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Abstract
RESTful APIs tend to be difficult to manually write
tests for. To help developers with this tedious task,
a tool called EvoMaster has already been devel-
oped, to aim to automate the generation of test
cases for RESTful APIs. The automation of test
cases can be modeled as a multi-objective opti-
mization problem. The existing tool EvoMaster
has already implemented some global evolutionary
search algorithms to solve this problem. In the con-
text of RESTful APIs however, to this date, little
attention has been given to a much simpler search
algorithm: hill climbing. In contrast, hill climbing
has been studied both inside and outside the context
of search-based testing, and has found to be bene-
ficial in a range of applications. The goal of this
paper is to investigate the application of hill climb-
ing within the context of testing RESTful APIs.
The paper proposes a new local algorithm and com-
pares its performance in the empirical study. Re-
sults comparing the local algorithm with the evo-
lutionary counterpart show that the state of the art
global algorithm is still superior. Although the em-
pirical study also indicates that the novel hill climb-
ing algorithm is able to cover a significant selection
of branches, which the global one cannot.

1 Introduction
RESTful APIs are now common in online web services. They
are widely used to exchange data between external web ser-
vices over a network. However, testing RESTful APIs poses
some challenges, since it involves HTTP input and output,
which is hard to replicate [5]. This is problematic because
software testing serves as an important validation tool for en-
suring the reliability of the software [1]. Over the last decade,
researchers have proposed various techniques to automate the
test generation process, including for RESTful APIs. In par-
ticular, a tool called EvoMaster [6] has been created to auto-
matically generate test cases for RESTful APIs.

Generating test cases is a multi-objective optimization
problem. This problem is undecidable, but luckily, approx-
imate optimal solutions are often good enough [13]. Meta-
heuristic search algorithms use heuristics to find these ap-

proximations. They can best be viewed as strategies ready
for adaption for specific optimization objectives. Even in the
context of search-based software testing, these objectives can
vary greatly. In this paper, we focus on the objective to max-
imize the branch coverage of the system under test (SUT).

EvoMaster has already implemented the following global
search optimization algorithms: Whole Test Suit (WTS) [9],
Many-Objective Sorting Algorithm (MOSA) [14] and Many
Independent Objective Algorithm (MIO) [4]. These Evolu-
tionary Algorithms (EA) are inspired by nature and use con-
cepts such as mutation and crossover to search for optimal
solutions. A downside of this class of algorithms is that they
generally require a long time (low search budget) to achieve
acceptable results. To illustrate this, it is recommended to
run EvoMaster up to 24 hours to achieve proper results in
some cases. However, time and resource constraints are real-
life challenges faced in both academia and the industry. So
for some, the expensive evolutionary algorithms might be too
time-consuming.

There also exist much simpler local search algorithms,
such as the Hill Climbing (HC) algorithm, which are much
faster in general. Interestingly, Arcuri [4] speculated that the
HC approach might outperform existing evolutionary algo-
rithms in low search budget scenarios [4]. In unit-testing,
similar studies have already been conducted in this direction.
In some scenarios, HC has been found to outperform evolu-
tionary algorithms in terms of efficiency, [10]. But whether
HC can be beneficial for system-level testing, within the con-
text of RESTful APIs, is still an open question.

The goal of this paper is to shed light on how a hill-
climbing approach can be successfully used in automated
testing for RESTful APIs. The paper contributes to design-
ing and implementing a novel local search algorithm in Evo-
Master. On top of that, an empirical study comparing the
performance of the new algorithm has been done. In terms of
efficiency, the local algorithm was not able to exceed the cur-
rent state of the art MIO algorithm. Nonetheless, it appears
to be better in searching certain areas of the search space.

The remainder of this paper is organized as follows. Sec-
tion 2 explains background information to understand the
content of subsequent sections. Section 3 presents the novel
many-objective hill climbing algorithm. Section 4 describes
the design of the empirical study and reports the achieved re-
sults. Section 5 discusses the ethical aspects and reproducibil-
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ity of the research. Section 6 and 7 wraps up with a discussion
and conclusion of the study.

2 Background
This section covers background information required to know
in order to fully understand the design and context of the
newly proposed algorithm.

