
j = minimize

Uj∈Uj

fTj Uj

Ufree
j = arg minimize

Uj∈Uj , fT
j Uj=J freej

∑
i∈Ij

(
T ref
j,i

) (3-14)

in which T ref
j,i is the time it takes for EV i to reach EMPC,ref

j,i . Since multiple input vectors
might result in the same free cost, the Ufree

j is defined for which the related power schedules
of all EVs reach their reference value the fastest. Note that J free

j and Ufree
j are independent

of z and as such only need to be calculated once.

Let U free
k,j be part of Ufree

j for step k, then when all subsets are combined, U free
k is defined as,

U free
k =

[
(U free

k,j=1)T (U free
k,j=2)T . . . (U free

k,j=Nj
)T
]T
. (3-15)

Then ΦCM
k U free

k gives the vector with the optimal free resource usage for step k. In general,
when a single global constraint is used, three cases can be defined:

1. ΛCM
k ΦCM

k U free
k < PCM

k

2. ΛCM
k ΦCM

k U free
k = PCM

k

3. ΛCM
k ΦCM

k U free
k > PCM

k
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3-2 Resource Allocation Coordination with a Single Global Constraint 25

In the first and second case a resource allocation can be found, such that ΦCM
k,j U

free
k,j ≤ γzj (k)

for all j. In the first case, the flexibility available to reach this resource allocation is defined
as PCM

k −ΛCM
k ΦCM

k U free
k . Yet, in the second case no such flexibility is available. The third case

occurs when active congestion management constraints are applied and resource consumption
needs to be shifted to other steps within the horizon, potentially resulting in higher operational
costs.

Representing the Lagrangian Multiplier behavior

First, if ΦCM
k,j U

free
k,j ≤ γzj (k), the corresponding ψzj (k) is set equal to 0 by definition, as the free

input vector U free
k,j is attainable for that step k, as done in [7]. If this holds for all k∈N , then

the decoupled global constraints do not pose any restriction in this iteration for this subset.
For this case, the optimal input vector is Uz,∗

j = Ufree
j and ψzj (k)=0 for all k.

Then, to summarize, the main criteria for a suitable ψzj (k) definition include:

1. Represent how much a subset would benefit from extra resources

2. Depend on the calculated input vector Uz
j

3. Converge to the system wide average, only when the global optimal solution is ap-
proached

To satisfy the first criterion, ψzj (k) will be calculated in the same units as the cost function,
by using the cost vector. Furthermore, ψzj (k) will be set to 0 by definition if ΦCM

k,j U
free
k,j ≤ γzj (k)

and is defined with ψzj (k)≥0. The second criterion is met by using the difference between
U free
k,j and U zk,j . To conclude, the third criterion is satisfied by normalizing to a 0−1 scale.

Let the non-normalized version of ψzj (k) be noted as ψ̂j
z(k), which is defined as,

ψ̂j
z(k)=

{
0, if ΦCM

k,j U
free
k,j ≤ γzj (k)

max(0, fTk,j(U free
k,j −U zk,j)) if ΦCM

k,j U
free
k,j > γzj (k) (3-16)

with fk,j as the cost vector related to k and j. If ΦCM
k,j U

free
k,j > γzj (k) and fTk,j(U free

k,j −U zk,j)>0,
then the subset will benefit from extra resources.

Let ψ̂j
z be the vector joining ψ̂j

z(k) over the horizon, defined as,

ψ̂j
z =

[
ψ̂zj=1(k=0) ψ̂zj=1(k=1) . . . ψ̂zj=1(k=N−1)

]T
. (3-17)

then the final vector ψzj is found by normalizing with respect to the largest entry in ψ̂j
z. The

vector ψzj is defined as,

ψzj = 1
max

(
ψ̂j

z
)ψ̂jz. (3-18)

such that all values in ψzj are normalized to a 0−1 scale. This normalization also enables the
resource allocation to converge to a solution in which all subsets are equally disadvantaged.
Other normalization options have been investigated, the presented version has shown the best
results.
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26 Distributed Model Predictive Control using Resource Allocation

Initial Resource Allocation

A simple initial resource allocation, denoted as γz=1
j , can be to equally divide the available

resources over the subsets. Yet, this choice might lead to an increased risk of an infeasible
first iteration, since the calculated schedules at the previous sample time might not be feasible
anymore.

Warm starting γz=1
j is a better choice generally, based on the best iteration from the previous

sample time. This ensures that all calculated schedules in the previous sample time are still
feasible. Yet, the resources for k=N−1 still need to be divided. Let γz=1

j be defined as,

γz=1
j =

[(
γbest,prevj (k=1:N−1)

)T 1
Nj

PCM(k=N−1)
]T

, ∀j (3-19)

in which γbest,prevj represents the allocated resources for subset j for the best global solution,
found in the previous sample time. Since the current horizon has moved one step since the
last sample time, only the second until the last entry are used from γbest,prevj , i.e. k=1:N−1.
For the last step in γz=1

j , an equal division is used.

3-2-3 Updating the Best Resource Allocation

To enable a good any time MPC algorithm, the evaluation of the global performance will
be monitored. The coordinator keeps track of the global performance and the associated
resource allocation. Due to the discrete jumps in the system behavior, the global cost does
not necessarily monotonically decrease within the iteration procedure. It may present a rise in
cost before it decreases. This is expected system behavior and directly related to the discrete
jumps. Yet, to be able to return to the best iteration so far, the coordinator will save and
update the best iteration as zbest and the best allocated resources as γbestj for all j.

To compute the global system performance, all MPCs send the value of their optimal cost
function Jz,∗j (γzj ), related to the allocated resources γzj , to the coordinator at the end of
each iteration. Subsequently, the coordinator evaluates if the iteration resulted in a better
global performance than the previous best iteration. If

∑Nj

j=1 J
z,∗
j (γzj )<Jbest, then a new

best resource allocation has been found and the variables zbest, Jbest and γbestj for all j are
updated.

3-2-4 Dealing with Infeasible Resource Allocations

An infeasible resource allocation is any resource allocation for which one or multiple MPCs
are not able to find feasible power schedules for the EVs in their subset. This is a result of the
binary input model, for which discrete jumps occur in the behavior of the system. A resource
allocation is only infeasible if one or multiple MPCs have too little resources available for
it to find feasible power schedules for all connected EVs. I.e. the local constraints cannot
be satisfied. As discussed previously, it is assumed the global constraints allow for feasible
resource allocations to be found, as these are enforced by the trading agent.
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If a subset MPC is not able to find feasible power schedules for all EVs in iteration z, it will
set the optimal cost Jz,∗j (γzj ), associated with the allocated resources γzj , to infinity, i.e.

Jz,∗j (γzj ) = ∞, if γzj is an infeasible resource allocation for MPC j. (3-20)

Then, a distinction is made between infeasible initial resource allocations, i.e. γ0
j is infeasible,

and later iterations. If an infeasible initial resource allocation occurs, the coordinator calcu-
lates a new resource allocation in which more resources are allocated to the infeasible subset
until this results in a feasible initial resource allocation. If an infeasible resource allocation
occurs during the iteration process, the coordinator returns to the best known feasible itera-
tion zbest and reuses the associated allocated resources γbestj for all j. Due to the diminishing
step size a different result will be calculated for the next iteration

3-3 Overall Distributed Model Predictive Control with Resource
Allocation Algorithm

For the numerical experiments, the coordinator and subset MPCs problems are joined in one
algorithm, see Algorithm 1. The steps performed by the coordinator are indicated with C
and those by a lower level subset MPC with L.

3-4 Conclusions

This chapter provides the detailed derivation of the DMPC-RA algorithm. The algorithm
comprises of a coordinator role and multiple MPCs, each responsible for the control of one
subset. The presented coordinator in this chapter is able to handle only one global constraint
per step k. If a small extension is applied, the algorithm will be able to deal with multiple
global constraints, this is part of the proposed future work.

The following conclusions can be drawn:

• The developed DMPC-RA algorithm will approach global optimal performance for an
increasing number of iterations, in which the subset MPCs only have local information.

• The DMPC-RA algorithm uses feasible iterations and can be stopped at any time.

• The proposed method to converge to the global optimal performance works for the
developed DMPC-RA algorithm, i.e. the ψj definition for binary input systems with a
linear cost function.
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Algorithm 1 DMPC-RA algorithm for problems with binary variables and a single global
constraint, open loop setup.

