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I. ABSTRACT 

 

The safety of offshore pipelines during installation has drawn a great deal of attention due to the 

combined actions of high external pressure, axial tension and bending moment.  Subsea pipelines 

have the tendency to rotate during installation. This rotation can have multiple causes which are 

interfering with each other.  

 

During S-lay installation, the pipe is exposed to plastic strains when it passes over the stinger, 

exceeding a certain curvature. That residual curvature causes the pipeline to rotate along its 

suspended length. Additional causes which contribute to pipe rotation are possible tensioner 

misalignments, pipeline curves or vessel offsets. Pipeline rotation is also dependent on other factors 

such as water depth, pipeline characteristics (bending stiffness, submerged weight, etc) and stinger 

configuration. Pipe rotation is not permissible if inline structures (valves, connections) are installed 

with the pipeline, it is therefore important to quantify the safety against roll for a given residual 

strain in the pipe due to plastic deformations over the stinger.  

 

The goal of this thesis is to accurately quantify pipeline rotation during installation of inline 

structures with S-lay method. A sequential model is built based on mechanical principles  in order to 

solve the pipelay and rotation problem simultaneously and identify the effect of the plastic strains 

and residual curvature on the rotation phenomenon. The model includes also mitigation measures 

(buoyancy modules) and their effect in the reduction of total rotation as well as the effect of soil 

friction. 

 

The report consists of two main parts. The first part is the analytical mathematical modelling and the 

numerical solution of the pipe-laying problem, considering the pipeline as tensioned beam and 

solving the nonlinear bending equation along its suspended length using finite difference method. 

The second part consists of the rotation problem analysis and solution. Having found the pipeline 

configuration and its physical quantities along the length, the pipe rotation profile is found based on 

Hamilton's energy minimization principle using the Lagrangian equation, including soil friction and 

buoyancy module effect. Finally, a sequential model which simulates the installation of a pipeline 

including inline structures and buoyancy modules is built in order to investigate the roll profile 

evolution  during real operations.  

 

A number of different cases studied based on actual projects were conducted to determine the 

pipeline configuration and its physical quantities (bending moment, strain, axial tension) along its 

suspended length. The validity of the pipe-laying model is verified by means of a  comparison with 

results obtained from the commercial finite element software OFFPIPE. Rotation results are verified 

by results observed in actual projects 

 

 

 

Keywords: offshore pipeline; S-lay method; overbend ; sagbend ; residual curvature; reversed 
bending; pipeline rotation; Lagrangian principle ;  energy minimization; finite difference method ; 
bvp4c ; OFFPIPE; 
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1.0 INTRODUCTION 

 

This chapter will give a short introduction to the Allseas Group and its activities. Moreover the most 

common methods of pipe-laying will be presented as a general introduction to the offshore pipe-

laying industry. 

 
1.1 Allseas Engineering B.V. 

 

This thesis is sponsored by Allseas Engineering B.V. located in Delft, the Netherlands. Allseas 

Engineering B.V. is part of Swiss-based Allseas Groups S.A., one of the global leaders providing 

pipelay and subsea construction services in offshore oil & gas industry. Allseas Group was founded 

in 1985 and nowadays employs more than 2500 people worldwide. Allseas has a versatile of fleet 

including Solitaire, Audacia, Lorelay, Calamity Jane, and Tog Mor. Currently, Allseas’ largest platform 

installation/decommissioning and pipelay vessel, Pioneering Spirit, is under the last stages of 

completion in the Alexiahaven, at the port of Rotterdam. The Pioneering Spirit is the largest vessel in 

the world (382 m length and 124 m width) and is to be used for the single-lift platform installation 

and decommissioning and laying large diameter pipes in unprecedented water depths (~3000 m). 

Allseas has developed its own automatic welding system Phoenix for welding offshore pipelines on 

board Allseas’ vessels. This welding system, which uses various welding techniques, started 

operation in 1993. 

 

Allseas uses the S-Lay method for pipeline installations. With this method, pipe joints are lined up 

on-board in an horizontal orientation. The pipe joints pass through a series of welding, coating and 

non-destructive testing stations and they leave the vessel, as she moves forward, through the use of 

a stinger. S-lay installation method allows for fast installation operations over a large range of water 

depths and pipe characteristics. 

 

1.2 Pipe-laying methods 

 

There are many different types of pipelines used in oil and gas industry. Infield lines connect 

different elements of the field, like satellite wells, subsea templates and production platforms. They 

are typically between 1 and 30 kilometres in length and range from 6” to 12” in diameter. From the 

production platforms there are export lines which connect the reservoir to a larger grid of trunk 

lines. These connecting export lines are up to 70 kilometres in length and range from 10” to 24” in 

diameter. Finally, there are the trunk lines for the transport of the hydrocarbons to shore. These are 

the largest pipelines, ranging from 100 to 1000 kilometres in length and 24” to 42” in diameter.  

Subsea pipeline installation is performed by specialized laying vessels. There are several methods to 

install a pipeline with the most common being S-lay, J-lay and reeling lay.  

 

With reeling method both flexible and small diameter steel pipe can be installed. The steel pipe 

joints are welded onshore and winded onto a large reel on a vessel. The vessel will reach the 

offshore location where the pipe will be reeled off and placed on the seabed. Before leaving the reel 

the pipe is straightened and put under constant tension.  
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With S-lay and J-lay method the pipe is constructed entirely offshore. With J-lay, the pipeline is 

constructed vertically from 12-meter pipe sections. J-lay barges have a tower in which the new 

pieces of pipe are lined up for welding. After connecting a new piece, the barge is moved and the 

pipeline is shifted down the tower, making room for a new joint. With this method, all diameter 

pipes can be installed, but all welding and coating activities have to take place in the limited space of 

the vertical tower.  With S-lay method, the pipe joints are not constructed vertically but horizontally. 

The entire length of the vessel can therefore be used as a production line enabling the consecutive 

execution of several welding-, coating and testing operations. This method increases significantly lay 

rates in comparison with J-lay. Further description and analysis of S-lay method will be done during 

later chapters. 

 

Depending on the method, a subsea pipeline is exposed to different loads during installation from a 

laying vessel with the main of them include the hydrostatic pressure, tension and bending. In the 

present study, we will focus on the S-lay method. A more detailed description about the main 

principles of S-lay can be found in  Chapter 3.0. 

 

The pipe-laying ability of a laying vessel relates primarily to the submerged weight of the pipeline. 

As the water depth increases, so does the total weight of the pipeline in free span, between the 

laying vessel and the seafloor touchdown point; consequently higher tension is required. However, 

the weight can be reduced by either adding extra external buoyancy or increasing the angle of the 

departure of the pipeline from the laying vessel.  

 

In order to ensure that the load effects on the pipeline are within the strength design criteria, static 

and dynamic installation analysis are conducted to estimate the minimum required laying tension 

for the pipeline for specific stinger configuration (length, radius), water depth and pipe 

characteristics (diameter, thickness, concrete coating) and structural properties (bending and 

torsional stiffness). 

 

Structural analysis of pipelines experienced a significant increase of importance in the late 1960's 

and 1970's, when offshore development moved into deeper waters and more hostile environment. 

Simple approximations and rules of thumb used in 1950's and early 1960's were no longer adequate, 

and more complex methods had to be designed. This progress brought with it new and more 

complex problems in structural evaluation and analysis. 

 

1.3 S-lay method 

 

S-lay method is the latest method for installing subsea pipelines in both shallow and deep water, 

depending on the pipe properties and the laying capacity of the vessel. The method is referred as S-

lay method because the profile of the pipeline between the stinger and the seabed forms an 

elongated S shape during the pipe laying operation. Pipeline while passing the firing line (see 

APPENDIX A for terminology), passes through a number of stations (welding, NDT, coating) and 

moves across the stern of the lay barge. Pipeline leaves the lay barge  supported by a truss like 

circular structure equipped with rollers, known as a stinger.  

 

In Figure 1-1, the major components and pipe sections of S-lay method are shown. 
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Figure 1-1 Illustration of S-lay principle 

In general, the installation equipment on S-lay vessels include a dynamic positioning system, 2 or 

more tensioners which determine the laying capacity of the vessel, pipe cranes and a firing line 

which contains different stations from which the pipeline passes before leaving the barge through 

the stinger. 

 

The purpose of the stinger in the S-lay installation is to control the deflection of the pipe in the 

overbend region. During actual operations, the pipe shall lift off smoothly from the stinger in order 

to avoid critical damage both to the pipeline and to the stinger due to local buckling. Eventual failure 

of the pipe joint can cause the complete abandonment of the installation operation. Usually, the 

pipe leaves the stinger from the second or third last roller box having a gap with the last roller box 

(stinger tip) of minimum 0.3 meters (for static analysis). This gap of 0.3 meters is well known as the 

tip separation criterion for the pipelay analysis.  A global view of the Audacias' stinger is illustrated  

in Figure 1-2. 

 

 
Figure 1-2 Stinger global view (Audacia) 

S-lay method is commonly used in all kinds of deep-water pipe laying projects nowadays. In case of 

deep or ultra-deep waters, the departure angle of the pipe becomes so steep that the required 

stinger length may not be feasible. Deeper water depths result in a steeper lift off angle of the 

suspended pipe span at the stinger tip, which requires the stinger to be longer or more curved to 

accommodate the larger arc of curvature at the overbend region. Accordingly, more stinger 

buoyancy or higher structural strength is required to support the increased weight of the suspended 

pipe span.  
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1.3.1 S-lay  Pipeline Configuration  

 

The structural analysis of an offshore pipeline during installation deals with the computation of 

deformations, internal forces, and stresses as a result of external loads and the structural properties 

of the pipe. A short pipe section, like a single pipe joint seems to behave like a rigid body, whereas a 

long pipe of several hundred meters is very elastic and behaves almost like a string. For this reason, 

pipeline behavior is highly dependent on the water depth.   

 

Figure 1-1 shows a typical static configuration for pipeline with S-lay method. 

 

The static configuration of the pipeline during the pipelay operation depends on the installation 

method. For the S-lay method, the configuration is governed by the following parameters [4],[5]. 

 

1 Tension at the pipelay vessel and departure angle (see APPENDIX A for terminology) 

2 Stinger characteristics (Radius-Length) 

3 Pipeline characteristics (submerged weight, bending stiffness, etc.) 

4 Water depth 

 

The material properties of the pipeline, such as e.g., pipe diameter, wall thickness, weight, coating 

properties are determined in the design phase of the project in order to meet the operational needs 

for the pipeline. Once the pipe material properties are determined static and dynamic pipeline 

installation analysis can be performed. 

The deformation of the pipeline from the stern of the pipelay vessel to the seabed, also known as 

configuration of pipeline, for an S-lay operation is in general split in two sections, namely overbend 

and sagbend (see APPENDIX A for terminology) as illustrated in Figure 1-1. A brief description over 

the different parts of the pipeline is included in the next sections. 

 

1.3.2 Overbend Region 

 

The overbend region is the fully supported region from the tension equipment over the stinger and 

to the stinger tip. The stinger supports the pipe on rollers spaced out along its length and controls 

the pipe geometry and curvature. From lift-off point and up, the pipe is displacement-controlled, 

meaning that the shape taken up by the pipeline in the overbend is controlled by the pipe supports 

on the vessel and by the stinger geometry and roller boxes on the stinger. The stinger radius yields a 

certain overbend strain, this strain has to be checked against allowable strain levels in international 

codes. The tension applied by the tensioners has almost no effect on the overbend configuration if 

the stinger is a rigid structure and only a small effect if the stinger is build-up of buoyant segments.  

During the movement of the vessel the pipeline travels smoothly from the vessel onto the stinger.   

 

Figure 1-3 presents the roller boxes on the stinger of the Solitaire and the bending of the pipeline. 
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Figure 1-3 Pipeline in the overbend on the stinger (Solitaire) 

 

1.3.3 Sagbend Region 

 

The sagbend is the free span region that extends from the end of the stinger to the touchdown 

point. In the sagbend, the static load effect is governed by the tension, pipe submerged weight, 

external pressure and bending stiffness. The equilibrium configuration is load-controlled since there 

are no physical boundaries for the deformations that the pipeline can experience. 

 

The shape taken up by the pipeline in the sagbend is primarily controlled by the interaction between 

the applied tension and the submerged weight of the pipeline, and to a lesser extent by the flexural 

rigidity of the pipeline. If the applied tension is increased, the radius of the pipeline in the sagbend 

increases, so the sagbend becomes longer and flatter, while the touchdown point moves further 

from the barge and the lift-off point moves up the stinger. Figure 1-4 presents the schematic view of 

the change of pipeline curvature. If the applied tension is reduced, the sagbend radius decreases, 

and the lift-off point moves down the stinger. If the tension is reduced too much the bending radius 

in the sagbend becomes too small and the lift-off point becomes the same point as the stinger tip. In 

both the sagbend and the lift-off point the pipeline may buckle. Therefore during pipelay 

operations, the correct tension is governed by the following two criteria; the location of the lift-off 

point and the radius of the sagbend. 

 

 
Figure 1-4 Change of pipeline curvature resulting from changes in the applied tension 

 



20 
 

2.0 SCOPE OF WORK 

2.1 Problem Definition 

 

Pipeline rotation is commonly observed during installation with S-lay. Most of the times the 

phenomenon is harmless for the pipeline itself but it can have serious consequences when installing 

inline structures. As the word indicates inline structures are attached structures as valves and tees 

that are welded between normal pipe sections in the main pipeline. When pipe rotation occurs 

these structures might land rotated over the acceptable limits (i.e. 10o) on the seabed making them 

difficult or impossible to access, which leads to very expensive and time consuming operations. 

Moreover pipe rotation influences stresses and strains in the pipe which should be reckoned with 

when installation classification demands are considered. Presently, pipeline rotation is still not 

thoroughly understood and several causes are considered to be influencing the phenomenon as 

 

 Pipe residual curvature due to plastic strains in the overbend. 

 Eccentric weight and C.o.G. position of the main line above the pipeline’s centreline due to the 

presence of inline structure. 

 Misalignment of the tensioners 

 Environmental forces on an inline structure (current and waves) 

 

So far, several attempts have been undertaken to determine the amount of pipe rotation. It was 

concluded in earlier research [16] that the primary reason for the occurrence of pipe rotation is the 

plastic deformation of the pipe in the overbend.  

 

Expanding installation activities to deeper waters, requires more tension to carry the larger length of 

suspended pipeline. Without the appropriate tension the pipeline hanging between the vessel and 

the seabed can collapse under its own weight because bending strains exceed the acceptable limits 

and buckling can occur. Furthermore, deep-water installations demand thicker walled, thus heavier 

pipes to prevent collapse due to high external hydrostatic pressure. Based on the above, the tension 

required for deep-water projects increases significantly. In order to reduce and keep the tension 

within the limits of the tensioners capacity, it is common practice to increase the departure angle of 

the pipeline from the stinger.  That happens because, firstly, the vertical component of the tension 

equals the weight of the suspended pipeline, which makes a steeper departure angle more efficient 

in carrying the weight and secondly, since the pipeline leaves the vessel at a steeper angle, the 

suspended length is smaller, which results in less weight hanging from the lay vessel. 

 

Increasing the water depth of the installation requires therefore a steeper, near vertical departure 

angle of the pipeline from the stinger. Because the length of the stinger is limited, this can only be 

realized by a decrease in stinger radius, which can have as a consequence the exceedance of the 

elastic limit of the pipe material and the increase of the plastic strains.  

 

Because of the fact that plastic deformations are non-reversible, pipeline leaves the stinger with a 

residual curvature. When the pipe joints pass the stinger and move to the sagbend area, are bent in 

the opposite direction and as a result the residual curvature has to be overcome. It is shown  by a 

minimum energy approach that the configuration of the pipe at the sagbend is taken partially 
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through bending and rotation. As mentioned above an inline structure usually needs to be installed 

within certain verticality tolerance to allow for future connection or ROV access. For this, the first 

step is to check the pipeline rotation. If rotation of the pipe is expected, measures are required to 

keep the structure vertical during -and after- installation. An effective means to install an ILS vertical 

is to attach buoyancy to the ILS and/or to the pipe using a yoke. For the ILS to remain vertical after 

installation, foundation has to be sufficient to overcome the possible residual torque from the 

pipeline. 

 

 

2.2 Objective 

 

The goal of this thesis is to accurately quantify pipeline rotation during installation of inline 

structures with S-lay method. A sequential model is built based on mechanical principles  in order to 

solve the pipelay and rotation problem simultaneously and identify the effect of the plastic strains 

and residual curvature on the rotation phenomenon. The model includes also mitigation measures 

(buoyancy modules) and their effect in the reduction of total rotation as well as the effect of soil 

friction.  

 

2.3 Approach 

 

First of all the theory used in subsea pipeline analysis is discussed, including the definitions of all 

stresses, strains, and loads applicable to S-lay installation method. The first part of the research 

consists of the analytical mathematical modelling and the numerical solution of the pipe-laying 

problem, considering the pipeline as tensioned beam and solving the nonlinear bending equation 

along its suspended length using finite difference method. A sequential model which simulates the 

installation of a pipeline including inline structures and buoyancy modules is built in order to 

investigate the rotation profile evolution  later. 

 

The second part consists in the rotation problem analysis and solution. First, an explanation of the 

mechanism governing pipeline rotation is given, focusing exclusively on rotation induced by pipe 

residual curvature. Having found the pipe configuration and its physical quantities along the 

suspended length, the pipe rotation profile is found based on Hamilton's energy minimization 

principle using the Lagrangian equation. Then the method to determine inline structure stability 

along the catenary is described taking into account the effect of buoyancy modules and pipe-soil 

interaction. 

 

Both the pipelay and the rotation problem are modeled and solved in Matlab software. 

 

 

 

 

 

 

 

 



22 
 

3.0 S-LAY STATIC PIPELAY ANALYSIS 

In this chapter the several methods that have been used for the S-lay static analysis will be 

discussed. Attention will be paid to the nonlinear beam method, its mathematical formulation and 

numerical implementation for the solution of the pipelay problem. 

 

3.1 Mathematical Model 

 

There are several different mathematical models for the analysis of the behaviour of the pipeline 

free span between the stinger and the touchdown point. The most known are the linear and 

nonlinear beam method, the natural catenary the stiffened catenary method [8]. 

 

3.1.1 Linear Beam Method 

 

Using the linear beam method, the suspended length of the pipeline is considered as a continuous 

tensioned beam as shown in Figure 3-1.  

 

 
Figure 3-1 Tensioned Beam 

The main assumption for the method is that the slopes of the beam are assumed to be small, so the 

following requirement is used 

 

𝑑𝑤

𝑑𝑥
≪ 0 

 

where 𝑑𝑥 and 𝑑𝑤 are the increments in the horizontal and vertical direction respectively.  Using the 

equilibrium of forces for a small segment along the suspended length of the pipe, the bending 

equation can be expressed as follows  

 

𝐸 ∙ 𝐼𝑏 ∙
𝑑4𝑤

𝑑𝑥4
− 𝑇 ∙

𝑑2𝑤

𝑑𝑥2
−𝑤𝑠 = 0 

 

where EI is the bending stiffness of the pipeline, T the acting axial force (tension) and q1 the 

submerged weight of the pipeline (distributed external force with density per unit length). The 

application of this equation is constrained by the requirements that the slopes of the beam are small 

as mentioned before, the rotational inertia effects are neglected and the Euler-Bernoulli 

assumptions are not violated significantly. The current method is applicable only for shallow waters. 
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3.1.2 Nonlinear Beam Method 

 

The nonlinear beam method considers the pipeline as a continuous beam as the linear beam 

method. In this model the bending of the pipe span is described by considering the non-linear 

bending equation of the beam using the equilibrium of forces on a pipe element of length ds. The 

method is valid for small and large slopes and is applicable to all water depths.  

Specifically, is described by the following formula 

 

𝐸 ∙ 𝐼𝑏 ∙
𝑑

𝑑𝑠
(𝑠𝑒𝑐(𝜃)

𝑑2𝜃

𝑑𝑠2
) − 𝑇ℎ ∙ 𝑠𝑒𝑐

2(𝜃) ∙
𝑑𝜃

𝑑𝑠
+ 𝑤𝑠 = 0  

 

where s is the distance along the pipe span and θ is the angle at distance s. 

 

Boundary conditions may include the displacement at one of the two ends of the span, so the above 

differential equation can be described with z rather than θ. In order to do that, the following 

expression can be used 

 

𝑠𝑖𝑛(𝜃) =
𝑑𝑧

𝑑𝑠
 

 

Due to the fact the model can be used for both shallow and deep waters and is valid for small and 

large slopes, it is considered to be the most suitable for our analysis. A detailed formulation of the 

model is described in Chapter 3.2. 

 

3.1.3 Natural Catenary Method 

 

Using the natural catenary method, the suspended length of the pipeline is considered as a chain, 

therefore the bending stiffness of the pipeline is neglected. An illustration of the method is 

illustrated in Figure 3-2.  

 
Figure 3-2 Catenary Model 
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The vertical position of the pipe can be obtained using the following equation 

 

𝑧 =
𝑇ℎ
𝑤𝑠
∙ (𝑐𝑜𝑠ℎ (

𝑥 ∙ 𝑤𝑠

𝑇ℎ
) − 1) 

where 

 

x     : horizontal distance from touchdown point 
z     : height above seabed,  

𝑇ℎ  : horizontal force at seabed  
𝑤𝑠  : submerged weight per unit length 
 

The boundary conditions on pipeline span are not satisfied so this theory is applicable only for parts 

of the pipeline which are away from the ends. This method is applicable only to pipelines in deep 

waters where the stiffness of the pipe is very small compared to the submerged weight of the pipe 

and the applied axial tension. 

 

3.1.4 Stiffened Catenary Method 

 

Another way to perform calculations on the free span  is to use the stiffened catenary method. 

What makes this method different from the catenary method is that it includes the bending stiffness 

of the pipeline. In addition the boundary conditions at the end are satisfied. One assumption that 

has to be made is that the non-dimensional term α2, which is a term depending on the stiffness, the 

submerged weight and the suspended length of the pipe has to be much lower than unity. This term 

is given by the following equation 

 

𝑎2 =
𝐸 ∙ 𝐼𝑏
𝑤𝑠 ∙ 𝐿

3
≪ 1 

 

The stiffened catenary method provides accurate results for the whole pipeline including the regions 

near the ends but it is mainly limited to deep-water applications. 

 

3.2 Nonlinear Beam Method Analysis 

 

In the next chapters, the mathematical model that was used for the solution of the pipelay problem 

is formulated in detail. In addition, the numerical approach and its implementation is described. 

 

 

3.2.1 Mathematical Formulation  

 

In this section, the nonlinear beam equation that was shown in Chapter 3.1.2 will be derived. 