2.1 Testing RESTful APIs
Test cases targeting RESTful APIs consist of one or more
HTTP calls. Each HTTP message consists of an operation to-
gether with extra metadata and additional payload data. This
allows for a stateless communication to, for example, retrieve,
update, or delete resources. On top of that, REST represents
a style of additional constraints to make sure HTTP messages
follow the HTTP semantics [7]. The components of an HTTP
message consists of an HTTP verb, HTTP headers, path pa-
rameters, query parameters, and body payloads. The content
of all of these components determines how ”good” a test case
is and is handled by EvoMaster [5]. In the next section, we
will formulate what it means for a test case to be ”good”, ac-
cording to the fitness function. Furthermore, the order of the
HTTP calls also matters.

2.2 Search-based software testing
Formally the multi-objective optimization for maximizing
branch coverage can be formulated as minimizing the fitness
function for each branch. The fitness function consists of a
metric called branch distance [15]. The branch distance rep-
resents how ”close” the test case came to cover the condition
of the branch. For example, if a branch is covered when a
value is zero. For any input, the more the input deviates from
the value zero, the higher the branch distance becomes. In this
case, neither value 20 nor 1,000 would solve the constraint,
but since 20 is closer, it has a relatively better fitness. This fit-
ness function is used to guide the search for optimal test cases
when evaluating candidate solutions. The primary goal is to
maximize the coverage of the SUT. Second, one would like
to minimize the total number of tests achieving this coverage
goal as well [4].

The simplest approach for generating test cases is search-
ing randomly [3]. In this approach, the content and order
of each HTTP component are chosen at random. However,
even for simple programs, there are a lot of possible values
to choose from. Therefore, the performance of this approach
is quite bad in cases where a branch has a small input do-
main fulfilling its condition since it is very unlikely that the
randomly chosen value falls in the small range. Besides, ran-
dom testing aims to generate as many test cases as possible,
contradicting the second objective to minimize the size of the
overall test suite.

In the case of randomly generating test cases, we don’t use
the guidance of the fitness functions in searching the optimal
solution. However, far better results can be achieved when
this guidance is used. Global search algorithms use this guid-
ance and search the whole fitness landscape to search for the
most optimal solution.

2.3 Local Search Optimization
In contrast, local search algorithms only search a part of the
fitness landscape, one popular local search algorithm is hill
climbing. Hill climbing was originally used for integers only.
Hill climbing starts with an initial solution, randomly cho-
sen from the search space. The neighbors of this solution are
evaluated and the fitness of these are compared to the fitness
of the initial solution. When a neighbor yields to a better fit-
ness, this solution will be the new current solution, and its
neighbors are again evaluated and compared. This process
continues until a point is reached where no neighbors give an
improvement in fitness.

During the evaluation of neighbors, it is either possible
to take a random better neighbor, without first evaluating
all other neighbors. This approach is called ”stochastic hill
climbing”. Another approach is to evaluate all neighbors and
take the best among them, this is called ”steepest ascent”. The
name ”hill climbing” is derived from the visual similarities
the recursive moves have with climbing a hill on the fitness
landscape, as can be visualized in a 2D or 3D plot.

The selection of the starting point is crucial since it deter-
mines what neighbors will be evaluated in subsequent moves,
as only the local space will be searched. Therefore, it might
happen that the final solution derived from the hill climb-
ing search is not the best possible solution existing in the
search space. This is a well-known limitation from which lo-
cal search algorithms suffer. Two considerations can be made
to try to overcome this weakness. First, the hill climbing pro-
cess can be repeated several times, each time with a new ran-
domly chosen starting point. Second, a less restricted search
approach can be chosen. In this way, worse neighbors are
accepted by a random probability, this is called simulated an-
nealing. Both considerations only reduce the chance of get-
ting stuck at local optima at best. Just like for fitness func-
tions, the concept of neighbors is also problem specific. In
our context, each solution represents a test case. The neigh-
bors are determined by making exploratory moves on the pa-
rameters and the payloads.