Require: ΛCM,PCM,γbest,prevj , pb, ps, N, ε, zmax, ξ0, αd and Uj , Ij for all j
1: Set initial values
2: C: Set z←0, ξz←ξ0, Jbest←∞

3: C: Set γz+1
j ←

[(
γbest,prevj (k=1:N−1)

)T 1
Nj

PCM(k=N−1)
]T

for all j

4: C: Set γzj←γz+1
j +2ε for all j

5:
6: Start iteration loop
7: while

∑Nj

j=1 |γ
z+1
j −γzj | > ε || z ≤ zmax do

8: C: Set z←z+1 and send γzj to the subset MPCs
9:

10: Solve subset MPC problems
11: for j=1:Nj do
12: if z=1 then
13: L: Solve J free

j = minimize
Uj∈Uj

fTj Uj

14: L: Solve Ufree
j = arg minimize

Uj∈Uj , fT
j Uj=J freej

∑
i∈Ij

(
T ref
j,i

)
15: end if
16: L: Solve Uz,∗

j =arg min
Uj∈Uj ,ΦCM

j Uj≤γz
j

fTj Uj with associated cost Jz,∗j (γzj )

17: L: Update ψzj using (3-16)
18: L: Save Uz,∗

j and send ψzj , J
z,∗
j to the coordinator

19: end for
20:
21: C: Update ξz= ξz−1

αd

22: if
∑Nj

j=1 J
z,∗
j (γzj )=∞ then

23: if z=1 then
24: C: Set z←z−1
25: C: Calculate new γzj for all j, based on the infeasible subsets, i.e. Jz,∗j (γzj )=∞
26: else
27: C: Update γz+1

j = ΠG(k)
(
γbestj +ξz

(
ψz

best
j − 1

Nj

∑Nj

h=1ψ
zbest
h

))
for all j

28: end if
29: else
30: Update best iteration
31: if

∑Nj

j=1 J
z,∗
j (γzj )<Jbest then

32: C: Update Jbest =
∑Nj

j=1 J
z,∗
j (γzj ), zbest = z and γbestj = γzj for all j

33: end if
34: Solve coordinator problem for next iteration
35: C: Update γz+1

j = ΠG(k)
(
γzj+ξz

(
ψzj− 1

Nj

∑Nj

h=1ψ
z
h

))
for all j

36: end if
37: end while
38: C: Let local controllers know zbest has best global result
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Chapter 4

Hierarchical Model Predictive Control
using Virtual Batteries

In this chapter the developed Hierarchical Decentralized Model Predictive Control (HDe-MPC)
algorithm to solve the power scheduling problem stated in Section 2-1 is introduced. It com-
prises of a single high-level MPC and several lower-level MPCs, one for each subset. The
high-level controller solves a system wide MPC optimization problem based on aggregated
information and provides the lower-level controllers with a reference signal. The power sched-
ules for the individual Electric Vehicles (EVs) are then calculated by the lower-level controllers
by means of a reference tracking setup. Since the lower-level controllers do not communicate
amongst each other, the architecture is called Hierarchical Decentralized MPC. The high-
level controller uses a Virtual Battery (VB) model for each subset to represent the aggregated
behavior of multiple EVs. One of the main merits of the VB model is that the size, i.e. the
number of variables and constraints, is independent of the number of EVs it represents. As a
result, the computational cost for the high-level controller remains equal when multiple EVs
are represented.
The general lay-out of the HDe-MPC architecture is presented in Figure 4-1, in which both the
high-level controller and lower-level controllers act on the same time scale and with the same
prediction horizon N . The high-level controller ensures the global network constraints are
satisfied and the lower-level controllers ensure that all local EV constraints are satisfied and
the operational costs of the subsets are minimized. The detailed information of all individual
EVs is only available to the lower-level controllers.
The high-level and lower-level controllers interact using a reference tracking setup with abso-
lute error minimization scheme. Since the lower-level controllers, control EVs with discrete
jumps in the dynamic behavior, an error is likely to remain. As such, the lower-level con-
trollers provide the high-level controller with a correction vector Pcor

j , which represents the
maximum possible error. The high-level controller uses these correction vectors to create a
contracted version of the available resources and calculates the reference signals Pref

j , based
on these contracted resources.
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30 Hierarchical Model Predictive Control using Virtual Batteries

Figure 4-1: Communication structure of the developed HDe-MPC algorithm

Since the necessary information of local and global constraints is spread out over the system,
the communication protocol looks as follows, at every sample time, three steps are performed:

1. The lower-level controllers update the model and constraint variables for the aggregated
VB models, represented as UVBj , and the correction which needs to be corrected for,
represented as Pcor

j , and send this information to the high-level controller.
2. The high-level controller updates the VB models, calculates the power reference signals

over the prediction horizon Pref
j for all subsets, based on a contracted version of the

available resources, and sends this information to the lower-level controllers.
3. The lower-level controllers track the provided power reference signal using an absolute

error minimization scheme with a penalty on the absolute error and optimize the opera-
tional cost of their associated subset. As standard procedure of MPC, when an optimal
schedule is found, the first input of the determined schedule is sent to the individual
EVs.

The rest of this chapter is organized as follows. First, the VB model is introduced in Section 4-
1 and the update definitions for the aggregated model and constraint variables are presented.
In Section 4-3, the optimization problem for the high-level controller is derived. In Section 4-4,
the optimization problem for the lower-level controllers is derived and the reference tracking
setup is introduced. In Section 4-5, the combined algorithm for the high-level controller
and lower-level controllers is presented and discussed. Section 4-6 presents and discusses the
results of a numerical experiment for the open loop behavior of the high-level controller, to
provide an indication in the use of the VBs. To conclude, Section 4-7 presents the conclusions
of the chapter.
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4-1 The Virtual Battery Model

Since the VB model needs to represent an entire subset of EVs, it is more extensive than the
binary input model used for individual EVs. This section will introduce the details of the
model and explain how the necessary variables are obtained from aggregating the individual
EV variables. All derivations will be given for subset j.

4-1-1 Decision Variables

The model has three decision variables: PVB
j (k), PVB,d

j (k) and δVB,dj (k), respectively the
continuous power reference for subset j, the negative part of the power reference and a binary
variable which is set to 1 when PVB

j (k) is negative. The latter two variables are necessary to
be able to incorporate efficiencies in the VB model and use different values for the buy and
sell prices. The decision variables for VB j for step k are joined in the input vector UVB

k,j as,

UVB
k,j =

 PVB
j (k)

PVB,d
j (k)
δVB,dj (k)

 , (4-1)

with {PVB
j (k), PVB,d

j (k)}∈R and δVB,dj (k)∈{0, 1}. The mutual relations cause the VB model
to be non-linear, since PVB,d

j (k)=δVB,dj (k)PVB
j (k). Yet, this relation can be rewritten as six

linear mixed integer inequalities, as presented in the following section.

Mixed Logical Dynamical System Constraints

In this section, the procedure presented in [13] and [14] is used to rewrite the non-linear
relation PVB,d

j (k)=δVB,dj (k)PVB
j (k) into a combination of six linear mixed integer inequalities.

Assume that PVB
j (k) is upper and lower bounded by PVB,max

j (k) and PVB,min
j (k), respectively.

The variable δVB,dj (k) is a binary variable that is equal to 1 whenever PVB
j (k) is negative.

Therefore,
PVB
j (k) ≤ 0 ⇐⇒ δVB,dj (k) = 1 (4-2)

which is true, if and only if

PVB
j (k) ≤ PVB,max

j (k)
(
1−δVB,dj (k)

)
−PVB

j (k) ≤ −
(
PVB,min
j (k)−ε

)
δVB,dj (k)−ε,

(4-3)

in which the small tolerance ε is needed to transform a strict constraint into a non-strict
constraint, as presented in [13]. Similarly, PVB,d

j (k)=δVB,dj (k)PVB
j (k) can be represented as,

PVB,d
j (k) ≤ PVB,max

j (k)δVB,dj (k)

PVB,d
j (k) ≥ PVB,min

j (k)δVB,dj (k)

PVB,d
j (k) ≤ PVB

j (k)−PVB,min
j (k)(1−δVB,dj (k))

PVB,d
j (k) ≥ PVB

j (k)−PVB,max
j (k)(1−δVB,dj (k)).

(4-4)
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Hence, PVB
j (k) can have both positive and negative values, while PVB,d

j (k) is always a non-
positive real number. As shown above, the relations between the three variables PVB

j (k), PVB,d
j (k)

and δVB,dj (k) can be represented by six linear mixed integer inequalities. These inequalities
can be written as follows,

1 0 PVB,max
j (k)

−1 0
(
PVB,min
j (k)−ε

)
0 1 −PVB,max

j (k)
0 −1 PVB,min

j (k)
−1 1 −PVB,min

j (k)
1 −1 PVB,max

j (k)


UVB
k,j ≤



PVB,max
j (k)
−ε
0
0

−PVB,min
j (k)

PVB,max
j (k)


. (4-5)

In the following, this equation will be compactly denoted as,

AMLD
k,j UVB

k,j ≤ bMLD
k,j , (4-6)

in which both AMLD
k,j and bMLD

k,j depend on the constraints for PVB
j (k). The constraint vari-

ables, PVB,min
j (k) and PVB,max

j (k), are presented and defined in the following sections.

4-1-2 Dynamics of the Virtual Battery Model

This section introduces the dynamics of the VB model. The model uses time dependent
variables to be able to best grasp the properties of the EVs it represents. These properties
change over time due to arrivals and departures. The dynamics of the VB model can be
represented as,

EVB
j (k+1) = EVB

j (k)+τηVB,cj (k)PVB
j (k)+τ

ηVB,cj (k)− 1
ηVB,dj (k)

PVB,d
j (k)

+EVB,arr
j (k+1)−EVB,dep

j (k+1), ∀k∈N ,

(4-7)

with EVB
j (k) as the stored energy in the j-th VB at step k, EVB,arr

j (k+1) and EVB,dep
j (k+1)

represent the increase and decrease respectively of the total stored energy as a result of
the arrival or departure of EVs and ηVB,cj (k) and ηVB,dj (k) are the charging and discharging
efficiencies respectively. The values of ηVB,cj (k) and ηVB,dj (k) are time dependent, because
they depend on the efficiencies of the connected EVs. The value of EVB,arr

j (k+1) is available
from forecast and the value of EVB,dep

j (k+1) represents the summed State of Charge (SoC)
of the EVs which are scheduled to depart in step k. Yet, since it is unknown what the SoC
will be of these departing EVs, the minimum attainable SoC values of the departing EVs are
used.

