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Preface

This master’s thesis marks the end of a challenging yet rewarding academic journey. With rapid urban-
ization and increasing environmental challenges, urban noise pollution has become a hidden threat to
residents’ health and quality of life. Traditional noise assessment methods are often expensive, have
limited coverage, and struggle to capture detailed micro-environmental information. Because of this,
| explored an innovative solution. | aimed to use advanced machine learning techniques, combining
widely available street view image data with precise on-site acoustic measurements, to build a high-
resolution, low-cost, and explainable urban noise prediction model.

During this research, | deeply learned about computer vision, acoustic analysis, and machine learning.
| personally experienced the meticulous process of data collection, the complex art of feature engi-
neering, and the repeated refinement of model tuning. From my initial curiosity about the mysteries of
urban soundscapes to gradually building an intelligent system that can "recognize sound from images,”
every step was filled with the joy of exploration and the satisfaction of overcoming difficulties. | strongly
believe that technological progress is not just about stacking numbers and code; it's about responding
to real-world needs and creating better living environments for people.

The completion of this research would not have been possible without the careful guidance of my su-
pervisors at Delft University of Technology. Their professional insights and selfless help showed me
the right direction, allowing me to conduct systematic scientific exploration. | also want to thank all
the teachers, classmates, and friends who provided data support, technical assistance, and encour-
agement during the research. Your companionship and support are the most valuable assets on my
journey forward.

| sincerely hope that the findings of this thesis will provide a powerful tool for urban planners and
environmental managers. This will help them understand and manage urban noise more accurately
and contribute to building quieter, healthier urban environments.

Yuxiao Ma
Delft, August 2025



Abstract

Urban noise management often suffers from a gap between broad, city-level policies and the street-
level conditions actually experienced by residents. This thesis develops and validates an interpretable
machine-learning framework that combines street-view imagery (SVI) with on-site acoustic measure-
ments to predict both a standard physical metric (A-weighted equivalent sound level, LAeq) and a psy-
choacoustic metric (Zwicker Loudness), which reflects how loud sounds are perceived by people. The
approach integrates advanced computer-vision feature extraction with ensemble learning, and uses
interpretable Al tools (e.g., SHAP) to show how specific visual characteristics of the streetscape—such
as vegetation cover, road proportion, building facades, and scene perception scores—are linked to
predicted noise outcomes.

Tested across several Dutch cities, the models produce consistent, street-level predictions, enabling
high-resolution diagnostic noise maps for both LAeq and Loudness. Building on these maps, the thesis
introduces a policy translation framework aligned with the Dutch Omgevingswet and the EU Environ-
mental Noise Directive (END). This framework includes: (i) identifying noise “hotspots” using both
absolute thresholds (from WHO guidelines) and relative, within-city rankings; (ii) diagnosing the main
visual features driving noise levels, using local model explanations; (iii) selecting targeted interventions
—such as traffic flow adjustments, fagade and surface treatments, and nature-based solutions—sup-
ported by documented mechanisms and measurable indicators; and (iv) establishing an update loop
for periodic review as new imagery and measurements become available. An illustrative micro-case
demonstrates how this process turns model outputs into actionable planning decisions and performance
metrics.

The study’s contributions are threefold: (1) an end-to-end, interpretable pipeline linking SVI and acous-
tics; (2) a dual-metric evaluation (LAeq and Zwicker Loudness) that combines legal compliance with
a perception-based perspective; and (3) a concrete, regulator-aligned pathway from predictions and
explanations to policy action. Limitations include the sample size relative to feature dimensionality,
the absence of direct GIS or morphological data integration, and the geographic focus on Dutch cities.
These factors point to future work involving larger and longitudinal datasets, multi-sensor/GIS integra-
tion, and transfer learning for broader applicability, while encouraging cautious, phased adoption in
real-world planning.

11



contents

Preface i

Abstract ii

Nomenclature v

1 Introduction 1

1.1 Urban Noise Pollution: A Growing Environmental Challenge . . . . . . ... ... .. .. 1

1.2 Problem Statement: Limitations of the Current Method and Research Gaps . . . . . . . 2

1.3 Research Purpose, Objectives, and Research Questions . . . . .. .. ... ... ... 2

1.4 Research Scope and Limitations . . . . .. .. ... ... ... . ... . . ... 3

1.5 Thesis Structure . . . . . . . . . e 3

2 Theoretical Background and Literature Review 5

2.1 Urban Noise: Health and Social Impact . . . . . ... ... ... ... .......... 5

21.1 Physical and mental healtheffects . . . . .. ... ... ... ... ........ 5

2.1.2 Socioeconomic and Environmental Justice Impacts . . . . ... ... ... ... 6

2.2 Conventional Noise Assessment: Advances and Challenges . . . .. ... ... .. .. 6

2.3 Progress in Noise Prediction: Machine Learning and New Data Sources . . . . . . . .. 7

2.3.1 Street View Images (SVI) for Urban Environment Analysis . . . . ... ... ... 7

2.4 Psychoacoustics: Understanding Human Perceptionof Noise . . . . . .. .. ... ... 8
2.5 Noise Management Policies and Regulatory Landscape in the Netherlands and the Eu-

ropean Union . . . . . . . . e e e 9

3 Research Methodology 1"

3.1 Research Design Overview . . . . . . . . . . .. . 11

3.2 Data Acquisition and Preparation . . . . . . ... .. oo 13

3.2.1 Street View Image (SVI)DataSources . . . . . . .. .. ... ... ... 13

3.2.2 On-site Acoustic Data Collection . . . . ... ... ... ... ........... 14

3.3 Feature Engineering: Quantifying the Urban Visual Environment . . . . . ... ... .. 14

3.3.1 Basic Visual Feature Extraction . . . . . ... ... .. ... ... L. 14

3.3.2 Advanced Feature Processing and Grouping . . . . . ... ... ... ...... 16

3.4 Methodology for Acoustic Feature Set Validation . . . . ... ... ... ... ...... 19

3.4.1 Statistical Difference Analysis . . . . . . . . . . ... ... . 19

3.4.2 Internal Structure Analysis of Acoustic Features . . . . .. ... ... ...... 19

3.4.3 Machine Learning-Based Soundscape Discriminability Validation . . . . . . . .. 19

3.5 Predictive Modeling and Interpretability Framework (Answering RQ1 & RQ2) . . . . .. 20

3.5.1 Comparative Modeling Strategies and Algorithm Principles . . . . . . . ... .. 20

3.5.2 Model Training, Optimization, and Validation . . ... ... ... ......... 21

3.5.3 Model Interpretability Framework . . . . . . . . ... ... ... . . 22

3.6 Implementation Translation Framework (AnsweringRQ3) . . . . . ... ... ... ... 23

3.6.1 Spatial Hotspot Identification . . . . ... ... ... ... ... ... ..... 23

3.6.2 Causal Diagnosis Process Based on Interpretability . . . . ... ... ... ... 24

3.6.3 Data Foundation for Dual-Metric Evaluation . . . . . .. .. ... ... ...... 24

3.6.4 Regulatory Alignment and Decision Support Protocol . . . . ... ... ... .. 24

3.6.5 Dissemination and Adoption . . . . . ... ... L 24

4 Acoustic Data Exploration and Feature Analysis 26

4.1 Introduction . . . . . . . L 26

4.2 Analysis of Acoustic Feature Differences Between Locations . . . . .. ... ... ... 26

4.2.1 Statistical Validation of Feature Differences . . . . . . ... ... ... ... ... 26

11



Contents v

4.2.2 Distribution Patterns of MFCC Features . . . . . . .. ... ... ... ...... 27

4.3 Internal Structure and Correlation of Acoustic Features . . . . . . .. .. ... ... ... 28

4.3.1 Analysis of Feature Correlations and Structure . . . . .. ... ... ....... 28
4.3.2 Audio Feature Dimensionality Reduction and Interpretation using Principal Com-

ponent Analysis (PCA) . . . . . . . . . e 30

4.4 Location Classification Validation Based on Acoustic Features . . . .. ... ... ... 31

441 Classifier Performance Comparison and Model Selection . . . . ... ... ... 32
4.4.2 In-Depth Performance Analysis of the Optimal Model (SVM) and Feature Group

Contributions . . . . . . . . .. 32

4.5 Chapter Summary: Laying the Foundation for Predictive Modeling . . . . ... ... .. 34

5 Predictive Modeling: Results and Interpretation 36

5.1 Feature Grouping and Quality Validation . . . . . ... .. .. .. ... .. ........ 36

5.1.1 Analysis and Interpretation . . . . . .. ... ... Lo L 36

5.1.2 Grouped PCA: Uncovering Dimensional Structures in Thematic Feature Sets . . 37

5.1.3 Feature Cluster Analysis: Natural Groupings of Visual Elements . . . . . . . .. 37

5.2 Comparative Assessment of Model Performance . . . . . .. ... ... ... ...... 37

5.2.1 Overall Performance Quantification Comparison . . . . . . . ... .. ... ... 38

5.2.2 Optimal Model Selection and Discussion of Limitations . . . . . .. ... ... .. 40

5.3 Model Interpretability Analysis: Answering Research Questions (Answering RQ1 & RQ2) 41
5.3.1 Global Feature Importance: Identifying Key Visual Predictors (Answering RQ1) . 41

5.4 Local Interpretability: Diagnosing Individual Sample Predictions (Answering RQ2) . .. 42
5.4.1 Extracting Actionable Conditions and Thresholds . . . . . . .. ... ... .... 45
5.5 Health Risk Assessment Based on Guidelines . . . . . ... .. ... .. ........ 48
5.6 ChapterSummary . . . . . . . . . . e 48
6 Discussion and Policy Implications 50
6.1 Introduction: A Bridge from Model Insights to Policy Actions . . . . . . .. .. ... ... 50
6.2 Methodological Advantages and Policy Implications . . . . . .. .. ... ... ..... 51
6.2.1 The New Paradigm: Low-Cost, High-Resolution “Diagnostic” Noise Mapping . . 51

6.2.2 Beyond Decibels: A “Dual-Metric” Evaluation System Combining Physical and
Perceptual Metrics . . . . . . . . . . . .. 52
6.3 Policy Translation Framework: A Concrete Path from Data to Decisions . . . .. .. .. 52
6.3.1 Step 1: High-Precision Hotspot Identification and Prioritization . . . . . ... .. 52
6.3.2 Step 2: “Targeted” Intervention Based on Explainability . . . .. ... ... ... 53
6.3.3 Step 3: Aligning and Integrating with the Regulatory Framework . . . . . . . .. 55
6.4 Stakeholder Engagement and Strategic Adoption . . . . . .. ... ... ... ... ... 56
6.4.1 Communication Strategy by Stakeholder . . . . ... .. ... ... ....... 57

6.4.2 Responsible Adoption Roadmap: Phased Implementation Following the Gartner
Hype Cycle . . . . . . 57
7 Conclusion and Future Research 60
7.1 Reaffirming Core Contributions and Research Trajectory . . . . . . . ... ... ... .. 60
7.2 Summary of Key Findings: Connecting Micro-Insights to Macro-Applications . . . . .. 61
7.3 Research Limitations . . . . . . . . . .. . ... 61
7.4 Future Research Directions . . . . . . . . . .. . ... 62
7.5 Conclusion . . . . . . e e 63
Bibliography 67
Acknowledgments 68
A Supplementary Model Outputs and Visualizations 81
A1 GUllInterface . . . . . . . . o e 81
A2 Exapmleof SVlintheHague . . .. .. ... ... . . ... ... .. .. .. ... ... 82
A3 PCAandFeature . . . . . . . . . . . e e 84
Ad SHAP . . 93
A.5 Residual Analysis . . . . . . 123

A6 NoiseMap . . . . . . . . e 134



Nomenclature

Abbreviations
Abbreviation Definition
ANNSs Artificial Neural Networks
CBA Cost-Benefit Analysis
CEA Cost-Effectiveness Analysis
CNN Convolutional Neural Network
Ccv Computer Vision
CV-RMSE Cross-Validation Root Mean Square Error
DALYs Disability-Adjusted Life Years
DCNN Deep Convolutional Neural Network
DPIA Data Protection Impact Assessment
END Environmental Noise Directive
EPA Environmental Planning Act
EU European Union
GAM Generalized Additive Model
GDPR General Data Protection Regulation
GGD Gemeentelijke Gezondheidsdienst (Municipal Health Service)
GPPs Geluidproductieplafonds (Noise Production Ceilings)
GBRT Gradient Boosting Regression Tree
GIS Geographic Information System
GSV Google Street View
HSV Hue, Saturation, Value
IEC International Electrotechnical Commission
IQR Interquartile Range
ISO International Organization for Standardization
LAeq A-weighted equivalent continuous sound pressure level
Lden Day-evening-night average sound level
Lnight Night average sound level
MAE Mean Absolute Error
MFCC Mel-frequency Cepstral Coefficients
ML Machine Learning
MLP Multi-Layer Perceptron
NAPs Noise Action Plans
NN Neural Network
PCA Principal Component Analysis
PCs Principal Components
PPPs Public-Private Partnerships
PSD Power Spectral Density
RBF Radial Basis Function
RF Random Forest
RIVM Rijksinstituut voor Volksgezondheid en Milieu (National Institute
for Public Health and the Environment of the Netherlands)
RMSE Root Mean Squared Error
RMS Root Mean Square
RQ Research Question
SHAP SHapley Additive exPlanations
SPL Sound Pressure Level



Contents

vi

Abbreviation Definition
SVI Street View Images
SVR Support Vector Regression
SWUNG Samen Werken Uitvoering Nieuwe Geluidregelgeving (Coopera-
tion on Implementation of New Noise Regulations)
TPE Tree-structured Parzen Estimator
VNG Association of Netherlands Municipalities
WHO World Health Organization
Wm Wet milieubeheer (Environmental Management Act)
Symbols
Symbol Definition Unit
N Loudness sone
N'(2) Loudness density at a specific Bark band
z Bark scales
So4pit (t) Scaled audio signal (in 24-bit integer range)
Snorm (%) Normalized input signal
RMS Root Mean Square
Py Calibration reference
Ceal Device-specific calibration parameters
SPLgevice Sound pressure level estimation dB
Cres Device calibration reference
Sdbts Microphone sensitivity dB
Aot fset Additional calibration offset dB
Pphysical (t) Physical sound pressure
Zij j-th feature value of the i-th sample
z; Mean of the j-th feature
by Covariance matrix
v Eigenvector
A Eigenvalue
Y Projected data
W Projection matrix
d Cohen’s d effect size
Sp Pooled standard deviation
ni, N Sizes of the two samples
S1, S2 Standard deviations of the two samples
7 Model’s predicted output
oo Baseline value
i SHAP value for the j-th feature
M Total number of features
Yi True value
7 Mean of the true values
0 Rotation angle degrees
toy by Translation values pixels
V! Adjusted brightness
c HSL channel
Lhe Mean of HSL channel
O Standard deviation of HSL channel
N Total pixels
i Probability of scene category
Z; Logit score for scene category Percentage
k Percentage of pixels classified into class k %



Contents

vii

Symbol Definition Unit
M; Feature selection mask

Ng /Mg Feature transformer/attention dimensions
Nsteps Number of decision steps

Asparse Sparse regularization coefficient

Ir Learning rate

gi First derivative of the loss

h; Second derivative of the loss

Q(fr) Regularization term

L Loss function

L(t) Objective at each step

pgyz-W(xi))

Conditional probability distribution
Scaled feature value




Introduction

1.1. Urban Noise Pollution: A Growing Environmental Challenge

The 21st century has seen a sharp rise in urban noise pollution. This is a direct result of ongoing global
urbanization. Mukim and Roberts (2023) predicts that about 70% of the world’s population will live
in cities by 2050. This shift in population will naturally increase noise pollution. It will also create a
serious threat to public health and the quality of city life. Noise is an environmental stress factor. It is
everywhere. lts effects are widespread and profound.

The World Health Organization (WHO) has measured this problem. They estimate that traffic noise
alone causes over a million years of healthy life lost each year in Western Europe (Organization et al.,
2011). At least 20% of the EU population live in areas where traffic noise levels are harmful to health
(European Environment Agency, 2020). These alarming numbers highlight the hidden crisis of noise
pollution. Research by Basner et al. (2014) and Hahad et al. (2019) further shows the health impacts.
They linked long-term exposure to noise with many bad effects. These include mental problems like
anxiety, depression, and poor thinking. They also include physical risks like more heart and blood ves-
sel diseases. Specifically, these risks cover high blood pressure, stroke, heart attacks, and widespread
sleep problems. Children are especially vulnerable to noise exposure. It can affect their thinking devel-
opment. The WHO considers environmental noise to be the second greatest environmental contributor
to the burden of disease in the EU after air pollution (Organization et al., 2011). In crowded countries
like the Netherlands, traffic noise is the top environmental concern (National Institute for Public Health
and the Environment (RIVM), 2023). It needs effective monitoring and management.

Historically, measuring noise and its complex effects has been technically hard and expensive. This
study suggests new methods. These include machine learning (ML) and street view images (SVI).
These can make noise assessment easier to get, more common, and more detailed. This can help
people focus on noise again.

Faster urbanization and the simultaneous rise in noise pollution form a complex interaction. We can see
it as a feedback loop. As city areas grow, population density increases, and economic activity strength-
ens. This naturally leads to more concentrated noise sources. These include noise from vehicles,
construction, and daily human activities. This increased noise then harms the city’s living environment
and public health (Hemmat et al., 2023). The urban form itself, characterized by street canyons and
hard surfaces, further intensifies the noise level through reflection and reverberation (Penteado et al.,
2018). As aresult, a worsening sound environment brings significant social costs. These include higher
healthcare spending, lower worker productivity, and a reduced overall quality of life. This can affect the
appeal and long-term sustainability of these city centers in a cycle. It also causes complex population
and economic adjustments.
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1.2. Problem Statement: Limitations of the Current Method and Re-
search Gaps

Traditional urban noise evaluation methods mainly rely on manual sampling from fixed monitoring sta-
tions, mobile measurement vehicles, and handheld sound level meters (Can et al., 2011; Kirillov and
Bulkin, 2015). Although these methods can provide precise measurements at specific points, they face
significant challenges when trying to achieve city-wide coverage. The main issues are the high cost
of equipment and maintenance, along with the need for trained personnel. As a result, large "blind
spots” are common on urban acoustic maps. A report from the European Court of Auditors (2025)
also highlighted this flaw, noting that most EU member states have data gaps and delays in their noise
assessments and reports, which fail to fully reflect the true noise exposure of residents.

However, an even more fundamental challenge than coverage is the widespread “micro-macro dis-
connect” in existing noise management systems. Traditional noise prediction models, such as the
official EU CNOSSOS-EU model, typically operate at a macro scale, providing city- or regional-level
assessments (Kephalopoulos et al., 2014). But people’s perception of noise and its health effects occur
at a much finer, micro scale—on specific streets, near buildings, or even on different sides of a building.

This disconnect between the scale of assessment and the scale of impact makes it difficult for noise
management to be precise and effective. Macro-level models often overlook subtle, street-level fea-
tures such as building layouts, green coverage, street infrastructure, and local activity patterns, all
of which can significantly alter the local acoustic environment. To bridge this "micro-macro” gap, this
study proposes an innovative approach: using street-view images (SVI) as the core data source. SVI
is inherently micro-scale data that naturally captures the rich visual cues influencing the local acoustic
environment. By using machine learning to analyze these images, a model can be developed to infer
micro-scale acoustic environments from micro-scale visual information, thereby providing fine-grained
decision-making support for macro-level policies.

1.3. Research Purpose, Objectives, and Research Questions

Purpose: This study’s main purpose is to develop and test an innovative machine learning framework.
This framework serves as an interpretable diagnostic tool for urban noise by integrating street-view
images with on-site acoustic samples. The purpose is to provide high-resolution, actionable insights
that can bridge the existing "micro-macro” gap in noise management and support more precise urban
planning.

Research Objectives To achieve the main purpose, this research focuses on the following specific
objectives:

1. Quantify the visual-acoustic correlation: This involves investigating and quantifying the rela-
tionship between visual features in street-level images and objective environmental noise levels.
The goal is to identify the most significant visual predictors of urban noise.

2. Develop an interpretable predictive model: A machine learning model is constructed and eval-
uated. This model is designed not only to predict noise levels with practical accuracy (including
A-weighted equivalent continuous sound pressure level, LAeq, and psychoacoustic metrics of
human perception) but also to provide a transparent explanation of why specific visual features
lead to corresponding acoustic outcomes.

3. Establish a policy translation framework: A practical framework is developed to translate the
model’s outputs (high-resolution noise maps and feature explanations) into concrete policy inter-
ventions. This framework is designed to be consistent with the regulatory contexts of both the
Netherlands (Omgevingswet) and the European Union (END).

Research Questions Based on the above background and objectives, this research raises the fol-
lowing core questions:

How can an interpretable SVI-acoustics framework be built to predict urban noise and pro-
vide actionable support for planning and management?
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In order to fully answer this central question, this study will also explore the following sub-questions:

* RQ1: Which quantifiable visual characteristics of an urban streetscape does a machine learn-
ing model identify as the most significant predictors for both physical noise levels (LAeq) and
perceived psychoacoustic loudness (Zwicker Loudness)?

* RQ2: How can the model be structured and explained so that its predictions are not only accu-
rate but also accompanied by clear, credible reasons for why specific visual features drive the
outcome?

* RQ3: How to transform model outputs into concrete and actionable noise control intervention
plans that are aligned with the Dutch Omgevingswet and EU END indicator systems?

1.4. Research Scope and Limitations

Geographic Scope: The primary data for model training and initial testing were collected in The
Hague and Delft, Netherlands. The model’s generalizability will be explored by applying public Google
Street View images from other Dutch cities, such as Amsterdam, Rotterdam, etc.

Methodological Scope: This study focuses on applying machine learning techniques, specifically
those capable of integrating visual features from street-view images (SVI) with on-site, short-term
acoustic measurements.

Limitations: To maintain a focused and feasible study within the timeframe of a master’s thesis, the
following boundaries were explicitly set:

Data Sparsity Challenge

This study faced the typical challenge of a high-dimensional feature space (over 350 raw visual features)
with a limited sample size (approximately 1400 valid data points). This is not just a limitation but a core
finding of the study. A key objective was to explore the predictive limits of this method under real-world
data constraints and to establish a performance benchmark for future large-scale research.

No Integration of GIS Data

This was a deliberate boundary. The study did not directly integrate traditional GIS datasets (such as
3D building models, detailed road network attributes, or land use layers). This choice was made to
purely test the capacity of street-view images to represent environmental information and to answer
the fundamental question: "To what extent can we understand the acoustic environment by merely
‘looking’ at the street?” While this sharpened the research focus, it also means the model lacks the
macro-spatial information that GIS data could provide and which might improve physical accuracy.

Limited Psychoacoustic Depth

Although key psychoacoustic metrics (such as Zwicker loudness) were introduced, the study did not
cover more comprehensive parameters (such as sharpness or roughness). Consequently, the simula-
tion of human noise perception is considered preliminary.

Geographic Generalizability

The model was primarily trained and validated within a Dutch urban environment, making it, in essence,
a ”"Dutch urban noise expert.” Its direct applicability to other international cities with vastly different urban
morphologies, architectural styles, or traffic cultures would require further investigation through transfer
learning or recalibration with local data.

1.5. Thesis Structure

This thesis moves from understanding data to building models and then to applications and dis-
cussion. Chapter 5 closes by extracting actionable rules and explicitly sets up the policy translation in
Chapter 6. Chapter 7 revisits the initial motivation (the micro-macro disconnect) in light of the results,
consolidating contributions and limitations. This structure clearly shows the whole research process.



1.5. Thesis Structure 4

Chapter 1: Introduction

This chapter discusses the severity of urban noise pollution, highlights the limitations of existing noise
assessment methods, and introduces the core concept of this study. Finally, it clearly states the re-
search objectives, new research questions, and the scope and boundaries of the research.

Chapter 2: Theoretical Background and Literature Review

This chapter provides a solid theoretical foundation for the study. It reviews the impact of urban noise
on health and society, traditional and emerging noise assessment methods, the role of psychoacoustics
in understanding noise perception, and relevant noise management policies in the Netherlands and the
European Union.

Chapter 3: Research Methodology

This chapter details the technical workflow of the study. It includes the methods for collecting acoustic
and visual data, feature engineering techniques used to quantify the visual environment, the selection
of machine learning models and their interpretability frameworks, and the policy translation framework
designed to address Research Question 3 (RQ3).

Chapter 4: Acoustic Data Exploration and Feature Analysis

Before building the predictive model, this chapter provides an in-depth exploration of the collected data.
The core content validates whether different urban soundscapes have unique and identifiable "acoustic
fingerprints,” laying the data foundation for the subsequent cross-modal prediction task.

Chapter 5: Predictive Modeling: Results and Interpretation

This chapter presents the core results of the predictive model. The content directly addresses RQ1 by
identifying key visual predictors through global feature importance analysis. It also addresses RQ2 by
demonstrating the model’s interpretability through SHAP analysis on specific samples.

Chapter 6: Discussion and Policy Implications

This chapter provides an in-depth discussion of the modeling results, examining their scientific and
practical value. The content systematically addresses RQ3, exploring how to translate the model’s
technical outputs into a practical policy recommendation framework for urban planning and environ-
mental management.

Chapter 7: Conclusion and Future Research
This chapter summarizes the thesis, reiterates the core contributions of the research, and proposes
future research directions based on the challenges discovered in this study.



Theoretical Background and
Literature Review

This chapter lays the groundwork for the research. It reviews existing knowledge in several key areas.
These include: the wide-ranging effects of urban noise, traditional and modern noise assessment meth-
ods, the role of psychoacoustics in understanding noise perception, and the relevant policies and rules
for managing noise in the Netherlands and the European Union.

2.1. Urban Noise: Health and Social Impact

2.1.1. Physical and mental health effects

Urban noise is more than just an annoyance. It is a major environmental stressor. It has profound and
well-documented impacts on human health and well-being. Long-term exposure to high noise levels is
very common in many city environments. This exposure can trigger a range of negative physical and
psychological reactions.

