
 
 

Delft University of Technology

Estimating the state of epidemics spreading with graph neural networks

Tomy, Abhishek; Razzanelli, Matteo; Di Lauro, Francesco; Rus, Daniela; Della Santina, Cosimo

DOI
10.1007/s11071-021-07160-1
Publication date
2022
Document Version
Final published version
Published in
Nonlinear Dynamics

Citation (APA)
Tomy, A., Razzanelli, M., Di Lauro, F., Rus, D., & Della Santina, C. (2022). Estimating the state of
epidemics spreading with graph neural networks. Nonlinear Dynamics, 109(1), 249-263.
https://doi.org/10.1007/s11071-021-07160-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11071-021-07160-1
https://doi.org/10.1007/s11071-021-07160-1


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Nonlinear Dyn (2022) 109:249–263
https://doi.org/10.1007/s11071-021-07160-1

ORIGINAL PAPER

Estimating the state of epidemics spreading with graph
neural networks

Abhishek Tomy · Matteo Razzanelli ·
Francesco Di Lauro · Daniela Rus ·
Cosimo Della Santina

Received: 16 February 2021 / Accepted: 31 October 2021 / Published online: 21 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract When an epidemic spreads into a popula-
tion, it is often impractical or impossible to continu-
ously monitor all subjects involved. As an alternative,
we propose using algorithmic solutions that can infer
the state of thewhole population from a limited number
of measures. We analyze the capability of deep neural
networks to solve this challenging task. We base our
proposed architecture on Graph Convolutional Neural
Networks. As such, it can reason on the effect of the
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underlying social network structure, which is recog-
nized as themain component in spreading an epidemic.
The proposed architecture can reconstruct the entire
state with accuracy above 70%, as proven by two sce-
narios modeled on the CoVid-19 pandemic. The first
is a generic homogeneous population, and the second
is a toy model of the Boston metropolitan area. Note
that no retraining of the architecture is necessary when
changing the model.

Keywords Nonlinear inference · Network dynamics ·
State estimation · Epidemics · CoVid-19

1 Introduction

Models whose state assumes value on a graph rather
than on a standard Euclidean space describe naturally
many physical or artificial systems of considerable
interest. Within this class of systems, the problem of
estimating the entire state from partial measurements
is a very relevant one. Standard techniques solve the
challenge when the network follows linear and con-
tinuous dynamics. Yet, including non-ideal effects into
the picture make the development of algorithmic solu-
tions substantially more complicated. For example, [4]
introduces constraints in communications bandwidth.
State estimation for networks with distributed delays is
discussed in [31]. A similar problem is dealt in [49] for
the state estimation of a delayed neural network with
known output, and in [51] for parameter uncertainty
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and randomly occurring distributed delays. The case
of switched networks with communication constraints
is discussed in [54]. In this context, much attention has
also been devoted to distributed estimation algorithms
[13,44]. For example, [30] proposes a consensus-based
Kalman filter for sensor networks subjected to random
link failures, [12] introduces a distributed filter robust
to malicious attacks, and [3] proposes a distributed
extended kalman filter for sensor networks measuring
a single nonlinear dynamics.

The spreading of an epidemic within a fixed pop-
ulation is among the network dynamics with espe-
cially relevant applications and dynamic behavior [25].
Here, the graph models the social network. Each node
describes either a subject or a group of subjects, and
the arcs the contacts. Simple local update rules can then
alreadydescribe the spreadingof the disease accurately.
Recently, these models have been extensively used to
describe the spreading of Covid-19. In [29] nodes rep-
resents European nations. The use of multi-level net-
works is discussed in [35]. A survey on the interplay of
diseases, behaviors, and information spreading in epi-
demics is provided in [48]. Network models have been
later extended to simplicial complexes in [20].

Estimating the state of epidemics from a reduced
number of measurements has clear, practical implica-
tions. For example, estimating the number of infected
subjects and who those infected subjects are can allow
the implementation of effective isolation policies [2,5],
feedback strategies [11,26], and possibly prevent the
generation of clusters [43]. Nonetheless, we are not
aware about previous works in epidemiology dealing
with this challenge on the subject (i.e. node) level.
Indeed, the works discussed above are not applica-
ble since typical epidemic dynamics do not fulfill their
assumptions. Severalworks [6,38] deal insteadwith the
more common problem of extracting robust statistics
on the total number of subjects in specific states - e.g.,
infected, recovered, hospitalized. This estimation can
enable the forecast of the evolution of the epidemics
[45,46]. Despite requiring to reason on the network
dynamics, the task is still such that it can be attacked
with model-based techniques since it is essentially a
forward integration.

