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Abstract

Extreme quantile regression provides estimates of conditional quantiles outside the
range of the data. Classical quantile regression performs poorly in such cases since
data in the tail region are too scarce. Extreme value theory is used for extrapolation
beyond the range of observed values and estimation of conditional extreme quantiles.
Based on the peaks-over-threshold approach, the conditional distribution above a high
threshold is approximated by a generalized Pareto distribution with covariate depend-
ent parameters. We propose a gradient boosting procedure to estimate a conditional
generalized Pareto distribution by minimizing its deviance. Cross-validation is used
for the choice of tuning parameters such as the number of trees and the tree depths.
We discuss diagnostic plots such as variable importance and partial dependence plots,
which help to interpret the fitted models. In simulation studies we show that our gradi-
ent boosting procedure outperforms classical methods from quantile regression and
extreme value theory, especially for high-dimensional predictor spaces and complex
parameter response surfaces. An application to statistical post-processing of weather
forecasts with precipitation data in the Netherlands is proposed.

Keywords Extreme quantile regression - Gradient boosting - Generalized Pareto
distribution - Extreme value theory - Tree-based methods

AMS 2000 Subject Classifications 60G70 - 62G08

1 Introduction

In a regression setup the distribution of a quantitative response ¥ depends on a set of
covariates (or predictors) X € R¢. These predictors are typically easily available and

can be used to predict conditional properties of the response variable Y. Machine
learning offers a continuously growing set of tools to perform prediction tasks based
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on a sample (X;,Y;), ..., (X,,Y,) of independent copies of a random vector (X, Y).
The main objective is usually to predict the conditional mean E(Y | X = x), which
corresponds to minimizing the squared error prediction loss. While the mean sum-
marizes the behavior of Y in the center of its distribution, applications in the field of
risk assessment require knowledge of the distributional tail. For a probability level
7 € (0, 1), an important quantity is the conditional quantile

0,(r) =F;'(z | X =x), (1)

where F' ;,1(- | X = x) is the generalized inverse of the conditional distribution func-
tion of Y given X = x. There has been extensive research in statistics and machine
learning to adapt mean prediction methods to other loss functions than squared
error. For instance, quantile regression relies on minimizing the conditional quantile
loss, which is based on the quantile check function (Koenker and Bassett Jr 1978).
This has been extended to more flexible regression functions such as the quantile
regression forest (Meinshausen 2006) and the gradient forest (Athey et al. 2019),
which both build on the original random forest (Breiman 2001). Another popular
tree-based method in machine learning is gradient boosting by Friedman (2001).
This versatile method aims at optimizing an objective function with a recursive pro-
cedure akin to gradient descent.

Let n denote the sample size and v = 7, the quantile level. The existing quantile
regression methodology works well in the case of a fixed quantile level, or in the
case of a quantile that is only moderately high, that is, 7, = 1 and n(1 — 7,) > o
as n — oo, meaning that there are sufficient observations above the 7, level. For
more extreme quantiles with n(1 — z,,) — ¢ € [0, o), the quantile loss function is
no longer useful because observations become scarce at that level and extrapolation
beyond the range of observed values is needed. Extreme value theory provides the
statistical tools for a sensible extrapolation into the tail of the variable of interest
Y. For a large threshold u close to the upper endpoint of the distribution of Y, the
distribution of the threshold exceedance Y — u | Y > u can be approximated by the
generalized Pareto distribution (GPD)

H,0)=1-+yy/0);"", y>0, @)

where for a € R, a, = max(0,a), and y € R and ¢ > 0 are the shape and scale
parameters, respectively.

There are three main streams in the literature focusing on the estimation of
covariate dependent extreme quantiles. First, a parametric form (e.g. linear) can be
assumed for the conditional quantile function (1) and estimators for extreme quan-
tiles can be derived and studied as in Chernozhukov (2005). The second stream uses
GPD modeling of exceedances above a high threshold and assumes that the param-
eters o(x) and y(x) depend on the covariates via parametric or semi-parametric mod-
els (Davison and Smith 1990; Wang and Tsai 2009) or generalized additive models
(Chavez-Demoulin and Davison 2005; Youngman 2019). The third stream is a fully
non-parametric local approach where local smoothing estimation techniques for the
conditional quantile at moderately high levels are applied and then extrapolated to
the extreme level. For example, Daouia et al. (2013) and Velthoen et al. (2019) apply
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kernel smooting estimation for the conditional tail distribution and the conditional
quantile, respectively, and (Gardes and Stupfler 2019) considers a covariate depend-
ent adaption of Weissman’s estimation for heavy-tailed data. While linear or addi-
tive models are restricted in their modeling flexibility, local smoothing methods are
known to be sensitive to the curse of dimensionality and work well only for a low-
dimensional predictor space. To bypass these issues for modern applications with
complex data, tree-based methods are attractive due to their modelling flexibility
and robustness in higher dimensions. A first contribution to the use of tree-based
models in extreme value theory is the generalized Pareto regression tree Farkas et al.
(2021), but a single tree is used resulting with a model with limited flexibility and
predictive performance.

Our goal is to estimate the extreme conditional quantile Q,(z) in (1), where the
dimension of covariates d is large and the response surface allows for complex
non-linear effects. To this end, we build a bridge between the predictive power of
tree-based ensemble methods from machine learning and the theory of extrapola-
tion from extreme value theory. Following the second stream of research mentioned
above, we model the tail of the conditional distribution of ¥ given X = x using a
GPD distribution in (2) with covariate dependent parameters y(x) and o(x). We pro-
pose gbex, a gradient boosting algorithm to optimize the deviance (negative log-
likelihood) of the GPD model, to estimate y(x) and o(x). In each boosting iteration,
these parameters are updated based on an approximation of the deviance gradient
by regression trees. The resulting model includes many trees and is flexible enough
to account for a complex non-linear response surface. The boosting algorithm has
several tuning parameters, the most important ones being the number of trees and
the tree depth. We show how they can be chosen effectively using cross-validation.

In two numerical experiments we illustrate that, for the task of extremal quan-
tile estimation, our methodology outperforms quantile regression approaches that do
not use tail extrapolation (Meinshausen 2006; Athey et al. 2019) and methods from
extreme value theory that assume simple forms for y(x) and ¢(x) such as generalized
additive models (Youngman 2019). As a result, to the best of our knowledge, our
gradient boosting is the first method that reliably estimates extreme quantiles in the
case of complex predictor spaces and in the presence of possibly high-dimensional
noise variables.

We apply the developed method to forecast the extreme quantiles of daily precipi-
tation in the Netherlands using the output of numerical weather prediction models
as covariates. Our diagnostic tools, namely variable importance score and partial
dependence plots, are able to identify changes in the tail heaviness of precipitation
as seasonality patterns in the shape parameter estimates y(x). We further investi-
gate the contribution of weather prediction model outputs of neighbouring stations
to forecasting the extreme precipitation of a specific location.