Assuming that the pipe has uniform cross-section and weight distribution along its length, the 

governing equations for the pipeline span can be found by considering the static forces on a short 

segment of the tensioned pipe at equilibrium, as it can be seen from Figure 3-3. 
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The equilibrium of forces in the vertical direction (y) yields, 

 

𝛴𝐹𝑦 = 0 

 

            (𝑇 + 𝑑𝑇)𝑠𝑖𝑛(𝜃 + 𝑑𝜃) − 𝑇𝑠𝑖𝑛(𝜃) − (𝐹 + 𝑑𝐹)𝑐𝑜𝑠(𝜃 + 𝑑𝜃) + 𝐹𝑐𝑜𝑠(𝜃) − 𝑤𝑠𝑑𝑠 = 0         [𝟑. 𝟏] 

 

Respectively, the equilibrium of forces in the horizontal direction (x) yields, 

 

𝛴𝐹𝑥 = 0 

 

                       (𝑇 + 𝑑𝑇)𝑐𝑜𝑠(𝜃 + 𝑑𝜃) − 𝑇𝑐𝑜𝑠(𝜃) + (𝐹 + 𝑑𝐹)𝑠𝑖𝑛(𝜃 + 𝑑𝜃) − 𝐹𝑠𝑖𝑛(𝜃) = 0              [𝟑. 𝟐] 

 

where 𝑤𝑠 is the submerged weight of the pipeline per unit length.  Assuming small changes of the 

angle θ between the elements, so dθ<<1, the terms of sinuses and cosines can be approximated by 

the following expressions 

 

𝑐𝑜𝑠(𝜃 + 𝑑𝜃) ≈ 𝑐𝑜𝑠(𝜃) − 𝑠𝑖𝑛(𝜃)𝑑𝜃  

 

𝑠𝑖𝑛(𝜃 + 𝑑𝜃) ≈ 𝑠𝑖𝑛(𝜃) + 𝑐𝑜𝑠(𝜃)𝑑𝜃 

 

Replacing the expressions above into the equations 3.1 and 3.2, based on simple algebraic 

operations the following equation is derived 

 

                                                                𝑇
𝑑𝜃

𝑑𝑠
−
𝑑𝐹

𝑑𝑠
− 𝑤𝑠𝑐𝑜𝑠(𝜃) = 0                                                           [𝟑. 𝟑] 

 

where dθ/ds is the exact expression for curvature κ. From Euler-Bernoulli beam theory [6],  

Figure 3-3 Equilibrium of forces on a pipe element of length ds 

ds 

y 

x 

θ 

θ 

F 

T 

F+dF 

wds 

  

 θ+dθ 

T+dT 



26 
 

𝜅 =
1

𝑅
=
𝑀

𝐸𝐼𝑏
=
𝑑𝜃

𝑑𝑠
 

 

Finally, the shear force can be replaced by the following expression [1], 

 

𝐹 =
𝑑𝑀

𝑑𝑠
 

 

Substituting these expressions into the equation 2.3, yields to the following differential equation  

which describes the pipelay problem 

 

                                                               𝐸𝐼𝑏
𝑑3𝜃

𝑑𝑠3
− 𝑇

𝑑𝜃

𝑑𝑠
+ 𝑤𝑠𝑐𝑜𝑠(𝜃) = 0                                                   [𝟑. 𝟒] 

 

Τhe forces equilibrium acting in the direction of the pipeline's centerline gives 

 

𝑇 + 𝑤𝑠𝑠𝑖𝑛(𝜃)𝑑𝑠 = (𝑇 + 𝑑𝑇)𝑐𝑜𝑠(𝑑𝜃) 

 

Taking into account that for 𝑑𝜃 << 1, 𝑐𝑜𝑠(𝑑𝜃) = 1, by simple algebraic operations the second 

equation can be derived 

 

                                                                             
𝑑𝑇

𝑑𝑠
= 𝑤𝑠𝑠𝑖𝑛(𝜃)                                                                     [𝟑. 𝟓] 

 

At the touch down point the horizontal force acting at the pipeline is commonly known as bottom 

tension, as mentioned in APPENDIX A and is known during the pipe laying process as it depends on 

the forward motion of the vessel (which is controlled). Assuming that there are no horizontal forces 

acting along the suspended length of the pipe (e.g. currents), the following equation can be used for 

the equilibrium in x direction based on Figure 3-3 

 

𝑇ℎ = 𝑇𝑐𝑜𝑠(𝜃) + 𝐹𝑠𝑖𝑛(𝜃) 

 

where 𝑇ℎis the applied bottom tension. Substituting in the equation above the force F by the 

following term 

 

𝐹 =
𝑑𝑀

𝑑𝑠
= 𝐸 ∙ 𝐼𝑏 ∙

𝑑2𝜃

𝑑𝑠2
 

we get 

𝑇ℎ = 𝑇 ∙ 𝑐𝑜𝑠(𝜃) + 𝐸 ∙ 𝐼𝑏 ∙
𝑑2𝜃

𝑑𝑠2
𝑠𝑖𝑛(𝜃)  

 
⇒  𝑇 =

𝑇ℎ
𝑐𝑜𝑠(𝜃)

−
𝐸 ∙ 𝐼𝑏
𝑐𝑜𝑠(𝜃)

𝑑2𝜃

𝑑𝑠2
𝑠𝑖𝑛(𝜃) 

 

Based on the above, the equation 2.4 becomes 

 

𝐸𝐼𝑏
𝑑3𝜃

𝑑𝑠3
− (

𝑇ℎ
𝑐𝑜𝑠(𝜃)

−
𝐸𝐼𝑏
𝑐𝑜𝑠(𝜃)

𝑑2𝜃

𝑑𝑠2
𝑠𝑖𝑛(𝜃))

𝑑𝜃

𝑑𝑠
+ 𝑤𝑠𝑐𝑜𝑠(𝜃) = 0  
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 Dividing by 𝑐𝑜𝑠(𝜃) and taking into account identity 

 

𝑠𝑒𝑐(𝜃) =
1

𝑐𝑜𝑠(𝜃)
 

we get  

 

𝐸𝐼𝑏𝑠𝑒𝑐(𝜃)
𝑑3𝜃

𝑑𝑠3
− 𝑇ℎ𝑠𝑒𝑐

2(𝜃)
𝑑𝜃

𝑑𝑠
+ 𝐸𝐼𝑏𝑠𝑒𝑐(𝜃)

𝑑2𝜃

𝑑𝑠2
𝑡𝑎𝑛(𝜃)

𝑑𝜃

𝑑𝑠
+ 𝑤𝑠 = 0  

 

Based on the trigonometric identity  

 

𝑑

𝑑𝜃
𝑠𝑒𝑐(𝜃) = 𝑠𝑒𝑐(𝜃)𝑡𝑎𝑛(𝜃) 

 

the above equation becomes 

 

                                                   𝐸𝐼
𝑑

𝑑𝑠
(𝑠𝑒𝑐(𝜃)

𝑑2𝜃

𝑑𝑠2
) − 𝑇ℎ𝑠𝑒𝑐

2(𝜃)
𝑑𝜃

𝑑𝑠
+ 𝑤𝑠 = 0                                    [𝟑. 𝟔] 

 

This equation is also known as the nonlinear bending equation and is valid for both deep and 

shallow waters and small and large slopes. Taking into account the unknown suspended length of 

the pipeline before the pipe-laying process the problem becomes of fourth order.  

 

For this problem no exact solutions are known and approximations must be considered either by 

numerical methods, or by equation simplification. Numerical approaches were studied for a beam 

with small deflections in (Wilhoit and Merwin, 1967), and a nonlinear method was studied by 

Bryndum et al. (1982). It should be mentioned that if the flexural rigidity vanishes, an exact 

analytical solution can be obtained for the problem, known as the natural catenary method which is 

already described in Chapter 3.1.3. 

 

3.2.2 Governing Equations & Boundary Conditions 

 

Equations 3.4 and 3.5 are the two governing differential equations that will be used for the solution 

of the pipelay problem. Specifically, 

 

𝐺. 𝐸. 1 ∶  𝐸𝐼𝑏
𝑑3𝜃

𝑑𝑠3
− 𝑇

𝑑𝜃

𝑑𝑠
+ 𝑤𝑠𝑐𝑜𝑠(𝜃) = 0 

 

𝐺. 𝐸. 2 ∶  
𝑑𝑇

𝑑𝑠
= 𝑤𝑠𝑠𝑖𝑛(𝜃) 

The boundary conditions are given as mentioned before at the touchdown point (s=0) and the 

stinger tip (s=L). At the touchdown point, the seabed is considered to be infinitely stiff (see Chapter 

9.0 for the model considering seabed as a Winkler foundation) for therefore the bending moment M 

may be assigned to be zero. In addition the pipeline approaches the seabed in an horizontal 

configuration so angle θ is assigned to be zero also [4]. Based on that, 
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𝐵. 𝐶. 1 ∶  𝜃(0) = 0 

 

𝐵. 𝐶. 2 ∶  
𝑑𝜃

𝑑𝑠
|
𝑠=0

= 0 

 

The tension at the seabed is constant and equal to the bottom tension applied, so a third boundary 

condition can be applied as follows 

𝐵. 𝐶. 3 ∶  𝑇(0) = 𝑇ℎ 

 

The last boundary condition can be formulated using the angle θ0 at the other end of the suspended 

pipe (s=L), at the stinger tip, 

 

𝐵. 𝐶. 4 ∶  𝜃(𝐿 ) = 𝜃0 

 

The suspended length of the pipe L is an unknown parameter before the pipelay analysis. As it can 

be seen above, parameter L is included in the fourth boundary condition. Because solving the 

problem numerically with unknown boundary condition is difficult, the method of variable 

substitution will be used [1]. Thus,  

𝑠 = 𝜀 ∙ 𝐿 

 

where ε is a dimensionless variable between 0 (touchdown point) and 1 (stinger tip). Based on that, 

the governing equations become 

 

𝐺. 𝐸. 1 ∶  
𝐸𝐼𝑏
𝐿3
𝑑3𝜃

𝑑𝜀3
−
𝑇

𝐿

𝑑𝜃

𝑑𝜀
+ 𝑤𝑠𝑐𝑜𝑠(𝜃) = 0 

 

𝐺. 𝐸. 2 ∶   
𝑑𝑇

𝑑𝜀
= 𝑤𝑠𝐿𝑠𝑖𝑛(𝜃) 

and the fourth boundary condition 

𝐵. 𝐶. 4 ∶  𝜃(1 ) = 𝜃0 

 

As the length of the pipeline is unknown, an additional boundary condition has to be added in the 

formulation of the problem. The fifth boundary condition is given by the axial tension at the stinger 

tip. Knowing the stinger configuration, the position of the stinger tip is known. Based on equation 

2.1 the axial tension at the stinger tip is given by the relationship below 

 

𝑇(𝑠𝑡) = 𝑇ℎ +𝑤𝑠(𝐷 − 𝑦𝑠𝑡) 

 

where 𝑦𝑠𝑡  is the vertical distance between the stinger tip and the sea level. So the last boundary 

condition that is needed in order to solve the problem can be written as 

 

𝐵. 𝐶. 5 ∶  𝑇(1 ) = 𝑇(𝑠𝑡) 
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3.3 Installation Loads 

 

The loads acting on a pipeline can be classified as static or dynamic. In the following sections of the 

thesis, the motion of the vessel as well as other dynamic loads due to environmental conditions 

(waves, currents, etc.) are not considered. Attention is limited to the static analysis of pipeline 

configuration taking into account the loads which are of main importance during pipelay such as 

tension forces, bending moments, hydrostatic pressure and contact forces on the stinger.  

 

3.3.1 Installation Loads Identification 

 

In order to identify the installation loads, the pipeline is divided in three different regions, the 

overbend, the sagbend and the laid pipe on the seabed. 

 

 

3.3.1.1 Overbend Region 

At the overbend region the pipeline is supported by the stinger. The pipe is subjected to axial 

tension T. The magnitude of the axial tension acting on a cross section of the pipe depends on the 

applied force by the thrusters as the ship moves forward (this force is equal to the axial tension at 

the seabed, known as bottom tension), the vertical position of the cross section with respect to the 

seabed and the pipe unit submerged weight. 

 

In addition to the axial force, the pipeline is subjected to contact forces Ts at the points of contact 

with the roller boxes of the stinger and to external hydrostatic pressure in the part below the sea 

surface. Finally based on the stinger configuration, which depends on the project specifications 

(water depth, pipe characteristics, maximum allowable strains, etc.), a bending moment is applied 

along the stinger. Its magnitude depends on the flexural rigidity of the pipeline and the stinger 

radius-curvature. 

 

3.3.1.2 Sagbend Region 

 

The part of the pipeline which is freely suspended in the water, from the lift-off point to the 

touchdown point, is subject to the axial tension (as described at the previous paragraph) and to 

external hydrostatic pressure. The bending moment becomes zero at the inflection point (see 

APPENDIX A for terminology),  increases gradually at the opposite direction along the sagbend and 

decreases abruptly as it approaches the seabed becoming zero at the touchdown point.  

 

The reverse bending at the lower part of the sagbend section in combination with possible plastic 

strains at the overbend is the main cause of rotation of the pipeline and it will be discussed in detail 

in next chapters.  

 

3.3.1.3 Seabed 

 

Finally, after the touchdown point at the laid pipe acts a  distributed normal force from the seabed 

which counteracts gravity forces. 
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A simple representation of the kind of static loads acting on the pipeline over the suspended length 

as well as the bending of the pipeline at the opposite direction can be seen in Figure 3-4 [5]. 

 
Figure 3-4 Loads acting on different segments of pipe during S-lay installation 

 

3.3.2 Installation Loads Calculation 

 

Having identified the loads which govern the pipeline installation, knowing the catenary shape of 

the pipeline, the axial force, bending moments and total strains along the suspended length can be 

determined. 

 

 

 

  

 

 
 

 

 

 

 

 

 

Figure 3-5 S-lay method illustration 

Based on Figure 3-5, for an arbitrary point P1 between the sea level and the seabed the axial 

tension acting on the cross section of the pipeline is given by the following equation 

 

                                                                         𝑇 = 𝑇ℎ +𝑤𝑠(𝐷 − 𝑦ℎ)                                                             [𝟑. 𝟕] 

θ 
y 

x Th 

 

Water Depth 

(D) 

Seabed 

 

Touchdown Point 

 (yv) 
P2 

T 

P1 

Sea level  

Height from sea level 

(yh) 
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where 𝑇 is the axial tension at P1, 𝑇ℎ is the applied axial tension at the touchdown point - bottom 

tension -, D is the water depth, 𝑦ℎ is the vertical distance [m] between point P1 and sea water level 

and 𝑤𝑠 is the unit submerged weight of the pipe. In case that the cross section of the pipe is above 

the sea level - point P2 -, the unit dry weight  𝑤𝑑 of the pipe has to be taken into account in order to 

calculate the axial tension. Based on the above, the top tension becomes 

 

                                                                       𝑇 = 𝑇ℎ +𝑤𝑠𝐷 + 𝑤𝑑𝑦𝑣                                                               [𝟑. 𝟖] 

 

where 𝑦𝑣 is the vertical distance [m] between point P2 and sea water level.  

 

It should be mentioned that equation 3.2 is used in order to calculate the top tension (axial force 

applied from the tensioners), excluding friction forces due to the contact of the pipe with the roller 

boxes. 

 

The bending moment of the pipeline can be calculated at each point of the suspended length by the 

equation 

                                                                           𝛭 = 𝐸 ∙ 𝐼𝑏 ∙
𝑑𝜃

𝑑𝑠
                                                                       [𝟑. 𝟗] 

 

where ds is an increment [m] of the pipeline along its length, θ [rad] is the angle between the 

pipeline and the horizontal and 𝐼𝑏 is the area moment of inertia. 

 

The total strain of the suspended pipeline is a function of the bending, axial and hoop strain. 

According to that it can be written 

 

𝜀𝑡 = 𝑓(𝜀𝑏 , 𝜀𝑎𝑥 , 𝜀ℎ) 

 

where εt is the total strain of the pipeline, as a result of the bending strain (εb),the axial strain (εax) 

and the strain due to hoop stresses (εh). Specifically, 

 

The strain due to bending can be calculated as follows [7], 

 

𝜀𝑏 =
𝑟

𝑅
=

𝑟

(
𝐸 ∙ 𝐼𝑏
𝑀 )

=
𝑀 ∙ 𝑟

𝐸 ∙ 𝐼𝑏
 

 

where r is the pipeline radius [m] and R is the pipeline radius of curvature [m].  

The maximum strain due to the axial tension can be calculated from the Hooke law adding a term 

which takes into account the depth of the pipeline section [14]. So, 

 

𝜀𝑎𝑥 =
𝜎

𝛦
−
𝜋 ∙ 𝐷𝑜

2 ∙ 𝛾 ∙ ℎ

𝛦 ∙ 𝛢  
⇒ 𝜀𝑎𝑥 =

𝛵

𝛦 ∙ 𝛢
−
𝜋 ∙ 𝐷𝑜

2 ∙ 𝛾 ∙ ℎ

𝛦 ∙ 𝛢
 

 

where A is the cross section of the pipeline, Do the outside diameter of the pipe, γ the specific 

weight of sea water and h the depth of the pipe section.  
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Finally the hoop strain can be calculated from the formula below [14] 

 

𝜀ℎ =
𝐷𝑜 ∙ 𝛾 ∙ ℎ

2 ∙ 𝐸 ∙ 𝑡
 

 

where t is the wall thickness of the pipeline . 

 

Based on the above and having calculated at each position s of the suspended pipeline the bending, 

the axial and the hoop strain, the total strain can be calculated according to the Von Mises 

equivalent strain formula [14]. 

 

                                  𝜀𝑡  (𝑠) = √[𝜀𝑏(𝑠) + 𝜀𝑎𝑥(𝑠)]
2 + 𝜀ℎ

2(𝑠) − [𝜀𝑏(𝑠) + 𝜀𝑎𝑥(𝑠)]𝜀ℎ
 (𝑠)                      [𝟑. 𝟏𝟎] 

 

3.3.3 Numerical Solution 

 

Having specified the governing equations and the appropriate number of boundary conditions the 

problem is solved using Matlab software. The problem can be specified as a boundary value problem 

[9],[11]. As it is hard to get the analytical solution of the mathematical model presented above, a 

fourth order accurate finite difference algorithm has been used to get the numerical solution. For 

this kind of boundary value problems a built in Matlab function is used, known as bvp4c. Function 

bvp4c is a finite difference code that implements the three-stage Lobatto IIIa formula [11].  

 

The first step is to convert the governing differential equations to an equivalent system of first order 

ordinary differential equations [10], [11]. To do that we make the following substitutions,  

 

𝑧(1) = 𝜃 , 𝑧(2) =
𝑑𝜃

𝑑𝜀
, 𝑧(3) =

𝑑2𝜃

𝑑𝜀2
, 𝑧(4) = 𝛵 

 
The input (governing equations) that is given to the bvp4c function can be written as follows 

 

[𝑧(2) ;  𝑧(3) ;  
𝐿3

𝐸𝐼𝑏
[(
 𝑧(4)

𝐿
) 𝑧(2) − 𝑤𝑐𝑜𝑠𝑧(1)] ;𝑤𝑠𝐿𝑠𝑖𝑛𝑧(1)] 

 

Respectively, taking into account that the boundaries of the problem are at the touchdown point 

(za) and at the stinger tip (zb), the set of boundary conditions that will be evaluated by the bvp4c 

function are written as follows 

 
[𝑧𝑎(1) = 0; 𝑧𝑎(2) = 0;  𝑧𝑎(4) = 𝑇ℎ;  𝑧𝑏(1) = θ0 ;  𝑧𝑏(4) = 𝑇(𝑠𝑡)] 

 

After formulating the problem numerically, the problem is solved iteratively by the bvp4c solver 

until the suspended length of the pipeline satisfies the additional (5th) boundary condition.  

 

The output of the solution includes the angle θ (angle between pipeline and the horizontal along its 

suspended length), the first and second derivative of θ,  the axial tension T along the length and the 

total suspended length of the pipe. 

http://www.mathworks.nl/help/matlab/ref/bvp4c.html
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3.3.4 Pipelay Results Validation 

 

The validity of the pipe-laying model is verified by means of a  comparison with results obtained 

from the commercial finite element software OFFPIPE. A number of different cases studied with 

varying pipeline properties, stinger configuration and environmental conditions have been 

compared in order to check the validity of the model. For all the cases the following constants were 

used . It should be mentioned that OFFPIPE and Matlab use different mesh points and element 

length for the solution. The results from Matlab and OFFPIPE solution, which will be presented in 

this and in the next chapters, in order to be compared, were obtained after applying linear 

interpolation on the data points of Matlab solution to the data points of OFFPIPE solution. For all 

the cases presented for the pipe-lay model validation the following constant properties were used. 

 

Sea water density  1025 [𝑘𝑔/𝑚3] 
Gravity acceleration  9.81 [𝑚/𝑠2] 
Pipeline density  7850 [𝑘𝑔/𝑚3] 
Young`s Modulus  207000 [𝑀𝑃𝑎] 

Concrete coating density  3050 [𝑘𝑔/𝑚3] 
Table 3-1 Constant properties used for cases 

The results from the cases studied are discussed in section 3.3.5. 

 

3.3.4.1 Case Study No1  

 

The data which were used for the case study No1 are summarized in Table 3-1. A deep-water project 

(1826 meters) using vessel Audacia with a stinger length and radius of 100 meters. The specific 

characteristics of the pipeline installed and the coating properties can be seen at the table below. 

 

Vessel Audacia 

Stinger Length  110 [𝑚] 
Stinger Radius  100 [𝑚] 
Water Depth  1826 [𝑚] 
Pipeline Diameter  20 ["] 
Pipeline Wall Thickness 29.1 [𝑚𝑚] 
Field Joint Length 0.7 [𝑚] 
Pipe Joint Length 12.2 [𝑚] 
Unit Submerged Weight 1334.8 [𝑁/𝑚] 

Anti-Corrosion Coating 
Thickness 0.6 [𝑚𝑚] 
Density 1160 [𝑘𝑔/𝑚3] 

Field Joint Infill Thickness 
Thickness 0.635 [𝑚𝑚] 

Density 1153 [𝑘𝑔/𝑚3] 

Table 3-2 Data used for case study N
o
1 

After the static pipelay analysis the pipeline configuration and bending moments distribution 

obtained from Matlab model and Offwin can be seen in Figure 3-6 and Figure 3-7 respectively. 

Comparisons between axial tension and sagbend strains can be seen in APPENDIX B 
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Figure 3-6 Pipeline Configuration (Case Study N

o
1) 

 

 
Figure 3-7 Bending moment along the catenary (Case Study N

o
1) 
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The most important quantities after the pipelay analysis are summarized in Table 3-3.  

 

Quantity Unit Offwin 
Matlab  
Model 

Absolute 
Error 

Relative 
Error [%] 

Suspended Length [𝑚] 2400.21 2400.17 0.04 0.0016 

Maximum Bending Moment [𝑘𝑁𝑚] 353.058 353.067 0.009 0.0028 

Maximum Sagbend Strain [%] 0.07940 0.07944 4*10
-5

 0.05 

Maximum Bending Strain [%] 0.03440   0.03439  1*10
-5

 
 

0.03 

Maximum Tensile Strain [%] 0.03530  0.03530  0
 

0  

Top Tension (Tensioners) [𝑘𝑁] 3454.75 3455.50 0.75 0.022 

Table 3-3 Comparison of basic quantities after pipelay analysis (Case Study N
o
1) 

 

3.3.4.2 Case Study No2 

 

The data which were used for the case study No2 are summarized in Table 3-4. A shallow-water 

project (200 meters) using vessel Lorelay with a stinger length of 71 meters and radius of 150 

meters is analyzed. The specific characteristics of the pipeline installed and the concrete coating 

properties can be seen at the table below. 

 

Vessel Lorelay 

Stinger Length  71 [𝑚] 
Stinger Radius  150 [𝑚] 
Water Depth  200 [𝑚] 
Pipeline Diameter  10.75 ["] 
Pipeline Wall Thickness 14.3 [𝑚𝑚] 
Field Joint Length 0.7 [𝑚] 
Pipe Joint Length 12.2 [𝑚] 
Unit Submerged Weight 472.88 [𝑁/𝑚] 

Concrete Coating 
Thickness 10 [𝑚𝑚] 
Density 3050 [𝑘𝑔/𝑚3] 

Table 3-4 Data used for case study N
o
2 

The most important quantities after the pipelay analysis are summarized in Table 3-5. 

 

Quantity Unit Offwin 
Matlab  
Model 

Absolute 
Error 

Relative 
Error [%] 

Suspended Length [𝑚] 411.14 408.27 2.87 0.7 

Maximum Bending Moment [𝑘𝑁𝑚] 48.9 48.91 0.009 0.02 

Maximum Sagbend Strain [%] 0.0416 0.04159 10
-5 

0.024 

Maximum Bending Strain [%] 0.0331 0.03306 4*10
-5 

0.12 

Maximum Tensile Strain [%] 0.0103 0.01025 5*10
-5 

0.48 

Top Tension (Tensioners) [𝑘𝑁] 298.85 298.846 0.04 0.0013 

Table 3-5 Comparison of basic quantities after pipelay analysis (Case Study N
o
2) 

 

Pipeline configuration and bending moments distribution along the suspended length are shown in 

Figure 3-8 and Figure 3-9 respectively. Comparisons between axial tension and sagbend strains can 

be seen in APPENDIX B. 
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Figure 3-8 Pipeline Configuration (Case Study N

o
2) 

 

 
Figure 3-9 Bending moment along the catenary (Case Study N

o
2) 
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3.3.4.3 Case Study No3 

 

The data which were used for the case study No3 are summarized in Table 3-6. A mid-water project 

(600 meters) using vessel Solitaire with a stinger length of 140 meters and radius of 160 meters is 

analyzed. The specific characteristics of the pipeline installed and the concrete coating properties 

can be seen at the table below. 

 

Vessel Solitaire 

Stinger Length  140 [𝑚] 
Stinger Radius  160 [𝑚] 
Water Depth  600 [𝑚] 
Pipeline Diameter  26 ["] 
Pipeline Wall Thickness 25.4 [𝑚𝑚] 
Field Joint Length 0.7 [𝑚] 
Pipe Joint Length 12.2 [𝑚] 
Unit Submerged Weight 5966.9 [𝑁/𝑚] 

Concrete Coating 
Thickness 120 [𝑚𝑚] 
Density 3050 [𝑘𝑔/𝑚3] 

Table 3-6 Data used for case study N
o
3 

 

Pipeline configuration and bending moments distribution along the suspended length are shown in 

Figure 3-10 and Figure 3-11 respectively. Comparisons between axial tension and sagbend strains 

can be seen in APPENDIX B. 

 

 
Figure 3-10 Pipeline Configuration (Case Study N

o
3) 
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Figure 3-11 Bending moment along the catenary (Case Study N

o
3) 

The most important quantities after the pipelay analysis are summarized in Table 3-7. 

 

Quantity Unit Offwin 
Matlab  
Model 

Absolute 
Error 

Relative 
Error [%] 

Suspended Length [𝑚] 857.05 856.087 0.963 0.11 

Maximum Bending Moment [𝑘𝑁𝑚] 1205.24 1205.04 0.2 0.016 

Maximum Sagbend Strain [%] 0.1042 0.10417 3*10
-5 

0.028 

Maximum Bending Strain [%] 0.0752 0.07514 6*10
-5 

0.08 

Maximum Tensile Strain [%] 0.0506 0.0509 3*10
-5 

0.09 

Top Tension (Tensioners) [𝑘𝑁] 6257.31 6258.69 1.38 0.022 

Table 3-7 Comparison of basic quantities after pipelay analysis (Case Study N
o
3) 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

3.3.4.4 Case Study No4   

 

The data which were used for the case study No4 are summarized in Table 3-8. A deep-water project 

(2000 meters) using vessel Audacia with a stinger length 71 meters and radius of 120 meters. The 

specific characteristics of the pipeline installed and the coating properties can be seen at the table 

below. 

 

Vessel Lorelay 

Stinger Length  71 [𝑚] 
Stinger Radius  120 [𝑚] 
Water Depth  2000 [𝑚] 
Pipeline Diameter  8.625 ["] 
Pipeline Wall Thickness 11.1 [𝑚𝑚] 
Field Joint Length 0.7 [𝑚] 
Pipe Joint Length 12.2 [𝑚] 
Unit Submerged Weight 180.38 [𝑁/𝑚] 

Anti-Corrosion Coating 
Thickness 1 [𝑚𝑚] 
Density 1160 [𝑘𝑔/𝑚3] 

Table 3-8 Data used for case study N
o
4 

 

After the static pipelay analysis the pipeline configuration and bending moments distribution 

obtained from Matlab model and Offwin can be seen in Figure 3-12 and Figure 3-13 respectively. 

Comparisons between axial tension and sagbend strains can be seen in APPENDIX B. 

 

 
Figure 3-12 Pipeline Configuration (Case Study N

o
4)  
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Figure 3-13 Bending moment along the catenary (Case Study N

o
4) 

 

The most important quantities after the pipelay analysis are summarized in Table 3-9. 