Instead, estimating the complete state of the epi-
demics is an essentially more difficult problem since
it requires reasoning backward on the effects that the
nodes of which we know the state could have had on
the unknown states. This task is made even harder

by the highly nonlinear, state-discrete, and stochas-
tic dynamics which characterize these systems (see
Sect. 2). Thus, making inferences at the level of the
subjects is beyond the capabilities of current model-
based techniques. To the authors’ knowledge, there
are no algorithms in the literature addressing this
challenge.

Intending to offer an alternative route to solving this
challenge, we propose using data-driven techniques in
this work. We investigate the use of deep learning for
creating a nonlinear inference system that can solve the
discussed problem. Indeed, deep learning has proven
to be able to successfully model complex dynamical
behaviors [8,23,27,32]. Recently, many works have
dealt with the generalization of deep learning to non
Euclidean domains [7]. Particular interest have been
given to deep learning on graphs [1,40,55], i.e. to the
learning from data of the graph type. Many of these
techniques have been categorized under the umbrella
term Graph Neural Networks (GNNs). We are inter-
ested here in the use of GNNs as classifiers of nodes.
The goal is to determine the labeling of nodes by inte-
grating available information on them and on their
neighborhood [24]. This is for example used as a rec-
ommendation engine - see Pinterest [53], and Uber
Eats [21]. This task naturally generalizes to the case
of state reconstruction, by considering as desired out-
put the full state of the system. We apply this strat-
egy to epidemics, by combining multiple GNN lay-
ers with a mechanism for codifying temporal informa-
tion. The goal of this work is summarized in Fig. 1,
where the state of two nodes out of sixteen is mea-
sured. Note that this is more testing than we are going
to assume in our simulations. We test the results by
using state of the art models of epidemics, with partic-
ular focus on CoVid-19 spreading in Italy and United
States. Our results show that GNNs can be a viable
solution to state reconstruction problem, even when the
number of monitored subjects is as low as the 5% of the
population.

Note that several works already applied GNNs to
epidemics, specifically in the CoVid-19 context. Yet
the focus has been different w.r.t. the present work.
In [15,22] graph neural networks are used to forecast
the pandemic evolution. An inverse problem is instead
tackled in [10], where authors deal with the temporal
reconstruction of the epidemics spreading. Similarly,
in [42] these techniques are used to identify the patient
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Time0 t Timet

Neural
Network

Fig. 1 This is a representation of the problem that we aim at
solving in this paper. Consider an epidemic disease spreading on
a social network. In practice, health operators cannotmeasure the
condition of the whole population, but only a small number of
subjects. On the other hand, subjects can be tested continuously
over time. The left side of the picture describes this informa-
tion. Each node is a subject. The question marks are subjects that
we cannot measure. The state of only two nodes/subjects is mea-

sured here. At the initial time, the two subjects are healthy (green
smile), while at time t , they are infected (red dots) or recovered
(blue cross). Our goal is to reconstruct the entire configuration
of the network by integrating this information. Therefore, the
desired output is the knowledge of the health state of all (possi-
ble thousands) subjects. The graph on the right represents this.
We propose the first algorithm dealing with this challenge. We
use a neural network to achieve this goal

zero. GNNs have been used also for detecting COVID-
19 from CT scans and X-rays of chest [39].

To conclude,with thisworkweprovide thefirst algo-
rithm capable of estimate the whole state of the spread-
ing of a disease in a large social network, andwe do that
using deep learning. The paper is organized as follows:
Sect. 2 describes the epidemic network that represents
the disease transmission; Sect. 3 explains the graph fun-
damentals and the neural architecture for classification
the GNN is based on; simulations are then described in
Sect. 4; finally conclusions and discussions on results
and possible future works are mentioned in Sect. 5.

2 Epidemics on networks

Deterministic models for epidemic spreading on a pop-
ulation are well-known because of their simplicity and
their usefulness in terms of giving good prediction in
terms of aggregate statistics (such as the total number
of infected nodes) of the population. Yet, these mod-
els do not allow to describe the actual spreading of the
epidemics on a population, thus preventing the imple-
mentation of targeted measures. For our objective, we
need a model that can capture the fact that each indi-
vidual is part of a social structure, and that the intrin-
sic hazard of getting infected depends not only on how
many people they interact with, but also on how far they
are from clusters of infections. A natural candidate is
the framework of Network Epidemiology [25,36]. This

framework allows to separate the topological properties
of a contact network from the biological dynamics of
the disease progression.

2.1 Network model

A network is described as a set (V, E), where V is a
set of N nodes (or vertices), and E is a set of edges
(or links) connecting nodes, i.e. tuples {u, v}, where
u, v ∈ V . In terms of modeling, individuals are associ-
ated with nodes, and contacts that are at risk of car-
rying the disease as links between nodes. For sim-
plicity, we consider undirected networks, such that
{u, v} ∈ E ⇐⇒ {v, u} ∈ E . Fig. 1 and the right
side Fig. 2 show pictorial representations of network
models.