Our main contribution is methodological and demonstrates that the tree-based
modeling of extremes initiated in Farkas et al. (2021) with a single tree can be
extended to a powerful ensemble method thanks to boosting. Algorithm 1 is an adap-
tation of Friedman’s gradient boosting Friedman (2001, 2002) to the GPD model,
with an extra clipping gradient step introduced for numerical stability. The method-
ology and resulting algorithm are explained in detail for the sake of completeness
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642 J. Velthoen et al.

and pedagogy. Beyond this, the overall procedure in Algorithm 2 combines extreme
value theory and machine learning in two ways: we propose an adaptive covariate
dependent threshold to define the exceedances that are the input of Algorithm 1
and we introduce the extreme conditional quantile estimator. A general issue with
gradient boosting is selection of hyperparameter such as the number of trees and
the parameters governing the tree structure. We propose adaptive hyperparameters
selection with deviance-based cross-validation. This is not straightforward since the
quantity of interest, namely, the extreme conditional quantile, has no clear relation-
ship with deviance. Our choice is due to the fact that the more natural pinball loss
used in quantile regression degenerates in the extreme regime 7, — 0. Our simu-
lation studies reveals that deviance-based cross-validation performs well also for
extreme quantile estimation (see Fig. 2). The asymptotic analysis of our gbex algo-
rithm is challenging and beyond the scope of this paper, mainly due to two issues:
the GPD deviance is non convex while all of the existing theory on gradient boosting
considers convex loss functions; model misspecification has to be taken into account
since the GPD model is only an approximation for the threshold exceedances.

There has been active research on machine learning methods for extremes in par-
allel to this paper. Extremal random forests Gnecco et al. (2022) are another pro-
posal for tree-based GPD modelling where the localizing weights of a generalized
random forest Athey et al. (2019) are used. Extreme quantile regression via neural
networks is considered in Pasche and Engelke (2022); Richard and Huser (2022).
Gnecco et al. (2022) and Pasche and Engelke (2022) provide comparative simula-
tion studies of the different approaches. As pointed out by a referee, another line of
research for extremes in complex high-dimensional models consists in dimension
reduction techniques as in the single index model for extreme quantile estimation
(Gardes 2018).

The paper is organized as follows. Section 2 introduces our methodology and
algorithms for extreme quantile regression based on GPD modeling with gradient
boosting. Practical questions such as parameter tuning and model interpretation are
discussed in Sect. 3, while Sect. 4 is devoted to assessing the performance of our
method in two simulation studies. The application to statistical post-processing of
weather forecasts with precipitation data in the Netherlands is given in Sect. 5. We
conclude the paper with a summary and a discussion of future research directions.

The gradient boosting method is implemented in an R package and can be down-
loaded from GitHub at https://github.com/J Velthoen/gbex/.

2 Extreme quantile regression with gradient boosting

2.1 Background on extreme quantile estimation

Extreme value theory provides the asymptotic results for extrapolating beyond the
range of the data and statistical methodology has been developed to accurately esti-
mate extreme quantiles. In the simplest case with no covariate, a sample of n inde-

pendent copies Y, ..., Y, of the response Y is observed and the goal is to estimate a
quantile Q(z,) of Y at an extreme probability level 7, € (0, 1). Here, extreme means
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that 7, = land n(1 — 7,) = ¢ > 0 as n = oo, that is, the expected number of obser-
vations that exceed Q(z,) does not go to infinity as n — oco. Empirical estimation
then becomes strongly biased and extrapolation beyond observations is needed. The
usual strategy is to use the empirical quantile Y,_,., as a threshold and to consider
exceedances above this threshold. Asymptotic theory assumes that k = k(n), the
number of observations above threshold satisfies k — oo and k/n — 0. Stated dif-
ferently, Y, _,., is the empirical quantile at level 7, = 1 — k/n. The level 7, , is said
intermediate as it satisfies 7, — 1 and n(1 — 7,,) = oco. These distinctions are par-
ticularly important for the asymptotic theory of estimators in extreme value theory
de Haan and Ferreira (2006).

One of the main results for extrapolation in the univariate case is the Pickands—de
Haan-Balkema theorem (Balkema and de Haan 1974; Pickands III 1975), which
states that under mild regularity conditions on the tail of the distribution of Y, the
rescaled distribution of exceedances over a high threshold converges to the general-
ized Pareto distribution. More precisely, if y* denotes the upper endpoint of the dis-
tribution of Y then there exist a normalizing function () > 0 such that

. Y—u
lim P > Y > =1-H , >0,
ulTr}E < O'(M) Y | M) yJ(y) y= (3)

where H is defined in (2), with the convention H; ,(y) = 1 — exp(—y /o),y > 0. The
shape parameter y € R indicates the heaviness of the upper tail of Y, where y < 0,
y =0 and y > 0 correspond to distributions respectively with short tails (e.g., uni-
form), light tails (e.g., Gaussian, exponential) and power tails (e.g., Student’s 7).
Moreover, the GPD is the only non-degenerate distribution that can arise as the
limit of threshold exceedances as in (3), and therefore it is an asymptotically moti-
vated model for tail extrapolation and high quantile estimation. By the limit rela-
tion in (3), for a large threshold u, the conditional distribution of Y — u given Y > u
can be approximated by H, , with ¢ = o(u). The threshold u can be chosen as the
quantile Q(z,) of Y for some intermediate probability level 7, € (0, 1). Inverting the
distribution function in (2) provides an approximation of the quantile for probability

level 7 > 7, by
1-z \ 7
-1
(l—fo> ‘ )
4

0(r)~ Qzp) + o

2.2 Setup for extreme quantile regression

We consider here the setting where the response Y; € R depends on covariates
X; € R? and our goal is to develop an estimator for the conditional quantile Q,(7)
defined by (1) at an extreme quantile level T = 7,,. For this purpose, exceedances above
an intermediate quantile 7, = 7, will be considered; see the beginning of Sect. 2.1 for
a discussion on extreme and intermediate quantiles. Recall that (X, Y}), ..., (X, Y,)
denote independent copies of the random vector (X, ¥) with X € R?and Y € R.
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In this setup, the intermediate threshold Q(z,), shape parameter y and scale
parameter ¢ in (4) may depend on covariates. We therefore assume that the GPD
approximation in (3) holds pointwise for any x € R? with u(x) = Q,(z,), y(x) and
o(x), where for the scale we omit the dependence on the intermediate level u(x) for
simplicity. The approximation for the extreme conditional quantile becomes

(f—;;)_m ~ | 5)

, T> T,
7(x) 0

The triple (Q, (7)), (X), y(X)) provides a model for the tail (that is above the probabil-
ity level 7)) of the conditional law of Y given X = x. An estimator of conditional extreme
quantiles Qx(r) is obtained by plugging in estimators (QX(TO), 6(x), 7(x))in Eq. (5).

In the following we propose estimators for these three quantities. Our main con-
tribution is a gradient boosting procedure for estimation of the GPD parameters
(0(x), y(x)) that allows flexible regression functions with possibly many covariates.
For estimation of the intermediate quantile Q,(z,), any method for (non-extreme)
quantile regression can be used and we outline in Sect. 2.4 how the existing method
of quantile random forests can be applied.

0,(7) » Oy(7p) + 0(x)

2.3 GPD modeling with gradient boosting

In this section we propose the gbex algorithm to estimate the GPD parameters
(0(x), y(x)) using gradient boosting to build an ensemble of tree predictors. The algo-
rithm is the standard Friedman’s boosting algorithm Friedman (2001, 2002) applied
with objective function given by the GPD negative log-likelihood (also called deviance
in the machine learning literature). Since the GPD has two parameters, two sequences
of trees are needed; this is similar to the strategy for multiclass classification where
several sequences of trees are trained to learn the different class probabilities.