 

Quantity Unit Offwin 
Matlab  
Model 

Absolute 
Error 

Relative 
Error [%] 

Suspended Length [𝑚] 3909.22 3906.02 3.2 0.08 

Maximum Bending Moment [𝑘𝑁𝑚] 2.791 2.794 0.003 0.09 

Maximum Sagbend Strain [%] 0.0905 0.09059 9*10
-5

 0.09 

Maximum Bending Strain [%] 0.00374 0.00375 1*10
-5 

0.2 

Maximum Tensile Strain [%] 0.0574 0.05744 4*10
-5 

0.07 

Top Tension (Tensioners) [𝑘𝑁] 892.73 892.93 0.2 0.02 

TDP x-position (from stinger hinge) [𝑚] 3261.62 3258.02 3.6 0.11 

Table 3-9 Comparison of basic quantities after pipelay analysis (Case Study N
o
4) 
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3.3.5 Pipelay Model Results Findings & Evaluation 

 

Based on the results and on the comparisons which were made between Matlab model and the 

commercial finite element software Offwin the following conclusions can be made, 

 

1. The Matlab model gives precise estimation of pipeline configuration at all the cases studied 

independently of the water depth, the stinger configuration and pipeline characteristics. The 

suspended length of the pipe at all the cases was determined accurately with the maximum 

relative error observed 0.7% for the case study with the shortest catenary length (Case Study 

No2 – 𝐿𝑡𝑜𝑡 = 408m) and the maximum absolute error  3.2m (Case Study No4 – 𝐿𝑡𝑜𝑡 =

3906m). The touchdown point position with respect to the stinger hinge at all the cases was 

estimated precisely with the maximum relative error observed around 0.11 % (Case Study 

No4). 

 

2. At all the cases which were conducted the numerical solution gave accurate results for the 

bending moment along the suspended length of the pipeline. As it was observed from the 

comparisons, the maximum bending moment was estimated accurately with the maximum 

error being below 0.1% for all the cases. In addition its distribution along the catenary and 

the position of the maxima were determined precisely as it can be seen from the figures.  

The higher relative error at the touchdown point is converging to negligible errors almost 

from the 3rd or 4th point of our solution in all the cases studied. This error has small absolute 

value with respect to the maximum bending moment of each case study and is expected, as 

the seabed is not modelled in our solution (see Chapter 9.0 for the modelling of seabed as 

Winkler foundation).   

 

3. The Matlab model gives accurate results for the calculation of the axial tension along the 

suspended length as it can be seen from the figures in APPENDIX B. For all the cases 

examined the average error was below 0.1% along the suspended length. In addition the top 

tension was calculated (tension provided by the tensioners) for all cases precisely with the 

maximum error observed 0.022%. The axial tension along the catenary depends on the 

bottom tension applied 𝑇ℎ, the unit submerged weight of the pipe 𝑤𝑠 and the vertical 

distance between a point 𝑃1 and the sea level based on the following equation (see Figure 

3-5) 

 

𝑇(𝑃1) = 𝑇ℎ +𝑤𝑠 ∙ [𝐷 − 𝑦ℎ(𝑃1)]   

 

As the bottom tension (axial tension at the seabed - boundary condition), the water depth 𝐷 

and the unit submerged weight are part of the input, these negligible errors can be 

explained by the slight difference at the determination of pipeline configuration along the 

catenary and as a consequence slight differences at the determination of the value of 

𝑦ℎ(𝑃1).  
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4. At all the cases, the Matlab model gave precise results for the bending, tensile and total 

sagbend strain along the suspended length of the pipeline. As it was observed from the 

comparisons, the maximum strain was estimated accurately with the maximum relative 

difference being below 0.2% for all the cases. It should be mentioned that the errors in 

strain comparisons are mainly due to the rounding of the values of Offwin at the 4th decimal, 

so they should not be taken into account. In addition their distribution along the catenary 

and the position of the maxima were determined accurately for all the cases as it can be 

seen from the figures in APPENDIX B. The highest error at the touchdown point can be 

explained as in the case of bending moments as a result of not modelling the seabed (it is 

considered to be infinitely stiff at the touchdown point, which is a rough assumption). That 

error does not affect the solution and the distribution of the strains along the catenary so for 

the purpose of the research is not considered as important and will not affect the rotation 

model of the pipeline. 

 

 

Based on the above, it can be concluded that the pipelay model behaves with considerable accuracy 

for all the cases studied independently of the input parameters as the water depth, the stinger 

configuration, pipeline characteristics and their combinations. The relatively higher errors at the 

boundaries (touchdown point and stinger tip) can be explained by the fact that the boundary 

conditions are not identical. In the case of the touchdown point the soil is considered to be infinitely 

stiff while at the stinger tip area the overbend interface is simplified. The presence of these errors 

does affect the solution along the catenary for any of the cases studied. The pipeline configuration 

and its quantities (bending moment, axial tension, sagbend strain) along the suspended length are 

precisely represented with negligible errors, therefore the model can be developed further for the 

pipelay analysis of inline structure installation (see Chapter 4.0) and is fit for calculations of pipe 

rotation (see Chapter 5.0). 
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4.0 ILS INSTALLATION SEQUENTIAL MODEL 

In this chapter the mathematical model of the pipelay problem will be described including different 

pipe sections and/or inline structures. 

 

4.1 Different sections along catenary 

 

In common pipelay operations, during installation, several pipe sections can be installed with 

different properties (cross section, wall thickness, bending stiffness etc.). In addition, inline 

structures are attached to the pipe for several purposes, depending on the project. Including 

different pipe sections and/or attached structural components along the suspended length of the 

pipe, the model has to be modified.  

 

Having different sections along the catenary has as a consequence abrupt changes in bending 

stiffness and variation of the total submerged weight along the sagbend. These changes have to be 

taken into account in the mathematical modelling and governing equations. Additionally, interface 

conditions have to be introduced at the points of change in order to ensure the continuity and the 

structural integrity of the pipeline.  

 

As mentioned in previous chapters, the pipe-laying problem is a boundary value problem, which is 

solved by a fourth order finite difference method using the bvp4c built -in solver of Matlab software. 

In order to solve the new problem, with different pipe sections and/or inline structures attached 

along the catenary the same numerical method is used with some modifications. 

 

Here it should be mentioned, that the goal of the formulation of the new problem and its 

implementation is to solve the pipe-laying problem and the rotational problem in a sequential way. 

That means that the problem will not be solved directly with two different pipe sections of specific 

length along the catenary. The problem will be solved for one pipe section at the initial stage and 

then at each step a pipe joint of the relevant pipe section will be added to the whole catenary.  

 

 

4.2 Mathematical formulation for different sections 

 

To model the problem including several pipe sections, it is assumed that along the suspended length 

of the pipe there is a point where there is a transition from a pipe element No 1 to a pipe element No 

2. Based on the geometrical and material characteristics, each pipe section has its own bending 

stiffness 𝐸1𝐼𝑏1, 𝐸2𝐼𝑏2 and submerged weight 𝑤𝑠1, 𝑤𝑠2 per unit length, respectively. Following the 

same procedure as in the case for one pipe element, the governing equations for the pipe can be 

found by considering the static forces on a short segment of the tensioned pipe at equilibrium, see 

Figure 4-1.  
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As it can be seen from the Figure 4-1 at the pipe segment there is a point of transition between the 

two pipe elements. It should be reminded that, based on the static equilibrium, the governing 

equations of a pipe with uniform pipe characteristics along the suspended length can be described 

as follows 

 

𝐸 ∙ 𝐼𝑏
𝑑3𝜃

𝑑𝑠3
− 𝑇 ∙

𝑑𝜃

𝑑𝑠
+ 𝑤𝑠 ∙ 𝑐𝑜𝑠(𝜃) = 0   

 

𝑑𝑇

𝑑𝑠
= 𝑤𝑠 ∙ 𝑠𝑖𝑛(𝜃) 

 

In case of different pipe sections as illustrated in the figure above the problem is described by a set 

of governing equations for each pipe element. Assuming that the point of transition is located at the 

position 𝒔 = 𝑷. 𝒐. 𝑻.  , where s is the distance along the pipe span, 𝑠 ∈ [0, 𝐿], the governing 

equations can be written in the following form 

 

For Pipe Element 1 : 

𝐸1 ∙ 𝐼𝑏1
𝑑3𝜃1
𝑑𝑠3

− 𝑇
𝑑𝜃1
𝑑𝑠
+ 𝑤𝑠1 ∙ 𝑐𝑜𝑠(𝜃1) = 0   

                                                      𝑓𝑜𝑟 𝑠 ≤ 𝑃. 𝑜. 𝑇 
𝑑𝑇

𝑑𝑠
= 𝑤𝑠1 ∙ 𝑠𝑖𝑛(𝜃1) 

 

For Pipe Element 2 : 

𝐸2 ∙ 𝐼𝑏2
𝑑3𝜃2
𝑑𝑠3

− 𝑇
𝑑𝜃2
𝑑𝑠
+ 𝑤𝑠2 ∙ 𝑐𝑜𝑠(𝜃2) = 0   

                                                     𝑓𝑜𝑟 𝑠 > 𝑃. 𝑜. 𝑇 
𝑑𝑇

𝑑𝑠
= 𝑤𝑠2 ∙ 𝑠𝑖𝑛(𝜃2) 

Figure 4-1 Equilibrium of forces on a pipe segment of length ds with 2 elements 

Pipe Element 1 

 

y 

x 

θ 

F 

T 

ds 

θ 

wsds 

Pipe Element 2 

Transition Point 

F+dF 

T+dT 

θ+dθ 
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For each pipe section the same governing equations are used with the respective coefficients for 

each element. Since the cross-section experiences the abrupt change at s = P. o. T. we have to 

formulate the interface conditions at this point in order to ensure the continuity and the structural 

integrity of the system [15]. The interface conditions can be summarized below 

 

The angle just before and after the transition point shall be the same 

 

𝜃1(𝑃. 𝑜. 𝑇
+) = 𝜃2(𝑃. 𝑜. 𝑇

−) 

 

The bending moment just before and after the transition point shall be the same 

 

𝑀(𝑃. 𝑜. 𝑇−) = 𝑀(𝑃. 𝑜. 𝑇+)
 
⇒ 𝐸1𝐼𝑏1

𝑑𝜃1
𝑑𝑠
⌋
𝑠=𝑃.𝑜.𝑇−

= 𝐸2𝐼𝑏2
𝑑𝜃2
𝑑𝑠
⌋
𝑠=𝑃.𝑜.𝑇+

 

so  

𝜃1
′(𝑃. 𝑜. 𝑇+) =

𝐸1 ∙ 𝐼𝑏1
𝐸2 ∙ 𝐼𝑏2

𝜃2
′(𝑃. 𝑜. 𝑇−) 

 

Finally the shear force just before and after the transition point shall be the same 

 

𝐹(𝑃. 𝑜. 𝑇−) = 𝐹(𝑃. 𝑜. 𝑇+)
 
⇒
𝑑𝑀

𝑑𝑠
⌋
𝑠=𝑃.𝑜.𝑇−

=
𝑑𝑀

𝑑𝑠
⌋
𝑠=𝑃.𝑜.𝑇+

 

 

𝐸1𝐼𝑏1
𝑑2𝜃1
𝑑𝑠2

⌋
𝑠=𝑃.𝑜.𝑇−

= 𝐸2 ∙ 𝐼𝑏2
𝑑2𝜃2
𝑑𝑠2

⌋
𝑠=𝑃.𝑜.𝑇+

 

 

so  the last interface condition becomes 

 

𝜃1
′′(𝑃. 𝑜. 𝑇+) =

𝐸1𝐼𝑏1
𝐸2𝐼𝑏2

𝜃2
′′(𝑃. 𝑜. 𝑇−) 

  

Pipelay installation operation is a continuous process. As the operation progresses, the pipe joints 

are gradually lowered towards the seabed as the vessel moves forward. In order to simulate the 

pipelay process in Matlab, a detailed explanation is given in Chapter 4.3. 

 

4.3 Sequential Model Description 

 

As a first step the common pipelay problem is solved given the water depth, the pipeline 

characteristics and stinger configuration. The pipelay analysis is  done for one pipe element along 

the catenary and the solution gives the values of the angle θ, its 1st and 2nd derivative, the tension 

along the sagbend and the suspended length of the pipe. Having solved the pipelay problem, the 

characteristics of the new section have to be given. It can be a pipeline with different properties or 

an inline structure. In addition to the characteristics, the total length 𝐿𝑎𝑑  of the new section has to 

be determined as an input. 
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In order to formulate each step of the pipe-laying process the code does not solve directly the new 

problem by setting the length of the new element  𝐿𝑎𝑑. At each step a new joint of 12.2 or 24.4 (in 

case of double joint factory) meters of the new section is added to the catenary. The iteration 

method continues until the new section approaches the seabed. At each step of the iteration 

procedure the point of transition (P.o.T.) is determined along the suspended length and the problem 

is solved at once calling the bvp4c function and solving the governing equations 

 

𝐸1𝐼𝑏1
𝑑3𝜃

𝑑𝑠3
− 𝑇

𝑑𝜃

𝑑𝑠
+ 𝑤𝑠1𝑐𝑜𝑠(𝜃1) = 0     𝑎𝑛𝑑     

𝑑𝑇

𝑑𝑠
= 𝑤𝑠1𝑠𝑖𝑛(𝜃1)    𝑓𝑜𝑟 0 ≤ 𝑠 ≤ 𝑃. 𝑜. 𝑇 

    

 

𝐸2𝐼𝑏2
𝑑3𝜃

𝑑𝑠3
− 𝑇

𝑑𝜃

𝑑𝑠
+ 𝑤𝑠2𝑐𝑜𝑠(𝜃2) = 0     𝑎𝑛𝑑      

𝑑𝑇

𝑑𝑠
= 𝑤𝑠2𝑠𝑖𝑛(𝜃2)  𝑓𝑜𝑟 𝑃. 𝑜. 𝑇 ≤ 𝑠 ≤ 𝐿 

      

In the equations above, s is the distance along the pipe span, the left boundary (𝑠 = 0) is located at 

the touchdown point and the right boundary (𝑠 = 𝐿) is located at the stinger tip. In addition, the 

interface conditions are formulated as described before at the transition point.  

 

Based on the variable substitution we used in order to solve the common pipelay problem we have 

𝑠 = 𝜀 ∙ 𝐿 

 

where 𝜀 ∈ [0,1] and L is the total suspended length of the pipe. For each iteration which 

corresponds to the addition of a pipe joint of the new section at the main line, the exact position of 

the transition point between the two different sections is estimated as follows 

 

𝑃. 𝑂. 𝑇. = 1 −
𝑖 ∙ 𝑝. 𝑗. 𝑙.

𝐿
 

 

where i is the index of iteration and  p. j. l. is the length of the additional joint. 

 

For i=0 (first iteration) the suspended length of the pipeline has only one pipe element and the point 

of transition is located at the stinger tip as it can be seen from the equation above P. O. T. = 1. 

Adding more sections of the new pipe the transition point moves further away from the stinger tip 

(it can be better understood from the figures on the next pages). The procedure is continued until 

the additional element approaches the seabed where the transition point is located almost at the 

touchdown point and P. O. T. = 0. 

 

The next sequence of illustrations shows how the code works in practice. 
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 Step No 1 

 

The pipelay problem is solved with one pipe section along the catenary (Figure 4-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Step No 2 

 

A joint of the new section is added at the location of  the stinger tip. The joint has a length of one 

12.2 or 24.4 meters. The new situation is illustrated in Figure 4-3. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pipe Element 1 

 y 

x 

Seabed 

 

s=0 (Touchdown Point)  

s=L (Stinger Tip)  

Pipe Element 1 

 

          Section 2 

Transition Point 

y 

x 

Seabed 

 

s=0 (Touchdown 

Point)  

s=L (Stinger Tip)  

Figure 4-2 Illustration of one pipe element along the catenary 

Figure 4-3 Illustration of two pipe elements along the catenary (1 joint of Section 2) 
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 Step No3 

 

A 2nd joint of the new section is added at the location of  the stinger tip and the length of the 

additional section is gradually increasing. The new situation is illustrated in Figure 4-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The new sagbend configuration includes two joints of the new element. The same procedure 

continues until the total length of the additional  section reaches the seabed. Figure 4-5 shows the 

situation when the whole second element of length Lad is in the catenary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At each step-iteration of the pipelay process the characteristics of the sagbend configuration are 

calculated (angle θ, 𝜃′𝑎𝑛𝑑 𝜃′′) , the axial tension along the suspended length and the total length of 

the catenary. All the physical quantities as the bending moments, the sagbend strains and its 

contributions (bending, tensile and hoop strain) are determined and stored for each step.  

 

Each time a new section of the new structure is added, the unit submerged weight of the whole 

catenary is increased or decreased based on the new pipe's section characteristics. During the first 

steps, because only a small number of joints are added, the contribution of the new pipe section to 

Pipe Element 1 

 

        Section 2 

Transition Point 

 

y 

x 

Seabed 

 

s=0 (Touchdown Point)  

s=L (Stinger Tip)  

Figure 4-4 Illustration of two pipe elements along the catenary (2 joints of Section 2) 

 

Total Length Lad 

Pipe Element 1 

 

Section 2 

Transition Point 

 

y 

x 

Seabed 

 

s=0 (Touchdown Point)  

s=L (Stinger Tip)  

Figure 4-5 Illustration of two pipe elements along the catenary (whole section 2 in the catenary) 
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the submerged weight is small.  However, gradually as the number of the elements of the new pipe 

section increases at the whole catenary, the submerged weight changes significantly. The change at 

the submerged weight has as an influence a change at the required tension applied in order to keep 

tip separation and sagbend strain within the acceptable limits. 

  

In the case of installation of inline structures more elements are added at each side of the structure 

as transitions with the main pipeline, in order to ensure the structural integrity of the system. The 

reason for that is that the inline structures are much heavier and stiffer than the main pipe that is 

installed and there is need for a smooth transition to avoid failure of the main pipe due to buckling.  

 

In that case the problem described above is solved with the same way, with the only difference that 

there are more transition points, depending on the total number of the different elements. Figure 

4-6 shows a case where there are 4 different elements at the main line of the catenary. As it can be 

seen there are 4 transition points (indicated with numbers) which change position at each step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At each step the governing equations that are solved are written below. 

 

𝐸𝑖𝐼𝑖
𝑑3𝜃

𝑑𝑠3
− 𝑇

𝑑𝜃

𝑑𝑠
+ 𝑤𝑖𝑐𝑜𝑠(𝜃) = 0     &     

𝑑𝑇

𝑑𝑠
= 𝑤𝑖𝑠𝑖𝑛(𝜃) 

 

where the values of the constants depend on the position of s.  

 

For 0 < 𝑠 ≤ 𝑃. 𝑜. 𝑇1 𝑎𝑛𝑑  𝑃. 𝑜. 𝑇4 < 𝑠 ≤ 𝐿   EiIi = E2Ib2 &  wi = ws2 
 

For P. o. T1 < 𝑠 ≤ 𝑃. 𝑜. 𝑇2     EiIi = E2Ib2  &  wi = ws2 
 

For P. o. T2 < 𝑠 ≤ 𝑃. 𝑜. 𝑇3     EiIi = EILSIILS  &  wi = wILS 
 

For P. o. T3 < 𝑠 ≤ 𝑃. 𝑜. 𝑇4     EiIi = E3Ib3  &  wi = ws3 

 

 

Figure 4-6 Catenary with a main pipe, additional elements and ILS Seabed 
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s=0 (Touchdown Point)  
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s=L (Stinger Tip)  
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4.3.1 Determination of axial tension at stinger tip with varying submerged weight along 

the catenary 

 

Because of the varying submerged weight along the catenary, the axial tension at each point of the 

suspended length of the pipeline, as well as at the stinger tip (the fifth boundary condition) has to 

be modified. Based on equation 3.2  the axial tension at each point of the catenary (below sea water 

level) can be calculated based on equation below 

   

                                                                              𝑇 = 𝑇ℎ +𝑤𝑠𝐷                                                                      [𝟓. 𝟏] 

 

In the case that along the catenary there are pipe sections with different submerged weight, as 

illustrated in Figure 4-7, the axial tension at each point along the catenary is estimated based on the 

vertical position of the point of transition 𝑦𝑃.𝑜.𝑇. between the pipe sections and the vertical position 

at the point of interest (in case of stinger tip 𝐻𝑠.𝑡.) . According to Figure 4-7 the axial tension at the 

stinger tip is given as follows 

 

𝑇(𝑠𝑡) = 𝑇ℎ +∫ 𝑤𝑠1

𝑦𝑃.𝑜.𝑇.

0

𝑑𝑦 + ∫ 𝑤𝑠2

𝐻𝑠.𝑡.−𝑦𝑃.𝑜.𝑇.

𝑦𝑃.𝑜.𝑇.

𝑑𝑦
 
⇒ 

 

𝑇(𝑠𝑡) = 𝑇ℎ +𝑤𝑠1 ∙ (𝑦𝑃.𝑜.𝑇.) + 𝑤𝑠2 ∗ (𝐻𝑠.𝑡.−𝑦𝑃.𝑜.𝑇.) 

 

where 𝑤𝑠1  and 𝑤𝑠2 are the unit submerged weights ofpipe element 1 and 2 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The principle of the determination of the axial tension remains the same for more pipe sections 

along the catenary. The equation for the determination  of the axial tension at the stinger for N pipe 

sections along the catenary 

 

𝑇(𝑠𝑡) = 𝑇ℎ +∫ 𝑤𝑠(1)

𝑦𝑃.𝑜.𝑇.𝟏

0

𝑑𝑦 + ∫ 𝑤𝑠2

𝑦𝑃.𝑜.𝑇.𝟐

𝑦𝑃.𝑜.𝑇.1

𝑑𝑦+. .∫ 𝑤𝑠(𝑖+1)

𝑦𝑃.𝑜.𝑇.𝒊+𝟏

𝑦𝑃.𝑜.𝑇.𝑖

𝑑𝑦. . +∫ 𝑤𝑠(𝑁+1)

𝐻𝑠.𝑡.

𝑦𝑃.𝑜.𝑇.𝑁

𝑑𝑦 

 

 

Figure 4-7 Determination of stinger tip tension with various pipe sections along the catenary 
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5.0 PIPELINE ROTATION 

 

5.1 Introduction to pipe rotation phenomenon 

 
Subsea pipelines have the tendency to rotate during installation. This rotation can have multiple 

causes which are interfering with each other. Specifically, during S-lay installations, the pipe is 

exposed to plastic strains when it passes over the stinger exceeding a certain curvature. This residual 

curvature causes the pipeline to rotate along its suspended length. Additional causes which 

contribute to pipe rotation are possible tensioner misalignments (not considered in the model). 

Pipeline rotation is dependent on many factors such as water depth, pipeline characteristics 

(bending stiffness, submerged weight, etc.) and pipe tension. It is still unclear how these different 

contributions combine together.  

 

When structures are installed in the pipeline it is necessary to determine the amount of rotation in 

the line, in order to ensure installation within acceptable limits. Because of the increasingly deep 

waters and the fact that the structures attached on the pipelines become heavier and more 

complex, there is a need to extend our knowledge on rotation problem. Due to the complexity of 

the phenomenon and its relative harmlessness during conventional installations, rotation has been – 

so far – mostly overlooked by the various actors of the Pipeline Engineering world. 

 

In the literature, Bynum & Havik (1981) investigate the pipeline rotation phenomenon, employing 

an internal and external work balance approach. Damsleth et al. (1999) deals with the consequences 

of the plastic strain that can occur in the outer fibers of the pipe as it passes over the stinger during 

laying. Endal et al. (1995) deal with the behavior of offshore pipelines subjected to residual 

curvature during laying and approach the roll prediction in three different ways [16]. 

 

5.2 The effect of the residual curvature 

 

During S-lay method, the pipe extends from the tensioners, bends over the stinger (overbend), and 

while sloping downward through the water (sagbend), bends gradually in the opposite direction 

onto the horizontal seabed. The tensioners provide the upper support for the pipe while the seabed 

provides the lower support, where residual tension is balanced by soil friction.  

 

Pipe laying vessels have gradually adapted to the technical challenges of deep water projects by 

increasing their tension capacity and stinger length. The larger laying vessels have reached physical 

limitations, where further increase in their capacity would, in principle, be too costly for a low-price 

scenario. Taking advantage of the pipe strength capacity, curving the stinger more sharply to obtain 

steeper departure angles is a cost-effective alternative to the tension required to install the pipeline 

is lower.  

 

Decreasing the stinger radius has as a consequence an increase of the total strains in the overbend 

region. In many cases, the deformations exceed the elastic limit of the pipe's material and the 

pipeline is exposed to plastic strains when it passes over the stinger. As a result it leaves the 

overbend with a residual curvature. As the pipe moves through the suspended section of the 

catenary (sagbend), it is bent in the reverse direction. If the pipe had been plastically deformed 
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when passing over the stinger, the reverse bending occurs partially through bending and partially 

through rotating. The physical reason for this rotation is detailed and illustrated below 

 

1. While passing over the stinger the pipe is exposed to plastic deformations. 

 

 

 

 

 

 

 

 

 

 

2. The pipe possess a residual curvature which is oriented as the overbend curvature.  

 

 

 

 

 

 

 

 

 

 

 

 

3. While travelling through the sagbend , the pipe will be exposed to increasingly high bending 

moments, which act at the opposite direction of the residual curvature pipe. In order to 

facilitate the reversed bending in the sagbend area, the pipe may rotate to orientate its natural 

curvature favorably towards the direction of the sagbend curvature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 Pipeline over the stinger exposed to plastic strains 

 

 

Figure 5-2 Residual radius of pipe because after the overbend region 

Figure 5-3 Sagbend radius of pipe along the catenary 
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In the following figures two "extreme" cases will be illustrated. At the first case the pipe is not 

rotated (0o degrees rotation) while at the second case the pipe is rotated 180o degrees. 

