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Abstract

This research goes together with the literature study. This literature study sets the context for the
main body of the research, the parameter study. Together they form the research on how the appli-
cation of Ultra High Performance Fibre Reinforced Concrete (UHPFRC) influences the design of
concrete railway bridges.

The literature study starts out by defining the properties of UHPFRC. The very specific mixture
of UHPFRC causes not only a high strength and durability, but also leads to the requirement of
different design verifications to be applied.

The literature study continuous by investigating the important design aspects in conventional
concrete railway bridges and UHPFRC structures. For conventional concrete railway bridges this
is based on available design calculations. For UHPFRC structures the available literature leads to
a more general approach. In this section of the research the term ‘normativeness’ is introduced as
a measure for the importance of a certain design aspect. At the base of this lies the basic thought
that the height of the unity check tells us something about how important this aspect is in the design.
This approach leads to the conclusion that stresses and fatigue are the most important design aspects
in concrete railway bridges. This is confirmed later on in the parameter study.

Whereas the literature study keeps a general character with regard to the material properties, the
parameter study makes a clear choice for the regarded structure type and applied concrete mixture.
The parameter study starts by setting the boundary conditions to the structure. The shape of the
through bridge is defined and the material properties of the concrete mixture Ductal R© CS1000 by
Lafarge Group are presented.

As a regular design calculation the report continuous to define the applied loadings, the pre-
stressing and the verifications. Again the general character of the literature study on the design
verifications is here omitted and the specific applied design calculations and verifications for UH-
PFRC are stated.

The main part of the parameter study has been performed with use of linear-elastic calculations.
The material properties of UHPFRC suggest that the material is suitable for non-linear calculations.
This investigated with use of a non-linear beam model. The approach of these calculations and the
corresponding verifications are defined in this report.

The parameter study for both the linear-elastic and the non-linear calculations have been per-
formed by programming a Matlab model. The model uses an approach in which the cross section
starts out too small and iteratively grows until all verifications are satisfied. This leads to a cross
section which is more or less optimized as at least one unity check in a structure approaches one. A
description of the Matlab model is present in the report.

The results are presented in three different sections. First, comparing UHPFRC with conven-
tional concrete. Second, the verification on stresses in the serviceability limit state has shown to be
of most influence on the design. Because the limitations do no right to the material properties of
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Abstract

UHPFRC, these limitations have been omitted. The results show how the stress limitations influence
the design. Finally, the results of the non-linear calculations are presented and interpreted.

UHPFRC is a promising material with many favorable properties which can be applied in larger
infrastructural works to reduce the cross sectional area. It must be noted however, that even though
the cross sectional area can be reduced, the application of UHPFRC in through bridges does not lead
to an extraordinary slenderness. It can be stated that even tough its good performance UHPFRC is
not a material which can easily be applied in order to prevent design challenges from occurring.

At this point in time UHPFRC is a viable option in the material choice when designing infras-
tructural works. It is however recommended that the choice for UHPFRC is done with regard of the
consequences for the design calculations and that it is not just replacing the conventional concrete,
but only applied at the points where the material properties can fully be used.
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Chapter 1

Scope

Although there is a high level of interest in UHPFRC from the development and research field, the
demand of UHPFRC is almost totally restricted to study projects. A round trough the Dutch concrete
manufactures learns that due to this naught request of UHPFRC only a few concrete manufacturers
have experimentally tried to make an UHPFRC mixture. Combined with the absence of a legislative
bases this leads to the question of the chicken and the egg, or in this case supply and demand, which
came first?

Due to this absence of a legislative basis and a lack of availability of mixtures with clear material
properties UHPFRC is not yet being considered as an applicable option by engineers when they
start a design project. The goal of this research is to provide more insight, in an early stage of
design, in the normative design issues which may arise and the coarse dimensions when designing
in UHPFRC. This should make the material more accessible and stimulate the use of it. This gives
rise to the research question:

“How do the material specific properties of Ultra High Performance Fibre Reinforced
Concrete influence the design of infrastructural structures compared to structures in
conventional concrete?”

This question has already qualitatively been regarded in the literature study. This was based on study
projects available in the literature. To provide more insight in the design of UHPFRC structures and
give a more elaborate and quantitative answer a parameter study will be performed. The first step
in this is to make an inventory of the calculation methods and design verifications applicable for
UHPFRC. The parameter study will be performed for single track trough bridges with a varying
span length. The cross-section of the bridge will be determined in order to be in compliance with
the Eurocode and OVS requirements. Although the literature study includes girder bridges and plate
bridges in the research as well, they are excluded here. The development of a UHPFRC prefabri-
cated girder is subject to specific production knowledge which is better known at prefab producers.
Plate bridges usually give rise to less design challenges than trough bridges and are therefore also
disregarded in the parameter study. Double track trough bridges are excluded since the effect of the
side walls is almost nothing at midspan of the floor in cross direction and the floor depth approaches
the size of a solid slab. Single track trough bridges are commonly applied in fly-overs and have
shown to be challenging designs.

Due to the nature of the parameter study it will be possible to look further into the governing
design aspect for railway bridges; ’stress limits in the serviceability limit state’. On this subject of
the OVS demands (‘Design Recommendations for Railway Bridges’, Dutch: ‘Ontwerp Voorschriften
Spoorwegen’) on railway bridges, the research will investigate whether loosening the strict demands
with regard to the allowable stresses will render railway bridges in UHPFRC to be more economical.
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Scope

This will be done by altering the requirements and investigate the effect on the required cross section
dimensions. Thus answering the research question:

“How do the stress limits in the serviceability limit state influence the design when they
are altered to better accommodate the material properties of Ultra High Performance
Fibre Reinforced Concrete?”

As UHPFRC is a very though material it is capable of withstanding large rotations. This allows
a large redistribution of bending moment. This study will give an onset on the investigation of
the possibilities for non-linear designing of UHPFRC structures and answer the following research
question:

“Do the material properties of Ultra High Performance Fibre Reinforce Concrete make
the material more suitable for non-linear calculations than conventional concrete?”

The parameter study is performed by developing a model which calculates the minimum required
cross section for a varying span. This is done by starting with a known too small cross-section which
is then increased in size until the requirements are met. The required dimensions and resulting
highest unity checks are printed after which the span is increased and the process starts again.
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Chapter 2

Geometry

The geometry of the railway bridges is determined by ProRail rules and are recorded in the OVS. The
minimum widths for the cross sections of the bridges are determined according to the OVS00026
(Kremer, 2010) and OVS00056 (Valkenburg, 2012). Points of departure for the geometry of the
bridge are: mixed freight and passenger traffic, no horizontal curvature and a train speed of 200
km/h.

2.1 Clearance cross section

The clearance cross section is the cross section above and next to the railway track where no fixed of
temporary objects may be situated. The OVS increases the clearance cross section with the so called
Red Zone. In this zone exceptions may be made for certain objects. The OVS defines four different
clearance cross sections. In case of new railway tracks or major modifications of existing tracks the
OVS always requires the clearance cross section PVR-GC to be applied. This research makes use of
this clearance cross section PVR-GC including the red zone as depicted in figure 2.1.

Figure 2.1: Clearance cross section PVR-GC with surrounding red zone. (Kremer, 2010)
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2.2 Inspection paths Geometry

For tracks where a train speed of 200 km/h is allowed a further increase is required due to the
pressure wave caused by the passing train. This gives that the horizontal distance to the centre of the
clearance cross section is required to be 2.75 m.

2.2 Inspection paths

Every railway track is required to have at least one inspection path next to the track. This track is to
be placed outside of the pressure wave zone. For speeds above 40 km/h the path is required to have
a minimum width of 1.00 m which may be reduced to 0.80 m in case of obstacles like signposts. In
case of a double track at each side an inspection path is required.

In case of single track trough bridges the inspection path may not be situated more than 840 mm
above the rail level. When the walls of the trough become higher these can no longer be used as a
path and the bridge has to be widened with a path at rail level. Widening of the bridge however has a
big influence on the construction depth of the trough floor. As this depth is the effective construction
height with regard to the clearance cross section below the structure it is desirable that the floor
depth is as small as possible. To achieve this the floor is not widened, but the escape route from the
railway track to the inspection paths is made possible by steps or ladders at the inside of the wall.
These provisions may only be applied in coördinance with the contractor and with additional safety
provisions like extended warning times.

In case the trough walls are less than 1000 mm wide the inspection paths can be constructed with
an exterior steel framework.

2.3 Track composition

The composition of the track construction was determined based on OVS00056. As the track is
supposed to support mixed traffic and the bridge is supposed to be a new construction the traffic type
according to OVS00056 is IV-M. This results in a track composition of ballast and sleepers. The
ballast is required to have a thickness of 350 mm below the sleeper. The bottom of the ballast layer
is situated 730 mm under the top of the track.

The ballast layer is supposed to be enclosed at a distance of minimum 2000 mm and maximum
2150 mm from the centre of the track.

2.4 Cross section

A typical cross section for a single track trough bridge is depicted in figure 2.2.

2.5 Cover

The cover to be applied on the reinforcement and prestressing steel is fifty and respectively sixty
millimeter according to the demands with regard to durability in the NEN-EN 1992-1-1. This being
based on the environmental class XD3 and a construction class ‘S5’. The construction class based
on S4, plus two for hundred years design life time, minus one for the increased concrete strength.

Due to the excellent durability properties of UHPFRC the cover can be reduced substantially.
In the study project ‘Modular UHPC bridge’ (Tirimanna & Buitelaar, 2012) the suggested cover
was ten millimeter according to the involved concrete technologist. As this project was a pedestrian
bridge the cover applied cover in this study on railway bridges is increased to twenty millimeter
on the outermost reinforcement bar and thirty millimeter on the prestressing ducts. This is also in
compliance with the applied cover in the thesis of (Kenter, 2010) where a metro structure in UHPC
was designed with a cover of twenty millimeter.
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Geometry 2.6 Span

Figure 2.2: Typical cross section for UHPFRC trough bridge.

2.6 Span

The span of the bridges is the main variable in the model. It will incrementally go up from ten to
forty meters. Also the number of spans will vary. Both statically determined bridges containing a
single span and statically undetermined bridges of two spans will be investigated on the behavior of
the required dimensions.

2.7 Sign conventions

Throughout the project the global sign conventions as depicted in figure 2.3 have been used. In
which x, y, z are the global directions and u, v, w are the global displacements.

Figure 2.3: Global sign conventions

Figure 2.4 shows the sign conventions which have been used for in- and external forces.
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2.7 Sign conventions Geometry

Figure 2.4: Force sign conventions
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Chapter 3

Materials

3.1 Concrete mixture

The general properties of UHPFRC were extensively described in the literature study. As the aim of
this research is to make a step from theory to practical application of the material a commercially
available mixture was chosen. This leads to practically possible results.

The applied concrete mixture is Ductal R© CS1000 by Lafarge Group. Ductal R© has been com-
mercially available for a number of years now and its mixtures have already been applied in various
structures. The CS1000 mixture is a mixture for structural applications like bridges, marine docks
and piles. The characteristics of the mixture which have been used in this research are presented in
table 3.1. A product sheet by Ductal R© has been added in appendix A.

Property Symbol Value Unit
Density ρ 26 kN/m3

Compression mean fcm 180 N/mm2

Compressing design fcd 160 N/mm2

Tension mean fctk;0.05 10 N/mm2

Tension design fctd 8 N/mm2

Young’s modulus Ecm 55000 N/mm2

Fiber length l f 14 mm
Fiber diameter d f 0.2 mm
Poisson ratio ν 0.2 −
Shrinkage factor εcd(∞) 10−5 −
Creep factor φ∞,t0 0.5 −
Coefficient of thermal expansion αT 12 µm/m/◦C

Table 3.1: Material properties Ductal R© CS1000

The supplied material properties are not sufficient to draw a complete stress-stain diagram. With
use of the article (Ketel, Willemse, van Rijen, & Koolen, 2011) additional characteristics have been
specified. This has as consequence that a conservative approach has been used in order for the
material to correspond as much as possible with the Eurocode.
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3.2 Prestressing steel Materials

Property Symbol Value Unit
Compressive yield strain εc3 = 2.3 ·10−3 [−]
Ultimate concrete strain εcu3 = 2.6 ·10−3 [−]
Younds’ modulus Ecd = fcd/εc3 = 69565 N/mm2

Tension yield strain εct = fctd/Ecd = 0.115 ·10−3 [−]
Maximum strain at fctd εctd = εct0.3 = 0.3

lc
+ εct [−]

Ultimate tensile strain εctu =
l f

4·lc [−]
Fibre length l f = 14 mm
Specimen length lc = 2

3 ·h mm

Table 3.2: Material properties Ductal R© CS1000 (continued).

3.2 Prestressing steel

The prestressing system exists of a number of cables build up by strands of 140 mm2. The applied
prestressing steel is FeP1860. It has the following properties.

Property Symbol Value Unit
Characteristic strength fpk 1860 N/mm2

Ultimate design strength fpu 1690 N/mm2

Characteristic yield strength fp0.1k 1674 N/mm2

Design yield strength fpd 1521 N/mm2

Young’s modulus Ep 195000 N/mm2

Density ρ 78.5 kN/m3

Yield strain εsy 7.6 ◦/◦◦
Ultimate strain εsu 35.0 ◦/◦◦

Table 3.3: Material properties FeP1860

3.3 Reinforcement steel

The applied reinforcement steel is B500B with the following properties.

Property Symbol Value Unit
Characteristic yield strength fyk 500 N/mm2

Design yield strength fyd 435 N/mm2

Young’s modulus Ep 200000 N/mm2

Density ρ 78.5 kN/m3

Yield strain εsy 2.2 ◦/◦◦
Ultimate strain εsu 32.5 ◦/◦◦

Table 3.4: Material properties B500B

The amount of applied reinforcement is constant for all spans and models. This allows to easily
compare the aspects which are for this study of the most interest; the concrete dimensions and
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Materials 3.3 Reinforcement steel

the governing design aspects. By keeping the reinforcement constant the concrete dimensions and
therefore the various capacities become a function of the material properties of UHPFRC.

Keeping the applied reinforcement constant does have its drawbacks. As a wide range of spans
is evaluated with the same reinforcement it is obvious that the reinforcement is not always turned
to full account. Or at the other side of the spectrum, the applied reinforcement is insufficient. Both
situations will be present in the results. In the first case this will result in low unity checks for
verifications where the reinforcement plays a role (moment capacity, shear capacity). In the second
case the model will increase the capacity by enlarging the cross section. Here very large, and perhaps
unrealistic, results may be found.

Direction location � [mm] Spacing [mm]
Longitudinal floor top 16 150
Longitudinal floor bottom 16 150
Longitudinal top wall 20 100
Cross Floor bottom 25 125
Cross Floor top 25 125
Vertical walls 20 100

Table 3.5: Applied reinforcement steel.

The applied reinforcement steel has been based on practical considerations. The minimum re-
inforcement applied in civil concrete structures is usually about �16− 150. This is applied at the
positions where no large amount of required reinforcement is expected. In the top of the wall in-
creased amount of reinforcement is applied as this influences the moment capacity of the trough
above the mid support. As the walls are expected to become quite thin the reinforcement bars are
placed with a spacing of 100 mm.

In the conventional concrete structures for cracked cross sections the reinforcement has to be
able to withstand the entire shear force. The applied shear reinforcement has therefore determined
by the occurring shear force in the conventional concrete structures.

Due to the method of schematizing the floor the bending moments are the same in positive and
negative direction. The reinforcement in the floor is therefore equal in the top and bottom side.
Section 9.1.3 will go into further detail on this topic.

Figure 3.1: Typical reinforcement.
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Chapter 4

Loads

In this chapter all loads acting on the bridges are stated according to the Eurocode and OVS.

4.1 Static load

4.1.1 Self weight concrete

Due to the high packing density the self weight of UHPFRC is considerably higher than for con-
ventional concrete. Ductal R© CS1000 has a self weight 26 kN/m3, but in general the self weight of
UHPFRC can easily reach up to 29 kN/m3.

Conventional reinforced concrete γc = 25 kN/m3

Ultra High Performance Fibre Reinforced Concrete γc = 26 kN/m3

4.1.2 Track composition

The self weight of the track structure is given as an average value including the ballast, the sleepers,
the railway beams and the influence of possible lifting during maintenance. The depth of the track
composition is required to be calculated from the top of the deck to 150 mm below the top of the
track.

Track structure γt = 22 kN/m3

4.2 Life load

4.2.1 Load model 71

The load model 71 (LM71) indicates the effect of the vertical loading due to regular railway traffic.
Its characteristic values are indicated in figure 4.1. The spread load qvk has no limitation in length.
According to the national annex to the Eurocode these values have to be multiplied by a factor
α = 1.21 to obtain the classified vertical loading. In case of calculating the deflection with relation
to passenger comfort this factor α = 1.0.

4.2.2 Load model SW/0 and SW/2

Load model SW/0 and SW/2 indicate the vertical loading due to respectively normal railway traffic
on continuous girders and heavy railway traffic. The model and characteristic values are given in
figure 4.2 and table 4.1. The characteristic values have to be multiplied with the factor α = 1.21 to
obtain the classified vertical loading.
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4.2 Life load Loads

Figure 4.1: Load model 71 - characteristic values

Figure 4.2: Load model SW/0 and SW/2

Load model qvk a c
[kN/m] [m] [m]

SW/0 133 15.0 5.3
SW/2 150 25.0 7.0

Table 4.1: Characteristic values load model SW/0 and SW/2

4.2.3 Pathways

Non-public inspection paths are supposed to be loaded by a spread load with a characteristic value
of:

Pathways q f k = 5 kN/m2

4.2.4 Dynamic loading

The dynamic effects have been taken into account by multiplying the static results with the dynamic
factor Φ. This dynamic factor only has to be applied to the load models 71, SW/0 and SW/2. The
dynamic factor is taken for a standard maintained railway track.

Standard maintenance φ3 =
2.16√

LΦ−0.2
+0.73

with: 1.00≤Φ3 ≤ 2.00
(4.1)

In this equation LΦ is the determining length. For the main span direction this length is identified
as:

Simply supported Main span lenght

Continuous over 2 spans LΦ = 1.2 · 1
2 (L1 +L2)

(4.2)
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Loads 4.2 Life load

4.2.5 Fatigue loading

The fatigue loading to be considered is the composition of heavy traffic with axle-loads of 250 kN.
This composition exists of the four load models: five, six, eleven and twelve (appendix D NEN-
EN1991-2). The dynamic load factor for fatigue calculations is given to be:

φ f at = 1+
1
2
(φ′+

1
2

φ
′′) (4.3)

with:
φ
′ =

K
1−K +K4 (4.4)

in which:
K =

v
160

LΦ ≤ 20 m

K =
v

47.16L0.408 LΦ > 20 m

and

φ
′′ = 0.56e−

L2
Φ

100 (4.5)

in which:
LΦ determined length [m]
v maximum allowed speed [m/s]

4.2.6 Thermal loading

Thermal loading of the structure causes imposed deformations. The loading consists of a constant
and a linear component. The temperature changes of concrete bridges are defined in the Eurocode.

The linear component of the temperature load has been defined by NEN-EN 1991-1-5 for con-
crete bridge decks. The applied loads are depicted in figure 4.3.

The coefficient of thermal expansion for UHPFRC has been determined to be αT = 15 · 10−6

(Graybeal, 2006). Specifically for Ductal R© the coefficient of thermal expansion is αT = 12 ·10−6.
Due to the application of a ballast bed on the trough floor the cross-section will not experience

an evenly spread temperature change across the cross section. As the trough walls will experience an
imposed deformation due to the temperature gradient, the stiffness of the trough floor will prohibit
the walls from totally deforming. There will be a certain measure of interaction between the stiffness
of the floor, the deformation of the walls and the resulting internal forces. This effect was not possible
to take into account in the used numerical model for the parameter study. The thermal load effects
have been taken into account as an imposed deformation on a one dimensional model.

Single span

In the statically determined single span structure no resistance to the imposed deformation is present.
Therefor no internal forces due to thermal loading will occur.

Double span

As the static system of the double span bridge contains one support which is fixed in horizontal
direction no resulting forces due to expansion or contraction will occur. The linear temperature
gradient however introduces a constant curvature over the length of the structure. A bending moment
will develop in the cross section above the mid support. As the temperature gradient is bi-linear it is
split in two cases of which the results are calculated and consequently added. The magnitude of the
moments can be found by:
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4.2 Life load Loads

Figure 4.3: Temperature difference for concrete decks (Eurocode, 2011b)

φ = |M∆Ti ·L
3 ·EI

|= κ ·L
2

(4.6)

M∆Ti =
3
2

κ ·EI (4.7)

In which:

κ = αT ·∆Ti · 1
hi

(4.8)

4.2.7 Uneven settlement

Imposed deformation due to uneven settlement introduces forces due to the stiffness of the structure.
The Eurocode requires a settlement of δ = 10 mm of each support with regard to the adjacent sup-
ports. In trough bridges, which generally have a large stiffness, this requirement may lead to such
high forces in the structure that they become dominant or the structure even becomes impossible to
build.

The value δ = 10 mm prescribed in the Eurocode is a conservative value. By performing ad-
ditional soil investigation a better prediction of the settlement behavior can be given. With this
knowledge measures can be taken to reduce the settlement. A better knowledge of the behavior of
the structure in combination with monitoring of the structure can justify the application of a reduced
settlement. This method is not uncommon in practice and therefore under these remarks the applied
settlement in this research is reduced to δ = 5 mm.

The introduced load effects have been derived in appendix B.2.2.
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Loads 4.3 Excluded loads

4.3 Excluded loads

The following loads have been excluded from the model.

• Centrifugal forces. The model only treats bridges without horizontal curvature. Therefore no
centrifugal forces will occur.

• Nosing force. The sideways forces are of minimal effect on the construction depth of the
bridge.

• Traction and braking. Although traction and braking introduce rather large forces on the
structure, their effect on the geometry of the cross section is very limited.

• Construction loads. The load combinations during construction are considered to have marginal
influence on the design of the structure.

• Wind loads. The sideways forces are of minimal effect on the construction depth of the bridge.

4.4 Load combination

The applied loads on the structure result in a set of load combinations. The load combinations have
been put together according to NEN-EN 1990-1-1.

4.4.1 Ultimate limit state

The calculations on behalf of the strength of the structure are performed in the ultimate limit state
(ULS). The design values of the loads in this case are given in table A2.4(B) of the NEN-EN 1990-
1-1.
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4.4 Load combination Loads

Figure 4.4: Design values ultimate limit state

4.4.2 Serviceability limit state

The serviceability limit state (SLS) knows three combinations; the characteristic, frequent and quasi-
permanent. They are stated below. The values for Ψ are given in table A2.3 of the NEN-EN 1990-
1-1. This table distinguishes between load combinations built up of individual load components
or load groups. The groups consist mostly consist of a vertical traffic load in combination with
horizontal loads. As stated the horizontal loads have been excluded in this research, leaving only the
vertical components in the load groups. Load model SW2 gets a different Ψ-factor when applied as
individual load or within a group. As in practice the loads are most likely to be applied as a group
the Ψ-factor for load model SW2 is taken as Ψ1 = 0.8.

Characteristic combination ∑ j≥1 = Gk, j “+ ” P “+ ” Qk,1 “+ ” ∑i>1 Ψ0,iQk,i (4.9)

Frequent combination ∑ j≥1 = Gk, j “+ ” P “+ ” Ψ1,1Qk,1 “+ ” ∑i>1 Ψ2,iQk,i (4.10)

Quasi-permanent combination ∑ j≥1 = Gk, j “+ ” P “+ ” ∑i≥1 Ψ2,iQk,i (4.11)

In which G is the permanent loading, P the prestressing loading and Q the variable loading.

4.4.3 Fatigue

For the verifications on fatigue loading a separate load combination is prescribed.

∑
j≥1

=

(
Gk, j “+ ” P “+ ” Ψ1,1Qk,1 “+ ” ∑

i>1
Ψ2,iQk,i

)
“+ ” Q f at (4.12)
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Chapter 5

Prestressing

5.1 Tendon profile

The placement of the cables follows a parabolic layout. This allows the geometry of the cables to be
described by a function. The starting point is that the cables are applied as close as possible to the
outermost fibre in order to increase the effectiveness of the prestressing.

5.1.1 Single span

In single span structures the tendon profile follows the parabola as indicated in figure 5.1. The
parabola is defined as:

g(x) =
4(zb− f )

L2 · x2 (5.1)

The derivation of the tendon profile can be found in appendix D.

Figure 5.1: Tendon profile single span structure

5.1.2 Two spans

The tendon profile for two spans can be derived from the tendon profile of three spans. The tendon
profile is symmetrical about the mid support. The spans can be regarded as the end spans in the
structure with three spans. Therefore the same parabolic functions apply. The functions of the
parabolas have been derived in appendix D and are:

h(x) =
1

2 ·R
(x− x2)

2 + y2 (5.2)
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5.2 Friction losses Prestressing

g(x) =
1

2R+
x2

2
y2

· x2 (5.3)

In which R is the radius of the tendon profile above the support and x1 is given as:

x1 = 2 · y2

x2
·R+ x2 (5.4)

Figure 5.2: Tendon profile in midspan

The tendon profile in the end spans are not symmetrical. Therefore the global position of the ori-
gin of the coordinate system is unknown. This can be solved by treating the distance x2 as unknown
and solving it trough the boundary and matching conditions. This results in:

h(x) =
1

2 ·R
(x− x2)

2 + y2 (5.5)

g(x) =
1

2R+
x2

2
y2

· x2 (5.6)

with:

x2 =
L±

√
y3
y2
· (L2−2R · y3)+2R · y3

1− y3
y2

(5.7)

5.2 Friction losses

Due to friction between the prestressing steel and the duct, the prestressing force will vary over the
length of the cable. This effect is influenced by the rotation of the cable, the friction coefficient

Figure 5.3: Tendon profile in endspan
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Prestressing 5.3 Initial prestressing force

and the so called wobble-effect. The prestressing force after friction losses can be expressed as a
function of the length.

P(x) = P0 · e−µ·(∆θ+k·x) (5.8)

In which:
µ friction coefficient
∆θ total sum of absolute angular rotation
k wobble-effect
x x-coordinate of the considered cross section

(5.9)

The friction coefficient is dependent on the chosen prestressing system and is generally between
µ = 0.15− 0.25 for systems with strands. The applied prestressing system here requires a friction
coefficient of µ = 0.17. The wobble-effect for regularly applied prestressing systems is k = 0−
0.01 rad/m. The applied wobble-effect is k = 0.008 rad/m.

Besides the friction losses over the length of the cable, the wedge settlement introduces losses as
well. This effect takes place over a certain length which depends on the slope of the friction losses
and the actual settlement of the cable. The wedge-set length can be calculated by:

lset =
wset ·Ep

∆σp
∆x

(5.10)

in which:
wset retraction of the prestressing cable in the anchor
Ep young’s modulus of the prestressing steel
∆σp
∆x slope of the friction loss diagram

(5.11)

The size of the wedge settlement is dependent on the anchor system and is usually between wset =
5−15 mm. The applied wedge set in this project was wset = 10 mm.

5.3 Initial prestressing force

Requirements on the maximum allowed tensile stresses in the outermost fibres dictate the boundary
conditions for the minimum required and maximum allowed prestressing force. Starting point for
this method is that at prestressing (t = 0) only the self-weight of the structure is present and at t = ∞

time dependent losses have occurred and the system is fully loaded. The boundary conditions can
be derived by the sets of equations for the different static systems presented in equations 5.12 trough
5.17.

The maximum allowable tensile stresses in the concrete are given in the OVS00030-6 (Kremer, 2012)
(see also the literature study on this topic). Table 5.1 shows the allowable tensile stresses. The de-
mands make a distinction between the cases whether the considered outer fibre is located near the
prestressing cable or not.

One span
t = 0

σtop =−
P0

Ac
+

M(P)
Wt
− M(G)

Wt
(5.12)

t = ∞

σbottom =−P∞

Ac
− M(P)

Wb
+

M(G+Q)

Wb
(5.13)

Two spans
t = 0

σtop =−
P0

Ac
+

M(P)
Wt
− M(G)

Wt
(5.14)
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5.4 Time dependent losses Prestressing

Load combination Location maximum tensile stress
[N/mm2]

Quasi-permanent Everywhere 0
Frequent No prestressing 0.5∗ fctk:0.05 or σc < 1.5
Frequent Prestressing 0
Characteristic No prestressing 0.75∗ fctk:0.05 or σc < 2.25
Characteristic Prestressing 0.5∗ fctk:0.05 or σc < 1.5
Construction phase Everywhere σc < fctmt or σc < 3.0

Table 5.1: Maximum allowable tensile stresses according to OVS00030-6

σbottom =−P0

Ac
+

M(P)
Wb

− M(G)

Wb
(5.15)

t = ∞

σtop =−
P∞

Ac
− M(P)

Wt
+

M(G+Q)

Wt
(5.16)

σbottom =−P∞

Ac
− M(P)

Wb
+

M(G+Q)

Wb
(5.17)

5.4 Time dependent losses

5.4.1 Creep

The influence of creep has been taken into account according to paragraph 3.1.4 in the NEN-EN
1992-1-1. The creep strain was calculated for the moment in time at t = ∞ with equation 5.18.

εcc(∞, t0) = φ(∞, t0) ·
(

σc

Ec

)
(5.18)

In which:
εcc(∞, t0) creep strain at t = ∞

φ(∞, t0) creep coefficient of the mixture
σc constant concrete compressive stress applied at t = 0
Ec Tangent modulus 1.05 ·Ecm

The creep coefficient is dependent on the concrete mixture. The applied creep coefficient is φ(∞, t0)=
0.5.