Based on Eq. (3), the Peaks-over-Threshold approach assumes that, given X = x,
the excess of Y above the threshold Q, () follows approximately a GPD. In order to
compute the sample of exceedances, we rely on a (non-extreme) quantile regression
method providing an estimation of the intermediate quantile function x ~ Q. (z,).

Applying this estimated function at the predictor values X, ..., X,, we obtain the
exceedances above the intermediate threshold defined as
z,= (Y, —Qxi(fo))y i=1,..,n (6)

Note that Z; = 0 whenever the value Y, is below threshold. We assume that the
intermediate threshold is high enough so that the exceedances can be modeled by the
generalized Pareto distribution and the approximation of conditional quantiles (5) is
good. Our aim is to learn the conditional parameter 8(x) = (o(X), y(x)) based on the
sample of exceedances above the threshold. We apply tree-base gradient boosting
Friedman (2001, 2002) and use the GPD deviance (negative log-likelihood) as the
objective function to minimize.
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Gradient boosting for extreme quantile regression 645

In absence of covariates, a standard way of estimating the GPD parameters
0 = (o, y) is the maximum likelihood method (Smith 1987), which provides asymptot-
ically normal estimators in the unconditional case with y > —1/2. The negative log-
likelihood, or deviance, for an exceedance Z; from a GPD distribution with parameters
0(X,) = (o(X,), 7(X,) is given by

Z;
fzi(H(Xi)) = [(1 +1/y(X;)) log <1 + ﬂXi)m) + log O'(X,-)] ]lzi>0~ (7)
The gradient boosting algorithm starts with an initial estimate, which is given by
the unconditional maximum likelihood estimator, that is

00(x) = 0y = argmin G ®)

i=1

This initially constant model is then gradually improved in an additive way. The
big picture is the following. Starting from the initial constant model 8, = (o, ¥,),
we sequentially construct a sequence of B pairs of trees. At step b, the goal is to
improve the current model 6,_,(x) = (6,,_,(X), ¥,_; (X)) by adding a pair of gradient
trees (T7(x), T, (x)). Forb = 1,..., B:

i) asubsample is randomly drawn from the set of exceedances (X}, Z) ;<

ii) on this subsample, the residuals (deviance derivatives) with respect to o and y
are computed;

iii) two regression trees are fitted on these residuals; they provide two partitions of
the feature space into different leaves; on the different leaves, the tree values are
modified by line search approximation so as to minimize the deviance;

iv) the model is updated by adding a shrunken version of these trees.

We now provide mathematical details for each of the different steps. We assume
that the reader is familiar with the standard regression tree based on square loss min-
imization (CART algorithm as in Breiman et al. (1984) or Hastie et al. (2009)). For
b=1,...,B:

1) Arandom subsetS, C {1, ...,n}of size [sn] is randomly drawn, where the param-
eter s € (0, 1]is called the subsampling fraction.

i1) The model residuals are computed on the subsample S, by

; ¢ , oty ‘
i T 5 0,(X) and 1, = oy Oy (X)), €S,
The deviance derivatives are provided in Appendix A.

iii) A pair of regression trees (7} (X), TZ (x)) are fitted, respectively on (X, rZ[)l-GSb and
X, ’”Z[)ies,,- The tree construction uses the standard CART algorithm Breiman
et al. (1984) based on recursive binary splitting and provides a partition of the
feature space into several rectangles called leaves. Several parameters are involved
in the stopping rule: the maximal depths D?, D° (i.e., the maximum number of
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splits between the root and a leaf in the tree) and the minimal leaf sizes L?. , Li’nin
(minimum number of observations in each leaf). The leaves of 7 (resp. TZ) are
denoted by (LZ,,‘)ISis s (resp. (LZ,,')I <i< JZ)' Following Friedman (2001), the regres-
sion trees are then modified: the partitions are kept unchanged but the tree values
are chosen so as to minimize the deviance. This is done by line search, that is, the

updated value f;,; in leaf LZ,;‘ is obtained by solving the minimization problem

& = argmin Y 6,0, X)), j=1,..T, ©
S =74

where e, = (1,0) gives the direction of the line search corresponding to o. For

the parameter y, the line search is performed in direction e, = (0, 1), yielding the

value 5ZJ in the leaf LZJ (same equation with o replaced by y everywhere). In

practice the line search (9) can be computationally expensive and an approxima-

tion is used instead, i.e., a Newton—Raphson step resulting in

'fZJ-=_

at,,

Zxery, 5o Op1 (X))
>, ‘

ZX,-GLZJ W(eb—l(xi»

For the parameter y, the line search approximation in leaf LZJ. yields the value SZJ.
(same equation with o replaced by y everywhere). The gradient trees are given by

J; 7
Tx) =Y &1 pezg) and  Tj(x) = > & Lisers ) (10)
j=1 j=1

The model 8,_,(x) = (6,_,(X), ¥,_; (X)) is finally updated by

6,(%) = (0,(%), 7,(0)) .
= (051 (%) + AT TS (). 7, (X) + AT (X)), (in

where the shrinkage parameters A°, A’ € (0, 1) are called learning rates. They
are used to slow down the dynamics since only a shrunken version of the trees is
added to the current model.

The final output for the estimated parameters is the gradient boosting model

B B
GX) =0y + A7 D TE(X), 7X) =y, + A Y TI(x). (12)
b=1 b=1

The algorithm as described above is an adaptation of Friedman’s gradient boost-

ing algorithm Friedman (2001, 2002) to the conditional GPD model for exceedances
above a threshold. In a first implementation of this algorithm, we could observe
a numerical instability due to the fact that the GPD negative log-likelihood is not
Lipschitz and that its gradient may explode. For this reason, we introduce gradient

a
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clipping, a standard trick in machine learning to avoid gradient explosion (Qian et al.
2021; Mai and Johansson 2021). This means that we bound the absolute value of
the Newton—Raphson step by 1 in order to mitigate the strong influence of extreme
observations, leading to

7y
Ty = ) sign (&7 ) min(1& | D1 xers ) (13)
1

J=

and similarly for Tby(x). We observe in practice that gradient clipping results in a
more stable algorithm with better performance.

Algorithm 1 summarizes the procedure for GPD modeling of exceedances. In
practice, the number of iterations B is an important parameter and its choice cor-
responds to a trade-off between bias and variance. The procedure is prone to over-
fitting as B — oo and cross-validation is used to prevent this by early stopping; see
Sect. 3.1 where we discuss the interpretation of the different tuning parameters and
their selection in practice.