 

 

 

 

 

 

 

 

In case of no rotation, the pipe in order to take the sagbend curvature has to overcome the residual 

curvature from the overbend. According to that, the total bending moment in the sagbend will be 

increased and estimated as follows 

 

𝑀 = 𝐸 ∙ 𝐼𝑏 ∙ (
1

𝑅𝑆𝐵
+
1

𝑅𝑟
) 

 

In the case of 180o rotation, the residual curvature from the overbend is reversed in the direction of 

the sagbend curvature. Based on that, the pipe is already in the preferable configuration and the 

total bending moment in the sagbend will be decreased 

 

𝑀 = 𝐸 ∙ 𝐼𝑏 ∙ (
1

𝑅𝑆𝐵
−
1

𝑅𝑟
) 

 

 

 

 

 

 

 

The amount of pipe rotation depends on several parameters. The residual curvature is the "driving 

force" for the pipeline rotation. In general higher values of residual curvature lead to higher amount 

of rotation while if it lies below a certain threshold value, depending on the project, the rotation 

may not happen. In addition, the level of sagbend strains will determine the willingness of the 

suspended pipe to rotate in order to accommodate to the residual curvature. The suspended length 

of the pipe at sagbend is also  important as it determines the torsional stiffness of the catenary, 

therefore allowing, or not, the pipe to rotate. 

 

In the literature one paper deals with the rotation problem of a pipeline installed using the S-lay 

method, Geir Endal, Odd B. Ness and Richard Verley (1995) [16]. The paper deals with the pipe 

rotation problem employing a simplified energy approach, which is based on minimising the work 

conducted in the sagbend due to the reversed bending of the pipeline. The next chapter gives an 

insight about the method. 

 

Figure 5-4 Simplified illustration of a pipe section from overbend 
to sagbend with 0

o
 rotation 

Figure 5-5 Simplified illustration of a pipe section from overbend 
to sagbend with 180

o
 rotation 

RSB Rr Rs 
180o rotation 

RSB Rs 
0o rotation 

Rr 
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5.3 Endal's Approach 

 

The underlying principle of Endal's calculation method is that along the catenary, which is not 

subjected to external forces, the pipeline will adopt the configuration for which its total mechanical 

energy is minimized. The approach complies with the following assumptions: 

 

The pipeline rotation is assumed to occur between the inflection point and the touchdown point. 
 
The pipeline is exposed to plastic strains over the stinger and as a result has a residual curvature 𝑘𝑟 
due to bending at the overbend. 
 
The sagbend pipe curvature 𝑘(𝑠) is assumed to be the sum of the following contributions 

 
                                                                     𝑘(𝑠) = 𝑘0(𝑠) + 𝑘𝑟𝑐𝑜𝑠𝜑(𝑠)                                                        [𝟓. 𝟏] 

 
where 𝑘0(𝑠) is the nominal pipeline curvature function along the catenary [𝑚−1] , represented by a 
2nd order polynomial and 𝜑(𝑠) is the rotation angle function along the catenary represented by a 3rd 
order polynomial.  

 
The boundary conditions used to find the coefficients of the rotation angle function are the following 

 

 φ(0) = 0 – Rotation angle at the inflection point is zero. 

 φ′(0) = 0 – Derivative of the rotation angle (torque) at the inflection point is zero. 

 φ(𝐿) = 𝜑0 – Rotation angle at the touchdown point is φ0 (unknown). 

 φ(𝐿) = 0 – Derivative of the rotation angle (torque) at the touchdown point is zero. 
 

Applying the boundary conditions the rotation angle function is expressed as follows 

 

φ(𝑠) = −2𝜑0
𝑠3

𝐿3
+ 3𝜑0

𝑠2

𝐿2
 

 

The term 𝑘𝑟𝑐𝑜𝑠𝜑(𝑥) is called “apparent residual curvature” and it expresses the projection of the 
residual curvature in the plane of the catenary, assuming pipe-laying as a 2D problem.  

 
The total energy in the sagbend is assumed to consist of a rotation contribution 𝑊𝑅 and a bending 
contribution 𝑊𝐵 and is expressed by : 

 

𝑊𝑇 = 𝑊𝛣 +𝑊𝑅 

 

As mentioned in previous chapters the bending moment along the catenary is determined by the 

following expression 

𝑀 = 𝐸𝐼𝑏𝑘(𝑠) 

 

Taking into account the residual curvature, based on equation 6.1, the total work due to bending 

along the suspended length is 

𝑊𝛣 = 𝐸𝐼𝑏∫(𝑘0(𝑠) + 𝑘𝑟𝑐𝑜𝑠𝜑(𝑠))
2 ds

L

0
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The work because of the rotation of the pipe along the catenary can be written as follows 

 

𝑊𝑅 = 𝐺𝐼𝑡∫(
dϕ

ds
)

2

 ds

L

0

 

 

where φ(s) is the rotation angle function along the catenary, G is the shear modulus of steel [Pa] and 

It is the polar moment of inertia of the pipe in [m4]. The minimization of the total Energy accounts 

for the fact that the pipeline will benefit from aligning its residual curvature towards the sagbend 

curvature. Since pipe rotation is driven by the reduction of internal forces along the catenary, 

Energy minimization is the most straightforward method to determine it.  

 

An example of Endal's approach, with graphical representation is given below for the first case study 

(see Chapter 6.2.1.1). 

 

The nominal curvature 𝑘0(𝑠) distribution along the length, based on the 2nd order shape 

assumption is illustrated in Figure 5-6. 

 

 
Figure 5-6 Curvature along the catenary based on Endal's approach 

An illustration of the rotation angle profile along the catenary for different TDP rotation angles 𝜑0 is 

shown in Figure 5-7. 

 

  
Figure 5-7 Rotation angle profiles for different touchdown point angles 𝝋𝟎 
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Taking into account the residual curvature 𝑘𝑟 and the rotation profiles for the different TDP rotation 

angles (see Figure 5-7), the new curvature distribution along the catenary based on equation 6.1 is 

shown in Figure 5-8. 

 

 
Figure 5-8 Curvature profiles taking into account the residual curvature for various TDP angles 𝝋𝟎  

 

Having all the needed information for the pipeline characteristics, bending, torsion and total energy 

can be determined based on the equations shown above, for various TDP angles 𝜑0.  Figure 5-9 

shows the a graphical representation of these calculations for the case study. As mentioned before 

the rotation angle 𝜑0 for which the total energy is minimized, is the actual rotation angle at the 

touchdown point 𝜑𝑇𝐷𝑃 according to Endal's approach 

 

 

 
Figure 5-9 Bending, Torsion and Total energy of the pipeline for various TDP rotation angles 𝝋𝟎 
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Although  the main principle used by Endal's theory is correct, the assumptions made on both 

curvature and rotation profile function are not valid.  Figure 5-10 shows the difference at the 

curvature shape along the catenary for the 4 cases which were conducted (see Chapter 3.3.4).  

 

Figure 5-10 Curvature obtained by pipelay analysis (Actual Curvature) and Endal’s Approach 

 

As it can be seen for all the case studies there is significant difference between the curvature 

assumed by Endal’s approach and the actual curvature. The simplified method proposed will not be 

further discussed here as it has been rendered obsolete by the use of modern numerical methods. 

In the next chapter the mathematical model and its implementation in Matlab will be described in 

detail. 
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6.0 PIPELINE ROTATION MATHEMATICAL MODEL 

 

6.1 Pipeline Rotation Model Improvements 

 

In order to determine the rotation profile, a numerical implementation of Lagrangian minimization 

is used. Unlike the original method described by Endal, the method used here does not require an 

assumption on the shape of the rotation function along the catenary. Instead, it relies on numerical 

minimization to find the arbitrary roll function that will induce the least amount of Energy to the 

pipe. Also, the curvature function 𝑘0(𝑠) is not represented as a 2nd order polynomial, an assumption 

not valid (see Figure 5-10), as it is already determined by the pipelay analysis described in previous 

chapters. Finally, after the mathematical formulation which  will be described in the next chapter, 

the boundary conditions needed for the rotation problem are two instead of four used at the Endal's 

approach.  

 

6.2 Lagrangian Minimization 

 

Based on the energy minimization principle, firstly the total strain energy in the pipe has to be 

defined. As mentioned in chapter 3.2.1 the pipeline is considered as a beam under the combined 

loading of tension, bending and torsion. Not considering in the model coupling between the 

different loads (coupling between bending and torsion will be discussed in later chapter) the strain 

energy along the suspended length of the pipe can be written 

 

𝑊𝑇 = 𝑊𝑎𝑥 +𝑊𝛣 +𝑊𝑅 
 

Where 𝑊𝐴𝑥 is the work due to the axial tension and can be written 

                                                                   Wax =
1

2
∫𝐸𝐴[𝑢𝑎𝑥

′ (𝑠)]2𝑑𝑠                                                         [𝟔. 𝟏] 

𝐿

0

 

 

and 𝑢𝑎𝑥
′ (𝑠) is the axial displacement per unit length (axial strain) of pipe. 

 

The total work due to bending can be written as 

 

                                                                 WB   =
1

2
∫𝐸𝐼𝑏[𝑘(𝑠)]

2𝑑𝑠                                                              [𝟔. 𝟐] 

𝐿

0

 

Where 𝑘(𝑠) is the curvature and depends on rotation function based on equation 6.1 . 

 

The work due to torsion is expressed by 

 

                                                                  WR =
1

2
∫𝐺𝐼𝑡[𝜑

′(𝑠)]2𝑑𝑠

𝐿

0

                                                             [𝟔. 𝟑] 

 

Where 𝜑′(𝑠) is the rotation per unit length of pipe. The derivation of energy expression is shown in  

Based on the above the total work of a pipeline with suspended length L can be written 
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𝑊𝑇 =
1

2
[∫𝐸𝐴[𝑢𝑎𝑥

′ (𝑠)]2𝑑𝑠 

𝐿

0

+∫𝐸𝐼𝑏[𝑘(𝑠)]
2𝑑𝑠 +

𝐿

0

∫𝐺𝐼𝑡[𝜑
′(𝑠)]2𝑑𝑠

𝐿

0

] 

 

Based on Lagrangian mechanics the rotation function ϕ(s) for which the total energy of the pipeline 

will be minimized, can be found from the following equation 

 

                                                                      
d

ds
(
∂ℒ

∂ϕ′
) −

∂ℒ

∂ϕ
= 0                                                                     [𝟔. 𝟒] 

 

Where ℒ is the total energy of pipe element of length ds, so 

 

ℒ =
1

2
[𝐸𝐴[𝑢𝑎𝑥

′ (𝑠)]
2
+ 𝐸𝐼𝑏[𝑘(𝑠)]

2 + 𝐺𝐼𝑡[𝜑
′(𝑠)]

2
] 

 

Substituting the term 𝑘(𝑠) with 

 

𝑘(𝑠) = 𝑘0(𝑠) + 𝑘𝑟𝑐𝑜𝑠𝜑(𝑠) 

 

The expression of ℒ becomes 

 

ℒ =
1

2
[𝐸𝐴[𝑢𝑎𝑥

′ (𝑠)]
2
+ 𝐸𝐼𝑏[𝑘0(𝑠) + 𝑘𝑟𝑐𝑜𝑠𝜑(𝑠)]

2 + 𝐺𝐼𝑡[𝜑
′(𝑠)]

2
] 

 

Expanding the second square we get 

 

ℒ =
1

2
[𝐸𝐴[𝑢𝑎𝑥

′ (𝑠)]2 + 𝐸𝐼𝑏𝜅0
2(𝑠) + 2𝐸𝐼𝑏𝜅0(𝑠)𝜅𝑟 𝑐𝑜𝑠 𝜑(𝑠) + 𝐸𝐼𝑏𝜅𝑟

2𝑐𝑜𝑠2𝜑(𝑠) + 𝐺𝐼𝑡[𝜑
′(𝑠)]2] 

 

Taking into account that the axial strain 𝑢𝑎𝑥
′ (𝑠) is independent of the rotation angle 𝜑(𝑠) and based 

on equation 7.4 and the expression above becomes 

 

∂ℒ

∂ϕ
=
1

2
[−2𝐸𝐼𝑏𝜅0(𝑠)𝜅𝑟 𝑠𝑖𝑛𝜑(𝑠) − 2𝐸𝐼𝑏𝜅𝑟

2𝑐𝑜𝑠𝜑(𝑠)𝑠𝑖𝑛𝜑(𝑠)] 

 

and  

d

ds
(
∂ℒ

∂ϕ′
) =

d

ds

1

2
(2𝐺𝐼𝑡𝜑

′(𝑠)) =
1

2
[2𝐺𝐼𝑡𝜑

′′(𝑠)] 

 

So the energy minimization equation [7.4] can be written 

 

1

2
[2𝐺𝐼𝑡𝜑

′′(𝑠)] −
1

2
[−2𝐸𝐼𝑏𝜅0(𝑠)𝜅𝑟 𝑠𝑖𝑛 𝜑(𝑠) − 2𝐸𝐼𝑏𝜅𝑟

2𝑐𝑜𝑠𝜑(𝑠)𝑠𝑖𝑛𝜑(𝑠)] = 0 
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Based on the expression above the differential equation that describes the rotation profile function 

is 

 

                    𝜑′′(𝑠) +
𝐸𝐼𝑏
𝐺𝐼𝑡
𝜅0(𝑠)𝜅𝑟 𝑠𝑖𝑛𝜑(𝑠) +

𝐸𝐼𝑏
𝐺𝐼𝑡
𝜅𝑟
2𝑐𝑜𝑠𝜑(𝑠)𝑠𝑖𝑛𝜑(𝑠) = 0,   s ∈ [0, L]                    [𝟔. 𝟓] 

 

It should be mentioned that at the equation above 𝜅0(𝑠) is the sagbend curvature function along 

the catenary which is already determined by the pipe-lay problem described in previous chapters. 

The residual curvature 𝜅𝑟 is based on pipe properties, the maximum bending strains and associated 

tension. 

 

The differential equation is of second order so there is need of two boundary conditions. These 

boundary conditions can be imposed to the rotation angle itself, or its derivative, which is 

proportional to the torque. For Pipelay operations, the most natural boundary conditions to start 

with are: 

(𝟏) 𝜙(0) = 0                  (𝟐) 
𝑑𝜙

𝑑𝑠
|
𝑠=𝐿

= 0 

The first boundary condition imposes that the rotation at the origin (stinger tip) is zero. Assuming 

that the rotation starts at the point where the reverse bending begins  (inflection point).  

 

The second boundary condition expresses the fact that, during a steady-state pipe-laying process 

(uniform pipe properties, constant tension and constant water depth), the rotation at touchdown 

point will not change. The orientation of the laid pipe is constant near touchdown point, therefore 

the derivative of the roll profile is zero.  

 

The differential equation described in equation 6.5 and the set of boundary conditions are solved 

using Matlab boundary value solver bvp4c. The boundary value problem must first be rewritten in a 

state space system using  y1 = ϕ(s) and y2 = ϕ
′(s) as shown below 

 

𝑀𝑎𝑡𝑙𝑎𝑏 𝐼𝑛𝑝𝑢𝑡 

{
 
 
 
 
 

 
 
 
 
 

𝑦1
′ = 𝑦2
 

𝑦2
′ = 𝑀 ⋅ 𝑠𝑖𝑛(𝑦1) + 𝑁 ⋅ 𝑐𝑜𝑠(𝑦1) 𝑠𝑖𝑛(𝑦1), 𝑠 ∈ [0, 𝐿]

 

𝑀 = −
𝐸𝐼𝑏
𝐺𝐼𝑡
𝜅0(𝑠)𝜅𝑟

 

𝑁 = −
𝐸𝐼𝑏
𝐺𝐼𝑡
𝜅𝑟
2

 
𝑦1(0) = 0

 
𝑦2(𝐿) = 0 }

 
 
 
 
 

 
 
 
 
 

 

 

For the all the cases which were presented in Chapter 3.3.4, the rotation angle profile was estimated 

along the catenary. For each case study the residual radius was obtained from BendPipe based on 

the maximum bending strain at the overbend and the corresponding axial tension. For each case the 

effect of the residual radius/curvature is shown at the rotation profile 
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6.2.1.1 Case study No1 

 

Quantity Value Unit 

Maximum Overbend Strain 0.28 [%] 

Residual Radius 511.1 [𝑚] 

Touchdown Point Rotation Angle 118.099 [𝐷𝑒𝑔] 

Table 6-1 Rotation profile data (Case Study N
o
1) 

 
Figure 6-1 Rotation Angle profile along the catenary (Case N

o
1) 

 

 
Figure 6-2 Rotation Angle profiles for different residual curvature (Case N

o
1) 
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6.2.1.2 Case study No2 

 

Quantity Value Unit 

Maximum Overbend Strain 0.276 [%] 

Residual Radius 360.6 [𝑚] 

Touchdown Point Rotation Angle 40.578 [𝐷𝑒𝑔] 

Table 6-2 Rotation profile data (Case Study N
o
1) 

 
Figure 6-3 Rotation Angle profile along the catenary (Case Study N

o
1) 

 
Figure 6-4 Rotation Angle profiles for different residual curvature (Case N

o
2) 
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6.2.1.3 Case study No3 

 

Quantity Value Unit 

Maximum Overbend Strain 0.2356 [%] 

Residual Radius 791 [𝑚] 

Touchdown Point Rotation Angle 63.702 [𝐷𝑒𝑔] 

Table 6-3 Rotation profile data (Case Study N
o
3) 

 
Figure 6-5 Rotation Angle profile along the catenary (Case Study N

o
3) 

 

 
Figure 6-6 Rotation Angle profiles for different residual curvature (Case N

o
3) 
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6.2.1.4 Case Study No4 

 

Quantity Value Unit 

Maximum Overbend Strain 0.15 [%] 

Residual Radius 2262 [𝑚] 

Touchdown Point Rotation Angle 88.735 [𝐷𝑒𝑔] 

Table 6-4 Rotation profile data (Case Study N
o
1) 

 
Figure 6-7 Rotation Angle profile along the catenary (Case Study N

o
4) 

 

 
Figure 6-8 Rotation Angle profiles for different residual curvature (Case N

o
4) 
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 As it can be seen from the figures above the rotation profile along the catenary has the same shape 

for all the cases studied. Depending on the residual radius, the characteristics of the pipe and the 

stinger configuration touchdown point rotation angle differs. In order to have a better 

understanding of the relationship between the TDP rotation angle is found for a large range of 

values of the residual radius as shown in  Figure 6-9. 

 

Figure 6-9 Relation between residual radius and touchdown point angle 

 

Based on Figure 6-9 it is noticed that for all the case studies the reduction of the residual radius - 

increase of the residual curvature -  has as a result the increase of the touchdown point rotation 

angle. However, for extreme low values of residual radius it can be seen that the touchdown point 

rotation angle decreases. In addition, it should be mentioned that for all the cases there is a 

threshold value of residual radius for which the pipeline does not rotate along the catenary and thus 

the TDP angle equals to zero. If the residual radius exceed that threshold value there is a steep 

increase of the touchdown angle.  
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6.3 Inline Structure Rotation Model 

 

Although rotation is harmless for the pipeline itself, when an inline structure is attached to the pipe, 

it usually needs to be installed within certain verticality tolerance to allow for future connections or 

ROV access. Examples of inline structure are shown in Figure 6-10 and Figure 6-11. 

 
Figure 6-10 Inline Structure being transported 

 

 
Figure 6-11 Inline Structure during  installation 

The determination of ILS rotation during its installation is performed based on Lagrangian 

minimization principle, as described in Chapter 6.2. The minimization method considers two 

separate pipe catenaries. The first part of the catenary starts at the stinger tip, ending at the inline 

structure, also called “pre ILS” catenary. The second part of the catenary starts at the position of the 

inline structure and ends at the touchdown point, known as “post ILS” catenary. 
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A simplified illustration of the ILS along the catenary and the two parts is shown in Figure 6-12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen from Figure 6-10 and Figure 6-11 inline structures are much heavier than the 

pipeline. In addition, their center of gravity is above the centerline of the pipe. Because of these 

facts, the presence of an ILS in the catenary can result to a destabilizing torque (or overturning 

moment) and as a consequence to rotation instability.  

 

Taking into account that the most relevant properties for rotation estimation is the total submerged 

weight as well as the location of the center of gravity with respect to the pipe centerline, the 

overturning moment induced by the ILS is calculated with the following formula 

 

                                                      𝑇𝐼𝐿𝑆 = 𝑤𝐼𝐿𝑆 ∙ ℎ𝐶𝑜𝐺 ∙ 𝑐𝑜𝑠 (𝜃) ∙ 𝑠𝑖𝑛 (𝜙𝐼𝐿𝑆)                                                   [𝟔. 𝟔] 

Where 

 

- 𝑇𝐼𝐿𝑆 is the overturning moment in [Nm] 

- 𝑤𝐼𝐿𝑆 is the total submerged weight in [N] of the inline structure 

- ℎ𝐶𝑜𝐺  is the distance in [m] between the centre of gravity of the inline structure and the pipe 
centreline. 

- 𝜗  is the horizontal angle of the pipe at the ILS location, 

- 𝜙𝐼𝐿𝑆 is the rotation angle at the ILS 
 
 
 
 
 
 
 

 

 

 

Figure 6-12 Illustration of ILS along the catenary with pre and post catenary parts determination 
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As mentioned above, whenever an inline structure is installed, mitigation measures are determined 

in order to reduce the amount of rotation. The mitigation is generally done by one or more 

buoyancy modules which act on the pipe catenary through a  yoke.  

 

Including a buoyancy module in the catenary is shown in Figure 6-14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In most of the cases effect of the buoyancy module depends on the pipeline configuration and its 

angle 𝜃 with the horizontal. When the pipe is nearly the vertical configuration (𝜃 = 90°) the lever 

arm between the effective buoyancy force and the axis of rotation is very small, having as a 

consequence a limited effect of the buoyancy in the reduction of the rotation angle of the ILS.  On 

the other hand, when ILS is nearly the horizontal configuration (i.e. when it approaches the seabed) 

the effect of the buoyancy module increases, reducing considerably the rotation angle of the ILS.   

 

 

An illustration of the ILS and the unrestrained buoyancy module configuration in different positions 

along the catenary can be seen in Figure 6-15. 

Yoke 

Figure 6-13 Simplified illustration of an ILS attached in the main pipeline in x-y and y-z plane 

Figure 6-14 ILS along the catenary with buoyancy module 
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When a higher efficiency of the buoyancy module is required, restrained buoyancy configuration is 

used, where the effect of the buoyancy module does not depend on the pipeline configuration and 

its angle 𝜃 with the horizontal. An illustration of the ILS and the restrained and unrestrained 

buoyancy module configuration can be seen in Figure 6-16. 

 

Figure 6-16 shows the unrestrained and restrained buoyancy arrangement configuration under a 

rotation angle of ILS φILS in the x-y and the y-z plane respectively. Buoyancy arrangements in x-y 

plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-16 Sketch of unrestrained and restrained buoyancy arrangement (x-y plane) 
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Figure 6-15 ILS and unrestrained buoyancy module in different positions along the catenary 
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In the case of the unrestrained buoyancy module arrangement the lever arm depends on the angle 

between the yoke and the pipeline. As it can be seen from Figure 6-16 this angle is equal to 
𝜋

2
− 𝜃.  

The lever arm can is determined based on the equation 

 

𝐿 = 𝐿𝑦𝑜𝑘𝑒 ∙ 𝑠𝑖𝑛 (
𝜋

2
− 𝜃) = 𝐿𝑦𝑜𝑘𝑒 ∙ 𝑐𝑜𝑠(𝜃) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the restrained buoy arrangement the lever arm is constant and equals to the yoke length. As it 

can be seen from Figure 6-18 which shows the buoyancy arrangement under a rotation angle of ILS 

φILS  in the y-z plane. 

 

 

 

 

 

 

 

 

 

 

 

 

Both for the unrestrained and for the restrained buoyancy configuration, force 𝐹𝑣1 causes the 

counteracting torque 

 

𝑇𝑏𝑢𝑜𝑦 = 𝐹𝑣1 ∙ 𝐿 

Figure 6-18 Sketch of restrained buoyancy arrangement (y –z plane) 

 

Lyoke 

𝐹𝑣2 
𝐹𝑣1 

𝐹𝑣 

φILS

φILS 

Figure 6-17 Unrestrained buoy simplified illustration 
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Force can be determined as follows 

𝐹𝑣1 = 𝐹𝑣 ∗ 𝑠𝑖𝑛(𝜙𝐼𝐿𝑆) = 𝐹𝑏𝑢𝑜𝑦 ∙ 𝑐𝑜𝑠(𝜗) ∙ 𝑠𝑖𝑛(𝜙𝐼𝐿𝑆) 

 

The lever arm for the unrestrained buoy equals to 𝐿 = 𝐿𝑦𝑜𝑘𝑒 ∙ 𝑐𝑜𝑠(𝜃) 

 

so the counteracting torque is calculated based on the following equation 

 

                                                     𝑇𝑏𝑢𝑜𝑦(𝑢𝑛) = 𝐹𝑏𝑢𝑜𝑦 ∙ 𝑐𝑜𝑠
2(𝜗) ∙ 𝑠𝑖𝑛(𝜙𝐼𝐿𝑆) ∙ 𝐿𝑦𝑜𝑘𝑒                                  [𝟔. 𝟕] 

 

while for the restrained buoy the lever arm equals to 𝐿 = 𝐿𝑦𝑜𝑘𝑒 

 

so the counteracting torque is determined by 

 

                                                       𝑇𝑏𝑢𝑜𝑦(𝑟) = 𝐹𝑏𝑢𝑜𝑦 ∙ 𝑐𝑜𝑠(𝜗) ∙ 𝑠𝑖𝑛(𝜙𝐼𝐿𝑆) ∙ 𝐿𝑦𝑜𝑘𝑒                                     [𝟔. 𝟖] 

Where 

 

- 𝑇𝑏𝑢𝑜𝑦 is the counteracting torques in [Nm] 

- 𝐹𝑏𝑢𝑜𝑦 is the net buoyancy force (uplift) in [N] 

- 𝐿𝑦𝑜𝑘𝑒 is the length of the yoke of the buoy (see Figure 6-18) in [m] 

- 𝜗  is the horizontal angle of the pipe at the ILS location, 

- 𝜙𝐼𝐿𝑆 is the rotation angle at the ILS 
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6.4 In-Line Structure Equilibrium 

 

Based on the above, ILS is subject to 

 

1. Overturning moment due to its weight and location of centre of gravity 
2. Counteracting moment due to the buoyancy forces  
3. Internal torque from the pipeline 
 
The equilibrium of torques around the pipeline axis at the ILS can be expressed by the following 
equation 

 

                                             𝑇𝑏𝑢𝑜𝑦(𝜙𝐼𝐿𝑆)− 𝑇𝐼𝐿𝑆(𝜙𝐼𝐿𝑆)− 𝑇𝑝𝑖𝑝𝑒(𝜙𝐼𝐿𝑆) = 0                                   [𝟔. 𝟗]  

 

As it can be seen from equations 7.6,  7.7 and 7.8, TILS and Tbuoy are both dependent on the rotation 

angle at the position of the inline structure. The internal torque of the pipe, Tpipe  depends on the 

pipeline rotation profile for a given ILS angle and therefore doesn’t have a simple analytical 

expression. In order to determine the equilibrium state, the catenary is split in two parts (catenary 

before and after ILS) and is solved using energy minimization principle for different ILS rotation 

angles 𝜙𝐼𝐿𝑆. The angle 𝜙𝐼𝐿𝑆for which the internal torque of the pipe equals to the combined torque 

induced from the buoyancy module and the ILS (see eq. 7.9) gives the equilibrium state of the 

catenary.  