Cardiovascular health is significantly affected. Munzel et al. (2018) conducted a study and they con-
cluded that exposure to environmental noise (and other environmental stressors) can lead to cardio-
vascular metabolic diseases. Noise can cause oxidative stress, problems with blood vessel function,
imbalances in the autonomic nervous system, and metabolic issues. This can worsen the negative
health effects of traditional risk factors like high blood pressure, diabetes, and high cholesterol. For ex-
ample, it can speed up the progress of atherosclerosis and increase the risk of cardiovascular events.

For sleep and mental health, Smith et al. (2022) showed there’s moderate evidence for the probability
that for every 10 dB increase in nighttime noise, quality of sleep will be highly disturbed. This then
leads to chronic stress and anxiety. National Institute for Public Health and the Environment (RIVM)
(2023) claims that in the Netherlands, road traffic and neighbors are the main sources of noise distur-
bance. They are also the primary causes of sleep problems. More than 4% of the adult population
in the Netherlands experiences severe sleep disturbances due to road traffic noise. Like noise distur-
bance, the percentage of severe sleep disturbances can vary greatly locally compared to the national
average. For example, around Schiphol Airport, an average of 4% of residents suffer from severe sleep
disturbances due to air traffic (Oosterlee and Zandt, 2017).

From a psychological perspective, chronic noise exposure is linked to more stress, anxiety, depression,
and mood disorders. Cognitive functions, such as attention, memory, and the ability to learn, can also
suffer. Children are especially vulnerable in this area. Klatte et al. (2013) reviewed studies showing
that noise in learning environments hinders speech perception, reading comprehension, and memory
development in school-aged children. The WHO (Organization et al., 2011) also measured the burden
of disease caused by environmental noise. For child cognitive impairment, they estimated 45,000
disability-adjusted life years (DALYs) are lost each year in high-income Western European countries
for this specific outcome. Older adults are another sensitive group. Studies show an increased stroke
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risk linked to higher noise exposure. These widespread effects impact the physical and psychological
health of different age groups. This requires a strong understanding of noise and effective ways to
reduce it. Therefore, our proposed model can identify noise hotspots. This directly connects to public
health goals aimed at protecting these vulnerable groups. This strengthens the reasoning for RQ3,
which focuses on policy changes.

2.1.2. Socioeconomic and Environmental Justice Impacts

Noise pollution has significant economic consequences. The noise pollution cost in the European
Union includes healthcare expenses, lost productivity, and reduced property values. A joint report
from the French Agency for Ecological Transition (ADEME) and the French National Noise Council
(CNB), estimates that noise pollution costs France 147.1 billion euros annually (ADEME and Conseil
National du Bruit, 2021). Transport noise makes up the largest part of this, accounting for 66.5% (97.8
billion euros) of the total. Organizations like | Care & Consult and Energies Demain conducted this
study. They looked at how different noise sources, including transport, communities, and workplaces,
affect health and the economy. The report also notes that 86% of these costs are non-market costs,
like health problems and a lower quality of life. The remaining 14% are direct market costs, such as
medical expenses, lost productivity, and lower property values.

A report from the Dutch National Institute for Public Health and the Environment (RIVM) states that
property depreciation due to airport noise in the Netherlands is estimated at about 1 billion euros an-
nually (Schreurs et al., 2011). There is also a 400 million euro reduction in land value, making the
total loss around 1.4 billion euros. Amsterdam Airport Schiphol accounts for about 65% of these costs.
Another study by RIVM, in cooperation with EFTEC, estimates the median annual social cost of noise
pollution in the Netherlands to be 1.81 billion euros (Howarth et al., 2001). This mainly includes lost
productivity, lower property values, and a decreased quality of life."

For environmental justice, noise pollution makes social inequality worse. Casey et al. (2017) found
that noise pollution is not spread equally among people from different racial/ethnic and socioeconomic
backgrounds. Several indicators of a community’s socioeconomic background are linked to more noise
at night and during the day. These include poverty, unemployment, language isolation, and a higher
percentage of renters and people who did not finish high school. Neighborhoods with more Asian,
Black, and Hispanic residents often have higher noise levels, but these relationships are rarely linear.
Dutch noise maps (Atlas Leefomgeving, 2025) also show that immigrant communities in The Hague,
like Transvaal, experience more traffic noise than wealthier areas like Wassenaar.

2.2. Conventional Noise Assessment: Advances and Challenges

Traditionally, urban noise assessment combines direct measurement and simulation modeling. Direct
measurement involves placing fixed monitoring stations in key spots. It also uses mobile surveys with
vehicles that have advanced acoustic tools. Manual on-site measurements are also done with handheld
sound level meters. These methods provide very accurate Leq values and other acoustic data at the
measurement points. Computational simulation models, like the European common noise assessment
method (CNOSSOS-EU) framework, predict noise levels. They use inputs such as traffic flow data,
road characteristics, building shapes (often from GIS), and weather conditions (Kephalopoulos et al.,
2014).

These traditional methods are well-established, but they have significant limitations. This is especially
true when a city needs a comprehensive, high-resolution assessment. Key limitations include:

Cost and Scalability: Setting up and maintaining a dense network of high-quality fixed monitoring
stations is very expensive. The capital and operational costs for frequent, full mobile surveys are also
substantial. Expanding this to new cities or regions means a large, long-term budget commitment for
setup and upkeep.

Spatial Coverage: Due to cost limitations, monitoring points are often spread out. This leaves large
unmonitored areas and an incomplete picture of the urban soundscape. It makes it hard to identify

"1t is important to note that this estimate is primarily based on data from 2000, so it might not fully reflect the current situation.
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localized noise hotspots or assess exposure in different small environments.

Micro-environment Details: Large-scale simulation models are useful for strategic mapping at a
macro-scale, however, they often simplify complex urban structures. They may not fully capture how
micro-scale features like specific building facades, small green spaces, or street furniture affect local
sound spread.

Data Intensity of Physical Models: Advanced physical simulation models, like CNOSSOS-EU, are
"data-hungry”. They need extensive and current input data on traffic, 3D building shapes, terrain, and
weather. Getting and maintaining these detailed datasets is a major challenge and expense for many
cities, especially smaller ones. Any inaccuracies or outdated information in the input data directly
affect the reliability of the simulation output. This need for data contrasts with the potential of ML-SVI
methods. These methods can provide insights even when data is scarce. They can also offer quick
updates between major regulatory modeling cycles, making them potentially more cost-effective.

These limitations highlight the need for methods that can provide more detailed, cost-effective, and
dynamic noise assessments.

2.3. Progress in Noise Prediction: Machine Learning and New Data
Sources

To address the shortcomings of traditional macro-scale methods, researchers have turned to inno-
vative approaches that leverage machine learning (ML) and new data sources, which are particularly
adept at capturing environmental characteristics at the micro-scale. Among these, Street View Im-
agery (SVI) has emerged as a powerful resource.

2.3.1. Street View Images (SVI) for Urban Environment Analysis

Street View Images (SVI) platforms, like Google Street View, offer a vast and easily accessible source
of visual information about city environments. These images capture details such as road width, build-
ing density and type, vegetation cover, traffic presence, and other street-level elements. All of these are
inherently linked to local noise levels. Using computer vision and ML with SVI opens new possibilities
for understanding the environment.

Several studies have shown the potential of SVI in noise and soundscape assessment:

Zhao et al. (2023) successfully used SVI to estimate the urban soundscape of large areas in Singapore
and Shenzhen with high resolution. Their method involved extracting visual features from SVI, con-
ducting surveys to gather soundscape indicators based on these images, and then training a Gradient
Boosting Regression Tree (GBRT) model. They achieved a coefficient of determination (R?) of 0.48
when validating predicted sound intensity against on-site measurements, which shows that SVI-based
soundscape sensing is feasible.

Huang et al. (2024) proposed a hybrid method. It combined a Deep Convolutional Neural Network
(DCNN) to extract visual features from SVI with traditional machine learning algorithms (Random For-
est) to predict road noise levels. Their work highlights the ability to learn meaningful patterns from
visual data for quantitative noise estimation, achieving a Mean Absolute Error (MAE) of 2.01 dB and a
Root Mean Square Error (RMSE) of 2.71 dB in their study.

Verma et al. (2020) combined locally acquired SVI and synchronized audio recordings to predict urban
environment perception. Their visual feature extraction methods, which used tools like Faster R-CNN
for object detection, PSPNet for semantic segmentation, and Places365-trained CNNs for scene clas-
sification, set a strong precedent for the feature engineering aspect of this paper.

Song et al. (2024) introduced a multi-sensory framework. It used models like XGBoost (or LightGBM)
and SHAP for explainable noise perception classification based on SVI. A key finding was the signifi-
cant impact of visual scene composition (the proportion of buildings, vegetation, sky, and lighting) on
perceived noise, further validating the use of image data.
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The advantages of ML-SVI methods are many. They include the potential for high spatial resolution
mapping, cost-effectiveness compared to traditional widespread monitoring, the ability to combine
information from multiple sources (visual and acoustic), predictive capabilities for scene simula-
tion, and enhanced model interpretability through appropriate techniques.

Combining visual and acoustic data is a key part of modern noise prediction research. There are
different ways to combine this data. These include early fusion, which combines features before or at
the input layer of a model, and late fusion, which combines the outputs of separate models trained on
single types of data.

Hong et al. (2020) gave a good example of audio-visual fusion. They trained separate convolutional
neural networks (CNNs) on images and audio spectrograms. Then, they used a late fusion method
with a linear model or a generalized additive model (GAM) for the final noise mapping. Their model
was very accurate (R? > 0.90 for 5-minute average noise levels). Importantly, they found that audio
features were often better at predicting environmental variables like noise than image features alone.
This shows how important it is to include acoustic data in training, even if the final goal is to predict only
from Street View Imagery (SVI).

However, multimodal methods have challenges. The "modality gap” refers to the difficulty of using a
model trained on rich audio-visual data for predictions where only visual input, such as Google Street
View (GSV) images, is available. "Temporal mismatch” is another concern. This happens when out-
dated SVI doesn’t match current noise conditions.

When applying machine learning (ML) to environmental modeling for policy, a key consideration is bal-
ancing model accuracy and how easy it is to understand. Very complex models like deep CNNs, such
as those Hong et al. (2020) used, might offer better prediction accuracy. However, simpler models, like
rule-based systems or models using "concept bottlenecks” (e.g., using object counts as understandable
intermediate features), offer more transparency. Policymakers often need to know why a model made
a certain prediction to build trust and design effective interventions. "Black box” models can make this
understanding difficult.

2.4. Psychoacoustics: Understanding Human Perception of Noise

While objective physical measurements like L., (equivalent continuous sound level) are crucial for
quantifying noise, human perception of sound is a more complex phenomenon. It is affected by various
psychoacoustic properties of the sound itself. Understanding these properties is vital for designing
interventions that not only lower decibel levels but also improve the perceived quality of the acoustic
environment and minimize annoyance (Sustainability Directory, 2025). Key psychoacoustic parameters
include:

Loudness: This is the subjective perception of sound intensity. It isn’t linearly related to sound pres-
sure level (dB). Measures like Phons and Sones are used to quantify perceived loudness. Zwicker
loudness, an international standard (1ISO532-1:2017, 2017), measured in sones, developed by Eber-
hard Zwicker and his team (Zwicker and Fastl, 2013), is an international standard for calculating how
loud a sound is. It reflects how the human ear subjectively perceives loudness more accurate ly than
traditional sound measurement methods like L.

This model fully considers how the human ear is more sensitive to some sound frequencies than others.
It also accounts for how louder sounds can mask quieter ones, and that our perception of loudness
doesn’t increase linearly with sound intensity. For example, 1 sone is defined as the loudness of a 1
kHz pure tone at 40 dB SPL. If the loudness doubles (like from 1 sone to 2 sones), it means the sound
subjectively feels twice as loud.

Because of this, even if two noises have the same L., value, their Zwicker loudness can be very
different. This depends on their spectrum (the mix of frequencies) and how they change over time.
The Zwicker loudness usually better shows how annoying a sound truly is.

Using Zwicker loudness in urban noise research and management allows for a more complete eval-
uation of sound environment quality. It helps identify noise sources that might not exceed limits but
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still cause significant disturbance. This also provides a more human-centered basis for urban planning
and noise control.

For instance, a steady, low-frequency rumble might be less annoying than an intermittent, high-pitched
whine, even if both have the same L.,. This qualitative aspect of noise annoyance is critical. The hu-
man auditory system isn’t just a simple microphone; it processes sounds through complex filtering and
interpretation mechanisms in the brain. Therefore, aligning noise assessment with human cognition,
as requested, requires a thorough understanding of these psychoacoustic dimensions.

While current models mainly predict L., any discussion about their credibility and alignment with human
perception must include these insights. Future model iterations could aim to directly predict these
more nuanced metrics or use them to weight or explain L., maps, leading to a more comprehensive
understanding of the urban sound environment.

2.5. Noise Management Policies and Regulatory Landscape in the
Netherlands and the European Union

This research fits within the strong policy and regulatory frameworks for noise management at both the
EU and Dutch national levels. Key legal tools include:

The EU Environmental Noise Directive (END) 2002/49/EC: This directive is the foundation of EU
noise policy (European Parliament and Council of the European Union, 2002). It requires member
states to create strategic noise maps every five years for major urban areas (over 100,000 residents),
main roads (over 3 million vehicles per year), main railways (over 30,000 train passages per year), and
maijor airports (over 50,000 movements per year). These maps must use consistent noise indicators,
mainly Lg.,, (day-evening-night average sound level, with penalties for evening and night) and L,,;4x+
(night average sound level). The END also requires Noise Action Plans (NAPs). These plans aim
to manage noise problems and protect existing quiet areas. While the END does not set mandatory
EU-wide limits, Lgen, > 55 dB and L4+ > 50 dB are often used as thresholds for reporting exposed
populations and triggering action.

The Dutch Environmental Management Act (Wet milieubeheer - Wm): This act is the main na-
tional tool for implementing the END in the Netherlands. It provides the legal basis for controlling
noise pollution, noise zoning, and enforcing legal noise standards. For example, it sets preferred max-
imum noise levels for residential areas (usually around L,.,, 50-55 dB(A)). It also established a system
of noise "production caps” (Geluidproductieplafonds - GPPs) for major infrastructure like roads and
railways, especially under the SWUNG (Samen Werken Uitvoering Nieuwe Geluidregelgeving) amend-
ment (Grantham Research Institute, 2004).

The Dutch Environment and Planning Act (Omgevingswet) (effective January 1, 2024): This land-
mark law combines and simplifies over twenty existing environmental and planning laws, including the
previous Noise Nuisance Act (Wet geluidhinder). Its main goal is to promote integrated decision-making
and give significant planning authority to municipalities. A key tool under the Environment Act is the
municipal environmental plan (omgevingsplan). This plan replaces old land-use plans and integrates
rules for the physical living environment, including noise. A core principle of the Environment Act is
"evenwichtige toedeling van functies aan locaties” (balanced allocation of functions to locations). This
clearly requires environmental factors like noise to be considered in spatial planning decisions. The
Besluit kwaliteit leefomgeving (Bkl - Decree on the Quality of the Living Environment) sets national
rules that municipal environmental plans must follow. This includes a framework for noise standards
(standardwaarden - standard values, and grenswaarden - limit values) for noise-sensitive buildings and
areas (Grantham Research Institute, 2024).

The Municipal Public Health Service (Gemeentelijke Gezondheidsdienst (GGD)) provides health-
based recommendations for evaluating environmental noise exposure. These guidelines are used to
assess the potential health risks posed by various noise sources such as road traffic, railways, indus-
trial activities, and air traffic. The GGD emphasizes these values serve as key reference points for
urban planning, environmental assessment, and public health evaluations (Rijksinstituut voor Volksge-
zondheid en Milieu (RIVM) and Gemeentelijke Gezondheidsdiensten (GGD)’en, 2019). The summary
of these noise level thresholds is presented in Table 2.1.
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Table 2.1: GGD Health-Based Noise Guidelines by Source Type

Noise Source Day-Evening-Night Night Level Lpgnt | Notes

Level Lgen (dB) (dB)
Road, rail, and industrial | 50 (recommended | 40 (recommended | Protects health
noise maximum) maximum) and sleep
Aircraft noise 45 (WHO guideline) 40 (WHO guideline) More  disturb-

ing than other
sources; higher
health impact

Indoor  noise (any | 33 (maximum Lgen) - For a healthy
source) indoor environ-
ment

The introduction of the Omgevingswet is especially important as it creates a strong need for detailed,
localized environmental data, which the proposed ML-SVI model is well-positioned to provide.

In summary, this literature review reveals several critical gaps in current urban noise research. First,
the limitations of traditional assessment methods in cost and spatial resolution have led to a persistent
disconnect between macro-scale policy and micro-scale soundscape experience. Second, while
emerging research using SVI and machine learning shows promise, many studies still focus on single
physical metrics and often lack sufficient model interpretability to be trusted as "diagnostic tools” by
policymakers. Third, the discrepancy between physical noise (e.g., LAeq) and human perception (e.g.,
loudness), though well-established in psychoacoustics, is rarely addressed by models that can predict
and utilize both metrics for a multi-dimensional soundscape quality assessment. Finally, a system-
atic framework for translating the outputs of these advanced models into practical policy actions
that align with existing regulations, such as the Dutch Omgevingswet, remains a largely unexplored
area.

To address these challenges, this thesis poses its central research questions, aiming to fill these gaps
with an interpretable, multi-modal machine learning framework.



Research Methodology

3.1. Research Design Overview

This chapter describes the technical framework for answering the study’s three main research questions.
The framework was a multi-stage, goal-oriented research process that required the development of an
accurate and explainable high-resolution urban noise prediction model. This model was developed by
integrating street-view images (SVI) with on-site acoustic measurements to provide a scientific basis
for urban planning and environmental policy.

The overall process of this study followed a path from data to insights to application. It began with the
data collection and preparation phase, where a multi-modal dataset covering several cities in the
Netherlands was built using both on-site sampling and public data platforms. Next, during the feature
engineering phase, advanced computer vision techniques were used to convert raw, unstructured
visual data (images) into structured numerical feature vectors with over 350 dimensions that a machine
learning model could understand.

Before proceeding with cross-modal prediction, an important prerequisite was to confirm that the acous-
tic data used as the prediction target contained stable, effective, and distinct signals. This soundscape
exploration and validation analysis is detailed in Chapter 4.

A key part of the research was the comparative modeling and interpretation phase. A comparative
experiment was designed and executed using five different modeling strategies to build a predictive
model. Interpretability tools, such as SHAP, were used to deeply analyze the model’s decision-making
logic, addressing research questions RQ1 and RQ2. Finally, a systematic policy application frame-
work was developed. This framework is designed to translate the model’s technical outputs (including
predictions and explanations) into actionable policy recommendations in the real world, thus answering
research question RQ3.

11
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Figure 3.1 presents the end-to-end workflow of this research, from data acquisition to policy translation.
The diagram uses a color-coded scheme to visually distinguish functional modules, with each color
selected to convey intuitive associations in the research process.

+ Light blue blocks —Data Acquisition: Represent the two primary input streams: Street View
Imagery and Acoustic Sampling. Blue is commonly associated with reliability and objectivity,
reflecting the factual, measurement-based nature of this stage. Detailed in Section 3.2 (3.2.1
and 3.2.2).

Light purple blocks —Technical Processing & Modeling: Cover both the Feature Engineering
& Processing chain—Image/Acoustic Preprocessing, Visual/Acoustic Feature Extraction, Feature
Fusion & Grouping—and the Predictive Modeling & Interpretability stage. Purple, often linked to
analytical thinking and synthesis, signals that these steps belong to the same computational and
analytical “core stack.” See Section 3.3 for feature engineering and Sections 3.5 and 5.3-5.4 for
modeling and interpretability.

Light yellow (khaki) blocks —Intermediate Feature Sets: Indicate the creation of structured
data artifacts (Visual Features and Acoustic Features) that bridge raw inputs and modeling. A
neutral color is used to suggest these are transitional outputs rather than final results. Described
in Section 3.3 (visual features) and Sections 3.3-3.4 (acoustic features).

» Orange diamond —Acoustic Feature Set Validation: Marks a critical decision checkpoint where
the suitability of acoustic features for prediction is assessed. Orange is chosen to draw attention
to review and decision-making. Detailed in Section 3.4.

Pink/red blocks -Rework Loop: Represent the corrective pathway (Data Review & Feature
Redesign) triggered when the validation stage fails. The warm red tone signals caution and the
need for corrective action, looping back to Sections 3.2-3.3.

* Green blocks —Policy Translation & Decision Support: Denote the final application stage,
including Hotspot Detection (Section 6.3.1), Targeted Intervention Suggestion (Section 6.3.2),
Regulatory Alignment (Section 6.3.3), and Stakeholder Engagement (Section 6.4.1). Green sym-
bolizes forward movement and implementation. This stage fully corresponds to Chapter 6, where
the decision chain—hotspot identification — causal diagnosis — measure selection — monitoring
—is elaborated (Sections 6.2-6.4).

The color coding thus serves a dual role: enhancing diagram readability and reinforcing the conceptual
grouping of research stages. Each color consistently maps to a specific phase of the methodology and
its corresponding sections in the thesis, enabling readers to navigate between the visual workflow and
the detailed technical descriptions.

3.2. Data Acquisition and Preparation

This study’s data come from two complementary data streams. These streams are street view images
(SVI), which show the urban visual environment, and on-site acoustic samples, which are the acoustic
environment’s “ground truth.”

3.2.1. Street View Image (SVI) Data Sources

This study used SVI data from three sources to capture diverse urban forms in the Netherlands and
ensure complete data.

First, | collected data on-site with an Insta360 X4 panoramic camera. | rode or walked along planned
routes in Delft and The Hague, Netherlands. This method ensured that each acoustic sample had a
360-degree visual scene from the exact same time and location, providing the highest quality paired
data for model training. All collected videos were processed into standard image frames and resized
to 224x224 pixels to meet the input requirements for later deep learning models.

Second, | downloaded additional image data from other major Dutch cities, such as Amsterdam, Rot-
terdam, and Utrecht, using public data platform APIs. This expanded the model's applicability to a
wider area. | mainly used Google Street View (GSV), selecting hundreds of representative geographic
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sample points in each target city and downloading images from multiple angles (0°, 90°, 180°, 270°) to
fully capture the 3D visual environment of the sample points.

| also used Mapillary, a crowdsourced platform, to fill gaps in GSV coverage, especially in areas like
narrow streets, non-motorized vehicle lanes, or newly developed communities.

All images from public platforms were carefully checked. | used image metadata to verify timestamps
and remove outdated images. More importantly, | used the ClassifierQuality and ClassifierPanorama
models from ZenSVI (lto et al., 2025), an open-source software library for SVI analysis, to automatically
filter out blurry images, images with severe obstructions, or images with very poor lighting. 1 also
ensured all images were panoramas, maintaining the quality and consistency of the data used in the
model.

3.2.2. On-site Acoustic Data Collection

Acoustic data were collected simultaneously with on-site SVI images, creating an exact link between
sight and sound. | used a calibrated, sound level recorder with a windscreen to reduce wind noise
during movement, ensuring accurate acoustic measurements.

| extracted two main target variables from short audio clips, such as 10-second segments, at each
sample point. The model predicts these variables. The first is A-weighted equivalent continuous
sound pressure level (L 4.,), the most common physical measure used worldwide to assess environ-
mental noise. It represents the average sound energy over time and is frequency-weighted based on
human ear sensitivity. The second is Zwicker Loudness, a psychoacoustic metric based on the ISO
532-1 standard, measured in “sone.” Unlike the purely physical L 4.4, Zwicker loudness better models
how loud humans perceive sounds, considering energy distribution at different frequencies and sound
masking effects. Its formula is:

24
N = N'(2)dz (3.1)
0

Here, N'(z) is the loudness density in a specific Bark band, and > is the Bark scale (0-24). The Bark
scale is a psychoacoustic frequency scale proposed by Eberhard Zwicker (Zwicker, 1961), imitating
how the human ear perceives frequency in a non-linear way. Predicting this metric allows my model to
assess not just “how noisy” something is, but also “how loud” it sounds. To ensure accurate calculations,
| used a device-specific calibration process to convert the recorded signals to physical sound pressure,
then input this into the Zwicker model based on the mosgqito library (Glesser et al., 2021).

Additionally, besides L,4., and loudness, which are my prediction targets, | also extracted over 20
detailed acoustic features from the audio, such as Mel-frequency cepstral coefficients (MFCCs),
which describe timbre, and spectral centroid and spectral bandwidth, which describe spectral shape.
These features are not used as model inputs; instead, Chapter 4 uses them for in-depth exploratory
analysis of soundscapes in different cities, confirming the study’s main idea that different urban envi-
ronments do have unique and machine-identifiable “acoustic fingerprints.”

3.3. Feature Engineering: Quantifying the Urban Visual Environ-
ment

Feature engineering changes raw, unstructured image data into meaningful, structured numerical vari-
ables that machine learning models can use. This study created a complex and detailed feature engi-
neering process. Its goal is to get as much rich visual information as possible from SVIs that relates to
the acoustic environment.

3.3.1. Basic Visual Feature Extraction

A series of advanced computer vision models, which were pre-trained on large datasets, were used.
From each street-view image (SVI), over 350 raw visual features were systematically extracted. These
features covered several aspects, including specific objects, spatial layouts, and scene atmosphere.
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For Object Detection, YOLOv8 model (Yaseen, 2024) was used. The YOLO (You Only Look Once)
series of algorithms is known for balancing speed and accuracy. YOLOVS is the latest version. It uses
an advanced backbone network and feature pyramid network (FPN). This helps it efficiently find objects
of many sizes in images. | used it to find and count over ten types of objects directly related to noise
sources. These include vehicles (car), buses (bus), pedestrians (person), and bicycles (bicycle).
These counts act as direct measures of traffic density and human activity.