Algorithm 1 gbex boosting algorithm for GPD modeling

Input:

® §,: the initial values of the parameters with default value as in (8);

. (Xi, Z,-) I<i<n® data sample of exceedances above threshold;

® B: number of gradient trees;

e D, D’: maximum tree depth for the gradient trees;

e 1%, A7 learning rates for the update of the GPD parameters ¢ and y respectively;
o 5: subsampling fraction;

. Lz‘in,L;in: minimum leaf size of the nodes in the trees

Algorithm: For b=1,..., B:

1. Draw a random subsample S, C {1, ---, n} of size [sn]
2. Compute the deviance derivatives on the subsample S,
s aIZ, aIz, .
o= ;(91;—1 (X;)) and 1, = - (6,-,(X))). i €5,
3. Fit regression trees Ty, Tby that predict the gradients r , and rly” as functions of the covariates X; on
the sample i € S,; the trees are built with maximal depth (D°, D") and minimal leaf size (L;in, Lfmn);

for the tree values, use the line search approximation with gradient clipping (13)
4. Update the GPD parameters 6(x) = (Eb x), 'fb(x)) with learning rates (1%, A7), i.e.,
6,(X) =6, (X) + 2°T7(x) and 7,(x) =7,_,(X) + 7T} (x).
Output: Conditional GPD parameters (5(X), 7(X)) = (65(X), 75(X))

2.4 Extreme quantile regression

The input of Algorithm 1 is the sample of exceedances Z; defined by (6). The con-
ditional intermediate quantile QX,(TO) used in this definition generally also depends
on the covariate vector X; and needs to be modeled first. For this task, any method
for (non-extreme) quantile regression can be used, but we note that the quality of the
approximation (5) of the extreme quantile will also depend on the accuracy of the
intermediate quantile estimate. Together with the gradient boosting procedure for the
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GPD parameters in Sect. 2.3, we obtain an algorithm for extreme quantile prediction.
We refer to this algorithm as the gbex method. It combines the flexibility of gradient
boosting with the extrapolation technique from extreme value theory.

Algorithm 2 gbex algorithm for extreme quantile prediction

Input:

o (X, Yi)l<i<n: data sample;
o 7,,: probability level for the threshold;
o 7: probability level for the prediction such that 7> z,;

e parameters of the gbex boosting algorithm for GPD modeling of exceedances (Algorithm 1)

Algorithm:

1. Fit a quantile regression to the sample (X,-, Y,-) \<i<, that provides estimates @x (10) of the conditional
quantiles of order 7, .

2. Compute the exceedances Z; = (Yi -0y (TO)) ,J<i<n
! +
3.Letl = {i 1 Z > 0} be the index set of positive exceedances and run Algorithm 1 on the data set
(X, Z,.)iE , to estimate the GPD parameters (6,(x),7,(%)

Output: Estimation of the extreme conditional quantile

N R -t —y(xlil
0,(0) =0, (1) + G(X)("L.

7x)

While in principle any quantile regression method can be used for estimation of the
conditional intermediate quantiles Qxi(ro), we propose to use a quantile random forest.
The reason for this is three-fold: first it requires no parametric assumptions on the
quantile functions; secondly it exhibits good performance for high dimensional predic-
tor spaces; finally it requires minimal tuning for good results. Quantile regression for-
ests were first proposed by Meinshausen (2006) using the weights from a standard ran-
dom forest (Breiman 2001). The drawback of this method is that the criterion used in
recursive binary splitting to build the trees of the random forest is not tailored to quan-
tile regression. Wager and Athey (2018) therefore define a generalized random forest
with splitting rule designed for that specific task, where the splitting criterion is related
to the quantile loss function. In our case, we require the estimator of Q,(z,) at the sam-

ple points x € {X,,...,X,} and we recommend the use of out-of-bag estimation
(1) = 0%’(z,). This means that only the trees for which the ith observation is out-
x,\70 X, ‘%0 y

of-bag are kept for the quantile estimation at x = X, that is, trees based on sub-samples
not containing the ith observation. This is necessary to avoid giving too much weight to
the ith observation when predicting at x = X

3 Parameter tuning and interpretation

3.1 Parameter tuning

Our gradient boosting procedure for GPD modelling includes several parameters that
need to be tuned properly for good results. We discuss in this section the interpretation

of the different parameters and how to choose them. We introduce data driven choices
based on cross validation for the most sensitive parameters and suggest sensible
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default values for the remaining parameters. This concerns the tuning parameters of
Algorithm 1 that takes the sample of exceedances as input and we therefore consider
cross-validation within the sample of exceedances.

3.1.1 Tree number B

The number of trees is the most important regularization parameter. The boosting
procedure starts from a constant model, that is usually an underfit, and adds recur-
sively trees that adapt the model to the data, leading eventually to an overfit.

We recommend repeated K-fold cross-validation based on the deviance for a data
driven choice of B. Given a maximal tree number B,,,. and a division of the data set
into K folds D, ..., Dy, we repeatedly run the algorithm with B,, . iterations on the
data with one fold left-out and then compute the deviance on the left-out fold as a
function of B. Adding up the deviances for the different folds, we obtain the cross-
validation deviance. More formally, we define

K

DEVey(B)= Y. Y 2,0, (X)), B=0,....B,,. (14)
k=1 ieD,

where (;?;Dk denotes the model with B trees trained on the data sample with the kth
fold D, held out. Due to large values of the deviance on extreme observations, the
cross-validation deviance is prone to fluctuations with respect to the partition into
folds and we therefore recommend repeated cross-validation. A typical choice is
K =5 or 10 with 5 repetitions. The choice of B is then the minimizer of the cross-
validation deviance.

3.1.2 Tree depth (D%, D%)

The gradient boosting algorithm outputs a sum of tree functions. The complexity of
the model is therefore determined by the depth parameters D° and D?, also called
interaction depths. A zero depth tree corresponds to a constant tree with no split, so
that D° = 0 or D° = 0 yield models with constant scale or shape parameters, respec-
tively. Since the extreme value index y is notoriously difficult to estimate, it is com-
mon in extreme value theory to assume a constant value y(X) = y so that the case
D° =0 is particularly important. A tree with depth 1, also called a stump, makes
only one single split on a single variable. As a result, D° = 1 (resp. D° = 1) corre-
sponds to an additive model in the predictors for o(x) (resp. y(x)). Trees with larger
depth allow to introduce interaction effects between the predictors of order equal
to the depth parameter. We refer to Hastie et al. (2009, Section 10.11) for a more
detailed discussion on tree depth and interaction order in gradient boosting.

In practice, the depth parameter is quite hard to tune and we recommend to con-
sider depth no larger than 3, also because interactions of higher order are difficult to
interpret. Based on our experience, sensible default values are D’ =2 and D° = 1.
But more interestingly, cross-validation can be used to select the depth parameters.
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The left panel of Fig. 1 shows a typical cross-validation diagnostic in the context
of the simulation study detailed in Sect. 4. Here B,,,, = 500 and depths parameter
(D°,D°) = (1,0), (1, 1), (2, 1) and (2, 2) are considered. The plot shows that sensible
choices are B ~ 200 and (D°,D°) = (1,0) or (1, 1) (more details given in Sect. 4).
The histogram in the right panel shows that, depending on the randomly simulated
sample, B typically lies in the range [100, 250], where the deviance is relatively flat
((D°,D°) = (1,0) is fixed here).