 

Figure 6-19 shows the two parts of the catenary and a simplified illustration of the pipe torque at 

the stinger tip, the touchdown point and the two sides of the inline structure. It should be 

mentioned that the torques T1 and T2 illustrated are calculated by the equations 

 

𝑇1 = 𝐺 ∙ 𝐼𝑡 ∙ 𝜙1
′ (𝜙

𝐼𝐿𝑆
(𝑖))   @ 𝑥 = 𝑥𝐼𝐿𝑆 

and 

𝑇2 = 𝐺 ∙ 𝐼𝑡 ∙ 𝜙2
′ (𝜙

𝐼𝐿𝑆
(𝑖))   @ 𝑥 = 𝑥𝐼𝐿𝑆 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 6-19 Illustration of ILS along the catenary with internal torques 

𝑥 = 𝑥𝐼𝐿𝑆 
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The procedure discussed above, is described in detail in the following steps including graphical 

representation of a case with a 20" pipe, in 2237 meters water depth with a total suspended length 

of 3020 meters . Two cases will be illustrated. At the 1
st

 case an inline structure and a buoyancy 

module of 200 kN are positioned at a distance of 1400 meters along the catenary from the stinger 

tip and at the 2nd case they are located 2400 meters from the stinger tip. Thus, 

 
1. Apply Lagrangian minimization principle in order to find the rotation profile with no ILS  

along the catenary. Based on the solution, the angle at  touchdown point 𝜙𝑇𝐷𝑃 is known.  
 

 
Figure 6-20 Rotation Profile along the catenary without ILS 

2. Determination of the inline structure location xILS   along the catenary . 
 

3. Split the rotation problem into two parts.   
 
a) The first part describes the rotation profile between the origin of the catenary (stinger 

tip) and the ILS position (xILS). See Figure 6-14, “pre-ILS” catenary part. 
 

b) The second part describes the rotation profile between the ILS position (xILS)and the 
touchdown point. See Figure 6-14, “post-ILS” catenary part. 

 
4. Apply Lagrangian minimization principle in order to solve the rotation problem for each 

catenary part for a range of ILS rotation angles, 𝜙𝐼𝐿𝑆.  
 
The buoyancy modules have as an effect the reduction of rotation angle at the position of 
the ILS. Based on that, the range for which the problem will be solved is 
 

𝜙𝐼𝐿𝑆(𝑖) ∈ [0, 𝜑(xILS)] 
 

Where 𝜑(xILS) (upper bound of the range) is the angle at the ILS location obtained by 

problem at step 1. The boundary conditions for each problem are at  

 

a) “Pre-ILS” catenary   :  (𝟏) 𝜙1(0) = 0                        (𝟐) 𝜙1(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖) 

b) “Post-ILS” catenary :  (𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖)        (𝟐)𝜙2(𝐿) = 𝜙𝑇𝐷𝑃 

𝜙𝑇𝐷𝑃 
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Figure 6-21 Shows the rotation profiles for different ILS rotation angles 𝜙𝐼𝐿𝑆 at 𝑥𝐼𝐿𝑆 . 

 
Figure 6-21 Rotation profiles for different ILS rotation angles between 0 and 𝝋(𝐱𝐈𝐋𝐒) 

 

5. For each angle 𝜙𝐼𝐿𝑆(𝑖) that the two problem are solved, the internal torque of the pipeline 
at the ILS position is calculated based on the equation 

 

𝑇𝑝𝑖𝑝𝑒(𝑥𝐼𝐿𝑆, 𝜙𝐼𝐿𝑆(𝑖)) = 𝐺 ∙ 𝐼𝑡 ∙ [𝜙2
′ (𝑥𝐼𝐿𝑆, 𝜙𝐼𝐿𝑆(𝑖)) − 𝜙1

′ (𝑥𝐼𝐿𝑆, 𝜙𝐼𝐿𝑆(𝑖))] 

 
6. Having found the internal torque of the pipeline at the ILS position the equilibrium can be 

determined according to equation 7.9. If the total torque induced by the ILS and the 

buoyancy module(s) is equal to the internal toque of the pipeline then Equilibrium position 

have been found  and the equilibrium angle  is called 𝜙𝐼𝐿𝑆,𝑒𝑞. 

 

𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑠𝑡𝑎𝑡𝑒 ∶ 𝑇𝑦𝑜𝑘𝑒(𝜙𝐼𝐿𝑆,𝑒𝑞)− 𝑇𝐼𝐿𝑆(𝜙𝐼𝐿𝑆,𝑒𝑞) = 𝑇𝑝𝑖𝑝𝑒(𝜙𝐼𝐿𝑆,𝑒𝑞) 

Figure 6-22 Torsional moments equilibrium 
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𝜙𝐼𝐿𝑆,𝑒𝑞 𝑐𝑎𝑠𝑒1  

𝜙𝑥𝐼𝐿𝑆2  

𝜙𝐼𝐿𝑆,𝑒𝑞 𝑐𝑎𝑠𝑒2  
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Having found the inline structure equilibrium angle based on the torsional moments the  final 

rotation profiles can be seen in .  

 

Figure 6-23 Rotation profiles for ILS equilibrium rotation angle 

 

It should be noticed that this is not the final equilibrium of the inline structure as the pipe-seabed 

interaction is not taken yet into account. Chapter 6.5 describes the procedure followed to 

determine the equilibrium state, taking into account the soil friction without taking into account the 

torque in the laid pipe. Further in Chapter 6.6, the sequential model is described and how the 

problem is solved taking into account the torque in the laid pipe during installation operation. 

 

 

6.5 Pipe-Soil Interaction 

 

At this chapter the interaction between the soil and the laid pipeline will be discussed.  The chapter 

is divided in two parts. At the first part is described the procedure to find the ILS equilibrium when 

the inline structure is put in an arbitrary position along the catenary (as described at the section 

before). In that case the existing torque in the laid pipeline is not taken into account in order to find 

the equilibrium. The second part of the chapter describes the procedure followed at the sequential 

model, which is the final model of the research. At the sequential model as described in Chapter 4.0 

the inline structure is located at the stinger tip at the first step and then it moves gradually to the 

touchdown point. For each step the existing torque in the laid pipe from the previous step is taken 

into account. 

 

6.5.1 Initial Step   

 

Because of the influence of the ILS, there is an amount of torque at the touchdown point as it can be 

seen from. Because of this torque, the pipeline will slip for a certain length (𝐿𝑠𝑙𝑖𝑝), and the 

touchdown point equilibrium angle will be reduced by an angle ∆𝜑𝑒𝑞,depending on the pipeline-soil 

interaction and the seabed properties (soil friction). Assuming that the soil friction is uniformly 

𝜙𝐼𝐿𝑆,𝑒𝑞 𝑐𝑎𝑠𝑒1  𝜙𝐼𝐿𝑆,𝑒𝑞2 𝑐𝑎𝑠𝑒2 
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distributed along the seabed, the torque which will be resisting the rotation of the laid pipe will be 

linearly distributed from the touchdown point until the end of slip. Thus, let 

 

- 𝑇𝑠𝑜𝑖𝑙  be the linear torque (𝑖𝑛 [𝑁 ∙ 𝑚/𝑚]) resisting pipe rotation and, 
 

- 𝐿𝑠𝑙𝑖𝑝 be the length of pipe (𝑖𝑛 [𝑚]) that will slip under the influence of torque from 

touchdown point 𝑇𝑇𝐷𝑃 

 

In case of a pipeline laid with a constant rotation angle (i.e. torque free) on seabed, the torque in 

the laid pipe is linearly decreasing from 𝑇𝑇𝐷𝑃 to zero over the distance 𝐿𝑠𝑙𝑖𝑝, due to the uniformly 

distributed soil friction. Thus, 

 

𝑇𝑙𝑎𝑖𝑑(𝑥) = 𝑎 ∙ 𝑥 + 𝑏 

 

The torque equilibrium of the pipeline at the seabed gives 

 

𝑇𝑇𝐷𝑃 −∫ 𝑇𝑠𝑜𝑖𝑙𝑑𝑥
 

𝐿𝑠𝑙𝑖𝑝

= 0
 
⇒ 𝑇𝑠𝑜𝑖𝑙 =

𝑇𝑇𝐷𝑃
𝐿𝑠𝑙𝑖𝑝

 

 

In order to find the coefficients 𝑎 and 𝑏 the boundary conditions will be used. At the touchdown 

point (x=0), the torque is equal to the torque obtained by the pipeline rotation problem 𝑇𝑇𝐷𝑃 and at 

𝑥 = 𝐿𝑠𝑙𝑖𝑝 , the torque is zero, 𝑇𝑙𝑎𝑖𝑑(𝐿𝑠𝑙𝑖𝑝) = 0, thus 

 

𝑎 = −
𝑇𝑇𝐷𝑃

𝐿𝑠𝑙𝑖𝑝
= −𝑇𝑠𝑜𝑖𝑙 

 

According to the above the torque along the laid pipeline can be expressed 

 

𝑇𝑙𝑎𝑖𝑑(𝑥) = 𝑇𝑇𝐷𝑃 − 𝑇𝑠𝑜𝑖𝑙 ∙ 𝑥 

 

with x being the distance from touchdown point along the laid pipe. Based on the equation 

 

𝑇𝑙𝑎𝑖𝑑(𝑥) = 𝐺 ∙ 𝐼𝑡 ∙
𝑑𝜑

𝑑𝑥
 

The rotation profile on the seabed can be written 

 

𝜑(𝑥) = ∫
𝑇𝑙𝑎𝑖𝑑(𝑥)

𝐺 ∙ 𝐼𝑡
𝑑𝑥

𝑥

0

=
1

𝐺 ∙ 𝐼𝑡
∫ (𝑇𝑇𝐷𝑃 − 𝑇𝑠𝑜𝑖𝑙 ∙ 𝑥)𝑑𝑥
𝑥

0

=
1

𝐺 ∙ 𝐼𝑡
∫ 𝑇𝑠𝑜𝑖𝑙 ∙ (𝐿𝑠𝑙𝑖𝑝 − 𝑥)𝑑𝑥
𝑥

0

 

 

Integrating the equation above 

                                                                    𝜑(𝑥) =
𝑇𝑠𝑜𝑖𝑙
𝐺 ∙ 𝐼𝑡

(𝐿𝑠𝑙𝑖𝑝 −
𝑥

2
) ∙ 𝑥                                                    [𝟔. 𝟏𝟎] 

 

The absolute difference between the rotation angle at the touchdown point and the rotation angle 

and the end of slip length is 
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∆𝜑 =
𝑇𝑠𝑜𝑖𝑙
𝐺 ∙ 𝐼𝑡

(𝐿𝑠𝑙𝑖𝑝 −
𝐿𝑠𝑙𝑖𝑝

2
) ∙ 𝐿𝑠𝑙𝑖𝑝

 
⇒ ∆𝜑 =

𝑇𝑠𝑜𝑖𝑙 ∙ 𝐿𝑠𝑙𝑖𝑝
2

2 ∙ 𝐺 ∙ 𝐼𝑡
 

 

According to that the length of slipping pipe can be calculated for any value of rotation angle at 

touchdown point 

                                                                    𝐿𝑠𝑙𝑖𝑝 = √
2 ∙ 𝐺 ∙ 𝐼𝑡 ∙ ∆𝜑

𝑇𝑠𝑜𝑖𝑙
                                                      [𝟔. 𝟏𝟏] 

 

A simplified illustration of the pipeline on the seabed with the rotation and torque profile along the 

laid pipeline is given in Figure 6-24. The extend of slip caused by the pipe torque at touchdown point 

is determined by compatibility conditions at TDP. Both rotation and torque profile shall be 

continuous around touchdown point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rotation profile along the seabed taking into account the rotation angle at the touchdown point 

𝜙𝑇𝐷𝑃 , can be found as follows 

𝜑𝑠𝑜𝑖𝑙(𝑥) = (𝜑𝑇𝐷𝑃 − ∆𝜑) +
𝑇𝑠𝑜𝑖𝑙
𝐺 ∙ 𝐼𝑡

(𝐿𝑠𝑙𝑖𝑝 −
𝑥

2
) ∙ 𝑥 

 

With 𝜑𝑇𝐷𝑃 being the rotation angle of the pipeline at the touchdown point before slipping. 

 

 

In order to find the rotation angle and the torque at the touchdown point for which these conditions 

are satisfied the procedure below is followed.  

 

Figure 6-24 Pipeline state on seabed with corresponding rotation and torque profile at the seabed 
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1. Calculate the  “post-ILS” catenary rotation profile for different values of 𝛿𝜑 with boundary 
conditions 
 

(𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆,𝑒𝑞         (𝟐) 𝜙2(𝐿) = 𝜙𝑇𝐷𝑃 − 𝛿𝜑 

 
Where 𝜙𝐼𝐿𝑆,𝑒𝑞 is the equilibrium rotation angle of the inline structure (see Chapter 6.4.) 

 
 

Figure 6-25 Rotation profiles for different values of 𝜹𝝋 

2. Obtain the torque at the touchdown point based on equation for each  𝜙2(𝐿) 
 

𝑇𝑇𝐷𝑃 = 𝐺 ∙ 𝐼𝑡 ∙ 𝜙2
′ (𝜙𝐼𝐿𝑆,𝑒𝑞 ,𝜙𝑇𝐷𝑃 − 𝛿𝜑) 

 
3. Determine the theoretical soil torque at the touchdown point based on the rotation profile 

of the seabed . 

𝑇𝑠(𝑥𝑇𝐷𝑃) = 𝐺 ∙ 𝐼𝑡 ∙
𝑑𝜑𝑠𝑜𝑖𝑙(𝑥)

𝑑𝑥
|
𝑥=0

 

By simple algebraic operations 

𝑇𝑠(𝑥𝑇𝐷𝑃) = 𝑇𝑠𝑜𝑖𝑙 ∙ 𝐿𝑠𝑙𝑖𝑝
[7.12]
⇒   𝑇𝑠(𝑥𝑇𝐷𝑃) = 𝑇𝑠𝑜𝑖𝑙 ∙ √

2 ∙ 𝐺 ∙ 𝐼𝑡 ∙ ∆𝜑

𝑇𝑠𝑜𝑖𝑙
 

Thus 
 

𝑇𝑠(𝑥𝑇𝐷𝑃) = √2 ∙ 𝑇𝑠𝑜𝑖𝑙 ∙ 𝐺 ∙ 𝐼𝑡 ∙ 𝛿𝜑 

 
The expected rotation angle at the touchdown point is found for the angle ∆𝜑𝑒𝑞 for which the pipeline 

torque at TDP (obtained from step 2) equals the theoretical soil torque at TDP (obtained from step 3).  
 
The angle at the touchdown point is  

 
                                                                     𝜙𝑇𝐷𝑃,𝑒𝑞 = 𝜙𝑇𝐷𝑃 − ∆𝜑𝑒𝑞                                                         [𝟔. 𝟏𝟐]  

 

 

𝜙𝐼𝐿𝑆,𝑒𝑞 𝑐𝑎𝑠𝑒2  

 𝜙𝐼𝐿𝑆,𝑒𝑞 𝑐𝑎𝑠𝑒1  
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The theoretical value of the torque can be expressed as 

 

                                                              𝑇𝑇𝐷𝑃,𝑒𝑞 = √2 ∙ 𝑇𝑠𝑜𝑖𝑙 ∙ 𝐺 ∙ 𝐼𝑡 ∙ ∆𝜑𝑒𝑞                                               [𝟔. 𝟏𝟑]  

Or 

 

𝑇𝑇𝐷𝑃,𝑒𝑞 = 𝐺 ∙ 𝐼𝑡 ∙ 𝜙2
′ (𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆,𝑒𝑞 ,  𝜙2(𝐿) = 𝜙𝑇𝐷𝑃 − ∆𝜑𝑒𝑞) 

 

 
Figure 6-26 Touchdown point Torque Equilibrium 

Having found the equilibrium state, taking into account the soil friction, the inline structure 

equilibrium angle is found again (iteration process) based on the procedure described in Chapter 6.3 

using as boundary conditions for the “Post-ILS” catenary either the equilibrium angle at the TDP (Eq. 

6.12) or the equilibrium torque at TDP (Eq. 6.13) obtained taking into account the soil friction. 

 

(𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖)        (𝟐) 𝜙2(𝐿) = 𝜙𝑇𝐷𝑃,𝑒𝑞 

 

or 

 

(𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖)        (𝟐) 𝑇𝑇𝐷𝑃(𝐿) = 𝑇𝑇𝐷𝑃,𝑒𝑞 

 

The reason two different boundary conditions were used at the touchdown point was to validate 

that the method used and the solution converges to the same equilibrium state independently of 

the boundary conditions which are used.  

 

Flowchart shown in Figure 6-27 shows the iteration process described in Chapters 6.4 and 6.5 in 

order to find the ILS static equilibrium state. The flowchart shows the method used and the iteration 

process in order to determine the final ILS equilibrium angle, touchdown point and the final slip 

length. 

 

∆𝜑𝑒𝑞 𝑐𝑎𝑠𝑒1 ∆𝜑𝑒𝑞 𝑐𝑎𝑠𝑒2 
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The flowchart for the calculation of the ILS equilibrium can be seen in Figure 6-27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specify ILS position along the catenary 

Final equilibrium 

Problem solved 

(𝟏) 𝜙(0) = 0                  (𝟐) 
𝑑𝜙

𝑑𝑠
|
𝑠=𝐿

= 0 

Determination of the rotational profile for normal pipelay  

 

Solution of the pipe laying problem 

Determination of inline structure equilibrium angle 𝜙𝐼𝐿𝑆,𝑒𝑞  based on pipeline 

and ILS torque (Chapter 6.3) 

“Pre-ILS” catenary   :  (𝟏) 𝜙1(0) = 0                        (𝟐) 𝜙1(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖) 

 

“Post-ILS” catenary :  (𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖)        (𝟐) 𝜙2(𝐿) = 𝜙𝑇𝐷𝑃 

 

Calculation of ∆𝜑𝑒𝑞 at TDP based on 𝜙𝐼𝐿𝑆,𝑒𝑞 (Chapter 6.5) 

“Pre-ILS” catenary   :  (𝟏) 𝜙1(0) = 0                        (𝟐) 𝜙1(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆,𝑒𝑞 

 

“Post-ILS” catenary :  (𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆,𝑒𝑞         (𝟐) 𝜙2(𝐿) = 𝜙𝑇𝐷𝑃 − ∆𝜑 

 

                                                                                 𝑜𝑟 𝑇𝑇𝐷𝑃(𝐿) = 𝑇𝑇𝐷𝑃,𝑒𝑞 

Determination of inline structure new equilibrium angle 𝜙𝐼𝐿𝑆,𝑒𝑞 based the new 

touchdown point angle (or torque) 

“Pre-ILS” catenary   :  (𝟏) 𝜙1(0) = 0                       (𝟐) 𝜙1(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖) 

 

“Post-ILS” catenary :  (𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖)       (𝟐) 𝜙2(𝐿) = 𝜙𝑇𝐷𝑃,𝑒𝑞 

 

𝜙𝑇𝐷𝑃,𝑒𝑞 and  𝑇𝑇𝐷𝑃,𝑒𝑞   are determined 
 

Is equilibrium state 

converged ? 

𝑁𝑂 
 

𝑌𝐸𝑆 
 

Figure 6-27 Procedure for ILS static equilibrium state in case of no existing torque in the laid pipe 
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The rotation profiles of the converged equilibrium state for case No1 (ILS 1400 meters from the 

stinger tip) and No2 (ILS 2400 meters from the stinger tip) are shown in below. 

 

 
Figure 6-28 Rotation Profile of the converged equilibrium state  

Following figures show the convergence of the convergence of the ILS and TDP rotation angle for the 

case where ILS is 1400m from stinger tip. Although the two boundary conditions give different 

results at the first iteration, they converge to the same equilibrium state after the third iteration. 

 
Figure 6-29 ILS Equilibrium Convergence – ILS 1400m from stinger tip 
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Figure 6-30 TDP Equilibrium Angle Convergence – ILS 1400m from stinger tip 

 

Figure 6-31  and Figure 6-32 show the convergence of the ILS and TDP rotation angle for the case 

where ILS is 2400m from stinger tip. Although the two boundary conditions give different results at 

the first iteration as in the previous case, it can be seen they converge to the same equilibrium state 

after the fourth iteration. 

 

Figure 6-31 ILS Equilibrium Angle Convergence – ILS 2400m from stinger tip 
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Figure 6-32 TDP Equilibrium Angle Convergence – ILS 2400m from stinger tip 

As it can be seen in both cases the ILS equilibrium state (ILS and TDP angle) is converged at the same 

solution either using the touchdown point angle or torque as boundary condition. The slip length 

convergence is shown in Figure 6-33. 

 
Figure 6-33 Slip length convergence for two cases 

The large difference in the value of slip length between the two cases can be explained by 

the large difference in the value ∆𝜑𝑒𝑞 which at the 1st case is around 6.48o whereas at the 2nd 

case is around 47.56o (7.34 times higher). Taking into account equation 7.12, the slip length obtained 

at the case No1 shall be √7.34 ≈ 2.709  times than that one of case No1.  

 

The slip length converges to 601.52 meters for case No1 and to 1627.4 meters for case No2. Dividing 

the two numbers gives a ratio of  2.705 which is what is expected from the theory with a relative 

error of 0.14%. Having explained in detail and verified the procedure for the determination of the 

equilibrium state the next step is to model the rotation problem sequentially, taking into account 

the torque in the laid pipe. 
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6.6 Sequential Model 

 

After the first installation step of the inline structure, the pipeline on seabed is no longer torque 

free, but has a residual torque, which can be derived from the pipe’s rotation profile on seabed. The 

length of slip, driven by the torque at touchdown point, is now defined by the length over which the 

sum of the friction forces compensate the difference between the TDP torque on one side and the 

residual torque on the other side (see ).  