5.4.2 Shrinkage

The shrinkage is the combined strain due to drying shrinkage and autogenous shrinkage. The auto-
genous shrinkage can be calculated trough:

εca = 2.5( fck−10) ·10−6 (5.19)

The drying shrinkage of the ductal CS1000 mixture is given to be less than εcd < 10−5. This upper
limit is taken into account as strain due to drying shrinkage.
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Prestressing 5.5 Cable configuration

5.4.3 Relaxation

As the prestressing system is no different in this structure compared to structures in conventional
concrete, the general rules for relaxation as described in the NEN-EN 1992-1-1. The applied equa-
tion for the relaxation in the prestressing steel is:

∆σpr

σpi
= 0.66 ·ρ1000 · e9.1µ

( t
1000

)0.75(1−µ)
·10−5 (5.20)

In which:

∆σpr absolute value of relaxation losses
σpi maximum stresses in the prestressing steel after immediate friction losses
ρ1000 relaxation loss in % after 1000 hours at an average temperature of 20◦C
µ = σpi/ fpk
t time after prestressing in hours

The design lifetime of the structure of 100 years implies a time of t = 876000 hours. The value of
ρ1000 can be taken as 2.5% for strands.

5.5 Cable configuration

There is a high degree of interaction between the dimensions of the cross-section, the prestressing
force, the amount, the type and the position of the cables. This makes that the cable configuration
has got an almost unlimited number of possibilities. In order to make all bridges comparable and
reduce the number of possible cable configurations some boundary conditions where created.

1. All cables are positioned in the webs of the trough.

2. All cables have a vertical curvature.

3. All cables are positioned in the webs in pairs of two.

4. A maximum of eight or twelve cables per web for the single and double span structure respec-
tively.

The choice for the size of the cables has been done by creating an iterative process in the model
where each time either the number of strands in the cable or the height of the trough is increased.
At each iteration the self weight and the boundary conditions for the prestressing are recalculated.
This process continuous until the required height with regard to the anchor plates has been met and
Pmin < Pmax.
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Chapter 6

Verifications

6.1 Ultimate limit state

6.1.1 Effective width

The effective width over which the stresses can uniformly be distributed, influences the cross-section
which contributes to the load distribution. The effective width of the floor has been calculated
according to paragraph 5.3.2.1 of the NEN-EN 1992-1-1. Applied for this situation of the trough
bridge this becomes:

be f f = be f f ,1 +bw ≤ b (6.1)

In which:
be f f ,1 = 0.2 · 1

2 bi +0.1 · l0 ≤ 0.2 · l0
be f f ,1 ≤ bi

and
l0 = 1.00 ·L for field single span structure
l0 = 0.85 ·L for field double span structure
l0 = 0.15 ·2 ·L for support double span structure

6.1.2 Bending moment capacity

As the effective width can be smaller than half of the actual cross-section the applied bending mo-
ment is divided over the two effective areas. The unity check for the bending moment capacity
is:

ME,d

MR,d
≤ 1.0 (6.2)

ME,d effective bending moment
MR,d bending moment resistance

Due to the high compressive strength of the concrete it may occur that horizontal equilibrium
can be reached with a very small compressive height. This will result in a strain in the reinforcement
steel which is well beyond the ultimate steel strain. This is an additional verification which applies
for UHPFRC and should be performed just as the verification of the maximum compressive zone
height.
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6.1 Ultimate limit state Verifications

6.1.3 Shear capacity

The verifications on shear capacity in the ultimate limit state contain two facets. First the flexural
shear and second the compression strut. As UHPFRC allows slender and thin constructions the latter
is possibly more pronounced in UHPFRC structures than in structures of conventional concrete. To
gain insight in the influence of both aspects two separate unity checks were performed.

unity check =
VEd

VRd
(6.3)

unity check =
VEd

VRd,max
(6.4)

VE,d effective shear force
VR,d shear resistance
VRd,max compressive strut capacity

6.1.4 Lateral torsional buckling

In conventional concrete structures very thin, slender beams, loaded under bending are rarely ap-
plied. Therefore lateral torsional stability is hardly ever verified. In UHPFRC it is possible to design
very thin beams under bending. This also occurs in the design of the trough bridges in this research
and therefore a verification on lateral torsional buckling has been included.

For lateral torsional buckling on concrete beams in structures no absolute verification exists. The
approach of the Eurocode shows this by only stating that lateral torsional buckling should be verified
in slender beams. However, no quantitative method is described. It does state that no second order
effect has to be taken into account in case certain conditions with regard to the slenderness are met.

Two different approaches were investigated on their suitability of application for structural el-
ements. First the method applied for lifting concrete prefabricated beams (de Jong & Schaafsma,
1997) and secondly the method described in the dissertation ‘New vision on flexural-torsional buck-
ling, stability and strength of structural members’ (Raven, 2006).

The reasoning of the first method is that the lateral torsional buckling moment is an upper limit
at which lateral torsional buckling certainly will occur. However, just like with the Euler buckling
load for normal loaded elements, this upper limit will never be achieved due to imperfections in
the structural element. To calculate this upper limit the method makes use of an effective width of
the floor which is included in the torsional stiffness. This does increase the lateral torsional moment
capacity, but the influence of the ratio between the floor- and wall thickness is not taken into account.
After a second order displacement has been calculated this displacement is transposed to a horizontal
bending moment. Lateral torsional buckling is assumed to occur when this bending moment is larger
than the horizontal bending moment capacity.

In the dissertation (Raven, 2006) an analysis of stability due to second order effects was devel-
oped. This method was compared to the results of verifications in the NEN 6760, NEN 6770 and
NEN 6720, the design codes for respectively timber, steel and concrete structures. Although these
design codes have very different approaches for the verification of stability, it was found that the, in
the dissertation developed method, gives results almost equal to the design codes and is applicable
for concrete structural elements. Therefore this approach has been chosen to evaluate lateral tor-
sional buckling and is described below. The dissertation shows that the approach is applicable for
statically determined and undetermined beams.

Note that, although the dissertation shows the possible application of the method on concrete
elements, this method may not yet be regarded as the absolute value of lateral torsional buckling
for concrete. Further research is required on this specific topic. In this research the verification on
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Verifications 6.1 Ultimate limit state

lateral torsional buckling has to be regarded as an indication of the sensitivity of the structure to this
type of instability.

The general verification for lateral torsional buckling is:

NEd

NRd
+

My,Ed

My,Rd
+

Mz,Ed

Mz,Rd
≤ 1 (6.5)

NE,d effective normal force
NR,d normal force resistance
My,Ed effective bending moment about y axis
My,Rd bending moment resistance in y axis
Mz,Ed effective bending moment about z axis
Mz,Rd bending moment resistance in z axis

In this the overlined bending moments stand for the bending moment including the second order
effect. As in this research horizontal forces are neglected Mz,Ed only consists of the second order
bending moment of the size :

Mz,Ed = Mz2 =−EIz · v′′2 (6.6)

This second order moment can be found by:

Mz2 =
FE

k1

v0

n∗z −1
(6.7)

In which:
FE Euler buckling load
v0 initial displacement
n∗z second order factor

The initial displacement is taken as v0 = L/300. This value is stated in the NEN 1992-1-1 as the
horizontal deflection due to geometrical imperfection.

The second order factor for a beam with a lateral support (in this case the trough floor) in the
tension zone can be found with equation E.104.

1
n∗z

=
k1My1 +Fc

h
2

GIt 2
h +FE

h
2

(6.8)

In which:
My1 maximum bending moment
Fc normal load
k1 factor depending on construction type and loading
GIt effective torsional stiffness

Loading k1
constant moment 1.0
constant distributed load 0.88
concentrated load at midspan 0.73

Table 6.1: Values for factor k1.
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6.2 Serviceability limit state Verifications

6.1.5 Fatigue loading

The verification of the structure subject to fatigue loading is done according to the first method
described in the literature study and the loads described in section 4.2.5.

6.2 Serviceability limit state

6.2.1 Deflection

The occurring deflection has been calculated as a result of the curvature due to the loading. Solving
the differential equation with the corresponding boundary conditions gives the deflection of the
structure.

−EI · d
2w

dx2 = M (6.9)

The statical vertical deflection in the serviceability limit state is limited to wmax = L/800. The
deflection is also limited by a vertical acceleration of the train with relation to passenger comfort.
The NEN-EN 1990 gives maximum vertical deflections to limit the vertical acceleration. For a
comfort level ‘Very good’ a vertical acceleration of bv = 1.0 m/s2 is considered. The limiting vertical
deflection which corresponds with this is depended on the length of the span and the velocity of the
train. This relation is depicted in figure 6.1.

Figure 6.1: Relation between deflection δ, span L and velocity V . (Eurocode, 2011a)

6.2.2 Stresses

The OVS demands with regard to the allowable tensile stresses in the structure are verified by making
use of the cross section analysis. The stresses have been calculated according to equation 6.10 and
6.11.
t = 0

σtop =−
P0

Ac
+

Mp

Wt
− M(G)

Wt
(6.10)

t = ∞

σbottom =−P∞

Ac
−

Mp

Wb
+

M(G+Q)

Wb
(6.11)
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Verifications 6.2 Serviceability limit state

6.2.3 Crack width

The current state of technology doesn’t grand a quantitive method for determining the crack width in
UHPFRC. The application of the crack with calculation for conventional concrete would give very
unjust results due to the fine distribution of the fibers. Therefore the crack width calculation has been
left out of the model. This will have no large implications for the results. After all in the longitudinal
direction the requirements with regard to the stresses in the SLS prevent cracking from happening.

In the cross direction however this requirement is not present. To not ignore the influence of the
crack width demands on the cross section, the applied yield stress of the reinforcement in the floor
is reduced in the calculation of the moment capacity. The applied yield stress is f ∗yd = 300 N/mm2.
This causes the application of a thicker floor with a larger section modules to reduce the maximum
stresses and thus the crack formation.
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Chapter 7

Non-linear calculation

The bending moments cause (micro-)cracks to occur. These cracks will lead to a reduced stiffness
in the cross section, as given by the relation in the moment-curvature diagram (section 7.2). Due
to the capacity of UHPFRC to withstand large strains in comparison with conventional concrete, it
is able to allow large rotations and is therefore well able to redistribute bending moments along the
structure.

7.1 Moment redistribution

The concrete structure is most fully used when both above the mid support and in the field the
moment capacity is approached. Before the moment capacities are reached the effective moment
causes the concrete to crack and to approach a plastic hinge. When a plastic hinge occurs, this
cross section will not be able to withstand a larger bending moment, but the curvature will increase,
causing the bending moment to increase at other cross sections. While increasing the load this
will continue to happen until the first plastic cross section fails, or the failure mechanism has been
formed with plastic hinges. The resulting bending moment distribution will have a smaller absolute
maximum bending moment, which is favorable for the dimensions of the cross section.

Due to the non-linear moment-curvature relation, in a statically determined structure of one
simply supported span some reduction of the stiffness will occur before the plastic moment will be
reached. This causes that only very limited redistribution of bending moments can take place since
as the plastic moment has been reached a plastic hinge will be formed and the failure mechanism
occurs. The failure mechanism for a simply supported, statically undetermined structure of two
spans requires the development of two plastic hinges. The absolute maximum bending moment will
occur above the support. At increasing of the load the first plastic hinge will occur here. Increasing
the load further will cause a plastic moment to occur in the field. Since the load redistribution in the
single span structure is very limited only the statically undetermined structure will be evaluated with
a non-linear calculation.

Figure 7.1 shows the approach of the calculation of the redistributed bending moment. First,
the moment distribution with the linear elastic approach is calculated. With use of the moment
curvature diagram for the cross section the curvature can be determined at the cross sections of the
discretized structure. The curvature distribution can be integrated twice with the trapezium method
to find the corresponding deflection line. The boundary conditions which should be applied are that
the deflection at each support should be zero. For the end supports this can be enforced, but at
the midsupport the deflection may be unequal to zero due to an unrealistic curvature distribution.
In this case the boundary conditions aren’t met and the support bending moment is lowered with
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7.1 Moment redistribution Non-linear calculation

Figure 7.1: Process chart for non-lineair moment redistribution. (Dilsiz, 2013)

stepsize ∆Ms and the redistributed bending moment is calculated. This process will continue until
the boundary conditions are met.

In step five and six from figure 7.1 the curvature line is integrated twice with the trapezium
method. This numerical integration calculates the area beneath the curve, but the integration con-
stants are unknown. These integration constants can be found by applying boundary conditions. For
the integration of the curvature to the angular rotation it holds that at the points where the derivative
of the curvature is zero, the angular rotation is also zero. The applied boundary condition for the
integration from angular rotation to deflection is that the deflection at the end support is required to
be zero.

The process of finding the redistributed bending moment requires a bending moment distribu-
tion known over the full length of the two spans. However, in the linear elastic calculations, due
to symetry, only one span has been modeled. In order to proceed with the calculation of the redis-
tributed bending moment an assumption for the bending moment distribution over the second span
is required. This can be done as the evaluated bending moment lines in the ultimate limit state define
the moment envelop. This moment envelop will cause the largest curvature and therefore the largest
reduction in stiffness. As it is not possible to say that either one span will be loaded to the maximum
before the other is, it may be assumed that the maximum reduced stiffness is present in the second
span. This can be modeled by mirroring the moment envelop about the midsupport. The assumption
that the lowest stiffness is present in the second span is a safe assumption as it allows less redistribu-
tion of bending moment. Implicitly this approach models a loading history where the second span
has been fully loaded before the evaluated span is. .

The calculation of the redistributed bending moment is done according to figure 7.2. For each
moment distribution in which the support moment is larger than the field moment, the maximum
amount of moment distribution is the difference between the maximum field moment and the mo-
ment capacity in that cross section (distance a). Redistribution of the bending moment will not
influence the distance b. Therefore the redistributed bending moment can be calculated as the dis-
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tance between line A and B, which is at each point the same as the distance between C and D.

Figure 7.2: Redistribution of the bending moment.

7.2 Moment-curvature relation

The moment curvature relation, which is input for the non linear calculation of the moment distribu-
tion, has been determined with use of the multiple layer model. This model, which previously has
been used in multiple studies, discretizes the cross section in a number of small layers and calcu-
lates the strain distribution in the cross section due to the applied curvature. The applied multiple
layer model is a variation based on the model used by (Dilsiz, 2013). The model has been altered
to be applicable for pretensioned concrete cross sections with a varying width over the height. The
resulting diagram therefore is a moment - normal force - curvature diagram.

The input for the multiple-layer-model are the geometry, the normal force, the constitutive rela-
tions of the different materials and the curvature. For each curvature the corresponding strain- and
stress-distribution can be found. From this the resulting bending moment which corresponds with
the applied curvature can be calculated. Calculating the bending moments for a range of curvatures
for a cross section gives the MNC-diagram for that specific cross section. Due to the curved tendon
profile the MNC-diagram is different for each cross section. Figure 7.3 gives the flow chart of the
multiple layer model.

In order to find the required moment capacity after moment redistribution, the linear-elastic
moment distributions which cause the maximum support- and field-moment are important. With
these two moment distributions all other moment distributions are accommodated for. The linear-
elastic moment distributions which provide the maxima are known from the linear elastic model.

7.3 Rotation capacity

At the sections in the bridge where the stiffness is reduced an increased rotation will occur. The
Eurocode describes a method in which the maximum allowed rotation is split between the though
reinforced concrete and the more brittle prestressed concrete (figure 7.4). Although the UHPFRC
trough bridge is prestressed, the material is very though. Especially this aspect makes that UHPFRC
is very suitable for moment redistribution. As to not be detrimental to the material properties due to
the applied rules it was chosen not to apply the Eurocode verification here.
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Figure 7.3: Process chart multiple layer model. (Dilsiz, 2013)

The CUR 108 publication allows the rotation capacity to be calculated based on the actual oc-
curring strain. Assuming a constant curvature over the length d or 2 ·d (depending on the considered
cross section) the ultimate rotation capacity can be calculated. As the actual occurring strain is de-
pendent on the material properties this method will allow the large deformation capacity of UHPFRC
to be used. Important to note is that this method has not experimentally been verified for UHPFRC.
It is however a plausible approach for how the material may behave.

As the rotation is largest under the load combinations in the ultimate limit state only these situa-
tions have to be verified. The maximum allowed rotation is given by function 7.1 for cross sections
in the field and by equation 7.2 for the cross section above the midsupport.

Φu =
εcu3

xu
·2d (7.1)

Φu =
εcu3

xu
·d (7.2)

In which:
Φu maximum allowed rotation
εcu3 ultimate compressive strain
xu ultimate height of the compressive zone
d effective cross sectional height

The actual occurring rotation in the evaluated cross section is calculated in the redistribution of
the bending moment and is therefore already known. The verification can be defined as ΦEd ≤Φud .
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Figure 7.4: Maximum allowed rotation according to NEN-EN 1992-1-1.
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Chapter 8

Description of MatLab model

8.1 Model scheme

The parameter study has been performed in a model in the computer program Matlab. This was
done on account of the program which allows all intermediate calculated data to be extracted and
the function of the program to make relative easy changes to the boundary conditions and compare
the results.

The basic idea behind the model is that a too small cross section will be subject to the design
verifications. As this cross section will not be able to satisfy the verifications the cross section will be
enlarged until all verifications are satisfied. The result of the model is an optimized cross section. For
the non-linear calculations the model uses a different approach. It loads the linear-elastic results and
then, after redistribution of the bending moment, reduces the height until one of the verifications is
no longer satisfied. The output is the last evaluated geometry in which all verifications are satisfied.

Figure 8.1 shows the process chart of the Matlab model for both the single and double span linear
elastic calculation. The applied theory has been described in the previous chapters.

The Matlab model has been verified by performing manual calculations for both the single and
double span structure. A longer span length of 40 m for the single span structure was chosen to
show the structural safety of a longer span, while a span length of 20 meter for the double span
structure was chosen to verify the prestressing profile with smaller radii. In these manual calculations
the geometry which results from the Matlab model is verified. In stead of manually designing a
geometry. The manual calculations are presented in appendix E and F. The results of the manual
calculations have been compared with the Matlab results and are presented in tables E.5 and F.9.

8.2 Length

The model analyzes trough bridges for various lengths. These lengths are defined by a minimum and
maximum length and a step size of one meter. For each length the model starts over at the beginning
of the design process. No calculated values of previous lengths are taken to the next. Table 8.1 shows
the evaluated lengths for the different models.

8.3 Initial conditions

At the start of the design process the initial conditions are defined. These are the properties which
remain constant, like the applied reinforcement (table 3.3), the material properties (Chapter 3) and
the initial cross section dimensions.
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Figure 8.1: Flow chart linear-elastic model.
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Model Lengths Remark
1 span - UHPFRC 10 - 50 m
1 span - C35/45 10 - 40 m Larger spans lead to unrealistic results.
2 spans - UHPFRC 20 - 50 m Minimum span length of 20 m required to accommodate

prestressing curvature.
2 spans - C35/45 20 - 28 m For longer spans the shear force verification can not

be satisfied.

Table 8.1: Evaluated lengths for different models.

The cross section dimensions are at this point defined to be too small to be realistic values. After
satisfying all design verifications the model will present a resulting cross section which is optimized
in terms of cross sectional area. The initial cross section dimensions are given below.

Dimension Symbol Size
wall height - single span h 400 mm
wall height - double span h 1200 mm
wall thickness bw 200 mm
floor thickness - UHPFRC tb 300 mm
floor thickness - C35/45 tb 680 mm
internal width bi 4000 mm
outer width bd 4400 mm

Table 8.2: Initial cross sectional dimensions.

In the single span structure an initial wall height of 400 mm is applied. In the double span
structure this is 1200 mm. This was done to speed up the calculations of the double span structure.
Each iteration takes a lot more time for the double span model than for the single span model. The
calculation time is reduced by reducing the required number of iterations. In the single span model
this goes that fast that the influence on the calculation time can be neglected.

The applied initial floor thicknesses are the same as the results. The required thickness of floor
has first iteratively been determined and subsequently been applied as initial dimension. The reason
for this is that the model shows instability with regard to the varying floor thickness. As the length
of the static model of the floor is defined as the centre to centre distance of the walls, the span length
of the floor increases as the wall become wider. This may cause that the verifications for a given
floor thickness may no longer be met when the wall thickness is increased. Although the model has
been programmed to increase the floor thickness until the floor verifications are satisfied, this may
lead to unrealistic results when a too small initial floor thickness is applied. This has been prevented
by applying a verified floor thickness as initial dimension. The applied initial floor thickness is not
unrealistic as the manual calculation in appendix E shows.

A constant amount of applied reinforcement has been used since the emphasis of the research is
on how the concrete cross section changes over varying length. The constant reinforcement allows
to make this comparison.
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8.4 Loads

8.4.1 Static loading

The model makes use of superposition of the load effects. By applying the displacement method
for each load case, the moment- and shear force distribution line can be defined in an analytical
expression. Due to symmetry this expression is evaluated for ‘n’ points over half the length of
the beam. Later on in the design process this allows to find the corresponding bending moment
distribution with the maximum shear force.

8.4.2 Mobile load model

The Matlab model is required to calculate the maximum loading for each static system of varying
length. Due to the load models LM71 and SW/0 and SW/2 consisting of point loads, distributed loads
and block loads, the position of the load can not be expressed as a constant times the length of the
structure. Especially in the case of the SW load models, in combination with statically undetermined
systems, a large spread in the position of the load in order to obtain the maximum internal forces can
be seen for a varying length of the system. This spread would introduce an error in the results which
has been considered too large to permit, as this could lead to unrealistic results in the research.

A solution to this was found in moving the load model over the length of the structure with steps
of one meter. Each position will give it’s own moment and shear distribution. From these, the model
will continue with the governing load distributions.

The internal bending moments are determined by use of the displacement method. As a load
configuration is placed upon the structure it divides the structure in certain intervals. These inter-
vals are connected by boundary- and matching conditions. This leads to a set of equations and
unknowns which can be solved. This was done analytically in the computer program Maple. These
equations were then imported into the Matlab model. The model determines in which interval the
considered cross section is placed and then calculates the internal bending moments. Figure 8.2
shows a schematic overview of the possible positions of a SW load on a two span structure, with its
corresponding intervals.

At this point the moment line in the structure is known. The shear force is the derivative of the
bending moment. To find the shear force line the bending moment line has been approached with a
fourth degree polynomial. This allows Matlab to find the analytical derivative. This equation is now
evaluated for ‘n’ points. The result is the shear force line.

Load models SW/0 and SW/2 consist of two spread loads of a fixed length and distance of each
other. These loads have to be applied also in the case they work favorable. The load model LM71
consists of four point loads with a fixed configuration and two spread loads of undefined length.
These spread loads have been applied only at the areas where they work unfavorable. These areas
have been determined by making use of influence lines. This causes that there are different load
positions for the maximum shear force and the maximum field moment.

The results for each static system, of each length, can be plotted as the envelop of the internal
characteristic forces.
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Figure 8.2: Schematic overview of possible load locations of SW load model on double span
structure with corresponding mathematical intervals.
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8.4.3 Load combinations

Section 4.4 shows how the load combinations are defined. In the model the factor Ψ and γ are
defined in matrices. These matrices have a number of rows which correspond with the number of
load cases and a number of columns which correspond with the number of load combinations. Also
the characteristic load effects have been combined in a matrix. The number of rows of this matrix
corresponds with the number of load cases and the number of rows are the ‘n’ evaluated points over
half of the length of the structure.

The definitions of the load cases in the various limit states can be generalized to:

Ed = γ ·Ψ ·Gk + γ ·Ψ ·P+ γ ·Ψ ·Qk (8.1)

In the model with the matrices this equation becomes:

Ed = (Ψ◦ γ)′ ·Ek (8.2)

In which:
Ψ [a×b]
γ [a×b]
Ek [a×n]
Eb [b×n]
a number of load cases
b number of load combinations
n number of evaluated cross sections
◦ pointwise multiplication

The generalization of equation 8.1 can be used under certain conditions. In load combinations
where no factor Ψ is present the factor Ψ = 1.0. For load cases which are not present in a load
combination the factor Ψ = 0. The result of equation 8.2 is a matrix Ed with b rows and n columns.
Each row stands for the design load effects of a certain load combination.

At this point the prestressing force is still an unknown. However, the load effects have been taken
into account in the matrix Ek with a constant value of Ep,k = 0 [−]. This has been done to make the
load combination function applicable at all points during the design process. Later on the input in
Ek for the prestressing load effects is redefined.

8.5 Prestressing

8.5.1 Strands

An assumption was made for the size of the applied prestressing cables. Based on this assumption
a minimum required wall thickness can be calculated. This wall thickness is a function of the duct
size, as the wall at least needs to be wide enough to fit two ducts with intermediate spacing next to
each other.

8.5.2 Friction losses

The idealized tendon profile trough the center of gravity of the prestressing cables is described
by one parabola g(x) in the statically determined structure and by three parabolas in the structure
with two spans. The angular rotation is defined by their derivatives. The parabolas are defined by
their boundary conditions: the eccentricity of the tendon profile at the origin and at the ends. As
the cable configuration changes, so does the eccentricity. The recalculation of these eccentricities
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make it possible to redefine the parabola and therefore calculate the friction losses for the new cable
configuration.

The friction loss is calculated by:

P(x) = P0 · e−µ·(∆θ+k·x) (8.3)

This function is evaluated at the points where the derivative changes sign and at the interface between
the parabolas. This gives the prestressing force after frictions losses without wedge settlement.

The wedge settlement can be calculated by:

lset =
wset ·Ep

∆σp
∆x

(8.4)

In this the expression ∆σp/∆x is the slope of the expression 8.3. Before wedge settlement losses
the prestressing at the edge x = 0 is P(x)/P0 = 1.0. After wedge settlement losses this is P(x)/P0 =
1− 2 · lset ·∆σp/∆x. A linear function for P(x)/P0 after wedge settlement is defined by P(x)/P0 =
1−2 · lset ·∆σp/∆x+ x ·∆σp/∆x. This function intersects P(x)/P0 before settlement at x = lset .

The two functions for P(x)/P0 before and after wedge settlement are evaluated at 2 ·n+1 points
over the length of the structure for the one side tensioned single span structure and at n points for the
statically undetermined structure which is symmetrically tensioned at both sides. This makes from
the functions P(x)/P0 two vectors of the size [1× n]. The actual prestressing force P(x)/P0 after
wedge settlement is now defined by a vector of the size [1× n] in which the value for each entry
is the smallest of two initial vectors. The mean prestressing force can now be calculated from this
vector.

8.5.3 Maximum and minimum prestressing force

The OVS sets certain boundary conditions to the maximum allowed tension stress in the concrete.
These boundary conditions have been described in a data set and are dependent on the load combina-
tion and the position of the evaluated fibre with respect to the position of the prestressing cable. All
boundary conditions have been evaluated by a cross-section analysis. In this evaluation the boundary
condition is being extracted from the data set by predefining the location of the fibre and the load
condition. 

Load combination Near cable Away f rom cable
Construction σc ≤ fctm ≤ 3 σc ≤ fctm ≤ 3
Frequent 0 0.5 · fctk ≤ 1.5
Characteristic 0.5 · fctk ≤ 1.5 0.75 · fctk ≤ 2.25
Quasi− permanent 0 0


The boundary conditions have all been evaluated and all lead to a certain maximum allowed or

minimum required prestressing force. Depending on the location of the evaluated cross section the
minimum and maximum prestressing force are found at the top or bottom. The boundary conditions
for the prestressing force are defined by the largest minimum and smallest maximum prestressing
forces.

Due to the equations which calculate the required prestressing force to obtain a certain tensile
stress it may occur that the required prestressing force is negative. This means that without prestress-
ing force the stress will be a lower tensile stress or even a compressive stress. When this occurs the
model takes for the prestressing force P = 0 kN.

The prestressing forces at t =∞ are transposed to the initial prestressing forces at t = 0 by making
use of the time dependent losses. At first these are estimated to be 15%.

The chosen initial prestressing force P0 is the smallest required force. This minimizes the re-
quired amount of prestressing which should have a positive effect on the costs of the structure.
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8.5.4 Applied prestressing force

The initial prestressing force P0 is before friction losses and wedge settlement. The mean pre-
stressing force after wedge settlement was calculated as a percentage of the initial force. The mean
prestressing force Pm,0 at t = 0, and the mean prestressing force Pm,∞ at t = ∞ are calculated.

From the initial prestressing force and the maximum allowed steel stress the required area of
prestressing steel is calculated. The size of the prestressing strands remains constant and the number
of strands per cable are known so the cable area can be used to calculate the required amount of
cables. The amount of cables is defined such that it is always a number which can symmetrically be
divided over the two trough walls and such that always an even number of cables is placed in each
wall. This allows the cables to always be placed in pairs next to each other.

As the applied prestressing is known the actual initial stress can be calculated.

8.5.5 Time dependent losses

With the calculated applied prestressing force the actual time dependent losses can be calculated.
This has been done relatively easy by evaluating the theoretic equations. As from the prestressing
boundary conditions it may occur that no prestressing is required, the prestressing area may be found
to be zero. The equations for relaxation and creep losses require a division by the prestressing area.
This is not possible when the value for Ap is zero. When the prestressing area is zero the relaxation
and creep losses are also set to be zero. In practice this mean that no creep and relaxation will occur
when no prestressing is present.

8.5.6 Cable configuration

There are numerous ways to apply the prestressing cables. The positions, amount of strands and
amount of cables are the main variables in this. To reduce the number of possibilities certain bound-
ary conditions have been applied. At the head of the structure the tendon profile is situated as much
as possible towards the neutral axis of the cross section, this is for both this statically determined
and undetermined structure. In the statically undetermined structure the tendon profile above the
mid support is situated as high as possible. The model does take into account the required area for
the anchor plates to be placed.