3.1.3 Learning rates (1°,1Y)

As usual in gradient boosting, there is a balance between the learning rate and
the number of trees. As noted in Ridgeway (2007), multiplying the learning rate
by 0.1 roughly requires 10 times more trees for a similar result. It is common to
fix the learning rate to a small value, typically 0.01 or 0.001, and to consider the
tree number as the main parameter. Since in our case we have two parallel gradi-
ent boosting procedures with different learning rates, we reparameterize them as
(Ageates Aratio) = (A%, A% JAY). The balance described above is expressed between B
and 4,.,, and we propose the default 4., = 0.01, leaving the number of trees B
as the primary parameter. The ratio of the learning rates is important as y generally
requires stronger regularization than o and ranges on smaller scales. Therefore it is
natural to choose 4,,,, > 1.

ratio

3.1.4 Remaining tuning parameters

The minimum leaf sizes L7 . , Lfnin and subsample fraction s play the role of regulariza-
tion parameters. The minimum leaf size makes sure that the splits do not try to isolate
a single high observation of the gradient and that the leaves contain enough observa-
tions so that averaging provides a smoother gradient. Subsampling ensures that differ-
ent trees are fitted on different sub-samples, mitigating the correlation between trees;

150
1.38

Deviance
w
(&)
1

50

1.34

0 100 200 300 400 500

0 100 200 300 400 500 B (number of trees)

B (number of trees)

Fig. 1 Left panel: cross-validation deviance given by (14) against B for one random sample and depth
(D°,D°) =(1,0), (1, 1), (2, 1) and (2, 2). Right panel: selected values of B for 1000 samples when
(D°,D°) = (1,0) s fixed. The design of the simulation study is Model 1 described in Sect. 4
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see Friedman (2002) and Hastie et al. (2009, Section 10.12.2) for further discussion on
the regularization effect of subsampling. It is common practice that early exploration
determines suitable values for these parameters. Depending on the problem and the
sample size, we recommend the range [0.4, 0.8] s and [10, =] for Lo

The parameter 7, stands for the probability level of the intermediate quantile
used as threshold. Threshold selection is a long standing problem in extreme value
theory (e.g., Dupuis, 1999; Drees et al. 2020). A higher threshold yields a better
approximation by the GPD distribution but fewer exceedances, leading to reduced
bias and higher variance. Some guidelines for threshold selection in practice are pro-
vided in Sect. 5, where we present an application to precipitation forecast statistical
post-processing.

3.2 Tools for model interpretation

Contrary to a single tree, boosting models that aggregate hundreds or thousands of
trees are difficult to represent but diagnostic plots are available to ease the interpre-
tation. We briefly discuss variable importance and partial dependence plots, which
are straightforward modifications to our framework of the tools detailed in Hastie
et al. (2009, Section 10.13).

3.2.1 Variable importance

Boosting is quite robust to the curse of dimensionality and often provides good
results even in the presence of high dimensional predictors and noise variables.
Understanding which predictors are the most important is crucial for model interpre-
tation. Variable importance is used for this purpose and we discuss here the permu-
tation score and the relative importance.

The permutation score helps to evaluate the impact of a predictor on the model devi-
ance and is not specific to boosting. The relation between a predictor and the response
is disturbed by shuffling the values of this predictor and measuring the difference in the
deviance before and after shuffling. More precisely, for predictor X;, we define

IX) = it’z,.(é(X,@)) -3, (0(%) (1)
i= i=1

where 8 is the estimator given in (12) and X(l’), ,X,({) denote the same input vectors
as X, ..., X, except that the jth components are randomly shuffled. A large per-
mutation score /(X)) indicates a strong effect of X; in the boosting model. Since the
scores are relative, it is customary to assign to the largest the value of 100 and scale
the others accordingly.

The relative importance is specific to tree based methods such as boosting or
random forests and uses the structure of the trees in the model. It is discussed for
instance in Hastie et al. (2009, Section 10.13.1). Recall that during the construction
of the trees, the splits are performed so as to minimize the residual sum of squares
(RSS) of the gradient and each split causes a decrease in the RSS. The more inform-
ative splits are those causing a large decrease in the RSS. The relative importance
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of a given variable X; is obtained by considering all the splits due to this variable in
the sequence of trees and by summing up the decrease in RSS due to those splits.
Because we have two sequences of trees, we compute relative importance of vari-
able X; in the estimation of ¢ and y separately by considering the sequence of trees
(T7) and (T}) respectively.

3.2.2 Partial dependence plot

Once the most relevant variables have been identified, the next attempt is to under-
stand the dependence between the predictors and the response. Partial depend-
ence plots offer a nice graphical diagnostic of the partial influence of a predic-
tor X; on the outputs 6(x), 7(x) or Qx(r) see Hastie et al. (2009, Section 10.13.2).
The partlal dependence plot for 6 with respect to X; is the graph of the function
X Z 6(X;""), where the vector X" is equal to X, except that the jth compo-
nent has been replaced by x. Notice that dependence between the predictors is not
taken into account so that this is not an estimate of E[6(X) | X; = x], except if X; is
independent of the other predictors. In the particular case when an additive model is
built, i.e., D” = 1, the partial dependence plot with respect to X; is equal to the effect
of the variable X; up to an additive constant. Partial dependence plots with respect to
several covarlates can be defined and plotted similarly, at least in dimension 2 or 3.

4 Simulation studies

To demonstrate the performance of our method, we conduct two numerical experi-
ments. We generate n independent samples with d covariates X = (X, ..., X,;) distrib-
uted from an independent uniform distribution on [—1, 1]¢, with (n, d) = (2000, 40)
or (5000, 10), depending on the complexity of the model. We aim to estimate the
conditional quantile function Q,(7) corresponding to extreme probability levels
7 € {0.99,0.995,0.9995}. We choose the level 7, = 0.8 for the intermediate quantile
and it is worthwhile to note that the effective sample size n(1 — 7,,) for the gradient
boosting step is then only 400 for n = 2000.

The local smoothing based methods mentioned in the introduction (Gardes and
Stupfler ) become cumbersome in our simulation setting because of the sparsity
of data in high dimension. We compare our gbex method to two quantile regres-
sion approaches, the quantile regression forest (qrf) from Meinshausen (2006)
and the generalized random forest (grf) from Athey et al. (2019). Moreover, we
consider two existing methods from extreme value theory that use GPD modeling
of the exceedances. One is the classical estimator of extreme quantile without using
covariates, thus y(x) = y and o(x) = o, which we call the constant method. The
other one is the evgam method of Youngman (2019) that assumes generalized
additive models for y(x) and o (x).

To evaluate the performance over the full predictor domain [—1, 1]¢ we consider
the integrated squared error (ISE) defined for a fixed quantile level z and the ith rep-
lication of the data set by
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ISE, = /[ II]I(QS)(r)—QX(r))de, (16)

where Qg)(r) is the quantile estimated from the model. We use a Halton sequence,
a low discrepancy quasi-random sequence (e.g., Niederreiter 1992, p. 29), in
order to efficiently evaluate the high dimensional integral in the ISE computa-
tion. Averaging over the R = 1000 replications, we obtain the mean integrated
squared error (MISE).

Our first model is designed to check robustness of the methods against noise vari-
ables. This model is constructed in a similar way as the example studied in Athey
et al. (2019, Section 5) and it has a predictor dimension of d = 40, of which one
covariate is signal and the remaining are noise variables.

e Model 1: Given X = x € R*_ ¥ follows a Student’s ¢-distribution with 4 degrees
of freedom and scale

scale(x) = 1 + 1(x; > 0).