One of the first approaches to use hill climbing in search-
based software testing is the Altering Variable Method
(AVM) [12]. AVM works on a vector of variables. Each vari-
able is locally optimized using the hill climbing approach,
without considering the other variables. When a local op-
timum is found for a specific variable, the next variable is
chosen. After a full iteration on the variables, AVM loops
back to the first one. This continues until no further improve-
ments can be made in a cycle. In the next section, we will
explain how we slightly modify this approach to best fit in
the context of our multi-objective optimization problem. Al-
though this algorithm is already quite old, it stood the test of
time. Harmann and McMinn [10] have concluded that this
simple approach is more efficient in some applications than
more complex EA alternatives since it is less costly.

One question we could ask is, when can we expect a lo-
cal approach to be superior to a global EA one, and under
which circumstances can we expect the opposite? This de-
pends on how to fitness landscape looks like. Harman and
McMinn already performed an extensive theoretical analysis
[10] to answer this question in the context of search-based



software testing on structural testing in general. To answer
this, they used an already quite old concept called the ”Royal
Road” properties [8] a fitness landscape can have. The ab-
sence of these properties means the crossover of an EA, hence
an EA in general is likely to not perform well, and as a result,
a much simpler local HC approach is expected to be better.
To put it in simpler terms, an EA algorithm is expected to
perform better when the search space contains a lot of local
optima, since local algorithm suffer greatly in this case, as
previously described. Finding out to what degree these Royal
Road properties are present in RESTful APIs is out of the
scope of this paper, but it is important to realize that the type
of fitness landscape significantly determines what search ap-
proach works best.

3 Algorithm
This section describes the novel hill climbing algorithm
which has been implemented in EvoMaster. In particular,
section 3.1 covers the needed extensions to be able to suc-
cessfully handle all the data types possibly seen in an HTTP
component. Since recall that the original hill climbing tech-
nique only handles integers. Next, we will cover how in turn
the hill climbing technique is used as a many-objective branch
coverage algorithm

3.1 Extension for data types
To successfully apply the HC technique in the domain of
HTTP requests, we need to extend the original approach to
support all the possible data types which can occur in the pa-
rameters and body content within an HTTP message. Be-
low is listed all possible data types and is described how hill
climbing moves are performed for these types.

Booleans and enumerations. For booleans, there always
exists only one possible neighbor, this is the flipped opposite
boolean. An exploratory move consists of only flipping the
boolean value. Enumerations are represented as a collection
of generic elements within EvoMaster. An exploratory move
consists of going to either the left or right element within this
collection. Although this collection can be arbitrarily big, the
size is assumed to be small in practical scenarios.

Integer data types. The original hill climbing approach
is used for searching integers, with an additional extension to
speed up the search process. In the original approach, for any
integer value, there exist two exploratory moves to explore,
+1 and -1. However, this might mean that a lot of moves need
to be performed before reaching a local optimum. To reduce
the number of moves, for each successful move i, we increase
or decrease the current value by a delta of 2i. By doing this
however, there is a large possibility of undershooting or over-
shooting the local optimum. When this happens, the delta is
reset to 1, and moves are performed again starting from there.
This simple extension greatly improves the performance in
cases where the starting point is far away from the local opti-
mum. For example when the starting point is 0, and the local
optima is at value 1000. Reaching this without the extension
requires 1000 moves to be performed. However, with using
the extension, only 23 moves are required. Furthermore, a
minimum and maximum limit are defined. This limits the
search space, which improves performance.

Floating-point data types. For floating-point data types,
the decimal values also need to be searched. Harman and
McMinn [11], already studied an approach to accomplish
this. This approach iterates through all the decimals of the
value, and for each performs a local move similar to that of
integers. However, this approach requires a lot of moves to be
made, and its necessity to search through all the decimals re-
duces the efficiency. For this reason, a stochastic hill climbing
approach is used. We apply the same approach as for integers
for searching the significant digits. On top of that, the deci-
mals are being explored by moving with a randomized delta,
which follows a Gaussian distribution. A small standard de-
viation of 0.25 is used. This approach lacks the exactness
compared to the one proposed by Harman and McMinn, but
under the assumption that this exactness is often not needed,
the approach is much more efficient.

Strings. Similarly, the search space for strings might be-
come very large. There are too many possible neighbors to
try to search in a reasonable amount of time. For this reason,
local search on strings is done using stochastic hill climbing
as well. This means that several random deletions, changes
and insertions of characters are performed when moving to
such random neighbor. The strings are randomly modified
according to mutation, which is already in place for the ex-
isting evolutionary algorithms. The mutation on strings can
best be interpreted as an educated randomization. On top of
just randomly inserting, changing or deleting characters, mu-
tation also considers specializations and only searches with
valid characters. Specializations try to determine how a string
is used in the SUT. For example, when a string is known to
represent a date, mutations of this string are restricted to also
be valid date representations.