Step Describtion
1. Define cable size.
2. Alter cross section dimensions.
3. Recalculate cross sectional properties.
4. Recalculate load combinations.
5. Recalculate friction losses.
6. Recalculate minimum and maximum prestressing force.
7. Recalculate actual time dependent losses.
8. Recalculate applied prestressing force.
9. Verify boundary conditions.
10. Accept or alter cable configuration.

Table 8.3: Iterative steps in defining the cable configuration.

The model finds its cable configuration on an iterative manner. The steps it goes trough are
described in table 8.3. At the basis of the choice for a cable configuration there is a data set with
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possible cable compositions in terms of number of strands per cable, the outer diameter of the duct
and the size of the anchor plates.



index nstrands �duct wanchor hanchor

1 3 45 110 150
2 4 50 120 150
3 7 65 150 180
4 9 70 185 225
5 12 85 200 240
6 19 100 250 300

 (8.5)

The number of cables and strands have already been calculated (section 8.5.1 and 8.5.4). For this
the same data set has been used. The model starts at index 1. The thickness of the wall is dependent
on the diameter of the prestressing ducts. Therefore the wall thickness bw is recalculated. Since
the geometry has now been altered the section properties and the load effects of the self weight are
recalculated.

As the sectional properties and the load are altered this may have influenced the boundary con-
ditions for the prestressing force. Therefore the model again goes trough the calculations of the load
combinations, friction losses, maximum and minimum prestressing force and the applied prestress-
ing force (step 3 to 8 in table 8.3). Now the number of cables are known, the actual eccentricity, and
thus the actual prestressing profile, of the prestressing cable can be taken into account.

Now certain conditions have to be met for the model to accept the cable configuration (step 9).
First, with respect to the height. These conditions are that the height of the wall has to be equal to,
or greater than the minimum required height. This required height is calculated as a function of the
number and size of the anchor plates which need to be placed at the edge of the structure. Secondly
the model checks if the center of gravity of the cables at the lowest and highest points is situated
with an eccentricity at the desired side of the neutral axis of the cross section. Finally the model
checks if the number of cables is equal to or lower than the maximum allowed cables.

When all these conditions are met, the model continuous to the next step (section 8.5.8). Depend-
ing on which condition isn’t met the model takes a different action (step 10). In case the number of
cables is greater than the maximum, but the index is below six, the index is raised with one. This in-
creases the number of strands per cable and therefore the required prestressing area can be achieved
with less cables. As the duct diameter and the anchor plates increase so does the geometry. Step
three trough ten from table 8.3 are gone trough again.

When the number of cables and the index are respectively greater than and equal to their maxi-
mum, this indicates that the required prestressing force is too large for the largest allowed prestress-
ing area. In this case the model will increase the height of the structure. This results in larger section
moduli and therefore in a lower required prestressing force. Then the model goes again trough step
three to ten.

When the eccentricity of the prestressing cables is at the wrong side of the neutral line of the
cross section the height of the structure is increased. As the area of the floor remains the same and
more mass is placed upward the neutral line will be located higher.

This process of iteration keeps running until all boundary conditions are satisfied.

8.5.7 Anchor heads

The data set 8.5 gives information on the size of the anchor head for each cable. These anchor heads
need to be placed at the end of the structure and should fit within the cross section and have sufficient
intermediate spacing. As the anchor heads are much larger than the duct diameter, the wall will have
to be thicker due to the anchor heads. In order to save material the wall thickness will therefore
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Figure 8.3: Principle detail of widening of the wall to accommodate the anchor plates.

be reduced after a length equal to two times the height to the minimum required thickness due to
the ducts. The increased thickness is applied to the outside of the cross section as to not to come
in conflict with the clearance cross section. Figure 8.3 gives the principle. The forces due to the
horizontal curvature have not been detailed.

8.5.8 Prestressing load effects

As the final cable configuration and the actual prestressing force have been determined, the load
effects of the prestressing force can be calculated. The load effects due to prestressing have analyti-
cally been determined in Maple and consequently been transposed to Matlab. The load effects of the
prestressing force are already an entry in Ek in equation 8.2. Up to this point their value was zero
however. The entry of the prestressing load effects is now defined. By applying equation 8.2 the
load effects of the prestressing force are combined with the external loadings.

8.6 Verifications

8.6.1 Shear capacity

In de mobile load model the largest occurring shear force due to a mobile load is found. The position
of the mobile load to obtain this maximum shear force is saved as a value xV . Evaluating equation
8.2 for the shear forces gives a matrix Vd,lc with in each row the shear line for the corresponding load
combination evaluated at ‘n’ points over half of the length. From matrix Vd,lc the maximum shear
force line can be found. Its row in the matrix is the load combination where it results from. From
the load combination it can be traced back which mobile load (LM71, SW0 or SW2) has been taken
into account. Since the location of the load xV was saved and the load model is known the bending
moment distribution for the load model at this position can be calculated. As this is a characteristic
load it is further evaluated into the corresponding load combination to obtain the design value.

Due to the known bending moment line each point on the beam can be evaluated whether it’s
cracked or not. This results in a shear resistance vector VRd [1×n] with at each entry the correspond-
ing cracked or uncracked shear resistance. We can now perform the unity check for shear resistance
at each point of the structure. This is done by point wise dividing Vd over VRd .

Vd

VRd
=

[
V1 V2 · · · Vn

][
R1 R2 · · · Rn

] = [uc1 uc2 · · · ucn
]

(8.6)

The largest occurring unity check, independent of its position, is taken as the unity check for the
flexural shear force.
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Besides the flexural shear resistance also the resistance of the compression strut has been ver-
ified. Both verifications have been placed in separate unity checks so that they later on can be
distinguished.

8.6.2 Bending moment capacity

The calculation of the bending moment capacity is based on the multiple-layer-model as this allows
to easily take the varying width into account. First the horizontal equilibrium is solved under the
assumptions that the compressive strain in the outer compressed fibre reaches the ultimate compres-
sive strain εcu3. The length of the compression zone xc is increased until the horizontal forces in each
layer provide horizontal equilibrium.

At this point the height of the concrete compressive zone has been calculated. This makes it
possible to check whether the steel stress remains below the ultimate steel strain εsu. When this
is the case the model will proceed to verify the maximum compression zone height. If the steel
strain is larger than the ultimate steel strain this means that the assumption of the reached ultimate
compressive strain was wrong. Now the model assumes the strain diagram to pass trough the ultimate
steel strain. A new horizontal equilibrium will be formulated and solved.

When the horizontal equilibrium and the steel strain are satisfied the model will continue to
check the height of the compressive zone with the maximum allowed height. In case this condition
is not met it will proceed to calculate a fictive prestressing area and then use this to again solve the
horizontal equilibrium as described above.

The largest bending moment can be found in the matrix Md,lc. Only the load combinations
belonging to the ultimate limit state are evaluated for this. The maximum bending moment is divided
by two as the trough walls are evaluated as separate beams. Now the unity check can be performed.

8.6.3 Lateral torsional buckling

The resistance against lateral torsional instability can simply be evaluated by solving the theoretic
equations. The maximum bending moment can be found in matrix Md,lc.

8.6.4 Fatigue

The load combinations for fatigue are taken from the matrix Md,lc. At the evaluated ‘n’ points the
minimum bending moments are subtracted from the maximum bending moments. The maximum
load difference at one point can be taken from this result. The point at which this maximum load
difference occurs is determined as well. With this information the minimum and maximum stress at
this location can be calculated. The fatigue verification has subsequently been performed according
to method I given in the Modelcode 2010.

In case the maximum tensile stress causes the concrete to crack the model goes on to testing the
reinforcement- and prestressing steel on fatigue. The largest unity check of both will be placed in
the fatigue unity check for that side of the construction.

8.6.5 Floor

The loads acting on the floor have been determined on the way described in section 8.4.3. New
matrices with the characteristic loads and load effects have been created for the floor. The static
model of the floor has been depicted in figure 8.4.

The verifications in the floor have been carried out in the same way as described above with the
difference that for most variables, alternative variables for the floor have been created. This makes
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Figure 8.4: Load distribution and static model of the floor in cross direction.

that the data of the main span direction won’t get overwritten by values resulting from the floor
calculations.

8.6.6 Deflection

From the matrix Md,lc the load combination with the largest bending moment has been determined.
The bending moment line has been approached with a polynomial as a function of the symbolic value
x which is the position over the length of the structure. Double integration of this polynomial with
the application of the corresponding boundary conditions of the structure gives a function for the
deflection. Evaluating this function over ‘n’ points over the length of the beam gives the deflection
line.

The maximum allowable deflection with respect to the vertical acceleration is defined by the
graph in figure 6.1. This multi-linear graph can be defined by two 1×4 vectors. One sets the values
on the vertical axis and the other on the horizontal axis. A linear interpolation function of Matlab
gives the resulting value on the vertical axis, with the required value on the horizontal axis as input.

8.6.7 Stresses

The demands with regard to the maximum allowable tensile stresses from the OVS have been ver-
ified. This was done by performing cross section analysis for the discretized cross sections at the
top and bottom side of the structure. The calculated stresses at the outermost fibres were compared
to the boundary conditions. This boundary condition is dependent on the load combination and the
position of the fibre in relation to the prestressing steel. Figure 8.5 shows a typical graph in which
the actual occurring stresses due to the load combinations and the maximum allowable tensile stress
are depicted. The area over which the maximum allowable tensile stress decreases is the area where
the fibres are situated at the side of the prestressing cable. The figure gives the stresses on one span
for the UHPFRC double span structure with span lengths of twenty meters.
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Figure 8.5: Stresses in frequent load combination for one span in the UHPFRC double span structure
at the bottom side.

8.7 Unity checks

All the unity checks from the performed verifications are put together in a vector. From this the
maximum unity check is taken. All unity checks are indexed. This index shows which design aspect
gives the highest unity check. With this knowledge the geometry of the cross section will be altered.
In such a way that it has the most favorable effect on this design aspect. Table 8.4 shows how the
various verifications influence the cross section geometry.

Verification Increased dimension
Bending moment Height and width
Shear Height and width
Fatigue Height
Deflection Height
Stresses Height and width
Lateral torsional buckling Height and width
Floor - bending moment Floor
Floor - shear Floor
Floor - fatigue Floor

Table 8.4: Influence of the verifications on the cross section.

Now the geometry is altered the entire design process will be started again from the point of
calculating the prestressing. Of course after its new section properties and self weight have been
determined. This will again lead to a new vector of unity checks. This process will repeat until the
largest unity check is below 1.0. All the unity check vectors are documented in a matrix. This matrix
gives information on how the unity check develops.

Once all the verifications are satisfied the model will save certain data in memory matrices for
future evaluation. Then it will continue to increase the length with the increment and start the entire
process over for this new length.
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8.8 Optimization

As stated before the model starts each length with a too small cross section and continuous to enlarge
this until all verifications have been verified. This in contrary to a design method where the cross
sectional dimensions are estimated and subsequently the verifications are gone over to see if they are
verified. From this perspective it may thus be said that the cross sectional area is optimized.

The cross section is enlarged in such a way as is the most effective for the highest unity check
in that iteration. In the cross section three dimensions are variable; the wall height, the wall width
and the floor thickness. Table 8.4 shows how the various verifications influence the cross section
geometry. Table 8.5 shows the step size of the various dimensions. The step sizes are chosen based
on practical considerations. First, a too small step size would considerably increase the calculation
speed of the Matlab models. Second, the step size of 50 mm is a practical size in the execution
of concrete structures. In the floor this step size of 50 mm would be about 10% of the total floor
depth of conventional concrete. Therefore the step size has been reduced to 20 mm to better suite
the smaller dimensions of the floor.

Dimension Step size
Wall height 50 mm
Wall width 50 mm
Floor depth 20 mm

Table 8.5: Step size for cross sectional dimensions.

To show how the step sizes and the model work a short forward reference is made to the results.
Figure 8.6 shows the unity checks on deflection for the double span UHPFRC structures of various
length. The span lengths of 37 to 40 meters show a unity check which alters between 0.6 and 0.25.
To show how this is possible the span lengths of 39 and 40 meters are step be step described.

As the maximum allowable deflection is based on the span length this is constant throughout the
iterations. The difference in the unity check must therefore be given in the effective deflection. Of
influence on this are the loading and the stiffness of the structure. The stiffness is determined by the
moment of inertia as the young’s modulus remains constant.

Table 8.6 shows how the cross sectional dimension of both structures are influenced by the it-
erations. The model requires for both structures six iterations to satisfy all verifications. The first
aspect of interest in this table is the fact that the floor and the wall width are the same for both spans

Figure 8.6: Verifications on deflection against span for UHPFRC double span structure.
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L=39 m Start Iteration: 1 2 3 4 5 6
Wall height 1200 2470 2530 2590 2650 2710 2770
Wall width 200 504 554 604 654 704 754
Floor depth 300 300 300 300 300 300 300
Outer width 4400 5008 5108 5208 5308 5408 5508
L=40 m Start Iteration: 1 2 3 4 5 6
Wall height 1200 2460 2520 2580 2640 2700 3160
Wall width 200 504 554 604 654 704 754
Floor depth 300 300 300 300 300 300 300
Outer width 4400 5008 5108 5208 5308 5408 5508

Table 8.6: Cross sectional dimensions on each iteration for double span structure with span length
39 and 40 meters.

Figure 8.7: Development of the cross sectional area throughout the iterations for L=39 and L=40.

on each iteration. As this is the only aspect influencing the moment of inertia of the structure it is
now interesting to see how the height of the structure is determined.

As can be noted in table 8.6 the step size for the height of the wall is not 50 mm, but 60 mm.
This indicates that after each iteration, where the height was increased with 50 mm because of an
unsatisfied verification, somewhere else in the model the wall height is increased another time with
10 mm. This happens in block B in the model flow chart (figure 8.1). There are only a limited amount
of possible cable configurations between number of cables and strands. When the combination with
the largest prestressing steel area is applied and the boundary conditions are not yet met, the height
of the structure is increased. As this was already increased by 50 mm the applied step size here is
kept to be 10 mm to prevent too large steps between the iterations from occurring. This step size
of 10 mm in this part of the model is also the reason why the difference between the initial cross
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L=39 m Iteration: 1 2 3 4 5 6
u.c. fatigue field bottom 0.30 0.28 0.27 0.25 0.24 0.23
u.c. fatigue field top 0.75 0.69 0.65 0.61 0.57 0.54
u.c. fatigue support bottom 0.64 0.61 0.58 0.55 0.53 0.51
u.c. fatigue support top 0.20 0.14 0.13 0.12 0.11 0.11
u.c. lateral torsional buckling 0.53 0.49 0.48 0.46 0.45 0.45
u.c. moment field 0.34 0.32 0.32 0.32 0.32 0.33
u.c. moment support 0.17 0.17 0.17 0.17 0.17 0.17
u.c. shear compressive strut 0.28 0.26 0.24 0.22 0.20 0.19
u.c. shear 0.32 0.30 0.28 0.27 0.25 0.24
u.c. characteristic bottom -7.13 -6.79 -6.46 -6.15 -5.86 -5.59
u.c. characteristic top 3.56 2.74 2.05 1.53 1.13 0.82
u.c. frequent bottom -7.53 -7.05 -6.59 -6.16 -5.77 -5.40
u.c. frequent top 0.35 0.09 -0.15 -0.29 -0.36 -0.39
u.c. quasi-perm. Bottom -7.93 -7.70 -7.45 -7.22 -7.02 -6.83
u.c. quasi-perm. Top -8.14 -8.07 -7.95 -7.82 -7.66 -7.50
u.c. deflection 0.99 0.88 0.80 0.72 0.66 0.60

Floor
u.c. fatigue field bottom 0.04 0.04 0.04 0.04 0.04 0.05
u.c. fatigue field top 0.26 0.27 0.27 0.28 0.28 0.29
u.c. fatigue support bottom 0.25 0.25 0.26 0.26 0.26 0.27
u.c. fatigue support top 0.04 0.04 0.04 0.04 0.04 0.04
u.c. moment field 0.87 0.89 0.90 0.92 0.94 0.95
u.c. moment support 0.83 0.84 0.85 0.86 0.88 0.89
u.c. shear 0.07 0.07 0.07 0.07 0.07 0.07
u.c. compressive strut 0.11 0.11 0.11 0.11 0.11 0.11

Table 8.7: Unity checks on each iteration for double span structure with span length 39 meters.

section dimensions and those after the first iteration are not a multiplication of 50 mm. On the first
iteration the model will have to go trough this loop a number of times until the boundary conditions
are satisfied.

For the span length of 40 meters the wall height between the fifth and sixth iteration is not 60
mm but 460 mm. This means that within one iteration the model goes trough the cable configuration
loop (460−50)/10 = 41 times. This results in a high moment of inertia and resistance to deflection.
Further investigation on this phenomenon shows that the model goes on to redefine the prestressing
configuration even though the boundary conditions are satisfied. This is due to a starting condition
in block A which causes that on each iteration the model will pass trough this section. In this case
of the 40 meter span it shows that when this happens non optimized results may occur. This aspect
is subject to improvement for better optimization of the results.

The cross section of a structure is most optimized when multiple design verifications approach
its limit. Table 8.7 shows the unity checks for each iteration of the double span structure with span
length L = 39 m. The table separates the longitudinal and floor unity checks as the floor is almost
independently designed.

The table shows that the maximum unity check for the floor is 0.95 on the bending moment
verification at the field. This approaches the limit of 1.0 quite close. The floor can therefore be
said to be optimized to a certain extend. After all, the floor is still a solid slab, while more material
reduction may be achieved when for instance a hollow core is applied. Optimizations like these were
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not considered in this research. This is the reason why some of the other verifications remain very
low. The fatigue stress at the bottom of the field for example with a unity check of only u.c.= 0.05.
The applied reinforcement was required to satisfy the bending moment verification, but is much
more than required to satisfy the fatigue verification.

Although the floor depth remains constant at 300 mm throughout the iterations, the unity checks
for the bending moment and fatigue go up, while those for shear remain constant. This is due to tho
the static model of the floor (see figure 8.4)which considers the supports to be located at the center
lines of the trough walls. As the trough walls become wider the span length of the floor increases.
This influences the occurring bending moments, but not the shear forces as the total vertical load
remains the same.

In the longitudinal direction the highest unity check occurs due to the stress verification in the
characteristic combination at the top side with a unity check of u.c. = 0.82. Second to this is the
verification on deflection with a unity check of u.c. = 0.60. This verification was however already
satisfied at the first iteration. In fact, all verifications were satisfied at the first iteration except for
the characteristic stress verifications. This verification does show a gradual decrease after each
iterations, but it does need six iterations which causes a the cross section to be less optimized for the
other verifications. This shows that the way the model alters the cross section has large influence on
the results. Different changes may lead to a better optimized construction.

8.9 Limitations

The Matlab model contains a number of limitations which should be taken into account when con-
sidering the results. These limitations are caused by two aspects; the modeling of the trough bridge
as a two-dimensional structural model and the applied boundary conditions for parametric design.

8.9.1 Structural model

The trough bridge has been modeled as a two dimensional structure. The loadings in the longitudinal
direction influence the geometry of cross section of the structure, while the loading of the floor
influences the dimensions of the floor. As the loading on the floor is the same for each span, the floor
dimensions remain the same in each calculation. This causes that for long spans large trough walls
are coupled by a relative thin floor. The horizontal stability of such cases has not been evaluated.
Although the applied verification for lateral torsional stability does take the connection of the wall
to the floor into account, it doesn’t take into account its dimensions.

8.9.2 Parametric design

The only variable in the model which changes is the input for the length. This means that for each
span length the model needs to be able to produce an output which satisfies all the unity checks.
Knowing how much time optimizing one individual concrete structure can take, one may imagine the
complicated task to program these optimizations in a numerical model. To reduce the complexness
of the modeling task and the model itself at certain points boundary conditions have been formulated.
A result of this is that the resulting structures are not fully optimized and certain optimization may
be found on further detailing one individual trough bridge. A list of applied boundary conditions is
given below.

• All applied reinforcement steel is kept constant in all structures (see section 3.3).

• Prestressing cables are applied in multiplications of four.
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• The fictitious tendon profile for the two span trough bridges only has limited optimization (see
section 8.5.6).

• The UHPFRC single span structure has been evaluated for spans from 10 to 50 meters.

• The UHPFRC double span structure has been evaluated for spans from 20 to 48 meters.

• The conventional single span structure has been evaluated for spans from 10 to 40 meters.

• The conventional double span structure has been evaluated for spans from 20 to 28 meters.
This short range was due to the verification with regard to the shear force. As the concrete is
cracked the entire shear force will have to be taken by the reinforcement steel. The applied
shear reinforcement is insufficient for spans greater than 28 meters.

8.9.3 Non-linear model

Since the non-linear model takes the linear-elastic results as starting point, the limitations in the
linear-elastic model work trough in the non-linear model. Other limitations are:

• In terms of further optimization of the cross sectional area only the height of the walls has
been altered.

• Double numerical integration of the curvature distribution to the deflection line introduces a
deviation in the results.

• The shear force distribution changes due to the bending moment redistribution. This has not
been taken into account and the shear force verification has therefore been performed based
on linear-elastic basis.

• The linear-elastic model only evaluated the bending moment over half of the beam. The non-
linear model mirrors the bending moment line about the mid-support to approach a bending
moment distribution over the entire construction. For the ULS this is a correct solution (chap-
ter 7), but for the SLS this a quite crude approach.

• The moment-curvature relation for a cross section in UHPFRC contains a downward branch
after the ultimate bending moment has been reached. This means that for a certain bending
moment, two corresponding curvatures can be found. The applied function in the model is not
able to distinguish which curvature should be applied in such case. Therefore the downward
branch in the moment-curvature-diagram has been cut of, leaving only consecutive increasing
moment-curvature relations. This means that less curvature can be applied in the non-linear
model than in reality is the case.
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Chapter 9

Results

9.1 UHPFRC - Conventional concrete

9.1.1 Governing design aspects

In the literature study an investigation was performed for conventional concrete bridges to see which
design aspects are normative when designing railway bridges. This research was based on design
calculations of twelve bridges. From these design calculations the unity checks were collected.
Based on these unity checks a statement was given on which design aspects tend to be normative for
railway bridges in conventional concrete. The same method is applied here to analyze which design
aspects become normative when designing in UHPFRC. They have been compared with the results
from the model for a trough bridge in C35/45. Figure 9.1 shows the values of the unity checks
resulting from the models with one and two spans performed in UHPFRC and in a conventional
concrete C35/45. Negative values have been omitted in this graph for readability of the area between
zero and one. In figure 9.2 these values have been normalized. The normalization of the unity checks
was done by dividing the unity checks within a project by the highest occurring unity check in that
structure. Therefore the value on the vertical axis for figure 9.1 is the unity check and the value on
the vertical axis for figure 9.2 is the measure of importance of the design aspect. In which a value of
1.0 stands for the leading unity check in the design of that structure.

normalized u.c. =
considered unity check

maximum unity check in structure
(9.1)

The normalization of the unity checks pronounces the forming of clusters of unity checks. Compared
to the literature study this effect is much less however. This is caused by the fact that the model brings
the unity checks down by altering the structure until the largest unity check is below 1.0. As a result
of this the largest unity checks are very close to 1.0 and therefore the normalization causes the the
actual unity checks to be divided by a number close to one, which causes that the position of the
unity check in the graph hardly changes. This effect shows that the model results are in a way more
optimized than the considered projects in the literature study.

Looking at the normalized unity checks there are three aspects which remain fairly the same for
UHPFRC and C35/45, the bending moment, fatigue performance and stresses. The design aspects
for shear capacity and deflection show substantial differences.

Next to the interpretation of the unity checks the model provides another tool for investigating
which design aspects influence the results. As the Matlab model starts with a too small cross section
it uses iterations to find a geometry which satisfies all verifications. Each iteration is started by a
design aspect for which the unity check was the highest occurring. The information on how many
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Figure 9.1: Spread of unity checks. Equal values for the same design aspect have been offset hori-
zontally.

Figure 9.2: Normativeness of design aspect. Equal values for the same design aspect have been
offset horizontally.
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iterations, and due to which design aspect, can be used to trace back which design aspects were
governing in the design.

Bending moment

Figures 9.3 and 9.4 show that the conventional concrete structures require more iterations and mostly
based on bending moment capacity. What happens here is that a certain geometry is found which
satisfies the boundary condition Pm0,min < Pm0,max so prestressing can be applied. In UHPFRC this
geometry also satisfies the other verifications. In conventional concrete the found geometry doesn’t
satisfy the bending moment verification. Further investigation shows that for the double span struc-
ture the bending moment iterations are because the concrete compressive zone height exceeds the
maximum. Due to the high compressive strength of UHPFRC this verification doesn’t play a role
here.

Although the conventional concrete model requires more iterations based on moment capacity,
the unity checks show little differences. As was shown in (Ketel et al., 2011) the bending moment
capacity for a constant cross section only increases significantly when UHPFRC is applied in com-
bination with the maximum allowable amount of reinforcement.

Shear force

Compared to UHPFRC the unity checks for conventional concrete on shear are very high. This
is due to the shear reinforcement which has been kept constant throughout the different models
and has been designed to withstand the occurring shear forces (see section 3.3). The applied shear
reinforcement is not sufficient to withstand the largest occurring shear forces. In the double span
structure the maximum achievable span is 28 meters. For larger spans the shear verifications can not
be satisfied. Therefore the design aspect ‘shear force’ does not show in figures 9.3 and 9.4. The unity
checks for shear force in conventional concrete increase as the span, and the shear force, become
larger. They approach one from a span length of 28 meters in both structures.

The normativeness for the shear force shows a characteristic property for conventional concrete
where two separate clusters can be identified for both kinds of structures. The verifications consid-
ered in the design aspect ‘shear force’ are both the shear capacity and the capacity of the compressive
strut. Figure 9.5 shows for the statically determined structure what causes the formation of the two
clusters.

Due to the increased concrete compressive strength of the UHPFRC the capacity of the com-
pressive strut is increased. The unity check for this verification even go as low as 0.20. This is
contradictory to the conclusion on shear force in the literature study. In the reference projects was
found that the compressive strut was the normative design aspect for the web widths. The reason
why this is not the case in these results, is that the reference projects make use of a totally optimized
cross section. This model does not. By the applied boundary condition that two prestressing ducts
go side by side in the walls, the wall width is determined by this geometrical aspect. This required
wall width for the prestressing cables is of such size that the compressive strut gains more than suf-
ficient capacity. Optimizing the wall width could be sought in only a vertical stacking of the cables.
This was not applied in this research as it might lead to very high and thin walls which could lead to
instability.

The reduced wall width of the UHPFRC structures affects the shear capacity of the wall, but
due to the fibers the shear capacity of the material is increased that much that it still leads to larger
capacities. Figure 9.5 shows that the unity checks for the shear capacity in UHPFRC are lowered
from a range between 0.60 and 0.90 down to about 0.25.
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Figure 9.3: Design iterations to span length for single span structure in UHPFRC and C35/45.

Figure 9.4: Design iterations to span length for double span structure in UHPFRC and C35/45.

58



Results 9.1 UHPFRC - Conventional concrete

Figure 9.5: Verifications on shear force for statically determined structure in UHPFRC and C35/45.

Fatigue

For the design aspect ‘Fatigue’ the unity checks spread a large range, between 0.0 and 0.7. Although
this isn’t quite approaching the limit, the normalized unity checks for the double span structure show
that fatigue is an important design aspect. Certainly much more compared to conventional concrete.
In numerous cases fatigue verifications show the highest occurring unity check in the design.

In the design aspect ‘fatigue’ the verifications for both the top and bottom side of the structure
are present and for the statically undetermined structure both the field and mid support cross sections
are shown here. In order to gain more insight in which verifications are present in which range, the
design aspect ‘Fatigue’ is split in three cross sections in figure 9.6.

In all structures two clusters of unity checks can be identified. To investigate this aspect the
development of the unity checks for the two cross sections in the double span structure have been
plotted as a function of the length of the span in figure 9.7. It shows in figure 9.7 that, from a span
length of about 33 to 40 meters, the verifications which cause a high unity check start to show a
low unity check and vice versa. One explanation could be that the fatigue stress is greater than the
concrete fatigue strength and the stress will have to be taken by the reinforcement steel. The Matlab
model calculates a unity check for the reinforcement and the concrete fatigue verification. When
both are calculated the largest occurring is governing and taken as the unity check on fatigue for that
location. As the separate unity checks for the reinforcement and concrete are requested from the
calculated data it shows that all unity checks for reinforcement are equal to zero at both the field and
the support cross section. This implies that the reinforcement steel is not activated for resisting the
fatigue loading and thus that the concrete has sufficient fatigue capacity. This effect can thus not be
the case. Evaluation the bending moment lines shows that from a certain span length the direction
of the bending moment changes. Consequently, the concrete is no longer verified on compression
(with a large capacity), but on tension (with a small capacity). Due to the change in direction the
verifications might turn around.

In general for fatigue verifications in the main direction it can be said that they do require atten-
tion, but that the high fatigue strength, in both compression and tension, makes that no reinforcement
has been applied to accommodate the fatigue capacity.

Deflection

In the area of the deflection the results show a significant change between the structures in UHPFRC
and conventional concrete. For both kinds of structures the unity checks for UHPFRC end up quite
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Figure 9.6: Verifications on fatigue for different cross sections.

Figure 9.7: Verifications on fatigue against span for double span structure.
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Figure 9.8: Verifications on deflection against span for UHPFRC double span structure.