For Semantic Segmentation, | used the Mask2Former model (Cheng et al., 2022). This is an ad-
vanced, general-purpose image segmentation architecture. Its core is the Swin Transformer. Unlike
traditional segmentation models, Mask2Former unifies segmentation tasks as “mask classification.”
It can precisely classify every pixel in an image. | used it to calculate the percentage of area taken
up by different visual elements. | focused on elements like buildings (building), roads (road), side-
walks (sidewalk), sky (sky), and different types of vegetation (vegetation). These features together
show the physical makeup of urban spaces. This directly impacts how sound travels and reflects. The
formula for calculation is:

Percentagey, = PIX_?;;?L?XIZISSS i x 100 (3.2)

To get high-level scene context, | used the DenseNet161 deep neural network model for Scene
Classification (Zhou et al., 2020). This model was pre-trained on the large Places365 scene dataset.
It can predict the probability of each image belonging to one of 365 scene categories (like residential
streets, highways, commercial areas). Its output is normalized using a Softmax function. This gives
the probability p; for each category:

e

Pi = =365
Zj:l e~

(3.3)

Here, z; is the network’s raw output (logit value) for the i-th category.

The ZenSVI open-source library ZenSVI (Ito et al., 2025) was also used for SVI analysis. This enabled
the quantification of several perceptual and technical metrics. The perceptual scores, such as safety,
liveliness, and beauty,were predicted using a model trained on the PlacePulse 2.0 dataset. The
technical metrics included technical metrics like image clarity (quality) and lighting conditions

(lighting).

Street View
/ Image Input \
YOLOv8 Mask2Former Places365 ZenSVI

Object Detection Segmentation Scene Class Perception
11.2M params Swin-Base DenseNet161 Human Rating
Object Counts Pixel Coverage Scene Probs Safety Score
Bounding Boxes Spatial Patterns Context Encoding Beauty Score

Confidence Scores 12 Categories 365 Scenes Liveliness

Figure 3.2: Multi-Model Pipeline Architecture

Finally, Low-level Features of the image were calculated. These include global color distribution
(like the mean u. and standard deviation o, in the HSL color space) and edge density, calculated
using the Canny edge detector. This captured the scene’s overall tone, visual complexity, and texture
information.
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3.3.2. Advanced Feature Processing and Grouping

Having too many raw features can cause overfitting and slow down calculations if directly fed into
the model. To address these issues, a fully automated, modular, and transparent feature engineering
pipeline was implemented, allowing for flexible adaptation and rigorous quality control. This section
details the methodology and mathematical foundations of the feature grouping, transformation, and
optimization processes used in this study. The correspondence between these methods and their
implementation in the code is also clarified.

1. Automated, Hierarchical Feature Grouping

The first stage of feature processing is the automated, semantic grouping of features. Instead of man-
ual assignment, the pipeline uses a hierarchical, keyword-driven algorithm that parses each feature’s
name and assigns it to the most semantically relevant group. The assignment follows a strict priority.
For example, features labeled with scene__ are first checked against keywords related to transportation
(e.g., “airport” or “station”), then against keywords for indoor, natural, and finally urban environments.
Each feature is assigned to the first matching group, ensuring mutual exclusivity and domain consis-
tency.

Formally, this process can be described by a mapping function g : ' — G, where F is the set of all
features and G is the set of predefined groups. For each feature f € F, the group assignment is
determined by the following equation:

g(f) = argmin [[(feature f matches group g keywords)] (3.4)
geG

Here, I(-) is the indicator function, which returns 1 if the feature matches the group’s keyword set and
0 otherwise. This ensures that each feature is assigned to at most one group, making the assignment
reproducible and interpretable. In the code, this logic is implemented in the UpdatedDataManager class
by the _update_feature_groups method, which supports dynamic adjustments whenever the feature
set changes.

2. Group-Specific Feature Engineering

Within each group, the pipeline applies customized transformations to enhance the informativeness
and comparability of features. For color features, the diversity of the color distribution is quantified
using Shannon entropy:

N
H=- Zpi log(p; + €) (3.5)
i=1

Here, p; is the proportion of pixels assigned to the i-th color bin, N is the total number of color bins, and
€ is a small constant to prevent numerical instability. This entropy value reflects the visual complexity
of an image: high entropy indicates a visually rich scene, whereas low entropy indicates a scene
dominated by a single color. In addition, other metrics like color contrast and a dominant color index
are also generated.

For object count features, a logarithmic transformation is applied:

7' =log(l+z) (3.6)

Here, x is the raw count and 2’ is the transformed value, which reduces the impact of extreme values
and normalizes the scale across categories. The diversity of object types is captured by counting the
number of nonzero categories:

M
Diversity = » "1(z; > 0) (3.7)

Jj=1
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Here, z; is the count for the j-th object or segment category. This metric provides a simple measure
of categorical richness within a scene.

For categorical probability features, such as scene or segmentation outputs, the pipeline extracts
the dominant class index and its associated confidence:

Dominant Index = argmax(z;) (3.8)
J

Confidence = max(x;) (3.9)
J

Here, z; is the predicted probability or area proportion for category j. These features work together to
describe both the most likely semantic class and the certainty of the prediction.

All these group-specific engineering steps are implemented in a modular way within the data manager,
ensuring that any new or re-defined group can automatically benefit from the appropriate transforma-
tions.

3. Dimensionality Reduction via PCA

Many feature groups, such as scene probabilities or fine-grained segmentation maps, are inherently
high-dimensional. To avoid redundancy and overfitting, Principal Component Analysis (PCA) is ap-
plied within each such group to extract the most informative linear combinations of features. The PCA
process consists of four canonical steps.

Mean Centering Each feature is centered by subtracting its mean:
X =X — X; (3.10)
Here, X,; is the raw value, and Xj is the mean of feature j.

Covariance Matrix Computation The covariance matrix X is computed as:

1

n—1

Y = (X)X’ (3.11)

Here, n is the number of samples.

Eigen-Decomposition The principal axes are obtained by solving the equation:
v = (3.12)

This process yields eigenvalues ()\) and eigenvectors (v).

Component Selection and Projection The top & principal components (eigenvectors with the largest
eigenvalues) that explain a desired cumulative variance (e.g., 90%) are selected, and the data is pro-
jected as follows:

Y =X'W (3.13)

Here, W is the matrix of selected eigenvectors, and Y is the reduced representation.
The number of components and the variance threshold are dynamically configurable in the pipeline.
This step reduces computational cost and enhances the signal-to-noise ratio, preserving the essential

structure of each group. In the code, this isimplemented inthe _process_scene_features, _process_segmentation_fe:
and similar methods, using the sklearn.decomposition.PCA class.
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4. Composite Perceptual Indices
For perceptual evaluation features, the pipeline computes mean scores for positive and negative at-
tributes to derive an overall polarity score:

Polarity = — g: r_ 1 %: - (3.14)
= ~r T; — = Z; .
Nt i=1 N j=1 !

Here, xj and z; are the positive and negative attribute scores, while NT and N~ are their respective
counts. This scalar value summarizes the overall affective impression of a scene, with higher values
indicating a more favorable perception. Optionally, PCA can be applied to the full set of perceptual
attributes to capture latent factors, which can then be used for dimensionality reduction or further mod-
eling.

5. Automated Group Quality Control and Optimization

This links to the "Feature fusion & Grouping” in Figure 3.1. A major innovation of this work is the
introduction of a closed-loop, automated quality control system for feature groups. After initial feature
engineering, the pipeline uses a comprehensive validator module to assess each group based on
several quantitative metrics: average intra-group correlation (consistency), proportion of highly
correlated pairs (redundancy), feature sparsity, and group size.

Processed Features
Grouped & Engineered

( - L
Quality Criteria Quality Inspector
Evaluat

« Coherence (30pts) s: Coherence, Redundancy, Size, Sparsity JBalance
« Redundancy (25pts)
« Group Size (20pts)
+ Sparsity (15pts)

« Balance (10pts)
Total: 100 points

Optimizer
gecutes Remedial Actiorls
Mdrge | Split | Filter | Regrqug

YES

Optimized Features Re-evaluate

A+ (285) | A (280) | A- (275) )
Ready for Integration

B+ (270) | B (265) | B- (260)
C+ (255) | C (250) | C- (245)
D (240) | F (<40)

Grade Scale [

[Integration & Global Selection]

Final Feature Set for Modeling

Figure 3.3: Quality Control & lterative Optimization Workflow

These metrics are integrated into a weighted score:

N
Qscore = » _ w; - Metric; (group) (3.15)

i=1

Here, w; is the weight for metric ¢, and Metric; is the corresponding quantitative function. The Qscore IS
mapped to a grade (from A+ to F), providing a data-driven basis for further action.

For groups with suboptimal grades, automated optimization strategies are triggered. For instance,
scene groups with low internal consistency are merged and re-clustered using hierarchical clustering;
very large or semantically mixed groups (e.g., daily life objects) are split based on domain-driven sub-
categories; and groups with excessive redundancy undergo correlation-based feature filtering. After
each optimization, group quality is automatically reassessed, forming a closed loop.

This entire process is fully programmatic: every step, from validation to optimization and revalidation, is
orchestrated by modular, reusable code (UpdatedGroupingValidator, UpdatedFeatureGroupOptimizer)
and can be invoked iteratively as needed. The result is a feature set that is both information-rich and
structurally robust, laying a solid foundation for high-performance and interpretable predictive modeling.
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3.4. Methodology for Acoustic Feature Set Validation

Before visual features were used to predict the acoustic environment, a logical point was checked.
The question was whether the acoustic feature set, which served as the prediction target, contained
enough stable and useful information to differentiate between various urban environments. This was
to determine if the "soundscapes” of different cities have unique "acoustic fingerprints” that could be
identified by a machine. If this were not the case, any further predictive modeling would lack a solid
foundation.

To systematically address this question, | designed a complete method. It includes statistical testing,
structure analysis, and machine learning classification validation. These methods are to be used
in Chapter 4 to assess the quality and distinctiveness of the extracted acoustic feature set.

3.4.1. Statistical Difference Analysis

To check if the acoustic features collected from different places (like Delft and The Hague) show sig-
nificant differences in their distribution, two statistical analysis methods were used.

First, the Mann-Whitney U non-parametric testwas employed. This statistical test is used to check if
two independent samples have significantly different distributions. This method was chosen because,
unlike parametric tests like the t-test, it does not require the data to follow a normal distribution or for
the two sample groups to have equal variance, making it suitable for acoustic feature data that may not
be normally distributed. Its null hypothesis (Hj) is that the two independent samples’ distributions are
not significantly different. he null hypothesis would be rejected if the calculated p-value was less than
the chosen significance level (e.g., 0.05). This would indicate that the distributions of acoustic features
from the two locations are statistically different.

However, a p-value only tells us if a difference is “significant.” It does not measure the “size” or practical
importance of the difference. So, Cohen’s d effect size was used as a supplement. Cohen’s d is a
standardized effect size measure. It quantifies the size of the difference between two group means. Its
formula is:

(3.16)

Here, Z; and z, are the means of the two samples. s, is the pooled standard deviation. Its calculation

is s, = /(A2 T0% - Generally, d & 0.2 is considered a small effect, d ~ 0.5 a medium effect,

and d = 0.8 a large effect. By calculating Cohen’s d, the effectiveness of different acoustic features in
distinguishing urban environments can be better understood.

3.4.2. Internal Structure Analysis of Acoustic Features

In addition to checking for differences, the internal structure and relationships within the acoustic feature
set needed to be understood. For this purpose, Principal Component Analysis (PCA), as described in
detail in Section 3.3.2, was used. PCA was applied to the complete 21-dimensional acoustic feature set
with two goals: 1) to explore whether these features could be grouped into a few unrelated, combined
dimensions that represent core acoustic concepts (such as "loudness” or "timbre brightness”); and 2) to
visualize the data and see if acoustic samples from different cities form distinct clusters in the reduced
principal component space.

3.4.3. Machine Learning-Based Soundscape Discriminability Validation

The most comprehensive test of "acoustic fingerprint” effectiveness is to determine if a machine learning
model can accurately classify the source location using only acoustic features.

For this purpose, a binary classification task was designed. The 21 acoustic features were used as
the sole input to train a machine learning classifier to determine whether an audio clip originated from
Delft or The Hague. The performance of several classification algorithms was evaluated, with a focus
on the Support Vector Machine (SVM). SVM is a powerful supervised learning model that works by
finding an optimal hyperplane in a high-dimensional space to separate different classes of samples
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with the largest possible margin. SVM was chosen because it typically performs well and efficiently for
classification problems with small to medium-sized, high-dimensional datasets. If the model achieves
high accuracy, significantly better than random guessing (50%), it would strongly support the hypothesis
that "different urban soundscapes have unique characteristics that machines can identify.”

3.5. Predictive Modeling and Interpretability Framework (Answer-
ing RQl & RQ2)

This section describes the modeling and explanation framework designed to answer research questions
RQ1 (identifying key visual features) and RQ2 (building explainable predictive models). The main
idea is to use a comparative experimental strategy to systematically evaluate the effectiveness of
different modeling approaches. Strong interpretability tools are also included to analyze how the best
model makes decisions.

3.5.1. Comparative Modeling Strategies and Algorithm Principles

To fully and objectively assess if visual features can predict acoustic features, and to avoid bias from
relying on just one model, | designed and ran five parallel model pipelines. Each pipeline represents
a different modeling philosophy and technical approach. Comparing their results will help provide a
deeper understanding of the problem’s complexity and the suitability of different methods.

Pipeline 1: Optimal Pipeline - CatBoost & Random Forest

This is the main method recommended for this study. It uses the final feature set, which was fully
engineered as described in Section 3.3, including PCA dimensionality reduction for certain high-
dimensional feature groups. Based on preliminary experiments and a review of the literature, two pow-
erful ensemble learning models were selected and optimized separately for two different prediction
goals.

CatBoost (Categorical Boosting) was chosen as the main model for predicting the physical sound
pressure level, L4.,. CatBoost is an advanced algorithm based on Gradient Boosting Decision
Trees (GBDT). It addresses common GBDT issues with two key innovations. First, it uses an Ordered
Boosting strategy to handle target leakage, which is particularly important for categorical features.
Second, it uses symmetric trees (oblivious trees) as base learners, meaning all nodes at the same
tree level use the same feature for splitting. This makes the model’s predictions faster and also acts
as a regularizer, preventing the model from becoming overly complex. Its objective function is similar
to traditional GBDT. It aims to minimize the sum of the loss function £ and the regularization term :

T

Objective = znj Ly, F(z:))+ Y _Q(fy) (3.17)

i=1 t=1

Here, F'(x;) is the model’s predicted value for sample z;. It's built by adding up multiple trees f;.

Random Forest (RF) was chosen as the main model for predicting the psychoacoustic loudness,
Zwicker Loudness. RF is an ensemble learning algorithm based on the idea of Bagging (Boot-
strap Aggregating). It improves model stability and accuracy by building many independent decision
trees. Its building process has two main random” steps: 1) Bootstrap random sampling with replace-
ment of training samples to create a different training subset for each tree; 2) when splitting each tree
node, it chooses from a randomly selected subset of features, instead of searching for the best split
point from all features. These two random processes ensure that each tree is different, which effectively
reduces the model’s variance. For regression tasks, the final prediction is the average of the predicted
values from all T' decision trees:

1 T
§= > i) (3.18)
t=1

Here, h.(z) is the prediction of the ¢-th tree.
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Pipeline 2: Baseline Pipeline - GBRT

This pipeline serves as a strong baseline to determine how much advanced feature processing
(specifically PCA dimensionality reduction) contributes to performance. It uses a feature set that
has undergone only basic derived feature calculations, without PCA dimensionality reduction. A stan-
dard Gradient Boosting Regressor (GBRT) model is used for prediction. GBRT is an additive model
that iteratively trains new decision trees to fit the residuals from the previous iteration. In step m, the
model F,,(z) is updated as:

Fo(@) = Fru1(2) + v+ hyn(a) (3.19)

Here, F,,,_1(x) is the ensemble model of the first m — 1 trees, v is the learning rate, and %,,(x) is the
new decision tree trained to fit the negative gradient (which is the residual) of the current loss function
concerning F,,,_1(x).

Pipeline 3: Deep Learning Pipeline - Multi-Branch Network

This pipeline explores the potential of deep learning for handling this type of mixed tabular data. |
designed and built a custom Multi-Branch Neural Network. This network has a separate, shallower
neural network branch for each semantic feature group (like "color,” "vehicles,” "natural environment
segmentation”). Each branch has multiple fully connected layers (nn.Linear), batch normalization
(nn.BatchNorm1d), and ReLU activation functions. These learn a low-dimensional abstract repre-
sentation of that feature group. Then, the outputs of all branches are concatenated and sent to a
deeper fusion network for the final combined prediction.

Pipelines 4 and 5: Baseline Pipelines - Ridge & Plain Linear

These two pipelines represent the most basic modeling methods. They serve as reference points for
all the more complex models. Both are trained on the original feature set without PCA dimensionality
reduction.

Ridge Regression is an improved least squares estimation method. It solves the instability of ordinary
linear regression when dealing with multicollinear features by adding an L2 regularization term to the
loss function:

n

p
Objective = (yi —w'z;)? +a ) w? (3.20)
j=1

=1

Here, w is the model’'s weight vector, and « is a hyperparameter that controls the strength of regular-
ization.

Plain Linear Regression finds a set of weights w to minimize the Residual Sum of Squares (RSS)
between predicted and actual values.

3.5.2. Model Training, Optimization, and Validation

To ensure all models performed optimally and were evaluated fairly and reproducibly, a consistent and
strict training and validation process was used.

First, in the data splitting phase, machine learning best practices were strictly followed. The complete
dataset was divided into an 80:20 ratio for the training set and a permanently held-out test set. The
training set was then further split at a 75:25 ratio into a sub-training set (for model learning) and a
validation set (for hyperparameter tuning). The entire splitting process used a fixed random seed
(random_state=3407) (Picard, 2021) to ensure reproducibility.

Second, in the optimal model pipeline, feature selection was performed. A Random Forest model,

trained on the training set, was used to evaluate the importance of all features. The top 80 core fea-

tures that contributed most to the prediction target were automatically selected using sklearn.feature_selection.Sele
This reduced dimensionality and noise and lowered the risk of overfitting.
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Next, during the data scaling phase, features were standardized according to model requirements.
For the optimal pipeline, RobustScaler was used, which subtracts the median and divides by the
Interquartile Range (IQR), making it robust to outliers. Other pipelines used StandardScaler. All
scalers were fit on the training set and the transform was applied to the validation and test sets to
prevent data leakage.

In the hyperparameter optimization phase, Optuna, a Bayesian optimization framework, was
used. For each core model (CatBoost, RF, GBRT, Ridge), hyperparameters were searched using
the Tree-structured Parzen Estimator (TPE). The performance of each parameter set was evaluated
using K-Fold Cross-Validation (K=5). This method splits the training set into K subsets, trains on K-1,
and validates on the remaining one. The process is repeated K times, and the results are averaged to
produce a more robust performance estimate.

Final model performance was measured using standard metrics:

* Root Mean Squared Error (RMSE): RMSE = \/}L S (v — 9i)?
* Mean Absolute Error (MAE): MAE = 13" | |y, — ;]

« Coefficient of Determination (R?): R? = 1 — %

* Mean Absolute Percentage Error (MAPE): a relative error measure

3.5.3. Model Interpretability Framework

Answering RQ2 (how to build an explainable model) was a top priority. To prevent machine learn-
ing models from becoming ”black boxes” and to increase confidence in policy contexts, two model-
agnostic interpretability methods were used.

SHAP (SHapley Additive exPlanations)

SHAP is a unified framework for interpreting machine learning model predictions, grounded in Shapley
values from cooperative game theory. The Shapley value provides a theoretically fair way to attribute
the contribution of each feature to a model’s prediction by considering all possible feature combinations.

For a model f and input x, the SHAP value ¢; for feature j is defined as:

05 = Z SRt _M|!S| = [fsugy(zsugy) — fs(@s)] (3.21)

SCF\{7}

where F' is the set of all features, M is the total number of features, S is a subset of features not
containing j, and fs(zs) is the model prediction using only features in S. This formula averages the
marginal contribution of feature j over all possible feature orderings.

The final prediction can be decomposed as:

M
fl@)=do+ ) ¢ (3.22)
j=1

where ¢ is the expected model output (base value) and ¢, is the SHAP value for feature .
SHAP provides both global and local interpretability:

» Global analysis: Aggregates SHAP values across the dataset to produce feature importance
rankings and summary plots, revealing which features most influence predictions overall (answers
RQ1).

» Local analysis: For a specific instance, SHAP force plots visualize how each feature pushes the
prediction higher or lower compared to the base value, explaining individual decisions (answers
RQ2).
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+ Directionality and magnitude: SHAP summary dot plots show both the direction (positive/neg-
ative impact) and the magnitude of each feature’s effect.

In this study, SHAP is used to systematically analyze both the overall decision logic of the model and
the specific factors driving predictions for key samples (such as noise hotspots), ensuring transparent
and trustworthy model interpretation.

LIME (Local Interpretable Model-agnostic Explanations)

As a complement to SHAP, LIME (Local Interpretable Model-agnostic Explanations) was used to further
enhance model interpretability. LIME works by locally approximating the complex, potentially non-linear
prediction function f(x) with a simple, interpretable surrogate model g(x«) (typically linear or decision
tree) around the instance of interest . The process involves generating a set of perturbed samples
{z} near x(, obtaining their predictions f(z}), and then fitting g(x) to these samples using a weighted
loss function that emphasizes proximity to xg.

The objective function for LIME is:

argmin L(f, g, 7z,) + Q(g) (3.23)
geG

where L is a loss function measuring the fidelity of ¢ to f in the neighborhood defined by the proximity
kernel 7,,, and Q(g) is a complexity penalty to encourage interpretability.

For each feature j, the local linear surrogate assigns a weight w; indicating its contribution to the
prediction at zq:

M
glx) =wo+ Y wjx; (3.24)
j=1

LIME was applied to explain the predictions of selected extreme or outlier samples, providing intuitive,
locally faithful explanations. The results were compared with SHAP’s local interpretations to verify
consistency and robustness. This dual approach ensures that both global and local model behaviors
are transparent, supporting reliable decision-making in policy contexts.

3.6. Implementation Translation Framework (Answering RQ3)

To systematically answer research question RQ3 on how to translate the model’s technical output into
practical implementation management of technology recommendations, this study designed a rigorous
and multi-layered policy translation framework. This framework aims to build a solid bridge from
complex data insights to practical, actionable measures, ensuring that the scientific findings of this
study can support urban environmental management and planning decisions in the most efficient and
powerful way possible.

3.6.1. Spatial Hotspot Identification

The first step in policy implementation is to pinpoint the problem areas. In this study, a trained and op-
timized machine learning model was used to perform large-scale batch predictions for all densely sam-
pled locations within the target area. This generated high-resolution geospatial distribution maps of the
A-weighted equivalent continuous sound pressure level (L a.q) and Zwicker loudness with street-level
accuracy. These detailed maps can reveal localized high-noise “hotspots” that are often overlooked
by traditional, coarse-grained noise assessment methods.

Hotspots were defined using two complementary practical standards:

» Absolute Threshold Method: Based on World Health Organization (WHQ) health risk recom-
mendations, locations where the model’s predicted values frequently or consistently exceed a
specific health risk threshold (e.g., Laeq > 65 dBA) were identified as “health risk hotspots.”
This provides justification for direct intervention by public health authorities.

* Relative Ranking Method: This method identified the areas with the highest relative noise levels
within the city (e.g., the top 5% or 10% of areas by noise level) and defined them as “relative
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noise hotspots.” This approach is crucial for fine-grained urban management, allowing cities to
prioritize areas that have a significant impact on residents’ quality of life based on their specific
characteristics and resources.

3.6.2. Causal Diagnosis Process Based on Interpretability

After identifying hotspots, the second step of the framework is to use the interpretability tools introduced
in Section 3.5.3 (SHAP) to systematically diagnose the causes of the noise hotspots identified in the
first step. The purpose of this method is to link abstract noise levels to specific, actionable urban visual
elements. The diagnostic process involves analyzing the SHAP values for samples in each hotspot
area to identify which visual features (such as green space ratio, building density, or scene perception
features) are the key drivers of the high noise predictions. This step provides direct, data-driven clues
for formulating “symptomatic” intervention measures.

3.6.3. Data Foundation for Dual-Metric Evaluation

A key part of this research methodology is the development of a dual-target model capable of predicting
both physical noise (L 4.,) and perceived loudness (Zwicker Loudness) simultaneously. By providing
predictions for both of these metrics for the same geographical location, the method establishes the
necessary data foundation for a multi-dimensional soundscape quality assessment. This allows sub-
sequent policy analysis to go beyond single-metric physical compliance and examine areas that may
be “physically compliant but perceptually noisy,” thereby providing a basis for more human-centered
soundscape planning decisions.

3.6.4. Requlatory Alignment and Decision Support Protocol

To ensure the practical applicability of the research findings, this framework includes a set of regulatory
alignment protocols. The core method of this protocol is to use standardized correction factors based
on typical diurnal noise curves to approximate the model’s short-term L 4., metric into the long-term
metrics required by regulations such as the European Union Environmental Noise Directive (END)
(e.g., Lqen)- At the same time, this protocol requires that all model outputs must be accompanied by
a quantification of their uncertainty (such as RMSE) to ensure that decision-makers fully understand
their accuracy limitations, thereby supporting a robust decision-making process.

3.6.5. Dissemination and Adoption

To guide the model’s transition from a research prototype to a practical application, a strategic adop-
tion roadmap framework was developed. This framework uses the Gartner Hype Cycle (Gartner, Inc.,
2025) (see Figure 3.4), which typically describes the evolutionary path of new technologies from the
"Innovation Trigger” to the "Plateau of Productivity.” Fully recognizing the "Peak of Inflated Expecta-
tions” and "Trough of Disillusionment” that can occur during the adoption of new technologies is crucial
for managing the introduction of Al noise models to stakeholders. This study advocates a phased,
iterative adoption strategy aimed at gradually building validation and trust to avoid common pitfalls
caused by over-promotion or unrealistic expectations.