Arrays. Within EvoMaster, arrays are represented as a col-
lection of other data types. Exploratory moves on arrays work
very similar to the original AVM approach. Meaning each
variable in the array is locally optimized using hill climbing
in isolation. Only one full iteration is performed.

Date and time data types. Date and time variables again
use the AVM approach, this time allowing for multiple itera-
tions. Dates are represented by three integers, which in turn
represent the day, month and year. Similarly, time vari-
ables are represented by the three integers hour, minute,
second. An exploratory move is composed of applying in-
teger hill climbing to each of these variables in isolation. So
in principle, the same underlying moves are performed as for
an array consisting of three integers.

Complex objects. An exploratory move for an arbitrary
object consists of performing local search on each field vari-
able in isolation, just like a single cycled AVM. For XML
and JSON objects, this means performing search on the vari-
ables of all the elements. Maps are optimized in a similar
way. Here keys are abstracted as fixed strings and keys are
modifiable variables.

3.2 Archiving
Since we are dealing with optimizing multiple objectives
(branches), a collection of promising test cases for each of
these objectives should be kept. During the search, the al-
gorithm keeps track of this collection in what is called the



archive. For every target branch, the corresponding per-
formance of a test case on the fitness function determines
whether this test case will be stored in the archive or not.

For a specific target, when a test case results in a fitness
function of zero, this means that the target is covered by the
test case. In this case, the test case is added to the archive.
Later on, the test case might only be replaced by a shorter
test case which also achieved a value of zero. A normalized
fitness result of 1 represents the worst possible performance,
so this test case will never be added. Test cases having at least
some heuristic value, so somewhere between 0 and 1, will be
stored in the archive, since it might be sampled later on.

When a test case is sampled from the archive, it is copied
and HC is performed on its content. After that, the fitness is
evaluated and in case it is improved for at least one branch, it
is stored back to the archive for the branches for which it has
seen an improvement.

Feedback Direction Sampling. When searching, it is im-
portant to invest our time wisely. As an example, one strategy
is to invest all our time in covering a small group of branches
with complex predicates which are therefore hard to cover.
Instead, we could also spend that time on searching easier tar-
gets, which could be much more. The latter would be a more
wise decision under time constraints. In the end, we are only
interested in maximizing the amount of covered branches, not
in maximizing the portion of complex ones.

Furthermore, only test cases that actually cover branches
are of real value in the end, while test cases that only come
really close are not. So for these reasons we have to be smart
about what objective(s) we spend valuable time solving on.
We do this with a technique called Feedback Directed Sam-
pling, which has been proposed in the MIO algorithm. Full
design details can be studied in the corresponding paper from
Arcuri, [4]. Using this technique, we first invest our resources
into covering the easy branches. After these targets are cov-
ered, we invest time in covering the more complex ones.

3.3 Exploration and exploitation trade-off
Similar to how we should make smart decisions on what to
sample from the archive, wise choices should also be made to
determine the degree of exploring and exploiting in the search
space. Exploiting a small region in the search space refers
to investing as much time as needed to try to locally opti-
mize that region. This might result in a waste of time when
these objectives might be infeasible or very hard to cover. On
the other hand, we could also invest our time in exploring
the whole search space as much as possible, and neglect per-
forming hill climbing optimization as much as possible. This
extreme describes the randomized approach.

To achieve the best possible solution under time con-
straints, a well-balanced exploration and exploitation search
should be performed. In our algorithm, an emphasis is placed
on exploring the search space at the beginning of the search.
Later on, the algorithm tries to focus on optimizing just a
selection of targets, which it has stumbled upon during its ex-
ploration. Below is reported how the balance is adapted over
time in several different ways.

