

Delft University of Technology

Structural and elemental influence from various MOFs on the performance of Fe@C catalysts for Fischer-Tropsch synthesis

Wezendonk, Tim A.; Warringa, Quirinus S E; Santos, Vera P.; Chojecki, Adam; Ruitenbeek, Matthijs; Meima, Garry; Makkee, Michiel; Kapteijn, Freek; Gascon, Jorge

DOI 10.1039/c6fd00198j

Publication date 2017 Document Version Accepted author manuscript Published in Faraday Discussions

Citation (APA)

Wezendonk, T. A., Warringa, Q. S. E., Santos, V. P., Chojecki, A., Ruitenbeek, M., Meima, G., Makkee, M., Kapteijn, F., & Gascon, J. (2017). Structural and elemental influence from various MOFs on the performance of Fe@C catalysts for Fischer-Tropsch synthesis. *Faraday Discussions*, *197*, 225-242. https://doi.org/10.1039/c6fd00198j

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Faraday Discussions

SUPPORTING INFORMATION

Structural and elemental influence of various MOFs on the performance of Fe@C catalysts for Fischer-Tropsch synthesis

Tim A. Wezendonk^a, Quirinus S.E. Warringa^a, Vera P. Santos^b, Adam Chojecki^b, Matthijs Ruitenbeek^c, Garry Meima^c, Michiel Makkee^a, Freek Kapteijn^a and Jorge Gascon^a

MOF Identification

Figure S1. a) N_2 physisorption at 77 K and b) PXRD patterns for the various MOFs. Isotherm shapes and diffraction patterns match with literature¹⁻¹².

Figure S2. Comparison of the XRD angle and relative intensity for the various MOFs and reported XRD patterns from literature.

Table S1. N₂ physisorption calculations for the various MOFs, comprising BET area (S_{BET}) and total pore volume (V_p). Values agree with reported BET area and pore volume in literature.

MOF	S _{BET} m ² g ⁻¹	V _p cm ³ g ⁻¹
MIL-68	400	0.16
MIL-100	1777	0.99
MIL-127	1131	0.47
F300	1021	0.45

Fe@C Characterization

Table S2. Data of N₂ physisorption per gram of catalyst, not taken into account the high Fe₂O₃ loading of the Fe@C materials.

Catalyst	SBET	S _{Ext}	V_P	V_{μ}
	$m^2 g^{-1}$	$m^2 g^{-1}$	cm ³ g ⁻¹	cm ³ g ⁻¹
Fe@C-MIL68	314	161	0.28	0.06
Fe@C-MIL88A	224	163	0.16	0.03
Fe@C-MIL100	260	136	0.18	0.06
Fe@C-MIL127	323	172	0.30	0.06
Fe@C-MIL101NH ₂	283	120	0.25	0.07
Fe@C-F300	280	140	0.29	0.06

Figure S3. BJH transformation of isotherms displaying the normalized pore size distribution of Fe@C catalysts.

Figure S4. a) Core-level Fe2p spectra for passivated catalysts and b) their associating survey spectra displaying surface impurities.

Figure S5. a) TGA and ICP analysis showing the non-linear relation between Fe loading in the MOF and in the resulting Fe@C catalyst and b) TGA profiles of Fe@C catalysts in air.

Figure S6. SEM images of pyrolyzed MOFs a) Fe@C-MIL68, b) Fe@C-MIL88, c) Fe@C-MIL127 and d) Fe@C-F300.

ARTICLE

Faraday Discussions

Figure S7. Particle size distribution determined by TEM in the Fe@C catalysts derived from different MOFs by pyrolysis at 500 °C.

Figure S8. TEM of a) Fe@C-MIL68, b) Fe@C-MIL88, c) Fe@C-MIL100, d) Fe@C-MIL101NH2, e) Fe@C-MIL127 and f) Fe@C-F300

Figure S9. Relation between the average Fe particle size and the BET area (a) and pore volume (b) for the Fe@C catalysts derived from the various Fe-MIL-X typologies (X= 88, 68, 127, 100 and 101) and Fe-BTC F300.

Figure S10. Elemental analysis from EDX spectra for *left*) KFe@C-MIL100, *middle*) KFe@C-MIL127 and *right*) KFe@C-F300 catalysts showing impurities in the bulk phase.

Faraday Discussions

Figure S11. EDX mapping images of selected Fe@C catalysts, clearly showing agglomeration of metal impurities in the Fe@C-MIL100 sample and dispersed elements in the others.

Notes and references

- 1 Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; Férey, G.; Stock, N., Inorg. Chem. 2008, 47 (17), 7568-7576.
- 2 Chevreau, H.; Permyakova, A.; Nouar, F.; Fabry, P.; Livage, C.; Ragon, F.; Garcia-Marquez, A.; Devic, T.; Steunou, N.; Serre, C.; Horcajada, P., *CrystEngComm* **2016**, *18* (22), 4094-4101.
- 3 Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J.-M.; Morcrette, M.; Tarascon, J.-M.; Maurin, G.; Férey, G., *Eur. J. Inorg. Chem.* **2010**, *2010* (24), 3789-3794.
- 4 Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., Science 2005, 309 (5743), 2040.
- 5 Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I., Angew. Chem. Int. Ed. 2004, 43 (46), 6296-6301.
- 6 Horcajada, P.; Surble, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-S.; Greneche, J.-M.; Margiolaki, I.; Ferey, G., *Chem. Commun.* **2007**, (27), 2820-2822.
- 7 Liu, Y.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. C.; Luebke, R.; Eddaoudi, M., Angew. Chem. Int. Ed. 2007, 46 (18), 3278-3283.
- 8 Mellot-Draznieks, C.; Serre, C.; Surblé, S.; Audebrand, N.; Férey, G., J. Am. Chem. Soc. 2005, 127 (46), 16273-16278.
- 9 Serre, C.; Millange, F.; Surblé, S.; Férey, G., Angew. Chem. Int. Ed. 2004, 43 (46), 6285-6289.
- 10 Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Latroche, M., Inorg. Chem. 2008, 47 (24), 11892-11901.
- 11 Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F., Chem. Mater. 2009, 21 (24), 5695-5697.
- 12 Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S. R.; Chevreau, H.; Elkaïm, E.; Maurin, G.; Horcajada, P.; Serre, C., *Chem. Mater.* **2013**, 25 (14), 2767-2776.