This methodology divides the model's widespread adoption into four logical phases: 1) pilot valida-
tion, which involves small-scale applications in a few innovative cities to prove the concept; 2) capacity
building and knowledge sharing, which disseminates successful cases and lessons learned through
professional networks (e.g., VNG); 3) platform and infrastructure development, which involves cre-
ating tools or cloud platforms for large-scale use; and 4) institutional integration, which formally
incorporates the method into standard city planning and environmental assessment procedures. This
framework provides methodological guidance on how to manage technological expectations, build trust,
and ultimately seamlessly integrate this tool into existing workflows.
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Acoustic Data Exploration and Feature
Analysis

4.1. Introduction

Before the complex visual features were used to predict the urban acoustic environment in Chapter 5,
this chapter undertook the crucial task of establishing the scientific legitimacy of the entire study. The
research first needed to scientifically prove that the set of acoustic features targeted for prediction was
not random noise, but rather contained stable, distinct, and internally structured geospatial information.
If "acoustic fingerprints” did not exist, all subsequent predictive modeling would lack a logical foundation.

Therefore, the objective of this chapter was not to build a predictive model directly, but to conduct an
in-depth exploratory analysis and validation of the acoustic data itself, which served as the "ground
truth.” The 21-dimensional acoustic feature set described in Chapter 3 was systematically examined
to ultimately answer a fundamental question: Do different urban environments truly possess unique,
machine-recognizable "acoustic fingerprints”?

To answer this question, a progressive analytical framework was adopted in this chapter. First, nonpara-
metric statistical tests and effect size analysis were used to statistically determine whether significant
differences existed in the acoustic features of different cities, represented by Delft and The Hague.
Next, correlation analysis and principal component analysis (PCA) were employed to explore the inter-
nal relationships and potential core dimensions of these acoustic features. Finally, and most critically,
a machine learning classification task was designed to test whether an objective algorithmic model (a
support vector machine) could accurately classify the source city of an audio clip based solely on its
acoustic features.

The results of the analysis in this chapter will lay a solid data and theoretical foundation for the rest of
the study. If it can be successfully demonstrated that urban soundscapes possess stable and machine-
recognizable "acoustic fingerprints,” then the cross-modal prediction task from visual to auditory data
in Chapter 5 will not only be logically sound but also strongly supported by the data.

4.2. Analysis of Acoustic Feature Differences Between Locations

4.2.1. Statistical Validation of Feature Differences

The first step of the analysis was to directly compare the distribution of all 21 acoustic features between
the two cities. | conducted an independent samples Mann-Whitney U non-parametric test for all features
to determine the statistical significance of their mean differences, and | also calculated Cohen’s d to
measure the effect size. This analysis led to a core and powerful finding: Across all five feature groups
covered in this study, all 21 acoustic features showed extremely significant statistical differences
between Delft and The Hague (p < 0.05). This finding provides a solid statistical foundation for my
central premise that acoustic features contain location-specific information.

26
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A deeper look at the specific statistical data reveals detailed patterns of difference. First, regarding the
physical and psychoacoustic metrics that describe the fundamental energy and perception of the sound
environment, The Hague’s mean L., gsn (A-weighted equivalent sound pressure level) and Zwicker
loudness (sone) were significantly higher than Delft’s. This aligns with the general understanding that
larger cities typically have higher background noise levels. Similarly, for spectral and temporal features
describing sound frequency composition, The Hague’s metrics, such as spectral centroid mean and
zero-crossing rate mean, were also significantly higher. This suggests that The Hague’s soundscape
may contain more high-frequency components or more frequent transient events.

However, the most revealing differences were found in the Mel-Frequency Cepstral Coefficients
(MFCCs). All 13 MFCCs showed significant differences, with several coefficients exhibiting very large
effect sizes. For example, the Cohen’s d value for mfcc_13_mean was an astonishing 2.09, while
mfcc_8_mean and mfcc_9_mean also reached 1.26 and 1.23, respectively. Such large effect sizes
indicate that these mid-to-high order MFCCs, which are typically related to the fine spectral structure
and timbre of sounds, are extremely sensitive indicators for distinguishing the soundscapes of the two
cities. They capture more subtle “texture” differences in the soundscape, going beyond simple loudness
or energy. Figure 4.1 visually presents these differences through box plots.’
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Figure 4.1: Distribution Comparison of Feature Groups in Delft and The Hague Box Plots

4.2.2. Distribution Patterns of MFCC Features

To better understand the MFCCs, which form the core “fingerprint” of the soundscape, | examined their
probability density distributions, as shown in Figure 4.2 2. These distribution plots not only confirmed
the statistical differences in means but also revealed the distinct “personalities” of the soundscapes in
both cities.

"Figure Description:

(a) Box Plot Comparison of Selected Physical Acoustic and Spectral Features: This graph shows box plots for some of the
physical acoustic and spectral features, comparing their distributions between Delft and The Hague. All p-values are less than
0.001, indicating extremely significant differences between the two cities for these features.

(b) Radar Chart Comparison of Five Feature Groups: This radar chart presents a normalized comparison of all five feature
groups. The normalization allows for cross-metric comparison, clearly illustrating the distinct "soundscape profiles” of the two
cities across various feature dimensions.

2Each subplot displays the probability density distribution for a single MFCC coefficient. The asterisks (x, s, * * ) in the
plots indicate statistical significance. The blue dashed line represents the mean position for Delft, while the red dashed line
indicates the mean position for The Hague. Darker Areas: These indicate the overlap between the two distributions, where the
MFCC features from Delft and The Hague coincide.
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For example, looking at mfcc_5_mean and mfcc_8_mean, you can see that the distributions for the
two cities are almost completely separate, with their peak positions far apart. For other features, like
mfcc_2_mean, even though the effect size of the mean difference isn't large (d = 0.088), there are
still visible differences in the shape and dispersion of the distributions. This visual evidence further
confirms that MFCCs provide unique, quantifiable signatures for the soundscapes of the two cities, not
just in their numerical values but also in their overall statistical distribution patterns.

MFCC Features Distribution Comparison: Delft vs Hague
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Figure 4.2: Probability Density Distribution Comparison of MFCC Coefficients in Delft and The Hague

4.3. Internal Structure and Correlation of Acoustic Features

4.3.1. Analysis of Feature Correlations and Structure

After confirming the discriminative power of individual features, understanding their internal relation-
ships is crucial. This helps us identify redundant features and provides insights for subsequent model
building. For this study, | performed a correlation analysis, which showed that 22 pairs of features
had a strong correlation (Pearson correlation coefficient || > 0.7). This indicates a complex internal
structure within the feature set. Figure 4.3, 4.4 visually present these intricate dependencies through
a heatmap and a network graph.

These correlation analyses reveal several important structural characteristics. First, there’s significant
high correlation within groups, especially prominent in the Spectral feature group. For example,
spectral_centroid_mean and spectral_rolloff_mean have a very high correlation coefficient of 0.973.
This suggests they largely capture similar spectral information, which could lead to multicollinearity
issues when building models, requiring careful handling.

Second, | observed widespread high correlation across different groups. A typical example is
L., g8a (physical acoustic), which is highly correlated not only with zwicker_loudness_sone (psychoa-
coustic, r = 0.945) from the same group but also with mfcc_1_mean (r = 0.914) from the MFCC group.
This tight coupling reveals that a soundscape’s objective energy, subjective loudness perception, and
basic spectral envelope are intrinsically unified and interconnected.

Finally, the analysis also found some strong negative correlations. For instance, mfcc_2_mean
shows a strong negative correlation with multiple spectral features, including spectral_centroid_mean
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Figure 4.4: Correlation Structure of Audio Features Network Graph

(r = —0.862). This might suggest some kind of physical or perceptual antagonism and trade-off between

different dimensions of the soundscape features.
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Figure 4.5: Audio Feature Group Correlation Analysis

In summary, this correlation analysis clearly demonstrates that while all features can differentiate loca-
tions, they aren’t entirely independent. Instead, they form a complex feature system with intricate
internal structures.

4.3.2. Audio Feature Dimensionality Reduction and Interpretation using Princi-
pal Component Analysis (PCA)

After confirming the distinctiveness of individual features and their complex interrelationships, | used
Principal Component Analysis (PCA) for dimensionality reduction. My goal was to transform
the original 21 correlated features into a few uncorrelated, comprehensive indicators (principal com-
ponents). | also wanted to explore which core “acoustic concepts” primarily drive the differences in
soundscapes between the two locations.

Interpretive Power of Principal Components and Data Visualization

The PCA results show that just a few principal components can summarize most of the original informa-
tion. Calculations reveal that the first three principal components (PCs) alone explain up to 75.1%
of the total data variance, and the first 10 PCs can explain over 95% of the variance.

More importantly, when | project all data points into the space formed by the first few principal com-
ponents (Figure 4.6c, 4.6d), it's clear that the sample clusters from the two cities visually separate
significantly. The Hague’s samples (red) mainly cluster in the positive regions of PC1 and PC2,
while Delft’s samples (blue) are more dispersed in the negative regions. This visually demon-
strates that the soundscapes of the two cities are highly separable within the new, comprehensive
feature space constructed by PCA.

Acoustic Interpretation of Principal Components
To understand the practical meaning of these principal components, | analyzed their feature loadings,
which indicate the contribution of each original feature to the principal components.

By combining the loading plots (Figure 4.7, 4.8) and the detailed loading values, | can interpret the
acoustic meaning of the first two principal components:
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Figure 4.6: PCA Explained Variance and Data Projection

PC1 (explains 41.2% of variance): This principal component is primarily driven by spectral and
temporal features like spectral_centroid, spectral_rolloff, and zero_crossing_rate. It also
has a strong negative correlation with 1eq_dbfs (which reflects physical energy). Therefore, PC1 can
be interpreted as a comprehensive measure of a soundscape’s “brightness” and “high-frequency
characteristics.” The Hague’s significantly positive scores on PC1 further confirm its soundscape is
“brighter” and has higher frequencies.

PC2 (explains 24.0% of variance): This principal componentis mainly dominated by 1eq_dba, mfcc_1_mean,
and zwicker_loudness_sone. These are all indicators related to perceived loudness and fundamen-

tal energy. Thus, PC2 can be seen as the soundscape’s “loudness axis.” The Hague also scores
higher on this dimension.

It's worth noting that by averaging the loadings for each feature group (as shown in Figure 4.7), the
Psychoacoustic and Physical Acoustic feature groups show the highest overall contribution to
the principal components. This indicates that loudness and energy are the most primary macro-
scopic dimensions for distinguishing between the two soundscapes. The MFCC group follows closely,
again highlighting the importance of timbre as a second key distinguishing piece of information.

The PCA analysis not only successfully reduced complex 21-dimensional data to a few interpretable di-
mensions but also revealed from a new, comprehensive perspective that “brightness/high-frequency
characteristics” and “perceived loudness” are the two most crucial orthogonal dimensions distin-
guishing the soundscapes of Delft and The Hague.

4.4. Location Classification Validation Based on Acoustic Features

As the final validation step in this chapter, | built and systematically evaluated five different machine
learning classifiers. The goal was to test if using only the 21 acoustic features was enough to accurately
classify the sound source location. This served as the final, quantitative assessment of the entire feature
set’s information capacity and overall discriminatory effectiveness.
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Figure 4.7: Principal Component Loadings and Feature Contribution Analysis a

4.4.1. Classifier Performance Comparison and Model Selection

The machine learning classification results show that all models achieved excellent accuracy, far ex-
ceeding random guessing. As Figure 4.9, 4.10 illustrate, the Support Vector Machine (SVM) per-
formed the best among all tested models. It reached an impressive 97.2% accuracy on the indepen-
dent test set, and its 5-fold cross-validation average accuracy was also high at 87.6%, making it the
most robust model. Besides overall accuracy, | also compared more detailed performance metrics for
each model to ensure a comprehensive selection.

Figure 4.10 clearly shows that SVM not only leads in accuracy, but its Precision, Recall, and F1-Score
are also nearly perfectly balanced, indicating the best overall performance. Therefore, SVM was cho-
sen as the optimal model for this validation.

4.4.2. In-Depth Performance Analysis of the Optimal Model (SVM) and Feature
Group Contributions
The excellent performance of the SVM is further confirmed by its confusion matrix (Figure 4.9c). Out

of 433 test samples, the model misclassified only 12, showing extremely high reliability in classifying
both Delft and The Hague.

The ROC curve (Figure 4.10a) illustrates the model’s performance across all possible classification
thresholds. The SVM’s AUC (Area Under the Curve) reached 0.993, the highest among all models,
indicating near-perfect discriminative ability.

The learning curve (Figure 4.10c) assesses the model’s bias-variance trade-off. The training score
(blue) is high and stable, while the validation score (red) steadily increases with more training samples
and gradually converges with the training score. This indicates that the model performs well and is
robust, with no significant overfitting or underfitting issues.
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Since the SVM model itself doesn’t directly output feature importance, | used an alternative experiment
to evaluate each feature group’s contribution. | trained a classifier using data from each feature group
separately and observed its accuracy (Figure 4.9d). The results were highly insightful: the MFCC
feature group, when used alone, achieved the highest classification accuracy at 82.2%, far sur-
passing other feature groups. This confirms that timbre is the most crucial and informative dimension
for distinguishing between the soundscapes of the two cities. The Physical Acoustic group followed at
79.2% and the Spectral group at 76.2%.

This almost perfect classification performance strongly proves my main idea: different cities have
acoustic fingerprints that machines can recognize. It shows that what | plan to predict later isn’t just
random noise. Instead, it is a signal with lots of information, a stable structure, and high predictability.

4.5. Chapter Summary: Laying the Foundation for Predictive Mod-
eling

The primary goal of this chapter was to systematically validate whether the set of acoustic features
targeted for prediction in this study is effective, reliable, and information-rich. Through a series of pro-
gressive analyses, strong support was provided for the core premise that urban soundscapes possess
unique and identifiable "acoustic fingerprints.”

First, a statistical difference analysis revealed clear distinctions in the fundamental acoustic properties
of different urban soundscapes. All 21 acoustic features showed a statistically significant difference (p
< 0.05) between Delft and The Hague.

Second, an internal structure analysis further indicated that these acoustic features are not random
but form a complex system with an inherent logic. Principal Component Analysis (PCA) successfully
aggregated these complex relationships into a few interpretable core acoustic dimensions, such as
"soundscape brightness” and "perceived loudness.”

Finally, and most critically, machine learning-based classification provided decisive evidence for the
existence of these "acoustic fingerprints.” An optimized Support Vector Machine (SVM) model, using
only the 21 acoustic features as input, was able to distinguish the source city of audio samples with
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an impressive accuracy of over 97%. This result conclusively demonstrated that the soundscapes
of different cities are not only statistically separable but also form stable, unique, and highly machine-
recognizable patterns.

In summary, the analyses in this chapter not only proved that the acoustic features are predictable
but also revealed their internal structure and key distinguishing dimensions. This provides a solid data
foundation and theoretical legitimacy for the next chapter’s core task: the cross-modal prediction, which
attempts to learn from a city’s visual elements to predict these validated acoustic fingerprints.



Predictive Modeling: Results and
Interpretation

In Chapter 4, a systematic exploratory analysis was conducted to successfully verify that the acous-
tic features used as prediction targets were not random noise. Instead, they were found to contain
stable, distinguishable geospatial information, indicating that urban soundscapes possess a machine-
recognizable "acoustic fingerprint.” This conclusion provides a solid logical and data-based foundation
for this study’s core task: predicting the acoustic environment from visual information.

This chapter begins the core cross-modal predictive modeling phase, aiming to systematically address
research questions RQ1 and RQ2. The discussion follows a path from macro-level evaluation to micro-
level insight. First, five different modeling strategies are compared to select the optimal predictive
model. The performance and limitations of this model under current data conditions are also critically
discussed. Subsequently, interpretability tools, such as SHAP, are used to analyze the "black box” of
the optimal model’s decision-making. This analysis identifies the key visual predictors that have the
most significant impact on urban noise, directly answering research question RQ1. Finally, through
a "diagnostic” case study of typical high- and low-noise samples, this chapter demonstrates how the
model provides a transparent and credible explanation for individual predictions, thereby addressing
research question RQ2.

All the findings in this chapter, particularly the identification of key visual drivers and the revelation of the
model’s decision-making logic, will together provide indispensable empirical evidence for constructing
a specific and actionable policy translation framework in Chapter 6.

5.1. Feature Grouping and Quality Validation

To effectively manage and understand the extensive feature set, and to prepare for subsequent model-
ing (especially for multi-branch neural networks), | first categorized the features into 19 logical groups
based on their semantic origin. Examples include “unified color features,” “vehicle object counts,” and
“natural environment segmentation.” This grouping not only aids in structured analysis but also reflects
my prior knowledge of the potential factors influencing the urban sound environment.

However, grouping alone isn’t enough; | also needed to evaluate the “quality” of these groupings. This
means checking if the features within a group had enough coherence and low redundancy. | used
the grouping_validation result to quantitatively assess this.

5.1.1. Analysis and Interpretation

The color_features_unified and perceptual_evaluation groups received a high rating of “A-".
Their relatively high average correlations (0.292 and 0.257, respectively) show that the features within
these groups are semantically coherent. They collectively describe color or perceptual dimensions.

36
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Feature Group Feature Count | Avg. Corr. | Redundancy | Quality
color features unified 17 0.292 0.022 A-
daily life objects 73 0.029 0.012 C
transportation objects 21 0.095 0.010 B-
perceptual evaluation 12 0.257 0.045 A-

Table 5.1: Summary of Representative Feature Group Quality Validation.

In contrast, the daily_life_objects group only received a “C” quality rating. It had an extremely
low average correlation (0.029), a large number of features (73), and very high sparsity. The validation
report’s recommendation was “Low coherence: Features might not belong together; consider splitting,”
which makes perfect sense. A group that includes everything from “elephants” to “pizza” clearly lacks
a common semantic core among its internal features. This is why | later used model-based feature
selection to remove many irrelevant or sparse features during subsequent modeling.

This analysis confirmed the initial validity of my feature grouping and also revealed that not all groupings
were equally effective. This provided crucial information for subsequent feature filtering and model

building.

5.1.2. Grouped PCA:Uncovering Dimensional Structures in Thematic Feature Sets

To further explore the underlying structure of the high-dimensional feature space and achieve effective
dimensionality reduction, | performed a grouped PCA on the 80 selected features.

Interpreting PCA Results Figure A.16 in Appendix A.3 shows the dimensional structure within dif-
ferent semantic feature groups.

* The food group showed the highest “compressibility”; only 5 principal components (PCs) were
needed to explain 80% of the variance. This suggests that food-related visual features are highly
correlated (e.g., a scene with a “cake” will likely also have “plates”).

» The transportation group, on the other hand, required 14 principal components to explain 80%
of the variance. This indicates that visual elements related to transportation (like different vehicle
types, road signs, and traffic lights) are more diverse and complex, containing more independent
information dimensions.

By interpreting pca_interpretations. json, | could assign specific meanings to these abstract princi-
pal components. For instance, natural_environment_segmentation_pcl was interpreted as “vege-
tation elements”, primarily contributed by seg_tree_percent (percentage of trees), representing the
“greenness” of the scene. transportation_infrastructure_segmentation_pcl was interpreted
as “transportation infrastructure”, mainly formed by the contrast between seg_sidewalk_percent
(percentage of sidewalks) and seg_road_percent (percentage of roads), reflecting the proportional
relationship between “pedestrian space” and “vehicle space.”

5.1.3. Feature Cluster Analysis: Natural Groupings of Visual Elements
The dendrogram visually shows the similarities between features. | observed that semantically related
features successfully clustered together. For example:

» Color Cluster: All color-related features gathered under the same large branch.
» Perception Cluster: Several features starting with “Perception” also formed a tight cluster.

» Segmentation Cluster: Various Segment_PC and Segmentati (Ssegmentation integrity) features
also grouped together.

5.2. Comparative Assessment of Model Performance

To systematically evaluate different modeling strategies and determine the best approach for the com-
plex, high-dimensional, and heterogeneous data in this study, a comprehensive performance compari-
son of five designed model pipelines was conducted. All models were assessed using a unified test set
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Figure 5.1: Hierarchical Clustering Dendrogram of Features

that included nine Dutch cities. Their performance was measured by a series of standard regression
metrics: Root Mean Square Error (RMSE), Coefficient of Determination (R?), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE).

5.2.1. Overall Performance Quantification Comparison

Model Performance Comparison for leq_dba

RMSE
7 L sa
gt
E
MAE
5300

MAPE

- -n [

———
> & N o
&
& & P & &
« & «
MAPE
o oo
& & &
S P & R &
e & «

Figure 5.2: Visual comparison of model performance on the L 4., prediction task

The detailed performance evaluation results for the five model pipelines, the ”Optimal Model”

(my
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Figure 5.3: Visual comparison of model performance on the Zwicker Loudness prediction task

primary recommendation), the ”Baseline GBRT” for comparison, the "MultiBranch Network” to ex-
plore deep learning potential, and the foundational ”Linear Ridge” and ”Linear Plain” regressions,
are presented below. To clearly show how the models performed on two different prediction targets,
I've separated the results into two tables for presentation and analysis.

L 4cq (Physical Sound Pressure Level) Prediction Performance

Model Pipeline RMSE (dBA) RZ*(L4.,) MAE (dBA) MAPE (%) (L4cq)
CatBoost 5.285 0.112 4.138 6.63%
GBRT 5.380 0.080 4.215 6.75%
Ridge Regression 5.545 0.023 4.305 6.87%
Plain Linear Regression 6.832 -0.484 5.271 8.45%
MultiBranch Network 7.009 -0.564 5.264 8.25%

Table 5.2: Performance metrics for each model pipeline when predicting L 4.,. Optimal values are bolded.

From Figure 5.2 and Table 5.2, it’s clear that decision-tree-based ensemble learning models show
a significant advantage in this prediction task. In the "Optimal Model” pipeline, the CatBoost model,
after careful feature engineering and hyperparameter optimization, achieved the best scores across
all key metrics. It had an RMSE of 5.285 dB, an MAE of 4.138 dB, and was the only model with
a significantly positive R? value (0.112). In contrast, the "Baseline GBRT” model performed slightly
worse than CatBoost, indicating that my complex feature engineering (especially PCA dimensionality
reduction) provided a marginal but effective improvement in model performance.

The ”Baseline GBRT” pipeline is particularly noteworthy. This pipeline was designed to mimic the
basic process of similar research (e.g., Zhao et al. (2023)), which uses an unreduced set of raw visual
features to train a standard gradient boosting tree model. In that study, researchers achieved an R?
value of approximately 0.48 using hundreds of thousands of street view images ("obtained 270,055 and
329,802 panoramic SVIs in Singapore and Shenzhen”). My baseline GBRT model, with a dataset of
only about 1,400 samples, achieved an R? of 0.080. This comparison is very insightful: it highlights the
critical role of data scale in solving such problems and also proves that even with extremely limited data,
this methodology can still capture real, statistically significant, albeit weak, visual-acoustic correlations.

In stark contrast, linear and deep learning models performed poorly. The R? values for both linear model
pipelines (Plain Linear Regression and Ridge Regression) were near zero or even negative, with Plain
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Linear Regression’s R? as low as -0.484. This definitively proves that the relationship between urban
visual features and physical noise levels is highly nonlinear, and simple linear models cannot capture
its underlying patterns. My carefully designed MultiBranch Network also performed unsatisfactorily,
with an R? value of -0.564, even worse than the linear models. This is mainly because data scarcity
constrains complex models; deep learning models typically need vast amounts of data to learn their
tens of thousands of parameters. With the current data volume, it's more prone to overfitting and can’t
learn generalizable patterns.

Zwicker Loudness (Psychoacoustic Loudness) Prediction Performance

Model Pipeline RMSE (sone) R?(Loudness) MAE (sone) MAPE (%) (Loudness)
RandomForest 1.127 0.096 0.785 63.13%
GBRT 1.159 0.045 0.813 65.64%
Ridge Regression 1.174 0.019 0.817 64.11%
MultiBranch Network 1.191 -0.009 0.820 63.30%
Plain Linear Regression 1.341 -0.279 0.992 76.54%

Table 5.3: Performance metrics for each model pipeline when predicting Zwicker Loudness. Optimal values are bolded.

When predicting Zwicker Loudness, | observed a similar overall pattern but with subtle differences.
Ensemble learning models again led across the board. An interesting finding is that within the "Optimal
Model” pipeline, the RandomForest model slightly outperformed CatBoost, achieving the highest R2
(0.096) and the lowest RMSE (1.127 sone). This might suggest that RandomForest, by building a highly
diverse collection of decision trees through its dual randomness (bootstrap sampling of samples and
random subset selection of features), can better capture and fit the more varied and subtle combinations
of visual cues that influence subjective perception. This finding also supports the rationale behind my
strategy of selecting different optimal models for different prediction targets.

5.2.2. Optimal Model Selection and Discussion of Limitations

Based on the comprehensive comparative evaluation, the optimal modeling approach for this study was
formally determined. For all subsequent in-depth analyses related to LAeq, the CatBoost model will be
used. For all analyses concerning Zwicker Loudness, the Random Forest model will be employed.

However, while confirming this choice, | must frankly address and discuss a central issue: Why is the
Coefficient of Determination (R?) for even the best models only around 0.1? This means the best
model can only explain about 10% of the variance in the data.

This seemingly low R? value is not considered a failure of the algorithm selection or parameter optimiza-
tion. Instead, it is a significant scientific finding of this study. The result, for the first time, quantifies
an inherent scientific challenge at the data level: given the current data scale of approximately 1400
sample points, there is a real but relatively weak and highly nonlinear correlation between static
street-view visual information and a highly dynamic, multi-factor acoustic environment. The model suc-
cessfully captured this "weak but valid signal,” while the remaining 90% of the variance is dominated by
factors the model could not observe (such as instantaneous sound sources, non-visual sound sources,
or wind conditions) or by the inherent randomness that visual information cannot fully express.

Therefore, an R? of 0.1 can be interpreted as a successful proof of concept for this method. It demon-
strates the feasibility of inferring the acoustic environment from visual data and establishes a crucial
performance benchmark for future large-scale, data-driven research. This finding clearly indicates that
to significantly improve the model’s prediction accuracy in the future (e.g., raising the R?to 0.5 or higher),
the primary path is not to find more sophisticated algorithms. Instead, it is to substantially expand
the scale and diversity of the training dataset. Only when the sample size is sufficient to cover
more areas of the high-dimensional feature space can models, especially deep learning models, learn
deeper and more robust visual-acoustic mapping relationships.
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5.3. Model Interpretability Analysis: Answering Research Questions
(Answering RQl & RQ2)

This section aims to "open the black box” of the optimal models and deeply understand their decision-
making logic. This will specifically answer research questions RQ1 (identifying key visual predictors)
and RQ2 (building an interpretable prediction model).