Random sampling vs archive sampling. Test cases are
either randomly sampled or sampled from the archive, which

Algorithm 1: Many-Objective Hill Climbing Algo-
rithm

Input : Probability of random sampling Pr,
Probability of structure mutation Pm,
Stopping condition C

Output: Archive of optimized individuals A
T ← SetOfRandomPopulations()
A← {}
while ¬C do

if Pr > rand() then
t← RandomIndividual()

else
t← SampleIndividual()
if Pm > rand() then

MutateStructure(t)
end
t← HillClimbingSearch()

end
AddIfNeeded(A, t)

end
return A

Algorithm 2: Hill Climbing Search
Input : Test case individual t,

Stopping condition C,
Maximum number of searches avmDepth,
Probability of random reset Pr

Output: An optimized test case derived from t
if HasNoV ariables(t) then

return t
end
current←t
for Variable in current.variables do

for 1...avmDepth do
if C then

break
end
n← GetBestNeighbor(t)
if IsBetter(current, n) then

if shouldContinueSearch then
break

end
if Pr > rand() then

randomize(V ariable)
end
return current

end
current = n

end
end
return current



stores promising test cases. To allow for exploration at the
beginning of the search, random sampling is performed with a
high probability. The probability of random sampling reduces
linearly over time, so as the search continues, the chance of
sampling from the archive and optimizing those increases.

AVM search depth. In the original AVM technique, an it-
eration through all the variables is performed, and only when
a local optimum is found for a variable, the next one will be
searched. In cases of complex branches, this means a lot of
local moves are performed for each variable. To allow for ex-
ploration at the beginning of the search, a maximum number
of neighbor comparisons has been set. This means that dur-
ing the iteration, the next variable is selected either when the
current variable is at a local optimum or when the number of
times a new neighbor has been compared exceeds this max-
imum. At the beginning of the search, the maximum is low,
and this is linearly increased over time, to allow for more ex-
ploitation as the search progresses. This maximum represents
how in-depth we should focus on searching a single variable.
To easily refer to this notion, we will call this maximum the
”AVM depth” from now on.

Simulated Annealing. At the beginning of the search,
simulated annealing is performed at a high probability. This
probability reduces linearly over time. Simulated annealing
allows us to explore the search area of worse neighbors. This
is preferred at the start since exploring these neighbors might
lead to more promising neighbors in the end.

Random reset. To still allow for partial explorations as the
search progresses, a variable might be assigned a random new
value whenever this variable has arrived at a local optimum.
This allows the search to explore and possibly exploit a new
region of the search space for this variable.

3.4 Proposed Multi-Objective Hill Climbing
Algorithm

The techniques previously described are finally brought to-
gether in the newly proposed multi-objective hill climbing al-
gorithm. At the beginning of the search or at a random prob-
ability (Pr), a randomly generated test case is sampled. After
this, each component of the test case is optimized using the
hill climbing technique, with a single AVM iteration. The
main loop of the algorithm, which handles the sampling and
saving to the archive can be seen in Algorithm 1.

The variable iteration representing the actual hill climbing
technique is visualized in Algorithm 2. In subsequent mat-
ter, current neighbors are retrieved, evaluated and compared.
This continues until the current test case performs better than
any of its neighbors. At that point, there might still be an un-
explored search space for the current optimized variable left.
For example, it could happen in case of date variables, where
only the day has been searched, while month and year are
yet to be investigated. These two variables are then searched.
In case the maximum AVM depth is reached, the search is
stopped, any unexplored search space might be explored at a
later stage in the search when the test is again retrieved from
the archive.

To reduce the chance of getting stuck at local optima. The
algorithm uses simulated annealing. For a random probabil-
ity Ps, the algorithm returns a randomly chosen neighbor, in-

stead of the best neighbor. Furthermore each time, all neigh-
bors are evaluated and in case it improves the fitness of any
not yet covered targets, it is stored in the archive. In that case,
this neighbor might be chosen to be optimized for these spe-
cific targets later on in the search. Finally, since the structure
of a test case determines its fitness, at a random probability,
the structure is randomly mutated.

4 Empirical Study
To evaluate the performance of the proposed local algorithm,
it was compared to the random search method, along with
the MIO algorithm. We will only compare it with the MIO
algorithm, and not to others such as MOSA, since the novel
HC algorithm and MIO share common functionalities like the
same use of archive and feedback direction sampling. Hav-
ing these similarities makes comparing the two more inter-
esting, since they only differ in how each optimizes a test
case (locally vs. mutation). The comparison was tested on
several different benchmark APIs derived from the EvoMas-
ter benchmark project (EMB) [2]. These APIs are great for
benchmark testing since they differ in complexity and func-
tion. For the comparison, the following benchmark APIs had
been chosen:

• NCS: Artificial numerical example.