2.2 Epidemic model on network

We consider a model for disease transmission inspired
by recent modeling of Covid-19 Yang et al. [52],
He et al. [18]. Each individual is in one of the
following states: S (susceptible), E (exposed), I
(infected/infectious), R (recovered), or D (deceased).
For this reason, this model is known as SEIRD. Fig. 2
illustrates the possible transitions of a susceptible node
that is in contact with two infectious neighbors. Out-
breaks are modeled as Markovian processes on the

123



252 A. Tomy et al.

D
ead

R
ecovered

Infected

E
xposed

Susceptible

T
im

e

γIγE

γE

pD1 − pD

2βn

2βn

2βn

1

2
3

4

5

6

7

8

9

10

11

12

13

14 15

16

17 18

19

20

21

22

2324
25

26

27

28

29

30

31

32

33 3
35

36

37

38

39
40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

S
E
I
R
D

1

2
3

4

5

6

7

8

9

10

11

12

13

14 15

16

17 18

19

20

21

22

2324
25

26

27

28

29

30

31

32

33 3
35

36

37

38

39
40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

S
E
I
R
D

1

2
3

4

5

6

7

8

9

10

11

12

13

14 15

16

17 18

19

20

21

22

2324
25

26

27

28

29

30

31

32

33 3
35

36

37

38

39
40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

S
E
I
R
D

1

2
3

4

5

6

7

8

9

10

11

12

13

14 15

16

17 18

19

20

21

22

2324
25

26

27

28

29

30

31

32

33 3
35

36

37

38

39
40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

S
E
I
R
D

Fig. 2 Representations of the considered dynamic model of
spreading an epidemic disease over a social network. The left
panel represents the transitions a single node might undergo in
time. We declare the meaning of the five symbols at the bottom
of the picture. These are the five states a subject can find them-
selves in, and they go from not having contracted the virus to
being recovered or died. Each arrow shows the probability of
transition at any time. We assume for simplicity that the state

of the neighbors does not change. Since the subject is in contact
with two infected subjects, its probability of contracting the virus
is twice βn. The right side of the picture shows a few snapshots of
the state of a small Erdős-Rényi network of size 70 with average
connection degree 20. Links in red carry the infection from an
infectious node to a susceptible neighbor. Note that this social
network is orders of magnitude smaller than the ones considered
in our validation

generated network, in which an infected node spreads
the disease, via links, to its susceptible neighbors at a
constant rate β, turning them into exposed. Exposed
nodes represent people who are undergoing their latent
people, and are about to become infectious. The next
transitions that exposed nodes undergo are network-
independent. An E node becomes I after a time expo-
nentially distributed with rate γE . Once a node is infec-
tious, he transmits the disease to its neighbors at a con-
stant rate β. The node eventually stops being infectious
after an exponentially distributed random timewith rate
γI . When this happens, with probability pD the node
becomes D - representing individuals that do not sur-
vive to the disease. The remaining nodes are instead
recovered and play no further role in the epidemic. At
time t = 0, I (0) = Nı(0) � N randomly chosen
nodes are infected. The remaining ones are initialized
as susceptible.

In more formal terms [25], the dynamics is a
continuous-time Markov chain defined on a network

with N nodes, with adjacency matrix gi j defined as

gi j =
{
1, if a link exists between nodei and node j;
0, otherwise.

In this paper, we do not allow for self-loops, i.e.
gii = 0, ∀i ∈ {1 . . . N }. The state space of the
Markov chain is the set {S1,S2, . . . ,Sn}, where Si is a
particular derangement of the 5 states (S, E, I, R, D)
among N nodes. At any given time, the only transitions
allowed are among states that differ at most by the sta-
tus of one node j . The probability of transition depend
on the status of the node and of its neighbors. This tran-
sition mechanism is pictorially represented by the tree
in the left side of Fig. 2.We denote with n j

S/E/I/R/D the
number of neighbors of node j in states S, E, I, R, D,
respectively. The rate of transition between states Sα

and Sβ is given by
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h(Sα,Sβ)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if Sα and Sβ differ
for at least two nodes;

f j
QT(Q, n j

S/E/I/R/D), if Sβ differs from Sα

in the state of node j;
−∑

l �=α h(Sα,Sl) if Sα = Sβ.

(1)

Here f j
QT denotes the rate at which node j in state Q

transitions into state T �= Q. For our model, we have
that the only f j

QT �= 0 are

f j
S,E (S, n j

S/E/I/R/D) = βn j
I , f j

E,I , (E, n j
S/E/I/R/D) = γE ,

f j
I,R(I, n j

S/E/I/R/D) = γI pR, f j
I,D, (I, n j

S/E/I/R/D) = γI pD .