5.3.1. Global Feature Importance: Identifying Key Visual Predictors (Answering
RQ1)

Global feature importance analysis identifies the visual features that contribute most to the model’s
overall prediction performance. The SHAP summary plot provides an overview of which visual elements
play the most significant role in predicting urban noise.

A core finding of this study is that the model’s predictions rely heavily on ”scene perception”
features. For the L 4., prediction task, Figure 5.4 shows the SHAP feature importance summary plot
for the CatBoost model predicting L 4.
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Figure 5.4: SHAP summary plot for CatBoost model predicting L 44

This plot clearly reveals how much the model relies on different visual features. Notably, perceptual fea-
tures like Perception_More_Boring and Perception_More_Depressing are high on the importance list.
This indicates that when learning urban noise, the model doesn’t just rely on physical visual elements.
It also significantly captures "scene atmosphere” information related to human subjective feelings. For
example, a street perceived as "not boring” or "interesting” (low Perception_More_Boring value) is of-
ten associated with higher noise levels. This might be because "interesting” scenes usually mean
more activity, traffic, and people, leading to higher noise. This shows that the model learned a deeper
connection between "urban vitality” and noise, not just simple object counting.

Furthermore, natural environment features like Green_Ratio and Plant_Pct also showed significant
importance. They are usually linked to lower noise levels, which makes intuitive sense, green spaces
absorb sound and have a psychologically calming effect. This highlights the dual value of urban green-
ery in noise management: physical noise reduction and improved soundscape perception. At the same
time, segmentation features obtained through PCA dimensionality reduction, such as Segment_PC7 and
Segment_PC3, also have high importance. These features represent more abstract urban spatial struc-
tures (for example, Segment_PC7 might be related to a combination of "rural and road” scenes). The
model can learn the impact of these high-level abstract features on noise. Color_Diversity also shows
high importance; generally, scenes with high color diversity might mean a more complex, active urban
environment, which could lead to higher noise. These findings directly answer part of RQ1, identifying
which visual elements are key factors in predicting noise. The model not only identified direct noise
sources (like traffic) but also captured more subtle yet equally important visual cues, such as perceptual
features related to urban atmosphere and environmental quality.
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For the Zwicker Loudness prediction task, Figure 5.5 shows the SHAP feature importance summary
plot for the RandomForest model predicting perceived loudness.
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Figure 5.5: SHAP summary plot for RandomForest model predicting Zwicker Loudness

Compared to the L 4., results, | observed some consistencies and significant differences. The over-
whelming dominance of natural environment features is particularly prominent in this task, with features
like Green_Ratio and Plant_Pct showing significantly increased importance, even surpassing other
features. This strongly suggests that visually green elements have a more significant impact on re-
ducing human perceived loudness, possibly beyond their pure physical sound pressure attenuation
effect. This aligns with psychoacoustic research that "visual comfort influences auditory perception.” At
the same time, perceptual features like Perception_More_Boring and Perception_More_Depressing
still maintained high importance in predicting perceived loudness, again confirming a deep intrinsic
link between the visual environment’s "interest” or "depressiveness” and soundscape "comfort.” Urban
structural features, such as Segment_PC7 and Segmentation_Complete (image segmentation complete-
ness), also remained important, indicating that urban physical structure also has a significant impact
on perceived loudness. By comparing the feature importance for both target variables, | found that
although both physical noise levels (L 4.,) and perceived loudness (Zwicker Loudness) are influenced
by similar visual features, the importance of the natural environment and overall scene perception is
further amplified in the prediction of perceived loudness. This provides more refined guidance for urban
planners: if the goal is to improve residents’ soundscape comfort, increasing greenery and improving

the visual environment’s "pleasantness” might be more effective than simply reducing decibel levels.

5.4. Local Interpretability: Diagnosing Individual Sample Predic-
tions (Answering RQ2)

This section directly addresses RQ2 by performing a "diagnostic” analysis of extreme samples (the
highest and lowest noise predictions), which demonstrates how the model provides clear and credible
explanations for specific predictions.

While global feature importance analysis reveals which features contribute most to the model’s overall
predictions, local interpretability examines individual predictions to show how each feature specifically
influences the model’s decision-making process. To diagnose the model, SHAP force plots and LIME
explanation plots were combined to analyze extreme samples—those with the highest or lowest
predicted noise. This approach was used to verify if the model’s decision logic aligns with human
intuition and common acoustic sense.

A SHAP force plot visually demonstrates how each feature "pushes” or "pulls” the model’s prediction
from a baseline value (the average prediction of all samples) to the predicted value for a specific
sample. Red indicates that the feature’s value pushes the prediction higher, while blue indicates it
pushes it lower. The length of the arrow represents the magnitude of this impact. In contrast, LIME
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explains individual predictions by creating locally interpretable linear models that show which features
had the greatest contribution to a specific prediction.

I'll use a high-noise sample (Sample 67), with a predicted L., of 66.39 dBA, as an example to
explain how the model predicts based on visual features. Figure 5.6 shows the LIME explanation plot
for this sample. Figure 5.7 simultaneously presents the SHAP force plot for the same sample, visually
depicting how various features push or pull the final predicted value.

LIME Explanation for Noisy Sample 67
Predicted leq_dba: 66.39

Local explanation

natural_environment_segmentation_pc_7 > 0.31
perceptual_evaluation_perception_more_boring <= -0.54
scene_outdoor_natural_pc_14 > 1.03
color_features_unified_yellow_ratio_percent <= -0.32
natural_environment_segmentation_seg_completeness <= -0.41

perceptual_evaluation_perception_more_depressing <= -0.60

miscellaneous_segmentation_pc_4 > 0.45
scene_outdoor_urban_pc_3 <=-0.35
miscellaneous_segmentation_pc_5 <=-0.15

0.03 < color_features_unified_purple_ratio_percent <= 0.76 -

0.
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Figure 5.7: SHAP force plot for Sample 67 (High noise)

From both the LIME explanation plot and the SHAP force plot, | can gain deep insight into the model’s
rationale for high-noise samples. The feature natural_environment_segmentation_pc_7 > 0.31con-
tributes most in this sample; its higher value significantly pushes the noise prediction upward. Based
on the interpretation of PCA components, natural_environment_segmentation_pc_7 is typically as-
sociated with a combined “rural and road” scene, suggesting an open and potentially traffic-heavy area.
This indicates that the model has captured the inherent connection between such visual environments
and higher noise levels.

Furthermore, perceptual_evaluation_perception_more_boring <= -0.54 (lower perceived "boring-

ness”) also has a strong positive association with high noise. This means the model perceives the scene

as "interesting” or "not boring” visually, which usually aligns with characteristics of active, densely popu-

lated urban areas. This "urban vitality” often comes with increased noise sources like traffic and human

voices, and the model successfully links this perceptual visual cue to physical noise levels. Features

such as scene_outdoor_natural_pc_14 > 1.03and perceptual_evaluation_perception_more_depressing
<= -0.60 (lower perceived "depressiveness”) also contribute positively to high noise, further strength-

ening the model’s ability to identify noise in active, open scenes.

Looking at the SHAP force plot, it's clear that the model starts from a baseline of average noise
level (around 62.19 dBA). The features with positive contributions (red bars) collectively "push” the
predicted value significantly higher. For example, natural_environment_segmentation_pc_7 and
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perceptual_evaluation_perception_more_boring stand outin their contributions, raising the predic-
tion from the baseline to the high noise level of 66.39 dBA. This aligns with my intuition about high-noise
urban areas: busy, vibrant commercial or transportation hubs, even with some green spaces, are often
noise hotspots. The model, through these interpretable visual features, paints a clear "noise portrait.”

Next, I'll analyze a quiet sample (Sample 216), with a predicted L 4., of 57.37 dBA. Figure 5.8 shows
the LIME explanation plot for this sample. Figure 5.9 simultaneously shows the SHAP force plot for the
same sample.

LIME Explanation for Quiet Sample 216
Predicted leq_dba: 57.37

Local explanation

perceptual_evaluation_perception_more_boring > 0.49
miscellaneous_segmentation_pc_8 > 0.66
scene_outdoor_natural_pc_14 <= 0.00

scene_outdoor_urban_pc_11 > 0.67

scene_outdoor_urban_pc_14 <= -0.70

0.00 < natural_environment_segmentation_seg_completeness <= 0.55

perceptual_evaluation_perception_more_depressing > 0.38

natural_environment_segmentation_seg_earth_percent > 1.16

transportation_infrastructure_segmentation_seg_road_percent > 0.59

0.05 < scene_outdoor_urban_pc_13 <=0.61
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Figure 5.8: LIME explanation plot for Sample 216 (Quiet, L 4., = 57.37 dBA)

Figure 5.9: SHAP force plot for Sample 216 (Quiet)

From both the LIME explanation plot and the SHAP force plot, | observe that perceptual _evaluation_perception_more
> 0.49 (higher perceived "boringness”) has a negative contribution to noise. This means the model per-

ceives the scene as "boring” or "calm” visually, which is usually associated with lower noise levels. The

feature miscellaneous_segmentation_pc_8 > 0.66 also has a negative contribution to low noise.

A phenomenon worth deeper analysis is the feature transportation_infrastructure_segmentation_seg_road_perce
> 0.59 (high road percentage). Typically, a high road percentage is positively correlated with noise.
However, in this quiet sample, its SHAP value might be close to zero or slightly negative, suggesting
that in some quiet scenes, even with roads, their noise impact might be offset by other factors. This
reflects the model’s nuanced understanding of complex environments: a high road percentage doesn’t
always mean high noise. In the analysis of quiet samples, the average road percentage (17.28) was
higher than in noisy samples (14.91), but its average SHAP contribution was negative (-0.06). This
implies that a higher road percentage can actually contribute to quietness. This seemingly counter-
intuitive situation could occur in areas with wide roads, sparse traffic, or where surrounding greenery
or building layouts are conducive to sound absorption. By comprehensively considering these visual
cues, the model accurately determined that despite the presence of roads, the area is actually quiet.

Additionally, perceptual_evaluation_perception_more_depressing > 0.38 (higher perceived "de-
pressiveness”) also has a positive contribution to noise, but in this quiet sample, its SHAP value might
be negative, pushing it towards quietness. The SHAP force plot clearly shows that starting from the



5.4. Local Interpretability: Diagnosing Individual Sample Predictions (Answering RQ2) 45

baseline value (around 62.19 dBA), the blue bars (high values, negative contribution) for features
like natural_environment_segmentation_seg_plant_percent (plant segmentation percentage) sig-
nificantly "pull down” the predicted value, ultimately reaching the quiet level of 57.37 dBA. These diag-
nostic stories prove that the model can not only predict noise but also provide credible explanations
that align with human intuition. It reveals the complex, nonlinear relationship between urban visual
elements and noise. For example, perceptual "boringness” or "depressiveness” is linked to lower noise
levels, and some features seemingly related to noise (like road percentage) can show an unexpected
contribution direction in specific contexts. This specifically answers RQ2, confirming that the model
can provide trustworthy explanations linking visual features to acoustic outcomes.

5.4.1. Extracting Actionable Conditions and Thresholds

Building on the understanding of the model’s decision logic, | can extract actionable conditions and
potential thresholds from SHAP dependency plots and extreme sample analyses. This will provide
quantitative guidance for urban design and policy making. SHAP dependency plots show how individual
feature values affect their SHAP values (i.e., their contribution to the prediction). This reveals nonlinear
relationships and diminishing returns in feature influence.
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Figure 5.10: SHAP dependency plot L 4.4 prediction
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Figure 5.10 shows the SHAP dependency plot for Green_Ratio’s impact on L 4., prediction. The plot
clearly shows that when Green_Ratio is low (blue points, indicating less greenery), its SHAP value is
usually positive (pushing noise prediction higher). As Green_Ratio increases, the SHAP value drops
rapidly, becoming negative (pushing noise prediction lower). This indicates that the noise-reducing
effect of greenery is nonlinear. More specifically, the SHAP value decreases fastest when Green_Ratio
increases from 0% to about 20%. This means that in areas with no or low greenery, adding even a small
amount of greenery yields the greatest noise reduction benefit. When Green_Ratio is already high (e.g.,
over 50%), further increasing greenery significantly reduces its additional noise-reducing effect, and the
SHAP value change becomes flatter. This finding provides important quantitative guidance for urban
planners. For example, in noise hotspots, prioritizing small-scale greening projects in streets lacking
greenery might offer the highest return on investment. This would be more effective in reducing noise
than continuing to add greenery in areas already extensively greened.

Besides Green_Ratio, | can also analyze dependency plots for other key features. For instance, Fig-
ure 5.10 shows the dependency plot for Perception_More_Boring. This plot clearly shows that when
Perception_More_Boring has a low value (meaning the scene is not boring, visually rich), its SHAP
value is significantly positive, pushing noise prediction higher. Conversely, when the value is high (the
scene is boring), the SHAP value is significantly negative, pushing noise prediction lower. This further
reinforces the positive correlation between "urban vitality” and noise, suggesting that planners should
consider noise control measures when designing vibrant public spaces.

Key Visual Features and Their Impact on Noise Prediction

By summarizing the features of the noisiest and quietest samples, | was able to extract the typical
combinations of visual conditions that result in high or low noise. Based on an analysis of the extreme
5% of noisy and quiet samples, the following key visual features and their average impact on noise
prediction were summarized:

Feature (Processed) Count | Mean_Value | Median_Value | Min_Value | Max_Value | Avg_SHAP
perceptual_evaluation_perception_more_boring 10 0.465 0.457 0.399 0.533 0.296
color_features_unified_yellow_ratio_percent 12 2.875 0.703 0.188 25.536 0.205
color_features_unified_green_ratio_percent 12 4,927 1.125 0.240 23.999 0.165
perceptual_evaluation_perception_more_depressing 8 0.586 0.582 0.545 0.650 0.141
transportation_infrastructure_segmentation_seg_car_percent 4 5.113 3.790 0.610 12.260 0.140
transportation_infrastructure_segmentation_seg_road_percent 9 14.914 12.860 4.040 32.260 0.111

Table 5.4: Key Visual Features Summary for Noisiest Samples (L 4.4, CatBoost)

Feature (Processed) Count | Mean_Value | Median_Value | Min_Value | Max_Value | Avg_SHAP
perceptual_evaluation_perception_more_boring 10 0.613 0.580 0.561 0.786 -0.185
perceptual_evaluation_perception_more_depressing 5 0.468 0.471 0.436 0.497 -0.143
natural_environment_segmentation_seg_plant_percent 11 3.639 1.440 0.330 22.450 -0.121
color_features_unified_yellow_ratio_percent 10 4.593 4.057 0.190 16.076 -0.121
natural_environment_segmentation_seg_earth_percent 6 4.087 4.100 0.230 7.790 -0.105
color_features_unified_purple_ratio_percent 12 0.903 0.333 0.152 3.883 -0.091

Table 5.5: Key Visual Features Summary for Quietest Samples (L 4.4, CatBoost)

Feature (Processed) Count | Mean_Value | Median_Value | Min_Value | Max_Value | Avg_SHAP
color_features_unified_green_ratio_percent 12 1.749 0.477 0.240 14.296 0.111
transportation_infrastructure_segmentation_seg_road_percent 5 22.876 19.560 16.800 32.260 0.081
color_features_unified_yellow_ratio_percent 14 0.809 0.525 0.188 2.269 0.041
transportation_infrastructure_segmentation_seg_car_percent 6 5.278 3.790 0.610 11.380 0.034
perceptual_evaluation_perception_more_boring 8 0.464 0.457 0.399 0.534 0.029

Table 5.6: Key Visual Features Summary for Noisiest Samples (Zwicker Loudness, RandomForest)
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Feature (Processed) Count | Mean_Value | Median_Value | Min_Value | Max_Value | Avg_SHAP
color_features_unified_yellow_ratio_percent 8 7.904 6.967 3.168 16.721 -0.028
natural_environment_segmentation_seg_plant_percent 13 1.727 1.390 0.330 4.470 -0.020
color_features_unified_green_ratio_percent 9 14.188 12.432 3.039 43.409 -0.019
perceptual_evaluation_perception_more_boring 12 0.609 0.576 0.557 0.786 -0.016
color_features_unified_purple_ratio_percent 10 0.707 0.311 0.152 3.883 -0.012

Table 5.7: Key Visual Features Summary for Quietest Samples (Zwicker Loudness, RandomForest)

Through a comprehensive analysis of these tables, | can identify typical visual condition combinations
that lead to high or low noise levels. | can also try to derive some empirical rules or quantitative
thresholds that urban designers can use.

For the noisiest L 4., samples, their visual features typically show lower perceived "boringness” and
"depressiveness,” suggesting that these areas are visually more active and interesting. For example, in

Table 5.4, perceptual_evaluation_perception_more_boring has an average value of 0.465 and an

average SHAP contribution of 0.296, indicating a strong positive push. At the same time, these areas

may have lower yellow and green ratios, while transportation infrastructure (like car and road segmenta-

tion percentages) is relatively high. Table 5.4 also shows that transportation_infrastructure_segmentation_seg_ca:
has an average value of 5.113, and transportation_infrastructure_segmentation_seg_road_percent

has an average value of 14.914. Both have significant positive SHAP contributions to noise, directly

reflecting the impact of traffic flow and road area on noise.

Conversely, the quietest L 4., samples present a different combination of visual features. These
areas may have higher perceived "boringness” and "depressiveness,” indicating a relatively calm visual
environment. In Table 5.5, perceptual_evaluation_perception_more_boring has an average value
of 0.613 and an average SHAP contribution of -0.185, showing a significant negative push. At the
same time, the proportion of plants (e.g., natural_environment_segmentation_seg_plant_percent,
with an average value of 3.639 and an average SHAP contribution of -0.121) and certain color features
(like yellow and purple ratios) may be higher. These features have negative SHAP contributions to
noise, emphasizing the role of natural elements in providing a quiet environment. Interestingly, in quiet
samples, the average value of transportation_infrastructure_segmentation_seg_road_percent
(17.28) is even higher than in noisy samples (14.91), but its average SHAP contribution is negative
(-0.06). This suggests that a higher road percentage can actually contribute to quietness, which might
occur in areas with wide roads, sparse traffic, or good greening, where the noise impact is offset by other
factors. This indicates that roads themselves are not the sole determinant of noise; their interaction
with traffic flow and the surrounding environment is more critical.

For the extreme Zwicker Loudness sample analysis, | observed similar patterns to L .4, but the
influence of natural environment features was more prominent. Table 5.6 shows that in the noisiest
Zwicker Loudness samples, color_features_unified_green_ratio_percent has an average value
of 1.749 and an average SHAP contribution of 0.111, showing a significant positive push on perceived
loudness. This might be related to green elements in specific scenes (like green belts along busy roads)
not effectively reducing noise. transportation_infrastructure_segmentation_seg_road_percent
has an average value of 22.876, and its average SHAP contribution is 0.081, also positively impacting
perceived loudness.

Meanwhile, Table 5.7 shows that the quietest Zwicker Loudness samples typically have higher
color_features_unified_yellow_ratio_percent (average value of 7.904, average SHAP contribu-
tion of -0.028) and natural_environment_segmentation_seg_plant_percent (average value of 1.727,
average SHAP contribution of -0.020), as well as higher color_features_unified_green_ratio_percent
(average value of 14.188, average SHAP contribution of -0.019). These features all have negative
contributions to perceived loudness, indicating that abundant natural elements and specific color com-
binations help create a quieter soundscape experience.

These analyses provide data-driven empirical rules. For example, if urban design aims to increase
visual "interest” and "vitality,” potential noise increases should be considered simultaneously. Increas-
ing urban greenery as an effective noise mitigation strategy, especially for perceived loudness, has a
more pronounced positive effect. For roads and traffic, attention should be paid to road design, traffic
flow control, and vehicle types. Also, when considering urban color schemes, their potential impact on
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the soundscape should be taken into account. While these empirical rules and quantitative thresholds
require further on-site validation and support from larger datasets, they provide urban planners and
designers with actionable, data-driven guidance. This helps them better understand the complex rela-
tionship between the visual environment and urban acoustics, allowing them to design quieter, more
livable urban spaces.

5.5. Health Risk Assessment Based on Guidelines

| compared the predicted results with the World Health Organization (WHO) noise guidelines to as-
sess potential public health risks.
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Figure 5.11: Noise Health Risk Assessment Summary Chart

According to WHO recommendations, long-term exposure to environmental noise above 65 dBA is
considered “high risk.” My analysis (Figure 5.12) shows:

+ Out of all 809 sampling points, 27 points (3.3%) had predicted L 4., values exceeding the 65
dBA threshold, classifying them as high-risk areas.

» The vast majority of areas over 96% fell within the 55-65 dBA “moderate risk” range for the day
time. This highlights the widespread environmental noise pressure faced by Dutch cities.

These risk assessments, based on high-resolution maps, enable public health departments to pinpoint
specific streets or communities that require priority health interventions and environmental improve-
ments with unprecedented accuracy. This shifts the strategy from passively responding to resident
complaints to proactively preventing public health risks.

5.6. Chapter Summary

This chapter successfully constructed and analyzed an interpretable urban noise prediction model,
systematically addressing research questions RQ1 and RQ2.

First, a rigorous comparison of five modeling strategies identified CatBoost and Random Forest as the
optimal algorithms for predicting physical noise (LAeq) and perceived loudness (Zwicker Loudness),
respectively. The model’s coefficient of determination (R2) of approximately 0.1 was critically analyzed
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and interpreted as the first quantitative measure of the weak but genuine visual-acoustic correlation at
the current data scale, which is a significant scientific finding in itself.

Second, the chapter answered RQ1 through global feature importance analysis. The study identified
scene perception features (such as "boredom”), natural environmental elements (such as green view
index), and built environment structure as the key visual drivers for predicting urban noise. This finding
goes beyond traditional understandings of physical sound sources by incorporating human subjective
perception and environmental quality into the core factors influencing noise.

Third, by performing a "diagnostic” local interpretability analysis on specific high- and low-noise sam-
ples, this chapter effectively answered RQ2. It demonstrated that the model not only "predicts” but also
provides "credible explanations,” as its decision-making logic is highly consistent with acoustic common
sense and human intuition.

Finally, the chapter extracted actionable "rules of thumb” and "quantitative thresholds” from the model’'s
explanations (such as the nonlinear effect of the green view index) and showcased the model’s direct
applicability in health risk assessment. These insights, distilled from the data, form a crucial bridge from
the micro-level model to macro-level policy recommendations, establishing a solid empirical foundation
for the next chapter’s systematic discussion of the model’s practical policy applications and implemen-
tation strategies.



Discussion and Policy Implications

6.1. Introduction: A Bridge from Model Insights to Policy Actions

This chapter serves as the concluding part of the thesis, elevating the analysis from the preceding
chapters beyond technical validation and model development into a discussion with significant real-
world implications. The core task is to systematically answer research question RQ3: How can the
technical capabilities developed in this study be transformed into a specific, actionable, and compliant
policy application framework? The fundamental goal is to build a bridge to address the “micro-macro
disconnect” in urban noise management, as discussed in the introduction. This connects the “model
insights” from Chapter 5 with the “policy actions” needed in the real world.

Historically, traditional noise assessment methods were limited by high costs and restricted cover-
age, making it difficult to capture acoustic environment details at a micro scale, such as streets and
buildings. This created a significant gap between macro-level urban or regional policies and the
micro-level acoustic reality perceived by residents in specific locations. This disconnect often made
noise management a formal exercise that failed to achieve precise and effective intervention. This
study was undertaken to bridge this gap.

In Chapter 5, a key technical achievement was made: a machine learning model was developed to
predict urban noise levels from static street-view images. More importantly, an “interpretive diagnos-
tic system” was created using explainable Al tools like SHAP to analyze the causes of the prediction
results. The model consistently predicted the physical acoustic indicator, L 4., (A-weighted equiva-
lent continuous sound level), with a root mean square error (RMSE) of approximately 5.3 dB. It also
predicted the psychoacoustic indicator, Zwicker Loudness, which better reflects human perception.
The SHAP analysis revealed the internal logic of the model’s decisions, identifying scene perception
features (e.g., street “vibrancy”), natural environmental factors (e.g., greening rate), and built envi-
ronment structures as key visual drivers of noise levels. This showed that the study’s results went
beyond a simple prediction tool, evolving into a scientific instrument with interpretive and diagnos-
tic capabilities.

However, advanced technology alone is not the end goal. This chapter’s mission is to argue for and
demonstrate how this technical potential can be systematically applied to policy-making and urban
management practices. This is more than a simple summary of results; it is a complete demonstration
of value creation. The chapter will argue that the true value of this research lies not just in its predictive
accuracy, but in its useful, model-backed diagnostic cues, its focus on human perception, and the
new urban governance paradigm it enables. This new paradigm is diagnostic, refined, and human-
centered.

To this end, the chapter will follow a clear logical path to guide the reader through the complete process
of translating technology into policy. First, a detailed discussion will be provided on the methodolog-
ical breakthroughs and their profound implications for policy-making, focusing on the core concepts
of “diagnostic mapping” and the “dual-metric assessment system.” Second, a specific, step-by-
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step policy translation framework will be proposed, with detailed case studies to show how the model
can be used for noise hotspot identification, cause diagnosis, and targeted intervention. Third,
the strategic adoption paths and stakeholder communication strategies for this tool will be ex-
plored, and a responsible, phased implementation roadmap will be proposed. Finally, the overall
contributions and limitations of the study will be evaluated, and directions for future research will
be identified. Through this series of rigorous arguments, the chapter aims to provide urban planners,
environmental managers, and policy-makers with a practical “operational manual” to truly make the
leap from data insights to effective action.