This is a heavy-tailed model where the GPD approximation has a constant
shape parameter y(x) = 1/4 and the scale parameter is a step function in X,.
More precisely, o(x) = o(7y)(1 + 1(x; > 0)) where o(7,) is a multiplicative con-
stant depending on the threshold parameter 7.

In our second model, we consider a more complex response surface where both
the scale and shape parameters depend on the covariates and interactions of order 2
are introduced.

e Model 2: Given X = x € R'?, Y follows a Student’s ¢-distribution with degree of
freedom df(x) depending on x, through

dfx) = 7(1 + exp(dx, + 1.2)) 7 +3,
and scale parameter scale(x) depending on (x|, x,) through
scale(x) = 1 + 6¢(x;, x,),

where @ denotes the density function of a bivariate normal distribution with
standard normal margins and correlation 0.9. The numerical constants are chosen
so that the GPD approximation of Y given X = x has parameters y(x) = 1/df(x)
in the range [0.10, 0.33] for x € [—1, 114, d = 10.

4.1 Tuning parameters and cross validation

We generate samples of size n = 2000 and 5000, respectively from Model 1 and
Model 2. We set the following tuning parameters for gbex: the learning rate
Agale = 0.01 and the sample fraction s =75% for both models; 4,,,, = 15 for
Model 1 and 4,,,, = 7 for Model 2.

ratio

ratio
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As discussed in Sect. 3.1, the number of trees B is the most important regu-
larization parameter and the depth parameters (D°, D?) determine the complex-
ity of the fitted model. Therefore, we investigate how these tuning parameters
influence the performance of our estimator in terms of MISE. Figure 2 shows the
results for Model 1 (left panel) and for Model 2 (right panel). The curves repre-
sent the MISE of gbex as a function of B for various depth parameters (D°, D).
The right panel clearly shows that for Model 2 the choice (D, D) = (1, 1) does
not account for the model complexity adequately, which leads to a high MISE.
Indeed, boosting with depth one tries to fit an additive model but the scale param-
eter of Model 2 depends on (X, X,) in a non-additive way. On the other hand, for
Model 1, which is an additive model with the optimal depth (D?, D°) = (1,0), the
curves suggest that assuming unnecessary complexity of the model might lead to
suboptimal behavior of the estimator: the choice (2, 1) yields higher MISE than
the other two choices and the MISE stays low for a shorter range of B. In general,
higher depths help the model to adapt the data faster but then overfitting is prone
to occur more rapidly when B increases. The horizontal dashed lines in Fig. 2 rep-
resent the resulting MISE of our estimator when B is chosen via cross-validation
with deviance loss given in (14), with K = 5 folds and 10 replications. The plots
confirm that the data driven choice of B results in near optimal MISE for fixed
depth parameters (with dashed horizontal lines close to the minimum of the curve
with the same color). We additionally apply cross-validation to select both B and
(D?, D?) simultaneously. The resulting MISE is represented by the black dashed
line, which is very close to the minimum of all the dashed lines. Overall, the
results confirm the good performance of the proposed cross-validation procedure.

For the rest of the simulation study, we set (D°,D°) = (1, 1) for Model 1 and
(D°,D°) = (3, 1) for Model 2 and choose B with cross-validation.

MISE

0 100 200 300 400 500
B

Fig.2 The MISE for Model 1 (left panel) and Model 2 (right panel) of the gbex extreme quantile esti-
mator with probability level 7 = 0.995 as a function of B for various depth parameters (curves); the
MISE of the gbex estimator with adaptive choice of B for various depth parameters (horizontal dashed
lines); the MISE of the gbex estimator with both tree number and depth parameters selected by cross-
validation (black dashed line)
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4.2 Comparison with different methods

The comparison of our gbex method to the other three approaches qrf, grf and
constant, is presented in Fig. 3. The results for Model 1 and Model 2 are given
in the first and second row, respectively. For the probability level 7 = 0.99, 0.99 and
0.9995 in the left, middle and right column, the figure shows the boxplots of ISE
defined in (16) and the MISE represented by the vertical black line. The MISE grows
as the probability level increases for all methods, however gbex clearly outperforms
the other three approaches with a much smaller MISE and a much lower variation of
ISE. When the probability level 7 is close to or larger than (1 — 1/n) (right column),
both grf and grf lead to extremely large ISE outliers so that the ISE mean is larger
than the third quartile (black line outside the box). Some extreme outliers of ISE are
left out of the boxplots to have a clear comparison. We have also investigated other
models (Burr, GPD) and the comparison results are reported in Appendix 2.

In Fig. 3, we have not included evgam, the main competitor from extreme value
theory. The reason is that for high-dimensional predictor spaces with many noise
variables as in our simulations, the additive model for the GPD parameters suffers
severely from the curse of dimensionality. Indeed, in an additional simulation from
Model 1 with a varying dimension d of the predictor space (not shown here), the
MISE of evgam grows quickly as a function of d. The MISE of gbex, on the other
hand, remains fairly constant with growing number of noise variables. The simulation
result reveals that the MISE of gbex with d = 40 is similar to the MISE of evgam
with d = 4. This underlines the robustness of gbex against the curse of dimensional-
ity and noise variables, which is a prominent advantage of tree based methods.

0.99 0.995 0.9995

T'f
il

0O 5 10 15 20 0 5 10 15 20 25 0 25 50 75 100 Method
gbex
grf

qrf
constant

{3 {3 {3

| I -

% —de ] {D__-_m.” @_
ion— O—

Fig. 3 Boxplot of ISE based on 1000 replications for the four quantile estimators (gbex, grf, grf and
constant) at different probability levels 7 = 0.99 (left), 0.995 (middle) and 0.9995 (right) for Model 1
(top) and Model 2 (bottom). Some outliers of grf and grf are left out for a clearer comparison. The
black vertical lines indicate the MISE

@ Springer



656 J. Velthoen et al.

X1 .. X1 ‘

< 2
Q Qo
S X3 — 8 X3 —
o o
> >

X4 fp——- X4 ‘ e

X5 ==+ X5 } —_

0.00 0.05 0.20 0.00 0.15

0.10 0.15 0.05 0.10
Permutation Importance Permutation Importance

Fig.4 Boxplots of permutation scores defined in (15) for X s j=1,...,5, based on 1000 samples. Left
panel: Model 1, where only X, contains signal. Right panel: Model 2, where only X, and X, contain signal

4.3 Diagnostic plots

We finally look at the model interpretation diagnostics. Figure 4 shows the per-
mutation importance scores defined in (15) for both models, based on 1000 rep-
lications. The boxplots clearly show that this score is able to identify the signal
variable(s). Note that there are 39 noise variables for Model 1 and 8 for Model 2.
The scores of the noise variables behave all similarly and only a limited number are
displayed. For Model 2, the permutation score is higher for X, than for X,, due to
the fact that X, contributes to both shape and scale functions while X, only contrib-
utes to the scale function.