The dynamics can be compactly rewritten as,

EVB
j (k+1) = EVB

j (k)+BVB
k,j U

VB
k,j +wVB

k,j , ∀k∈N , (4-8)
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with the time-dependent vector BVB
k,j and variable wVB

k,j defined as,

BVB
k,j =

[
τηVB,cj (k) τ

(
ηVB,cj (k)− 1

ηVB,dj (k)

)
0
]
,

wVB
k,j = EVB,arr

j (k+1)−EVB,dep
j (k+1).

(4-9)

4-1-3 Aggregation of the EV Variables per Subset

In each sampling time, the time-dependent model and constraint variables of the VBs are up-
dated by the lower level controllers out of the individual EV parameters and send to the high-
level controller. The time-dependent model variables are ηVB,cj (k), ηVB,dj (k), EVB,arr

j (k+1)
and EVB,dep

j (k+1). The time-dependent constraint variables are EVB,min
j (k+1), EVB,max

j (k+
1), PVB,min

j (k) and PVB,max
j (k).

Because PVB
j (k) is a continuous variable, the constraints on EVB

j (k+1) and PVB
j (k) must

be tight, such that only attainable values for EVB
j (k+1) and PVB

j (k) can be obtained. This
means that the constraints need to be more strict than the SoC constraints used for the
individual EV SoC envelopes. The binary input model only allowed for three discrete power
options per time step, while the VB uses a continuous power signal and as such needs different
constraints. The general form of the constraints on EVB

j (k) and PVB
j (k) is,

EVB,min
j (k+1) ≤ EVB

j (k+1) ≤ EVB,max
j (k+1), ∀k∈N

PVB,min
j (k) ≤ PVB

j (k) ≤ PVB,max
j (k), ∀k∈N

(4-10)

Tight SoC Constraints

As a result of the aggregation, tight constraints on the SoC need to be derived to be able to
represent the subset behavior correctly.

A simple constraint definition can be obtained by summing the individual EV SoC constraints
as,

ÊVB,min
j (k+1)=

∑
i∈Ij(k)

(
EMPC,min
j,i (k+1)

)
∀k∈N

ÊVB,max
j (k+1)=

∑
i∈Ij(k)

(
EMPC,max
j,i (k+1)

)
∀k∈N ,

(4-11)

with EMPC,min
j,i (k+1) and EMPC,min

j,i (k+1) as determined in (2-10). These constraints will be
referred to as static SoC constraints, since they are based on theoretical constraint values,
not incorporating all available information about the current options of an EV. The EV SoC
constraints in (2-10) are not tight as they include regions of the MPC EV SoC envelope which
cannot be reached.

An improved constraint definition can be obtained when the unreachable regions are excluded
and only attainable values are incorporated in the definition. The improved constraint defi-
nitions will be referred to as dynamic SoC constraints. The difference between the static and
dynamic SoC constraints are visualized in Figure 4-2. The static SoC envelope is given by
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34 Hierarchical Model Predictive Control using Virtual Batteries

Figure 4-2: Difference between the static and dynamic MPC EV SoC envelope
The static SoC envelope is given by the solid black lines, the dynamic envelope is given by the dotted orange
lines. The difference between the two envelopes for this example is colored in blue. The red cross is not know

to the controller, but represents the overall Eref
j,i at T dep

j,i .

the solid black lines, the dynamic envelope is given by the dotted orange lines. The difference
between the two envelopes for this example is colored in blue. As such, the blue region repre-
sents the unreachable region. If simple SoC constraints are used, adding all these unreachable
regions for all individual EVs would result in a large mismatch between the VB behavior and
the actual behavior of the EVs in the subset.

The dynamic SoC constraints are defined using the set EMPC
j,i (k+1). This set was defined

in (2-12) and contains all attainable values for the SoC of EV i for step k+1. As such,
EVB,min
j (k+1) and EVB,max

j (k+1) are defined as,

EVB,min
j (k+1)=

∑
i∈Ij(k)

(
min

(
EMPC
j,i (k+1)

))
∀k∈N

EVB,max
j (k+1)=

∑
i∈Ij(k)

(
max

(
EMPC
j,i (k+1)

))
∀k∈N

(4-12)

Tight Power Constraints

As a result of the aggregation, tight constraints on PVB
j (k) need to be derived to be able to

represent the subset behavior correctly.

A simple constraint definition can be obtained by summing the individual EV charging and
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discharging power values as,

P̂VB,min
j (k)=

∑
i∈Ij(k)

(
P c
j,i

)
∀k∈N

P̂VB,max
j (k)=

∑
i∈Ij(k)

(
P d
j,i

)
∀k∈N .

(4-13)

These constraint definitions will be referred to as static power constraints, since they are
based on theoretical values, not incorporating the information about the actual charging and
discharging options of an EV. For example, when the departure time of an EV approaches,
the EV might be forced to keep on charging until his departure. This information is not
incorporated in the static power constraints.

Based on the initial SoC of an EV, it can be determined what charging and discharging options
the EV has over the prediction horizon using the set EMPC

j,i (k). The constraint definitions
taking these available charging and discharging options into account will be referred to as
dynamic power constraints. Within the MPC EV SoC envelope, five non-intersecting sets
can be identified. The dynamic power constraints will be defined based on in which set the
initial SoC E0

j,i is for that sampling time. The five set definitions, using strict inequalities,
are defined as,

E1
j,i={Ej,i(k) | Ej,i(k)∈EMPC

j,i , Ej,i(k)<Eref
j,i and

Ej,i(k)<Eref,slope
j,i (k)+τP c

j,iη
c
j,i, ∀k∈Nj,i}

E2
j,i={Ej,i(k) | Ej,i(k)∈EMPC

j,i \{E1
j,i}, Ej,i(k)<Eref

j,i+τP d
j,i

1
ηdj,i

and

Ej,i(k)<Eref,slope
j,i (k)+τP c

j,iη
c
j,i+τP d

j,i

1
ηdj,i

, ∀k∈Nj,i}

E3
j,i={Ej,i(k) | Ej,i(k)∈EMPC

j,i \{E1
j,i, E2

j,i} and

Ej,i(k)<Emin
j,i +τP d

j,i

1
ηdj,i

, ∀k∈Nj,i}

E4
j,i={Ej,i(k) | Ej,i(k)∈EMPC

j,i and Ej,i(k)>Emax
j,i −τP c

j,iη
c
j,i, ∀k∈Nj,i}

E0
j,i={Ej,i(k) | Ej,i(k)∈EMPC

j,i \{E1
j,i, E2

j,i, E3
j,i, E4

j,i}, ∀k∈Nj,i}

(4-14)

in which the \ is used as set exclusion, i.e. EMPC
j,i \{E1

j,i} is the set of elements in EMPC
j,i but

not in E1
j,i. The variable Eref,slope

j,i (k) was introduced in Equation (2-9). The five sets are
visualized in Figure 4-3.

Let Pmin
j,i (k) and Pmax

j,i (k) denote the minimum and maximum power value attainable for EV
i at step k. Then, if the initial SoC of EV i is within E0

j,i, the dynamic power constraints will
be equal to the static power constraints, i.e. Pmin

j,i (k)=−P d
j,i and Pmax

j,i (k)=P c
j,i for all k∈Nj,i.

Yet, if the the initial SoC of EV i is within one of the other four sets, Pmin
j,i (k) or Pmax

j,i (k)
will be limited. A distinction can be made whether the initial SoC is within E1

j,i or E2
j,i, then

the power options for the remainder of the horizon are affected, or within E3
j,i or E4

j,i, then
only the first time step k=0 is affected. For example, if the initial SoC is within E3

j,i and the
EV charges in the first time step, then the second time step, k=1, allows for all three power
options: charging, idle and discharging.
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36 Hierarchical Model Predictive Control using Virtual Batteries

Figure 4-3: Schematic representation of the set definitions based on initial conditions within the
MPC EV SoC envelope for t=2.

Simplified visualization with the legend indicating the mutually exclusive sets. The red cross is not know to the
controller, but represents the overall Eref

j,i at Tdep
j,i .

The minimum and maximum attainable power values for EV i are defined as,

Pmin
j,i (k) =


−P d

j,i, if E0
j,i∈{E0

j,i, E4
j,i}

0, if E0
j,i∈{E2

j,i, E3
j,i}

P c
j,i if E0

j,i∈{E1
j,i}

k = karrj,i

Pmax
j,i (k) =

{
0, if E0

j,i∈{E4
j,i}

P c
j,i, if E0

j,i∈{E0
j,i, E2

j,i, E3
j,i, E4

j,i}
k = karrj,i

Pmin
j,i (k) =


−P d

j,i, if E0
j,i∈{E0

j,i, E3
j,i, E4

j,i}
0, if E0

j,i∈{E2
j,i}

P c
j,i if E0

j,i∈{E1
j,i}

∀k∈Nj,i\{karrj,i }

Pmax
j,i (k) = P c

j,i ∀k∈Nj,i\{karrj,i }

(4-15)

with which the dynamic MPC VB power constraints can be defined as,

PVB,min
j (k) =

∑
i∈Ij(k)

Pmin
j,i (k) ∀k∈N

PVB,max
j (k) =

∑
i∈Ij(k)

Pmax
j,i (k) ∀k∈N .