6.2. Methodological Advantages and Policy Implications

The core contribution of this study is not only the development of a new noise prediction model but
also the introduction of a practical diagnostic framing for noise assessment and management. This
new paradigm leverages technological innovation to offer novel solutions to long-standing challenges
in urban governance. This section will explore the methodological breakthroughs in terms of cost-
effectiveness, spatial resolution, diagnostic capability, and assessment dimensions. It will also clarify
how these advantages align with the current policy and regulatory environment, leading to profound
policy implications.

6.2.1. The New Paradigm: Low-Cost, High-Resolution “Diagnostic" Noise Map-
ping

Traditional noise assessment methods, which rely on either fixed monitoring stations or large-scale
physical simulation models, face an inherent trade-off between cost and accuracy. Building a dense,
high-quality monitoring network is expensive, while macro-level simulation models often fail to capture
the micro-features that influence local acoustic environments, resulting in “blind spots” on urban acous-
tic maps. The methodology presented in this study fundamentally changes this situation by creatively
utilizing widely available and low-cost street-view imagery (SVI) data, thus unifying low cost with high
spatial resolution.

However, the breakthrough of this research goes much further. We formally introduce and define a core
concept: Diagnostic Mapping. Traditional noise maps, regardless of their resolution, are essentially
“monitoring-based”—they can answer the question, “Where is it noisy?” For policy-makers, however,
a more critical and actionable question is, “Why is it noisy here?” To answer this second question,
traditional methods typically require additional, expensive, and time-consuming on-site surveys and
specialized analyses.

By integrating the “monitoring” and “diagnosis” steps into one, our model leverages its intrinsic explain-
ability framework (detailed in Chapter 5 with SHAP and LIME analysis). The value of this integration is
immense: every high-resolution noise map generated by the model comes with a “diagnostic report”
for each pixel. This report quantitatively identifies which specific visual features drive the predicted
noise value at that location. Is it due to a high road-area ratio? Insufficient green coverage? Or is it
caused by building density and facade reflection characteristics? This capability transforms data from
a static, descriptive asset (a map) into a dynamic, prescriptive tool (a diagnostic report). For resource-
limited municipal managers, this means a significant increase in efficiency. They no longer need to
spend time and effort searching for the cause after identifying a problem; they get the cause anal-
ysis simultaneously, allowing them to move directly to the stage of formulating targeted intervention
measures.

This methodological leap is highly consistent with the governance philosophy championed by the Dutch
Environment and Planning Act (Omgevingswet), which took effect on January 1, 2024. The Act del-
egates substantial environmental planning authority to local municipalities, requiring them to achieve
a “balanced distribution of functions to locations” when developing local environmental plans
(omgevingsplan) (Stibbe, 2024). In other words, local governments are given greater autonomy to
create noise regulations and management strategies that meet local needs, rather than merely imple-
menting uniform national standards. However, this delegation of power requires data support. The
diagnostic mapping method proposed in this study provides local governments with useful street-level
data to fulfill their new responsibilities, enabling them to formulate more targeted and effective noise
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management strategies based on scientific evidence. This evidence-driven, refined governance model
is precisely the direction the Omgevingswet encourages.

6.2.2. Beyond Decibels: A "Dual-Metric" Evaluation System Combining Physical
and Perceptual Metrics
For a long time, urban noise management has been dominated by physical acoustic indicators, espe-
cially the A-weighted equivalent continuous sound pressure level (L 4.,). While this metric is crucial for
quantifying sound energy, it fails to fully capture how humans subjectively experience and are psycho-
logically affected by sound. Soundscape research has long shown that two locations with the same
L 4.4 value can offer completely different auditory experiences due to variations in spectral composition
and temporal structure. One environment with loud noise might be perceived as “lively and vibrant,”
while another is considered “irritating.”

The second key methodological innovation of this study is the development of a “dual-metric” eval-
uation system capable of predicting both a physical quantity (L 4.,) and a psychoacoustic quantity
(Zwicker Loudness). As an internationally recognized psychoacoustic standard, Zwicker Loudness is
calculated to more closely align with the characteristics of human hearing, better reflecting the subjec-
tive sensation of loudness. By integrating this psychoacoustic dimension into the predictive model, this
study introduces a “human-centered” perspective into noise assessment.

The policy implications of this innovation are profound. It shifts the goal of noise management from a
singular “compliance mindset” to a comprehensive “humanistic soundscape quality mindset.” Under
the traditional management framework, a region is considered “compliant” and requires no intervention
as long as its L 4.4 is below the legal limit. However, the dual-metric evaluation system can identify
“legal but perceptually noisy” problem areas—those with a compliant L 4., but high subjective loudness.
While physically meeting noise standards, these areas may have poor sound spectral characteristics
(e.g., an excessive amount of high-frequency components), leading to high Zwicker Loudness values
and actual negative impacts on residents’ quality of life and health.

By visualizing the distribution of both L 4., and Loudness on a noise map, decision-makers gain a more
complete and multi-dimensional picture of the urban acoustic environment. They can not only pinpoint
areas that are “double-high” in both physical and perceptual noise—which are obvious priorities for
intervention—but also discover “perceptual hotspots” where L 4., is compliant but Loudness is unusu-
ally high. For these areas, the focus of policy intervention shifts from simply reducing sound energy to
improving sound “texture” by altering sound source characteristics or propagation paths. For instance,
interventions could include planting specific types of vegetation to absorb jarring high-frequency noise
or replacing building facade materials to reduce sharp reflective sounds.

This shift in the evaluation system enables urban planning and design to more finely respond to the
public’s demand for high-quality sound environments. It provides a scientific tool for creating proactive
soundscape strategies that go beyond mere “compliance” to enhance residents’ well-being and health.
This is not only a crucial supplement to the existing noise management system but also a key step
towards fostering healthier and more livable urban sound environments.

6.3. Policy Translation Framework: A Concrete Path from Data to
Decisions

Having a powerful diagnostic tool is the first step; systematically using that tool to solve real-world prob-
lems is key to realizing the value of the research. This section aims to provide a clear, actionable “user
manual” detailing how to translate the model’s predictive and explanatory capabilities into concrete
policy actions. This framework directly answers research question RQ3 and is central to meeting the
thesis requirement for “implementation recommendations”—that is, how to apply research findings in
practice. It outlines a clear path from data to decisions for urban managers.

6.3.1. Step 1: High-Precision Hotspot Identification and Prioritization

The first step in any policy intervention is to accurately identify where the problems are. This framework
uses the trained model to make batch predictions on street-view imagery (SVI) sample points across
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a target city (e.g., Amsterdam, Rotterdam). This generates high-resolution, street-level geospatial
distribution maps for both L 4., and Zwicker Loudness. These useful high-precision maps reveal local
noise “hotspots” that traditional, coarse-grained assessment methods would miss.

To make the identification process systematic and easy to use, the framework employs two comple-
mentary criteria to define and locate “noise hotspots”:

» Absolute Health Thresholds: This method is directly linked to public health goals. Based on
health guidelines from authoritative bodies like the World Health Organization (WHO), locations
where the model’s predicted values consistently or frequently exceed specific health risk thresh-
olds are defined as “health risk hotspots.” For example, the WHO community noise guidelines
recommend that noise levels in outdoor living areas during the daytime should not exceed 55
dBA L 4., for extended periods to avoid serious annoyance. Furthermore, chronic exposure to
traffic noise above 65 dBA is widely considered to have a statistically significant increase in health
risks, such as cardiovascular disease. Therefore, if the map shows areas where the predicted
L 4.4 consistently exceeds 55 dBA or even 65 dBA, these areas should be flagged as high-priority
health risks. This provides public health and environmental management agencies with a clear,
health-based justification for direct intervention.

Relative Ranking: This method focuses on internal urban comparison and resource allocation.
By ranking the predicted noise values of all sample points across the city, we can identify the areas
with the highest noise levels (e.g., the loudest 5% or 10% of streets) and define them as “relative
noise hotspots.” This method is especially effective for cities with moderate overall noise levels
but significant internal variations. It allows municipal authorities to focus their limited financial
resources on the areas most in need of improvement, ensuring that resources are used where
they are most effective. By gradually reducing noise in the city’s loudest areas, the overall quality
of the urban acoustic environment will see continuous improvement.

Combining these two methods, the final output is a dynamic, multi-layered “noise problem map” with
clear priorities. This map not only indicates the spatial location of the problems but also uses different
colors or symbols to distinguish the “severity” of the issue (e.g., exceeding a health risk threshold vs.
a relatively high value). This provides a clear target for subsequent diagnosis and intervention.

6.3.2. Step 2: "Targeted" Intervention Based on Explainability

After accurately pinpointing noise hotspots, the framework moves to its most innovative and crucial
phase: using the model’s explainability to perform “targeted” cause diagnosis and design intervention
plans. This is the key step in bringing the concept of “diagnostic mapping” to life. This section will
demonstrate this process in detail through two typical case studies.

Case A: Traffic-Dominated Hotspot (using a main Rotterdam road as an example)

Diagnosis (Symptom Analysis): Imagine a model identifies a high-risk noise hotspot with an L 4,
exceeding 65 dBA on a major road in Rotterdam. Decision-makers review SHAP analysis reports for
multiple sample points in this area. The reports consistently highlight traffic-related features as the pri-
mary drivers increasing the noise prediction value (shown as red bars). These include ‘transportation
infrastructure segmentation seg road percent’ (percentage of road area) and ‘fransportation infrastruc-
ture segmentation seg car percent’ (percentage of car presence). Additionally, the analysis reveals a
“missing contribution”: the SHAP value for ‘color features unified green ratio percent’ (greenery rate) is
positive, indicating that its low value failed to deliver the expected noise-reducing effect (i.e., it did not
lower the prediction value). Furthermore, a low value for ‘Perception More Boring’ (scene boredom)
positively contributes to high noise levels, reflecting a visually monotonous streetscape designed pri-
marily for cars and lacking engaging elements. Such a lack of vibrant street features is often linked to
elevated noise levels.

Prescription (Prescriptive Cure): Based on this precise diagnosis, a set of targeted and intercon-
nected policy “prescriptions” can be designed, rather than one-size-fits-all generic measures:

« Traffic Calming Measures: Since traffic volume and speed are the main causes, the primary step
is to manage the source directly. Traffic calming facilities like speed bumps and speed cushions
can be implemented. Studies have shown that well-designed traffic calming measures effectively
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reduce vehicle speeds, thereby decreasing noise emissions, especially from light vehicles. On-
site tests have shown that installing speed bumps can lower average noise levels from 77 dBA
to 75 dBA. More significant noise reductions have been recorded in European cities: a 20%
reduction in vehicle speed can typically reduce roadside noise by about 2-3 dB. Overall, traffic
calming can be expected to achieve a noise reduction of around 3-4 dBA. While this may seem
small, a 3 dB reduction is equivalent to halving the traffic volume or doubling the distance between
the listener and the source. Clearly, traffic calming offers a realistic and efficient intervention lever.

* Low-Noise Pavement: Addressing the large road area as a noise contributor, a fundamental
measure is to improve the road surface material at the source. It is recommended to replace
traditional dense-graded asphalt with low-noise pavements like porous or open-graded asphalt.
Numerous studies confirm that these surfaces significantly reduce tire-pavement rolling noise by
absorbing vibrations and sound energy at the point of contact. Typically, porous pavements can
reduce road noise by 3-5 dBA compared to traditional pavements. A direct analogy is that a 3
dB reduction is equivalent to halving the traffic volume. Therefore, low-noise pavements have
significant potential for reducing overall noise.

Roadside Greening: To address the diagnosed “lack of greenery,” linear green infrastructure
such as hedges, street trees, or vertical green belts should be added along the road. The SHAP
analysis has quantified the potential contribution of greenery to noise reduction: the higher the
green coverage, the lower the predicted noise value. Vegetation not only reduces noise through
physical barriers and sound absorption, but tall plants can also filter out the harsh, high-frequency
components of traffic noise. Atthe same time, improved visual landscapes can increase residents’
subjective tolerance of the acoustic environment. Therefore, roadside greenery provides both a
physical noise reduction effect and a psychological comfort effect, offering a dual benefit.

Case B: Urban Canyon Hotspot (using a narrow street in central Amsterdam as an example)
Diagnosis (Symptom Analysis): Imagine the model identifies a “perceptual hotspot” with extremely
high Zwicker Loudness in a narrow street in central Amsterdam (i.e., very high subjective loudness),
even though its L 4., may not be significantly high. The SHAP analysis shows that the noise here
is primarily driven by built environment features: for example, features like building_density and
wall_segment_ratio have high positive SHAP values. This indicates that the tall, continuous, and
hard building facades create a classic “urban canyon” effect. Sounds repeatedly reflect and reverberate
within the narrow space, increasing both the decay time of the sound and the subjective annoyance.

Prescription (Prescriptive Cure): For this type of noise problem caused by urban form, intervention
should focus on altering the acoustic properties of the buildings and space:

» Facade Greening: In space-limited urban canyons, Vertical Greening Systems (VGS), such as
green walls or screens, are very effective noise reduction strategies. Studies show that vegetation-
covered building facades can absorb and scatter a significant portion of sound waves, disrupting
the specular reflection of sound off hard surfaces and thus lowering the reverberation level within
the canyon. Green walls can also bring ecological benefits such as improved air quality and
reduced heat island effects.

» Application of Sound-Absorbing Materials: It is recommended that municipal planning guide-
lines or building codes encourage or require the use of sound-absorbing materials on the exterior
walls of new and renovated buildings. Research confirms that applying specific porous materials
(such as pumice bricks or fire bricks) to building facades can achieve noise attenuation of up
to 5 dB in certain mid-to-high frequency ranges. By increasing the sound absorption coefficient
of the facades, these materials reduce sound wave reflections, making them a powerful tool for
mitigating the urban canyon effect.

Optimized Architectural Design Guidelines: At a more macro level, local governments should
revise architectural design codes to avoid creating continuous, parallel, hard reflective surfaces.
For example, they should encourage varied building heights, diverse facade angles along streets,
or set back buildings from the street to create green spaces. Additionally, special attention should
be paid to the design of protruding balconies. Research has found that traditional enclosed bal-
conies can reflect traffic noise down to the pedestrian level, worsening the street-level acoustic
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environment. Therefore, it may be advisable to restrict the placement of large cantilevered bal-
conies on narrow streets or to optimize their shape and materials to reduce unwanted reflections.

Through the two cases above, this framework shows how to convert the model’s explainability output
into a clear, evidence-based set of intervention measures. This “targeted” approach ensures the preci-
sion of policy interventions and the efficiency of resource allocation, representing the core application
value of this research. To solidify these case study experiences into a standardized tool for decision-
makers, the following table (Table 6.1) summarizes the relationship between different types of noise
hotspots, their diagnoses, and corresponding interventions.

Hotspot Key Visual Drivers | Main Policy | Intervention Measures and Ex-

Type (from SHAP) Levers pected Effects

Traffic- High road/car percent- | Traffic manage- ) ,

Dominated age; low greenery | ment, road engi- ' Ic‘zz'?eg dulgewl;g?slzeby%\gecrjnBent

Streets tri{:‘)tﬁ’ Ohf'gh bgggs& ;S:éwsr}/ urban | Implementing traffic calming
(monotonous land- (e.g., speed bum;:_)s) can re-
scape) duce speed and noise by ~ 2—

3 dB.

* Introducing linear
hedges/street trees to in-
crease green coverage.

Urban High building density, | Urban  design , ) ,
Canyon continuous tall walls; | guidelines, * Promoting vertical greening
Blocks low openness (low sky | building mate- (green walls_/screens) for
visibility) rials, architec- isnound absorption and scatter-
tural codes . Er?couraging sound-absorbing
facade materials (pumice
bricks, etc.) can reduce noise
by ~ 5 dB in specific frequency

ranges.

» Avoiding parallel reflective fa-
cades and cantilevered bal-
conies.

“Legal but | Moderate L,., but | Soundscape op- . . .
Noisy” Ar- | high Loudness; high- | timization, mate- | * Shlft|ng from simply increas-
eas frequency visual | rial codes Ing green volume to plgnt—
textures (e.g., high ing specn‘_lc sound-gbsorb_mg
edge density) tree species (targeting high-
frequency noise).

+ Using porous, sound-
absorbing materials to absorb
high-frequency noise com-
ponents, thereby improving
comfort.

Table 6.1: Summary of Noise Hotspot Types, Diagnoses, and Intervention Measures

(Note: These are hypothetical examples. The specific characteristics and effects will need to be eval-
uated on a case-by-case basis for different cities.)

6.3.3. Step 3: Aligning and Integrating with the Regulatory Framework

To ensure the output of this research tool can be seamlessly integrated into existing policy and legal
processes, the third step of the framework is to align the model’s outputs with established regulatory
metrics. This requires translating the model’s “language” into the standardized indicators used by the
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current regulatory system.

First, the discrepancy between the model’s output metrics and those required by regulations must
be addressed. The model generates short-term L 4., values, while key regulations like the European
Union’s Environmental Noise Directive (END) mandate long-term, weighted noise indicators—primarily
L. (day-evening-night equivalent sound level) and L,;4x: (night equivalent sound level). To bridge
this gap, this framework proposes adopting a robust, empirically validated conversion methodology.

While direct, long-term monitoring is ideal, it is often impractical. As a validated alternative for large-
scale mapping, we can use established relationships to convert traffic noise metrics. Research con-
ducted in the UK for END compliance provides a set of reliable formulas for this purpose. Although
these formulas use the L 410,131 metric, a common proxy for average traffic noise, it is closely related
to L 4., and serves as a solid basis for estimation. Following the work of Abbott and Nelson (2002),
which is described as a “preferred” and “robust” method, we can convert the traffic noise level into the
required END indicators by distinguishing between road types:

For non-motorway roads:

Lgen = 0.92 X L a10,180 +4.20dB (6.1)

nght =0.90 x LAlO,lShr - 3.77dB (62)
For motorways:

Lgen, = 0.90 x LA10,18h,r +9.69dB (63)

Lnight =0.87 x LA10,18hr +4.24 dB (64)

By applying these specific, evidence-based formulas, the model’s output can be transformed into the
legally required metrics, providing a fast and low-cost alternative for conducting preliminary compliance
assessments in the absence of long-term monitoring data.

Second, to support Robust Decision-Making, the framework emphasizes that any model output sub-
mitted to decision-makers must include an uncertainty range. This means every noise map or hotspot
list should clearly state the model’s prediction error—which is approximately +5.3 dB (RMSE) in this
study. Transparent communication about the model’s uncertainty is crucial for building trust with decision-
makers, preventing misuse, and avoiding over-reliance on the model. This ensures that policymakers
fully understand the accuracy limits of the predicted values and can consider a safety margin, enabling
them to make more cautious and reliable judgments.

Finally, this framework clarifies how the tool provides a solid evidence base for the local environmental
plan (omgevingsplan) under the Dutch Environment and Planning Act (Omgevingswet). Accord-
ing to this Act, local governments must assess environmental impacts (including noise) and justify their
decisions when planning land use, approving new construction projects, or renovating existing areas.
This study’s diagnostic mapping tool provides quantitative evidence with street-level precision for cur-
rent noise levels, their causes, and the potential effectiveness of interventions. This evidence can be
directly written into the background research and policy justification sections of the omgevingsplan,
significantly enhancing the scientific rigor and legal defensibility of local planning decisions. In other
words, the findings of this research provide data support for new urban noise management practices
under the Omgevingswet framework, transforming model insights into compliant planning actions.

6.4. Stakeholder Engagement and Strategic Adoption

The success of a technological innovation depends not only on its inherent merits but also on its effective
adoption within society. This section proposes a responsible and realistic deployment strategy to guide
the transition from an academic prototype to a widely usable tool for urban management. Because
stakeholders differ in goals, constraints, and technical fluency, communication must be framed to match
what each group values and the decisions they control.
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6.4.1. Communication Strategy by Stakeholder

Institutional Implementers (City Agencies, Developers, and Planners)

For institutional users—municipal departments (planning, environment, transport, public health) as well
as private developers and urban design practices—the core message is decision support and workflow
fit. The model should be presented as a complement to existing noise management and planning tools
rather than a replacement for measurements. Emphasis is placed on three aspects: faster screening
of hotspots, traceable explanations of likely drivers, and low-friction integration with current GIS/noise-
mapping environments.

Practically, engagement begins with focused workshops and hands-on demos that use local exam-
ples. Interactive diagnostic maps allow staff and consultants to explore predicted levels, the SHAP-
based drivers behind them, and candidate measures (e.g., greening, traffic calming, fagade treatments).
When demonstrations are anchored in recognizable streets—say, a corridor in Rotterdam with high
traffic and limited tree canopy—the link from insight to action becomes concrete: “This segment is
consistently noisy due to high flow and low vegetative cover; a green buffer and revised circulation plan
are expected to yield the largest marginal gains.”

For developers and design teams, the framing shifts toward risk management and value creation. Early-
stage site/layout testing helps position noise-sensitive functions (housing, schools, healthcare) in qui-
eter micro-locations and pre-empt costly late redesigns. Presenting a simple, decision-facing site noise
suitability score—derived from model outputs and accompanied by driver explanations—aligns with fa-
miliar indices (walkability, sustainability labels) and sets measurable improvement targets: “North
facade =60 dB(A); add buffer planting and upgraded glazing to lift the rating from B-to B+.”

Adoption should be phased. Institutions first run internal pilots to compare model estimates against a
small set of measurements and existing maps, then progressively formalize use in screening, scoping,
and design review. Throughout, uncertainty and scope limits are communicated explicitly: the tool pro-
vides spatially explicit estimates with driver diagnostics; it cannot capture invisible or temporally variable
sources (e.g., aircraft, intermittent industry) and does not substitute for statutory assessments. Such
transparency builds trust and helps align the tool with regulatory processes under the Environmental
and Planning Act (Omgevingswet) and the Environmental Noise Directive (END).

Communities and Civil Society

For residents, neighborhood groups, health advocates, and NGOs, the message is accessibility, health
relevance, and meaningful participation. Public-facing maps should be visual-first and plain-language,
enabling people to zoom to their street, see broad categories (e.g., low/medium/high), and read short
driver explanations such as “Higher due to traffic volume and limited tree cover.” Clear labelling—
“modelled estimates” —and simple uncertainty cues avoid false precision and set realistic expectations.

Linking predictions to everyday outcomes (sleep disturbance, stress, outdoor comfort) helps communi-
ties understand why certain actions—quiet pavement, speed reductions, tree planting—are proposed
and worth temporary disruption. Feedback channels (map comments, issue reporting) and light-touch
citizen-science campaigns (optional smartphone measurements at agreed times/locations) both im-
prove local calibration and increase legitimacy. When residents see how their input sharpens the diag-
nosis and priorities, support for interventions rises.

Public communication should also underscore fairness and transparency: why a corridor is prioritized;
what trade-offs are considered; and how progress will be monitored. Periodic “before—after” updates
—combining refreshed model estimates with selective measurements—close the loop and maintain en-
gagement. Framed this way, the tool becomes a bridge between expert analysis and lived experience,
helping communities to co-own quieter, healthier streets rather than merely receive top-down policies.

6.4.2. Responsible Adoption Roadmap: Phased Implementation Following the
Gartner Hype Cycle

To avoid the common pitfalls of inflated expectations and disillusionment that often accompany new

technologies, this research explicitly advises against any form of exaggerated promotion. We recognize

that the adoption of any new technology follows an objective path from emergence to maturity, as

described by the Gartner Hype Cycle. To carefully guide this tool past the “peak of inflated expectations”
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and the “trough of disillusionment” toward the “plateau of productivity,” this study proposes a prudent,
phased adoption roadmap (see Table 6.2).

Phase

Goal

Key Activities

Core Participants/Part-
ners

1. Pilot Validation
(1-2 years)

Prove the concept, op-
timize the methodol-
ogy, and build initial
trust.

» Partner with 1-2 innovative cities
(e.g., The Hague, Delft) for small-

scale pilots.
Conduct intensive comparisons be-

tween model predictions and on-site
sensor measurements to validate ac-

curacy.
Co-develop the first “diagnostic noise

maps” and conduct case studies.

Leading universities; pi-
lot city governments; local
health services (GGD)

2. Capacity Build-
ing & Knowledge
Sharing (2-3
years)

Manage expectations,
share experiences,
and avoid the “trough
of disillusionment.”

Develop a user manual with guide-
lines for using, interpreting, and un-
derstanding the model’'s limitations
(especially R? and RMSE).

Share success stories and lessons
learned through platforms like the
Association of Dutch Municipalities
(VNG).

Develop training courses for munici-
pal planners.

VNG,; leading universities;
pilot city governments

3. Platformization
& Integration (3-5
years)

Scale the tool for
widespread use and
establish data stan-
dards.

Develop a user-friendly cloud plat-
form or GIS plug-in to lower the bar-

rier to entry.
Ensure the platform’s architecture

complies with the EU Al Act (e.g.,

transparency, human oversight).
Collaborate with the National Institute

for Public Health and the Environ-
ment (RIVM) to set data standards
and explore integration with national
environmental data portals (e.g., At-
las Leefomgeving).

Technology partners;
RIVM; VNG; Ministry of
Infrastructure and Water
Management

4. Institutionaliza-
tion & Regulatory
Compliance (5+
years)

Embed the tool into
standard  processes
and ensure legal com-
pliance.

Formally establish the tool’s role in
the development process for each
city’s omgevingsplan.

Register the system as high-risk Al in
the EU database, as required by the
EU Al Act, to ensure transparency

and accountability.
Continuously update and recalibrate

the model to maintain technical rele-
vance.

City governments; na-
tional government; EU Al
regulatory bodies

Table 6.2: Phased Adoption Roadmap for Noise Diagnostic Tool

It is crucial to note that this roadmap pays special attention to alignment with the EU Al Act (Evidently
Al Editorial Team, 2025). Given that this model is used in urban planning, its outputs could impact
citizens’ fundamental rights (such as the right to a healthy environment and access to livable housing),
making it highly likely to be classified as a “high-risk Al system.” This means compliance require-
ments must be considered from the pilot phase onward. Specifically, the model must have sufficient
transparency (as required by Article 13 of the Act, which demands clear instructions and limitations),
traceability (to record the decision-making process), and human oversight (as required by Article 14,
which ensures a human-in-the-loop can intervene or correct the model’s output). Ultimately, during the
institutionalization phase, the system must be registered in the EU database for high-risk Al systems
to be subject to public and regulatory supervision. This forward-looking approach to compliance will
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ensure that the tool is applied responsibly and sustainably in urban governance.