The left panel of Fig. 5 presents a typical partial dependence plot (Sect. 3.2) for
6 based on one random sample from Model 1. This plot clearly suggests that 6 is a
step function of X, and does not depend on the noise variables. The partial depend-
ence plot for 7 indicates that the shape does not change with respect to any of the
covariates. For this model, the partial dependence plots are in perfect agreement

/
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/A - Xt -

g g
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Fig.5 Partial dependence plots of & (left panel) and of J (right panel) with respect to X;, j=1,...,5,
based on one random sample of Model 1
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Fig.6 Left panel: partial dependence plots of 6 with respect to (X;, X,). Right panel: partial dependence
plot of 7 with respect to X, j = 1, ..., 5. Both experiments corresponds to one random sample of Model 2

with the simulation design. For Model 2, the left panel of Fig. 6 shows the partial
dependence plot of the scale parameter with respect to X; and X,. We see that the
model detects the right pattern of larger values on the diagonal and in the center.
The right panel shows that the model identifies the impact of X, on the shape param-
eter while the partial dependence plot of the other variables is fairly constant, again
in agreement with the simulation design.

5 Application to precipitation forecast

Extreme precipitation events can have disruptive consequences on our society. Accu-
rate predictions are vital for taking preventive measures such as pumping water out
of the system to prevent flooding. We apply our gbex method to predict extreme
quantiles of daily precipitation using the output of numerical weather prediction
(NWP) models.

Weather forecasts rely on NWP models that are based on non-linear differen-
tial equations from physics describing the atmospheric flow. The solutions to these
equations with respect to initial conditions and parametrizations of unresolved pro-
cesses form a forecast that is deterministic in nature. Introducing uncertainty in these
initializations yields an ensemble forecast that consists of multiple members. In this
application, we use the ensemble forecast from the European Centre for Medium-
Range Weather Forecasts (ECMWF) as covariates in gbex to predict the daily pre-
cipitation. Using NWP output for further statistical inference to improve forecasts is
known as statistical post-processing.

5.1 Precipitation Data
Our data set consists of ECMWF ensemble forecasts of daily accumulated precipi-

tation and the corresponding observations at seven meteorological stations spread
across the Netherlands (De Bilt, De Kooy, Eelde, Schiphol, Maastricht, Twente and
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Vlissingen).! We use about 9 years of data, from January 1st, 2011, until November
30th, 2019, with sample size n = 3256. We fit separate models for each station with
response variable Y equal to the observed precipitation at the station between 00
UTC and 24 UTC.

As for the covariates, we use ECMWF ensemble forecasts of daily accumulated
precipitation that is computed the day before at 12UTC. The ensemble forecast con-
tains 51 members. For efficiency, we use two summary statistics, namely the stand-
ard deviation of the ensemble members and the upper order statistics (the maximum
of the ensemble members). Because most part of the Netherlands is flat and the dis-
tance between stations is not large, we include the ensemble summary statistics of
all stations as covariates for the model of each station. To account for seasonality,
we additionally consider the sine and cosine with a period of 365 for the day of
the year. The total covariate dimension is d =7 X 2 + 2 = 16, for each model. We
denote our data as (Y(l) X,), where X; € R!®, i=1,...,n=3256and [=1,...,7.
For station /, we apply the gbex Algorlthm 2 to {(Y(l) X.),i=1,...,n} to obtain
estimates of Q (r)

5.2 Model fitting

For model fitting, we have observed in a preliminary analysis that the output is sen-
sitive to the initial value of (y, o) and we propose a specific strategy that provides
better results than the default initialization. We consider a common initial value for
the shape y for all the stations and different initial values of ¢ for the different sta-
tions, which leads to 6, = (y, 0, ..., 07). More precisely, we obtain the initial values
by optimizing the log-likelihood function

Y —c
L(y) = Z 2 l(l +1/7)log <1 +y > +log 0',] YO_cso)

=1 i=1

where c is a large threshold chosen such that the estimate of y becomes stable.

We apply gbex as detailed in Algorithm 2 with 7, = 0.8 for each model. We
choose all tuning parameters except for B to be the same for the seven models, in
such a way to achieve the overall best combined deviance score for all stations. This
prevents overfitting for a specific station and it results in the following choices:
(D°,D") = (2, 1), (Ageater Arasio) = (0.01,12), 5 = 50%,and (L7, L. ) = (15,45).
Fig. 7 shows the cross-validated deviance as a function of the number of trees B for
different depth levels at two stations. The deviance behaves quite similar for the two
stations and we choose (D, D) = (2, 1) for all stations. The optimal B for each sta-
tion is then chosen as the minimizer of the cross-validated deviance.

! Observed daily precipitation can be obtained from http://projects.knmi.nl/klimatologie/daggegevens/
selectie.cgi
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Fig. 7 Cross-validation deviance given by (14) against B for the data at stations Eelde (left) and Schiphol
(right) in the application in Sect. 5

5.3 Results

We first look into the variable importance scores for the fitted models and focus
on the relative importance to understand which variables affect the scale and shape
parameters, respectively. Figure 8 shows the relative importance for y and o, where
the scores for the variable ens sd and ens_up correspond to the aggregation of
7 scores (one for each station). It is interesting to note that for the shape y, the day
of vyear is the most important variable in six out of seven models. This moti-
vates to investigate the seasonality pattern in the extreme precipitation. The partial
dependence plots of 7 (left panel) and Qg?(O.995) (right panel) with respect to the
day of year are presented in Fig. 9 for all stations. They indicate that the tail
of the precipitation is heavier in summer and autumn than in winter and spring. The
curves in the left panel resemble step functions and higher values of 7 correspond
to June, July and August for five stations. For the other two stations Twente and
Vlissingen, it is shifted towards autumn.
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Fig.8 Relative variable importance score for y (left) and o (right). For each model, the scores are nor-
malized such that the maximum score is 100. The scores for the variables ens sd (resp. ens_up) at
the 7 stations are aggregated into a single score
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Fig.9 Partial dependence plots of 7 (left panel) and Q;?(O.9995) (right panel, in 0.1 mm) with respect
today of year

Another relevant question concerns the contribution of ensemble statistics of
other stations in forecasting the extreme precipitation of a specific location. To this
end, we add the permutation scores of ensemble standard deviation and ensemble
upper order statistics per station, resulting in seven scores for each model. We then
normalize these scores such that the maximum score is 100. The results for three sta-
tions are visualized in Fig. 10. First, quite surprisingly, when forecasting the extreme
precipitation at Schiphol (left plot), the ensemble forecast relies on the information
from Vlissingen and De Kooy even more than the information at Schiphol, which
might be explained by a coastal effect. Similarly, the model at De Bilt (middle plot)
uses the information from Schiphol and Vlissingen. For other stations like Eelde
(right plot), the own information of the station is the most important. The maps of
the other four stations (De Kooy, Maastricht, Vlissingen and Twente) are very simi-
lar to that of Eelde.