• Features-service: An API for managing products Fea-
ture Models.

• News: Small scale API used for a university-level
course.

From this evaluation we aim to answer the following research
questions:

RQ 1: How does the performance of the algorithm
compare itself to the others in solving the branch
coverage problem?

For this comparison, we are interested in how many branches
each algorithm can cover in a chosen time interval, and how
quick (efficient) the coverage is increased during the search.

Hypothesis: The hill climbing algorithm will be more effi-
cient at the beginning of the search compared to MIO, mean-
ing it will achieve a higher branch coverage at the start. Fur-
thermore, we speculate that as time progresses and the algo-
rithm will get stuck in local optima and MIO will surpass the
local algorithm. Still, the hill climbing algorithm should per-
form better than the random approach at all times.

RQ 2: What is the impact of the simulated anneal-
ing and AVM depth parameters on the branch cov-
erage over time?

To reduce the scope of the empirical study, only these two
parameters are evaluated. Although the degree of random
sampling and random resetting will also have an influence.
However, their influence is expected to be less, and therefore
they will not be studied.

Hypothesis: Both simulated annealing and AVM depth will
influence the exploration/exploitation balance. More empha-
sis on exploration will result in higher coverage at the begin-
ning of the search, but leaves the algorithm with difficulties



on fine-tuning test cases, so the coverage achieved in the end
will be lower.

For simulated annealing, we expect that a start value of
0.25 and an end value of 0.0 will yield the best results. For
AVM depth, it is expected that a start value of 1 and an end
value of 10 will give the best balance of exploration and ex-
ploitation. 0.75 and 0.0 have been chosen for the probability
of random sampling, and for the probability of random reset,
the values are 0.0 and 0.50 for start and end. This config-
uration of parameters is used as default, for which a linear
interpolation is used during the search for each parameter.

4.1 Experimental procedure
In the interest of answering the first research question, we
executed a total of ten independent runs for each algorithm
on each of the selected API benchmark. Each run takes 300
seconds (five minutes) since the benchmark APIs are small
and the algorithms are expected to converge within this time.
During the search, we computed the achieved branch cover-
age thus far. In the end, we compare the coverage over time to
compare the efficiency as well as the achieved total coverage
at the end.

For answering the second research question, a similar set
up is used. We alternate different values for each parame-
ter and executed five independent runs. While doing this, we
keep the other parameters set to their default values. To sim-
plify the study, we only change the starting value of simulated
annealing and the ending value for AVM depth. For AVM
depth, we alternate the ending value between 5, 10 and 15.
Furthermore, the starting value of the probability of perform-
ing simulated annealing is alternated between 0.0, 0.25 and
0.50.

4.2 Results

Algorithms Covered branches during search
NCS 25% 50% 75% 100%
Random 101 104 104 104
MIO 142 184 152 153
HC 108 119 122 126
Features
Random 5 5 5 5
MIO 11 11 11 11
HC 9 9 9 9
News
Random 49 49 49 49
MIO 58 59 59 60
HC 50 51 52 52

Table 1: Average number of covered branches after the percentage
of used search budget, for each of the algorithms on each selected
benchmark project.

Table 1 shows all the retrieved results for the first research
question. For four chosen timestamps during the search, the
corresponding amount of covered branches for each algo-
rithm is reported. Hence, the last column contains the re-
sults the algorithm was able to achieve during the whole five-
minute run. Figure 1 shows the average coverage of branches
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Figure 1: NCS - Average coverage over time for the HC, MIO and
Random algorithm.
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Figure 2: NCS - Distribution of covered branches by both MIO and
HC. Green represents the branches covered by MIO, the red area
represents the branches covered by HC.

during a 300 seconds run for the selected algorithms for the
NCS project. Note that each of the algorithms, especially the
random algorithm, seems to converge to their limit.