(4-16)

The values for PVB,min
j (k) and PVB,max

j (k) can be directly incorporated in the Mixed Logical
Dynamical system (MLD) constraints, which were presented in (4-5)
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Model Variable Updates

The charging and discharging efficiencies of VB j are calculated as the mean weighted average
of the individual EV efficiencies, with the corresponding EV charging and discharging power
values as weights respectively. As such, ηVB,cj (k) and ηVB,dj (k) are defined as,

ηVB,cj (k) =
∑
i∈Ij(k)

(
ηcj,iP

c
j,i

)
∑
i∈Ij(k)

(
P c
j,i

) ∀k∈N

ηVB,dj (k) =
∑
i∈Ij(k)

(
ηdj,iP

d
j,i

)
∑
i∈Ij(k)

(
P d
j,i

) ∀k∈N .

(4-17)

The initial SoC for EVB
j is calculated as the sum of the initial individual EV SoC as,

EVB
j (0) =

∑
i∈Ij(0)

(
E0
j,i

)
. (4-18)

The changes in SoC, EVB,arr
j and EVB,dep

j related to the arrival and departure of EVs respec-
tively, are defined as,

EVB,arr
j (k+1) =

∑
i∈Ij(k)

(
Earr
j,i

)
|k+1=karrj,i ∀k∈N\{N−1}

EVB,dep
j (k+2) =

∑
i∈Ij(k)

(
EMPC,min
j,i (k+1)

)
|k=kdepj,i ∀k∈N

(4-19)

with karrj,i and kdepj,i as the arrival and departure time within the MPC horizon, assumed
known to the responsible lower-level controller and EMPC,min

j,i as defined in (2-10). The value
of EVB,arr

j (k+1) is defined for the next time step as it is used in the calculation of the
prediction of the SoC for the next time step. The value of EVB,dep

j (k+2) is obtained by using

EVB,min
j (k+1)|k=kdepj,i , since kdepj,i indicates the last step for which a control input is calculated

and the VB SoC is only affected after the EV has left, so with two steps delay with respect
to kdepj,i . For example, if an EV has a kdepj,i =0, the last SoC will be predicted for k=1 and this
will affect the VB in step k=2 as only then the EV has departed. As such the first two steps
of the horizon are not affected by departing EVs as this change is already incorporated in the
initial SoC and the set Ij(k). The first two steps of EVB,dep

j are set to 0,

EVB,dep
j (0) =0

EVB,dep
j (1) =0.

(4-20)

4-1-4 Virtual Battery Variable Update by Lower-Level Controllers

At the start of each sampling time, the lower-level controllers update the VB variables and
send the set UVBj to the high-level controller. To this end, the vector UVB

j is defined over the
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38 Hierarchical Model Predictive Control using Virtual Batteries

prediction horizon as,

UVB
j =


UVB
k=0,j

UVB
k=1,j
...

UVB
k=N−1,j

 . (4-21)

The local constraints for VB j consist of the MLD constraints in (4-6) and the constraints in
(4-12), of which the constraints on the power PVB

j (k) can be directly incorporated in the MLD
constraints. These constraints can be written, using substitution for the system dynamics as
presented in (4-8) and (4-18), as constraints on the the vector UVB

j in set notation as,

UVB
j ∈UVBj . (4-22)

The detailed derivation of the set UVBj is presented in Appendix A.

4-2 Decomposing the Optimization Problem of the System

To use a HDe-MPC architecture, the optimization problem defined (2-18) has to be decom-
posed. Since the dynamics, cost functions and local constraints are defined per EV, only
the global constraints have to be decoupled. This decoupling is provided by the high-level
controller, which ensures the global constraints are satisfied and provides the lower-level con-
trollers with a power reference signal over the horizon. The high-level controller uses a VB
model per subset to model the aggregated behavior of the subsets.

The lower-level controllers are set with the responsibility to track the provided power reference
using an absolute error minimization scheme. As such, the lower level controllers only have
local information and due to the discrete jumps, a tracking error will most likely remain.
The maximum value of this error can be approximated beforehand and corrected for using a
resource contraction within the high-level controller. The value of the error which needs to
be corrected for is denoted as P cor

k,j , for subset j at time step k, and can be calculated as,

P cor
k,j = 1

2 max
i∈Ij(k)

P c
j,i. (4-23)

which is calculated by the lower-level controllers. Since the error is minimized, the maximum
value of the error is half of the largest connected charging power P c

j,i. This is a conservative
contraction, especially when multiple subsets are jointly constrained. The vector Pcor

j is
defined by joining P cor

k,j over the horizon,

Pcor
j =

[
P cor
k=0,j P cor

k=1,j . . . P cor
k=N−1,j

]T
. (4-24)

4-3 MPC Optimization Problem Formulation for the High-Level
Controller

This section will derive the high-level controller MPC optimization problem. At the start of
each sampling time, the high-level controller receives an update from the lower-level controllers
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including UVBj and Pcor
j . The input vector Uhigh is defined by joining the VB input vectors

as,

Uhigh=


Uhigh
k=0

Uhigh
k=1
...

Uhigh
k=N−1

 , Uhigh
k =


UVB
k,j=1

UVB
k,j=2
...

UVB
k,j=Nj

 , (4-25)

with UVB
k,j as the input vector for VB j per step k, defined previously.

Given the resource contraction Pcor
j for all subsets, the entries are rewritten as,

P cor
k =

[
P cor
k,j=1 P cor

k,j=2 . . . P cor
k,j=Nj

]T
, (4-26)

and subsequently as,

PCM,cor = ΛCM


P cor
k=0
P cor
k=1
...

P cor
k=N−1

 . (4-27)

The vector PCM,cor consists of the added individual resource corrections, in the same format
as PCM. As such the contracted resource vector PCM,cont is defined as,

PCM,cont=PCM−PCM,cor (4-28)

Using the contracted resource vector, the global constraints can be written as,

ΛCMΦCM,highUhigh≤PCM,cont (4-29)

in which ΦCM,high is used for the coupling between ΛCM and Uhigh.
The cost vector for each VB at step k is defined as,

fhighk,j =

 pb(k)
pb(k)−ps(k)

0

 (4-30)

which is in this form as a result of the MLD reformulation.

Compact Form of the High-Level Controller Problem

To simplify the notation, Appendix A presents the detailed derivation in which the remaining
variables are joined over the VBs and over the prediction horizon, which will be omitted here
for brevity. The cost vectors are joined such that the cost vector for the high-level controller
can be written as fhigh. The VB constraints sets are joined rewritten, such that they can
be written as Uhigh∈Uhigh and the detailed variable definitions for ΦCM,high is provided in
Appendix A. With these compact notations, the high-level controller optimization problem
can be formulated as Mixed Integer Linear Programming problem (MILP) as,

minimize
Uhigh

(fhigh)TUhigh

s.t. Uhigh∈Uhigh

ΛCMΦCM,highUhigh≤PCM,cont.

(4-31)
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The power reference Pref
j for the lower-level controllers will be derived from the resulting

optimal solution of the high-level optimization problem Uhigh,*. The individual power values
per VB j at time step k, PVB

j (k), will be joined per j to form Pref
j as,

Pref
j =

[
PVB
j (k=0) PVB

j (k=1) . . . PVB
j (k=N−1)

]T
. (4-32)

4-4 MPC Optimization Problem Formulation for the Lower-Level
Controllers

This section will derive the lower-level controller MPC optimization problem. Each subset
has a corresponding lower-level controller and some of the derivations and variables presented
in (3-5) can be reused, which are defined in detail in Appendix A.
After the high-level controller has calculated the power reference Pref

j for subset j, the lower-
level controller will minimize the absolute error between this reference and the power inter-
action of the subset. The resulting error is defined as θj and will be penalized and added to
the cost function in order to minimize it. The input vector for subset j is represented by Uj

and was already used in (3-5).

Absolute error minimization

The absolute error vector θj is defined as,∣∣∣ΦCM
j Uj−Pref

j

∣∣∣ = θj , (4-33)

with |·| as the element-wise absolute value and ΦCM
j as used in (3-5), consisting of the charging

and discharging power values corresponding to Uj . This can be rewritten as a combination
of three inequalities as,

ΦCM
j Uj−θj ≤ Pref

j

−ΦCM
j Uj−θj ≤ −Pref

j

θj ≥ 0.
(4-34)

Now, both Uj and θj are optimization variables. They can be put in set notation as,

U low,slackj ={
[
UT
j θTj

]T
| ΦCM

j Uj−θj≤Pref
j , −ΦCM

j Uj−θj≤−Pref
j and θj≥0}. (4-35)

The penalty on the absolute error vector is given as (f slackj )Tθj , this is incorporated in the
cost function of the lower-level controller. The penalty vector f slackj can be used as a tuning
parameter and set by the user. In order to provide reference tracking, it needs to be greater
than the cost vector, i.e. f slackj >fj .

4-4-1 Compact Form of the Lower-Level Controller Problem

To compactly represent both the local EV and the absolute reference tracking constraints,
with a small abuse of notation, they are joined in set notation in U low,finalj as,

U low,finalj =
⋂
{Uj ,U low,slackj }, (4-36)
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with Uj as used in (3-5). Note that both Uj and θj are constrained to lie in the set U low,finalj .
The lower-level controller problem can then be compactly defined as,

minimize
Uj

[
fTj (f slackj )T

] [ UT
j

θTj

]

s.t.
[
UT
j θTj

]T
∈U low,finalj .