 

𝑇𝑇𝐷𝑃 − 𝑇𝑠𝑜𝑖𝑙 ∙ 𝐿𝑠𝑙𝑖𝑝 = 𝑇0 

 

Assuming again that the torque profile at the seabed decreases linearly 

 

𝑇𝑙𝑎𝑖𝑑(𝑥) = 𝑎 ∙ 𝑥 + 𝑏 

 

At the touchdown point (x=0), the torque is equal to the torque obtained by the pipeline rotation 

problem 𝑇𝑇𝐷𝑃 (see Eq. 7.10) and at 𝑥 = 𝐿𝑠𝑙𝑖𝑝 , the torque equals to 𝑇𝑙𝑎𝑖𝑑(𝐿𝑠𝑙𝑖𝑝) = 𝑇0, where 𝑇0 the 

residual torque in the laid pipe at the end of the slip length, thus 

 

𝑇0 = 𝑎 ∙ 𝐿𝑠𝑙𝑖𝑝 + 𝑇𝑇𝐷𝑃
 
⇒𝑎 =

𝑇0 − 𝑇𝑇𝐷𝑃
𝐿𝑠𝑙𝑖𝑝

 

Based on the above, the equation for the laid torque, from which the rotation profile and the slip 

length will be defined is 

𝑇𝑙𝑎𝑖𝑑(𝑥) = (
𝑇0 − 𝑇𝑇𝐷𝑃
𝐿𝑠𝑙𝑖𝑝

) ∙ 𝑥 + 𝑇𝑇𝐷𝑃 

 

Because there is no explicit formulation for the residual torque 𝑇𝑙𝑎𝑖𝑑(𝑥) (it is derived from the 

rotation profile values, which are stored as a result of pipe slipping in previous step of the process), 

the slip length is found by iteration. Technically, starting from touchdown point, the first location 

along the laid pipe where the residual torque and the soil friction are fully balancing the torque from 

TDP is the location where the pipe rotation stops. The rotation profile on the seabed can be written 

 

𝜑(𝑥) = ∫
𝑇𝑙𝑎𝑖𝑑(𝑥)

𝐺 ∙ 𝐼𝑡
𝑑𝑥

𝑥

0

=
1

𝐺 ∙ 𝐼𝑡
∫ [(

𝑇0 − 𝑇𝑇𝐷𝑃
𝐿𝑠𝑙𝑖𝑝

) ∙ 𝑥 + 𝑇𝑇𝐷𝑃] 𝑑𝑥
𝑥

0

 

 

Integrating the equation above 

 

                                             𝜑(𝑥) =
1

𝐺 ∙ 𝐼𝑡
[(
𝑇0 − 𝑇𝑇𝐷𝑃
𝐿𝑠𝑙𝑖𝑝

) ∙
𝑥2

2
+ 𝑇𝑇𝐷𝑃 ∙ 𝑥]                                             [𝟔. 𝟏𝟒] 

 

Taking into account that at the slip length position the sum of the friction forces compensate the 

difference between the TDP torque on one side and the residual torque on the other side, 

 

𝑇𝑇𝐷𝑃 − 𝑇𝑠𝑜𝑖𝑙 ∙ 𝐿𝑠𝑙𝑖𝑝 = 𝑇0 

 

the expression for 𝜑(𝑥)can be expressed as 
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𝜑(𝑥) =
1

𝐺 ∙ 𝐼𝑡
[𝑇𝑠𝑜𝑖𝑙 ∙ (𝐿𝑠𝑙𝑖𝑝 −

𝑥

2
) + 𝑇0] ∙ 𝑥 

 

The absolute theoretical difference between the rotation angle at the touchdown point and the 

rotation angle and the end of slip length is 

 

∆𝜑 =
𝑇𝑠𝑜𝑖𝑙 ∙ 𝐿𝑠𝑙𝑖𝑝

2

2 ∙ 𝐺 ∙ 𝐼𝑡
+
𝑇0 ∙ 𝐿𝑠𝑙𝑖𝑝
𝐺 ∙ 𝐼𝑡

 

 

The rotation profile along the seabed taking into account the rotation angle at the touchdown point 

𝜙𝑇𝐷𝑃 can be found as follows 

 

𝜑𝑠𝑜𝑖𝑙(𝑥) = (𝜑𝑇𝐷𝑃 − ∆𝜑) +
1

𝐺 ∙ 𝐼𝑡
[𝑇𝑠𝑜𝑖𝑙 ∙ (𝐿𝑠𝑙𝑖𝑝 −

𝑥

2
) + 𝑇0] ∙ 𝑥 

 

A simplified illustration that shows the rotation angle and torque profile derived from the 

distributed soil friction when laid pipe is initially torque free can be seen in Figure 6-34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-34 Rotation angle and torque profile, accounting for residual torque 

 on the seabed 
 

Similar as previously, finding the extent of pipeline rotation caused by the pipe torque at TDP 

implies finding the compatibility between the torque and roll angle at both sides of TDP. However, 

because of the existence of residual torque in the laid pipe, the procedure is slightly different and 

will be explained below. 
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1. Calculation the  “post-ILS” catenary rotation profile for different values of 𝛿𝜑 with boundary 
conditions 
 

(𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆,𝑒𝑞         (𝟐) 𝜙2(𝐿) = 𝜙𝑇𝐷𝑃 − 𝛿𝜑 

 
Where 𝜙𝐼𝐿𝑆,𝑒𝑞 is the equilibrium angle at the position of the inline structure (the procedure 

to determine 𝜙𝐼𝐿𝑆,𝑒𝑞 is described in detail Chapter 6.3. 

 
2. Obtain the torque at the touchdown point based on equation  

 

𝑇𝑇𝐷𝑃 = 𝐺 ∙ 𝐼𝑡 ∙ 𝜙2
′ (𝑥𝑇𝐷𝑃, 𝜙𝐼𝐿𝑆,𝑒𝑞) 

 
3. Determination of the slip length 𝐿𝑠𝑙𝑖𝑝 through an iteration procedure, by increasing the 

value of 𝑥 by a certain step size 𝑑𝑥. The length of slip is found when 
 

𝑇𝑇𝐷𝑃(∆𝜑) = 𝑇𝑠𝑜𝑖𝑙 ∙ 𝑥 + 𝑇𝑙𝑎𝑖𝑑(𝑥) 
 

For the value of 𝛿𝜑, the slip length has been found 𝐿𝑠𝑙𝑖𝑝(𝛿𝜑) and the residual torque at that 

position 𝑇0(𝛿𝜑) = 𝑇𝑙𝑎𝑖𝑑(𝐿𝑠𝑙𝑖𝑝). 

 
 

4. Compare the rotation angle at the touchdown point  𝜙𝑇𝐷𝑃 − 𝛿𝜑 with the theoretical value 
𝜑𝑠𝑜𝑖𝑙(𝑥) at the 𝑥 = 0 based on the equation 
 

𝜑𝑠𝑜𝑖𝑙(𝐿𝑠𝑙𝑖𝑝) = 𝜙0 −
𝑇𝑠𝑜𝑖𝑙 ∙ 𝐿𝑠𝑙𝑖𝑝

2

2 ∙ 𝐺 ∙ 𝐼𝑡
−
𝑇0 ∙ 𝐿𝑠𝑙𝑖𝑝
𝐺 ∙ 𝐼𝑡

 

 
 In case that 
 

𝜙𝑇𝐷𝑃 − ∆𝜑 = 𝜙0 −
𝑇𝑠𝑜𝑖𝑙 ∙ 𝐿𝑠𝑙𝑖𝑝

2

2 ∙ 𝐺 ∙ 𝐼𝑡
−
𝑇0 ∙ 𝐿𝑠𝑙𝑖𝑝
𝐺 ∙ 𝐼𝑡

 

 
 then 𝛿𝜑 = ∆𝜑𝑒𝑞 and the equilibrium touchdown point angle is 𝜙𝑇𝐷𝑃,𝑒𝑞 = 𝜙𝑇𝐷𝑃 − ∆𝜑𝑒𝑞,  

 
where 𝜙0 is the rotation angle of the already laid pipe at the angle of slip. 
 

Otherwise, another value of 𝛿𝜑 is picked and the same process is done, till the 𝜙𝑇𝐷𝑃,𝑒𝑞 is found. 

 

The ILS descent along the suspended pipe is treated in a sequential way. At every step, the pipe pay-

out is incremented with Δ (typically one pipe joint), giving a new position to the ILS. Then the pipe 

catenary and rotation profile are recalculated. For the rotation profile, the new boundary condition  

at TDP is assumed to be the rotation angle from previous step. 

 

For every step, the new ILS equilibrium angle is calculated as detailed in Chapter 6.3, then the pipe 

slip at TDP, as described in Chapter 6.6. This iterative process for the calculation of the ILS 

equilibrium angle taking into account the pre-existing torque in the laid pipe is shown by the 

flowchart in Figure 6-35.  
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Figure 6-35 Process for slip determination with pre-existing torque in the laid pipe – Sequential Model 

𝛿𝜑 = 𝛿𝜑 ± 𝑑𝜑 
 

𝛿𝜑 = ∆𝜑𝑒𝑞   

Equilibrium is found with  𝜙𝑇𝐷𝑃,𝑒𝑞 = 𝜙𝑇𝐷𝑃 − ∆𝜑𝑒𝑞  

 
 

ILS at next position 

ILS at the stinger tip 

(𝟏) 𝜙(0) = 0                  (𝟐) 
𝑑𝜙

𝑑𝑠
|
𝑠=𝐿

= 0 

Determination of the rotational profile for normal pipelay  

 

Solution of the pipe laying problem 

Determination of inline structure equilibrium angle 𝜙𝐼𝐿𝑆,𝑒𝑞  based on pipeline 

and ILS torque (Chapter 6.3) 

“Pre-ILS” catenary   :  (𝟏) 𝜙1(0) = 0                        (𝟐) 𝜙1(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖) 

“Post-ILS” catenary :  (𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆(𝑖)        (𝟐) 𝜙2(𝐿) = 𝜙𝑇𝐷𝑃 

 

Determination of the torque at the touchdown point 𝑇𝑇𝐷𝑃(∆𝜑) based on new 
touchdown point angle  𝜙𝑇𝐷𝑃 − 𝛿𝜑 

 
“Pre-ILS” catenary    :  (𝟏) 𝜙1(0) = 0                       (𝟐) 𝜙1(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆,𝑒𝑞 

 “Post-ILS” catenary :  (𝟏) 𝜙2(𝑥𝐼𝐿𝑆) = 𝜙𝐼𝐿𝑆,𝑒𝑞        (𝟐) 𝜙2(𝐿) = 𝜙𝑇𝐷𝑃 − 𝛿𝜑 

 
𝑥 = 0 
 

𝑇𝑇𝐷𝑃(∆𝜑) = 𝑇𝑠𝑜𝑖𝑙 ∙ 𝑥 + 𝑇𝑙𝑎𝑖𝑑(𝑥) 
 

 

𝑁𝑂 
 

𝜙𝑇𝐷𝑃 − 𝛿𝜑 = 𝜙0 −
𝑇𝑠𝑜𝑖𝑙 ∙ 𝐿𝑠𝑙𝑖𝑝

2

2 ∙ 𝐺 ∙ 𝐼𝑡
−
𝑇0 ∙ 𝐿𝑠𝑙𝑖𝑝

𝐺 ∙ 𝐼𝑡
 

 
 

 

𝑥 = 𝑥 + 𝑑𝑥 
 

𝑌𝐸𝑆 
 

𝑌𝐸𝑆 

 

𝑁𝑂 

 

Solve pipe-laying 
problem based 

on 𝜙𝑇𝐷𝑃,𝑒𝑞 

 

  



88 
 

6.7 Rotation Problem Analysis 

 

 

The rotation phenomenon depends on many parameters which interfere with each other. The most 

important of them that will be investigated is the pipe-seabed interaction in terms of different 

values of soil friction, the effect of the mitigation measures (restrained and unrestrained buoyancy 

modules) for the decrease of rotation and the effect of the applied tension. A general description of 

how of these parameters affect the rotation phenomenon is given below. 

 

In addition, the model depends on a number of numerical parameters, which may affect the 

accuracy and the computational time of the program. The most important of these numerical 

parameters that will be considered is the seabed step and the pipe pay-out at each installation step.  

 

 Soil friction effect 

 

The interaction between the pipeline and the seabed influences at the rotation of the pipe on 

seabed. Depending on the soil friction and taking into account the torque induced by the ILS at the 

touchdown point, the pipeline will slip in a different amount (∆𝜑) and at different slip length  

(𝐿𝑠𝑙𝑖𝑝) at each installation step. That will have as a consequence a different touchdown point angle 

evolution during installation operation and a different inline structure landing angle. In order to 

investigate if the effect of the soil friction is considerable to the rotation phenomenon, three cases 

are examined, with a low, an intermediate and a high value of soil friction as shown in Table 6-5. 

 

Soil Friction [kNm/m] 

0.03 0.12 0.2 
Table 6-5 Soil friction values investigated 

 Tension effect 

 

As mentioned in pipelay problem analysis, during operations there are two main criteria that have 

to be satisfied. Sagbend strain shall be below the acceptable limit (common value for the upper limit 

is 0.15% for static analysis) and tip separation - the distance between the pipeline and the stinger tip 

- shall be larger than 0.3 meters (depending on the project these values may be higher).  Both of the 

sagbend strain and the tip separation depend on the applied tension. Higher applied tension has as 

a result lower sagbend strains and decreased sagbend curvature, a result that could lead to less 

rotation of the pipeline. At the same time, increased tension results in a longer suspended free span 

of the pipe which and consequently to lower torsional resistance and thus higher amount of 

rotation. In order to investigate the effect of the tension four different cases were conducted with 

different tip separation limit. It should be mentioned that higher values of tip separation limit 

require increased applied tension. The values used for the tip separation in the case studies are 

shown in Table 6-6 

 

Tip Separation [m] 

0.3 1 2 3 
Table 6-6 Tip separation values investigated 
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 Buoyancy effect 

 

As described extensively in Chapter 6.3, when an inline structure is installed the most common 

mitigation measure in order to reduce the amount of rotation is the use of buoyancy modules. The 

effect of the magnitude of buoyancy module will be investigated taking into account its 

configuration (restrained – unrestrained buoyancy module) in combination with the other 

parameters. 

 

Table 6-7 and Table 6-8 show the data used for the case study. The vessel used is Solitaire with a 

stinger configuration of L=140 meters (stinger length) and R=180 meters (stinger radius). 

The residual radius of the pipe is R=1871m. 

 

Water Depth 2183 [𝑚] 

Pipeline Diameter 20 ["] 

Pipeline Wall Thickness 27.5 [𝑚𝑚] 

Field Joint Length 0.7 [𝑚] 

Pipe Joint Length 12.2 [𝑚] 

Pipeline Density 7850 [𝑘𝑔/𝑚3] 

Young`s Modulus 207000 [𝑀𝑃𝑎] 

Anti-Corrosion Coating 

Thickness 3.6 [𝑚𝑚] 

Density 921 [𝑘𝑔/𝑚3] 

Table 6-7  Pipe, Coating & Environmental Data 

 

ILS Submerged weight 14715 [𝑁/𝑚] 

C.o.G. distance above pipe centreline 0.9 [𝑚] 

Yoke Length 5 [𝑚] 

Table 6-8 ILS Properties 

 

6.7.1 Soil Friction 0.12 [kNm/m]  (Intermediate value) 

 

 Buoyancy Effect 

 

To investigate the buoyancy influence for the rotation phenomenon there were investigated the 

following cases 

 

Case Buoyancy modules [-] Buoyancy Force [t] Configuration 

1 1 35 Unrestrained 

2 1 35 Restrained 

3 2 70 1 Restrained - 1 Unrestrained 

4 1 100 Unrestrained 

5 1 100 Restrained 
Table 6-9 Buoyancy effect cases analysed 
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Figure 6-36 ILS rotation angle evolution during installation (Cases 1-2-3) 

 

 
Figure 6-37 ILS rotation angle evolution during installation (Cases 3-4) 

 

As it can be seen from Figure 6-36 and Figure 6-37 the ILS landing rotation angle decreases with 

higher amount of buoyancy as it was expected. Specifically for the unrestrained buoyancy 

configuration ILS landing angle decreases from 10.62o (35t buoy) to 3.165o (100t buoy), 3.35 times 

lower landing angle, while for the restrained buoyancy configuration ILS decreases from 10.07o (35t 

buoy) to 3.04o (100t buoy) , almost 3.31 lower. The combination of two buoyancy modules (case 3) 

resulted to an ILS rotation angle of 4.61 o.  
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Another fact that should be mentioned is that both for the case of 35t buoyancy and for that of 100t 

buoyancy there is not considerable difference at the ILS landing angles for the restrained and 

unrestrained configuration. For the 35t buoy (cases 1-2) the difference is 0.55o while for the 100t 

buoy the difference is  around 0.12o. That can be explained by the fact that the two different 

buoyancy configurations have the same effect close to touchdown point, where the pipe becomes 

almost horizontal. 

 

 In spite of the fact that the ILS landing angles are almost the same, for the unrestrained cases it is 

noticed that the maximum rotation angle reached during installation is much higher for both cases 

(35t and 100t). Specifically, for the case of 35t buoy the maximum rotation angle for the 

unrestrained configuration (23.04o) is 1.78 times higher than that of the restrained configuration 

(12.93o). The same behaviour is noticed also for the 100t buoy where the maximum for the 

unrestrained case is 9.992o whereas for the restrained is 4.918o (2.03 times higher). 

 

These results can be explained by the fact that at the first installation steps, where the catenary has 

a steep configuration (angle of pipeline with horizontal is almost vertical - 𝜃 = 90°) the effect of the 

buoy at the unrestrained configuration is reduced significantly (see Figure 6-15 and Figure 6-16) 

causing high rotation angles of the inline structure. As the installation process continues the buoy 

becomes much more effective resulting in a significant decrease of the rotation angle. For the 

restrained buoyancy configuration, the effect of the buoy is independent of the configuration of the 

pipeline, causing a much lower maximum rotation angle of the pipe and a smoother shape during 

the installation. Specific values of ILS landing and maximum angle are given in Table 6-10. 

 

Case ILS landing angle [Deg] ILS maximum angle [Deg] 

1 10.62 23.04 

2 10.07 12.93 

3 4.612 9.025 

4 3.165 9.992 

5 3.044 4.918 
Table 6-10 ILS landing and maximum angle for different buoyancy cases 

 

The touchdown point evolution angle for the 5 cases is shown in Figure 6-38 (Cases 1-2-3) and 

Figure 6-39 (Cases 4-5). As it can be seen the rotation angle evolution at the touchdown point has 

the same shape for all the cases. At the first installation steps, the reduction of the TDP angle is 

small because the catenary between the ILS and the TDP is large, thus the torque at the inline 

structure does not affect much the rotation of the touchdown point.  As the catenary between the 

structure and the touchdown point becomes smaller during installation the torque at the ILS has an 

increasing effect to the touchdown point angle, resulting to a steady reduction of the TDP angle. 
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Figure 6-38 TDP rotation angle evolution during installation (Cases 1-2-3) 

 
Figure 6-39 TDP rotation angle evolution during installation (Cases 4-5) 

Another important quantity is the torque  evolution at the touchdown point. As mentioned in 

Chapter 6.5,  the torque at the inline structure induces an amount of torque at the touchdown 

point. In the case of the unrestrained buoyancy configuration, the ILS torque is lower than that 

induced by the restrained at the beginning of installation, as it depends on the configuration of the 

pipe. When ILS moves further at the catenary during installation (where the pipe becomes gradually 

horizontal)  its effect becomes gradually the same with that of the restrained buoy, thus the torque 

induced in both configurations are almost the same. During the last steps of installation, where the 

pipeline is almost horizontal, the ILS torque is dominated by the rotation angle of the structure.  

That can also be seen from the equations 6.7 and 6.8 for the  
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 𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ∶    𝑇𝑏𝑢𝑜𝑦(𝑢𝑛) = 𝐹𝑏𝑢𝑜𝑦 ∙ 𝑐𝑜𝑠
2(𝜗) ∙ 𝑠𝑖𝑛(𝜙𝐼𝐿𝑆) ∙ 𝐿𝑦𝑜𝑘𝑒   

 

𝑅𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ∶  𝑇𝑏𝑢𝑜𝑦(𝑟) = 𝐹𝑏𝑢𝑜𝑦 ∙ 𝑐𝑜𝑠(𝜗) ∙ 𝑠𝑖𝑛(𝜙𝐼𝐿𝑆) ∙ 𝐿𝑦𝑜𝑘𝑒  

 

When  𝜗 ≈ 0° 
 
⇒ 𝑐𝑜𝑠(𝜗) ≈ 𝑐𝑜𝑠2(𝜗) ≈ 1 ,so the higher rotation angle will result in higher torque at the 

touchdown point in the case of the unrestrained buoyancy configuration. The torque evolution can 

be seen in Figure 6-41 for the case of 100t buoyancy. Thus, the use of the restrained buoyancy has 

as a result lower landing rotation angle and lower torque at the touchdown point at the end of 

installation. 

 
Figure 6-40 Torque evolution during installation (Cases 1-2-3)  

 

 
Figure 6-41 Torque evolution during installation (Cases 4-5) 
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Table 6-11 shows TDP torque at the touchdown point when inline structure is landed on seabed. 

 

Case 1 2 3 4 5 

Torque [𝒌𝑵𝒎] 250.4 237.3 245.6 240.8 248.7 

Table 6-11 TDP Torque when ILS is landed (Soil friction : 0.12 [kNm/m]) 

 

The last parameter that will be analysed is the maximum slip length of the pipe during installation. 

When the unrestrained buoyancy configuration is used, as mentioned before the torque induced by 

the ILS to TDP is lower than that in the case of the restrained buoyancy configuration. As a result, at 

each step of the sequential model the residual torque 𝑇0 at the already installed pipeline has a lower 

magnitude. Based on that, when the torque at the touchdown point for the case of the restrained 

and unrestrained configuration becomes almost the same, the length of the laid pipe which will 

counteract the 𝑇𝑇𝐷𝑃 will be larger in the case of the unrestrained configuration. That can also be 

seen from equation  

 

𝑇𝑇𝐷𝑃 = 𝑇𝑠𝑜𝑖𝑙 ∙ 𝑥 + 𝑇0 

 

For the same 𝑇𝑇𝐷𝑃 and 𝑇𝑠𝑜𝑖𝑙  lower values of 𝑇0 will have as a consequence larger values of x, thus 

length of slip, in order the equality to be met. That can be seen in also in Table 6-12. 

 

Case 1 2 3 4 5 

Maximum slip length [𝒎] 1472.59 882.9 840.71 931.46 440.71 

Table 6-12 Maximum slip length (Soil friction : 0.12 [kNm/m]) 
 

 

 Tension Effect Analysis 

 

As mentioned before tension has a considerable influence on the shape of the catenary. Higher 

tension will result to longer catenary and lower sagbend curvature and as a consequence the 

reduction of rotation along the catenary. In order to investigate the effect of tension same buoyancy 

is applied to all the cases (35t restrained buoyancy configuration). Higher values of tip separation, 

require higher amount of tension. 

 

Figure 6-42 shows the evolution of ILS rotation angle during installation for different values of tip 

separation. As it can be seen, applying higher tension results in lower ILS rotation landing angle. 

Although the minimum tip separation for static analysis is 0.3 meters, in reality during actual 

installation operations the average tip separation is higher (over 1 meter) for possible vessel 

motions due to the environmental conditions, thus the result for 0.3meters  can be considered 

conservative as it gives an overestimation of the landing rotation angle of the inline structure.  

 

The same behaviour of the ILS angle is shown also for the touchdown point torque evolution during 

installation. Higher applied tension leads to lower values of torque resulting in a lower value of 

torque when the inline structure is landed. Figure 6-43 shows the torque profile at the touchdown 

point during installation.  
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Figure 6-42  ILS rotation angle evolution during installation for different tension  

 

 
Figure 6-43 Touchdown point torque evolution during installation for different tension 

Another important quantity is the bending strain during installation steps. As it can be seen from 

Figure 6-44. The bending strain is increasing during installation as the inline structure gradually 

approaches the seabed. This behaviour can be explained by the fact that the structure is much 

heavier and stiffer than the pipe and when it is at the curved sagbend area of the catenary causes 

the pipe to bend more. When the structure is at the steep part of the catenary (until step 100) there 

is not significant difference at the maximum bending strain between the four case studies, but as 

the installation proceeds, applying higher tension results in longer catenary and thus in lower values 

of bending strains. 
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Figure 6-44 Maximum bending strain evolution 

Table 6-13 summarizes the most important results obtained by the tension effect analysis. 

 

Case 
ILS Landing 

Angle  
[Deg] 

Maximum 
ILS Angle  

[Deg] 

TDP Torque  
(ILS on seabed) 

[kNm] 

Maximum 
Suspended 

Length  
[m] 

Maximum 
Bending strain  

[%] 

TDP Initial 
Rotation 

Angle [Deg] 

0.3m 10.07 12.932 237.34 3079.13 0.118 101.823 
1m 9.448 11.533 220.76 3286.03 0.102 101.262 
2m 8.927 10.364 205.11 3470.45 0.091 100.522 
3m 8.661 9.686 193.61 3626.94 0.083 100.242 

Table 6-13 Results for different tension applied during inline structure installation (Soil friction : 0.12 [kNm/m]) 

 
Figure 6-45 TDP rotation angle evolution during installation for different tension 
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6.7.2 Soil Friction 0.2 [kNm/m] (High Bound) 

 

 Buoyancy Effect Analysis 

 

To investigate how the high soil friction affects the rotation phenomenon there were analysed the 

same cases with respect to buoyancy as in the cases where soil friction was 0.03𝑘𝑁𝑚/𝑚 and 

0.12 𝑘𝑁𝑚/𝑚 (see Table 6-9) . Figure 6-46 shows ILS evolution angles for the 5 cases with soil 

friction of 0.12 𝑘𝑁𝑚/𝑚. 

   
Figure 6-46 ILS rotation angle evolution for different buoyancy (Cases1-5) – Soil friction : 0.2 [kNm/m] 

 

As it can be seen the ILS angle has identical evolution as in the cases of 0.12 𝑘𝑁𝑚/𝑚. It is noticed 

that the ILS landing angle is slightly higher for all the analysed cases which is a consequence of the 

higher constraint provided by the seabed to the pipe to rotate at each step. The largest difference is 

found for the unrestrained buoyancy configuration of 35t around 0.6o while for the other cases the 

difference is below 0.1o. It should be mentioned that the soil friction seems to have no influence on 

the maximum rotation angle reached during installation for all the cases, with the maximum 

difference being around 0.02o. 

 

Case ILS landing angle 
[Deg] – S.F.:0.2 

ILS maximum angle 
[Deg] – S.F.:0.2 

ILS landing angle 
[Deg] – S.F.:0.12 

ILS maximum angle 
[Deg] – S.F.:0.12 

1 11.22 23.06 10.62 23.04 

2 10.15 12.94 10.07 12.93 

3 4.652 9.026 4.612 9.025 

4 3.197 9.993 3.165 9.992 

5 3.054 4.919 3.044 4.918 
Table 6-14 Comparison between ILS landing and maximum angle for different values of soil friction  

 

As it can be seen, both in the case of the 35t of buoyancy and in the case of 100t the unrestrained 

configuration is most affected by the increase of the soil friction. That can be explained by the fact 

that the unrestrained buoyancy configuration becomes efficient at the last steps of installation and 
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the rotation angle becomes highly dependent on the soil friction as the installation steps-time until 

the ILS reach the seabed are not sufficient for the reduction of the ILS rotation angle. On the other 

hand, in the case of the restrained buoyancy configuration the torque is accumulated gradually from 

the initial steps of installation as it efficient during the whole installation process. According to that, 

there is efficient time for the reduction of the ILS rotation angle independently of the soil friction. 

 

The evolution of torque during installation has the same shape for all the cases. As it is expected the 

slightly higher rotation ILS landing angle has as a consequence a higher torque at the touchdown 

point at the last step of installation (see Table 6-15). 

 

Case 1 2 3 4 5 

Torque [𝒌𝑵𝒎] – S.F. :0.12 250.4 237.3 245.6 240.8 248.7 

Torque [𝒌𝑵𝒎] – S.F. :0.2 263.6 240.2 247.3 241.9 252.5 

Table 6-15 Comparison between TDP torque when ILS is landed for different soil friction 

 

 
Figure 6-47 Torque evolution during installation (Cases1-5) – Soil friction : 0.2 [kNm/m] 

 

As noted in the case of 0.12kNm/m soil friction, both for the case of 0.2kNm/m the unrestrained 

configuration resulted in lower maximum slip length during installation. It should be mentioned that 

the values of slip length are much lower than these obtained in the case of 0.12kNm/m of soil 

friction. 