Conclusion and Future Research

7.1. Reaffirming Core Contributions and Research Trajectory

In the face of rapid urbanization, noise pollution has emerged as an invisible yet pervasive threat, im-
pacting residents’ physical health, mental well-being, and overall quality of life. Traditional noise man-
agement, however, often remains at the macro level of policy-making, such as the EU Environmental
Noise Directive or the Netherlands’ Omgevingswet. While these frameworks provide guidance, they
frequently overlook the micro-level experiential differences found on streets, leading to interventions
that are difficult to implement with precision. This study was initiated to address this gap.

| began this exploration by using street-view imagery as a visual data source to develop an innovative
machine learning model capable of “interpreting” urban elements in images and predicting noise levels.
Furthermore, a complete decision support system was constructed, forming a closed loop from initial
data collection and monitoring to in-depth cause diagnosis and practical policy recommendations. This
framework not only fills a gap in existing methods but also provides a practical tool for urban managers
to achieve efficient noise control with limited resources. This chapter will provide a systematic review
of the study’s core elements, including a summary of key findings, an honest analysis of its limitations,
and a clear outlook for future research. The goal is to provide a comprehensive conclusion for readers,
reviewing the achievements while also paving the way for future work.

The core contributions of this study can be viewed from several dimensions, all of which directly ad-
dress the research questions and objectives outlined in the introduction. First, at a methodological
level, the study demonstrated the feasibility of diagnostic noise mapping in a data-scarce environment
by integrating computer vision techniques (such as image segmentation and feature extraction) with
machine learning algorithms (such as CatBoost and RandomForest). This approach avoids the high
cost and time consumption of traditional field sampling and instead leverages publicly available street-
view images for large-scale coverage. The model achieved reasonable predictive accuracy (R? of
approximately 0.1) in empirical studies of Dutch cities like Delft and The Hague, offering a valuable
reference for cities in developing countries with similar resource constraints.

Second, the proposed policy translation framework is a key innovation. It incorporates interpretive tools
like SHAP (SHapley Additive exPlanations) into the decision-making process, transforming the model’s
output from abstract numbers into actionable insights. For example, SHAP analysis made it possible
to identify the positive effect of a “green ratio” on noise reduction, which can guide planners to prioritize
adding vegetation in high-noise neighborhoods. Finally, the introduction of a dual-metric evaluation
system marks a paradigm shift in noise management. The physical acoustic metric, L 4.4, captures
objective volume, while the psychoacoustic metric, Zwicker Loudness, reflects subjective human per-
ception. This dual-dimensional approach not only enhances the comprehensiveness of the evaluation
but also aligns with World Health Organization (WHO) noise guidelines, promoting a shift in policy from
simply reducing decibels to improving perceived comfort. Together, these contributions form the central
narrative of the study: building a bridge from micro-level visual data to macro-level governance reform.
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7.2. Summary of Key Findings: Connecting Micro-Insights to Macro-
Applications

The model’s analysis revealed that urban noise is driven not only by physical entities like traffic but also
by higher-level perceptual features of a streetscape, such as its “vitality” or “dullness.” These micro-
insights allow for the precise attribution of noise issues on specific streets to their unique architectural
forms and configurations. For instance, dynamic elements like pedestrians and vehicles correlate with
higher noise levels, while green, tranquil scenes suggest a quieter environment. This granular diag-
nostic capability transforms raw predictions into meaningful intelligence for urban planners.

The model’s findings extend to broader applications. In the empirical analysis in Chapter 5, we observed
that visual features like the “green ratio” and “building density” made significant contributions in
SHAP values. This not only validated the model’s explainability but also revealed the mechanisms
through which urban design influences noise. For example, streets with high green coverage in the
Delft sample had an average L 4., that was 3-5 dBA lower, which corresponded with a reduction in
Zwicker Loudness. This suggests that greenery physically absorbs noise and also psychologically
enhances a sense of perceived comfort.

These insights directly support the policy framework in Chapter 6. By generating high-resolution noise
maps, we can identify hotspots and propose targeted interventions, such as introducing low-noise
pavement materials in high-traffic areas. These applications align with the macro-level goals of the
Omgevingswet and provide a micro-level supplement to EU noise assessments, promoting a shift from
static monitoring to dynamic diagnosis.

Based on these insights, this study demonstrates how micro-level diagnostics can support macro-level
policy. By generating street-level geospatial distribution maps for both L 4., and Zwicker Loudness,
the framework can identify noise hotspots and diagnose their root causes—whether they stem from
traffic patterns, building facades, or landscape design. These findings provide the basis for tailored
interventions, such as promoting vertical greenery or optimizing building facade materials, which are
consistent with broader regulatory tools like the Dutch Environmental Planning Act (Omgevingswet).
Essentially, this research successfully demonstrates a seamless path from streetscape analysis to
policy optimization, empowering cities with a comprehensive, data-driven strategy that responds to
local nuances. The introduction of a dual-metric system further enriches this process by ensuring that
policy focuses not only on objective sound pressure levels but also on human subjective perception,
thereby fostering healthier urban soundscapes.

7.3. Research Limitations

Despite the important progress made in this study, it is necessary to honestly and specifically acknowl-
edge its limitations, as they define the scope of its applicability and point toward directions for improve-
ment. One of the main limitations is the imbalance between the data scale and dimensionality. The
approximately 1,400 sample points, combined with a high-dimensional space of over 350 visual fea-
tures, led to a model R? value that was consistently around 0.1. This indicates a “weak but effective”
correlation between the visual and acoustic domains, which can capture stable patterns but cannot ex-
plain the majority of the variance dominated by instantaneous sound sources, non-visual factors (like
wind conditions or distant industrial noise), and the inherent randomness of the data. As a result, the
current model is better suited as a tool for assessing relative levels and diagnosing problems rather
than making precise absolute value predictions.

With scientific rigor and honesty, we must clearly and specifically recognize the limitations of this re-
search. These limitations not only define the boundaries of the current work but also point to starting
points for future research.

The impact of data sparsity is one of the core challenges. With a high-dimensional visual feature
space (over 350 features), the number of training samples was relatively limited (approximately 1,400
points). This reality of “high-dimensional, small-sample” data is the fundamental reason for the
model’s limited explanatory power (12 of approximately 0.1). This result in itself is an important finding,
as it is the first to quantitatively show that, under current data constraints, there is a real but relatively
weak correlation between static visual information and a dynamic sound environment. The remaining
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approximately 90% of the acoustic environmental changes are dominated by unobserved factors (such
as instantaneous sound sources or wind conditions) or randomness that cannot be expressed by visual
information. This reminds us that with limited data alone, the model struggles to capture more complex
visual-acoustic correlations.

Another significant limitation is the lack of temporal dynamics in static images. The study relied
on static street-view images, which means the model captures a specific moment in time and cannot
reflect how the noise environment changes over time. For example, the model cannot directly show
the differences between morning/evening rush hour and midday, or between weekdays and weekends.
Furthermore, static images are helpless against sudden, instantaneous noise events like sirens or car
horns. Consequently, the model’s applicability is limited in the temporal dimension.

The absence of invisible sound sources and non-visual factors further restricts the model’s compre-
hensiveness. Because the model’s input is entirely dependent on visual information, it cannot perceive
sound sources that are not visible in the street-view images. Typical examples include aircraft noise
overhead or distant industrial noise. Similarly, the model cannot effectively evaluate sound sources that
are outside the camera’s field of view, such as behind buildings or deep within alleys. This means the
model is mainly applicable to noise scenarios dominated by the visible environment and is ineffective
for problems where non-visual factors are predominant.

The limitations in geographical generalization are particularly noteworthy. This model was trained
and validated primarily in a Dutch urban context, making it essentially a “Dutch urban noise expert.”
Its performance and applicability would likely be significantly diminished if applied directly to areas
with different architectural styles, traffic patterns, or urban structures (for example, North American
suburbs or high-density Asian city centers). It would need to be improved through transfer learning or
recalibrated with local data.

Finally, the model revealed a strong correlation between visual features and noise levels but did not
establish strict causality. For example, “dullness” is associated with low noise, but this could be be-
cause “dull” streets have fewer pedestrians and vehicles, not that the feeling of “dullness” itself causes
the quiet. This distinction suggests that while the framework provides powerful diagnostic insights, its
policy recommendations should be interpreted with caution and supplemented with on-site verification
to avoid over-reliance on correlational patterns.

7.4. Future Research Directions

Future research should address the limitations of the current study and turn them into opportunities for
deeper investigation and greater practical application. To overcome data limitations, the primary focus
should be on integrating large-scale, multimodal datasets. Incorporating real-time traffic data from
sources like cell phone signals or GPS, higher-resolution 3D GIS building models, and social media
data reflecting human activity could explain the variance not captured by the current model. This would
also upgrade the framework from a diagnostic tool to a more comprehensive predictive system.

Based on these limitations, a clear and promising path can be outlined for future research to systemati-
cally address the current shortcomings. A data-centric strategy is key to large-scale data collection. To
fundamentally solve the problem of data scarcity, future efforts should shift from optimizing algorithms
to acquiring large, diverse datasets. On one hand, a crowdsourcing model could be explored, mobiliz-
ing citizens to collect street-level images and noise data with their smartphones. On the other hand,
partnerships with municipal fleets, such as buses or sanitation vehicles, could enable the installation
of sensors for continuous, dynamic data collection. Only when the data volume increases by orders of
magnitude can models, especially deep learning models, learn deeper and more robust visual-acoustic
mappings.

Dynamic data fusion is an effective way to capture the temporal dimension. To overcome the limitations
of static images, future research could explore fusing static visual features from the current model with
dynamic data from traffic flow sensors, social media activity heatmaps, and real-time weather. This
would allow the model to capture the temporal rhythms of the noise environment and achieve more
accurate predictions and assessments of noise during specific periods, such as nighttime.

Advanced modeling techniques can improve generalization and accuracy. At the modeling level, trans-
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fer learning could be used. The model trained on data-rich Netherlands could serve as a base, with
only a small amount of data needed to fine-tune it for a new target city. This would enable the rapid
cross-domain promotion of the model at a low cost. Furthermore, as the dataset expands, more com-
plex end-to-end deep learning architectures, such as Convolutional Neural Networks (CNNs) or vision
Transformers, could be explored to predict acoustic indicators directly from image pixels, potentially
further improving prediction accuracy.

Deepening psychoacoustic modeling is a direction that pursues a higher level of human-centered care.
To achieve a more comprehensive assessment of soundscape quality, future research should aim to
extend the model’s predictive indicators from a single loudness measure to psychoacoustic parameters
such as sharpness and roughness, which reflect the “texture” and annoyance of sounds. Building
a model that can predict multi-dimensional psychoacoustic indicators would provide unprecedented,
refined, and human-centered guidance for urban soundscape design.

To address the lack of temporal analysis, the development of spatiotemporal dynamic models is a
crucial direction. By integrating multi-day street view image sequences or video streams and using
architectures like Recurrent Neural Networks (RNNs) or Transformers, the model could predict daily
and weekly variations in noise patterns, thereby supporting more detailed, time-aware urban planning.

In terms of application, the focus should shift to a model-policy feedback loop. By collaborating with
municipal departments, the diagnostic results could be applied in a pilot area (e.g., a specific street
segment in Rotterdam) to implement interventions such as increasing green spaces. Acoustic mea-
surements would then be conducted before and after the intervention, using A/B testing to quantify the
actual effect of the model-guided policy intervention. This would bridge the gap between theoretical
insights and practical outcomes.

To enhance the depth of explanation, causal inference methods could be introduced to separate causal
relationships from strong correlations, thereby improving the reliability of policy recommendations. To-
gether, these directions promise to expand the research paradigm into a scalable and adaptable global
tool for urban noise management.

7.5. Conclusion

This study does not aim to provide a final tool that can “perfectly predict” urban noise. Instead, it suc-
cessfully demonstrates a new paradigm for understanding and diagnosing urban sound environments.
By translating invisible noise issues into a combination of observable and explainable visual features,
this research provides urban planners with a low-cost, high-efficiency “stethoscope.” While it may not
predict every single loud event, it can reveal the deeper patterns within the urban fabric that lead to
long-term noise or tranquility. This advancement represents a solid and inspiring step toward creating a
healthier and more livable soundscape, opening up new possibilities for the integration of technological
innovation and human-centered governance.

The contributions of this study are multi-dimensional and interdisciplinary, and can be summarized at
three levels:

* Theoretical Contributions: The most significant contribution is the provision of an effective
framework to address the long-standing problem of “micro-macro disconnect” in urban noise
management. It was proven that microscopic visual data can be used to infer the micro-scale
urban sound environment, which theoretically bridges the gap between macro policies and micro
realities.

Methodological Contributions: Two groundbreaking concepts were introduced and validated.
The first is “diagnostic mapping,” which upgrades the traditional “monitoring” function of noise
maps to include the ability to “diagnose” the causes of noise, greatly enhancing the decision-
making value of noise assessment. The second is the “dual-metric assessment system,” which
shifts noise management from a singular focus on physical compliance to a more human-centered
concern for soundscape quality by simultaneously evaluating physical acoustic indicators (L 4.4)
and psychoacoustic indicators (Zwicker Loudness).

» Policy Application Contributions: This study goes beyond theoretical discussion or model
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construction. It further proposes a specific, detailed policy translation framework that is closely
aligned with real-world regulations. This framework clearly demonstrates how insights from the
Al model can be converted into actionable policies under new regulations, such as the Omgev-
ingswet, providing urban planners with a powerful and evidence-based decision-making tool.

In summary, this study not only offers a powerful new tool but, more importantly, provides a critical
framework for how to responsibly adopt and apply it. This work has paved the way for a future of quieter,
healthier, and more intelligently managed cities. This exploration is a beginning, not an end, and the
vast prospects it has revealed await further in-depth exploration and practice by future researchers.
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By the time | reached this point in my writing, | had completed my graduation thesis and was about to
finish my master’s journey. It was a moment worth celebrating, a time when countless emotions welled
up in my heart. | had so much to say, and so many people to thank. | shaped these feelings into this
acknowledgment—not only as a summary of the past two years, but also as a quiet gift to myself. If my
words are not entirely clear—perhaps they are not—then let me tell this story from the very beginning.

| still remember the long preparation and anxious waiting during the application season, and the day |
finally chose to study the MSc in Management of Technology at TU Delft. The memory feels as fresh
as if it were yesterday. The admission decision came later than promised. In the restless days of early
March, | wrote to the NUS secretary to extend my MFE deadline, while also sending more emails to
TU Delft, asking about my application. At last, on March 27, 2023, the email arrived, and with it began
my story with Delft.

To join the early rounds of housing selection, | had to confirm my payment before April 1. Knowing the
delay of international bank transfers, | gathered all the paperwork the very next day, went to the bank
with my mother, and completed the transfer. At that moment, my application season finally came to
an end, and | could breathe again. In May, when it was time to choose my room, | pored over every
review and photograph. Aware of the Netherlands’ rainy skies, | wanted as much sunlight as | could get.
So the moment my account became active, | chose without hesitation: a panoramic room in Xior, right
across from the train station, in the round tower facing due south with windows that could not open. (As
| later learned, before moving to my next apartment the following summer, this room’s sunlight turned
it into a miniature oven—disastrous, but in a way, amusing.) But by then, | was full of hope for the life
ahead.

Letian

My flight was set for August 15, from Shanghai to Amsterdam. In the pale light before dawn, | was
already dressed, with two large suitcases, a carry-on, and my backpack. My aunt and uncle drove me
from Jiading District to the distant Pudong Airport. After more than an hour of check-in and security
(including a small incident where a security officer weighed my luggage and found it slightly overweight,
prompting me to stuff clothes and electronics into my pockets to meet the standard), | reached the
waiting area—and there, for the first time, | met one of the closest friends | would have over the next
two years, Letian Li. We had known of each other from a group chat, both headed to TU Delft, and had
even chosen seats together weeks earlier.

Letian and | in Rome
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It was my first time traveling alone to an unknown country. | felt nervous, even a little lost, but having
a friend nearby—even one not yet close—eased that feeling. | read, watched the map on the screen,
dozed off, ate airplane meals, and spoke in quiet tones. Fourteen hours later, the Netherlands appeared
outside my window. We passed through customs smoothly, went down to the underground train station
at Schiphol, and boarded the train to Delft, our six suitcases swaying in the aisle. As expected and
unexpectedly, | discovered | had gotten off one stop too early, at Rijswijk, and my apartment was still
nine kilometers away. We took the elevator back up to the platform and continued on.

At Delft Station, | said goodbye to Letian, who went toward Delft Campus. | stepped outside at 9:30
pm on a mid-August evening, yet the sky was still bright as afternoon. The cool wind brushed my skin,
seagulls crossed the air above me, and as | pushed my luggage forward. Here | was, Delft.

In the two years that followed, whenever a quarter break or even a short gap in the schedule came
around (sometimes without any break at all), Letian would suddenly come up with an idea, make a
detailed plan, and arrange for us to just set off and have fun! As for that one time we went on a
“wilderness survival” cycling trip in southern France. That’s a story for another day.

As fellow football enthusiasts, going to stadiums together, watching matches, discussing news, and
sharing our rants was always great fun. Thank you so much!

Zhengchu (Tom)

After spending my first night in a completely empty room with nothing but my luggage, the next morning
—August 16—1 woke up early, already on a European schedule thanks to my last weeks in China
(though unfortunately, by now I've shifted to more of a U.S. schedule). Around noon, | walked to the
entrance of the X Sports Hall to collect my student card, where | happened to run into Letian and some
of his classmates. We strolled around campus for a while, then headed to an open-air bar in the city
center for some food and a few beers.

During our chat, the topic of whether there were other Chinese students in our program came up. That’s
when | searched our WeChat group using “TPM” and “MOT” as keywords and found a classmate
named Tom whose profile seemed to match. | sent him a friend request.

When | greeted him, | quickly learned that he was from the previous MOT year—a senior—and, without
hesitation, he invited me over for tea that evening. | politely declined at first, but he was so enthu-
siastic. Although | had some slight worries considering this was the Netherlands, but decided to go
eventually. (coincidentally, | would move into the same building in early August this year, as | write this
acknowledgment).

Zhengchu and | in Keukenhof (shot by Wu'’s grilfriend)
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Meeting him turned out to be a small adventure in itself. As expected in an unexpected way, | missed
my bus stop and had to run a long way back under a bridge, where | met Zhengchu Wu for the first
time. Luckily, we really were just drinking tea (kidding). ' WuGe turned out to be a very normal yet
interesting person. We talked about everything—from his past life experiences to advice on my studies,
to the local lifestyle, leisure spots, and small life hacks. Another MOT senior, Yuncong Liu, also lived
there and was due to return to the Netherlands soon. Together, the three of us—the future “MOT trio”
—later treated me to dinner.

When WuGe heard | was going to The Hague the next day to accompany some new friends for their
residence permits, he mentioned that he knew a great spot nearby. In his exact words: “That place
is awesome. I've been there twice recently, and | still want to go again.” The next afternoon, we met
him at the station near the location on the map, and he led us to the beach in The Hague. The weather
wasn’t too hot, the sun was out, and the bar by the sand made for a perfect spot to relax. In the evening,
he took us for Cantonese food.

And that was the beginning of our MOT group’s habit of going out and enjoying life in the Netherlands.
Even back then, | knew | was starting to like my days here.

What came after were countless memories: WuGe became my coach and made me a workout plan,
we traveled to Iceland, celebrated New Year’s Eve, went to the Olympics, drove to Walibi, and so much
more. In both life and academics, his help and support meant a great deal to me. This May, he chose
to return to China for work. | am deeply grateful that | met WuGe here in the Netherlands.

Yuncong (Spike)

On August 22, WuGe invited me to a restaurant in Delft city center. It was part of a plan he and another
friend had booked in advance, and there | finally met the legendary Yuncong Liu (Spike), known for
“feeding” WuGe all year with his excellent cooking. I'll refer to him here as CongGe.

When | first met CongGe, he had a slight sick, a broad smile, and a solid build. Coincidentally, his
university city and my hometown are both in the same province—Shaanxi. We hit it off right away. In
September, when WuGe left us to visit his girlfriend in the UK, | went to CongGe’s place for the first
time for hotpot. | bought quite a lot of ingredients, he prepared plenty as well, and together we finished
everything! From then on, | kept to CongGe’s rule—whenever | had the time, | could go to his place to
cook and eat.

Yuncong and | in Iceland

"For convenience, I'll refer to him from here on as “WuGe” —in Chinese, “Ge” roughly means “bro/man,” a friendly way
to address someone by combining part of their surname or given name with “Ge.”
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Over the next two years, | lost count of how many times | enjoyed his amazing meals. | felt truly happy.
We also went on many outings together—sometimes just heading to a restaurant we suddenly craved,
other times hiking in the Netherlands, enjoying the journey, the exercise, and our shared interest in
outdoor gear and electronics. In the second half of my second year, when WuGe stopped showing up
at the gym, CongGe and | began training seriously together, and | gained a lot from it (though in the
end, he returned to China for good).

In these two years, | withessed CongGe’s ups and downs—both physically and otherwise. Our trips
together were always spontaneous: once we decided on a destination, we went. We traveled west to
Munich for a Coldplay concert, taking an overnight Deutsche Bahn train; we took a cruise during our
Nordic trip and trekked through muddy trails in Bergen. I'll never forget how, during almost every trip,
CongGe would pull out his earphones to check in or video call with his partner back in China, something
that left a vivid impression on me.

Life with CongGe was always fun and full of laughter, and his advice was truly valuable to me. I'm
grateful to him and to the “legacy” he left me here in the Netherlands. | wish him all the best in his
work and life in Xi’an.

Isa

At the end of August, on August 30, 2023, our MOT program held a welcome event for new students.
Like everyone else, | went to the TPM building to take part. Earlier that day, | had gone to the city
center cinema to watch *Oppenheimer*, my first English-language movie in a theater. The subtitles
were neither in Chinese nor in English, which felt novel, although it did make the film harder to follow.
As soon as the movie ended, | got on my bike, followed the navigation, and headed straight to the TPM
building.

Walking through the entrance, | found my tall, bald mentor Eric. After a brief chat, he gathered the other
members of our group so we could introduce ourselves. When we heard there would be free coffee
and snacks, Isa Ouz said, “Who else wants some free stuff?” | immediately ran over to pick something
out, joking, “Aslong as it’s free, | love it no matter what it is.” That was how we started chatting happily
together.

In the two years that followed, we shared many experiences: attending classes, working together on
group projects, teaming up again for FAIP where | handled coding while he presented, traveling to
Madrid’s UPM for both leisure and coursework exchanges, and helping each other move. | am grateful
for Isa’s help, for the times we had deep conversations, and for wandering the streets of Madrid talking
about life. His support over these years meant a lot to me.

| and Isa on the flight to Madrid
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More than once, Isa told me, “Your English improved a lot!” Hearing that made me realize how much
my casual conversation and joking skills had grown. Isa is both a natural leader and an outstanding
writer, someone who naturally earns people’s trust. | look forward to seeing him accomplish great things
in the future.

Khanh

On that same day, during the same event, | noticed an East Asian-looking face and a man who hap-
pened to share my surname. | tried speaking Chinese to confirm my guess, but | was completely wrong.
This was Khanh Ma, who introduced himself as being from Vietnam. It turned out that “Ma” is also
quite an uncommon surname in his country, which made the coincidence even more interesting.

Before the semester started, we went for a walk around the Delft lake area, chatting about our academic
backgrounds, past life experiences, our views on relations between our two countries, and even some
politically sensitive topics. He was a steady, thoughtful, and interesting person.

| and Khanh in Breda Carnival

We continued teaming up in some courses, working together with great ease. We also went to Carnival
together and enjoyed casual drinks in Leiden. | am very grateful for Khanh’s help. As one of the few
“true brothers” from a neighboring country to my own, | hope that in the future he will be the reason |
have influential connections in Vietham-—haha.

Mihkel

The blond, blue-eyed man also appeared on that same day. He wasn’t in my group, but during the beer
session at the end, while | was in the café area picking up my bag and chatting, he happened to be
standing to my right. Naturally, we started talking. It was clear that this Estonian man, Mihkel, carried
a certain coolness—not overly warm, but undeniably beautiful.

It wasn’t until Q2, when we were paired for the Research Methods course, that we began working
more closely together. Since our academic backgrounds were similar, we decided to team up. As our
conversations grew, | discovered his endearing and humorous side. Perhaps, to some extent (I'm not
sure how much), | influenced his decision to apply for a half-year exchange in China during his second
year.

By coincidence, in December 2024, after a few days of hiking on my first trip back to China, | stopped
by Beijing and met him on the Tsinghua University campus. It was quite a fun twist of events. Now his
Chinese girlfriend has also come to the Netherlands, making the whole story feel even more like fate
—an amusing and memorable connection.
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Mihkel and I in TPM

Fahmi

I met Fahmi in class that September. He isn’t very tall, and at first glance | thought he might be a prince
from a Southeast Asian country. He is a devout believer, yet also incredibly endearing, often making
jokes about himself. Every time we met, he would greet me warmly, always with a playful remark.

Atthe end of each quarter, he was always the first to ask about my academic results, trying to “compete”
with me over grades. It wasn’t until the Indonesian event this February that | discovered he could dance!
Over these years, I've been grateful for the joy and laughter Fahmi has brought into my life.

Fahmi and | in inDelftnesia

Bayu

Mafia—that’s the only way | can refer to Bayu. It was my very first impression of him, and it has always
matched his image and aura: an Indonesian mafia boss. Muay Thai, muscles, cool tattoos—I often
teased him about it.

We really became closer during the Mid-Autumn Festival in 2023, when | invited him and others to have
Chinese food together and shared the premium mooncakes | had spent the afternoon hunting down in
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The Hague. He was also my study partner. When | failed the first course of my life (Leadership) and
learned that he also had to take the resit, we studied side by side late into the night at Echo, Aula, and
the library. In the end, we both achieved our goals.