Figure 9.9: Moment of inertia to span length.

a lot higher than for conventional concrete.
The resistance towards deflection is mainly based on the stiffness EI of the structure. As the

modulus of elasticity is kept constant in the model the moment of inertia has the largest influence
on the deflection resistance. The moment of inertia (figure 9.9) shows a quadratic development as
a function of the span, which corresponds with the linear development of the structure height. The
moment of inertia for the double span structures show an average reduction by 50%. For the single
span structure this is on average even 75%.

Stresses

Figure 9.2 shows clearly that the most important aspect of design are the allowable stresses in the
serviceability limit state. As well as for conventional concrete as for UHPFRC and as well as in
a single or double span structure there are multiple stress verifications that become normative in
design. To gain more insight in the different verifications the normalized unity checks for stresses
have separately been plotted in figure 9.10. The unity checks below zero (compression stresses)
have been cut off for readability. The figure shows that for all kinds of structures the frequent load
combination is normative.

The load combinations which becomes normative is dependent on the applied bending moment
and the limited tensile stress. Looking at the non-prestressed side of the structure, the difference
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Figure 9.10: Normalized unity checks for stress verifications.

between the characteristic and frequent maximum tensile stress is 2.25−1.50 = 0.75 N/mm2. From
the characteristic to the frequent load combination this is a decrease of capacity of 0.75/2.25= 33%.

This is more than the average decrease in the applied bending moment. In the statically deter-
mined structure the decrease in bending moment is on average 28%. Since this is close the capacity
decrease there are also situations where the decrease in bending moment is larger than 33%. For
these cases the characteristic situation is governing.

The reduction of the bending moment can be explained by table 9.1. This table shows the Ψ-
factor for the load cases which are present in this parameter study. The train loads are the largest
loads in this calculation and are therefore taken as the dominant load case. In the characteristic load
combination this has no Ψ-factor and can thus be seen as 1.0. In the frequent combination this is
reduced to Ψ1 = 0.8. In the characteristic load combination all other variable load cases have to be
multiplied with Ψ0, in the frequent combination this is Ψ1. As the uneven settlement is considered a
permanent load case, only the temperature loading and the inspection path load are multiplied with
a different Ψ. The temperature loading is reduced with only 10% for the frequent combination. The
inspection path load is not present in the frequent load, but as this load is only 5 kN/m2 the overall
effect is very small. The differences are larger when the structure is subject to horizontal loads, but
these have not been applied in this study (see section 4.3).

As the conventional concrete structures have a larger self weight, the reduced application of
the variable loads has less influence on the total load. Percent-wise, the bending moments are thus
reduced less in the conventional concrete structures. This explains why the conventional concrete
only has normative unity checks in the frequent combination.

The double span structure shows only few unity checks in figure 9.10. Most of the unity checks
for the double span structure turn out negative. Meaning that a compressive stress is present where
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Load case Characteristic Frequent
Self weight 1.0 1.0

Track 1.0 1.0
Train load 1.0 0.8
Settlement 1.0 1.0

Temperature 0.6 0.5
Inspection path 0.8 0.0

Table 9.1: Ψ-factor for load combinations.

a tensile stress is allowed. Due to the field and support cross sections which have opposing interest
in the allowed prestressing force many of the double span structures are fully prestressed.

Lateral torsional buckling

A design aspect of special interest for UHPFRC structures is lateral torsional buckling. Figure
9.11 shows the resulting unity checks for the verification on lateral torsional buckling. What can
be noted in this graph is that in general lateral torsional buckling seems to lead to larger unity
checks for the conventional concrete structures than for the UHPFRC structures. This is contrary
to the expectations as the walls of the UHPFRC structures have a greater slenderness. To see why
conventional concrete structures lead to a higher unity check on lateral torsional buckling the single
span structure is further evaluated.

Figure 9.11: Verifications on lateral torsional buckling to span length.

The verification on lateral torsional buckling consists of three different verifications; the normal
force, and bending in horizontal and vertical direction (see section 6.1.4 for the background of this
verification). The unity check is defined as:

NEd

NRd
+

My,Ed

My,Rd
+

Mz,Ed

Mz,Rd
≤ 1 (9.2)
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in which:
NE,d effective normal force
NR,d normal force resistance
My,Ed effective bending moment about y axis
My,Rd bending moment resistance in y axis
Mz,Ed effective bending moment about z axis
Mz,Rd bending moment resistance in z axis

Figure 9.12 shows the influence of these three components on the total unity check. Looking at this
it makes clear that by far the bending moment in the vertical direction is of most influence and the
shape of the graph in figure 9.11 clearly comes back in this. The difference in the vertical bending
moment verification however does not explain the difference in the overall lateral torsional buckling
verification. Both other aspects, horizontal bending moment and normal force, show a higher unity
check for conventional concrete than for UHPFRC.

Many aspects influence the verification on the horizontal bending moment. These are both ma-
terial property and geometry related. The results show that for the conventional concrete structures
the effective bending moment is larger and the moment resistance is smaller than for the UHPFRC
structures. These effects have a higher unity check for conventional concrete as result. Of influence
on this verification is the Euler buckling load. This is defined as:

FE =
π2 ·EI

L2 (9.3)

For conventional concrete this euler buckling load will be higher due to the higher stiffness of the
structure. This higher Euler buckling load increases the effective horizontal bending moment, since:

Mz2 =
FE

k1

v0

n∗z −1
(9.4)

This shows that although the stiffness of the structure is higher this negatively influence the horizon-
tal bending moment verification of lateral torsional buckling resistance.

The normal force verification is defined as:

u.c.ltb,N =
1
2 Pm,0

bw ·h · fcd
(9.5)

As the results (section 9.1.2) show, the prestressing force remains fairly constant for the concrete and
UHPFRC structures. The difference in unity check must therefore be caused at the capacity side.
Although the wall area of the conventional concrete structures is larger, this is only a factor 1.5 to
3.5. The compressive strength of UHPFRC is however 6.8 times as high. Meaning that although the
cross sectional area for UHPFRC is smaller, the normal force resistance is still higher. Leading to a
lower unity check on normal force verification.

9.1.2 Geometrie

Height

Figure 9.13 shows for both conventional concrete and UHPFRC how the structure height relates
to the length of the span. The literature study shows that for conventional concrete trough bridges
the measure for slenderness L/h is somewhere between 10 and 15. This remains true in the model
results for both conventional concrete and UHPFRC.

In general it can be said that for UHPFRC structures the structure height will decrease. The
results however show no significant change in the slenderness as this approaches L/h = 15 and can
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Figure 9.12: The components of lateral torsional buckling verification for the single span structures.
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Figure 9.13: Structure height to span length.

also be approached by a well optimized conventional concrete structure. A well optimized trough
bridge in UHPFRC may lead to slenderness rations above fifteen. On average the height reduction
of a single span structure is over 600 mm. For the double span structure the height is on average
reduced with 300 mm.

Concrete cross sectional area

The average reduction in height is of little importance for trough bridges since the construction
depth, in relation to the free space below the structure, is determined by the floor thickness. It is
however interesting to see how the cross sectional area is influenced by the application of UHPFRC.
Due to the higher cost of UHPFRC per cubic meter a decrease of applied concrete can bring the total
costs down. Next to the height the wall width is determining for the concrete cross sectional area as
the internal width between the walls is constant.

Figure 9.14: Wall width to span length.

The wall width remains fairly constant in the single span UHPFRC structures between 500 and
600 mm. This width is given in by the width required for the combination of the maximum number
of cables with the maximum number of strands. The wall width of the C35/45 structure is wider to
begin with, but also experiences an increase in size as the span becomes longer. As the maximum
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number of cables and strands is the same in C35/45 structures as in UHPFRC, there must be a
different aspect which influences the wall width.

The model is based on a too small cross section and increases its size on every iteration until all
verifications are satisfied. The dimensions of the cross section are altered based on the verification
which gives the highest unity check. The wall width is increased when the verifications of the
bending moment capacity, the shear force, the lateral torsional stability and the stresses are not met.
The results show that the model requires more iterations for the conventional concrete models than
for the UHPFRC structures. Most of these iterations are due to a design aspect which influences the
wall width. This is the cause that the wall width in the conventional concrete results are larger than
in the UHPFRC structures.

Figure 9.15: Concrete area to span length.

The concrete cross sectional area for UHPFRC trough bridges is substantially smaller compared
to conventional concrete. For longer spans the ratio even goes up to a factor two. Although UHPFRC
is more dense (γUHPFRC = 29 kN/m3) than conventional concrete (γc = 25 kN/m3), this can provide
possibilities for precast structures with spans where the ratio between the concrete cross sectional
areas is larger than 29/25 = 1.16. This is already the case for spans of 10 meters long and thus it can
be said that in this study for all UHPFRC structures the self weight is less than for their conventional
concrete counterparts.

Prestressing

Double span structures in UHPFRC show an application of almost the same amount of prestress-
ing. In the single span structures a decrease in the prestressing force can be noted. This decrease
gradually becomes larger as the span length increases. As was mentioned above, the self weight
of the UHPFRC is always less than the weight of the conventional concrete structure. This causes
that the stresses at the bottom of the cross section, under full loading, become smaller, but that the
stresses at the top of the cross section, with only permanent loading, become larger. The Matlab
model has been programmed to always apply the minimum amount of prestressing. As in general a
lower prestressing force is applied for UHPFRC structures, this suggests that the stress reduction at
the bottom fibre has a larger effect than the stress which gives the upper limit.

9.1.3 Floor

The literature study has shown that the average floor thickness in conventional railway trough bridges
is between 500 mm and 700 mm thick. By making use of ultra high performance fibre reinforced
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Figure 9.16: Prestressing force to span length.

concrete the expectation is that this thickness can be reduced. This is favorable for the required free
height below the structure as the vertical alignment of the rail is often a given demand in stead of a
design variable.

Two aspects come to light when reducing the floor thickness and applying UHPFRC. One, the
steel strain may exceed the ultimate steel strain, and two, the bending moment capacity reduces due
to a smaller internal lever arm. To limit the steel strain the thickness of the floor can be reduced such
that d in εs = κ · (d− x) becomes smaller. A second measure which can be applied is increasing
the amount of reinforcement steel. Due to horizontal equilibrium this will cause a larger concrete
compressive force to be activated and therefore an increase of the compressive zone x. The reduced
bending moment capacity due to the smaller internal lever arm can be increased again by increasing
the amount of reinforcement since Mud = Ns · z.

Both aspects suggest an application of a larger amount of reinforcement steel, but have a conflict
of interest in the applied thickness of the floor. In this research consensus was found in the applica-
tion of a UHPFRC floor of 300 mm thick and a reinforcement of �25−125 mm (1.3% reinforcement
percentage). This is a substantial reduction compared to the required thickness of conventional con-
crete trough floors. A manual verification of this has been performed in appendix E.

The steel fibres add sufficient shear capacity in the trough floor to facilitate the occurring shear
forces. The fibre shear capacity is for the floor is 2780 kN, while the concrete shear capacity is only
368 kN. The shear resistance is therefore much more than required (VEd, f loor = 302 kN) and due to
the fibres also guaranteed in cracked cross sections.

The shear compressive strut is not governing here as due to the compressive strength the capacity

increases 172
2
3 /45

2
3 = 2.45 times while the internal lever arm is reduced with a factor 300/500=0.6.

Besides that is also the actual shear force reduced due to the lower self weight of the floor.

9.2 OVS stress demands

Allowed tensile stresses

The previous section has shown that the most important design aspect are the stresses in the service-
ability limit state. This is likely the effect of the strict demands which the OVS sets to the allowable
stresses. As can be seen in table 9.2 the maximum allowed tensile stress is 3.0 N/mm2. This is
well below the tensile strength of the UHPFRC which is, in this study, fctk = 10 N/mm2. Since this
design aspect is leading in the design of the bridge and the material capacity is not fully used it is
interesting to see how the design of the structure will behave when the requirements are loosened.
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Load combination Location maximum tensile stress
[N/mm2]

Quasi-permanent Everywhere 0
Frequent No prestressing 0.5∗ fctk:0.05 or σc < 1.5
Frequent Prestressing 0
Characteristic No prestressing 0.75∗ fctk:0.05 or σc < 2.25
Characteristic Prestressing 0.5∗ fctk:0.05 or σc < 1.5
Construction phase Everywhere σc < fctm or σc < 3.0

Table 9.2: Maximum allowable tensile stresses according to OVS00030-6

The OVS sets different limits for the different load combinations in the serviceability limit state.
In load combinations with a higher loading, higher stresses are allowed. The background of the
requirements with regard to the stresses aren’t exactly clear. It is assumed that the reasons are still
valid for the application of UHPFRC.

The stress limits are given as a percentage of the concrete tensile strength, in combination with
an upper limit. To soften the requirements these upper limits have been omitted. Due to the high
tensile strength of UHPFRC this will lead to higher maximum tensile stresses.

For three situations however the maximum tensile stress is not given as a percentage of the
strength, but set to 0 N/mm2. The frequent combination at the side of the prestressing is one of these
situations. As section 9.1.1 has shown, the frequent combination is the governing combination in
design. Leaving this stress limit at zero will do no right to the material properties and keep the same
restriction on the design. The difference in the allowed stress between the characteristic and frequent
load combination, at the side of no prestressing, is 25% of the tensile strength. At the prestressing
side this is 50%. This is reduced to 25% as well. Which gives a tensile stress limit of 25% of the
tensile strength. The stress limit of 25% · fctk,0.05 is also applied in the quasi-permanent combination.

Load combination Location maximum tensile stress
[N/mm2]

Quasi-permanent Everywhere 0.25∗ fctk:0.05 = 2.50
Frequent No prestressing 0.5∗ fctk:0.05 = 5.00
Frequent Prestressing 0.25∗ fctk:0.05 = 2.50
Characteristic No prestressing 0.75∗ fctk:0.05 = 7.50
Characteristic Prestressing 0.5∗ fctk:0.05 = 5.00
Construction phase Everywhere σc < fctm = 6.20

Table 9.3: New applied maximum tensile stresses.

9.2.1 Governing design aspects

Figure 9.17 shows the resulting unity checks for UHPFRC structures designed according to the OVS-
requirements and the self formulated stress requirements. To gain better insight in the governing
design aspects the unity checks have again been normalized in figure 9.18.
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Figure 9.17: Spread of unity checks.

Figure 9.18: Normalized spread of unity checks.
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Bending moment

The bending moment design aspect shows the same behavior as the conventional concrete model.
Again it is governing in starting the iterations, but the unity checks are by no means normative. Again
this is due to the fact that the concrete compressive zone is larger than the allowed compressive zone
height. This effect is however less pronounced in UHPFRC where only about three iterations are
required and it only occurs for span lengths shorter than 37 meters.

The unity checks are somewhat higher in the stress limit model compared to the OVS-model.
The reduced height causes a decrease of the internal lever arm and thus the moment capacity.

Shear force

The shear force shows a slight, but insignificant increase in unity checks. Although the cross section
area of a wall may be higher due to an increased wall width (see section 9.2.2), the reduced effective
height d is taken into account for calculating the shear resistance. As the wall height is generally
decreased or the same, so is the shear resistance.

Fatigue

On first sight the fatigue results show little change. Also when the results are separated for the three
cross sections like in section 9.1.1 the results are very similar. The model results do however show
that the fatigue loading, at the top of the mid support cross section, is taken by the reinforcement
steel. This happens for the spans of 48 meters and longer.

Deflection

In both the single and double span structure deflection becomes more important as a design aspect.
Where in the single span structure deflection was never normative it does now a few times, but also
in the range just between 0.9 and 1.0 a lot of normalized unity checks are present. This aspect is even
more accentuated by figure 9.19. This shows that although the highest unity check is most often one
with regard to the deflection, the geometry is mostly determined by iterations concerning the stress
limits. It also shows clearly that the span range for which the deflection becomes normative is larger
then when the OVS-limits are applied.

In the double span structure there is a clear shift of the most important aspect for design. Where
the OVS limits cause the stresses and fatigue to be the most important design aspect, loosening these
requirements will cause the deflection to become more important. Figure 9.20 does not show any
iterations based on deflection though. From this it can be concluded that as soon as the stresses are
satisfied, the deflection is also satisfied, but only just. From the 31 structures in 26 cases the unity
check for deflection was higher than the maximum unity check for the stress verification.

Stresses

The design aspect with regard to the stresses show that the stresses remain the most important design
aspect for statically determined structures. For the statically undetermined structure this effect is
reduced as the deflection plays a larger role in designing. Figure 9.20 and 9.19 show that the stress
verifications are easier satisfied. This is the direct effect of higher stress limits. The verification
are actually already satisfied at geometries which are not able to satisfy the verifications on bending
moment or deflection.

Separating the unity checks for the various load combinations in figure 9.21 shows that there
is a change in which load combination is governing. Where the majority of the governing unity
checks were situated in the characteristic load combination for the OVS-limits, loosening these limits
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Figure 9.19: Design iterations to span length for single span structure.

Figure 9.20: Design iterations to span length for double span structure.
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Figure 9.21: Normalized unity checks for stress verifications.

causes that almost all governing unity checks are situated in the frequent load combination. Again
this can be explained by the difference in the allowed and occurring stresses in the different load
combinations. From the characteristic to the frequent load combination the allowed tensile stress
is now reduced with 2.50/5.00 = 50%. This percent wise even more than for the OVS-limits. The
working bending moment is reduced even less with only 23%.

Lateral torsional buckling

In the previous section on lateral torsional buckling there were two aspects which influenced the
unity checks; the cross sectional dimensions and the material properties. Figure 9.22 shows the
unity checks on lateral torsional buckling for both the OVS stress limitations and the UHPFRC
stress limitations. The material properties remain the same and a reduction in cross sectional area
can be achieved with the UHPFRC stress limits. This makes it possible to look at the influence of a
smaller cross section on the lateral torsional buckling verification.

Figure 9.22 shows in general an increase of the unity checks for the smaller cross sections (the
results of the UHPFRC stress limits). The amount of increase is however very fluctuating and may
for some structures even be none existing up to as much as 0.26.

9.2.2 Geometrie

The section above shows that reducing the limitations to the stresses in the serviceability limit state
makes that the especially the deflection becomes more important. This section will go into the results
in terms of geometry of the structure.
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Figure 9.22: Verifications on lateral torsional buckling to span length.

Figure 9.23: Structure height to span length.

Height

Figure 9.23 shows the height of the structures over the length. The model which shows the most
significant reduction of height is the statically undetermined structure. Here the reduction is between
100 mm and 800 mm. In the statically determined structure the structure height remains almost
equal to the OVS-limit model. The average reduction is height is 140 mm. It must be said that the
deviation of this average is rather larger for both models. Therefore it is not quite possible to give
an unambiguous statement about the height reduction. What can be noted is that for the single span
structure the height reduction is more located in the shorter spans, while in the double span structure
the most reduction is present for spans longer than 35 meters.

Concrete cross sectional area

In the single span structure the wall width shows a split in two ranges. From span length 10 meters
up to 30 meters the wall width rises quick for the reduced stress limit model compared to the OVS-
results. This is due to the iterations started by the bending moment design verification. This design
aspect causes both the height and the wall width to increase. As soon as the bending moment design
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Figure 9.24: Concrete area to span length.

Figure 9.25: Prestressing force to span length.

aspect disappears from figure 9.19 the wall width for both models are almost the same.
The double span structure shows a reduction in wall width for the reduced stress limits for spans

longer than 35 meters. This can be explained as for this region the OVS-limit model applies a larger
prestressing force with more ducts. To fit these ducts the wall width is increased.

The changes in structural height and wall width taken into account, the total area of the structure
shows little reduction compared to the OVS-limit model. The reduced area by the loss of height is
compensated for by the increased wall width. Due to the increased wall width the average difference
between the single span models is even shows a small increase, but here also large deviations can be
found. The double span structure shows a reduction in concrete area in the longer span region, but
here a large deviation seems to occur in the OVS-limit model.

In general it can be said that not much concrete area is reduced by increasing the tensile stress
limits. However, as the height does decrease and the wall width increases due to the bending moment
iterations, which is purely a modeling choice, it would be interesting to see how the design changes
when the increased wall width due to bending moment iterations is omitted.

Prestressing

For the double span structure the prestressing force does not show substantial differences in the
applied prestressing force. The average change in prestressing force is a reduction of 4000 kN.
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Figure 9.26: Structure height to span length.

Assuming a working prestress of σpw = 1000 N/mm2 this is less than the force in two 19 strands
cables (2 ·140 mm2 ·19 ·σpw ·10−3 = 5320 kN).

Except of the span range between 36 and 43 meters the prestressing force in the single span
structures are almost the same. This area shows resemblance to figure 9.19. In this area the models
require many iterations and produce unrealistic results.

9.3 Non-linear results

Due to the limitations of the non-linear model (section 8.9.3) large deviations are expected. There-
fore the results of the non-linear model can not be regarded as absolute results. Consequently the
results will not be presented as in previous sections, but rather a qualitative description will be given.

9.3.1 Geometry

The only cross sectional dimension which is variable in the non-linear model is the height of the
walls. Figure 9.26 shows the difference in the wall height between the linear-elastic and non-linear
results. This figure shows that a reduction of the wall height is possible after redistribution of the
bending moments. The reduction in height varies between 100 mm and 400 mm. The reduction
in height is possible because on the capacity side there is a certain measure of overcapacity in the
verifications. This is due to the fact that the cross sections are not fully optimized. In the subsequent
iterations the capacity of the cross sections is reduced faster than the load effect due to moment
redistribution. This causes that at a certain iteration one or more verifications can no longer be
satisfied.

9.3.2 Moment redistribution

The gain which can be achieved by applying a non-linear calculation can be expressed in the redis-
tribution of the bending moment. Therefore it is interesting to evaluate how much moment redis-
tribution UHPFRC allows. The measure of moment redistribution is expressed with the symbol δ.
This stands for the ratio between the linear-elastic and non-linear bending moment. For the stati-
cally undetermined structure with two simply supported spans δ is calculated based on the support
bending moment (equation 9.6). A value of δ = 1.0 indicates the linear-elastic bending moment.

δ =
Msupport,NL

Msupport,LE
(9.6)
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The maximum bending moment redistribution by the Eurocode for linear-elastic calculations
with restricted redistribution is given for concretes with fck > 50 MPa as:

δ≥ k3 + k4xu/d (9.7)

in which:

k3 =
7 f

εcu3 ·106 +7 f
k4 = 1.0

f =
( fpd−σpm,∞)Ap + fydAs

Ap +As
xu height of concrete compressive zone after redistribution
d effective height of the cross section

Figure 9.27 shows how this maximum moment redistribution relates to the found redistributions in
the non-linear model results. For each span length the maximum redistribution according to the
Eurocode is depicted as a square. The circles are the found moment redistributions in the non-linear
model results. The color of the circles indicate which design aspect is gives the highest unity check.
The maximum moment redistribution according to the Eurocode remains fairly constant between
0.65 and 0.70. The achieved moment redistribution in the results show a large scatter for the various
span lengths. The non-linear structures where fatigue and deflection were leading show per design
aspect a δ of the same order of size. For the stresses however even within this design aspect there
is a large scatter. To explain this the span lengths of twenty-two and thirty-seven meters, with
respectively a large and small redistribution are investigated.

Span L=22 m

The cross-sectional height resulting form the linear-elastic calculation is h = 1920 mm. Each itera-
tion the height is reduced with 50 mm until after the fourth iteration at h = 1720 mm the verification
with regard to the stresses at the top side of the structure due to the frequent load combination can no
longer be met. The unity check for this verification rises in four iterations from−0.34 to 1.34. Figure
9.28 shows the stress distribution in the top of the structure due to the governing frequent load com-
bination for the different iterations. In the linear-elastic calculations the stress is σ = 0.16 N/mm2.
With a maximum allowed tensile stress of σmax = 1.50 N/mm2 this leads to the negative unity check
of:

u.c.= σ−σmax +1 = 0.16−1.50+1.00 =−0.34 N/mm2 (9.8)

Because of the definition of the unity check on stresses (equation 9.9) the values of the unity checks
may be misleading. They do not represent a percentage of the used capacity, but they represent an
actual amount of N/mm2 that the effective stress is removed from the maximum stress. This residual
capacity can be expressed as equation 9.10. When this residual capacity is larger that one N/mm2

the unity check give a negative value.

u.c.= σEd−σmax +1 (9.9)

σresidual = 1−u.c. (9.10)

The verification for the stress has been defined according to function 9.9 as maximum tensile stresses
of 0 N/mm2 occur, which would, with the regular verification, lead to a division trough zero.
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Figure 9.27: Ratio of moment redistribution δ to span length.

Design aspect linear elastic iteration 1 iteration 2 iteration 3 iteration 4
h=1920 mm 1870 mm 1820 mm 1770 mm 1720 mm

u.c. fatigue field bottom 0.34 0.34 0.35 0.36 0.37
u.c. fatigue field top 0.11 0.11 0.11 0.11 0.12
u.c. fatigue support bottom 0.16 0.16 0.17 0.17 0.18
u.c. fatigue support top 0.49 0.51 0.53 0.55 0.57
u.c. lateral torsional buckling 0.32 0.33 0.33 0.33 0.34
u.c. moment field 0.21 0.21 0.21 0.22 0.22
u.c. moment support 0.07 0.07 0.24 0.29 0.35
u.c. shear compressive strut 0.19 0.19 0.20 0.20 0.21
u.c. shear 0.21 0.21 0.21 0.22 0.22
u.c. characteristic bottom -3.84 -3.56 -3.45 -3.32 -3.17
u.c. characteristic top -0.58 -0.82 -0.45 -0.04 0.41
u.c. frequent bottom -2.48 -2.37 -1.98 -1.58 -1.36
u.c. frequent top -0.34 0.07 0.45 0.87 1.34
u.c. quasi-perm. Bottom -1.17 -1.06 -0.46 -0.27 -0.05
u.c. quasi-perm. Top -1.07 -0.94 -0.71 -0.44 -0.14
u.c. deflection 0.33 0.33 0.35 0.38 0.40
u.c. rotation field – 0.53 0.56 0.54 0.56
u.c. rotation support – 0.02 0.20 0.20 0.21

Table 9.4: Value of the verifications for the non-linear iterations. L=22 m.
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Figure 9.28: Stresses in top fibres due to governing frequent load combination.

Span L=37 m

In the structure with span length 37 meters the stresses in the frequent combination are also gov-
erning. Here, however, no redistribution is possible. Table 9.5 presents the unity checks for the
linear-elastic results and after the first (and only) non-linear iteration. This table shows that after
the linear-elastic calculation the stresses at the top side in the characteristic combination are gov-
erning. In the non-linear calculation this has changed to the frequent combination. This change can
be explained by figure 9.29 which displays the maximum stresses at the top in the characteristic
and frequent load combination and the corresponding stress distributions in the linear-elastic and
non-linear calculation. This shows that the critical position for the stresses is the top fibre above the
mid-support. The graph shows that after moment redistribution the stress in the characteristic load
combination decreases, while in the frequent combination the stress increases. This increase is that
much that after redistribution the stress goes from −1.67 N/mm2 to 0.22 N/mm2.

The reason why the stress increases in the frequent combination and decreases in the character-
istic is due to the redistributed bending moment as the cross sectional properties and prestressing are
the same. Investigating the bending moments shows that the redistributed bending moment in the
characteristic load combination results in a smaller bending moment at the support. Redistribution
in the frequent combination leads to a larger bending moment at the support. This can also be rec-
ognized in figure 9.29. In fact, the redistributed bending moments are very close together, giving a
similar stress in the top fibre. For the frequent combination the maximum stress is lower however
and thus leads to a unsatisfied design verification.

General remark

This investigation of the two separate span lengths shows two situations where the stresses in the
serviceability state were governing. In these two situations it was shown that the number of possible
iterations (and thus the magnitude of redistribution δ) was dependent on the remaining capacity of
the verifications in the linear-elastic calculation.
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Design aspect linear elastic iteration 1
h=2620 mm h=2570 mm

u.c. fatigue field bottom 0.25 0.26
u.c. fatigue field top 0.55 0.56
u.c. fatigue support bottom 0.51 0.52
u.c. fatigue support top 0.13 0.14
u.c. lateral torsional buckling 0.42 0.43
u.c. moment field 0.29 0.30
u.c. moment support 0.16 0.16
u.c. shear compressive strut 0.20 0.19
u.c. shear 0.25 0.24
u.c. characteristic bottom -6.31 -5.86
u.c. characteristic top 0.84 -0.06
u.c. frequent bottom -6.13 -4.94
u.c. frequent top -0.67 1.23
u.c. quasi-perm. Bottom -6.83 -6.47
u.c. quasi-perm. Top -7.49 -7.50
u.c. deflection 0.62 0.72
u.c. rotation field 0.00 0.53
u.c. rotation support 0.00 0.01

Table 9.5: Value of the verifications for the non-linear iterations. L=37 m.

Figure 9.29: Stresses in top fibres due to governing characteristic and frequent load combination.
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The investigation has also shown that the moment redistribution does not always redistribute the
bending moment in the same direction. This is inherent to the way the model enforces the displace-
ment to meet the boundary conditions. In certain situations the bending moment is redistributed
upward and in other times downward, dependent on whether the initial displacement is situated
above or below zero displacement at the mid support.

9.3.3 Rotation capacity

UHPFRC is a though material with (for concrete) a high ductility. This material property makes
that it can allow large rotations. Although the rotation capacity was only twice the governing design
aspect in the twenty-three evaluated structures it is an important aspect of non-linear calculation. The
model results show that the allowed maximum rotation is much dependent on the applied verification
method (see also section 7.3). The applied method in the non-linear model is originating from the
CUR 108 publication. This method defines the ultimate rotation by equation 9.11. As in UPHFRC
structures the height of the compressive zone in the ultimate state (xu) generally becomes smaller,
the maximum rotation becomes larger compared to conventional concrete.