(4-37)

4-5 Overall Hierarchical Decentralized Model Predictive Control
Algorithm

For the numerical experiments, the high-level and lower-level control problems are joined in
one algorithm, shown in Algorithm 2. The steps performed by the high-level controller are
indicated with H and those by a lower-level controller with L.

As a result of the discrete jumps and the allowed error in the reference tracking setup, the
lower-level controllers can calculate power schedules which cause the high-level control prob-
lem to be infeasible in the next sampling time. If this happens, the high-level controller
reduces the conservativeness, represented by PCM,cor, and tries again.

Algorithm 2 Overall Algorithm of the Developed HDe-MPC Algorithm
Require: ΛCM,ΦCM,high,PCM, fhigh, Nj and f slackj , fj ,ΦCM

j for all j
1: Update the Virtual Battery variables and constraint tightening
2: for j=1:Nj do
3: L: Calculate UVBj and Pcor

j and send to the high-level controller
4: end for
5:
6: Solve the high-level controller problem
7: H: Derive Uhigh from the Nj individual UVBj sets
8: H: Calculate PCM,cont=PCM−PCM,cor using the Nj individual Pcor

j

9: H: Solve Uhigh,*=arg min
Uhigh∈Uhigh,ΛCMΦCM,highUhigh≤PCM,cont

(fhigh)TUhigh

10: H: If no feasible solution can be found, reduce PCM,cor and try again.
11: H: Derive Pref

j from Uhigh,* for all j and send to lower-level controllers
12:
13: Solve the lower-level controller problems
14: for j=1:Nj do
15: L: Derive U low,slackj from ΦCM

j and Pref
j

16: L: Derive U low,finalj =
⋂
{Uj , U low,slackj }

17: L: Solve Ulow,*
j = arg min

[UT
j θT

j ]T∈U low,finalj

fTj Uj+(f slackj )Tθj

18: end for
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4-6 Numerical Experiment Results and Discussion

The aggregation of EV behavior in VB models results in a loss of information and as a result, a
decrease in performance is observed with respect to the Centralized Model Predictive Control
(CMPC) solution. By developing tight SoC and power constraints performance was already
improved, yet still a mismatch is observed in the numerical experiments. With this mismatch
is referred to the difference in actual behavior of the EVs and the behavior as modeled by
the aggregated VB. Since this mismatch is a direct consequence of the aggregation, the main
challenge is minimize the effect of this mismatch on the system performance. As a result of
this mismatch, the numerical experiments showed that the lower-level controllers were not
able to fully track the provided reference. To ensure that the global constraints are satisfied
in the closed-loop behavior, the penalty vector f slackj was set to have a larger penalty on the
first time step than for the rest of the horizon, such that the power reference for the first time
step could always be tracked within the allowed maximum error P cor

k,j .

MPC Open Loop

Two examples of open loop VB results for the high-level controller can be found in Figure 4-4
and Figure 4-5.

In Figure 4-4, two equally sized subsets are used, of which the results are shown in the two left
figure columns, the overall combined system behavior is shown in the most right column of
figures. From top to bottom is shown, the SoC, the power, the price signals and the number
of EVs present. For each subset, the SoC envelope and power envelope are represented by the
minimum and maximum allowable value. The single overall global constraint PCM, together
with the contracted version used in the optimization, here Pcont for brevity, are shown in the
most right column. With respect to the overall power interaction the level of conservativeness
is very limited in this example, i.e. 12 kW less on 500 kW total.

It is clear that the minimum power value is contracted in the start of the prediction horizon
for both subsets. Therefore, some discharging options have been disabled. In the SoC figures
in the top row, the value changes for each time an EV arrives and departs, for example
resulting in the steep descent in subset 1 around Program Time Unit (PTU) 65 as one can
see in the number of EVs present in the subset. One can also observe that subset 2 clearly is
not allowed to charge to its full potential in the first 15 PTUs, this is a result of the global
constraint PCM, as one can see in the most right column.

The second example, shown in Figure 4-5 presents the open loop results for the same input
data, but then using six subsets and with the same number of EVs distributed among them.
In fact, the first three subsets in the second example form the first subset of the first example
and the same holds for the rest. It can be observed that the overall system behavior is almost
the same. As in the first example, the global constraint does not allow all subsets to fully
charge. To be more specific, the first couple of PTUs subset 6 is not allowed to charge and
subsequently subsets 1, 5 and 2 are not allowed to fully charge respectively, between PTU 55
and 60.
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Figure 4-4: Open loop HDe-MPC high-level controller VB predictions for two subsets with 80
EVs in total, combined with overall system behavior

With Program Time Unit (PTU) abbreviated as time steps
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Figure 4-5: Open loop HDe-MPC high-level controller VB predictions for six subsets with 80
EVs in total, combined with overall system behavior

With Program Time Unit (PTU) abbreviated as time steps
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4-7 Conclusions

In this chapter, the Virtual Battery (VB) model to represent the aggregated behavior of a
subset is introduced and new tight bounds are developed. The developed HDe-MPC algorithm
is derived and the control problems for the high-level and lower-level controllers are presented.
The following conclusions can be drawn from the numerical experiments:

• The HDe-MPC algorithm is able to come up with feasible solutions consistently. Yet,
due to the allowed error in the lower-level controller problems schedules are implemented
which cause the higher-level controller to be infeasible due to the contracted resources.
By decreasing the conservativeness, feasible solutions can then be found.

• As a result of the aggregated information and reference tracking setup, performance is
suboptimal

• The computational cost of the HDe-MPC algorithm scales very well for a growing num-
ber of EVs per subset, since the size of the VB model remains the same. As such, most
of the computational cost can be found in the lower-level controllers.

• The improved VB model is a lot more complex than the binary input model for indi-
vidual EVs, yet provides clear insights in the energy flexibility options of an aggregated
fleet of EVs.

• By further decreasing the mismatch between the subset behavior and the modeled be-
havior by a VB, performance is expected to be improved. Options to decrease the
mismatch can be to extend the VB model such that more information is incorporated.
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Chapter 5

Comparison of Centralized, Distributed
and Hierarchical Architectures

In this chapter, the developed algorithms in Distributed Model Predictive Control with
Resource Allocation (DMPC-RA) and Hierarchical Decentralized Model Predictive Con-
trol (HDe-MPC) architecture will be compared to a Centralized Model Predictive Con-
trol (CMPC) benchmark. Numerical experiments will be performed in which the algorithms
will be used in closed-loop.

The rest of this chapter is organized as follows. In Section 5-1, the algorithms are briefly
described and their general lay-out explained. Section 5-2 presents the performance criteria
by which the algorithms which will be compared. The numerical experiment setup will be
described in Section 5-3, discussing both the data used in the numerical experiments as
the specific tuning parameters for the algorithms. Section 5-4 presents the results of the
numerical experiments and compares the algorithms based on the performance criteria. To
conclude, Section 5-5 summarizes the main insights drawn from the numerical experiments
and comparison.

5-1 Algorithms

The closed loop behavior of the following three MPC algorithms will be compared:

• CMPC with global information. This algorithms is based on a single large controller
that has information on all individual Electric Vehicles (EVs) and all constraints. This
algorithm should therefore lead to the optimal MPC performance with respect to the
optimization problem of the system as defined in (2-18). this provides a performance
benchmark to assess the relative performance of the two developed methods. The CMPC
solves one large Integer Linear Programming problem (ILP).
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• DMPC-RA, with local information and feasible iterations. This algorithm uses an itera-
tive scheme between multiple MPCs and a coordinator in which resources are allocated
to the subset MPCs by the coordinator and the MPCs optimize their problems using the
available resources. At the end of each iteration the MPCs indicate to what extent they
would benefit from extra resources such that the coordinator can calculate an improved
resource allocation. This iteration process continues until the resource allocation up-
date converges or when a maximum number of iterations is reached. Each subset MPC
solver an ILP.

• HDe-MPC, with local information. This algorithm uses a reference tracking setup
in which a high-level controller calculates a power reference signal for the lower-level
controllers, which track this reference using an absolute error minimization scheme. The
high-level controller only has aggregated information available, for which the lower-level
controllers provide an update at the start of each sampling time. Using the aggregated
information, the high-level controller models the behavior of each subset using a Virtual
Battery (VB) per subset and optimizes the VB behavior. The optimized VB power
signal is send to the lower-level controllers, which need to track this reference and
optimize the local operational costs. Both the high-level and lower-level controllers
solve Mixed Integer Linear Programming problems (MILPs).

5-2 Performance Criteria

The control algorithms will be compared based on the following criteria:

Closed Loop Performance

To asses the performance of the architectures the closed loop performance will be used, which
is the cost of the implemented power schedule. The price signals pb, ps are measured in Euro/
kWh and as a result the performance is then calculated in Euros. The close loop performance
of CMPC is calculated as,

JCMPC =
NPTU∑
t=1

fTt,k=0Ut,k=0 (5-1)

with NPTU as the number of time steps (Program Time Units (PTUs)) in the closed-loop
experiments. The closed loop performance of both DMPC-RA and HDe-MPC is calculated
as,

Jmethod =
NPTU∑
t=1

Nj∑
j=1

fTt,k=0,jUt,k=0,j . (5-2)

Note that for HDe-MPC, the penalties corresponding to the reference tracking error or not
incorporated.