Let Xα(t) be the probability that the system is in state
Sα at time t , then the master equation of the system is

Ẋα(t) =
n∑

β=1

h(Xβ, Xα)Xβ(t). (2)

This system can be written as a system of the form

Ẋ(t) = PX (t),

where P is the transpose of the transition rates, that
is, Pαβ = h(Xβ, Xα), and X (t) is a vector of size
n whose elements are Xα(t). We rely on a Gillespie
algorithm [17] adapted to networks [25] to simulate
this process. In Fig 2 we show a realization of an out-
break on a network of modest size, to highlight how
the topology impacts the dynamics.

We describe the evolution of the state of the pan-
demic on the network as

x : R+ → {S, E, I, R, D}N . (3)

Therefore at each time t > 0 the variable x(t) provides
a full picture of thee spreading of the disease. With-
out loss of generality, we consider t to be expressed
in days. We refer to the state of the node i ∈ V as
xi ∈ {S, E, I, R, D}.

3 State inference from incomplete data

3.1 Goal

Consider the graph (V, E) describing the social net-
work. We hypothesize to have full knowledge of the
state of a subset of nodes M ⊂ V at the end of

each day. We will populate M by selecting nodes
from V according to an uniform random distribu-
tion. We therefore define the set of measurements as
y ∈ {S, E, I, R, D}#M. Finally, for the prediction pur-
poses, classes are combined based on their usefulness
in intervention into 3 classes. Our goal is thus to find an
algorithm which implements the following mapping

{V,M, E, y([0, t))} 
→ x̃(t) (4)

where x̃ ∈ {S, E + I, R + D}N is our reconstructed
state, with E+ I representing nodes that either exposed
or infected, and with R+DWewant (4) to be such that
x̃ is as coherent as possible with the full state x . Indeed,
in the practice we are only interested in knowing if the
subject is healthy (S), has contracted the virus (E and
I ), or is no more infected (R and D). This challenge is
summarized in Fig. 1.

Note that in this work we assume full knowledge of
the social structure (V, E) as input for the network. This
is a strong assumption that wewill relax in future work.
Also, we will discuss the robustness of the algorithm
to changes of topology.

3.2 First stages

We start by transforming y([0, t)) in a data structure
that can be effectively put as input of our neural net-
work. More specifically, we introduce the nodes label
l ∈ N

N×3. For all i ∈ M, the vector li codifies the
state of the nodes in the past k days. We do that in
a bag-of-words fashion [50]. We sample y on a daily
basis yi (�t�), yi (�t�−1) . . . , yi (�t�−k+1). The value
k ∈ N is an hyperparameter which will be later opti-
mized.We then take li,1 equal to the number of times the
state S appears in the sampling. Similarly, li,2 counts
the occurrences of E and I , and li,3 of R and D. There-
fore the sum of elements in li is always equal to k for
i ∈ M. The remaining nodes are labeled as unknown
by taking li = 0 for all i /∈ M. These operations are
graphically summarized in the left part of Fig. 3.

3.3 Neural architecture

Graph Neural Networks operate in the domain of the
graph. In the graph, each node comes with its label. A
common framework in the GNN is the classification
problem setup where the goal is to predict the label of
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Fig. 3 The proposed architecture is made up of three stages. The
first one samples data from the evolution of the known nodes y in
the past k days, and counts the occurrences of the three classes.
In this way it creates labels l encoding the temporal informa-
tion. The second stage performs most of the computation, and

it is made of three graph convolutional layers. Finally, the high
dimensional internal information is compressed again by the out-
put layer, i.e. a fully connected network and a soft max. The
output is an estimation of the current full state of the epidemics
spreading

the unlabeled nodes given the labeled ones. As men-
tioned before we want to predict the full state of the
pandemics spreading x , see Fig. 1.

The central part of Fig. 3 shows the core GNN layers
in our architecture. The target of our GNN is to learn
the state embedding li ∈ N

3 for i = 1, 2, 3, which con-
tains the information of neighborhood for each node.
The initial node feature corresponds to the node state
itself, encoded in binary vector ∈ N

3 that contains only
one element equal to 1. We preprocess this information
by integrating li along the time horizon of k. We cannot
use k too big to avoid that the neural network leverages
on this pattern to recognize that the state coincide with
the node label. Due to the fact that it is a classification
problem setup, we then mask a certain percentage of
node (95 − 90 − 80%) depending on the scenario we
are considering. We finalize the preprocess by loading
data by batch by using the Dataloader class defined
inside the Pytorch library [37]. Thanks to a specific
variable, named ’batch’, the data loader can associates
node and edges to a specific graph. Since a DataLoader
aggregates nodes, edges and the features from different
graphs into batches during the message passing layers,
the GNN model needs this information to know which
nodes belong to the same graph. For what concernmes-
sage passing layer, it describes how li is passed through
the layers of the network to create the node embed-
ding. As we know, the message passing layer is the
result of the generalization of the convolution operator
by extending the concept of the neighbourhood from
pixels to nodes [24]. Given the state of the node i at