Φu =
εcu3

xu
·d (9.11)

The ultimate rotation calculated by the method of the Eurocode is dependent on the relative depth
of the compressive zone ξ = xu

d . As the compressive zone becomes smaller in UHPFRC, the relative
depth also decreases (even though the structural height in general decreases as well). However, the
relation between the relative depth and the ultimate rotation is bi-linear. The relation is given in
figure 9.30. It can thus not simply be said that, as the relative depth in- or decreases, the ultimate
rotation behaves in a certain direction.

Figure 9.30: Maximum allowed rotation according to NEN-EN 1992-1-1.

Figure 9.31 shows the maximum allowed rotation above the mid support for both verification
methods and for the results in conventional concrete and UHPFRC. The values have been calculated
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based on the linear-elastic results. This graph clearly shows how the CUR108 recommendations
allow a larger rotation. This especially influences the UHPFRC structures which have a relative
small relative compressive depth.

Figure 9.31: Maximum allowed rotation for C35/45 and UHPFRC according to CUR108 and Eu-
rocode.

The two different verification methods compared here give very divergent results. In this it must
be noted that both verification methods are not tailored to the material properties. Although the
rotation capacity has not shown to be normative in the non-linear calculations more research to the
rotation capacity of UHPFRC structures should be performed to be able to apply boundaries which
suit the material behavior of UHPFRC.
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Chapter 10

Conclusions

10.1 Applying UHPFRC

Ultra High Performance Fibre Reinforced Concrete is not a concrete type which can be applied like
a conventional concrete with a different stress-strain diagram. Due to its characteristic properties it
requires a different approach in design with different verifications. As there is currently no legislative
basis for design available (expected end 2014 by fib task group) it is important to clarify which design
method is being used.

In terms of durability UHPFRC performs very well. Next to a very low impermeability, which
makes the material suitable to protect reinforcement- and prestressing steel in aggressive environ-
ments, it also contains good abrasion and freeze-thaw resistance properties. These properties make
it that the design life-time of UHPFRC could be stretched beyond those of conventional structures.
Although UHPFRC is per cubic meter more expensive, the design life time makes that the life cycle
costs could well be lower than for a conventional structure.

When designing a trough bridge in conventional concrete the OVS-requirements with regard to
the stresses in the serviceability limit state are governing. Meaning that the tendon profile, the geom-
etry and the minimum and maximum prestressing force may not be in conflict with each other. For
designing in UHPFRC this aspect remains the same. When this is satisfied, most other verifications
will also be satisfied. However, due to the application UHPFRC the concrete cross sectional area
can be reduced. This results in a smaller moment of inertia and therefore in less resistance against
deflection. Where the deflection hardly plays a role in conventional concrete trough bridges, it does
become an important design aspect in UHPFRC. Especially for double span structures, where the
height of the structure can significantly be reduced, this plays an important role.

UHPFRC contains high fatigue strengths. Especially in case of compression the fatigue strength
is sufficient to withstand the stresses due to fatigue loading. In case of tension the fatigue verifi-
cations demand more attention. Here the capacity is approached. It must however be noted that it
was possible to satisfy all the fatigue tensile verifications in the longitudinal direction without the
application of reinforcement steel.

In calculating the shear capacity UHPFRC knows a third component next to the concrete and
reinforcement capacities; the fibres. In the calculation of the shear capacity the fibres are given a
relatively low tensile strength over 90% of the effective concrete area. The fibre capacity increases
the shear capacity of the cross section to such an extend that shear force is the least important design
aspect. Due to the high compressive strength the compressive strut gains a high capacity as well.

In general UHPFRC does not lead to an increased bending moment capacity. The horizontal
compressive force can be achieved in a smaller compression zone, which increases the internal lever
arm, but this is of little influence. The steel fibres also cause only a small contribution compared
to the forces by the activated reinforcement- and prestressing steel. In trough bridges this is no
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problem as the bending moment capacity rarely turns out to be normative. However, UHPFRC
can be used to create a large bending moment capacity. Due to its high compressive strength the
maximum percentage of reinforcement steel can be rather high. In combination with the maximum
reinforcement percentage UHPFRC can accommodate large bending moments. This property might
be applied in structures where the bending moment is more important as a design aspect, like, for
instance, plate bridges.

For both the single and the double span structure the concrete cross sectional area shows a sig-
nificant reduction of circa 4 m2 and 2 m2 respectively. This reduction is that large that even though
UHPFRC is more dense the structures are generally lighter than conventional concrete structures. In
railway bridges this may provides possibilities as the structures are often prefabricated and later in a
short period of time, put in place. A lighter structure makes this easier, but also possible for longer
spans.

Much of the reduced area is due to the decreased structure height. Although the reduced concrete
area is favorable for the costs, in trough bridges the height of the wall is usually not important.
More useful is the possibility to reduce the thickness of the trough floor as this reduces the effective
construction depth. In combination with heavy reinforcement, like described above, the thickness of
the trough floor can at least be halved.

The application of �25−125 mm reinforcement in the 300 mm thick floor is quite dense. This
can influence the fibre directions and concrete quality. Even more dense reinforcement is applied
in compact reinforcement layers which can be applied as reinforcement of steel orthotropic plate
bridges. The execution methods applied for these overlays could be a source of inspiration for the
execution of the UHPFRC trough floor.

10.2 Reducing the stress limitations

The limitations the OVS sets to the allowable stresses in the serviceability limit state are unfavorable
for UHPFRC. Due to its high tensile strength the upper limits allow at most 30% of its capacity. At
the same time these stress limits are the governing design aspect in designing trough bridges (both
in UHPFRC as in conventional concrete). Loosening the stress limitations by allowing a certain
percentage of the tensile strength does more right to the material properties.

After loosening the stress limitations the design aspect with regard to these stresses is still the one
which results with the highest unity checks. Though the structure geometry is no longer determined
by the required moment of inertia to reduce the stresses, but by the moment of inertia required to
satisfy the deflection demands. The deflection becomes especially important for spans with lengths
from 30 meters an longer for single spans and 35 meters and longer.

The effective gain in reduced cross section area is very little for both single and double span
structures. In single span structures the most, with on average 0.10 m2. On the area of prestressing
there is no unambiguous trend to be noted. In general it can be said that the amount of required
prestressing is in the same order as when the OVS stress limits apply. Recapitulating there seem to
be little advantages for trough bridges to loosening the stress limitations.

The problem with the stress verification is that after application of a certain prestressing, stresses
arise which exceed the limit. This is because it is the actual limit which is applied in determining
the prestressing force. The higher allowed stresses for UHPFRC do not lead to solving the design
issue with regard to the stress limits. The higher allowed stress only give different boundary condi-
tions. The only way that the verification on stresses is easier satisfied, is when the applied boundary
conditions for determining the prestressing force are taken lower than the allowed limit. On this
way the minimum and maximum prestressing force can be determined at one or two cross sections.
Incidental higher stresses which occur at different cross sections will then more likely be within the
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limits. However, this method does no right to the material and is only more conservative. It may as
well be applied in conventional concrete as is UHPFRC.

10.3 Non-linear calculations

The non-linear results show that a moment redistribution with δ as low as 0.7 is possible. Conse-
quently this makes a reduction in the cross sectional area possible. The results, however, show a
large scatter. The amount of moment redistribution, and reduction in cross sectional area, is very
much dependent on how much residual capacity is present in the linear-elastic verifications.

The non-linear calculation gives rise to the verification of the rotational capacity. Here the al-
lowable rotation is very much dependent on the applied verification method. The CUR 108 method
seems to do more right to the material properties as it allows larger rotations.

10.4 General conclusion

UHPFRC shows as a material many favorable properties compared to conventional concrete. A
higher compressive and tensile strength, increased fatigue resistance and excellent durability per-
formance. A drawback of the material is however the execution method. Due to the composition
the mixture is very thick and more difficult to pour. Besides this it may (depending on the mixture)
require heat treatment. When executing a structure in UHPFRC specific attention needs to be payed
to the quality control.

Trough bridges are structures which generally are applied when the structural height is of little
importance. Applying UHPFRC makes it possible to reduce the construction height. The approached
slenderness in UHPFRC is however not of an order which a well designed and optimized conven-
tional concrete structure can’t approach. The actual effective construction depth is determined by
the trough floor. In UHPFRC the thickness of the trough floor can be reduced significantly. For
this reason there might be possibilities in applying an UHPFRC trough floor in combination with
conventional concrete walls.

Due to the possible application of a high reinforcement percentage the moment capacity can be
significantly increased. UHPFRC is therefore better used in structures where the bending moment
capacity tends to become normative, like plate bridges.

The stress limitations in the OVS do no right to the material properties of UHPFRC. However,
configuring these stress limits to the properties of UHPFRC does not necessarily lead to much gain
in terms of concrete area. Other design aspects become governing in dictating the cross section
dimensions.
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Chapter 11

Recommendations

Based on the results and conclusions from this research some recommendations can be given as to
how further investigate the possibilities of UHPFRC in large infrastructural works.

• UHPFRC is a material which is very suitable to make a fully optimized design. Due to its high
compressive and tensile strength, the possibility of omitting additional steel reinforcement and
the high cost per volume compared to conventional concrete. The way how the UHPFRC was
applied in this research is therefore rather unsophisticated. The shape of the structure was
never regarded as a variable. In designing a fully optimized structure the actual shape of
the structure and the specific material properties should be taken into account as an integral
part of design. There are multiple examples available in the literature which show designs in
UHPFRC which make optimized use of the material and the shape of the structure.

• The possibilities of fully optimizing a design with UHPFRC in combination with the shape
of the structure make that the used model in this research is no longer applicable. It is rec-
ommended that as the shapes of UHPFRC structures become more complicated finite element
models are applied. Contrary to the applied model in this research a three dimensional model
can give a more accurate representation of the stresses and strains in the material. Especially
for fully optimized designs it is important to be able to verify the internal loads and forces at
all sections.

• The results have shown that, for a constant material, a smaller cross section is more sensitive
to lateral torsional buckling. In this research the walls were not fully optimized and the limita-
tions of lateral torsional buckling are not approached. As UHPFRC is a material which is very
suitable for fully optimized designs it is very likely that in the future UHPFRC designs will
be made where lateral torsional buckling will become a design issue. The applied verification
method on lateral torsional buckling in this research is only an indication of the sensitivity of
the structure on this kind of instability. It is not an absolute verdict. As UHPFRC structures are
likely to obtain more slender webs it is recommended that research is performed on defining
a verification method for lateral torsional buckling in concrete structural elements.

• It was shown in section 8.8 that the way the Matlab model alters the cross section in the
various iterations has a large influence on the results of the model. Different choices in the
way the model optimizes the construction may lead to more optimized structures. Due to the
parametric design further optimization compared to the model results is also possible when
one individual structure with its specific situation is considered.

• In tension the fatigue stresses have to be accounted for by either the concrete, or, when this
capacity is insufficient, by the reinforcement. When the reinforcement is applied to withstand
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the fatigue all stresses are applied to the reinforcement steel. As in reality part of these stresses
are taken by the steel fibres it can be expected that the application of steel fibres has a positive
effect on the fatigue resistance of the reinforcement steel. The extent of this effect is subject
to further research.

• Loosening the stress requirement by omitting the upper limits certainly influences the geome-
try and design of the structure. The OVS-limits are based on concrete mixtures which are no
longer the top of the segment. New technologies have made concrete mixtures possible with
new material properties. The OVS stress-limits could therefore be considered as outdated
limits which no longer comply to the modern concrete mixtures. It should be investigated if
the stress-limits in the OVS can be adjusted to suit the material properties of higher concrete
strengths and fibre reinforced concretes.

• The research on non-linear calculated structures show that certainly some gain is possible
for UHPFRC structures. More research on the non-linear behavior of UHPFRC structures is
recommended to provide better insight in the possibilities. Specific attention must be payed to
the rotation capacity of UHPFRC as both verification methods compared in this research give
a large deviation and are not tailored to the specific UHPFRC material properties.

• Due to the very specific material properties and mixture it is advisable that, as long as UHPFRC
is not widely commercially available, the engineering company works closely together with a
concrete suppliant in order to make a concrete mixture which satisfies the needs of the specific
project and of which all material properties are exactly known.

• The workability of the UHPFRC mixture is significantly lower than for conventional concretes
due to the addition of steel fibres and the low water-binder ratio. This has a large effect on
the quality of the poured concrete and quality control of the cast concrete should therefore be
gain raised attention. As the quality of the cast concrete can be better controlled in controlled
environments it is recommended to design in precast elements where possible.

• The terms ‘optimization’, ‘most governing design aspect’ and ‘normativeness’ have frequently
been used. This research has interpreted the unity checks as a measure for how important a
certain design aspect is. Although it is an abstract concept and the daily use of it may for the
practical engineer not be exactly clear, it would be interesting to perform further research on
this term ‘normativeness’. Better understanding of which aspects influence a design could lead
to new, goal-oriented, technical solutions, or might make it possible to make designs which
make better use of the material.
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Productsheet Ductal CS1000
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An exceptional material choice for innovative structural elements that are 
extremely durable, cost effective and require very little maintenance.

Ductal ® is a revolutionary, ultra-high performance composite material 
that provides strength, ductility, durability and aesthetics. This unique 
combination of superior properties facilitates the ability to create innovative 
designs with new shapes that are thinner, lighter and more graceful.

Reinforced with steel fibers, Ductal ® CS1000 is significantly stronger 
than conventional concrete (with strengths similar to some metals)  
and performs better in terms of abrasion and chemical resistance,  
freeze-thaw, carbonation and chloride ion penetration.

Because of its optimized gradation of the raw material components,  
Ductal ® is denser than conventional concrete. This “denseness”, along 
with nano-meter sized non-connected pores throughout its cementitious 
matrix, also attributes to its remarkable imperviousness and durability 
against adverse conditions or aggressive agents.

       structural solutions for bridges, decks, 
marine docks/walls, troughs, piles and 
leave-in place forms

CS1000

CS1000

P
R
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D
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C

T 
D

AT
A
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E

T

PHYSICAL PROPERTIES 
Characteristic Values for Design 

Test Data 
Mean Standard Deviation

 
Design Values 

 

MPa psi MPa psi MPa psi 

Compression 180 26,000 12 1,800 160 23,000
Flexural 35 5,000 4.5 650 -- -- 

ftj 10 1,450 1 145 8 1,160 Direct Tension 
1% 12 1,800 2 300 8 1,160 

GPa ksi GPa ksi GPa ksi  
Youngs Modulus 60  8,700 2 300 55 8,000 



CS1000

Disclaimer: The values indicated above depend on the product characteristics, experimentation 
method, raw materials, formulae, manufacturing procedures and equipment used; all of 
which may vary. This data sheet provides no guarantee or commitment that the values set 
forth above will be achieved in any particular application of Ductal®. Ductal® is a registered 
trademark and may not be used without permission. The ultra-high performance material 
that is Ductal® and its various components are protected by various patents and may not be 
used except pursuant to the terms of a license agreement with the patent holder.

Lafarge Canada Inc.
1200, 10655 Southport Road S.W.
Calgary, Alberta, Canada  T2W 4Y1
Email: ductal@lafarge-na.com  •  Tel: 403-271-9110

Toll free: 1-866-238-2825  •  www.imagineductal.com

Add value with  
Ductal® CS1000 

• superior strength 
• ductility
• freeze/thaw resistance 
• design flexibility 
• longer spans 
• shallow, thin, lightweight
  structures
• reductions in foundations 
• faster construction
• reduce or eliminate  
 passive reinforcing 
• increased usage life
• improved seismic  
 performance 
• impact resistance
• abrasion resistance 
• dimensional stability 
• lower permeability
• low chloride ion diffusion 
• reduced maintenance

COMPONENTS

DURABILITY

OTHER PROPERTIES

BATCHING

THERMAL TREATMENT

PLACING

• Density 2.4 – 2.6 S.G.
• Capillary porosity (>10mm)  <1% 
• Total porosity 2 – 6%
• Post cure shrinkage <10-5 
• Creep coefficient 0.2-0.5

High shear mixers and temperature controlled environments are recommended 
to successfully produce Ductal® CS1000.

Ductal® should be placed in a controlled precast environment. Placing  
techniques include: gravitational flow, injection or auguring.

• Chloride Ion diffusion  0.02x10-12m2/s
• Carbonation penetration depth  <0.5 mm
• Freeze/thaw (after 300 cycles)  100%
• Salt-scaling   <0.10 g/m2

• Abrasion (relative volume loss index) 1.2

A) Premix  - silica fume, ground quartz, sand, cement
B) High tensile steel fibers  - 0.2 mm (0.008 in) diameter x 14 mm 
 (0.5 in) long (>2000 MPa/ 290 psi)
C) Admixture  - high range water reducer/ 3rd generation
+ Water and/or ice

Thermal treatment of 90oC (195oF), at 90% relative humidity for 48 hours, 
is applied after final set produces the required design strength and durability 
characteristics. For fire rated structures, the Ductal® AF formula is available 
and provides fire performance similar to normal concrete.

MOLDING
The fineness of Ductal® raw materials and fluidity of the mix facilitates  
the ability to replicate the micro-texture of the form surface or special  
mold textures.

PRE-STRESSING
The strength of Ductal® allows for solutions to be designed with smaller 
elements, without the use of passive reinforcement (reinforcing steel), 
prestressing will further enhance and optimize the designed solution.





Appendix B

Derrivation of uneven settlement

B.1 Double span

B.1.1 Case 1

Figure B.1: Uneven settlement at end support

φ21 =
δ

L
− M2 ·L

3 ·EI
(B.1)

φ23 =
M2 ·L
3 ·EI

(B.2)

φ21 = φ23 (B.3)

M2 =
3 ·δ ·EI

2 ·L2 (B.4)

V1 =−
M2
αL

(B.5)

V2L =−M2
αL

(B.6)
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B.2 Three spans Derrivation of uneven settlement

Figure B.2: Uneven settlement at end support

B.1.2 Case 2

φ21 =−
δ

L
+

M2 ·L
3 ·EI

(B.7)

φ23 =
δ

L
− M2 ·L

3 ·EI
(B.8)

φ21 = φ23 (B.9)

M2 =
3 ·δ ·EI

L2 (B.10)

V1 =
M2
αL

(B.11)

V2L =
M2
αL

(B.12)

B.2 Three spans

B.2.1 Case 1

Figure B.3: Uneven settlement at end support

φ21 =
δ

αL
− M2 ·αL

3 ·EI
(B.13)

φ23 =
M2 ·L
3 ·EI

− M3 ·L
6 ·EI

(B.14)
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Derrivation of uneven settlement B.2 Three spans

φ32 =−
M2 ·L
6 ·EI

+
M3 ·L
3 ·EI

(B.15)

φ34 =
M3 ·αL
3 ·EI

(B.16)

φ21 = φ23 (B.17)

φ32 = φ34 (B.18)

M2 =
12(1+α)δEI

L2α(8α+4α2 +3)
(B.19)

M3 =
6δEI

L2α(8α+4α2 +3)
(B.20)

V1 =−
M2
αL

(B.21)

V2L =−M2
αL

(B.22)

V2R =
M2
L

+
M3
L

(B.23)

B.2.2 Case 2

Figure B.4: Uneven settlement at intermediate support

φ21 =−
δ

αL
+

M2 ·αL
3 ·EI

(B.24)

φ23 =−
M2 ·L
3 ·EI

+
M3 ·L
6 ·EI

(B.25)

φ32 =+
M2 ·L
6 ·EI

− M3 ·L
3 ·EI

(B.26)

φ34 =
M3 ·αL
3 ·EI

(B.27)

φ21 = φ23 (B.28)

φ32 = φ34 (B.29)

M2 =
12(1+α)δEI

L2α(8α+4α2 +3)
(B.30)

M3 =
6δEI

L2α(8α+4α2 +3)
(B.31)
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B.2 Three spans Derrivation of uneven settlement

V1 =
M2
αL

(B.32)

V2L =
M2
αL

(B.33)

V2R =−M2
L
− M3

L
(B.34)
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Appendix C

Derivation of temperature load effect

Assuming a constant bending moment over the length of the structure due to heating. This gives:

φ23 =−
M(∆T ) ·L

3 ·EI
− M(∆T ) ·L

6 ·EI
(C.1)

κ ·L
2

=

∣∣∣∣−M(∆T ) ·L
3 ·EI

− M(∆T ) ·L
6 ·EI

∣∣∣∣ (C.2)

M(∆T ) = κ ·EI (C.3)

Since the moment at the end support is zero a moment is applied to counterbalance the constant
moment. The effect of this moment on the intermediate support moment is:

φ21 =−
M1 ·α ·L

6 ·EI
+

M2 ·α ·L
3 ·EI

(C.4)

φ21 = φ23 (C.5)
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Derivation of temperature load effect

−M1 ·α ·L
6 ·EI

+
M2 ·α ·L

3 ·EI
=−M2 ·L

3 ·EI
− M2 ·L

6 ·EI
(C.6)

M2 = M1 ·
α

6
1
2 +

α

3

(C.7)

In which:
M1 = M(∆T ) (C.8)

The resulting bending moment above the intermediate supports due to thermal loading is:

Msupport(∆T ) = M(∆T )+M2 (C.9)

Msupport(∆T ) = M(∆T )

(
1+

α

6
1
2 +

α

3

)
(C.10)
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Appendix D

Tendon profile

D.1 Single span

Figure D.1: Tendon profile single span structure

Parabolic function:

g(x) =C1 · x2 +C2 · x+C3 (D.1)

Boundary conditions:

g( 1
2 L) = zb− f (D.2)

g(0) = 0 (D.3)

g′(0) = 0 (D.4)

Solving boundary conditions gives.

C3 = 0
C2 = 0

C1 =
4 · (zb− f )

L2

Substitution in the original function gives:

g(x) =
4(zb− f )

L2 · x2 (D.5)
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D.2 Three spans Tendon profile

Figure D.2: Tendon profile in midspan

D.2 Three spans

D.2.1 Midspan

Parabolic functions:
g(x) =C1 · x2 (D.6)

h(x) =C2 · x2 +C3 · x+C4 (D.7)

Boundary conditions:
h(x2) = y2 (D.8)

h′(x2) = 0 (D.9)

h′′(x2) =
1
R

(D.10)

g(x1) = h(x1) (D.11)

g′(x1) = h′(x1) (D.12)

Solving the boundary conditions D.8, D.9 and D.10 gives:

h′′(x2) = 2 ·C2 =
1
R
⇒C2 =

1
2 ·R

(D.13)

h′(x2) = 0⇒ 2 ·C2 · x2 +C3 = 0⇒C3 =−
x2

R
(D.14)

h(x2) =
1
R
·
(

x2
2

2
− x2

2

)
+C4 = y2⇒C4 = y2 +

x2
2

2 ·R
(D.15)

h(x) =
1

2 ·R
(x− x2)

2 + y2 (D.16)

Solving boundary conditions D.11 and D.12 gives:

g′(x1) = h′(x1)⇒ 2 ·C1 · x1 =
x1− x2

R
⇒C1 =

x1− x2

2 · x1 ·R
(D.17)

g(x1) = h(x1)⇒
x1− x2

2 · x1 ·R
· x2

1 =
1

2R
· (x1− x2)

2 + y2 (D.18)

x1 = 2 · y2

x2
·R+ x2 (D.19)

g(x) =
1

2R+
x2

2
y2

· x2 (D.20)
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Tendon profile D.2 Three spans

D.2.2 Endspan

Figure D.3: Tendon profile in endspan

Parabolic functions:
g(x) =C1 · x2 (D.21)

h(x) =C2 · x2 +C3 · x+C4 (D.22)

Boundary conditions:
h(x2) = y2 (D.23)

h′(x2) = 0 (D.24)

h′′(x) =
1
R

(D.25)

g(x) = h(x) (D.26)

g′(x) = h′(x) (D.27)

g(x3) = y3 (D.28)

x3 = x2−L (D.29)

Solving the boundary conditions gives:

h′′(x2) = 2 ·C2 =
1
R
⇒C2 =

1
2 ·R

(D.30)

h′(x2) = 0⇒ 2 ·C2 · x2 +C3 = 0⇒C3 =−
x2

R
(D.31)

h(x2) =
1
R
·
(

x2
2

2
− x2

2

)
+C4 = y2⇒C4 = y2 +

x2
2

2 ·R
(D.32)

h(x) =
1

2 ·R
(x− x2)

2 + y2 (D.33)

g′(x1) = h′(x1)⇒ 2 ·C1 · x1 =
x1− x2

R
⇒C1 =

x1− x2

2 · x1 ·R
(D.34)

g(x3) = y3⇒
(x2−L)2

2R+
x2

2
y2

= y3 (D.35)

x2 =
L±

√
y3
y2
· (L2−2R · y3)+2R · y3

1− y3
y2

(D.36)

g(x) =
1

2R+
x2

2
y2

· x2 (D.37)
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Appendix E

Manual Calculation - One span

E.1 Geometry

The manual calculation as a verification of the computer model has been performed for the span
of forty meters. The geometry in this manual calculation is the result of the model. The cross-
section has been defined with the dimensions described below and has a total concrete area of Ac =
4661920 mm2.

wall height h 3080 mm
wall thickness bw 562 mm
floor thickness tb 300 mm
internal width bi 4000 mm
outer width bd 5124 mm

Figure E.1: Cross section

Further cross section properties:
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E.2 Loads Manual Calculation - One span

Neutral line.

ybottom =
1
Ac

( 1
2 ·bi · t2

b +2 · 1
2 bw ·h2) (E.1)

ybottom = 1
4661920

( 1
2 ·4000 ·3002 +2 · 1

2 ·562 ·30802)= 1898 mm (E.2)

ytop = h− ybottom = 1182 mm (E.3)

Moment of inertia:

section equation value unit
floor 1

12 ·bd · t3
b +bd · tb · (yb− 1

2 tb)2 1.29 ·1012 mm4

walls 2
12 ·bw ·h3 +2 ·bw ·h · (yt − 1

2 ·h)
2 3.18 ·1012 mm4

total 4.47 ·1012 mm4

Table E.1: Calculation of moment of inertia

This gives the following section moduli:

Wbot =
Iyy

ybottom
= 3.78 ·109 mm3 (E.4)

Wtop =
Iyy

ytop
= 2.36 ·109 mm3 (E.5)

E.2 Loads

E.2.1 Self weight

Self weight of the structure:

qg,k = γc ·Ac = 29 ·4.66 = 135 kN/m (E.6)

Mg,k =− 1
2 ·qg,k · x2 + 1

2 ·qg,k ·L · x (E.7)

With a maximum moment at x = 20 m of Mg,k = 27028 kNm and a maximum shear force at the
supports of Vg,k =

1
2 ·qg,k ·L = 2703 kN.

E.2.2 Railroad track

Self weight of the railroad track:

qtrack,k = γt · ttrack ·bi = 22 ·0.58 ·4.0 = 51 kN/m (E.8)

Mtrack,k =− 1
2 ·qtrack,k · x2 + 1

2 ·qtrack,k ·L · x (E.9)

With a maximum at x = 20 m of Mtrack,k = 10200 kNm and a maximum shear force at the supports
of Vtrack,k =

1
2 ·qtrack,k ·L = 1020 kN.
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Manual Calculation - One span E.2 Loads

E.2.3 Load model 71

The load model consists of two infinite length block loads and four axle loads. For simplicity of
the manual calculation the block loads have been combined to a continuous load and the axle loads
have been combined to one point load. The magnitude of the loads are calculated by multiplying the
characteristic load with the factor α = 1.21 and the dynamic factor Φ3.

Φ3 =
2.16√

LΦ−0.2
+0.73 (E.10)

LΦ = 40 m (E.11)

Φ3 =
2.16√

40−0.2
+0.73 = 1.08 (E.12)

qv,k = 80 ·α ·Φ3 = 80 ·1.21 ·1.08 = 105 kN/m (E.13)

Mq,k =
1
8 ·105 ·402 = 21000 kNm (E.14)

Qv,k = 250 ·α ·Φ3 = 250 ·1.21 ·1.08 = 327 kN (E.15)

MQ,k =
1
4 ·4 ·Qv,k ·L = 1

4 ·327 ·40 = 13080 kNm (E.16)

Together the bending moment due to load model 71 is:

MLM71,k = 21000+13080 = 34080 kNm (E.17)

The maximum shear force is:

VLM71,k =
1
2 (qv,k ·L+4 ·Qv,k) =

1
2 (105 ·40+4 ·327) = 2754 kN (E.18)

E.2.4 SW0

As the total length of the load model SW0 is 35.3 meters the position for the load model to achieve
the maximum bending moment will be in the middle of the span as the length of the span is larger
than the length of the load model.

qvk = 133 ·1.21 ·1.08 = 174 kN/m (E.19)

VSW0,k =
1
2 ·2a ·qvk = 2610 kN (E.20)

Msw0,k) =−( 1
2 5.3+ 1

2 15) ·174 ·15+ 1
2 40 ·2610 = 25709 kNm (E.21)

E.2.5 SW2

As the total length of the load model SW2 is 53 meters the position for the load model is placed at
the beginning of the span. Due to the statically determined structure the bending moment at x=20
can easily be calculated.

qvk = 150 ·1.21 ·1.08 = 196 kN/m (E.22)

∑M = 0 =− 1
2 ·252 ·196−8 ·196 ·36+Rb ·40 =−117698+Rb ·40 kNm (E.23)

Rb = 117698/40 = 2942 kN (E.24)

Ra = (25+8) ·196−= 3526 kN (E.25)

The bending moment at the middle cross section is:

Msw2,k = 3526 ·20− 1
2 ·196 ·202 = 31320 kNm (E.26)

The maximum shear force occurs at support a with a magnitude of Vsw2,k = 3526 kN.
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E.2.6 Fatigue loading

The composition of heavy traffic consists of four real train load models. The load effects are required
to be multiplied with a dynamic load factor for fatigue. This dynamic load factor φ f at is found to be:

K =
v

47.16L0.408 =
200

47.16 ·400.408 = 0.94 (E.27)

φ
′ =

K
1−K +K4 =

0.94
1−0.94+0.944 = 1.12 (E.28)

φ
′′ = 0.56 · e−

L2
Φ

100 = 0.56 · e−
402

100 = 6.3 ·10−8 (E.29)

φ f at = 1+ 1
2 (φ
′+ 1

2 φ
′′) = 1.56 (E.30)

The fatigue load models exist of concentrated loads representing the train axles. The equivalent
for these load models exist of a continuous spread load. The corresponding bending moment can be
calculated by equation E.31.