 

Case 1 2 3 4 5 

Maximum slip length [𝒎] 17.83 11.78 10.94 11.67 8.78 

Table 6-16 Maximum slip length (Soil friction : 0. 2 [kNm/m]) 
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 Tension Effect Analysis 

 

As shown for the case of soil friction 0.12 𝑘𝑁𝑚/𝑚, the tension has a considerable influence on the 

ILS rotation angle during installation as well as on the maximum bending strains and the suspended 

length of the pipe . It was noticed that higher tension results in longer catenary and lower sagbend 

curvature and bending strain. As a consequence there is a reduction of rotation along the catenary. 

In order to investigate the effect of tension, same buoyancy is applied to all the cases (35t restrained 

buoyancy configuration).  

 

Figure 6-48 and Figure 6-50 show the evolution of ILS rotation angle and TDP torque during 

installation for different values of tip separation for soil friction 0.2 𝑘𝑁𝑚/𝑚 . As it can be seen, the 

same behaviour is noticed as in the case with lower soil friction (0.12 𝑘𝑁𝑚/𝑚) . Applying higher 

tension leads to lower values of ILS rotation angle and touchdown point torque during installation. 

As a result the landing rotation angle of the inline structure as well as the torque at the touchdown 

point are lower for higher values of applied tension (larger tip separation). 

 
Figure 6-48 ILS rotation angle evolution during installation for different tension 

Table 6-13 summarizes the most important results obtained by the tension effect analysis. It can be 

noticed that the maximum suspended length, the bending strain and the initial TDP rotation angle 

remain the same as in the previous case because the change of soil friction does not affect the 

pipelay results and the initial installation step. 

 

Case 
ILS Landing 

Angle 
 [Deg] 

Maximum 
ILS Angle  

[Deg] 

TDP Torque  
(ILS on seabed) 

[kNm] 

Maximum 
Suspended Length  

[m] 

Maximum 
Bending strain  

[%] 

TDP Initial 
Rotation Angle 

[Deg] 

0.3m 10.153 12.934 240.22 3079.13 0.118 101.823 
1m 9.459 11.535 221.07 3286.03 0.102 101.262 
2m 8.936 10.365 204.27 3470.45 0.091 100.522 
3m 8.662 9.687 194.71 3626.94 0.083 100.242 

Table 6-17 Results for different tension applied during inline structure installation  (Soil friction : 0. 2 [kNm/m]) 
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Figure 6-49 TDP rotation angle evolution during installation for different tension 

 

 

 

 
Figure 6-50 Touchdown point torque evolution during installation for different tension 
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6.7.3 Soil Friction 0.03 [kNm/m] (Low Bound) 

 

 Buoyancy Effect Analysis 

 

Having analysed the buoyancy and tension effect for intermediate and high values of soil friction, it 

is interesting to investigate how the pipeline and the inline structure behave on non-stiff soils. For 

that reason the same cases with respect to buoyancy (see Table 6-9) were conducted with soil 

friction of 0.03 𝑘𝑁𝑚/𝑚. Figure 6-46 shows ILS evolution angles for the 5 cases. 

 

Figure 6-51 ILS rotation angle evolution for different buoyancy (Cases1-5) – Soil friction : 0.03 [kNm/m] 

As it can be seen the ILS angle has identical evolution as in the cases of 0.12 𝑘𝑁𝑚/𝑚 and 

0.2 𝑘𝑁𝑚/𝑚. It is noticed that the ILS landing angle is considerably lower for all the analysed cases 

which is a consequence of the low constraint provided from the seabed to the pipe to rotate at each 

step. The largest differences (see Table 6-18) are found for the unrestrained and restrained 

buoyancy configuration of 35t, 3.72o and 3.28o respectively. For large amount of buoyancy (cases 4 

and 5) there is a difference of around 1.2o which is considered to be significant taking into account 

that the landing angles are small for these cases. In addition, the difference between the effect of 

the restrained and unrestrained buoyancy configuration becomes negligible for the landing rotation 

angle of the ILS in the case of low soil friction as in both cases of 35t (cases 1-2) and 100t (cases 4-5) 

the ILS landing angle differs of about 0.1 o. Finally, the soil friction has no significant effect on the 

maximum ILS rotation angle during installation operation. The same was found also for the 

comparison between the cases of intermediate and high values of soil friction. 

 

Case ILS landing angle 
[Deg] – S.F.:0.03 

ILS maximum angle 
[Deg] – S.F.:0.03 

ILS landing angle 
[Deg] – S.F.:0.12 

ILS maximum angle 
[Deg] – S.F.:0.12 

1 6.90 22.84 10.62 23.04 

2 6.79 12.64 10.07 12.93 

3 2.942 8.941 4.612 9.025 

4 1.974 9.943 3.165 9.992 

5 1.965 4.874 3.044 4.918 
Table 6-18 Comparison between ILS landing and maximum angle for different values of soil friction  
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The evolution of torque during installation has the same shape for all the cases as it can be seen 

from Figure 6-52.  

 
Figure 6-52 Torque evolution during installation (Cases1-5) – Soil friction : 0.03 [kNm/m] 

 

As it is expected the lower rotation ILS landing angle has as a consequence a lower torque at the 

touchdown point at the last step of installation, when ILS is on seabed (see Table 6-19). Also, there is 

a considerable difference in the amount of torque around 85kNm in cases 1 and 3-5 and 78kNm in 

case 2. 

 

Case 1 2 3 4 5 

Torque [𝒌𝑵𝒎] – S.F. :0.12 250.45 237.34 245.65 240.83 248.78 

Torque [𝒌𝑵𝒎] – S.F. :0.03 163.82 161.89 157.31 155.84 155.58 

Table 6-19 Comparison between TDP torque when ILS is landed for different soil friction 

 

 

For the case of low soil friction the maximum slip length is much higher than the previous two cases. 

Comparing with the case for 0.12kNm/m soil friction it is noted that the difference between the 

unrestrained and restrained  configuration is not considered to be significant as there is a difference 

of 50m (case with 35t buoyancy) and 16m (case with 100t buoyancy). It is important to mention that 

for cases of low soil friction because of the large slip length additional attention should be taken for 

any structures which  are already laid  even they are away of the current touchdown point. 

 

 

Case 1 2 3 4 5 

Maximum slip length [𝒎] 5420.92 5370.66 5231.98 5085.19 5069.57 

Table 6-20 Maximum slip length (Soil friction : 0.03 [kNm/m]) 

 

 



103 
 

 Tension Effect Analysis 

 

As shown for the case of soil friction 0.12 𝑘𝑁𝑚/𝑚 and 0.2 𝑘𝑁𝑚/𝑚, the tension has a noticeable 

influence for the ILS rotation angle during installation as well as for the maximum bending strains. It 

was mentioned that higher tension results to longer catenary and lower sagbend curvature and 

bending strain.  

 

Figure 6-53 and Figure 6-55 show the evolution of ILS rotation angle and TDP torque during 

installation for different values of tip separation for soil friction 0.03 𝑘𝑁𝑚/𝑚 . As it can be seen for 

the lower value of soil friction (0.03 𝑘𝑁𝑚/𝑚) the increase of tension has no considerable effect at 

the landing angle of the ILS. As it can be seen from installation the value of landing angle fluctuates 

between 1.93o and 2.034o not showing a specific trend. The maximum ILS angle during installation 

has the same behaviour as in the cases with higher values of soil friction showing a gradual decrease 

for higher values of tension - tip separation (see Figure 6-53 and  Table 6-21).  

 

 

Case 
ILS Landing 

Angle 
 [Deg] 

Maximum 
ILS Angle  

[Deg] 

TDP Torque  
(ILS on seabed) 

[kNm] 

Maximum 
Suspended Length 

 [m] 

Maximum 
Bending strain 

 [%] 

TDP Initial 
Rotation Angle 

[Deg] 

0.3m 6.791 12.636 159.16 3079.13 0.118 101.823 
1m 6.896 11.371 161.36 3286.03 0.102 101.262 
2m 6.635 10.230 152.41 3470.45 0.091 100.522 
3m 6.706 9.601 150.38 3626.94 0.083 100.242 

Table 6-21 Results for different tension applied during inline structure installation (Soil friction : 0. 03 [kNm/m]) 

 

 
Figure 6-53 ILS rotation angle evolution during installation for different tension 

 

The touchdown point angle evolution during installation for different values of tension is shown in 

Figure 6-54. It can be seen that for all the cases the touchdown point rotation angle has the same 
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shape decreasing gradually until the last steps where presents some slight fluctuations for all cases. 

The tension has also an effect to the initial touchdown point rotation angle as it can be seen from 

Figure 6-54 and Table 6-21. Although the reduction of the initial TDP angle cannot be considered to 

be considerable  it verifies the fact that applying higher amount of tension results in lower values of 

rotation along the catenary for the pipeline in spite of the larger suspended length of the catenary. 

 

 
Figure 6-54 TDP rotation angle evolution during installation for different tension 

 

 

 
Figure 6-55 Touchdown point torque evolution during installation for different tension 
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6.7.4 Effect of numerical parameters 

 

As it was mentioned at the beginning of the chapter, the two most important numerical 

parameters that will be considered are the seabed step and the pipe pay-out at each installation 

step. 

 

Rotation and toque profiles are discretised along the catenary and on the seabed. Seabed step is a 

chosen parameter of the numerical model which describes the order of discretization of these 

profiles. 

 

6.7.4.1 Seabed Step Effect 

 

In order to investigate if the effect of the seabed step is considerable to the rotation phenomenon, 

four cases are examined. 

 

For the cases studied 35t buoyancy is used in restrained configuration, 012 kNm/m for soil friction 

and 0.3m for tip separation. Table 6-22 shows the inline structure landing and maximum angle 

during installation and the maximum slip length obtained using different values of seabed step. 

 

Seabed Step 
[m] 

Quantity 

ILS Landing 
Angle [Deg] 

Maximum ILS 
Angle [Deg] 

Maximum Slip  
Length [Deg] 

0.01 10.070 12.932 882.91 

0.1 10.050 12.931 882.9 

0.5 10.010 12.931 849.5 

1 9.979 12.930 849 
Table 6-22 Main rotation problem quantities for different values of seabed step 

 

As it can be seen, increasing the seabed step results in slightly different results for the quantities 

investigated. The parameter that is less affected by the seabed step is the maximum ILS angle during 

installation showing a divergence of 0.015% by increasing the seabed step from 0.01m to 1m. The 

ILS landing angle and the maximum slip length have a noticeable difference, especially for the case 

where the seabed step is 1m where the ILS landing angle is underestimated about 1% and the slip 

length about 3.7% with respect to the values obtained for the lowest value (0.01m). 

 

The seabed step has negligible effect to the computational time but affects significantly the amount 

of data saved after the model is finished. Based on the above, it can be concluded that a value of 

seabed step of 0.1 meters can be considered to be as optimal for practical purposes and can give 

precise results. Further analysis can be done for different values of soil friction in order to 

investigate for different behaviour of the model. 
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6.7.4.2 Pipe pay-out Effect 

 

In order to investigate if the effect of the pipe pay-out is significant to the rotation phenomenon, 

three cases are examined. For the cases studied 35t buoyancy is used in restrained configuration, 

012 kNm/m for soil friction, 0.3m for tip separation and seabed step 0.1m 

 

Table 6-23 shows the inline structure landing and maximum angle during installation and the 

maximum slip length obtained using different values of seabed step. 

 

Pay-out 
[m] 

Quantity 

ILS Landing 
Angle [Deg] 

Maximum ILS 
Angle [Deg] 

Maximum Slip  
Length [Deg] 

6.1 10.051 12.979 895.3 

12.2 10.050 12.931 882.9 

24.4 9.866 12.614 683.7 
Table 6-23 Main rotation problem quantities for different values of pipe pay-out 

 

As it can be seen from the table above pipe pay-out has a noticeable effect on the results, especially 

for the case of 24.4 meters where there is a relative difference of around 2% for the case of the 

landing and maximum ILS angle and 23.6% difference for the maximum slip length. The reason for 

that can be explained by the fact that the boundary conditions used in order to find the ILS and TDP 

equilibrium on each step depend on the pipe pay-out, so increasing significantly its value there it is 

needed an additional iteration procedure in order for the results to converge. Taking into account 

that the pipe pay-out affects significantly the computational time of the model and conducting a 

number of different comparisons in order to analyse its effect on the accuracy of the results it is 

proposed that the optimal value that gives reliable results in acceptable computational time for 

practical purposes, is 12.2 meters as the difference between the results in the first two cases is 

much lower than the accuracy required.  
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7.0 RESULTS DISCUSSION - CONCLUSIONS 

In Chapter 6.7 a number of different cases were presented taking into consideration the effect of 

different parameters as the buoyancy effect, the soil friction and the tension.  

 

Summarizing the results it can be concluded 

 

 Applying the same amount of buoyancy for different values of soil friction, it was noticed that 

lower values of soil friction result in reduced inline structure landing angles. This behaviour was 

observed for all the cases studied independently of the amount of buoyancy (35t – 100t) and 

the configuration (restrained – unrestrained). This behaviour can be explained by the fact that 

for lower values of soil friction, the resistance provided from the seabed to the pipe is reduced 

and as a consequence, the already laid pipe is able to rotate more by the counteracting toque 

induced from the buoyancy modules. As it can be seen from Table 7-1 and Figure 7-1 there is a 

noticeable increase of ILS landing angle from the low (0.03kNm/m) to the intermediate (0.12 

kNm/m) values of soil friction for all the cases studied and then the rate of increase decreases 

considerably from the intermediate to the higher bound (0.2kNm/m). In addition, it can be seen 

that the seabed friction has a more significant effect on the cases of low amount of buoyancy 

(cases 1-2). 

 

As far as the effect of buoy configuration is concerned, the restrained buoyancy configuration 

resulted to lower values of ILS landing angle, as it was expected, for all the cases independently 

of the soil friction and the amount of buoyancy. Both for the low and the high amount of 

buoyancy cases the difference between the two types of configuration becomes higher when 

the values of soil friction increase, as it can be seen from  Figure 7-1, especially for the 35t 

buoyancy (low value).  

 
Figure 7-1 ILS landing angle for different values of soil friction and buoyancy 
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Case ILS landing angle 
[Deg] – S.F.:0.03 

ILS landing angle 
[Deg] – S.F.:0.12 

ILS landing angle 
[Deg] – S.F.:0.2 

1 6.90 10.62 11.22 
2 6.79 10.07 10.15 
3 2.942 4.612 4.652 

4 1.974 3.165 3.197 

5 1.965 3.044 3.054 
Table 7-1 ILS landing angle for different values of soil friction and buoyancy 

 

 Another relevant quantity is the maximum rotation angle of the inline structure during 

installation. As it can be seen from Table 7-2 and Figure 7-2 the effect of soil friction to the 

maximum reachable ILS rotation angle during installation can be considered to be negligible for 

all the cases, independently of the amount or the configuration of the buoyancy. That can be 

explained by the fact that as shown in the Chapter 6.7 for all the cases the maximum ILS 

rotation angle is reached at the first installation steps, where the torque induced by the ILS to 

the laid pipe is relatively small and thus the soil friction has not yet considerable effect on the 

rotation phenomenon. In contrast with the ILS landing angle, the buoyancy configuration has a 

considerable effect on the maximum ILS rotation angle during installation. Specifically for the 

cases of low amount of buoyancy there is a difference around 11o for all the values of soil 

friction, while for the cases 4 and 5 (100t buoyancy) the difference is around 5o (see Table 7-2). 

 

Case ILS maximum angle 
[Deg] – S.F.:0.03 

ILS maximum angle 
[Deg] – S.F.:0.12 

ILS maximum angle 
[Deg] – S.F.:0.2 

1 22.84 23.04 23.06 
2 12.64 12.93 12.94 
3 8.941 9.025 9.026 
4 9.943 9.992 9.993 
5 4.874 4.918 4.919 

Table 7-2 Maximum ILS angle for different values of soil friction and buoyancy 

 
Figure 7-2 Maximum ILS angle for different values of soil friction and buoyancy 
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 For all the values of soil friction the effect of the applied tension was analysed for the rotation 

and the pipelay quantities. For all the cases studied, 35t of buoyancy were used in restrained 

configuration. As it can be seen from Figure 7-3 for the cases of the intermediate and the high 

value of soil friction, higher values of tip separation - tension result in lower values of ILS landing 

angles. That can be explained by the fact that higher tension results in lower sagbend strains, 

thus decreased sagbend curvature, and as a consequence lower amount of rotation. However it 

can be seen that as the tension increases the rate of decrease of ILS landing angle reduces 

showing that for a certain value of soil friction and buoyancy configuration there is a certain 

value of ILS landing angle that cannot be exceeded independently of the tension applied. For the 

case of soil friction 0.03kNm/m (low bound) the ILS landing angle does not show a specific 

behaviour as it fluctuates at around 6.7o showing that the tension has not considerable effect in 

the case of low soil friction. 

 

 
Tip Separation [m] 

Soil Friction 
[kNm/m] 

0.3 1 2 3 

0.03 6.791
o
 6.896

o
 6.635

o
 6.706

o
 

0.12 10.07
o
 9.448

o
 8.927

o
 8.661

o
 

0.2 10.153
o
 9.459

o
 8.936

o
 8.662

o
 

Table 7-3 ILS landing angle for different values of soil friction and tension 

 
Figure 7-3 ILS landing angle for different values of soil friction and tension 

The maximum angle of the in line structure during installation has the same behaviour for all the 

values of soil friction, decreasing for higher values of applied tension as it can be seen from Figure 

7-4. Comparing with Figure 7-3 it can be concluded that the effect of tension is more considerable 

for the maximum ILS rotation angle during installation than for the ILS landing angle. In addition, the 

difference for the intermediate and the high values of soil friction is negligible for all the cases of 

applied tension.  
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Figure 7-4 ILS landing angle for different values of soil friction and tension 

 

 
Tip Separation [m] 

Soil Friction 
[kNm/m] 

0.3 1 2 3 

0.03 12.636
o
 11.371

o
 10.231

o
 9.601

o
 

0.12 12.932
o
 11.533

o
 10.364

o
 9.686

o
 

0.2 12.934
o
 11.535

o
 10.365

o
 9.687

o
 

Table 7-4 ILS maximum angle for different values of soil friction and tension 

 

Applying higher amount of tension has also as a consequence the reduction of the maximum 

bending strains at the sagbend and the raise of the maximum suspended length as it can be 

seen from  Figure 7-5  and Table 7-5.  

 

 

Maximum 
Bending strain  

[%] 

Maximum 
Suspended Length 

[m] 

Maximum applied 
top tension 

 [kN] 

0.118 3079.13 4068 

0.102 3286.03 4400 

0.091 3470.45 4751 

0.083 3626.94 5018 
Table 7-5 Maximum bending strain and suspended length during ILS installation  

for different values of tension 

 



111 
 

 
Figure 7-5 Maximum bending strain and suspended length for different values of tension 

According to the results above, it can be concluded that the inline structure rotation angle is 

mainly dominated by the reduction of the bending strains and the decreased curvature along 

the pipeline for increased values of tension and not by the increase of the suspended length of 

the catenary. 

 

 When the installation process starts, the initial touchdown point rotation angle is also affected 

by the tension applied. As shown before, there is a slight decrease of the TDP rotation angle by 

applying higher amount of tension, verifying the fact that higher tension results in lower values 

of rotation along the catenary.  

 

 

 
Figure 7-6 Touchdown point initial rotation angle for different values of tension 

As it can it can be seen the increase in tension resulted to a decrease of the initial touchdown point 

angle of around 1.6o. Comparing with the ILS landing angle for different amount of tension (Figure 

Case 
TDP Initial Rotation Angle 

 [Deg] 

0.3m 101.823 
1m 101.262 
2m 100.522 
3m 100.242 

Table 7-6 TDP Initial Rotation Angle 

 



112 
 

7-3 and Table 7-3) it is noticed that especially for the cases 0.12kNm/m and 0.2kNm/m the inline 

structure landing angle has a reduction of almost the same magnitude (1.41o and 1.49o respectively). 

According to that it can be concluded that the reduction of the ILS landing angle is mainly caused by 

the decrease of the initial touchdown point rotation angle. Thus an effective solution for the 

considerable reduction of the ILS landing angle would be the increase of tension a few kilometres 

before the inline structure installation, resulting in lower rotation angle of the already laid pipe and 

as a consequence in considerably decreased touchdown point angle when ILS is to be installed. 
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8.0 POTENTIAL ENERGY METHOD 

In this chapter the potential energy method will be analysed for the derivation of the coupled 

differential equations which govern a pipeline segment subjected to bending, torsion and tension. 

The purpose of the chapter is to validate the results obtained from the energy minimization 

principle by solving the bending and the rotation problem simultaneously. 

 

8.1 Derivation of coupled differential equations of motion 

 

The total potential energy of a pipeline segment of length ds subjected to tension 𝑇 as shown in 

Figure 3-3 can be expressed as follows [17] 

 

𝑃 = ∫
1

2
𝐸𝐴[𝑢𝑎𝑥

′ (𝑠)]2 +
1

2
𝐸𝐼𝑏[𝜗

′(𝑠)]2 +
1

2
𝐺𝐼𝑡[𝜑

′(𝑠)]2 −
1

2

𝑇𝐼𝑡
𝐴
[𝜑′(𝑠)]2 −

1

2
𝑇 ∙ (𝜃)2 + 𝜌𝛢𝑧𝑑𝑠 

𝐿

0

 

where the first three terms describe the axial, bending and torsion energy. The fourth and the fifth 

term are second order terms related to the effect of tension for large deflection and rotation angles 

while the last term is the energy due the own weight of the pipe segment (z is the vertical 

displacement of a segment). 

 

Taking into account the residual curvature due to the plastic deformation of the pipe on the stinger 

the curvature can be written with the same way as introduced in previous chapters, thus 

 

𝜗′(𝑠) = 𝜗′(𝑠) + 𝑘𝑟𝑐𝑜𝑠𝜑(𝑠) 

 

The potential energy can be written  

 

𝑃 = ∫
1

2
𝐸𝐴[𝑢𝑎𝑥

′ (𝑠)]2 +
1

2
𝐸𝐼𝑏[𝜗

′(𝑠) + 𝑘𝑟𝑐𝑜𝑠𝜑(𝑠)]
2 +

1

2
𝐺𝐼𝑡[𝜑

′(𝑠)]2 −
1

2

𝑇𝐼𝑝
𝐴
[𝜑′(𝑠)]2 −

1

2
𝑇 ∙ (𝜗)2

𝐿

0

+ 𝜌𝛢𝑧 𝑑𝑠  

 

Expanding the squared term of the bending energy, 

 

𝑃 = ∫
1

2
𝐸𝐴[𝑢𝑎𝑥

′ (𝑠)]2 +
1

2
𝐸𝐼𝑏[𝜗

′(𝑠)]2 + 𝐸𝐼𝑏𝜗
′(𝑠)𝑘𝑟𝑐𝑜𝑠𝜑(𝑠) +

1

2
𝐸𝐼𝑏𝑘𝑟

2𝑐𝑜𝑠2𝜑(𝑠) +
1

2
𝐺𝐼𝑡[𝜑

′(𝑠)]2
𝐿

0

−
1

2

𝑇𝐼𝑝
𝐴
[𝜑′(𝑠)]2 −

1

2
𝑇[𝜗(𝑠)]2 + 𝜌𝛢𝑔𝑧 𝑑𝑠  

 

In order to find equilibrium, the variation of the potential energy is set equal to zero: 

𝛿𝑃 = ∫𝐸𝐴𝑢𝑎𝑥
′ 𝛿𝑢𝑎𝑥

′ + 𝐸𝐼𝑏𝜗
′𝛿𝜗′  + 𝐸𝐼𝑏𝑘𝑟𝑐𝑜𝑠𝜑𝛿𝜗

′ − 𝐸𝐼𝑏𝜗
′𝑘𝑟𝑠𝑖𝑛𝜑𝛿𝜑 − 𝐸𝐼𝑏𝑘𝑟

2𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑𝛿𝜑 
𝐿

0

+ 𝐺𝐼𝑡𝜑
′𝛿𝜑′ −

𝑇𝐼𝑝
𝐴
𝜑′𝛿𝜑′ − 𝑇𝜗𝛿𝜗 + 𝜌𝛢𝑔𝑐𝑜𝑠𝜗𝛿𝑤 + 𝜌𝛢𝑔𝑠𝑖𝑛𝜗𝛿𝑢𝑎𝑥

′  𝑑𝑠  

Integration by parts gives (with zero integration constants from the boundary conditions): 
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𝛿𝑃 = ∫𝛿𝑃1 + 𝛿𝑃2 + 𝛿𝑃3 𝑑𝑠 

𝐿

0

 

where the components of the energy potential can be written 

 

𝛿𝑃1 = (−𝐸𝐴𝑢𝑎𝑥
′′ + 𝜌𝛢𝑔𝑠𝑖𝑛𝜗)𝛿𝑢𝑎𝑥

  

 

𝛿𝑃2 = (−𝐺𝐼𝑡𝜑
′′ − 𝐸𝐼𝑏𝜗

′𝑘𝑟𝑠𝑖𝑛𝜑 − 𝐸𝐼𝑏𝑘𝑟
2𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑 +

𝑇𝐼𝑝

𝐴
𝜑′′)𝛿𝜑 

 

The terms related to the variation of the rotation in bending plane 𝛿𝜗 will be written with respect to 

𝛿𝑤. Taking into account 𝛿𝜗′ = 𝛿𝑤′′ (where w is the deflection of the beam) with integration by 

parts  

 

𝐸𝐼𝑏𝜗
′𝛿𝜗′ = 𝐸𝐼𝑏𝑤

′′𝛿𝑤′′ = −𝐸𝐼𝑏𝑤
′′′𝛿𝑤′ = 𝐸𝐼𝑏𝑤

′′′′𝛿𝑤 

 