the layer h, lhi we find the lh+1
i by applying the acti-

vation function of the message passing layer to lhi and
the aggregation of lhj where j ∈ Ni is a neighbour of
node i (andNi is the neighbourhood of node i). As the
node embedding evolve through the message passing
layers, as the knowledge of the neighborhood of each
single node increases. Thus, the message passing lay-
ers enlarge, in general, the size of the node feature. The
number of the message passing layers could be consid-
ered again as a hyperparameter. Without loss of gener-
ality, in our case, three message passing layers with a
rectifier as the activation function (ReLu) are consid-
ered. The first message passing layer has an input size
of 3 (i.e. the number of features), and output size of 64.
The second and the third message passing layers have
an input and output sizes of dimension 64. Between
layers there the dropout regularization method is used
during training to avoid over-fitting.

As a result of this processing, each node is equipped
with a rich description of its possible state as inferenced
by its neighbours own representations. This state need
to be converted into one of the three states {S, E +
I, R+D}. This is done through the Output Layer (right
part of Fig. 3). First we have a fully connected layer. Its
input size is 64 and output size of 3. It is defined with
a linear activation function. Then, a so f tmax function
in introduced as defined in the Pytorch library. It is
applied to the observation li so to retrieve the highest
probability that the node will be labeled with a certain
class.
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For what concerns the training, an Adam optimizer
with a fixed learning rate is defined and we select loss
L1(·) as the cross entropy.Given the unbalanced classes
c ∈ {S, E + I, R + D} we compute weight wc to nor-
malize observation li . The weight of each class is deter-
mined by the Nmax

Nc
where Nmax is the number of obser-

vations in the classwithmaximumoccurrence and Nc is
the number of observations or nodes belonging to class
c in the training set. We use the loss function for mea-
suring the performance of the algorithm as described
by the Pytorch library. The losses are then averaged
across observations:

L1(·) =
∑3

c=1 loss(xc)∑3
c=1 wc

. (5)

Given a fixed number of epochs (250 in our case) we
train our network and we measure the loss function
as previously defined to measure the loss. TWe rep-
resent the model’s predictions in a confusion matrix
under four categories. We label true positives into the
considered class as TP. False positives (FP) refer to
nodes from other classes incorrectly labeled as belong-
ing to a particular class. True negatives (TN) refer
to nodes correctly classified as belonging to other
classes. False negatives (FN) refer to nodes incor-
rectly labeled as negative or belonging to another class.
We evaluate the goodness of our GNN through pre-
cision and accuracy as Precision = TP/(TP + FP),
Accuracy = TP/(TP + FN). Hyperparameter opti-
mization is done using balanced accuracy. Balanced
accuracy is calculated as the average of the proportion
corrects of each class individually. Balanced accuracy
is suitable for datasetswith class imbalanceunlike other
metrics which may favour results from the majority
class.

4 Simulations

We test the proposed architecture in two scenarios with
different topological characteristics. The first one is a
homogeneous network, inwhich any node has the same
probability of being connected with all the others. We
use this scenario to test the effectiveness and scalabil-
ity of the method extensively. The second scenario is
instrumental in testing the neural architecture in a more
challenging setting, closer to a real-world scenario.

4.1 Scenario 1: random network

We consider Erdős-Rényi networks, which are a class
ofwell-knownnetworkmodels. Such randomnetworks
are relatively simple to describe, and at the same time
offer some heterogeneity in terms of the degree dis-
tribution. The generative algorithm can be described
as follows: we start with N isolated nodes, then we
place a link between any two nodes with probability
0 < p < 1. The degree distribution of the network is
therefore binomial B(N , p). We showcase results for
networks with average degree 〈k〉 = 30. This value is
comparable with the number of daily contacts at risk
as measured in a recent survey [33].

We generate training set from 80 realizations, each
one happening on a different and randomly generate
social network with a population of 500 nodes. The
epidemic spreads between 0 and 120 days. Yet in the
initial month, the behavior is quite stationary due to the
well-know slow increase of the total number of infected
subjects. Therefore, a few samples from the initial days
is enough to learn the pattern during that period. Only
3 random days are selected from the first month of
each realization. All the remaining days from 30 to 120
are used for training. The hyperparameters are 0.3 for
dropout, 64 hidden units, 3 layers. We use a learning
rate of 0.0002, we train for 250 epochs, with a batch
size of 256.