To compare the architectures, the performance of the CMPC is used as a benchmark. Let
Jmethod be the cost for a method of interest and JCMPC be the cost for the centralized
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solution for the same input datasets, then the performance gap of the method with respect
to the centralized solution is calculated as,

α=Jmethod−JCMPC

JCMPC . (5-3)

Parallel Computation Time

The parallel computation time is calculated as the summation of the individual computation
times for each sample time t and uses the longest computation time from the subset MPCs,

T par=
NPTU∑
t=1

T coor(t)+
NPTU∑
t=1

max(T sub
1 (t), T sub

2 (t), . . . , T sub
Nj

(t)). (5-4)

in which T coor(t) is the time spent by the coordinator or high-level controller at sample time
t and T sub

j (t) is the time spent by the MPC of subset j at time t. Since the CMPC framework
does not have local controllers, T sub

j (t)=0 for all t and j.

5-3 Numerical Experiment Setup

All numerical experiments are performed on a HP Elitebook 8570w with 8GB of RAM and
an Intel core-i7 processor with a clock frequency of 2.3 GHz. Gurobi is used as solver with
the same settings for all experiments.

All algorithms use a prediction horizon of 5 hours, with the 15 minutes PTU duration, this
means N=20.

5-3-1 Synthetic Environment Data

The EV parameter data are based on realistic values and drawn from random distributions,
as done in [6, 7]. Yet, a distinction is made, such that three types of EVs arise. All EV
parameters are individual draws from the distributions. The price data is also drawn from a
random distribution and the network constraint PCM is calculated based on the drawn EV
charging powers, such that it can be assured the network constraint is active.

Electric Vehicle Parameters

The EV parameters are drawn from uniform distributions. Each EV can be one of three
types, drawn from a uniform distribution, the three types are: High Power EV, Medium
Power EV and Low Power EV. Then, based on the type of EV, the power value is drawn
from an integer uniform distribution, with P c

j,i=P d
j,i, and the final State of Charge (SoC) is

drawn from an integer uniform distribution as Eref
j,i , on which the other SoC parameters are

based. The charging and discharging efficiencies are drawn independently from each other.
The distributions are shown in Table 5-1, with the minimum and maximum value of the
distribution shown.
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Table 5-1: EV Parameter Distributions

P c
j,i=P d

j,i (kW) Eref
j,i (kWh) ηcj,i (-) ηdj,i (-)

High Power EV [8; 12] [60; 65] [0.85; 0.90] [0.85; 0.90]
Medium Power EV [5; 8] [40; 45] [0.85; 0.90] [0.85; 0.90]
Low Power EV [3; 5] [20; 25] [0.85; 0.90] [0.85; 0.90]

Based on Eref
j,i , the rest of the SoC parameters is determined as,

Emax
j,i = 1.1Eref

j,i

Emin
j,i = 0.1Eref

j,i

Earr
j,i = 0.2Eref

j,i

(5-5)

The minimum number of charging PTUs is calculated as,

NPTU, charge = ceil
(
Eref
j,i−Earr

j,i

τP c
j,iη

c
j,i

)
(5-6)

with ceil(.) to round up to the nearest integer. The arrival time T arr
j,i is directly drawn from an

integer uniform distribution. The departure time T dep
j,i is based on the arrival time and draws

from an integer distribution the number of extra connected time steps, to add flexibility. To
have a fair comparison between the algorithms, all EVs need to be fully charged before the
end of the closed loop experiment, as such the maximum value of T dep

j,i is it cut off at NPTU.

T arr
j,i = [1; (NPTU−NPTU, charge)]

T dep
j,i = min(T arr

j,i +NPTU, charge+[2/τ ; 6/τ ], NPTU)
(5-7)

Price Data

The buy price data is drawn from a standard normal distribution, given as randn, with an
added mean value of 0.3Eur/kWh. The sell price is 0.95 times the buy price.

pb(t) = 0.3+.01randn, ∀t
ps(t) = 0.95pb(t), ∀t

(5-8)

Network Data

For the numerical experiments, one single overall constraint is used in which all subsets are
jointly constrained, i.e.

ΛCM
k = [1 1 . . . 1] ∀t. (5-9)

Depending on the type of experiment, the values for PCM
k will be calculated.
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5-4 Numerical Experiments

This section presents the results of two large comparison studies using numerical experiments.
In the first study, the number of subsets is kept constant and the number of EVs are changed,
to compare the behavior of the algorithms for a growing number of EVs and observe trends.
In the second study, the number of EVs is kept constant and the number of subsets is changed,
to study the scaling behavior of the algorithms for a growing number of subset MPCs.

5-4-1 Constant number of subsets, changing number of EVs

A constant number of 5 subsets is used, with the total number of EVs ranging from 50 to 250
EVs, with steps of 50 and denoted as NEV. The EVs are equally divided over the subsets and
for the DMPC-RA algorithm two versions are tested, with the maximum allowed number of
iterations set to 5 and 10. the network constraint PCM

k is provided as a sinusoid with added
average and a random disturbance as,

¯PCM
k = 24

NPTUτ

NEV∑
i=1

 Eref
j,i−Earr

j,i

τ(T dep
j,i −T arr

j,i )


PCM
k (t) = 1.3 ¯PCM

k +0.25 ¯PCM
k sin

(2πτt
24

)
+[−0.25 ¯PCM

k ; 0.25 ¯PCM
k ], ∀t

(5-10)

A total of 10 random draws are performed for each number of EVs, in which no outliers are
observed and all algorithms have completed the experiment. An example for this study is
shown in Figure 5-1, which shows the CMPC results of the first random draw with 50 EVs.
The top plot shows all individual EV SoCs colored by their corresponding subset, the effect of
the three EV types can be observed. The second plot shows the aggregated power interaction
with the network with the used network constraint. The third plot presents the price signals
and the bottom plot shows the number of EVs connected over time, one can observe that
some EVs are connected until NPTU, after that time they have met their SoC reference value.

The overall results of the numerical experiments are presented in Figure 5-2. With in Figure 5-
2a the parallel computation time. It can clearly be observed how the CMPC time grows
quickly for an increasing number of EVs. The computation time of the DMPC-RA algorithm
appears to scale in the same way as CMPC, yet due to smaller problem sizes it and limited
number of iterations it is terminated earlier. The parallel computation times for HDe-MPC
appear to scale linearly and provides the fastest solution for 250 EVs.

To give an indication of the spread in best possible performance, related to the 10 random
draws, Figure 5-2b provides the boxplots representing the spread of the CMPC performance.
As expected one can see that the costs almost scales linearly with the number of EVs present
in the system.

The performance comparison between DMPC-RA and HDe-MPC with the CMPC benchmark
is presented in Figure 5-2c with a logarithmic scale on the y-axis. It can be observed the per-
formance gap between the DMPC-RA and the CMPC algorithm diminishes as the number of
EVs increase. The DMPC-RA version with 10 iterations does show a limited improved per-
formance with respect to the 5 iteration version, yet the difference is small. The performance
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Figure 5-1: CMPC Closed loop numerical experiment result for first random draw with 50 EVs
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gap between the HDe-MPC algorithm with the benchmark remains at approximately 10%,
this can be explained by the mismatch between the aggregated behavior in the VB model
and the actual EV behavior. Due to the aggregation, information is lost.

5-4-2 Constant number of EVs, changing number of subsets

The number of EVs is kept constant in these numerical experiments and they are divided
equally over the subsets. For the DMPC-RA algorithm three versions are tested, with the
maximum allowed number of iterations set to 5, 10 and 25. The network constraint PCM

k

is provided as constant. The available summed maximum charging power over the entire
horizon of the experiment is calculated and multiplied by 0.9. By doing so, it can be ensured
the global constraint will force power consumption to be shifted at the times when most EVs
are connected to the aggregator. Furthermore it still allows the algorithms to find solutions
in reasonable computation time. The network constraint PCM

k is calculated as,

PCM
k (t) = 0.9 max

NEV∑
i=1

P c
j,i

 , ∀t (5-11)

A total of 5 random draws are performed, in which the data for the EVs remains the same
and the EVs are only divided over a different number of subsets. No outliers are observed
and all algorithms have completed the experiment. A detailed example of the benchmark
CMPC algorithm is shown in Figure 5-3 for the first random draw, with 2 subsets. The top
plot represents the aggregated subset power charging and discharging interaction with the
distribution grid, the second plot represents the used price signals and the bottom plot shows
the number of connected EVs per subset.

The overall results of the experiments are shown in Figure 5-4. The top plot, Figure 5-4a
shows the average parallel computation time. The computation time of the CMPC bench-
mark remains constant as expected, since the only difference is that the EVs are divided
over different subsets. Thus it can be clearly observed how the developed algorithms only
outperform the benchmark for growing number of subsets, with respect to the computation
time. It can also be observed how the computation time almost scales linearly with the num-
ber of allowed iterations. Indeed, during the middle of the experiment, when the network
constraint is active, the DMPC-RA algorithm is consistently terminated as it has reached the
maximum number of iterations, while still improving the performance over iterations. From
this observation it can be concluded, that the developed method to determine ψj is a suitable
method.