The results for the second research question are visualized
in figure 4 and 5 for the NCS and Features benchmarks re-
spectively. The coverage over time is plotted for each value
of the parameters. Furthermore statistical properties are re-
ported in table 2. There, the baseline represents the one us-
ing the default settings, as previously described. In addition,
the p-value, applied on the final values, resulting from the
Wilcoxon Test describing the statistical significance is also
reported, as well as the Vargha-Delaney A12 value which de-
scribes the magnitude of the difference in performance com-
pared to the baseline algorithm.

Figure 2 and 3 visualize the distribution of the covered
branches by both MIO and HC in percentages, for the NCS
and Features benchmark respectively. The green circle rep-
resents all the branches covered by MIO, while the red circle
is the collection of covered branches by HC. The area laying
inside the two circles represents the percentage of branches
covered by both.



Parameter settings Covered branches during search
25% 50% 75% 100% p-value A12 Magnitude

NCS
Baseline 108 119 122 126 - - -
Simulated annealing - 0.0 95 113 127 131 0.20 0.46 negligible
Simulated annealing - 0.50 104 113 122 125 0.85 0.45 negligible
AVM depth - 5 100 109 114 119 0.10 0.27 medium
AVM depth - 15 102 117 122 126 1.00 0.45 negligible
Features
Baseline 8.6 8.8 8.8 8.8 - - -
Simulated annealing - 0.0 9.2 9.2 9.4 9.4 0.59 0.83 large
Simulated annealing - 0.50 9.2 9.8 9.8 9.8 0.37 0.88 large
AVM depth - 5 8.4 8.8 8.8 9.0 0.85 0.55 negligible
AVM depth - 15 9.2 9.4 9.4 9.4 1.00 0.85 large
Scout
Baseline 50 51 52 52 - - -
Simulated annealing - 0.0 52 52 53 53 0.50 0.65 medium
Simulated annealing - 0.50 49 51 52 52 0.41 0.31 medium
AVM depth - 5 52 52 53 54 0.40 0.75 large
AVM depth - 15 51 51 51 52 0.37 0.47 negligible

Table 2: Average number of covered branches after the percentage of used search budget, for each different values of exploration/exploitation
parameters. Furthermore the p-value from the Wilcoxon test, Vargha-Delaney A12 and effect magnitude values are included.

36.2% 29.8%34%

MIO HC

Figure 3: Features - Distribution of covered branches by both MIO
and HC. Green represents the branches covered by MIO, the red area
represents the branches covered by HC.
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Figure 4: NCS - Coverage over time with different explo-
ration/exploitation parameter values.
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Figure 5: Features - Coverage over time with different explo-
ration/exploitation parameter values.

5 Responsible Research
To minimize the threats to validity we executed each experi-
ment multiple times. This is important since we are dealing
with an algorithm based on randomness, meaning it does not
give the same result back every time. Executing the experi-
ment multiple times, and analyzing the average of these gives
us more confidence about the validity of the results. While
more runs mean more confidence, due to time constraints
only ten runs for the first research question, and five for the
second one were done.

Furthermore, we cannot prove that the implemented code
is 100 percent bug-free. Of course we did our best to exclude
any as much as possible and while the code is thoroughly
tested, still the absence of bugs will never be a certainty.

The algorithm was made with the goal of being more effi-
cient than the existing state of the art MIO algorithm. While
solely looking at the achieved branch coverage, the hill climb-
ing algorithm was not able to surpass the existing MIO ap-
proach, still no artificial or modified data was used to make



the algorithm shine more.
Science has always been about reproducibility. Without

being able to reproduce an experiment, the attained results
do not mean much. Luckily, EvoMaster is an open-source
project, so reproducing the attained results is a matter of en-
gineering effort for only the concepts discussed in the paper.
While it would be better to make the discussed additions open
source as well, still the amount of effort for these changes are
minor compared to those of the whole EvoMaster project.

6 Discussion
Solely looking at the sum of covered branches we can con-
clude that hill climbing does not seem to be able to give an
improvement compared to the existing MIO algorithm, since
HC was not able to surpass MIO in terms of efficiency. Still,
it is fortunately better than randomly testing, giving us more
confidence that there are not any major errors happening.

There are three speculations we have about the perfor-
mance of the novel hill climbing algorithm compared to the
state of the art MIO algorithm.