At first, we test the trained architecture on a set of
40 realizations, representing evolutions on randomly
generated social networks with 500 nodes (same size
of the training set). We repeat the analysis for the cases
in which the size ofM (i.e. monitored subjects) is 5%,
10%, 20% of the size of V (i.e. the total amount of
subjects in the considered population). It is worth to
notice that this is a very sparse amount of information.
Indeed, 10% of tests with an average connectivity of 10
means that any node has on average just a single neigh-
bor whose the state is known (see Fig. 1 to get a visual
sense of this ratio). Accuracy and precision of the pre-
dictions are provide in Table 1. Note that these values
are evaluated only on the nodeswhich are not part ofM
since they are always perfectly known. Thus, we prefer
to leave them out to not artificially increase the perfor-
mance of the neural network. Interestingly, the quality
of the predictions do not change significantly with the
size ofM. In general classeswith larger amount of sub-
jects have better performance. This can be due to the
higher amount of examples which are available from
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Table 1 Accuracy (Ac.) and precision (Pr.) of the classification
for Scenario 1, evaluated only on the nodes which are not inM.
The testing set is generated with networks of 500 nodes. Three

levels of supervision are considered - i.e., number of nodes of V
which are in M as well

Ac., 5% Pr., 5% Ac., 10% Pr., 10% Ac., 20% Pr., 20%

S 0.93 0.84 0.93 0.84 0.93 0.85

E+ I 0.52 0.56 0.51 0.57 0.51 0.57

R+D 0.74 0.78 0.75 0.77 0.76 0.77

All 0.75 – 0.75 – 0.76 –
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Fig. 4 Evolution of overall statistics associated to the epidemics,
when evolving on a medium-small homogeneous network (sce-
nario 1). More specifically, we show the amount of nodes which
are susceptible - Panels a,d - which got infected by the pathogen
- Panels b,e - and which either recovered or died - Panels c,f.
Actual evolutions are in red, while estimations are in green. The

solid lines represent the mean, while the translucent areas the
variance. Training and testing sets are made of realizations pro-
duced by simulating the epidemic spreading on random social
networks of 500 subjects. In Panels a–c only 5% of subjects is
tested at any time, while in Panels d–f this number reaches 20%

the training set. Overall the performance is satisfac-
tory, with a general accuracy always higher than 0.75.
To get a sense of how these results reflect in the estima-
tion of cumulative statistics of the pandemic evolution,
in Fig. 4 we plot the total size of each class against the
amount of nodes which are classified to be part of that
class. The match is good. The network is not sensitive
to small deviations of S and R + D from the maxi-
mum and the minimum value. This may be due to the
fact that so small variations may not be captured by

changes inM. Also, the neural network tends to over-
estimate the presence of subjects which got infected
at the peak. A possible interpretation could be derived
from the fact that the neural network learns that after a
certain amount of days, without any kind of restriction,
the neighborhood of an infected node is more likely to
be all infected. It is very important to stress here that
these overall statistics serve here only to get a sense of
the overall quality of the network predictions. The goal
of the neural architecture is indeed not to estimate these
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values directly, but the exact way in which each class
is spread over the social network. This is an important
distinction because the direct estimations of the size of
the three classes is a relatively simple task, as discussed
in the Introduction.

A nice property that our architecture inherits from
Graph Convolutional Neural network is that once
trained it can be applied to graphs of any size. This is
becausewedirectly learn theweights of the convolution
operator, which can then be applied to networks of all
sizes. There is however no guarantee that the classifica-
tion will keep being effective. Indeed, the way in which
the pandemic evolves is clearly affected by the size of
the social network despite the local rules remaining
the same. We therefore tested the ability of the archi-
tecture to generalize to larger populations by building
an additional testing set of 10 realizations with a total
number of nodes which is several orders of magnitude
larger than before: 105 subjects. It is very important to
stress that no re-training is performed. Therefore, we
are training the neural architecture with a small-village
community, and testing itwith amediumsize city. Table
2 andFig. 5 show the result of this analysis.No essential
differences can be observed. Overall the performance
is still satisfactory, with a general accuracy which is
even higher than the previous test set and always equal
to 0.83. This may be due to the fact that larger social
networks generate more homogeneous distributions of
the illness since the border-effects are less dominant.

4.2 Scenario 2: Boston

The second scenario we consider aims at modeling a
more realistic social structure, such as the one of a rel-
atively big city. We need to consider both a model that
takes into account the existence of different neighbor-
hoods and the age distribution of people living in that
area. We take as a reference the City of Boston and
Cambridge, Massachusetts, USA . (Fig. 6)

The generative model, which takes inspiration from
the work in [34], is divided into three steps, as in fig. 6.
Initially, we outline a map of the neighborhoods of the
urban area we focus on. At this stage, each neighbor-
hood is a network on its own. The size of each neigh-
borhood is taken from the official website of the city of