The second plot, Figure 5-4b shows that due to the growing number of subsets, performance is
decreased for the developed algorithms, while the CMPC performance remains constant. This
is an expected result for the DMPC-RA algorithm, as it has a limited number of iterations
and when more subsets need to negotiate, it will take a larger number of iterations until the
optimal performance is approached. Yet, the HDe-MPC algorithm also presents a decrease
in performance and costs are increased for a larger number of subsets. This is an unexpected
result, since the VBs should be able to represent the subset behavior better for smaller subsets
and as such it was expected the performance would slightly improve for a growing number of
subsets.
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In Figure 5-4c, the performance gap with respect to the CMPC result is presented with a
logarithmic y-axis. Here it can be observed that the red DMPC-RA line for 10 iterations is
not drawn to the data point for 2 subsets. In fact, for this data point, the DMPC-RA had a
lower average cost than the CMPC cost. Although somewhat controversial this can be easily
explained by noting two facts: 1) the CMPC behavior itself is suboptimal due to the limited
prediction horizon and 2) in closed loop the initial conditions for the MPC algorithms over the
numerical experiment will not be the same for the CMPC and DMPC-RA algorithms. In open
loop the CMPC algorithm will always outperform the DMPC-RA algorithm in this integer
setting, causing the CMPC to have different initial conditions in the next time step than
the DMPC-RA algorithm. For this data point, this has been beneficial for the DMPC-RA
algorithm.

5-5 Conclusions

In this chapter the results of the performed numerical experiments are presented and the
algorithms are compared. The following conclusions can be drawn from the numerical exper-
iments:

• All algorithms have shown to be able to come up with feasible power schedules consis-
tently in changing numerical experiment setups.

• The DMPC-RA algorithm shows improving performance for a growing number of it-
erations, approaching the CMPC benchmark performance. The parallel computation
time of DMPC-RA sharply decreases for a growing number of subset MPCs, yet at the
cost of performance. A balance might be found by allowing the DMPC-RA algorithm
to use more iterations, such that parallel computation time is allowed to increase and
performance can be improved.

• The HDe-MPC algorithm shows approximately linear scaling for a growing number of
EVs divided over a constant number of subsets, yet the performance gap with respect
to the CMPC remains at approximately 10%. Further improvements to decrease the
mismatch between the VB model and the actual subset behavior are expected to improve
the performance of the HDe-MPC algorithm.
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(a) Parallel computation time

(b) CMPC Closed loop performance using boxplots
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Figure 5-2: Closed loop numerical experiment results for 5 subsets, with a growing number of
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Figure 5-3: CMPC Closed loop numerical experiment result for first random draw with 120 EVs,
equally divided over 2 subsets,

B.M. Kaas Master of Science Thesis



5-5 Conclusions 57

(a) Parallel computation time

(b) Closed loop performance

(c) Closed loop performance with respect to the CMPC performance

Figure 5-4: Closed loop numerical experiment results for 120 EVs, equally divided over a growing
number of subsets
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Chapter 6

Conclusions and Future Work

6-1 Conclusions

Energy flexibility is necessary in an electricity system to match the instantaneous supply and
demand. Currently the main providers of energy flexibility can be found on the supply side
of the system, yet due to the shift towards renewable energy sources this energy flexibility
will phase out. To be able to maintain the balance, the demand needs to be controlled such
that is able to provide energy flexibility to the system. Electric Vehicles (EVs) are well suited
for this, due to their buffer ability and fast response time. In this thesis the role of EV
aggregator is assumed, such that the aggregator is able to directly control the EVs within his
portfolio. By incorporating spatial information about the distribution of the EVs, congestion
management services can be offered and the options to valorize the energy flexibility of the
fleet are increased.

The work in this thesis has aimed at the development of distributed control algorithms for
a large fleet of EVs to control the power interaction with the network. Due to the binary
charging and discharging behavior of the EVs, a large scale constrained Integer Linear Pro-
gramming problem (ILP) has to be solved online. To this end, the framework of Model
Predictive Control (MPC) has been applied and a Distributed Model Predictive Control with
Resource Allocation (DMPC-RA) algorithm and a Hierarchical Decentralized Model Predic-
tive Control (HDe-MPC) algorithm have been developed, to distributed the control challenge
and potentially decrease the computational time.

Numerical experiments have shown that all tested algorithms are able to come up with feasible
power schedules consistently in changing numerical experiment setups. The two developed
algorithms are compared to a Centralized Model Predictive Control (CMPC) benchmark and
the main conclusions can be summarized as:

• The DMPC-RA algorithm shows improving performance for a growing number of it-
erations, approaching the CMPC benchmark performance. The parallel computation
time of DMPC-RA sharply decreases for a growing number of subset MPCs, yet at the
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cost of performance. A balance might be found by allowing the DMPC-RA algorithm
to use more iterations, such that parallel computation time is allowed to increase and
performance can be improved.

• The HDe-MPC algorithm shows approximately linear scaling for a growing number of
EVs divided over a constant number of subsets, yet the performance gap with respect
to the CMPC remains at approximately 10%. Further improvements to decrease the
mismatch between the Virtual Battery (VB) model and the actual subset behavior are
expected to improve the performance of the HDe-MPC algorithm.

6-2 Future Work

In this section, promising directions for future work will be identified.

Possible improvements options for the DMPC-RA architecture can be found in extending
the coordinator problem, to enable multiple global constraint handling. Moreover, a more
extensive study can be performed to optimize the ψj definition for linear cost functions in
resource allocation problems with binary input models.

To improve the HDe-MPC architecture, one can try to decrease the mismatch between the
aggregated high-level model and actual lower-level behavior. By extending the VB model, per-
formance is expected to be further improved. Furthermore, different communicating strategies
between the high-level and lower-level controllers can be investigated, for example a resource
allocation scheme. This potentially allows the lower-level controllers to have more responsi-
bility and flexibility options, while the global network constraints are still respected.

Energy flexibility on the demand side is not limited to EVs and aggregators are expected to
form a portfolio of appliances with different properties. The challenges in combining these
different types of energy flexibility models, with their corresponding constraints, can be an
interesting direction to pursue. For the current setting, within the framework of subsets,
a study can be performed to incorporate reference tracking and further split the setup such
that energy flexibility options can be valorized even further to provide imbalance management
services for Balance Responsible Parties (BRPs) as well.

One of the main assumptions in this thesis, is that all systems are completely deterministic
and perfect forecasts are available for all variables and signals. Yet, in practice this assumption
does not hold and the reliability of the forecasts is limited. Including stochasticity for the price
signals, network constraints and EV data will enable interesting future research directions.

With respect to a long-term perspective, it is interesting to do more fundamental work towards
finding distributed control methods for hybrid systems with integer variables, that can be
guaranteed to converge to the optimal global performance in finite time. Many real life
applications are best modeled by hybrid systems or binary input models, such as traffic and
electricity networks.
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Appendix A

Detailed Variable Definitions

This appendix provides the definitions of the compact vectors and matrices. For brevity,
all derivations are given for a single sample time t. The horizon counter k will be used as
subscript in the derivation, unless stated otherwise.

A-1 CMPC Definitions

This section will present the detailed definitions such that the Centralized Model Predictive
Control (CMPC) algorithm can be compactly written as,

minimize
U

fTU

s.t. U∈U
ΛCMΦCMU≤PCM.

(A-1)

Input Vector

All local Electric Vehicle (EV) input vectors for k are first joined per subset j, then per step
k, and then over the entire horizon as,

U=


Uk=0
Uk=1
...

Uk=N−1

 , Uk=


Uk,j=1
Uk,j=2

...
Uk,j=Nj

 , Uk,j=


...
uj,i(k)

...

 ∀i∈Ij(k) (A-2)

in which Uk,j contains all uj,i(k) vectors for all EVs in Ij(k), as such, the size of the input
vectors changes over time as EVs arrive and depart.
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Cost Vector

The cost vectors of all individual EVs are combined, such that the cost function of the CMPC
problem can be represented as,

minimize fTU (A-3)

To this end, the individual EV cost vectors for k are first joined per subset, then per step k
and then over the entire horizon as,

f=


fk=0
fk=1
...

fk=N−1

 , fk=


fk,j=1
fk,j=2

...
fk,j=Nj

 , fk,j=


...
fj,i(k)

...

 ∀i∈Ij(k) (A-4)

Local Constraints

When all local constraints are joined and rewritten using substitution, they can be written
as constraints on the input vector as,

U ∈ U (A-5)

where U is formed by,

U = {U | G0U≤w0+E0x(0) and U∈{0, 1}2NEV inst} (A-6)

with the matrices G0, E0 and vector w0 defined subsequently, x(0) as the vector containing
the initial State of Charges (SoCs) of the EVs present within the prediction horizon and
NEV inst as the total number of EVs instances present over the horizon, defined using the
cardinality of the sets Ij(k) as,

NEV inst =
∑
k∈N

Nj∑
j=1
|Ij(k)|. (A-7)

The vector x contains all SoCs of all EVs present over the horizon and is defined in the same
way as U. The constraints on x will be rewritten as constraints on U, using substitution of
the dynamics of the system, which were defined as,

Ej,i(k+1) = Ej,i(k)+Bj,iuj,i(k) ∀k∈N ,∀j,∀i∈Ij(k) (A-8)

which can be joined for all EVs and subsets for each step in the horizon as,

xk+1 = Akxk+BkUk ∀k∈N . (A-9)

Note that due to the arrival and departure of EVs, these vectors and matrices may change in
size and as such are dependent on time. Then let the remaining local constraints,[

1 1
]
uj,i(k) ≤ 1, ∀k∈N , ∀j,∀i∈Ij(k)

EMPC,min
j,i (k+1) ≤ Ej,i(k+1) ≤ EMPC,max

j,i (k+1) ∀k∈N ,∀j,∀i∈Ij(k)
(A-10)
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be rewritten such that all EVs and subsets for each step in the horizon are joined as,

AukUk ≤ buk ∀k∈N
Axk+1xk+1 ≤ bxk+1 ∀k∈N .