M f at,k =
1
8 · (φ f at ·qk) ·L2 (E.31)

Table E.2.6 gives the value of the spread load for each model and the corresponding largest bending
moment at x = 20 m.

Load model qk [kN/m] M f at,k [kNm]
5 80 24960
6 43 13416
11 57.2 17846
12 53.4 16661

Table E.2: fatigue loading

E.3 Load combinations

E.3.1 Ultimate limit state

The largest bending moment due to life loads is that of load model LM71. The load combination for
the ultimate limit state is defined as the largest of the following two equations:

MEd = γG,i,supGk, j,sup + γPP+ γQ,1Ψ0,1Qk,1 (E.32)

MEd = γG,i,supGk, j,sup + γPP+ γQ,1Qk,1 (E.33)

Evaluating these equations gives:

MEd = 1.5 · (27028+10200)+1.35 ·34080 = 101850 kNm (E.34)

MEd = 1.3 · (27028+10200)+1.65 ·34080 = 104628 kNm (E.35)

The effective ultimate bending moment is MEd = 104628 kNm.
The same combinations apply to the shear force.

VEd = 1.5 · (2703+1020)+1.35 ·3526 = 10345 kN (E.36)

VEd = 1.3 · (2703+1020)+1.65 ·3526 = 10658 kN (E.37)

The effective ultimate shear force is VEd = 10658 kN.
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E.3.2 Serviceability limit state

The SLS defines three different combinations for the loadings. These are as follows:

Characteristic combination ∑ j≥1 = Gk, j“+ ”P“+ ”Qk,1“+ ”∑i>1 Ψ0,iQk,i (E.38)

Frequent combination ∑ j≥1 = Gk, j“+ ”P“+ ”Ψ1,1Qk,1“+ ”∑i>1 Ψ2,iQk,i (E.39)

Quasi-permanent combination ∑ j≥1 = Gk, j“+ ”P“+ ”∑i≥1 Ψ2,iQk,i (E.40)

This gives the following effective forces acting on the structure.
Quasi-permanent

MEd,qp = 1.0 ·27028+1.0 ·10200+0.0 ·34080 = 37228 kNm (E.41)

Frequent
MEd, f r = 1.0 ·27028+1.0 ·10200+0.8 ·34080 = 64492 kNm (E.42)

Characteristic

MEd,ch = 1.0 ·27028+1.0 ·10200+1.0 ·34080 = 71308 kNm (E.43)

The load combination in which the structure is the least loaded is during construction when only
the concrete structure is present yet. This situation belongs to the characteristic loading combination.

MEd,construction = 1.0 ·MG,k = 27028 kNm (E.44)

A quasi-permanent load combination which will be used is the situation where the track is situated
on the bridge, but no life load is present.

MEd,qp2 = 1.0 · (MG,k +Mtrack,k) = 37228 kNm (E.45)

E.4 Prestressing

E.4.1 Tendon profile

The tendon profile is defined as a parabola by:

g(x) =
4 · f
L2 · x

2 (E.46)

The origin of the local coordinate system is halfway the length of the beam and at a point 306 mm
from the bottom of the beam. At the ends of the structure the eccentricity of the tendon profile is
218 mm above the neutral axis. This makes the drape in the structure f = 1094 mm and the radius
of the cable R = 402

8·1.094 = 183 m.

E.4.2 Friction losses

The prestressing force after frictions losses has been calculated according to:

P(x) = P0 · e−µ(∆θ+k·x) (E.47)

in which:
µ = 0.17 [−] friction coefficient
k = 0.008 [rad/m] wobble effect
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The absolute angular rotation can be calculated according to the derivative of the tendon profile to x.

g′(x) =
8 · f
L2 · x (E.48)

The curvature in the structure is constant. This gives that there are three points in the local coordinate
system which need to be evaluated in order to define the angular rotation. Table E.4.2 shows the
angular rotations and the corresponding friction losses at these locations.

x−global [m] x− local [m] g′(x) [−] ∆θ [rad] P(x)/P0 [−]
0 -20 -0.11 0 1.00
20 0 0 0.11 0.96
40 20 0.22 0.22 0.91

Table E.3: Friction losses

The influence of the wedge settlement works over the length lset . The assumed wedge settlement
is wset = 10 mm.

lset =

(
wset ·Ep

∆σp
∆x

)0.5

=

(
10 ·1.95 ·105

2.0 ·10−3

)0.5

= 31.2 m (E.49)

P(31.2)/P0 = 1−2.0 ·10−3 ·31.2 = 0.94 (E.50)

P(0) = 1.00−2 · (1−0.94) = 0.88 (E.51)

This makes the average prestressing after friction losses and wedge settlement Pmean = 0.91 ·P0.

E.4.3 Initial prestressing force

The initial prestressing force has been found by applying the OVS-stress criteria as boundary con-
ditions to the cross section analysis on the middle cross section. The time dependent losses are
estimated to be 15%. This allows to compare the prestressing force boundary conditions on different
moments in time. The results are presented in table E.4.3.

Load combination Location σmax [N/mm2] Pm∞ [kN] Pm0 [kN]
construction bottom 3 −− ≥ 9300
construction top 3 −− ≤ 92241
frequent bottom 0 ≥ 38233 ≥ 44980
frequent top 1.5 ≤ 183984 ≤ 216451
quasi-permanent bottom 0 ≥ 22070 ≥ 25945
quasi-permanent top 0 ≤ 100678 ≤ 118444
characteristic bottom 1.5 ≥ 37231 ≥ 43802
characteristic top 2.25 ≤ 202417 ≤ 238137

Table E.4: Boundary conditions to prestressing force

These results give that the maximum and minimum allowable prestressing force respectively are:

Pm0,max = 92241 kN (E.52)
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Pm0,min = 44980 kN (E.53)

The applied prestressing force is taken to be Pm0 = 44980 kN. This means that the prestressing force
at tensioning is required to be P0 = Pm0/0.91 = 49429 kN.

E.4.4 Applied prestressing

The required prestressing area is:

Ap =
P0

σpi
=

P0

0.8 · fpu
=

49429 ·103

0.8 ·1690
= 36560 mm2 (E.54)

Apply 16 cables consisting of 19 strands with each an area of 140 mm2. This gives an applied
prestressing area of Ap = 16 · 19 · 140 = 42560 mm2. The stress in the prestressing steel is now at
prestressing:

σp0 =
49429 ·103

42560
= 1162 N/mm2 (E.55)

The prestressing cables are applied in a cable configuration of eight cables in each trough wall
in which they are ordered in four pairs. At the ends of the structure the height of the wall should
be sufficient to place all the anchors. The required anchor height is 300 mm. When an intermediate
spacing of 50 mm is applied the required height for the anchors is 1450 mm. Half of this height is
required to be available below and above the center of the prestressing.
Top: h− yb−100 = 3080−1182−100 = 1798 mm > 725 mm
Bottom: h− yt −100 = 3080−1898−100 = 1082 mm > 725 mm

E.4.5 Time dependent losses

Creep
The stress at the location of the prestressing cable due to Pm0 and the quasi-permanent load combi-
nation is:

σc =−
Pm0

Ac
−

Pm0 · e2
p

Iyy
+

MEd,qp · ep

Iyy
=−10 N/mm2 (E.56)

The creep strain is calculated in which the material properties Ec = 1.05 ·Ecm = 57750 N/mm2 and
φ(∞, t0) = 0.5.

εcc(∞, t0) = 0.5 · −10
57750

=−0.087 ◦/◦◦ (E.57)

Shrinkage
Autogeneous shrinkage:

εca = 2.5( fck−10) ·10−6 = 2.5(172−10) ·10−6 = 4.05 ·10−4 (E.58)

Drying shrinkage is given to be less than or equal to εcd = 10−5. Total shrinkage is:

εcs = 10−5 +4.05 ·10−4 = 0.415 ◦/◦◦ (E.59)

Relaxation

∆σpr

σpi
= 0.66 ·ρ1000 · e9.1µ

( t
1000

)0.75(1−µ)
·10−5 (E.60)
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In which ρ1000 = 2.5% and t = 876000 hours and:

σpi =
0.95 ·P0

Ap
=

0.95 ·49429 ·103

42560
= 1103 N/mm2 (E.61)

µ =
σpi

fpk
=

1103
1860

= 0.59 (E.62)

∆σpr = 1103 ·0.59 ·2.5 · e9.1·0.59
(

876000
1000

)0.75(1−0.59)

·10−5 = 28 N/mm2 (E.63)

The total time dependent losses are:

∆σp = (εcc + εcs) ·Ep +∆σpr (E.64)

∆σp = (0.087+0.415) ·10−3 ·1.95 ·105 +28 = 125 N/mm2 (E.65)

σpm0 =
Pm0

Ap
=

44980 ·103

42560
= 1057 N/mm2 (E.66)

tdl =
∆σp

σpm0
=

125
1057

·100% = 11.9 % (E.67)

The prestressing force at t = ∞ is Pm∞ = 39638 kN. This is greater than the minimum required force
Pm∞,min = 38233 kN.

The upward load due to the prestressing load is:

qp,k =
8 ·Pm∞ · f

l2 = 217 kN/m (E.68)

E.5 Verifications - main structure

E.5.1 ULS - Bending moment capacity

The effective width of the concrete is a function of the the span. As the effective width might become
less than the actual width of the structure, the bending moment capacity has been regarded per trough
wall. The effective width of the floor in this case has been calculated as:

be f f ,1 = 0.2 ·bi +0.1 · l0 ≤ 0.5 ·bi ≤ 0.2 · l0 (E.69)

be f f ,1 = 0.2 ·4000+0.1 ·40000≤ 0.5 ·4000≤ 0.2 ·40000 (E.70)

be f f ,1 = 4400≤ 2000≤ 8000 (E.71)

The effective width of the floor is half of the width be f f = 2000+562 = 2562 mm.
The applied reinforcement is practical reinforcement of �16−150mm in one layer at the bottom

of the floor. The reinforcement area in the effective width is:

As =
be f f

s
· 1

4 ·π ·d
2
r =

2562
150

· 1
4 ·π ·162 = 3434 mm2 (E.72)

In order to find the height of the compression zone x the horizontal equilibrium is evaluated.

Nc = Ns +Nt +∆P+Pm∞ (E.73)
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in which Nt is the tensile force in the concrete. This Nt is the sum of three different parts in the stress
diagram.

T1 =
1
2 fctd · x1 ·bw

T2 = fctd · x2 ·bw
T3 =

1
2 fctd · x3 ·bw

(E.74)

The distances x1, x2 and x3 can be calculated by:

κx =
εsy

z− x

x1 =
εct

κx
=

εct

εsy
(z− x)

x2 =
εctd− εct

κx
=

εctd− εct

εsy
(z− x)

x3 =
εctu− εctd

κx
=

εctu− εctd

εsy
(z− x)

(E.75)

The horizontal equilibrium can now be expressed in a function with only one unknown x.

Nc = Ns +Nt +∆P+Pm∞ (E.76)

α · fcd ·bw · x = fctd ·bw · ( 1
2 x1 + x2 +

1
2 x3)+As · f yd +( fpd−σp∞) ·Ap +Pm∞ (E.77)

This is now an equation with only the unknown x. Solving this equation gives x = 1386 mm. The
length of the concrete tension zone is calculated to be xT = 11197 mm. This is larger than the cross
section height. Therefore the cross section is reevaluated in a situation where x3 is limited by the
height of the cross section.

A variable x∗3 is introduced. This is the length of x3 in case there would be no limit to it. The
actual lenght of x3 equals x3 = h−x−x1−x2. The concrete tensile force is now calculated according
to the second scheme in figure E.2. The equations from E.74 now become:

T1 =
1
2 fctd · x1 ·bw

T2 = fctd · x2 ·bw
T3 = ( fctd−θt · x3) · x3 ·bw

T4 =
1
2 ·θt · x3 ·bw

(E.78)

In this θt =
fctd
x∗3

.
Solving equation E.77 now gives x = 1000 mm. The horizontal equilibrium now consists of the

following horizontal forces:
Nc = 46762 kN
Nt = 9252 kN
Ns = 1518 kN
∆P = 16173 kN
Pm∞ = 1

2 ·39638 kN

(E.79)

As control the strain in the steel is calculated. Due to the high compressive strength it might
occur that only a small compressive height is required for horizontal equilibrium. This can lead to a
large curvature which may cause the steel to break.

κx =
εcu3

x
=

2.6 ·10−3

1000
= 2.60 ·10−6 (E.80)
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Figure E.2: Tension zone in the concrete. Left: cracked. Right: uncracked.

εs = κx · (d− x) = 2.60 ·10−6 · (3052−1000) ·103 = 5.34◦/◦◦ (E.81)

The steel strain is greater than the yield strain εsy = 2.2◦/◦◦ and smaller than the ultimate strain
εsu = 32.5◦/◦◦.

The maximum compressive height xu is calculated and should be greater than x in order to prevent
compressive failure.

f =
( fpd−σp∞)A∗p + fydAs

A∗p +As
= 569 N/mm2 (E.82)

k3 =
7 · f

εcu3 ·106 +7 · f
= 0.61 (E.83)

xu = (1− k3) ·d = 1205 mm (E.84)

The maximum compressive height xu = 1205 mm is greater than the occurring compressive height
x = 1000 mm.

The bending moment capacity can now be calculated according to equation E.85.

Mud =Nc · (1−β) · x+ 2
3 ·T1 · x1 +T2 · (x1 +0.5 · x2)+T3 · (x1 + x2 +

1
2 · x3)

+T4 · (x1 + x2 +
1
3 · x3)+Ns · (z− x)+∆P · (yt + ep− x) (E.85)

For the concrete which reaches the ultimate strain β = 0.36. The values of T 1 trough T 4 according
to equations from F.166 are:

T1 = 99 kN
T2 = 3085 kN
T3 = 4954 kN
T4 = 1116 kN

(E.86)

Evaluating equation E.85 gives for the ultimate bending moment capacity Mud = 71135 kNm. The
effective bending moment capacity on one trough beam is MEd = 0.5 ·104628−0.5 ·39638 ·0.88 =
34873 kNm. Performing a unity check for the bending moment capacity in the ultimate limit state
gives:

u.c.=
MEd

Mud
=

34873
71135

= 0.49 < 1.0 (E.87)
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E.5.2 ULS - Shear capacity

The shear force capacity of the individual components of the concrete, reinforcement and steel fibres
have been calculated below.

Concrete.
VRd,c =

(
CRdc · k · (100 ·ρ1 · fck)

1/3 + k1 ·σcp

)
·bw ·d ·10−3 (E.88)

In which:
CRdc =

0.18
γc

= 0.12 [−]

k =
√

1+ 200
d ≤ 2.0 = 1.03 [−]

ρ1 =
As

bw·d = 4.08 ·10−4 [−]
fck = = 172 N/mm2

k1 = = 0.15 [−]
σcp =

Pm∞

Ac
≤ 0.2 · fcd = 8.50 N/mm2

(E.89)

Evaluation equation F.190 with the values from E.89 gives VRdc = 2592 kN.
Shear reinforcement.

VRd,s = 0.9 d
Asw

s
fy;d (sinα+ cosα) (E.90)

In which:
Asw = 2 · 1

4 ·π ·�
2
l = 628 mm2

s = = 100 mm
α = = 90◦

(E.91)

This gives a capacity of the shear reinforcement of VRds = 7282 kN.
Fibres

VRd, f =
S ·σp

γ f · tanθ
(E.92)

In which:
S = 0.9 ·bw · (h− tb) = 1.41 ·106 mm2

σp = = 8 N/mm2

γ f = = 1.2 [−]
θ = = 30◦

(E.93)

The fibres give a contribution to the shear capacity of VRd f = 16295 kN.
The influence of the prestressing force on the shear force is:

Vpd =− 1
2 ·qp,d ·L (E.94)

Vpd =− 1
2 ·217 ·40 =−4340 kN (E.95)

The maximum shear force occurs due to load model SW2. The corresponding load combination
in the ULS gives a shear force of VEd = 10658 kN. The shear resistance is dependent on wether the
cross section is cracked or uncracked. The positive cracking moment is Mcr =Wbot · ( fctd +

Pm∞

Ac
) =

62370 kNm. This less than the ultimate occurring bending moment. Therefore the shear capacity is
calculated for a cracked cross section. There will probably be a larger capacity at the position of the
ultimate shear force since the maximum shear force is located near the support and the maximum
moment in the midfield.

u.c.=
VEd

VRd
=

1
2 · (10658−4340)

16295+7282
= 0.13 < 1.0 (E.96)
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Due to the slender webs of the trough bridge the capacity of the shear compressive strut should
be verified. The resistance is calculated by:

VRd,max =

(
1.14 · 0.85

γEγc
f

2
3

ck sin(2θ)

)
·bw ·d (E.97)

Solving this equation gives that the shear compressive strut resistance is VRd,max = 29678 kN.

u.c.=
VEd

VRd,max
=

1
2 (10658−4340)

29678
= 0.11 < 1.0 (E.98)

E.5.3 ULS - Lateral torsional buckling

The general verification for lateral torsional buckling is:

FEd

FRd
+

My,Ed

My,Rd
+

Mz,Ed

Mz,Rd
≤ 1 (E.99)

The bending moment and bending moment resistance around the z-axis are calculated below.

Mz,Rd =
Izz,wall

1
2 bw

· fmu =
1
12 ·3080 ·5623

1
2 562

·35 = 5675 kNm (E.100)

Mz,Ed =
FE

k1

v0

n∗z −1
(E.101)

In this FE is the euler buckling load, v0 is the initial horizontal excentricity and n∗z is the second order
factor.

FE =
π2 ·EIzz,wall

l2 =
π2 ·55000 · 1

12 ·3080 ·5623

400002 ·10−3 = 15456 kN (E.102)

v0 = L/300 = 133 mm (E.103)

The second order factor for a beam with a lateral support (in this case the trough floor) in the tension
zone can be found with equation E.104.

1
n∗z

=
k1My1 +Fc

h
2

GIt 2
h +FE

h
2

(E.104)

G =
Ecm

2(1+ v)
= 22917 N/mm2 (E.105)

It = 1
3 ·h ·b

3
w = 1.82 ·1011 mm4 (E.106)

k1 = 0.80 (E.107)

With Fc = Pm0 solving the second order factor gives n∗z = 44.

Mz,Ed =
15456 ·103

0.8
· 133

44−1
= 60 kNm (E.108)

u.c.=
1
2 Pm0

fcd ·bw ·h
+

1
2 My,Ed

My,ud
+

Mz,Ed

Mz,Rd
(E.109)

u.c.=
1
2 ·49429
276953

+
34873
71135

+
60

5675
= 0.59 < 1.0 (E.110)
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E.5.4 ULS - Fatigue

The ultimate bending moment for fatigue loading is:

M f at,max,d = 1.0 · (27028+10200)+1.0 ·24960−1.0 ·34881 = 27307 kNm (E.111)

The minimum bending moment for fatigue loading is:

M f at,min,d = 1.0 · (27028+10200)−1.0 ·34881 =−2347 kNm (E.112)

The maximum and minimum occurring stresses in the top and bottom fiber are calculated with
equationsE.113 and E.114.

σtop =−
Pm,in f

Ac
−

M f at

Wtop
(E.113)

σbottom =−
Pm,in f

Ac
+

M f at

Wbottom
(E.114)

This results in the following maximum and minimum stresses.

σt,max = −20 N/mm2

σt,min = −8 N/mm2

σb,max = −9 N/mm2

σb,min = −1 N/mm2

(E.115)

The material properties for fatigue behavior are as follows.

fctd, f at =
fctk,0.05

γc, f at
=

10
1.5

= 6.7 N/mm2 (E.116)

fcd, f at =
fck

γc, f at
· (1− f ck

400
) =

180
1.5
· (1− 180

400
) = 66 N/mm2 (E.117)

The top side of the structure is always in compression. The verification for compressive fatigue
is done according to equation E.118.

γSd ·σc,max ·ηc ≤ 0.45 · fcd, f at (E.118)

ηc =
1

1.5−0.5 |σ1|
|σc,max|

(E.119)

σ1 =−
Pm,in f

Ac
−

M f at,max · (yt −300)
Iyy

(E.120)

σ1 =−
39638 ·103

4661920
− 27307 ·106 · (1898−300)

4.47 ·1012 =−18 N/mm2 (E.121)

u.c.=
1.0 ·20 ·0.96

0.45 ·66
=

19
29

= 0.66 (E.122)

The maximum compressive stress in the bottom of the structure is σb =−9 N/mm2.

σ1 =−
Pm,in f

Ac
+

M f at,min · (yt −300)
Iyy

(E.123)

σ1 =−
39638 ·103

4661920
+
−2347 ·106 · (1182−300)

4.47 ·1012 =−9 N/mm2 (E.124)

u.c.=
1.0 ·9 ·1.00

0.45 ·66
=

9
29

= 0.31 (E.125)
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Figure E.3: Maximum allowable deflection

E.5.5 SLS - Deflection

The load combination causing the larges deformation is the characteristic combination. Supperposi-
tion is applied to find the resulting deflections of this combination. For the calculation of the bending
stiffness EI the youngsmodulus at the time t = ∞ has to be applied.

Ecm,e f f =
Ecm

1+φcreep
= 3.66 ·104 N/mm2 (E.126)

wg,d =
5

384
·

qg,d · l4

EI
= 27.5 mm (E.127)

wtrack,d =
5

384
·

qtrack,d · l4

EI
= 10.4 mm (E.128)

wpq,d =− 5
384
·

qp,d · l4

EI
=−44.2 mm (E.129)

wpm,d =−2 ·
Pm∞ep

6 ·EI
·
( 3

4 l2− 1
8 l2− l2)= 10.6 mm (E.130)

The deflection line due to SW2 can be found by making use of the displacement method. The load
model divides the beam in three intervals. By applying the corresponding boundary conditions the
equations for the deflection on each interval can be found. The resultant deflection at midspan was
on this way found to be wSW2,d = 31.5 mm. The total deflection is wd = 35.8 mm.

The maximum allowable deflection is derived from figure E.3. For structures of one span the
factor L/δ may be reduced with a factor 0.7.

L
δ
= 1450 (E.131)

δ =
40000

0.7 ·1450
= 39.4 mm (E.132)

The unity check for deflection become:

u.c.=
35.8
39.4

= 0.91 (E.133)
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E.5.6 SLS - Stresses

The OVS sets strict limits to the allowable tensile stresses in the concrete. These limits were used
to define the prestressing boundary conditions. The actual occurring stresses are verified here. The
maximum tensile stresses will occur at the top of the cross section at midspan during construction
and at the bottom of the cross section at midspan at t = ∞. t = 0

σtop =−
P0

Ac
+

Mp

Wt
− M(G)

Wt
(E.134)

t = ∞

σbottom =−P∞

Ac
−

Mp

Wb
+

M(G+Q)

Wb
(E.135)

Load combination Location Effective stress Allowable stress
Construction top -4.40N/mm2 3.0 N/mm2

Construction bottom -12.92 N/mm2 3.0 N/mm2

Frequent top -21.11 N/mm2 1.5 N/mm2

Frequent bottom -0.63 N/mm2 0.0 N/mm2

Characteristic top -24.00 N/mm2 2.25 N/mm2

Characteristic bottom 1.18 N/mm2 1.5 N/mm2

Quasi-permanent top -9.56 N/mm2 0 N/mm2

Quasi-permanent bottom -7.84 N/mm2 0 N/mm2

E.6 Verifications - floor

The verifications for the floor have been performed on a strip of one meter wide. A conservative
approach was used with fixed supports (r = 1.0) and rotational spring supports with r = 0.5.

E.6.1 Loads

For the manual calculation the trough floor has been modeled as a beam in two rotational springs on
both sides. The spring stiffness is taken as r = 1.0 for the maximum support moment and as r = 0.5
for the maximum field moment.

The self weight of the structure is:

qg,k = tb · γc = 0.30 ·29 = 9 kN/m (E.136)

The self weight of the track is:

qtr,k = ttrack · γt = 0.58 ·22 = 13 kN/m (E.137)

The train axle loads have a magnitue of Qk = 250 kN, but they may be spread over three sleepers
according to figure E.4. The concentrated load is spread by the sleeper with a length of 2520 mm.
The load is spread to the neutral line of the floor with a ratio of 4:1 trough the ballast layer and 1:1
trough the concrete. The total area over which the concentrated loads are spread is:

bQ = lsleeper +
2
4 · (tballast −hsleeper)+2 · tb

2
= 2995 mm (E.138)
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Figure E.4: Distribution in longitudual direction of concentrated train loads.

lQ = 2 ·a+ 2
4 · (tballast −hsleeper)+ tb = 1675 mm (E.139)

This makes the spread load due to the concentrated loads:

qQ,k =
Qk

lQ ·bQ
= 50 kN/m2 (E.140)

As the areas over which the load is spread overlap each other this spread load is doubled.

qQ,k = 2 ·50 = 100 kN/m2 (E.141)

For the fixed support the load effects are calculated with:

Ms,k =− 1
12 ·qk ·b2

i
Vs,k =

1
2 ·qk ·bi

(E.142)

Ms,g,k =−12 kNm
Ms,tr,k =−17 kNm
Ms,Q,k =−133 kNm

(E.143)

Vs,g,k = 18 kNm
Vs,tr,k = 26 kNm
Vs,Q,k = 200 kNm

(E.144)

For the spring supported structure the load effects are calculated with:

M f ,k = (− 1
2 ·

1
12 +

1
8 ) ·qk · (bi +bw)

2 (E.145)

M f ,g,k = 12 kNm
M f ,tr,k = 17 kNm
M f ,Q,k = 133 kNm

(E.146)

The load combinations in the ultimate limit state are:
equation 6.10a

Ms,d = 1.5 · (−12−17)+1.35 ·−133 =−223 kNm (E.147)

M f ,d = 1.5 · (12+17)+1.35 ·133 = 223 kNm (E.148)

120



Manual Calculation - One span E.6 Verifications - floor

Vs,d = 1.5 · (18+26)+1.35 ·200 = 336 kN (E.149)

equation 6.10b
Ms,d = 1.3 · (−12−17)+1.65 ·−133 =−257 kNm (E.150)

M f ,d = 1.3 · (12+17)+1.65 ·133 = 257 kNm (E.151)

Vs,d = 1.3 · (18+26)+1.65 ·200 = 387 kN (E.152)

This gives that Ms,d =−336 kNm, M f ,d = 257 kNm and Vs,d = 387 kN.
The fatigue loads are:

Support
Ms, f at,max = Ms,g,k +Ms,tr,k +Ms,Q,k =−162 kNm (E.153)

Ms, f at,min = Ms,g,k +Ms,tr,k =−29 kNm (E.154)

Field
M f , f at,max = M f s,g,k +M f ,tr,k +M f ,Q,k = 162 kNm (E.155)

M f , f at,min = M f ,g,k +M f ,tr,k = 29 kNm (E.156)

E.6.2 ULS - Bending moment capacity

The applied reinforcement in the floor in the cross direction is �25− 125 at both the top and the
bottom. This gives per side of the floor a reinforcement area of As = 3927 mm2 per meter. Horizontal
equilibrium is given by:

Nc = Ns +Nt (E.157)

Fully written this is:

α · fcd ·1000 · x = fctd ·1000 · ( 1
2 x1 + x2 +

1
2 x3)+As · f yd (E.158)

The applied yield stress is 300 N/mm2.
Solving this equation gives for the height of the compression zone x = 19 mm. The concrete

tension zone has a length of xT = 80 mm.
Horizontal equilibrium consists of the components:

Nc = 1562 N/mm2

T1 = 3 N/mm2

T2 = 63 N/mm2

T3 = 318 N/mm2

Ns = 1178 N/mm2

(E.159)

As control the strain in the steel is calculated. Due to the high compressive strength it might
occur that only a small compressive height is required for horizontal equilibrium. This can lead to a
large curvature which may cause the steel to break.

κx =
εcu3

x
=

2.6 ·10−3

19
= 1.37 ·10−4 (E.160)

εs = κx · (d− x) = 1.53 ·10−4 · (267.5−18.8) ·103 = 31.8◦/◦◦ (E.161)

The steel strain is greater than the yield strain εsy = 2.2◦/◦◦ and smaller than the ultimate strain
εsu = 32.5◦/◦◦.
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The ultimate compression zone height is given by:

f =
( fpd−σp∞)A∗p + fydAs

A∗p +As
= 300 N/mm2 (E.162)

k3 =
7 · f

εcu3 ·106 +7 · f
= 0.45 (E.163)

xu = (1− k3) ·d = 138 mm (E.164)

This makes that the compression zone x is smaller than the ultimate compression zone xu.
The bending moment capacity is Mu,d, f loor = 308 kNm for both the supports and the field cross

section.
The unity checks as verification for the bending moment capacity now become:

support u.c.=
−257
−308

= 0.83

f ield u.c.=
257
308

= 0.83
(E.165)

E.6.3 ULS - Shear capacity

The cracking moment of the floor is:

Mcr = fctd ·Wf l = 120 kNm (E.166)

The floor is cracked, the shear resistance therefore exists of only the fibre part.
Fibres

VRd, f =
S ·σp

γ f · tanθ
(E.167)

In which:
S = 0.9 ·1000 · tb = 2.70 ·105 mm2

σp = fctd = 8 N/mm2

γ f = = 1.2 [−]
θ = = 30◦

(E.168)

The fibres give a contribution to the shear capacity of VRd f = 3117 kN. This is well above the
occurring shear force. The verification now becomes:

u.c.=
Vs,d

VRd
=

387
3117

= 0.12 (E.169)

Verification of the compressive strut.