Our method can be used to provide relevant information for weather warning sys-
tems. The Dutch meteorology institute (KNMI) issues three levels of weather warn-
ings for disruptive weather conditions, namely code yellow, code orange and code
red. Code red, the most severe one, is issued depending on the social impact and
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51.5°N

51°N

4°E 5°E 6°E T°E 4°E 5°E 6°E T7°E 4°E 5°E 6°E T7°E

Fig. 10 Normalized permutation scores of ensemble statistics per location for three models: Schiphol
(left), De Bilt (middle), Eelde (right). The black circle indicates the station for which the model is fitted.
From North to South, the stations are: Eelde, De Kooy, Twente, Schiphol, De Bilt, Vlissingen, Maastricht
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Fig. 11 Black points: observed precipitation; blue points: predicted 99.95% quantile; yellow (orange)
line: precipitation threshold of 50 mm (75 mm) for code yellow (orange) weather warnings
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safety risk of extreme weather conditions. Code yellow and code orange are issued
if some weather quantity such as snowfall, slipperiness, temperature, or wind speed,
reaches a specific level. For precipitation, the threshold is 50 mm (resp. 75 mm)
within 24 h for code yellow (resp. orange). As an illustration on how our method can
be informative for the weather warning system, we look into the predicted 99.95%
quantile by gbex for the month when the maximum observed precipitation (over
the time span of our data set) occurs, and compare it to the thresholds of code yellow
and code orange. Figure 11 presents the results for three stations: De Kooy, Schiphol
and Vlissingen. The maximum observed precipitation were 52.3 mm on July 14,
2011, 67.2 mm on September 8, 2017 and 49.9 mm on October 13, 2013, respec-
tively, for these three stations. For these three days, our prediction of the 99.95%
quantile (using only information form the past) indicates a high level of precipita-
tion, comparable to the code orange level. It could therefore be used for effective
early warning. Overall, the blue curve (predicted 99.95% quantile) is above the black
points (observations) and it captures well the days with heavy precipitation.

We finally assess the goodness of fit of our GPD model and produce QQ-plots
comparing the empirical and theoretical quantiles of exceedances above threshold.
We use a transformation to the exponential distribution to compare observations
stemming from different stations with different covariate values. More precisely,
denoting by Zi(l) the ith exceedance above threshold at station [/, then if our model is
well-specified Z" ~ GPD(6®(X,),7*/(X,)), and therefore

1 70Xz
- log{ 1+ ——
7@ 0.9) 6(1)(Xi)

~ Exp(1). (17)

The corresponding QQ-plots graphically assess the goodness of fit and we can
see in Fig. 12 that the gbex model (left panel) fits the data well at all stations,
outperforming the constant model (right panel). Such a plot can be used to com-
pare different choices of the intermediate threshold 7. Points close to the diagonal
indicate that not only the regression model is good, but also that the approximation
of the exceedances by the generalized Pareto distribution is appropriate at this this
threshold level.

12

2

. . 7

c =

S S o

g 3 /  Station 8 2 " Station

8 '/ ~ DEBILT 8 b ~ DEBILT

= DE KOOY = DE KOOY

T - EELDE ® vz / - EELDE

ha - MAASTRICHT = - MAASTRICHT
B SCHIPHOL 3 SCHIPHOL
£ -~ TWENTHE £ - TWENTHE
£ - VLISSINGEN £ - VLISSINGEN
L L

173 2]

j=4 =4

o o

= =

0

0

2 4
Exponential theoretical quantiles

2 4
Exponential theoretical quantiles

Fig. 12 QQ-plots based on (17) for the estimated models at seven stations via gbex (left panel) and via
the constant method (right panel)
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6 Conclusion

The existing literature on extreme quantile regression is so-far limited to low-dimensional
predictor spaces (Daouia et al. ) and simple response surfaces (Davison and Smith 1990;
Wang and Tsai 2009; Chavez-Demoulin and Davison 2005; Youngman 2019). Our
methodological contribution fills a gap in this area. We have developed gbex, a gradi-
ent boosting procedure for extreme quantile regression that combines the flexibility of
machine learning methods and the rigorous extrapolation from extreme value theory. Our
method can handle non-linear complex problems and high-dimensional feature spaces.

We model the tail of the distribution of the response Y by a generalized Pareto distri-
bution (GPD) whose parameters depend on the covariate X. Based on exceedances over
a high threshold, gradient boosting produces a tree ensemble estimating these param-
eters using the deviance as the objective function. Tuning parameters can effectively be
chosen through our proposed cross-validation, or be fixed to sensible default values. In
several numerical experiments we highlight the robustness of gbex against the curse of
dimensionality and noise variables. Diagnostic tools are available to quantify the impact
of the signal variables on the response. Our method outperforms quantile regression
methods from machine learning and classical methods based on extreme value theory.
The method can be applied to complex real-world data sets and we show its merits for
post-processing of extreme precipitation forecasts in the Netherlands.

A very natural yet challenging direction for future research is the theoretical anal-
ysis of our gradient boosting procedure. A consistency result for large samples is
desirable but all existing results in the literature on gradient boosting assume the
convexity of the objective function (e.g., Biau and Cadre 2021). The GPD deviance
used as objective function in our setting is not convex in the shape parameter y. A
proper theoretical analysis of gbex therefore seems to be very hard and is outside
the scope of the present paper.

A. Likelihood derivatives
The gradient boosting algorithm for GPD modeling makes use of the first and sec-

ond order derivatives of the negative log likelihood Z,(8), @ = (o, y) and z > 0. They
are respectively given by

or. 1
@(9)=1<1_( +V)Z>’
do o c+vyz
al’ﬁz 1 Z (1+1/}’)Z
—O)=-=1 (1+ —)+—
0;/( ) y? o8 ’s c+tyz
and
0%¢. _
‘0= ——(£+227),
d0? oclc+yz)\c oc+7vz
0%¢ 2z 3 (1+1/;/)z2

Z(6’)=%10g(y£+1)
}’ (o2

dy? Yo +r)  (GHy2?
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B. Additional simulation study

The data generating process is similar to Model 1 in Sect. 4. The covariate vector
X € R* is distributed uniformly on the cube [0, 1]*’. We consider three heavy-tailed
distributions, namely Burr, GPD and Student’s #, as the conditional distribution of Y
given X. For all models, the scale of Y depends on X through a step function

scale(X) = 1 + 1(X; > 0). (18)

The conditional distributions are respectively:

e Model 3: a Student’s ¢-distribution with 2 degrees of freedom and the scale
given in (18).
Model 4: a GPD in (2) with y = 0.25 and o(x) given in (18).
Models 5-6: a Burr distribution with a CDF given by

0.99 0.999 0.9995
; — 1+
3
o
E .

[ 50 100 150 0 300 600 900 1200 0 500 1000 1500

0.99 0.999 0.9995

method
0 20 40 0 50 100 150 200 0 100 200 300 400
constant

B3 qrf
0.99 0.999 0.9995 B orf

- - A"

i
%'

0 100 200 300 0 1000 2000 0 1000 2000 3000
Fig. 13 Boxplot of ISE based on 1000 replications for the four quantile estimators (gbex, grf, qrf and

constant) at different probability levels 7 = 0.99,0.999, 0.9995 for Models 3-6. Some outliers of grf
and gr £ are left out for a clearer comparison. The black vertical lines indicate the MISE
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a\ P
1 y
Fo) =1 <1 + <scale(x)> ) '

We choose « = f§ = 2 for Model 5 and a = 2, § = 1 for Model 6, which lead to
y = 0.25 and 0.5, respectively. The comparison of our gbex method to the other
approaches is presented in Fig. 13.
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