Boston1 and Cambridge.2 Within each neighborhood,
the topology reflects the contact patterns between dif-
ferent age-classes, as described in the Supplementary
material of [34]. To do so, we cohort the population
into age groups of size 5 years, and we model the con-
tact patterns among groups based on their age with
a stochastic block model [19]. Stochastic block mod-
els are generative models for random graphs that are
used to generate topologies that have a community-
like structure. Each node is given a unique label (the age
cohort). Then, we define a symmetric matrix (known as
Affinity matrix) whose elements are Ai j = pi j , where
pi j is the probability that a node whose label is i is
in contact with a node whose label is j . The Affinity
matrix we use is theMassachusetts age-contact matrix,
as described in the supplementary material of [34]. The
age-contact matrices, available online3 are built with
a data-driven approach, that relies on detailed census
and survey data from publicly available sources, and
incorporates key features like the socio-economic sta-
tus and the household composition. Such matrices rep-
resent the inferred per-capita probabilities of contact
between individuals divided by age in a particular area
or country. The last step is to connect different neigh-
borhoods by allowing nodes in each neighborhood to
have links with nodes from other neighborhoods. To
do so, we consider a diffusion-like procedure: for each
couple of neighborhoods we place a random number of
links between randomly selected nodes from both com-
munities, depending on the length of the shortest path
connecting the two on the geographical level: neigh-
borhoods at distance d from each other will share, on
average, 1/d linkswith respect to neighborhoods at dis-
tance 1. The number of links shared between any two
communities is drawn from a Binomial with probabil-
ity p = 1

50
1
d .

Wegenerated a training composedof 20 realizations,
each one happening on a different and randomly gen-
erated social network with a population of 104 nodes.
This is one order of magnitude less than the actual pop-
ulation of that area. This choice has been imposed by
limits on the hardware resources available. In this sce-
nario, the epidemic spreads over a relatively longperiod

1 https://www.bostonplans.org/getattachment/7987d9b4-193b-
4749-8594-e41f1ae27719.
2 https://www.cambridgema.gov/-/media/Files/CDD/Factsand
Maps/profiles/demo_profile_neighborhood_2019.pdf.
3 https://github.com/mobs-lab/mixing-patterns.
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Fig. 5 Evolution of overall statistics associated to the epidemics,
when evolving on an homogeneous network (scenario 1). Actual
evolutions are in red, and estimations in green. The solid lines
represent the mean, while the translucent areas the variance. The
testing set is made of realizations produced by random social

networks of 105 subjects. Instead the training set contains only
networks which are 500 nodes big. In Panels a–c only 5% of
subjects is tested at any time, while in Panels d–f this number
reaches 20%

Geography Age

Subjects

East Cambridge

MIT
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Harrington

Area
Four

Cambridgeport

West
Cambridge

Mid-Cambridge
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Fenway
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West End

North End

16-20

1-5
11-15 6-10

26-3021-25 31-35

Fig. 6 The second scenario is a toymodel inspired by the spread-
ing of CoVid in the Boston and Cambridge, Massachusetts. The
topology of the graph is built on three layers, which integrate the

geographical distribution of the population, the demographics,
and the subject level variability
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Table 2 Accuracy (Ac.) and precision (Pr.) of the classification
for Scenario 1, evaluated only on the nodes which are not inM.
The testing set is generated with networks of 105 nodes. Three

levels of supervision are considered - i.e., number of nodes of V
which are in M as well

Ac., 5% Pr., 5% Ac., 10% Pr., 10% Ac., 20% Pr., 20%

S 0.97 0.92 0.96 0.92 0.93 0.85

E+ I 0.50 0.58 0.50 0.57 0.51 0.57

R+D 0.79 0.81 0.80 0.81 0.76 0.77

All 0.83 – 0.83 – 0.83 –

of time, with each day being of importance and dif-
ferent. Hence we select a total of 201 of days from
each realizations, starting 100 days before the peak of
the infection, and ending 100 days after. No sample is
removed. The hyperparameters are 0.4 for dropout, 64
hidden units, 3 layers.We use a learning rate of 0.0002,
we train for 250 epochs, with a batch size of 64.

We test the effectiveness of the proposed approach
by collecting a testing set made of 10 realizations. Each
realization is an evolution of the epidemic on a differ-
ent and randomly generated social network (following
the same statistical characteristics of the testing set).
As for scenario 1, also here we test the case of size of
M (i.e. tested subjects) being 5%, 10%, or 20% of the
total population. Results are shown in Table 3 and Fig.
7. Although lower in the easier scenario 1, the accuracy
is consistently good across classes and conditions. Yet,
the accuracy of S is a bit lower than before, and the
precision of E + I is very low. This is because the
neural architecture tends to wrongly label a number
of nodes which are susceptible as infected. Yet, it is
important to underline here that the neural network is
working with a quite small amount of information on
the spread of infected subjects. Indeed, at its peak E+ I
is less than the 10% of the population, which with 10%
of measures means that the algorithm can rely on the
knowledge of 102 infected nodes. This behavior is also
evident in Fig. 7, where the total number of suscep-
tible subjects is higher than estimated, and vice versa
the infected subjects are lower than the neural network
thinks. By considering Table 3, we can notice that pre-
cision and accuracy slightly increase as M increase.
This is a different trend than the one observed in Table
1, and it may be due to our algorithm overestimating
the number of nodes that will be infected in a homoge-
neous network. In a more complex network topology,
GNN fits well with this kind of hierarchical model due
to its intrinsic ability to retrieve features of a higher