VRd,max =

(
1.14 · 0.85

γEγc
f

2
3

ck sin(2θ)

)
·b ·d (E.170)

Solving this equation gives that the shear compressive strutt resistance is VRd,max = 4351 kN.

u.c.=
VEd

VRd,max
=

387
4351

= 0.09 < 1.0 (E.171)
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E.6.4 ULS - Fatigue

At the support the stresses at the top and bottom of the cross section are:

σs,t,max =
Ms, f at,max

Wf loor
= 10.8 N/mm2

σs,t,min =
Ms, f at,min

Wf loor
= 1.9 N/mm2

σs,b,max =
Ms, f at,max

Wf loor
=−10.8 N/mm2

σs,b,min =
Ms, f at,min

Wf loor
=−1.9 N/mm2

(E.172)

In the field the stresses at the top and bottom of the cross section are:

σ f ,t,max =
M f , f at,max

Wf loor
=−10.8 N/mm2

σ f ,t,min =
M f , f at,min

Wf loor
=−1.9 N/mm2

σ f ,b,max =
M f , f at,max

Wf loor
= 10.8 N/mm2

σ f ,b,min =
M f , f at,max

Wf loor
= 1.9 N/mm2

(E.173)

Since the stresses in the field and the support are the same but in opposite direction they will
only be verified once.
Compression

γSd ·σc,max ·ηc ≤ 0.45 · fcd, f at (E.174)

ηc =
1

1.5−0.5 |σ1|
|σc,max|

(E.175)

σ1 = 0 N/mm2 (E.176)

u.c.=
1.0 ·10.8 ·0.67

0.45 ·66
=

7.2
29

= 0.25 (E.177)

Tension
σ f at,max = 10.8 N/mm2 > σctd, f at = 6.7 N/mm2 (E.178)

The tensile stress is larger than the concrete fatigue tensile strength. Therefore the fatige stresses
will in total have to be taken by the reinforcement steel.

σs,max =
M f at,max · ( 1

2 tb− cr−�l− 1
2�s)

I f loor
(E.179)

σs,max =
162 ·106 · (150−20−16−12.5)

1
12 ·1000 ·3003

= 7.3 N/mm2 (E.180)

σs,min =
M f at,min · ( 1

2 tb− cr− 1
2�s)

I f loor
(E.181)

σs,min =
29 ·106 · (150−20−16−12.5)

1
12 ·1000 ·3003

= 1.3 N/mm2 (E.182)
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The stress range due to fatigue loading is ∆σs = 6.0 N/mm2.
The number of train passages per day by the traffic group of ‘heavy traffic with axel loads of 25t’

is 51. The design lifetime of the structure is 100 years. This gives n = 51 ·365 ·100 load cycles and
logn = 6.3. From this the fatigue strength of the steel can be calculated.

∆σRsk = 160−0.3 · 160−95
2

= 150 N/mm2 (E.183)

The unity check for the fatigue resistance of the reinforcement steel is:

u.c.=
γsd ·∆σs

∆σRsk
γs, f at

=
1.15 ·6

150
1.15

= 0.05 (E.184)

E.7 Verification

This manual calculation has been done to verify the results from the matlab model. Below, in
table E.5 some key values of the design for both the manual calculation and the matlab model are
presented. In this some deviations can be noted.

Two effects explain the deviation in the bending moment. First, the manual calculation takes into
account a larger prestressing force and second, the multiple layer model introduces a deviation as a
certain force deviation is introduced due to the numerical approach.

The unity check on fatigue at the bottom side shows a deviation of 16%. Here the manual calcu-
lation takes into account a compressive stress of 9 N/mm2 where the model calculates 7.6 N/mm2.
This difference of 1.4 N/mm2 may be accepted at this point of the manual calculation.

The verifications on the floor show some rather large deviations. Here it must be noted that in
the manual calculation the floor has been differently modeled than in the Matlab model. Besides
this, due to the small dimensions of the floor the round of errors cause a larger impact percent wise.
Although the application of a simplified static model reduces the possibility of verifying the model,
it does show the structural soundness of the trough floor with the reduced thickness.

With these remarks and based on this comparison the results of the Matlab model may be ac-
cepted as realistic results.
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Aspect Units Manual Matlab Difference
L m 40 40 0.00
h mm 3080 3080 0.00

bw mm 562 562 0.00
t f loor mm 300 300 0.00

Ac mm2 4661920 4661920 0.00%
ytop mm 1898 1898 0.00%
ybot mm 1182 1182 0.00%
Iyy mm4 4.47 ·1012 4.47 ·1012 0.00%

Wtop mm3 2.36 ·109 2.35 ·109 0.25%
Wbot mm3 3.78 ·109 3.78 ·109 0.03%
MEd kNm 104628 10793 -0.63%
VEd kN 10658 10793 -1.27 %

Mq−p,d kNm 37228 37247 -0.05%
M f req,d kNm 64492 64286 0.32 %

Mchar,d kNm 71308 71709 -0.56 %
P0 kN 49429 49305 0.25%
Ap mm2 42560 42560 0.00%

Cables 16 16 0.00%
Strands 19 19 0.00%

time dependent loss % 11.9 12.4 -3.89 %
Pm∞ kN 39638 39157 1.21 %

u.c. bending moment - 0.49 0.55 -12.24 %
u.c. shear - 0.13 0.26 -99.23 %

u.c. compressive strut - 0.11 0.23 -113.91 %
u.c. lateral torsional buckling - 0.59 0.65 -9.61 %

u.c. fatigue top - 0.66 0.66 0.36 %
u.c. fatigue bottom - 0.31 0.26 16.13 %

u.c. deflection - 0.91 0.86 5.58 %

Table E.5: Design values for manual calculation and model results in longitudinal direction.

Aspect Units Manual Matlab Difference
Msupport kNm -270 -288 6.18%

M f ield kNm 270 304 11.18 %
u.c. bending moment support - 0.83 0.84 1.19 %

u.c. bending moment field - 0.83 0.89 6.74 %
u.c. shear - 0.12 0.11 -14.08 %

u.c. compressive strut - 0.09 0.07 -37.83 %
u.c. fatigue top - 0.05 0.04 -33.25%

u.c. fatigue support - 0.25 0.25 1.30%

Table E.6: Design values for manual calculation and model results of the floor.
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Appendix F

Manual Calculation - Two span

F.1 Geometry

The manual calculation as a verification of the computer model has been performed for the statically
undetermined structure with two spans of twenty meters. The geometry in this manual calculation
is the result of the model. The cross-section has been defined with the dimensions described below
and has a total concrete area of Ac = 3256360 mm2.

wall height h 2020 mm
wall thickness bw 509 mm
floor thickness tb 300 mm
internal width bi 4000 mm
outer width bd 5018 mm

Figure F.1: Cross section

Further cross section properties:
Neutral line.

ybottom =
1
Ac

( 1
2 ·bi · t2

b +2 · 1
2 bw ·h2) (F.1)

ybottom =
1
Ac

( 1
2 ·4000 ·3002 +2 · 1

2 300 ·20202)= 693 mm (F.2)
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ytop = h− ybottom = 2020−693 = 1367 mm (F.3)

Moment of inertia:

section equation value unit
floor 1

12 ·bd · t3
b +bd · tb · (yb− 1

2 tb)2 3.63 ·1011 mm4

walls 2
12 ·bw ·h3 +2 ·bw ·h · (yt − 1

2 ·h)
2 9.06 ·1011 mm4

total Iyy = 1.27 ·1012 mm4

Table F.1: Calculation of moment of inertia

This gives the following section moduli:

Wbot =
Iyy

ybottom
= 1.83 ·109 mm3 (F.4)

Wtop =
Iyy

ytop
= 9.56 ·108 mm3 (F.5)

F.2 Loads - field

As the position of the maximum field bending moment changes in accordance with the load config-
uration, the maximum field moment has been calculated at the exact position if this was known. As
for a single loaded span this position is at x = 0.44 ·L and for a continuous load over both spans this
is at x = 0.38 ·L. For the sake of verifying the Matlab model the combination of the loads, or in case
this exact position was unknown, the bending moment has been calculated at four tenth of the span
(0.4 ·20 = 8 m).

F.2.1 Self weight

Self weight of the structure:

qg,k = γc ·Ac = 29 ·3.26 = 95 kN/m (F.6)

The bending moment in the first span can be calculated by:

M f ,g,k =− 1
2 ·qg,k · x2 + 3

8 ·qg,k ·L · x (F.7)

The maximum bending moment occurs at x = 3
8 ·L and is M f ,g,k = 2672 kNm.

F.2.2 Railtrack

Self weight of the railroad track:

qtrack,k = γt · ttrack ·bi = 22 ·0.58 ·4 = 51 kN/m (F.8)

M f ,track,k =
9

128 ·qtrack,k ·L2 = 9
128 ·51 ·202 = 1434 kNm (F.9)
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F.2.3 Load model 71

The load model consists of two infinite length block loads and four axle loads. For simplicity of
the manual calculation the block loads have been combined to a continuous load and two axle loads
have been combined to one point load. The maximum field moment is obtained when the second
field is unloaded. The magnitude of the loads are calculated by multiplying the characteristic load
with the factor α = 1.21 and the dynamic factor Φ3.

Φ3 =
2.16√

LΦ−0.2
+0.73 (F.10)

LΦ = 1.12 · 1
2 (L1+L2) = 1.12 · 1

2 (20+20) = 24 m (F.11)

Φ3 =
2.16√

24−0.2
+0.73 = 1.19 (F.12)

qLM71,k = 80 ·α ·Φ3 = 80 ·1.21 ·1.19 = 115 kN/m (F.13)

M f ,q,k =
49
512 ·qLM71,k ·L2 = 4402 kNm (F.14)

Qv,k = 250 ·α ·Φ3 = 250 ·1.21 ·1.19 = 360 kN (F.15)

M f ,Q,k =
2 ·Qv,k ·0.4 ·0.6 ·L2

4 ·L3

(
4 ·L2−0.4 ·L(L+0.4 ·L)

)
(F.16)

M f ,Q,k =
2 ·360 ·0.4 ·0.6 ·202

4 ·203

(
4 ·202−0.4 ·20(20+0.4 ·20)

)
= 2972 kNm (F.17)

Together the bending moment from load model 71 is:

M f ,LM71,k = 4402+2972 = 7374 kNm (F.18)

F.2.4 Load model SW/0

The load model SW/0 exists of two block loads of 15 meters long. The bending moment is calculated
for one block load present on one span with its center situated at x = 0.4 ·L.

Figure F.2: Position of SW/0 block load for field moment.

qv,k = 133 ·α ·Φ3 = 133 ·1.21 ·1.19 = 192 kN/m (F.19)

M f ,SW0,k =− 1
2 qv,k · x2 +

q(7 ·L3 +6 ·L ·a2−4 ·a3)x
16 ·L2 − 1

2 qv,k ·a2 (F.20)

For a = 2.5 m and x = 8 m this gives:

M f ,SW0,k = 6861 kNm (F.21)
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F.2.5 Load model SW/2

The load model SW/2 exists of two block loads of 25 meters long. The maximum field moment
occurs when one block completely covers one span, without being present on the second span.

qv,k = 150 ·α ·Φ3 = 150 ·1.21 ·1.19 = 216 kN/m (F.22)

M f ,SW2,k =
49
512 ·qv,k ·L2 = 8269 kNm (F.23)

F.2.6 Fatigue loading

The four real train load models for fatigue have to be multiplied with the dynamic load factor for
fatigue. This dynamic load factor φ f at is found to be:

K =
v

47.16L0.408 =
200

47.16 ·200.408 = 1.25 (F.24)

φ
′ =

K
1−K +K4 =

1.25
1−1.25+1.254 = 0.57 (F.25)

φ
′′ = 0.56 · e−

L2
Φ

100 = 0.56 · e−
242

100 = 0.0018 (F.26)

φ f at = 1+ 1
2 (φ
′+ 1

2 φ
′′) = 1.29 (F.27)

The equivalent spread load for the train models and the resulting maximum bending moment
have been presented in table F.2.6. For the maximum field bending moment the continuous loading
was put on one span. The bending moments have been calculated with equation F.28.

M f , f at,k =
49
512 · (q f at,k ·φ f at) ·L2 (F.28)

Load model qk [kN/m] qk ·φ f at [kN/m] M f , f at,k [kNm]
5 80 103.2 3951
6 43 55.5 2125
11 57.2 73.8 2825
12 53.4 68.9 2638

Table F.2: fatigue loading

F.2.7 Thermal loading - Heating

h1 = 0.3 ·2020 = 606 mm > 150 mm → h1 = 150 mm (F.29)

h2 = 0.3 ·2020 = 606 mm > 250 mm → h2 = 250 mm (F.30)

∆Tb2 =− 1
2 [−3 · hi

h +2 ·
(

hi
h

)2
] · h1+h2

h2
·∆T2 (F.31)

∆Tb2 =− 1
2 [−3 · 400

2020 +2 ·
( 400

2020

)2
] · 400

250 ·4.5 = 1.9◦ (F.32)

∆T1 = 10◦C− 400
250
·4.5◦C = 2.8◦C (F.33)
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∆Tb1 =− 1
2 [−3 · hi

h +2 ·
(

hi
h

)2
] ·∆T1 (F.34)

∆Tb1 =− 1
2 [−3 · 150

2020 +2 ·
( 150

2020

)2
] ·2.8 = 0.3◦C (F.35)

κ = (∆Tb1 +∆Tb2) ·αT · 1
h/2 (F.36)

κ = (0.3+1.9) ·15 ·10−6 · 1
2020/2 = 3.27 ·10−8 (F.37)

The bending moment at x = 0.4 ·L is:

M f ,T,h,k = 0.4 ·κ · 3
2 ·EI (F.38)

M f ,T,h,k = 0.4 ·3420 = 1368 kNm (F.39)

F.2.8 Thermal loading - Cooling

h1 = 0.2 ·2020 = 404 mm > 250 mm → h1 = 250 mm (F.40)

h2 = 0.25 ·2020 = 505 mm > 200 mm → h2 = 200 mm (F.41)

∆Tb2 =− 1
2 [−3 · hi

h +2 ·
(

hi
h

)2
] · h1+h2

h2
·∆T2 (F.42)

∆Tb2 =− 1
2 [−3 · 450

2020 +2 ·
( 450

2020

)2
] · 450

200 ·−0.5 =−0.3◦C (F.43)

∆T1 =−5◦C− 450
200
·−0.5◦C =−3.9◦C (F.44)

∆Tb1 =− 1
2 [−3 · hi

h +2 ·
(

hi
h

)2
] ·∆T1 (F.45)

∆Tb1 =− 1
2 [−3 · 250

2020 +2 ·
( 250

2020

)2
] ·−3.9 =−0.7◦C (F.46)

κ = (∆Tb1 +∆Tb2) ·αT · 1
h/2 (F.47)

κ = (−0.7−0.3) ·15 ·10−6 · 1
2020/2 =−1.46 ·10−8 (F.48)

The bending moment at x = 0.4 ·L is:

M f ,T,c,k = 0.4 ·κ · 3
2 ·EI (F.49)

M f ,T,c,k = 0.4 ·−1530 =−612 kNm (F.50)

F.2.9 Uneven settlement

The largest bending moment due to uneven settlement will occur when the mid support will set (see
derivation of uneven settlement loading in appendix B). The forced deformation of the mid support
is δ = 5 mm. The effect of the bending moment in the field is taken at x = 0.4 ·L. As the moment
distribution is linear the bending moment in the field is 0.4 times the bending moment at the support.
Downward settlement:

M f ,set,k = 0.4 ·
3 ·δ ·E · Iyy

L2 ·10−6 = 0.4 ·2617 = 1047 kNm (F.51)

Upward settlement:

M f ,set,k = 0.4 ·−
3 ·δ ·E · Iyy

L2 ·10−6 = 0.4 ·−2617 =−1047 kNm (F.52)
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F.3 Loads - support

F.3.1 self weight

The bending moment at the mids upport due to qg,k = 95 kN/m is:

Ms,g,k =− 1
8 ·qg,k ·L2 =−4750 kNm (F.53)

The shear force at the support is:

Vs,g,k =− 5
8 ·qg,k ·L =−1188 kN (F.54)

F.3.2 Railtrack

The bending moment at the midsupport due to qtrack,k = 51 kN/m is:

Ms,track,k =− 1
8 ·qtrack,k ·L2 =−2550 kNm (F.55)

The shear force at the support is:

Vs,track,k =− 5
8 ·qtrack,k ·L =−638 kN (F.56)

F.3.3 Load model 71

The position of the load is taken the same as for the field moment, but the spread load now continuous
on the second field.

Ms,q,k =−
1
8
·115 ·202 =−5750 kNm (F.57)

Ms,Q,k =
2 ·Qvk ·a ·b ·L2

4 ·L2 (L+0.4 ·L) =−1210 kNm (F.58)

Ms,LM71,k =−5750−1210 =−6960 kNm (F.59)

The shear force at the support due to load model 71.

Vs,q,k =− 5
8 ·qv,k ·L =−1438 kN (F.60)

Vs,Q,k =−
2 ·a ·F(5 ·L2−a2)

4 ·L2 =−293 kN (F.61)

Vs,LM7,k =−1438−293 =−1731 kN (F.62)

F.3.4 Load model SW/0

The two block loads are each situated on one span symmetrically about the midsupport. This gives
the following support moment.

Ms,SW0,k =
qv,k(3.34 ·105 ·L−1.66 ·106 +360 ·L3−22854 ·L2)

16 ·L2 +147.75 ·qv,k (F.63)

Ms,SW0,k =−8749 kNm (F.64)

The shear force at the support is:

Vs,SW0,k =
qv,k(3.34 ·105 ·L−1.66 ·106 +360 ·L3−22854 ·L2)

16 ·L3 (F.65)

Vs,SW0,k =−1856 kNm (F.66)

132



Manual Calculation - Two span F.3 Loads - support

Figure F.3: Position of load model SW/0.

F.3.5 Load model SW/2

The load model is placed with its outer edge on the outer support. The length of the block model is
25 m and will fill the first span and partly fill the second.

Figure F.4: Position of load model SW/2.

Ms,w2,k =−
1
2

qv,k ·L2 +
qv,k(32 ·L3 +1950 ·L2−124800 ·L+950625)

8 · (32 ·L−1025)
(F.67)

Ms,w2,k =−7385 kNm (F.68)

Vs,w2,k =−qv,k ·L+
qv,k(32 ·L3 +1950 ·L2−124800 ·L+950625)

8 · (32 ·L−1025)
(F.69)

Vs,w2,k =−2523 kN (F.70)

F.3.6 Fatigue loading

The fatigue load models result in the load effects table F.3.6.

F.3.7 Thermal loading - Heating

The bending moment above the support has been calculated in section F.2.7.

Ms,T,h,k = 3420 kNm (F.71)

The shear force at the support due to the thermal loading is:

Vs,T,h,k =
3420

20
= 171 kN (F.72)
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Load model qk [kN/m] qk ·φ f at [kN/m] Ms, f at,k [kNm] Vs, f at,k [kN]
5 80 103.2 −5160 -1290
6 43 55.5 −2775 -694
11 57.2 73.8 −3690 -923
12 53.4 68.9 −3445 -862

Table F.3: fatigue loading

F.3.8 Thermal loading - Cooling

The bending moment above the support has been calculated in section F.2.8.

Ms,T,c,k =−1530 kNm (F.73)

The shear force at the support due to the thermal loading is:

Vs,T,c,k =
−1530

20
=−77 kN (F.74)

F.3.9 Uneven settlement

The load effects at the mid support due to uneven settlement have been calculated.
Downward settlement:

Ms,set,k =
3 ·δ ·E · Iyy

L2 ·10−6 = 2617 kNm (F.75)

Vs,set,k =
2617
20

= 131 kN (F.76)

Upward settlement:

Ms,set,k = 0.4 ·−
3 ·δ ·E · Iyy

L2 ·10−6 =−1141 kNm (F.77)

Vs,set,k =−
2617
20

=−131 kN (F.78)

F.4 Load Combinations - Field

The maximum bending moment in the field occurs under loading of SW/2

F.4.1 Ultimate limit state

Equation 6.10a
M f ,Ed = γG, j,supGk, j,sup + γQ,1Ψ0,1Qk,1 + γQ,iΨ0,iQk,i (F.79)

M f ,Ed = γG, j,sup · (M f ,g,k +M f ,track,k)+ γQ,1Ψ0,1M f ,SW2,k (F.80)

M f ,Ed = 1.5 · (2672+1434)+1.35 ·1.0 ·8269 = 17322 kNm (F.81)

Equation 6.10b
M f ,Ed = γG, j,supGk, j,sup + γQ,1Qk,1 + γQ,iΨ0,iQk,i (F.82)

M f ,Ed = γG, j,sup · (M f ,g,k +M f ,track,k)+ γQ,1M f ,SW2,k (F.83)

M f ,Ed = 1.3 · (2672+1443)+1.65 ·1.0 ·8269 = 18982 kNm (F.84)

The largest resulting bending moment is governing.

M f ,Ed = 18982 kNm (F.85)
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F.4.2 Serviceability limit state

Characteristic
M f ,ch,d = M f ,g,k +M f ,track,k +M f ,SW2,k +Ψ0 ·M f ,T,h,k (F.86)

M f ,ch,d = 2672+1434+8269+1.0 ·1368 = 13743 kNm (F.87)

M f ,ch,d = 2672+1434+8269+1.0 ·−612 = 11763 kNm (F.88)

Frequent
M f , f r,d = M f ,g,k +M f ,track,k +Ψ1 ·M f ,SW2,k +Ψ2 ·M f ,T,h,k (F.89)

M f , f r,d = 2672+1434+0.8 ·8269+0.6 ·1368 = 11542 kNm (F.90)

M f , f r,d = 2672+1434+0.8 ·8269+0.6 ·−612 = 10354 kNm (F.91)

Quasi-permanent

M f ,qp,d = M f ,g,k +M f ,track,k +Ψ2 ·M f ,SW2,k +Ψ2 ·M f ,T,h,k (F.92)

M f ,qp,d = 2672+1434+0.0 ·8269+0.5 ·1368 = 4790 kNm (F.93)

M f ,qp,d = 2672+1434+0.0 ·8269+0.5 ·−612 = 3800 kNm (F.94)

Construction
M f ,constr,d = 1.0 ·M f ,g,k = 2672 kNm (F.95)

F.4.3 Fatigue loading

Minimum bending moment:
M f , f at,min,d = M f ,g,k +M f ,track,k (F.96)

M f , f at,min,d = 2672+1434 = 4106 kNm (F.97)

Maximum bending moment:

M f , f at,max,d = M f ,g,k +M f ,track,k + γF, f atM f , f at,k (F.98)

M f , f at,max,d = 2672+1434+1.0 ·3951 = 8057 kNm (F.99)

F.5 Load Combinations - Support

F.5.1 Ultimate limit state

Bending moment Equation 6.10a

Ms,Ed = γG, j,supGk, j,sup + γQ,1Ψ0,1Qk,1 + γQ,iΨ0,iQk,i (F.100)

Ms,Ed = γG, j,sup · (Ms,g,k +Ms,track,k)+ γQ,1Ψ0,1Ms,SW0,k (F.101)

Ms,Ed = 1.5 · (−4750−2550)+1.35 ·1.0 ·−8749 =−22761 kNm (F.102)

Equation 6.10b
Ms,Ed = γG, j,supGk, j,sup + γQ,1Qk,1 + γQ,iΨ0,iQk,i (F.103)

Ms,Ed = γG, j,sup · (Ms,g,k +Ms,track,k)+ γQ,1Ms,SW0,k (F.104)

Ms,Ed = 1.3 · (−4750−2550)+1.65 ·1.0 ·−8749 =−23926 kNm (F.105)
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The largest resulting bending moment is governing.

Ms,Ed =−23926 kNm (F.106)

Shear force Equation 6.10a

Vs,Ed = γG, j,sup · (Vs,g,k +Vs,track,k)+ γQ,1Ψ0,1Vs,SW2,k (F.107)

Vs,Ed = 1.5 · (−1188−638)+1.35 ·1.0 ·−2523 =−6145 kN (F.108)

Equation 6.10b
Vs,Ed = γG, j,sup · (Vs,g,k +Vs,track,k)+ γQ,1Vs,SW2,k (F.109)

Vs,Ed = 1.3 · (−1188−638)+1.65 ·1.0 ·−2523 =−6537 kN (F.110)

The largest shear force is governing.

Vs,Ed =−6537 kN (F.111)

F.5.2 Serviceability limit state

Characteristic
Ms,ch,d = Ms,g,k +Ms,track,k +Ms,SW0,k +Ψ0 ·Ms,T,k (F.112)

Ms,ch,d =−4750−2550−8749−1.0 ·1530 =−17579 kNm (F.113)

Ms,ch,d =−4750−2550−8749+1.0 ·3420 =−12629 kNm (F.114)

Frequent
Fs, f r,d = Ms,g,k +Ms,track,k +Ψ1 ·Ms,SW0,k +Ψ2 ·Ms,T,k (F.115)

Ms, f r,d =−4750−2550+0.8 ·−8749+0.6 ·−1530 =−15217 kNm (F.116)

Ms, f r,d =−4750−2550+0.8 ·−8749+0.6 ·3420 =−12247 kNm (F.117)

Quasi-permanent
Fs,qp,d = Ms,g,k +Ms,track,k +Ψ2 ·Ms,SW0,k +Ψ2 ·Ms,T,k (F.118)

Ms,qp,d =−4750−2550+0.0 ·−8749+0.5 ·−1530 =−8065 kNm (F.119)

Ms,qp,d =−4750−2550+0.0 ·−8749+0.5 ·3420 =−5590 kNm (F.120)

Construction
Ms,constr,d = 1.0 ·Ms,g,k =−4750 kNm (F.121)

F.5.3 Fatigue loading

Minimum bending moment:
Ms, f at,min,d = Ms,g,k +Ms,track,k (F.122)

Ms, f at,min,d =−4750−2550 =−7300 kNm (F.123)

Maximum bending moment:

Ms, f at,max,d = Ms,g,k +Ms,track,k + γF, f atMs, f at,k (F.124)

Ms, f at,max,d =−4750−2550+1.0 ·−5160 =−12460 kNm (F.125)
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F.6 Prestressing

F.6.1 Tendon profile

The tendon profile is symmetrical about the mid support. The tendon profile starts at the neutral line
at the end of the structure. The eccentricity in the field is epb = 364 mm and the eccentricity above
the mid support is eps = 1104 mm. The minimal radius of the tendon profile is Rmin = 5 m. The
tendon profile can be described by two parabolic functions. The derivation of the functions can be
found in appendix D. For the upward curvature:

g(x) =
x2

2 ·Rmin +
x2

2
y2

(F.126)

For the downward curvature around the mid support:

h(x) =
1

2 ·Rmin
· (x− x2)

2 + y2 (F.127)

The key points of the tendon profile are:

x2 =
20−

√
0.364
1.468 · (202−2 ·−5 ·0.364)+2 ·−5 ·0.364

1− 0.364
1.468

= 13.54 m (F.128)

x3 = 13.54−20 =−6.46 m (F.129)

x1 = 2 · 1.468
13.54

·−5+13.54 = 12.46 m (F.130)

The radius of the tendon profile at the upward is defined as g′′(x) = 1/R.

R = Rmin +
1
2

x2
2

y2
= 57 m (F.131)

F.6.2 Friction losses

The statically undetermined structure with two spans is supposed to be tensioned from two sides.
This gives a symmetrical friction loss. The friction losses over one span have been calculated and
presented in figure F.5.

The prestressing force after friction losses has been calculated according to:

P(x) = P0 · e−µ(∆θ+k·x) (F.132)

in which
µ = 0.17 [−] friction coefficient
k = 0.008 [rad/m] wobble effect

The absolute angular rotation can be calculated with the derivative of the tendon profile to x.

g′(x) =
2 · x

2 ·Rmin +
x2

2
y2

(F.133)

Table F.6.2 shows the angular rotations and the corresponding frictions losses at the key points. The
structure is supposed to be tensioned from both sides. Due to resulting symmetry only one span has
to evaluated.
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x−global [m] x− local [m] θ [−] ∆θ [rad] P(x)/P0 [−]
0 -6.46 -0.112 0 1.00

6.46 0 0 0.112 0.97
18.92 12.46 0.221 0.333 0.92

20 13.54 0 0.494 0.89

Table F.4: Friction losses

The assumed wedge settlement is wset = 10 mm. The influence length of the wedge settlement
is:

lset =

(
wset ·Ep

∆σp
∆x

)0.5

=

(
10 ·1.95 ·105

0.08
18.92

)0.5

·10−3 = 21.5 m (F.134)

P(21.5)/P0 = 1− 0.08
18.92 ·21.5 = 0.91 (F.135)

P(0) = 1−2 · (1−0.91) = 0.82 (F.136)

Pmean =
1
2 (0.80+0.92) ·18.92+ 1

2 · (0.90+0.91) · (0.48)+ 1
2 (0.91+0.89) ·0.6

20
·P0 = 0.86 ·P0

(F.137)

Figure F.5: Friction loss over one span.