First, the approach to tackle the multiple objectives might
not be best suited for local search. Although the same archiv-
ing and feedback-directed sampling techniques are used as
found in MIO, in which it shows good results, it might not
be the desired technique for hill climbing. Instead, the use
of preference sorting and dominance, as used in MOSA [14]
might yield better results. However, we don’t expect this to be
the case since the used techniques are shown to be powerful
in MIO. Luckily, combining the techniques seen in MOSA
and local search, which are both already in place, is a matter
of relatively low engineering effort.

Second, the genetic approach of MIO seems to be able to
more efficiently search some data-types better than HC. As-
sumed is that the efficiency of stochastic local search, as used
on strings, is quite low since it is just random guessing. This
is unfortunate since strings have a strong presence in the eval-
uated benchmark projects and RESTful APIs in general. So
although HC might be powerful when applied on numerical
data-types, it lacks any structure on others. Recall that we use
this approach in cases where the search space is too large to
apply standard local search on. So we suspect MIO to be able
to handle this vastness better than the local algorithm.

At last, although it is hard to visualize how the fitness land-
scape looks like [11], it might be that it contains too many
local optima in this specific context. If this is the case, lo-
cal search will never be an attractive option, no matter how it
is implemented. Although we have not proven this to be the
case, so it remains to be just a hypothesis.

However, there is a catch. While HC covered fewer
branches than MIO after all, HC seems to more easily cover
a certain area of the search better than the global counter-
part. As pictured in figures 2 and 3, there seems to be a big
distinction between what targets were covered by MIO and
HC. Of all the covered branches by the two algorithms com-
bined, roughly 35 percent and 30 percent, in the cases of NCS
and Features respectively, were only covered by HC. So more
or less a third of the search space was unreachable for MIO
while in reach for HC. This is a big chunk of the search space.

An assumption made is that the shared percentage of
branches of HC and MIO are relatively easy targets to hit,
and are possibly also easily covered by the randomized al-
gorithm. The extension of the green MIO circle not laying
in the red cycle represents the part of the search space dom-
inated by the MIO algorithm. This part most likely contains
the Royal Road properties as previously discussed. But in-
terestingly enough, the big red HC part of the search space is
the area of the search space where the local approach domi-
nates in searching more efficiently. This area probably con-
tains a lot of numerical data-types, since local search is likely
to perform better on those. This is in line with the retrieved
results, since NCS contains a lot of numerical data-types and
HC shows to cover a larger percentage of distinct branches
(35%) in that case compared to the Features environment
(30%). Overall the large mismatch between what branches
were covered by what algorithm is very interesting, and indi-
cates that both have an area in the search space for which it
dominates the other algorithm in terms of search efficiency.

For the second request question, there is not any configu-
ration of parameters that outperforms others all of the time.
This follows the famous principle in computer science that
there is no free lunch for a search algorithm on average ap-
plied on a class on problems. Instead, the optimization of the
performance of each configuration is to be achieved by fine-
tuning for each specific problem.

7 Conclusions and Future Work
In this paper, we have looked at the concepts of local search
in the context of optimizing branch coverage for RESTful
APIs, where previously only global evolutionary algorithms
have been used. We implemented a new multi-objective hill
climbing algorithm. We also carried out an empirical study,
comparing the novel algorithm with the existing state of the
art global MIO algorithm.

The performance in terms of efficiency is still better for
the MIO algorithm compared to the novel local algorithm.
This is likely due to the extensive size of the search space,
as well as the potentially large number of local optima within
it. On the bright side, the local competitor is able to search
a large percentage of the search space more efficiently. Of
the total amount of covered branches, around 30% was solely
covered by the new local algorithm. The hill climbing method
seems to be particularly useful in searching numerical data-
types within this search landscape.

So while a standalone local approach did not surpass the
performance of the current global state of the art algorithm,
a smart combination of the two methods might yield an even
better searching algorithm, one which is able to cover more
branches. In the most optimistic scenario, when hill climb-
ing is wisely used on its preferred search area, while MIO is
used on the other parts of the search space, this combined ap-
proach might see a 30% percent increase in attained branch
coverage. Future work will have to show how a local and
global search approach is best to be combined in a hybridized
algorithm. This hybridized approach is likely to be supreme
in search-based software testing in the context of RESTful
APIs in EvoMaster.
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