level given from the convolutional operator. It is again
important to stress that the proposed algorithm is opti-
mized to estimate the distributionof subjects rather than
the total size of each class, which should therefore be
regarded as a secondary index. It is also interesting that
the algorithm rarely does the opposite error, i.e. classi-
fying S as E + I . The precision of S is indeed above
97%. Although not explicitly forced in training phase,
this behavior makes very much sense in the practice
since it is better to isolate healthy subjects than not to
act on infected ones.

From an alternative standpoint, Fig. 8 shows a com-
parison of the CumulativeDistribution Function (CDF)
across all the scenarios. For each level of accuracy
(0 ≤ x ≤ 1.0), the CDF represents the fraction of
algorithms execution that results in an accuracy of x or
less. This way, we can more clearly observe the entire
distribution beyond only mean and variance. We also
directly compare how the distribution function behaves
in the different scenarios. From this perspective, we
can notice that our algorithm seems to perform better
in the Boston scenario than in the similarly large-scale
random network. The network solves 80% of the exe-
cutions with an accuracy of about 80%. This may be
because the deep convolutional nature of our algorithm
performs better when a the social network follows a
non-trivial topology. In this case, there are more infor-
mation to exploit.

5 Discussion and conclusions

We investigated the use of Graph Neural Networks to
develop state observes for epidemics evolving on social
networks with this work. The results are promising.
The proposed architecture can approximate the overall
state with an accuracy above 70% on the nodes that are
not directly monitored. We consistently observe these
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Table 3 Accuracy (Ac.) and precision (Pr.) of the classification for Scenario 2 (Boston), evaluated only on the nodes which are not in
M. Three levels of supervision are considered—i.e., number of nodes of V which are in M as well

Ac., 5% Pr., 5% Ac., 10% Pr., 10% Ac., 20% Pr., 20%

S 0.67 0.97 0.67 0.98 0.67 0.98

E+ I 0.75 0.14 0.78 0.14 0.80 0.15

R+D 0.78 0.79 0.79 0.79 0.80 0.80

All 0.72 – 0.72 – 0.73 –
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Fig. 7 Evolution of overall statistics associated to the epidemics,
when evolving on a toy model inspired by the Boston and Cam-
bridge (MA,USA) areas. We show the amount of number of
susceptibles in Panels a,d, the infected and exposed in Panels
b,e, the recovered or dead in Panels c,f. Actual evolutions are
in red, while estimations are in green. The solid lines represent

the mean, while the translucent areas the variance. Training and
testing sets are made of realizations produced by simulating the
epidemic spreading on random social networks of 500 subjects.
In Panels a–c only 5% of subjects is tested at any time, while in
Panels d–f this number reaches 20%

performance even when the sample space is as small as
5% of the total population. In these conditions, the net-
work must perform inference on subjects that divided
by several degrees of separation from the nodes that
we are measuring. Also, it should be considered that
no retraining of the network is performed when chang-
ing the network.

Nonetheless, there are several directions towards
which we may further improve our results. First, future
work will be devoted to adding explicit dynamic rea-
soning within the neural network, for example, intro-
ducing recurrent layers [28]. This change should help

boost the capability of the neural network of discern-
ing between exposed and infected and between infected
and recovered (or dead). Indeed, these transitions are
essentially time-dependent and can be extracted from
associating internal dynamics to the initial recognition
that a node entered in the exposed state. Neverthe-
less, it is worth mentioning that stacking LSTMs lay-
ers between the GNNs did not produce a statistically
relevant increase in the network performance and, as
such, has not been included in the present work. Sim-
ilarly, attention mechanisms [47] have been tested but

123



Estimating the state of epidemics 261

Fig. 8 Cumulative Distribution Function of Scenario 1 (500 and
100.000 nodes) and of the Boston scenario. We show only the
more challenging case, in which 5% of the population is moni-
tored. The other two are qualitatively similar. Interestingly, the
neural network appears to exploit the richer structure of the more
realistic social network topology in the Boston case

not included due to the negligible increment of perfor-
mance that they resulted in.

Finally, we believe that a very important assump-
tion to be relaxed is the full knowledge of the social
network (see Sect. 3.1). Indeed, we have assumed a
complete knowledge of the social structure (V, E) as
input for the proposed algorithm. This assumption can
be relaxed and introduced in themodel as a time-variant
probability for the edges. Several algorithms are being
proposed that can extract the social structure fromGPS
localization and other mobility information provided
by contact tracing apps [9,14]. Data driven methods
can then possibly be used to infer the graph topology
itself [16,41].
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