F.6.3 Initial prestressing force

The boundary conditions for the prestressing force with regard to the OVS-stress criteria can be
found by a cross-section analysis. Two cross sections have been evaluated for this; in the field at
x = 0.4 · L = 8 m and above the mid support. For solving the boundary conditions the bending

138



Manual Calculation - Two span F.6 Prestressing

moment due to the prestressing force has to be known. This was calculated with the displacement
method over four intervals with two upward and two downward continuous loads and a bending
moment applied at the head of the structure (0 kNm due to ep = 0). The mean prestressing force
over the upward directed curvature load is:

Pm,up =
1
2 · (0.80+0.90) ·P = 0.85 ·P (F.138)

The mean prestressing over the downward directed curvature load is:

Pm,down =
1
2 (0.90+0.91) ·0.48+ 1

2 (0.91+0.89) ·0.6
1.08

·P = 0.90 ·P (F.139)

This gives that the absolute bending moment due to prestressing at x= 0.4 ·L= 8 m is M f ,p = 0.38 ·P.
The absolute prestressing bending moment above the support is Ms,p = 0.58 ·P.

Solving the boundary equations for the prestressing force, under the assumption of 15% time
dependent losses, gives results shown in table F.6.3 and F.6.3.

Load combination Location σmax [N/mm2] Md [kNm] Pm∞ [kN] Pm0 [kN]
construction top 3 2672 −− < 63351
construction bottom 3 2672 −− > 0
frequent top 1.5 11542 < 148383 < 174568
frequent bottom 0 10345 > 10980 > 12918
characteristic top 2.25 11763 < 159110 < 187188
characteristic bottom 1.5 13743 > 11663 > 13721
quasi-permanent top 0 3800 < 43453 < 51121
quasi-permanent bottom 0 4790 > 5080 > 5976

Table F.5: Boundary conditions to prestressing force in the field.

Load combination Location σmax [N/mm2] Md [kNm] Pm∞ [kN] Pm0 [kN]
construction top 3 4750 −− > 2162
construction bottom 3 4750 −− < 684493
frequent top 0 15217 > 17481 > 20566
frequent bottom 1.5 12247 < 1002141 < 1178989
characteristic top 1.5 17579 > 18546 > 21819
characteristic bottom 2.25 12629 < 1119421 < 1316965
quasi-permanent top 0 8065 > 9265 > 10900
quasi-permanent bottom 0 5590 < 37366 < 43960

Table F.6: Boundary conditions to prestressing force above the support.

The results give that the minimum required prestressing force is Pm0,min = 21819 kN and the
maximum allowed prestressing force is Pm0,max = 43960 kN. The applied prestressing force is Pm0 =
21819 kN.
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F.6.4 Applied prestressing

The required prestressing area is:

Ap =
P0

σpi
=

P0

0.8 · fpu
=

23758 ·103

0.8 ·1690
= 17572 mm2 (F.140)

The cables are applied in four parallel groups of equal number of cables. Applying twelve cables
with 12 strands of 140 mm2 each gives a prestressing area of:

Ap = 12 ·12 ·140 = 20160 mm2 (F.141)

The size of the required anchor plates is 200 mm wide by 240 mm high. With three cables
situated above each other this means a wall height of 3 · (240+50)+50 = 920 mm is required. The
height of the trough wall is 2020 mm. The required width is (2 · (200+50)+50 = 550 mm). This is
wider than the applied wall width of bw = 509 mm, therefore a local thickening of the wall is applied
to provide enough space for the anchor heads.

F.6.5 Time dependent losses

Creep
The stress at the location of the prestressing cable is calculated in the field and above the support
due to the quasi permanent loading.

Field : σ f ,c =−Pm0
Ac −

M f ,p·epb
Iyy

+
M f ,qp,d ·epb

Iyy
=−8 N/mm2

Support : σs,c =−Pm0
Ac −

Ms,p·eps
Iyy

+
Ms,qp,d ·eps

Iyy
=−11 N/mm2

(F.142)

The largest compressive stress is used in the calculation of the creep loss. The used material proper-
ties are Ec = 1.05 ·Ecm = 57750 N/mm2 and φ(∞, t0) = 0.5.

εcc(∞, t0) = 0.5 · −11
57750

=−0.092 ◦/◦◦ (F.143)

Shrinkage
Autogeneous shrinkage:

εca = 2.5 · ( fck−10) ·10−6 = 2.5(172−10) ·10−6 = 4.05 ·10−4 (F.144)

Drying shrinkage is given to be less than or equal to εcd = 10−5. Total shrinkage is:

εcs = 10−5 +4.05 ·10−4 = 0.415 ◦/◦◦ (F.145)

Relaxation

∆σpr

σpi
= 0.66 ·ρ1000 · e9.1µ

( t
1000

)0.75(1−µ)
·10−5 (F.146)

In which ρ1000 = 2.5% and t = 876000 hours and:

σpi =
P0

Ap
=

25371 ·103

20160
= 1258 N/mm2 (F.147)

µ =
σpi

fpk
=

1258
1860

= 0.68 (F.148)
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∆σpr = 1258 ·0.68 ·2.5 · e9.1·0.68
(

876000
1000

)0.75(1−0.68)

·10−5 = 53 N/mm2 (F.149)

The total time dependent losses are:

∆σp = (εcc + εcs) ·Ep +∆σpr (F.150)

∆σp = (0.092+0.415) ·10−3 ·1.95 ·105 +53 = 152 N/mm2 (F.151)

σpm0 =
Pm0

Ap
=

21819 ·103

20160
= 1082 N/mm2 (F.152)

tdl =
∆σp

σpm0
=

152
1082

·100% = 14 % (F.153)

The prestressing force at t = ∞ is Pm∞ = 18764 kN.

F.6.6 Prestressing load effects

With Pm∞ = 18764 kN the bending moments are:

M f ,p =−7149 kNm (F.154)

Ms,p = 10883 kNm (F.155)

The shear force at the support due to the prestressing force is:

Vs,p =−724 kN (F.156)

F.7 Verifications

F.7.1 ULS - Bending moment capacity - Field

The effective width of the floor has been calculated as:

be f f ,1 = 0.2 ·bi +0.1 · l0 ≤ 0.5 ·bi ≤ 0.2 · l0 (F.157)

be f f ,1 = 0.2 ·4000+0.1 ·20000≤ 0.5 ·4000≤ 0.2 ·20000 (F.158)

be f f ,1 = 2800≤ 2000≤ 4000 (F.159)

The effective width of the floor is half of the width: be f f = 2000+509 = 2509 mm.
The applied reinforcement is practical reinforcement of �16−150mm in one layer at the bottom

of the floor. The reinforcement area in the effective width is:

As =
be f f

s
· 1

4 ·π ·d
2
r =

2509
150

· 1
4 ·π ·162 = 3363 mm2 (F.160)

In order to find the height of the compression zone x the horizontal equilibrium is evaluated.

Nc = Ns +Nt +∆P+Pm∞ (F.161)

in which Nt is the tensile force in the concrete. This Nt is the sum of three different parts in the stress
diagram.

T1 =
1
2 fctd · x1 ·bw

T2 = fctd · x2 ·bw
T3 =

1
2 fctd · x3 ·bw

(F.162)
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Figure F.6: Tension zone in the concrete. Left: cracked. Right: uncracked.

The distances x1, x2 and x3 can be calculated by:

κx =
εsy

z− x

x1 =
εct

κx
=

εct

εsy
(z− x)

x2 =
εctd− εct

κx
=

εctd− εct

εsy
(z− x)

x3 =
εctu− εctd

κx
=

εctu− εctd

εsy
(z− x)

(F.163)

The horizontal equilibrium can now be expressed in a function with only one unknown x.

Nc = Ns +Nt +∆P+Pm∞ (F.164)

α · fcd ·bw · x = fctd ·bw · ( 1
2 x1 + x2 +

1
2 x3)+As · f yd +( fpd−σp∞) ·Ap +Pm∞ (F.165)

Solving this equation gives equilibrium for x = 580 mm. The length of the concrete tension zone is
calculated to be xT = 2720 mm.

This is larger than the cross section height. Therefore the cross section is reevaluated in a situa-
tion where x3 is limited by the height of the cross section.

A variable x∗3 is introduced. This is the length of x3 in case there would be no limit to it. The
actual length of x3 equals x3 = h−x−x1−x2. The concrete tensile force is now calculated according
to the second scheme in figure F.6. The equations from F.180 now become:

T1 =
1
2 fctd · x1 ·bw

T2 = fctd · x2 ·bw
T3 = ( fctd−θt · x3) · x3 ·bw

T4 =
1
2 ·θt · x3 ·bw

(F.166)

In this θt =
fctd
x∗3

. Solving equation F.165 now gives x = 547 mm. The calculated compressive and
tension zone gives x+ xT = 547+1473 = 2020 mm. The assumed stress distribution was right.
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As control the strain in the steel is calculated. Due to the high compressive strength it might
occur that only a small compressive height is required for horizontal equilibrium. This can lead to a
large curvature which may cause the steel to break.

κx =
εcu3

x
=

2.6 ·10−3

547
= 4.7 ·10−6 (F.167)

εs = κx · (d− x) = 4.7 ·10−6 · (1992−264) ·103 = 8.2◦/◦◦ (F.168)

The steel strain is greater than the steel yield strain εsy = 2.2◦/◦◦ and less than the ultimate steel
strain εsu = 32.5◦/◦◦.

The maximum compressive height xu is calculated and should be greater than x in order to prevent
compressive failure.

f =
( fpd−σp∞)Ap + fydAs

Ap +As
(F.169)

f =
(1690−930) ·0.5 ·20160+435 ·3363

0.5 ·20160+3235
= 679 (F.170)

k3 =
7 · f

εcu3 ·106 +7 · f
= 0.65 (F.171)

xu = (1− k3) ·d = 705 mm (F.172)

This makes that x < xu.
As the requirements with regard to the maximum compressive height are satisfied the force

equilibrium can be used to calculate the bending moment capacity of a single trough wall.

M f ,ud = Nc · (1−β) · x+ 2
3 · x1 ·T1 +(x1 +0.5 · x2) ·T2 +(x1 + x2 +

1
2 · x3) ·T3+

(x1 + x2 +
1
3 · x3) ·T4 +(z− x) ·Ns +∆P · ep

(F.173)

x1 = 23 mm
x2 = 230 mm
x3 = 1221 mm

(F.174)

Nc = 23158 kN
Nt = 4642 kN
Ns = 1463 kN
∆P = 7671 kN

(F.175)

M f ,ud = 22015 kNm (F.176)

Performing a unity check for the bending moment capacity in the ultimate limit state gives:

u.c.=
0.5 · (M f ,Ed +M f ,p

M f ,ud)
=

0.5 · (18982−7149)
22015

= 0.27 < 1.0 (F.177)

F.7.2 ULS - Bending moment capacity - Support

The applied reinforcement at the top of the wall in longitudinal direction is of �20−100mm in one
layer. The reinforcement area is:

As =
bw−2 · c−2 ·�stirrup

s
· 1

4 ·π ·d
2
r =

509−2 ·20−2 ·16
100

· 1
4 ·π ·202 = 1257 mm2 (F.178)
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F.7 Verifications Manual Calculation - Two span

In order to find the height of the compression zone x the horizontal equilibrium is evaluated.

Nc = Ns +Nt +∆P+Pm∞ (F.179)

As the compressive zone is located at the floor the compressive force is calculated with the effective
width. For sake of simplicity of the manual calculation the compressive zone has been calculated
with the wall width.

T1 =
1
2 fctd · x1 ·bw

T2 = fctd · x2 ·bw
T3 =

1
2 fctd · x3 ·bw

(F.180)

Solving horizontal equilibrium for the only unknown, the compressive zone height x. The resulting
compressive zone height is x = 551 mm. The tension zone length is xT = 2585 mm which is larger
than the construction height.

The alternative calculation method from figure F.6 and equation F.166 is applied. This results in
a concrete compressive zone height of x = 524 mm. The resulting tensile zone length is xt = 1496

The maximum compressive zone height xu should be larger than the occurring compressive zone.

f =
( fpd−σp∞)0.5 ·Ap + fydAs

0.5 ·Ap +As
(F.181)

f =
(1690−930) ·0.5 ·20160+435 ·1257

0.5 ·20160+1257
= 724 N/mm2 (F.182)

k3 =
7 · f

εcu3 ·106 +7 · f
= 0.66 (F.183)

xu = (1− k3) ·d = 675 mm (F.184)

The maximum compressive zone is satisfied since x = 524 mm < xu = 675 mm.
The bending moment capacity can be calculated with:

Ms,ud = (1−β) · x ·Nc +
2
3 · x1 ·T1 +(x1 +0.5 · x2) ·T2 +(x1 + x2 +

1
2 · x3) ·T3+

(z− x) ·Ns +∆P · ep
(F.185)

With:
x1 = 21 mm
x2 = 221 mm

x3 = 1254 mm
(F.186)

Nc = 22204 kN
Nt = 4604 kN
Ns = 547 kN

∆P = 7671 kN

(F.187)

Ms,ud = 21015 kNm (F.188)

The bending moment capacity of each trough wall is Ms,ud = 21015 kNm.
Performing a unity check for the bending moment capacity in the ultimate limit state gives:

u.c.=
0.5 · (Ms,Ed +Msp)

M f ,ud
=

0.5 · (23926−10883)
21015

= 0.31 < 1.0 (F.189)
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F.7.3 ULS - Shear capacity

The shear force capacity of the individual components of the concrete, reinforcement and steel fibres
have been calculated below. The evaluated cross section is located at the mid support.

Concrete.
VRd,c =

(
CRdc · k · (100 ·ρ1 · fck)

1/3 + k1 ·σcp

)
·bw ·d ·10−3 (F.190)

In which:
CRdc =

0.18
γc

= 0.12 [−]

k =
√

1+ 200
d ≤ 2.0 = 1.05 [−]

d = h− c−0.5 ·�l = 1992 mm
ρ1 =

As
bw·d = 5.9 ·10−4 [−]

As =
bw−2·crr−2·�stirrup

s · 1
4 π ·�2

l = 603 mm2

fck = = 172 N/mm2

k1 = = 0.15 [−]
σcp =

Pm∞

Ac
≤ 0.2 · fcd = 5.8 N/mm2

(F.191)

Evaluation equation F.190 with the values from F.191 gives VRdc = 1159 kN.
Shear reinforcement.

VRd,s = 0.9 d
Asw

s
fy;d (sinα+ cosα) (F.192)

In which:
Asw = 3 · 1

4 ·π ·�
2
s = 628 mm2

�s = = 20 mm
s = = 100 mm
α = = 90◦

(F.193)

This gives a capacity of the shear reinforcement of VRds = 4898 kN.
Fibres

VRd, f =
S ·σp

γ f · tanθ
(F.194)

In which:
S = 0.9 ·bw ·d = 9.13 ·105 mm2

σp = = 8 N/mm2

γ f = = 1.2 [−]
θ = = 30◦

(F.195)

The fibres give a contribution to the shear capacity of VRd f = 10537 kN.
The maximum occurring shear force at the support is Vs,Ed +Vs,p =−6537−724 =−7261 kN.

The corresponding bending moment is Ms,Ed +Ms,p =−23926+10883 =−13043 kNm. The resis-
tance is dependent on whether or not the cross section is cracked. The cracking moment of the cross
section is Ms,cr =Wtop · fctd =−7648 kNm. The cross section is cracked.

The shear resistance is now:

Vs,Rd =VRd,s +VRd, f = 15435 kN (F.196)

Performing the verification for the shear resistance gives:

u.c.=
0.5 ·Vs,Ed

Vs,Rd
=

0.5 ·7261
15435

= 0.24 < 1.0 (F.197)
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F.7 Verifications Manual Calculation - Two span

Due to the slender webs of the trough bridge the capacity of the shear compressive strut should
be verified. The resistance is calculated by:

VRd,max =

(
1.14 · 0.85

γEγc
f

2
3

ck sin(2θ)

)
·bw ·d (F.198)

The maximum shear resistance is VRd,max = 17544 kN.

u.c.=
0.5 ·Vs,Ed

VRd,max
=

0.5 ·7261
17544

= 0.21 < 1.0 (F.199)

F.7.4 ULS - Lateral torsional buckling

The general verification for lateral torsional buckling is:

FEd

FRd
+

My,Ed

My,Rd
+

Mz,Ed

Mz,Rd
≤ 1 (F.200)

The bending moment and bending moment resistance around the z-axis are calculated below.

Mz,Rd =
Izz,wall

1
2 bw

· fmu =
1
12 ·2020 ·5093

253
·35 = 3053 kNm (F.201)

Mz,Ed =
FE

k1

v0

n∗z −1
(F.202)

In this FE is the Euler buckling load for a beam with an infinity stiff mid support, v0 is the initial
horizontal eccentricity and n∗z is the second order factor.

FE =
4 ·π2 ·EIzz

l2 =
4 ·π2 ·55000 · 1

12 ·2020 ·5093

200002 ·10−3 = 120500 kN (F.203)

v0 = L/300 = 67 mm (F.204)

The second order factor for a beam with a lateral support (in this case the trough floor) in the tension
zone can be found with equation F.205.

1
n∗z

=
k1My1 +Fc

h
2

GIt 2
h +FE

h
2

(F.205)

G =
Ecm

2(1+ v)
= 22917 N/mm2 (F.206)

It = 1
3 ·h ·b

3
w = 8.88 ·1010 mm4 (F.207)

k1 = 0.80 (F.208)

1
n∗z

=
0.8 · 1

2 ·11833 ·106 + 1
2 ·21819 ·103 2020

2

22917 ·8.8 ·1010 2
2020 +120500 ·103 2020

2

(F.209)

This gives that n∗z = 134.

Mz,Ed =
120500 ·103

0.8
· 67

134−1
= 76 kNm (F.210)

u.c.=
1
2 Pm0

fcd ·bw ·h
+

1
2 My,Ed

My,ud
+

Mz,Ed

Mz,Rd
(F.211)

u.c.=
1
2 ·21819 ·103

164509 ·103 +
1
2 · (18982−7149) ·106

22015 ·106 +
76 ·106

3053 ·106 = 0.36 < 1.0 (F.212)
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F.7.5 ULS - Fatigue field

The maximum bending moment for fatigue is:

M f , f at,max = 8057−7149 = 908 kNm (F.213)

The minimum bending moment for fatigue is:

M f , f at,min = 4106−7149 =−3043 kNm (F.214)

The resulting stresses in the top and bottom fiber are:

σt,max = −M f , f at,max
Wtop

− Pm∞

Ac
=−7 N/mm2

σt,min = −M f , f at,min
Wtop

− Pm∞

Ac
=−3 N/mm2

σb,max =
M f , f at,max

Wbot
− Pm∞

Ac
=−5 N/mm2

σb,min =
M f , f at,min

Wbot
− Pm∞

Ac
=−7 N/mm2

(F.215)

As all stresses remain in compression only the largest compressive stress is verified on fatigue
strength.

γSdσt,maxηc ≤ 0.45 · fcd, f at (F.216)

ηc =
1

1.5−0.5 · |σc1|/|σc2|
(F.217)

In which γSd = 1 and σc1 is the smallest compressive stress within 300 mm from the considered
fibre. The stress in the considered fibre is σc2.

σc1 =
M f , f at,min ·106 · (ybot −300)

Iyy
−

Pm,∞

Ac
=−7 N/mm2 (F.218)

ηc =
1

1.5−0.5 · |7|/|7|
= 1.00 (F.219)

1.0 ·7 ·1.00 = 7 N/mm2 ≤ 0.45 ·65 = 29 N/mm2 (F.220)

In the field the requirements with regard to fatigue are met.

F.7.6 ULS - Fatigue support

The maximum bending moment for fatigue is:

Ms, f at,max =−12460+10883 =−1577 kNm (F.221)

The minimum bending moment for fatigue is:

Ms, f at,min =−7300+10883 = 3583 kNm (F.222)

The resulting stresses in the top and bottom fiber are:

σt,max = −Ms, f at,max
Wtop

− Pm∞

Ac
=−4 N/mm2

σt,min = −Ms, f at,min
Wtop

− Pm∞

Ac
=−10 N/mm2

σb,max =
Ms, f at,max

Wbot
− Pm∞

Ac
=−7 N/mm2

σb,min =
Ms, f at,min

Wbot
− Pm∞

Ac
=−4 N/mm2

(F.223)
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As all stresses remain in compression only the largest compressive stress is verified on fatigue
strength.

γSdσt,maxηc ≤ 0.45 · fcd, f at (F.224)

ηc =
1

1.5−0.5 · |σc1|/|σc2|
(F.225)

In which γSd = 1 and σc1 is the smallest compressive stress within 300 mm from the considered
fibre. The stress in the considered fibre is σc2.

σc1 =−
Ms, f at,min ·106 · (ytop−300)

Iyy
−

Pm,∞

Ac
=−9 N/mm2 (F.226)

ηc =
1

1.5−0.5 · |9|/|10|
= 0.95 (F.227)

1.0 ·10 ·0.95 = 9.5 N/mm2 ≤ 0.45 ·65 = 29 N/mm2 (F.228)

At the support the requirements with regard to fatigue are met.

F.7.7 SLS - Deflection

The load combination which causes the largest deformation is the characteristic combination for the
field with cooling as thermal loading. The total deformation at x = 8 m is determined by evaluating
the seperate load effects and use superposition for the total deformation. The individual load effects
have been determined with the displacement method.

The bending stiffness EI for deformation is taken at t = ∞ with E = Ecm,e f f .

Ecm,e f f =
Ecm

1+φcreep
= 3.7 ·104 N/mm2 (F.229)

Self weight

wg,d =
27
5

qg,d ·L4

EI
·10−3 = 1.7 mm (F.230)

wtrack,d =
27
5

qtrack,d ·L4

EI
·10−3 = 0.9 mm (F.231)

wT,c,d = · 3
25

κ ·L2 = 0.8 mm (F.232)

wp,d =−
1.17 ·1010 ·Pm,∞

EI
=−4.7 mm (F.233)

For the verification of the deflection the factor α for the weight of load model SW2 may be taken as
α = 1.0. This gives that the loading due to SW2 for deflection is:

qv,k = 0.5 ·150 ·α ·Φ3 = 150 ·1.00 ·1.19 = 179 kN/m (F.234)

Evaluation using the displacement method gives wSW2 = 5.4 mm.
The total deflection is wEd = 4.1 mm.
The maximum allowable deflection is derived from figure F.7 and is:

L
δ
= 1100 (F.235)

δ =
20000
1100

= 18 mm (F.236)

The verification with regard to deflection is satisfied as wd = 4.1 mm < δ = 18 mm.
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Figure F.7: Maximum allowable deflection

F.7.8 SLS - Stresses

The OVS sets strict limits to the allowable tensile stresses in the concrete. These limits were used
to define the prestressing boundary conditions. The actual occurring stresses are verified here. The
maximum tensile stresses will occur at the top of the cross section at midspan during construction
and the quasi-permanent load combination and at the bottom of the cross section at midspan at t = ∞

for the frequent and characteristic loading.

Load combination Effective stress Allowable stress
Construction -9.5 N/mm2 3.0 N/mm2

Quasi-permanent -7.1 N/mm2 0 N/mm2

Frequent -3.4 N/mm2 0.0 N/mm2

Characteristic -2.2 N/mm2 1.5 N/mm2

Table F.7: Stress verification at the field.

Load combination Effective stress Allowable stress
Construction -1.7 N/mm2 3.0 N/mm2

Quasi-permanent -8.7 N/mm2 0 N/mm2

Frequent -1.2 N/mm2 0.0 N/mm2

Characteristic 1.2 N/mm2 1.5 N/mm2

Table F.8: Stress verification at the support.

All effective stresses are smaller than the allowable stresses. Therefore the verification is satis-
fied.

F.8 Floor

The dimensions of the floor are the same as for the single span trough bridge. For the manual
calculation see appendix E.
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F.9 Verification

Below in table F.9 some key values of the design for both the manual calculation and the matlab
model are presented. In this some deviations from the matlab results can be noted.

First the minimum required prestressing is almost 15 % higher than in the matlab results. Conse-
quently this leads to the application of a higher prestressing force. The requirement for the minimum
prestressing force is given in by the characteristic load combination a the support cross section. Here
the deviation of the working bending moment is 3%. Acceptable, but it does lead to a higher pre-
stressing requirement.

The difference in the applied prestressing force causes a deviation in the resulting time dependent
losses.

The large difference in the unity check for the support bending moment can be explained as
the manual calculation only calculates the bending moment capacity of the trough wall, while the
matlab-model takes the effective width into account, providing a larger capacity.

The deviation in the shear force verification can be explained as the manual calculation only
verifies the shear capacity in one cross section. The model evaluates the shear verification at all
discretized cross section and takes the shear force and resistance at that point into account.

Based on this comparison the results of the matlab model may be accepted as realistic results.
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Manual Calculation - Two span F.9 Verification

Aspect Units Manual Matlab Difference
L m 20 20 0.00%
h mm 2020 2020 0.00%

bw mm 509 509 0.00%
t f loor mm 300 300 0.00%

Ac mm2 3256360 3256360 0.00%
yt mm 1327 1327 0.00%
yb mm 693 693 0.00%
Iyy mm4 1.27 ·1012 1.27 ·1012 0.02%

Wbot mm3 1.82·109 1.83 ·109 -0.58%
Wtop mm3 9.56·108 9.56 ·108 -0.01%

Field
MEd kNm 18982 119104 -0.64%

Mqp,d kNm 4790 4743 0.99%
M f req,d kNm 11542 11337 1.78%
Mchar,d kNm 13743 13284 3.34%

Support
MEd kNm -23926 -22941 -4.12%

Mqp,d kNm -8065 -8136 -0.87%
M f req,d kNm -15217 -15104 0.74%
Mchar,d kNm -17579 -17099 2.73%

Prestressing
Pm,0 kN 23758 20252 14.76%

Ap mm2 20160 20160 0.00%
Cables 12 12 0.00%

Strands 12 12 0.00%
time dependent loss % 14 16 -14.29%

Verifications
u.c. bending moment field - 0.27 0.26 -6.81%

u.c. bending moment support - 0.31 0.16 48.39%
u.c. shear - 0.24 0.21 12.50%

u.c. compressive strut - 0.21 0.20 4.76%
u.c. lateral torsional buckling - 0.36 0.34 5.56%

u.c. fatigue field - 0.24 0.22 8.33%
u.c. fatigue support - 0.32 0.29 9.38%

u.c. deflection - 0.23 0.28 -21.74%

Table F.9: Design values for manual calculation and model results in longitudinal direction.
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Appendix G

Verification non-linear beam model

For the verification of the non-linear beam model a test environment has been programmed. In this
environment the bending moment, curvature, rotation and deflection for a statically undetermined
beam with two spans of 5000 mm have been evaluated both analytically and numerically.

The analytical equation for the bending moment, curvature, rotation and deflection have been
determined with the displacement method. The equations have been transposed to Matlab. This
allows a comparison of both results later on.

The considered beam is a small concrete beam of 500 mm high and 400 mm wide. The ap-
plied reinforcement is 5�16 = 1005 mm2. The dimensions, reinforcement and its corresponding
moment-curvature diagram have been taken from chapter 4 the book ‘Ontwerpen in gewapend be-
ton’ (Sagel R., 2003). As the considered structure is statically undetermined negative bending mo-
ments and curvatures must be accommodated. For simplicity it was assumed that the same amount
of reinforcement was present at the top side of the beam and the moment-curvature diagram could
therefore also be applied in the opposite direction.

Figure G.1: Positive side of moment-curvature diagram (Sagel R., 2003).

The moment-curvature diagram shows that the linear elastic branch goes up to a bending moment
of 50.2 kNm. This means that as long as the absolute maximum bending moment is below 50.2 kNm
the analytical and numerical results should give the same result. The maximum continuous load in
the linear elastic calculation is has been applied on one span.

q =
M ·8
L2 =

50.2 ·8
52 = 16.0 kNm. (G.1)
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Figure G.2 to G.4 show the deviations in the results between the analytical and the numerical
approach within the linear-elastic branch. The deviations in the curvature are of the order 10−22

while the order for the actual curvature is 10−6. The deviations are therefor 1 ·1016 times as small.
Due to the two times numerical integration the deviation in the deflection is only 1/10−3 times as
small. The deviation in the deflection is therefore in the order of thousandth of millimeters. This is
excepted as deviation for the model.

Figure G.5 shows the iterations for the deflection under a constant load on both spans of 25
kN/m. The crossed line are the analytical results. The deflection at the support is initially too high.
After redistribution of the bending moment and recalculation the deflection four times the deflection
at the support is within the allowed limit.

After redistribution of the bending moment the total area of the moment distribution line (AM)
should still be the same. The redistributed moment is determined by deducting the support moment
with a certain step size Mstep. This step size is then used to calculate by how much the bending
moment at the other cross sections should be reduced. This is a linear function between zero and
Mstep. The value Mstep is an integer, the values on the linear function are not all integers. The round
of by Matlab causes a deviation from the actual value. Each iteration therefore increases the total
area of the bending moment. With a step size of Mstep = Msupport/1000 this deviation is 0.158% of
the area AM (in this specific test environment).
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Figure G.2: Deviation in curvature between numerical and analytical results.

Figure G.3: Deviation in rotation between numerical and analytical results.

Figure G.4: Deviation in deflection between numerical and analytical results.
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Verification non-linear beam model

Figure G.5: Iterations of the deflection.
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