(A-11)

In fact, for the construction of E0 it is beneficial to write the state constraints as,

−Sk+1A
x,matrixxk+1 ≤ bxk+1 ∀k∈N , (A-12)

with Sk+1∈{0, 1}2N
EV
k ×2NEV hor indicating which EVs are connected at time step k+1 within

the prediction horizon. The matrix Sk+1 has an identity matrix of size 2 whenever an EV is
present in the corresponding step. Here, NEV hor is the number of EVs present in the entire
prediction horizon and NEV

k is the number of EVs present in time step k+1, defined using
the cardinality of the set Ij(k) as,

NEV
k =

Nj∑
j=1
|Ij(k)|. (A-13)

And since all individual EVs have a minimum and maximum state constraint and state-space
matrix of A=1, their Ax=[−1 1]T are identical and the matrix Ax,matrix is defined as,

Ax,matrix=


Ax 0 . . . 0
0 Ax . . . 0
...

... . . . ...
0 0 . . . Ax

∈{0, 1}2NEV hor×NEV hor
, (A-14)

with 0 as the matrix containing all zeros of appropriate dimensions. The matrix E0 and the
vector w0 can be defined as,

E0=



0
0
...
0

−S1A
x,matrix

−S2A
x,matrix

...
−SNAx,matrix


, w0=



buk=0
buk=1
...

buk=N−1
bxk=1
bxk=2
...

bxk=N


. (A-15)

the matrix G0 is stacked accordingly.

Global Constraints

The global constraints can be written as:

ΛCMΦCMU ≤ PCM (A-16)

The ΛCM matrix provides the coupling between the subsets, the ΦCM matrix provides the
power values of the EVs represented in U, and the PCM vector provides the power values by
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which the combination of subsets are constrained. The ΛCM matrix is defined by diagonally
stacking the coupling matrices for the individual steps in the horizon,

ΛCM=


ΛCM
k=0 0 . . . 0
0 ΛCM

k=1 . . . 0
...

... . . . ...
0 0 . . . ΛCM

k=N−1

 , (A-17)

with ΛCM
k ∈{0, 1}N

CM
k ×Nj as the matrix which represents the combination of subsets which

are jointly constrained and NCM
k as the number of global constraints for k. Then ΦCM and

ΦCM
k are defined as,

ΦCM=


ΦCM
k=0 0 . . . 0
0 ΦCM

k=1 . . . 0
...

... . . . ...
0 0 . . . ΦCM

k=N−1

 ,ΦCM
k =


ΦCM
k,j=1 0 . . . 0
0 ΦCM

k,j=2 . . . 0
...

... . . . ...
0 0 . . . ΦCM

k,j=Nj

 (A-18)

with the row vector ΦCM
k,j defined as,

ΦCM
k,j =

[
. . . P c

j,i P d
j,i . . .

]
∀i∈Ij(k). (A-19)

The PCM vector is defined as,

PCM=


PCM
k=0
PCM
k=1
...

PCM
k=N−1

 (A-20)

in which the column vector PCM
k ∈RNCM

k holds the power values by which the subsets are
constrained.

A-2 DMPC-RA Definitions

The rationale used for the centralized definitions holds as well for the subset DMPC-RA
definitions. Yet, variables are not joined over all subsets, but by first joining the EV variables
per subset and then directly over the horizon. This section will present the definitions as
are used in Chapter 3 such that the subset Model Predictive Control (MPC) problem can be
compactly written as,

minimize fTj Uj

s.t. Uj ∈ Uj
ΦCM
j Uj ≤ γj .

(A-21)
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Input Vector and Cost Vector

The subset MPC input vector Uj is defined per subset by directly joining Uk,j over the
horizon. The same holds for the subset MPC cost vector fj ,

Uj=


Uk=0,j
Uk=1,j

...
Uk=N−1,j

 , fj=


fk=0,j
fk=1,j

...
fk=N−1,j

 (A-22)

with Uk,j and fk,j as previously defined.

Local Constraints

When all local constraints are joined and rewritten using substitution, they can be written
as constraints on the subset input vector as,

Uj ∈ Uj , (A-23)

where Uj is formed by,

Uj = {Uj | G0Uj≤w0+E0xj(0) and Uj∈{0, 1}2N
EV inst
j } (A-24)

with NEV inst
j as the total number of EVs instances present over the horizon within subset j,

defined using the cardinality of Ij(k) as,

NEV inst
j =

∑
k∈N
|Ij(k)| (A-25)

and the matrices G0, E0 and vector w0 are defined in the same way as for the centralized
problem, but then only combined per subset j. For brevity the derivation is omitted.

Decoupled Global Constraints

To obtain the decoupled global constraint formulation,

ΦCM
j Uj ≤ γj , (A-26)

the matrix ΦCM
j is defined by diagonally stacking the row vectors ΦCM

k,j over the horizon, done
per subset j,

ΦCM
j =


ΦCM
k=0,j 0 . . . 0
0 ΦCM

k=1,j . . . 0
...

... . . . ...
0 0 . . . ΦCM

k=N−1,j

 , (A-27)

with ΦCM
k,j and γj as previously defined.
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A-3 HDe-MPC Virtual Battery Definitions

The rationale used for writing the local EV constraints in set notation for the centralized
definitions holds as well for the local Virtual Battery (VB) definitions for the HDe-MPC
algorithm.. This section will present the VB set definition as used in Chapter 4, such that
the local constraints for VB j can be written as,

UVB
j ∈UVBj (A-28)

If all VB constraints are joined over the horizon and rewritten using substitution, they can
be written as constraints on UVB

j for which UVBj is formed by,

UVBj = {UVB
j | G0U

VB
j ≤w0+E0E

VB
j (0)} (A-29)

with the matrices G0, E0 and vector w0 defined in the same way as for the centralized problem,
but then only joined over the prediction horizon. The scalar EVB

j (0) represents the initial
SoC for the VB. The constraints on EVB

j (k+1) will be rewritten as constraints on UVB
j , using

substitution of the dynamics of the system, which were defined as,

EVB
j (k+1) = EVB

j (k)+BVB
k,j U

VB
k,j +wVB

k,j , ∀k∈N , (A-30)

which can be rewritten as,

xVBk+1,j = Ak,jx
VB
k,j +UVB

k,j U
VB
k,j +wVB

k,j , ∀k∈N . (A-31)

Note that due to the arrival and departure of EVs, these vectors and matrices are dependent
on time. Then let the local constraints, be rewritten such that they are joined as,

Auk,jU
VB
k,j ≤ buk,j ∀k∈N

Axk+1,jx
VB
k+1,j ≤ bxk+1,j ∀k∈N .

(A-32)

For brevity the further derivation is omitted.

A-4 HDe-MPC High-Level Controller Definitions

The rationale used for the centralized definitions holds as well for the high-level controller
definitions for the HDe-MPC algorithm, yet using the VB model instead of the binary input
models. This section will present the definitions as are used in Chapter 4, such that the
high-level controller problem can be compactly written as,

minimize
Uhigh

(fhigh)TUhigh

s.t. Uhigh∈Uhigh

ΛCMΦCM,highUhigh≤PCM,cont

(A-33)
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Cost Vector

The cost vector fhigh is defined by joining the individual VB cost vectors fhighk,j as,

fhigh=


fhighk=0
fhighk=1
...

fhighk=N−1

 , fhighk =


fhighk,j=1
fhighk,j=2

...
fhighk,j=Nj

 . (A-34)

Virtual Battery Constraints

The lower-level controllers provide the high-level controller with the sets UVBj for all j, such
that UVB

j ∈UVBj . If joined for all VBs, this is represented as,

Uhigh∈Uhigh (A-35)

Global Constraints

To represent the global constraints as,

ΛCMΦCM,highUhigh≤PCM,cont (A-36)

the matrix ΦCM,high is defined as,

ΦCM,high=


ΦCM,high
k 0 . . . 0

0 ΦCM,high
k . . . 0

...
... . . . ...

0 0 . . . ΦCM,high
k

 , (A-37)

with the constant ΦCM,high
k as,

ΦCM,high
k =


ΦCM,high
k,j 0 . . . 0

0 ΦCM,high
k,j . . . 0

...
... . . . ...

0 0 . . . ΦCM,high
k,j

∈{0, 1}Nj×3Nj , (A-38)

with ΦCM,high
k,j =[1 0 0] since only PVB

j (k) is coupled.
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Glossary

List of Acronyms

BRP Balance Responsible Party

CMPC Centralized Model Predictive Control

DMPC-RA Distributed Model Predictive Control with Resource Allocation

DSO Distribution System Operator

EV Electric Vehicle

HDe-MPC Hierarchical Decentralized Model Predictive Control

ILP Integer Linear Programming problem

MILP Mixed Integer Linear Programming problem

MLD Mixed Logical Dynamical system

MPC Model Predictive Control

SoC State of Charge

PTU Program Time Unit

TSO Transmission System Operator

V2G Vehicle to Grid

VB Virtual Battery
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