𝐸𝐼𝑏𝑘𝑟𝑐𝑜𝑠𝜑𝛿𝜗
′ = 𝐸𝐼𝑏𝑘𝑟(𝑐𝑜𝑠𝜑)

′𝛿𝜗 = −𝐸𝐼𝑏𝑘𝑟𝜑
′𝑠𝑖𝑛𝜑𝛿𝜗 = −𝐸𝐼𝑏𝑘𝑟𝜑

′𝑠𝑖𝑛𝜑𝛿𝑤′

= 𝐸𝐼𝑏𝑘𝑟(𝜑
′𝑠𝑖𝑛𝜑)′𝛿𝑤 

 

𝑇𝜗𝛿𝜗 = 𝑇𝜗𝛿𝑤′ = −𝑇𝜗′𝛿𝑤 

 

Based on the above the expression for 𝛿𝑃3 becomes 

 

𝛿𝑃3 = (𝐸𝐼𝑏𝑤
′′′′ + 𝐸𝐼𝑏𝑘𝑟(𝜑

′𝑠𝑖𝑛𝜑)′ − 𝑇𝜗′ + 𝜌𝛢𝑔𝑐𝑜𝑠𝜗)𝛿𝑤 

 

and taking into account that 𝑤′ = 𝜗 the expression for 𝛿𝑃3 can be written 

 

𝛿𝑃3 = (𝐸𝐼𝑏𝜗
′′′ + 𝐸𝐼𝑏𝑘𝑟(𝜑

′𝑠𝑖𝑛𝜑)′ + 𝑇𝜗′ + 𝜌𝛢𝑔𝑐𝑜𝑠𝜗)𝛿𝑤 

 

If the integral in the expression of 𝛿𝑃 is to be zero for every variation 𝛿𝑢𝑎𝑥
 , 𝛿𝜑 𝑎𝑛𝑑 𝛿𝑤, it should 

hold that: 

𝐸𝐼𝑏𝜗
′′′ + 𝐸𝐼𝑏𝑘𝑟(𝜑

′ ∙ 𝑠𝑖𝑛𝜑)′ − 𝑇𝜗′ + 𝜌𝛢𝑔𝑐𝑜𝑠𝜗 = 0 

 

−𝐺𝐼𝑡𝜑
′′ − 𝐸𝐼𝑏𝜗

′𝑘𝑟𝑠𝑖𝑛𝜑 − 𝐸𝐼𝑏𝑘𝑟
2𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑 +

𝑇𝐼𝑝
𝐴
𝜑′′ = 

 

−𝐸𝐴𝑢𝑎𝑥
′′ + 𝜌𝛢𝑔𝑠𝑖𝑛𝜗 = 0 

 

Taking into account that the tension applied and the submerged weight can be written as 

 

𝑇 = 𝐸𝐴𝑢𝑎𝑥
′    𝑎𝑛𝑑   𝑤𝑠 = 𝜌𝛢𝑔 

 

the equations above can be written 

 

                                       𝐸𝐼𝑏
𝑑3𝜗

𝑑𝑠3
− 𝑇

𝑑𝜗

𝑑𝑠
+ 𝐸𝐼𝑏𝑘𝑟 (

𝑑𝜑

𝑑𝑠
∙ 𝑠𝑖𝑛𝜑)

′

+𝑤𝑠𝑐𝑜𝑠𝜗 = 0                                     [𝟖. 𝟏] 
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                                − (𝐺𝐼𝑡 −
𝑇𝐼𝑝

𝐴
)
𝑑2𝜑

𝑑𝑠2
− 𝐸𝐼𝑏𝑘𝑟𝑠𝑖𝑛𝜑 

𝑑𝜗

𝑑𝑠
− 𝐸𝐼𝑏𝑘𝑟

2𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑 = 0                             [𝟖. 𝟐] 

 

                                                                            
𝑑𝑇

𝑑𝑠
= 𝑤𝑠𝑠𝑖𝑛𝜗                                                                          [𝟖. 𝟑] 

 

Equations 7.1, 7.2 and 7.3 are the set of coupled differential equations which describe the  motion of a 

pipe segment along the catenary subjected to bending and torsion under tension T.  Following the same 

procedure by substituting the variable s with the dimensionless parameter ε, where 

 

𝑠 = 𝜀 ∙ 𝐿 𝑤ℎ𝑒𝑟𝑒 𝑠 ∈ [0, 𝐿] 𝑎𝑛𝑑 𝜀 ∈ [0,1]  

the equations above become 

 

𝐸𝐼𝑏
𝐿3
𝑑3𝜗

𝑑𝜀3
−
𝑇

𝐿

𝑑𝜗

𝑑𝜀
+
𝐸𝐼𝑏
𝐿2
𝑘𝑟
𝑑2𝜑

𝑑𝜀2
𝑠𝑖𝑛𝜑 +

𝐸𝐼𝑏
𝐿2
𝑘𝑟 (

𝑑𝜑

𝑑𝜀
)
2

𝑐𝑜𝑠𝜑 +𝑤𝑠𝑐𝑜𝑠𝜗 = 0 

 

−(𝐺𝐼𝑡 −
𝑇𝐼𝑝
𝐴
)
1

𝐿2
𝑑2𝜑

𝑑𝜀2
−
𝐸𝐼𝑏𝑘𝑟
𝐿

𝑑𝜗

𝑑𝜀
𝑠𝑖𝑛𝜑 − 𝐸𝐼𝑏𝑘𝑟

2𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑 = 0 

 

𝑑𝑇

𝑑𝜀
= 𝑤𝑠𝐿𝑠𝑖𝑛𝜗 

Having formulated the coupled governing equations of a pipe segment along the catenary, the 

boundary conditions can be written as follows 

 

ϑ(0) = 0 The pipeline angle at the touchdown point is zero. 

 

dϑ

dε
|
ε=0

= 0 The derivative of the angle (bending moment)at the touchdown point is zero. 

 

T(0) = Th The tension at the seabed equals to the bottom tension (applied from the thrusters) 

 

ϑ(1) = ϑ0 The angle at the stinger tip equals to the departure angle. 

 

T(1) = T(st) The tension at the stinger tip equals to the axial top tension. 

 

dφ

dε
|
ε=0

= 0 The derivative of the rotation angle (torsion) at the touchdown point is zero. 

 

φ(1) = 0 The rotation angle at the stinger tip is zero. 

 

In order to validate the results from the energy minimization principle, the same cases were 

conducted as these presented in Chapter 6.2. It should be mentioned that in this case the rotation 

and the bending problem is solved simultaneously based on the coupled equations presented 

above. In the case of the energy minimization principle the bending problem was solved firstly and 

the curvature obtained from its solution is used as an input for the rotation problem. 



116 
 

8.1.1 Case Study No1 

 

Figure 8-1 and Figure 8-2 show the rotation angle and the curvature evolution (and their difference) 

along the catenary obtained by the energy minimization method, where bending and the rotation 

problems are solved separately, and the potential energy method where the problems are solved 

simultaneously based on the coupled differential equations presented above. 

Figure 8-1 Rotation angle & absolute difference (Residual Radius=511.1m) 

Figure 8-2 Curvature evolution & absolute difference (Residual Radius=511.1m) 

As it can be seen the rotation angle difference between the two methods is lower than 0.025o along 

the catenary which can be considered to be negligible. The angle at the touchdown point given by 

solving the coupled differential equations based on potential energy method is 118.119o while from 

energy minimization principle the touchdown point angle was 118.099o. It should be noted that 

when the rotation becomes significant (after 400m from the stinger tip) the curvature obtained by 

the potential energy method is slightly lower than that obtained by energy minimization principle 

and that is caused by the fact that solving the bending and the rotation problems simultaneously, 

rotation is taken into account for the estimation of bending problem quantities resulting to lower 

values of curvature (see Chapter 5.2 for physical explanation). 
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8.1.2 Case Study No2 

 

Figure 8-3 and Figure 8-4 show rotation angle and curvature evolution (and their difference) along 

the catenary obtained by the energy minimization method and the potential energy method for the 

second case study. 

Figure 8-3 Rotation angle evolution & absolute difference (Residual Radius=360.6m) 

Figure 8-4 Curvature evolution & absolute difference (Residual Radius=360.6m) 

 

At the second case the difference between the rotation angle along the catenary follows a smooth 

trend increasing gradually from 0 (stinger tip) to 0.32o around the area of touchdown point where 

this difference remains almost constant. The rotation angle at the touchdown point obtained by the 

potential energy method is 40.897o while based on energy minimization principle the touchdown 

point angle obtained was 40.578o. The curvature profile presents the same behavior at the sagbend 

region, with the energy minimization method overestimating the curvature as it does not take into 

account the residual curvature and the resulting rotation along the catenary. 
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8.1.3 Case Study No3 

 

Figure 8-5 and Figure 8-6 show rotation angle and curvature evolution (and their difference) along 

the catenary obtained by the energy minimization method and the potential energy method for the 

third case study. 

 

Figure 8-5 Rotation angle evolution & absolute difference (Residual Radius=791m) 

 

Figure 8-6 Curvature evolution & absolute difference (Residual Radius=791m) 

At the third case the difference between the rotation angle along the catenary has the same shape 

as in the 2nd case, increasing gradually from 0 (stinger tip) to 0.07o around the area of touchdown 

point where this difference remains almost constant. The rotation angle at the touchdown point 

given by solving the coupled differential equations based on potential energy method is 63.771o 

while based on energy minimization principle the touchdown point angle obtained was 63.702o. 
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8.1.4 Case Study No4 

 

Figure 8-5 and Figure 8-6 show rotation angle and curvature evolution (and their difference) along 

the catenary obtained by the energy minimization method and the potential energy method for the 

third case study. 

 
Figure 8-7 Rotation angle evolution & absolute difference (Residual Radius=2262m) 

 

Figure 8-8 Curvature evolution & absolute difference (Residual Radius=2262m) 

As it can be seen the rotation angle difference between the two methods is lower than 0.025o along 

the catenary. The angle at the touchdown point given by solving the coupled differential equations 

based is 88.759o while from energy minimization principle the touchdown point angle is 88.735o. For 

the largest part of the sagbend area the curvature obtained by the potential energy method is 

slightly lower than that obtained by energy minimization principle as rotation is taken into account 

for the estimation of bending problem quantities. 
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8.1.5 Results Analysis 

 

Based on the comparisons between the energy minimization principle and the potential energy 

method can be concluded that the two methods lead to the same results with negligible differences 

for all the cases studied.  

 

 Curvature 

 

For all the cases the potential energy method resulted in lower values of curvature at the sagbend 

area. That can be explained by the fact that when the bending and the rotation problem are solved 

simultaneously the resulting pipe rotation is taken into account for the solution of the bending 

problem. For all the cases is shown that the influence of the torsion on bending is negligible. The 

order of the curvature difference is 3 to 4 times lower than the order of the actual values of 

curvature, thus the coupling effect has no significant effect on the problem. In addition, the highest 

difference between the two methods is noticed at the area of the stinger tip, where the derivative 

of the rotation angle 
𝑑𝜑

𝑑𝑠
  has its highest values and that can be explained by the additional coupling 

term  

𝐸𝐼𝑏𝑘𝑟 (
𝑑𝜑

𝑑𝑠
∙ 𝑠𝑖𝑛𝜑)

′

 

 

in equation 7.1 which describes the bending problem. 

 

 Rotation Angle 

 

For all the cases studied the potential energy method, where the coupled differential equations for 

bending and rotation are solved simultaneously, resulted to slightly higher touchdown point angles 

than the energy minimization method. The largest differences between the rotation angle profiles 

were found for the cases of shallow waters (Case 2 – 200m and Case 3 – 600m) around 0.32o and 

0.07o respectively at the touchdown point. For the other two cases the difference between the two 

methods reached a maximum of around 0.022o at the touchdown point. For all the cases studied the 

difference between the rotation angle along the catenary is zero at the stinger tip (boundary 

condition) and increases gradually until the touchdown point area where it remains constant. For 

the cases 2 and 3 the difference increases smoothly until the touchdown point as it can be seen 

from Figure 8-3 and Figure 8-5, whereas for the cases 1 and 4 are noticed some fluctuations along 

the catenary (see  

Figure 8-1 and Figure 8-9). The difference in the rotation profile comes as a result of the difference 

in the curvature profile and is considered to be negligible. 

 

Based on the results and the comparisons made it can be concluded solving the coupled differential 

equations using the potential energy method did not have considerable effect for any of the cases 

studied. The rotation and curvature profiles along the catenary as well as the rotation angle at the 

touchdown point presented minor differences which are not considered to be noticeable validating 

the results obtained from the energy minimization principle. 
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9.0 MODEL IMPROVEMENT - PIPE-SOIL INTERACTION 

Instead of considering the soil to be purely rigid (pipelay problem) the pipeline can be considered as 

a beam laying  on elastic foundation [2], [3]. The beam lies on elastic foundation when under the 

applied external loads, the reaction forces of the foundation are proportional at every point to the 

deflection of the beam at this point. This assumption was introduced first by Winkler in 1867. 

According to the Winkler model, the beam-supporting soil is modeled as a series of closely spaced, 

mutually independent, linear elastic vertical springs, defined by the seabed stiffness 𝑘𝑠, which 

provide resistance in direct proportion to the deflection of the beam. 

 

 

 

 

 

 
Figure 9-1 Geometry of a beam on Winkler foundation 

 

Considering the pipe as a tensioned beam, the forces acting on a segment of pipeline laid on the 

seabed is shown in Figure 9-2.  

 
Figure 9-2 Force sketch of segments of pipe on the seabed 

 

Based on the analysis of the acting forces the ordinary differential equation which governs the 

transverse motion of the tensioned pipe is 

 

𝐸𝐼𝑏
𝑑4𝑦

𝑑𝑥4
− 𝑇ℎ

𝑑2𝑦

𝑑𝑥2
+ 𝑘𝑠(𝑦 − 𝐷) = 𝑤𝑠 

 

where T is a constant tension, 𝑘𝑠 is the seabed stiffness and D the water depth. In order to solve the 

problem the equation has to become as follows 

 

                                                     
𝑑4𝑦

𝑑𝑥4
−
𝑇ℎ
𝐸𝐼𝑏

𝑑2𝑦

𝑑𝑥2
+
𝑘𝑠
𝐸𝐼𝑏

𝑦 =
(𝑤𝑠 + 𝑘𝑠 ∙ 𝐷)

𝐸𝐼𝑏
                                                [𝟗. 𝟏] 

 

The general solution of the nonhomogeneous differential equation can be expressed as a 

superposition of  

𝑦 = 𝑦𝑐 + 𝑦𝑝 

 

L 

k 
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where 𝑦𝑝 is a particular solution of Equation 8.1 and 𝑦𝑐  is the general solution of the homogeneous 

equation 

  
𝑑4𝑦

𝑑𝑥4
−
𝑇ℎ
𝐸𝐼𝑏

𝑑2𝑦

𝑑𝑥2
+
𝑘𝑠
𝐸𝐼𝑏

𝑦 = 0 

 

The general solution of the homogeneous equation can be written as 

 

𝑦 = ∑ �̃�𝑛 ∙ 𝑒
(𝑠𝑛∙𝑥)

4

𝑛=1

 

 

Substituting in the homogeneous equation and following simple algebraic operations 𝑦𝑐  can be 

written 

 

𝑦𝑐(𝑥) = 𝑐1𝑒
−𝛼𝑥𝑐𝑜𝑠(𝛽𝑥) + 𝑐2𝑒

−𝛼𝑥𝑠𝑖𝑛(𝛽𝑥) + 𝑐3𝑒
𝛼𝑥𝑐𝑜𝑠(𝛽𝑥) + 𝑐4𝑒

𝛼𝑥𝑠𝑖𝑛(𝛽𝑥) 

 

where c1, c2, c3, and c4 are unknown coefficients, and 

 

𝛼 =
1

2
√2√

𝑘𝑠
𝐸𝐼𝑏

+
𝑇ℎ
𝐸𝐼𝑏

    𝑎𝑛𝑑    𝛽 =
1

2
√2√

𝑘𝑠
𝐸𝐼𝑏

−
𝑇ℎ
𝐸𝐼𝑏

 

 

Taking into account the inhomogeneous part of the solution the final expression of y becomes 

 

𝑦 = 𝐷 +
𝑤𝑠
𝑘𝑠
+ 𝑐1𝑒

−𝛼𝑥𝑐𝑜𝑠(𝛽𝑥) + 𝑐2𝑒
−𝛼𝑥𝑠𝑖𝑛(𝛽𝑥) + 𝑐3𝑒

𝛼𝑥𝑐𝑜𝑠(𝛽𝑥) + 𝑐4𝑒
𝛼𝑥𝑠𝑖𝑛(𝛽𝑥) 

 

It should be mentioned that, for the homogeneous equation for  

 

(
𝑇ℎ
𝐸𝐼𝑏
)
2

− 4
𝑘𝑠
𝐸𝐼𝑏

< 0
 
⇒𝑇ℎ < 2√𝐸𝐼𝑏𝑘𝑠  

 

no real solution can be obtained, so based on the problem the inequality  

 

𝑇ℎ ≥ 2√𝐸𝐼𝑏𝑘𝑠 
have to be checked if it is satisfied. 
 

The unknown coefficients will be found from the boundary conditions. The pipe laid on the seabed is 

modeled as a beam on the Winkler foundation. At  long distance from TDP, the pipe on the seabed 

can be treated as a beam of infinite length. Considering the boundary condition at 𝑥
 
→∞, where the 

embedment of pipe is only influenced by its self-weight, the value of y approximates the value  

 

𝑦 = 𝐷 +
𝑤𝑠
𝑘𝑠

 

 

so the coefficients 𝑐3 𝑎𝑛𝑑 𝑐4 shall be equal to zero. 
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𝑦(𝑥) = 𝐷 +
𝑤𝑠
𝑘𝑠
+ 𝑐1𝑒

−𝛼𝑥𝑐𝑜𝑠(𝛽𝑥) + 𝑐2𝑒
−𝛼𝑥𝑠𝑖𝑛(𝛽𝑥) 

 
The displacement at y=0 can be assumed to be equal with D so  
 

𝑦(0) = 𝐷
 
⇒ 𝑐1 = −

𝑤𝑠
𝑘𝑠

 

 
Based on the fact that the pipeline approaches the seabed in horizontal position, angle θ=0, so 
 

𝑦 ′(0) = 0
 
⇒ 𝑐2 =

𝛼

𝛽
∙ 𝑐1 

 
So the final expression for the solution y is 
 

                               𝑦(𝑥) = 𝐷 +
𝑤𝑠
𝑘𝑠
+ (−

𝑤𝑠
𝑘𝑠
) 𝑒−𝛼𝑥𝑐𝑜𝑠(𝛽𝑥) + (

𝛼

𝛽
∙ 𝑐1) 𝑒

−𝛼𝑥𝑠𝑖𝑛(𝛽𝑥)                          [𝟗. 𝟐] 

 

 

The associated bending moment can be expressed as follows 
 

𝑀 =  𝐸𝐼𝑏
𝑑2𝑦

𝑑𝑥2
 

 

 

At the touchdown point, the seabed was considered to be infinitely stiff so the boundary condition 
was 
 

𝐵. 𝐶. ∶  
𝑑𝜃

𝑑𝑠
|
𝑠=0

= 0 

 

 

Based on the Winkler model, the boundary conditions at the touchdown point (see Chapter 3.2.2) 
can be modified and can be expressed as follows 
 

𝐵. 𝐶. 1 ∶ 𝜃(0) =
𝑑𝑦(𝑥)

𝑑𝑥
|
𝑥=0

 

 

𝐵. 𝐶. 2 ∶  
𝑑𝜃

𝑑𝑠
|
𝑠=0

=
𝑑2𝑦(𝑥)

𝑑𝑥2
|
𝑥=0

 

 

where function y is given by equation 7.1. 
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10.0 GENERAL CONCLUSION - RECOMMENDATIONS 

 
The purpose of the thesis was to develop a model for accurately quantifying pipeline rotation during 

installation of inline structures with S-lay method. A sequential model was built based on mechanical 

principles and energy minimization approach in order to solve the pipelay and rotation problem 

simultaneously, identify the effect of plastic strains and residual curvature phenomenon and 

investigate rotation profile evolution during actual operations. The model includes also mitigation 

measures (buoyancy modules) and their effect in the reduction of total rotation as well as the effect 

of soil friction and applied tension. 

 

The pipelay model, based on mechanical principles and nonlinear bending equation behaves with 

considerable accuracy for all the cases studied, independently of the input parameters as the water 

depth, the stinger configuration and for pipeline characteristics. The relatively higher errors at the 

boundaries (touchdown point and stinger tip) can be explained by the fact that the boundary 

conditions are not identical and can be improved by considering the seabed as a Winkler foundation 

and including in the model the overbend region respectively. The presence of these errors does 

affect the solution along the catenary for any of the cases studied. The model can be used for 

multiple pipe sections along the catenary as shown in Chapter 4.0. 

 

The rotation problem of the pipeline was solved based on Lagrangian Minimization Method where 

the bending problem and the rotation problem are solved separately (decoupled system – Chapter 

6.0) and based on Potential Energy Method where the two problems are solved simultaneously 

based on the coupled differential equations presented in Chapter 8.0. The two methods resulted in 

almost the same results for normal pipelay rotation problem with negligible differences for all the 

cases showing that the coupling has not considerable effect in the solution of the problem. Thus 

both of them can be used for the ILS sequential model to quantify accurately ILS rotation during 

installation. 

 

Based on the above it is concluded that the model can be used as a reliable basis for the 

determination of pipelay and rotation quantities for pipeline and inline structure installations. The 

model can be easily modified with respect to the actual projects and can be further improved in 

order to be a fully developed tool in order to quantify rotation and ensure safety before the project 

execution. 

Further improvements: 

 

 Include overbend area in the model in order for the model to be fully independent of Offpipe & 

BendPipe. 

 Consider the seabed as Winkler foundation and analyze its effect on  pipelay and rotation 

problem. 

 Include out of plane calculations of residual curvature and investigate the effect of out of plane 

deformations. 
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APPENDIX A. Terminology 

 

During pipelay operations specific terminology is used to clarify parts and angles of the pipe, stinger 

and barge. 

 

Tensioners 

Tensioners are the main element of the pipelay system. Their function is to hold the pipe in 

suspension between the end of the stinger and the seabed, by applying a constant tension to the 

pipe. 

 

Firing Line 

The firing line is the main line from where the pipe joints pass before they leave the vessel. It 

contains the welding, coating and non-destructive testing stations. 

 

Stinger 

Stinger is a steel construction attached on the end of the firing line on the front or stern of the 

vessel. The purpose of the stinger is guiding the pipeline in a pre-determined curve through the 

water to the seabed. 

 

Stinger radius 

The stinger radius is the radius of a circle formed by the pipe supports on the stinger. 

 

Lift-off point  

The lift-off point is the point from where the pipeline is no longer in contact with rollers on the 

stinger. 

 

Lift-off angle 

Is the angle of the pipeline, relative to the horizontal plane, at the point where the pipe is no longer 

in contact with the rollers on the stinger. 

 

Departure angle 

Is the angle of the pipeline, relative to the horizontal plane, at the stinger tip. 

 

Overbend  

Overbend is called the pipeline section where the pipe is bent up toward the sea surface. At the 

overbend region the pipe is guided by the stinger. 

 

Sagbend 

Sagbend is called the pipeline section where the pipe is bent down toward the seabed (part of the 

pipeline in suspension). This is between the inflection point and the touchdown point. 

 

Inflection point 

It is the transition point between the overbend of the pipeline and the suspended pipeline in the 

sagbend. At the inflection point the moment in the pipeline is zero. 
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Bottom tension 

The bottom tension is the axial tension in the section of the pipeline where it touches the seabed. 

  

Touchdown point 

The touchdown point is the point where the pipeline touches the seabed. 

 

Vessel Force 

The vessel force, applied from the thrusters, is the force necessary to keep the pipeline under 

tension. This force is equal to the bottom tension. 
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APPENDIX B. Comparison of main pipelay quantities (4 cases studied) 

 

 Case Study No1 

 

The figures below show the evolution of axial tension and sagbend strains (total, bending, tensile) 

along the catenary for case study No1.  

 

Figure 11-1 Comparison of axial tension and sagbend strain along the catenary 

 

Figure 11-2 Comparison of bending and tensile strain along the catenary 

 

As it can be seen Matlab model and Offwin results are in accordance both for the tension and for 

the strains evolution along the catenary. The negligible difference that can be seen at touchdown 

point for the bending (and as a consequence at the total strain) can be explained by the boundary 

condition that considers the seabed to be infinitely stiff. 
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 Case Study No2 

 

The figures below show the evolution of axial tension and sagbend strains (total, bending, tensile) 

along the catenary for case study No2.  

 

Figure 11-3 Evolution of axial tension and sagbend strain along the catenary 

 

 

Figure 11-4 Comparison of bending and tensile strain along the catenary 

 

As it can be seen from the figures above the evolutions of the axial tension and the strains are the 

same along the catenary. The steps that can be seen in tensile strain values of Offwin are present 

because of rounding to the 4th decimal from Offwin model. 
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 Case Study No3 

 

The figures below show the evolution of axial tension and sagbend strains (total, bending, tensile) 

along the catenary for case study No3.  

 

Figure 11-5 Evolution of axial tension and sagbend strain along the catenary 

 

 

Figure 11-6 Comparison of bending and tensile strain along the catenary 
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 Case Study No4 

 

The figures below show the evolution of axial tension and sagbend strains (total, bending, 

tensile) along the catenary for case study No3.  

 

 

Figure 11-7 Evolution of axial tension and sagbend strain along the catenary 

 

 

Figure 11-8 Comparison of bending and tensile strain along the catenary 

 

As it can be seen from the figures above the evolutions of the axial tension and the strains are the 

same along the catenary. The steps that can be seen in bending strain values of Offwin are present 

because of rounding to the 4th decimal from Offwin model. 
 