Mafia invited me many times to his place to hang out or have a meal, but unfortunately, our schedules
rarely matched—my late-night routine and his time training friends in martial arts didn’t align—so | never
made it, something | regret. Still, we managed to join plenty of other activities together. | also can’t
forget one particular evening: late at night in Indonesian time, | was at home in Delft when | suddenly
got a call from him begging me to help fix his code. That's when | learned he was actually on vacation
in Bali, but couldn’t get it to work and was on the verge of failing.

| and Bayu on King’s Day in Amsterdam

Thank you, Mafia, for two years of protection and friendship. And | should add—beneath it all, he’s
truly kind and friendly.

Fran

On September 20, 2023, during TPM’s Freshers’ Week, the faculty took us to explore the Delft lake
area, visit museums in The Hague and Rotterdam, and enjoy a large sightseeing cruise. | remember at
The Hague’s history museum, Mafia arrived late together with Francisco. He was strikingly handsome,
with chiseled features, deep green eyes, and the presence of an ancient sculpture—wearing a suit yet
carrying an air of ease. It wasn’t until we were on the deck of the Rotterdam boat that | greeted him for
the first time and we got to know each other.

Later, in class, we exchanged film recommendations and ended up watching God’s Crooked Lines. |
also invited him to our Mid-Autumn Festival dinner with Mafia and Naffi. | grew very fond of this man
with his dry humor. As fellow football fans, and with Spain as my top European national team, Fran
and | always had a great time watching matches together. For the Euro final, we stood among a sea of
Spanish supporters at X, celebrating together, and that day gave me several of my favorite social media
profile photos in a Spain jersey. (The only “flaw” was that, being from Madrid, he was—unsurprisingly
—a Real Madrid supporter.)

A funny little episode happened in late 2024 during El Clasico. Fran invited me to watch the match at
X with his girlfriend. At halftime, we moved to my place to watch the rest. On the way, he expressed
his confidence and excitement, but after Barcelona scored four goals, his changing expressions were
so dramatic that | could barely hold in my laughter. After the match, | joined his girlfriend in consoling
him.

I’'ve been lucky to work with Fran on coursework—he is steady, reliable, and an excellent coordinator.
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| and Fran as interviewers on Valentine’s Day 2024

I’'m grateful to him, our guide to the European Space Agency, the runner and the CEO.

Many More MOT fellows

There are so many more friends | met through the MOT program that | want to thank. There is Oscar,
my stylish Black Brazilian-Dutch buddy who always tried to help in group work but somehow always
ran into problems (and who has one photo where his side profile looks strikingly like Chris Paul). There
is Ketill, the Icelandic tough guy with a taste for sharp American slang. There is Anuj, small in build
yet quick with jokes, whose birthday let me witness a scene straight out of a movie—dozens of people
dancing to Indian songs. There is Bhavesh, precise and reliable, a pleasure to work with, and practically
the poster man for X.

| also want to thank Felix, my elegant yet athletic Dutch friend who has been to Tibet, a place | have not
yet reached myself. Then there is Stefan, our ultimate tough-guy dad and pilot. | remember Peng Lee,
my fellow Taiwanese friend, who once took me bouldering, and later invited me and Isa, along with our
FAIP teammate Ytka, to dinner. And of course, Hijme and Luis: the tall, cheerful Dutchman and our
dependable, skilled Peruvian finance expert.

Shoumeng, a junior in TPM studying in CoSem, I'm grateful for our shared experiences watching
matches and exchanging our complaints. Thanks to her, | was able to make my pilgrimage to West-
falen. To this day, my unbeaten record when supporting a team in person and her winless record when
she does so remain a legendary part of our football-watching history.

They are all such wonderful people, and | feel deeply grateful to have known them.

Chen, Haoyu & Lai

Chen Bao and Haoyu Wang (BC and WangShen 2) were friends who joined us in the early and middle
stages of our fitness journey, and they became important companions in my life in Delft. BC is an
excellent cook, and back in our first year when we lived in the same apartment building, | often got to
enjoy his dishes. He would sometimes come over to my place to watch the NBA, and after workouts,
we would have protein shakes together. He, in WuGe’s social group for gaming, remains a mysterious
person and never shows up in reality.

WangShen, who was in the same cohort as WuGe and CongGe, later became my “apprentice” in
the gym. After graduating, he moved out of Delft, but we still met up from time to time for single-day
trekking trips in the Netherlands, making life both active and enjoyable.

Lai Wei, once WuGe’s great benefactor in the early days and his former top gym apprentice, is now
pursuing a PhD in EE and has also become a good friend of ours. | am truly grateful to them.

2Shen in Chinese means brilliant person.
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Lai, Zhengchu, Chen, and | in front of the Schiphol Airport the day Zhengchu left us forever for China

Xiaolel

Xiaolei, a beautiful and fascinating woman. On October 12, 2023, the day of the Xior apartment com-
munity event, | went to the ground floor common room right on time. There was plenty of beer and
snacks, and | happily chatted with neighbors | hadn’t met before. Around eight or nine in the evening,
while | was talking with a new Indian neighbor in the lobby, a Chinese girl walked up to ask if | could
take a photo of her and her friends. | naturally agreed, and afterward we started chatting. She told me
about the drawing workload at the BK faculty, and | found her cheerful and humorous.

In my second year, after | moved to a new place, WangShen sold me some second-hand items that were
still in the neighboring apartment building. When | tried to find out who lived on that floor, | discovered
it was her. She came to ask if the table in the common room was mine and helped open the door.
Together with WuGe and CongGe, | carried the items back to my place. Later, by chance, she began
going to the gym with me and became my top female apprentice. | trained her, shared protein shakes,
and played the newly released *Remnant II* together.

We joined Khanh, CongGe, Mafia, and other friends for Carnival in Breda, had the first “Ma family”
gathering (yes, she also shares the Ma surname, though her hometown is thousands of kilometers from
mine), went on a one-day hike with WuGe, and cooked and dined together at my place with friends.
Now she is my girlfriend, and as | write this acknowledgment, we have just finished moving into our
new home.

| and Xiaolei at the Imagine Dragons concert in Amsterdam
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| am grateful for Xiaolei’s presence, which gave me emotional support in this most anxious year. | am
thankful for this relationship, this chance encounter, and the plans and hopes we now share for the
future. A special thanks to Xiaolei—thank you.

Heyuan

On January 7, 2024, | had almost forgotten that Christmas break was ending that weekend when we
arranged to go to Haarlem for a simple trekking trip. That was when [ finally met my “good son,”
Heyuan Huang—by then perhaps already “Mss” (if such a term existed). We had known each other
for many years, always calling each other “father” and “son.” She had come to the Netherlands two
years earlier than | to study for her master’s at Erasmus and had been working for quite a while. Since
arriving, | had always been too busy to meet her (vice versa), but when we finally did, it was exactly as
expected—still my good son.

She has been a great help to me, giving me advice about life, sharing analysis and witty complaints
about various matters, and understanding the situation in China in ways that closely match my own
perspective. She even helped me buy football jerseys, and after she got a car when moving to a new
place, she often planned fun activities for us, including but not limited to shooting practice and climbing
parks.

| and Heyuan at the Fun Forest in Rotterdam

| am truly grateful to Heyuan for her help and support since | came to the Netherlands. Thank you, my
good SON!

USTCers

To my dear friends from the University of Science and Technology of China (USTC), | am truly, deeply
grateful to you all. Coming alone to a foreign country, it was your familiar companionship and conver-
sations that helped me through so many days.

KenYe, who taught me the basics back in our undergraduate years, and later, during my first half-year
in Delft, video-called me many times. Even after working until 9 or 10 p.m. every night at Huawei, you
still listened to my complaints—thank you for that.

Yuhao and Binghan (BingBing) welcomed me when | landed in Shanghai, picking me up and taking
me out to eat. Later, Yuhao and | continued our late-night suppers and board games in Hefei, while
BingBing, after finding a new job, went with me to a temple to pray for blessings before | returned to
the Netherlands.

Hongwei, our travels together were just as spontaneous as they were in our undergraduate days, full
of stories and new experiences. Yuxuan, my incredibly handsome former roommate, was one of the
first people | met in Hefei after arriving (though in my excitement, | accidentally broke the custom mug
| had brought as a gift). Hailin (LinJie ), my other “good son,” welcomed me during my trip back to
China. After resting in Shanghai, | immediately traveled to join her and her boyfriend Xiao Hong for
a three-day hike in the Taihang Mountains. | miss her endlessly cheerful, infectious laughter. She is
heading to Hong Kong for her PhD and has a bright future ahead.

3Similar to Ge use before, Jie is for famale.
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| and Hailin in South Taihang Mountain

Unfortunately, | didn’t get to see Changqing Zhu (ZhuGe), who has been deeply focused on his studies
in the south. But | did reunite with my unbeatable brother, Ziang Wang (WangGe). In early April this
year, when | received the news that our mutual best friend, Mardandan (Captain Mai), was getting
married in Xinjiang, | checked flights immediately and booked my ticket within an hour. | first flew to
Shanghai to see WangGe, who then took leave from work so we could fly six hours together to Xinjiang.
At our brother’s wedding, | shed tears of happiness. The other guests, upon learning | had traveled
25,000 kilometers to be there, treated me as an honored guest. Between 40 shots of strong baijiu and
my attempt at Xinjiang dancing, it truly felt like a celebration. Seeing WangGe again and talking with
him brought back so many memories and emotions.
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I, Mardandan with his wife and Ziang at the wedding

| am very thankful to them all.

Older Friends

To my old friends, whom | have known for around a decade or more, | am truly thankful.

Tianhui, my old deskmate, often chatted nonsense with me during my master’s years, making me miss
the mischievous “devil’s whispers” we used to exchange in class.

ShiGe (whose former name really was “Shi Ge,” so he’s different from the others mentioned earlier)
often debated with me about the historical rankings of football players. We had a great time together
at Universal Studios Beijing. Unfortunately, for various reasons, he found a better path, so it seems |
won’t be seeing him in Europe for a PhD at EPFL.



79

Tianhui and | on Valentine’s ShiGe and | in Beijing
Day

A special thanks to them both.

Lion & Sander & Sander

In September 2024, during the FAIP course, Isa and | chose topics that matched our interests and were
assigned to the noise group. That was when we first met Lion, our mentor and a PhD student. In that
project, after several twists and turns, we finalized our plan to model, cluster, and predict magnitudes
using the New York noise complaint dataset. Lion helped us a great deal, and through this work |
developed a strong interest in noise research.

After our final presentation, Lion asked whether we would be interested in doing our thesis in his lab,
with several possible topics available. In December of the same year, | decided to continue working
with the stylish Lion on a noise-related project—this became the foundation of my thesis.

Lion and | at the last meeting in his office

We met many times throughout the process. Lion gave me valuable advice, guided brainstorming
sessions, and provided practical direction. He even helped me purchase an Insta360 camera for data
collection, which | admittedly also used over the following months to record my travels. | am deeply
thankful to Lion for his patience, thoroughness, and significant contribution to my graduation thesis.
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Sander and Sander, both professors, were my supervisors. The first, Sander van Cranenburgh, as my
chair supervisor, gave me insightful feedback and inspiration during topic selection and lab meetings. |
greatly appreciate the opportunities he provided. The second, Sander Smit, a familiar face in the MOT
program who had taught us several courses (I once even applied to be a teaching assistant for his
Business Analytics class, though unsuccessfully), was always humorous and gave me well-targeted
advice.

Family

| am grateful to my family for their support and for making it possible for me to study in the Netherlands.
Thank you so much.

Me

| have so much | wish to say to myself, so many fleeting moments I long to recall, so many regrets that
can never be undone, and so many choices for which | owe my gratitude to the person | once was. |
tried to borrow a few words to express the feelings within me:

“Life may not be as good as you imagine, but neither will it be as bad as you fear. Human
fragility and resilience both exceed our own imagination: sometimes a single fragile word
can bring tears streaming down your face; sometimes you discover that, gritting your teeth,
you have already walked a very long road.”

“He does not believe that the long night is coming, for the torch is already in his hand.”
—Guan Weijia, commentary on Kevin Durant’'s game-tying shot at the end of regulation,
2021 NBA Eastern Conference Semifinals Game 7, Brooklyn Nets vs. Milwaukee Bucks

“In truth, a real farewell has neither the long pavilions nor the ancient roads, nor the
urging to drink one last cup of wine. It is simply that, after such a midday, certain people
and certain things are left behind in memory. The day of parting will surely come, and what
you miss is not the picturesque scenery of that time, but every person who shared those
scenes with you. What you cannot forget is not the days themselves, but the passion you
held in your youth.” —Commentator Yu Jia

All in all, thank you, Ma Yuxiao. As always, | will end my master’s degree with the same motto as
before:

In a world steeped in absurdity, stand as the maverick of my own story. ¥ ¢t i) t 5 Bl
H A IIH e

I, Yuxiao



Supplementary Model Outputs and
Visualizations

This appendix shows the result figures in the main chapters.

A.l. GUI Interface

With the help of Github Copilt, | designed and transfered all functions into the user-friendly GUl interface

(See Figure A.1, A.2).

# Multimodal Feature Extraction & Analysis Pipeline GUI v1.0

Multimodal Feature Extraction & Analysis Pipeline

@8 Screenshot J3 Audio Features [F  Video Features @  Street View Collection fidl Street View Evaluation @ Fusion Modeling [l JSSON—CSV & Settings [ Log

Input Settings

Image Input Directory: | Browse

Output Directory: outputs/streetview_evaluation Browse

ZenSVI Perception Metrics (PlacePulse 2.0)

@ Enable ZenSVI Perception Analysis

8 Safety Perception Liveliness Perception
@ Wealth Perception 8 Beauty Perception
@ Boredom Perception 8 Depression Perception

ZenSVI Streetscape Quality Metrics

@ Enable ZenSVI Streetscape Analysis

8 Glare Detection @ Lighting Quality

8 Panorama Quality 8 Platform Detection

@ Image Quality Reflection Detection
@ View Direction @ Weather Conditions

Additional Analysis
() Enable ZenSVI Places365 Scene Classification

(Scene classification using ZenSVI's Places365 classifier)
@ Enable PlacePulse 2.0 Comparative Assessment

© ive perception using PlacePulse method

Visual Feature Extraction
8 Enable YOLO Object Detection @ Enable Semantic Segmentation
@ Enable Scene Classification @ Enable Low-level Features (HSL, Edge)

8 Enable Color Ratio Features (Green, Blue, etc)

Multi-Angle Processing
() Enable 4-Angle Merging (Combine 4 angle results into 1 JSON)
[8) Smart Merge Existing Files &7 Process & Merge

Smart Merge: Automatically detect and merge existing 4-angle files

Process & Merge: Extract features first, then merge (if fies don' exist)
Auto-merge in normal processing: When enabled, merge happens after feature extraction

Figure A.1: GUI Interface for Evaluation
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A.2. Exapmle of SVIin the Hague

# Multimodal Feature Extraction & Analysis Pipeline GUI v1.0 - o
Multimodal Feature Extraction & Analysis Pipeline

@ Screenshot J3 Audio Features Video Features @  Street View Collection g Street View Evaluation ) Fusion Modeling [l JSON—=CSV & Settings 2 Log

Data Source Settings

AP Key:

Collection Parameters

Bounding Box (bbox):
Number of Images: 100

Output Directory:  outputs/streetview Browse

Quality Filtering Settings (ZenSVI Image Quality)
8 Enable Image Quality Filtering
Quality Threshold: l 07

E2  Start Street View Data Collection

Figure A.2: GUI Interface for Getting StreetView Images

A.2. Exapmle of SVI in the Haque

Object Detection and Scene Classification Results (b) Scene C| ifi

Residential Neighborhood

Downtown 7.0%

8 traffic light
31.3% |
8 per person
1 60. 50.0% Parking Lot

bicycle -
87.0% / E Street

Crosswalk

0 5 10 15 20 25
(a) Object Detection Results Confidence (%)

Original Size: 1024x1024 | Edge Density: 0.0693 | Quality: good |

Detection Statistics: Total Objects 15 | Bicycle: 4 | Person: 7 | Car: 3 | Traffic light: 1 |
i i d
Weather: clear | View: side

Figure A.3: Detection & Classification from the Hague Street View
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Semantic Segmentation Distribution

wall traffic lighftycle

bag eetlight

person
6.0%

-
-
-
-
-
-
sidewalk
sky
7.7%
8.3%

road

building

tree
Semantic segmentation results showing spatial distribution of 12 categories across 50,176 pixels.

Segmentation Details
wall: 0.3% (145 pixels)
building: 20.8% (10,451 pixels)
sky: 22.1% (11,083 pixels)
tree: 8.3% (4,169 pixels)
road: 7.7% (3,838 pixels)
sidewalk: 22.4% (11,239 pixels)
person: 6.0% (3,030 pixels)
car: 4.5% (2,283 pixels)
streetlight: 1.4% (677 pixels)
bag: 0.2% (110 pixels)
bicycle: 6.1% (3,075 pixels)
traffic light: 0.1% (65 pixels)

This analysis reveals urban environmental composition including infrastructure density, green coverage, and traffic elements.

Percentages represent the proportion of pixels classified into each semantic category.

Figure A.4: Segmentation from the Hague Street View

Perception Dimensions: - -
« Safety: Environmental security perception (0-100%) ’tscape Percept|0n A“aWSlS
« Liveliness: Activity and vitality level assessment

* Wealth: Economic prosperity visual indicators

« Beauty: Aesthetic appeal and visual attractiveness
« Boring: Monotony and lack of environmental variety
+ Depressing: Gloominess and negative atmosphere

Wealt|

Beauty

Boringr Defir

Statistical Summary:
Average Score: 53.1%
Highest: Beauty (74.8%)
Lowest: Wealth (31.6%)
Score Range: 43.2%

Streetscape perception scores based on PlacePulse 2.0 dataset methodology, reflecting human subjective responses
to urban environmental qualities. Scores range from 0-100%, with higher values indicating stronger positive perception
(except for Boring and Depressing, where higher values indicate more negative perception).

Figure A.5: Streetscape Radar Chart from the Hague Street View
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A.3. PCA and Feature

First PC Explained Variance
o o © © © o
2 2 2 8 8 &
& 3 & B8 8 8

°
g
8

23

on & o @ 3R

Number of Components

17.2%

i

First PC Dominance by Group

18.9% 18.6%
> N
@ S
& N
&

Group PCA Comparison Summary

286%

@
&
o«

Components Needed for Variance Thresholds

&
N

Feature Groups

@

“,
%,

33.1%

&

80% variance
90% variance

Features Reduced (80% variance)

N

N

N

7

2

0

8

6

Dimensionality Reduction Efficiency

natural

®
food buit
o —
o
200 225 250 275

300

indoor

325

Number of Original Features

Summary Statistics

Group PCA Summary:

1. transportation:

Compression: 63.2%

2. indoor:
Features: 32
PC1 variance: 17.2%
80% needs: 11 PCs
90% needs: 13 PCs
Compression: 65.6%

3. natural:
Features: 27
PC1 variance: 18.9%

Compression: 59.3%

4. built:
Features: 22
PC1 variance
80% needs: 8 P
90% needs: 10 PCs
Compression: 63.6%

18.6%
Cs

5. furniture:
Features: 19
PC1 variance: 28.6%
80% needs: 6 PCs
90% needs: 7 PCs
Compression: 68.4%

6. food:
Features: 19
PC1 variance: 33.1%
80% needs: 5 PCs
90% needs: 6 PCs
Compression: 73.7%

Overall Statistics:
Avg first PC variance:
Avg compression (80%):

21.2%

65.6%
Most compressible: transportation
Highest PC1 dominance: food

Figure A.6: PCA and Group Analysis
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A.3. PCA and Feature

PCA Feature Importance Analysis
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Figure A.7: PCA and Group Analysis 2
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Figure A.8: Comprehensive Feature Analysis 1
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Figure A.11: Comprehensive Feature Analysis 4
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Detailed Feature Importance: XGBoost - leq_dba
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Figure A.13: Comprehensive Feature Importance XGBoost



A.3. PCA and Feature

90

Detailed Feature Importance: XGBoost -
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Figure A.14: Comprehensive Feature Importance 5
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Detailed Feature Importance: CatBoost - zwicker_loudness_sone
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Cumulative Explained Variance Cumulative Explained Variance

Cumulative Explained Variance

Figure A.16: Grouped PCA Analysis Results - Cumulative Explained Variance Curves for Selected Feature Groups.
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A.4. SHAP
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Figure A.17: SHAP Analysis CatBoost leq_dba Comprehensive 1

Comprehensive SHAP Feature Importance: CatBoost - leq_dba
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Most stable feature: Segment PC4
Least stable feature: Green Ratio

Figure A.18: SHAP Analysis CatBoost leq_dba Comprehensive 2
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Comprehensive SHAP Values Distribution: CatBoost - leq_dba
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Comprehensive Feature Group SHAP Analysis: CatBoost - leq_dba

Feature Group SHAP Contributions (Top 10)
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Strategic Analysis

Group Analysis Insights:

0 Most Important Group:
color (1.286)

0 Most Consistent Group:
other (1.000)

=[] Most Directionally Biased:
indoor (0.527)

s Most Efficient Group:
perceptual (0.0881)

[ Strategic Recommendations:

 Top group shows variable importance
“ 4 high-efficiency groups
8 well-balanced groups

0 Focus areas:
1. Leverage color
2. Investigate indoor
3. Optimize perceptual

Figure A.21: SHAP Analysis CatBoost leq_dba Comprehensive 6
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SHAP Summary Plot Interpretation:

« Each point represents one sample's feature value

« X-axis: SHAP value (positive increases, negative decreases prediction)
« Color: Feature value magnitude (red=high, blue=low)

« Y-axis: Features ranked by importance

« Point spread: Variability of feature impact

Advanced Image Parameters:

« figsize=(22,16)

Extra large figure for maximum clarity

SHAP Statistics:
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Feature Value
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Model Information and Analysis Details:
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Figure A.22: SHAP Analysis NGBoost leq_dba Comprehensive 1

Comprehensive SHAP Feature Importance: NGBoost - leq_dba

Top 20 Features by SHAP Importance SHAP Bar Plot (Top 20)
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@‘i stical Summary

Comprehensive SHAP Statistics:

Total Features: 80
Mean Importance: 0.070458
Std Importance: 0.065076
Max Importance: 0.311487
Min Importance: 0.000000
Zero Importance: 1

Concentration Analysis:

Top 10% features contribute: 31.7%
Top 5% features contribute: 20.1%
Top 1% features contribute: 5.5%

Gini Coefficient: 0.4606
- Moderate inequality

Stability Analysis:

Average importance std: 0.014282

Most stable feature: Perception_More Depr
Least stable feature: Perception_More Bori

Figure A.23: SHAP Analysis NGBoost leq_dba Comprehensive 2
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Comprehensive Distribution Statistics:
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Samples: 50
8

Central Tendency:
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Kurtosis: 26.9837
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Directional Analysis
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Figure A.24: SHAP Analysis NGBoost leq_dba Comprehensive 3
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Comprehensive Feature Group SHAP Analysis: NGBoost - leq_dba
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Comprehensive SHAP Feature Importance: RandomForest - leq_dba
Top 20 Features by SHAP Importance SHAP Bar Plot (Top 20) Cumulative SHAP Importance
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Comprehensive SHAP Values Distribution: RandomForest - leq_dba
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.
= = posive (1566) e 01075 o
00025 w = Negate 2034) ST
s i +ue Median: 00010 3
| P
. o
2 s o s
. g .
| P .
> 210 4 . o
H B H . o °
H H : . R . B
H HE 3 o o
4 io v
: D
o i, e ¢ . by
| <.
2 . . .o
N o .
. o
o oo o
b . .
o - o a
o8 0a -z 00 oz ot o8 EY R 0s o6 o o ) © E)
AP Value Samplo ndox
SHAP Distribution by Top 10 Features Q- Plot (Normality Test) .
- s | Nomalty et pvaue: 0000000 B Soqmont.
Lors
° o Segment_
04 ° 04
Loso
[

02 L Loz
s vst_s e 5
Y = O A T [ B o IR B = 300 o0 §
H E e H

H
02 02 -0z
e
S 050
H 04
H
L 05
06
. s
10
S 2 o ' 2 3
Theorsalquaties
Top Festirea
SHAP Values Percentile Analysis ‘Sample SHAP Contributions (Extended) Comprehensive Statistics
o = Posiie Contbuton
o 2 || Nogatve Coniuton Compreensive Distribution Statistics:
Total SHAP values: 4,000
| Samples: 50
Features: 80
o1
5 Central Tendency
N £ Hean: 6003450
E ¥
HEY) H
H =
01 -2
=
02
S

&
Percontio

Mean negative: -0.0551

sample Consistency:
sun mean: -

975
Sample sun std: 1.4310
= Potential calibration issue

Figure A.29: SHAP Analysis RandomForest leq_dba Comprehensive 3



A4. SHAP

103

Cor 0379
Wiean |SHAP: 184

Top Features Comp

#1: Segment_PC3

o Sroet 0185 %
S e 8 -
0 Lo B
o
K -2
00 .
L,
H ©
: i
52 :
] [, §
® &
04 .,
-
-6
= ragmoos| -
ey
R e R
Feature Vo
#4: Segmentation_Complete
o =+ Trond (sops=0.129)
ey o o [
o e 12 P
o | s 228 »
03 °
1o
0
5 Lo 3
5 o 1
g H
° H
00
oo
01
[ 05
2
03
o o5 o0 o5 10 18
Feature Value
#7: HSL_S_Mean
03 =+ Trend (siope=0.108)
T G
s
0
1o
o
z 3
: Los 2
50 !
; K
@ &
01
oo
02 R
o
-
0

00 10 5

05
Feature Value

orest - leq_dba

SHAP Value

SHAP Value

-0

SHAP Value

ive SHAP Analysi

#2: Perception_More_Boring

=+ Trend (slope=0.224)
<o Quadratic it

899
ISHAPI:0.172

Fealure range: 3132

SHAP range: 0677

-5 -0 05 00 05
Feature Value

erception_More_Depressing

7 =+ Trend (sope=0.136)
< Quatraicft
-20 -0 05 00 05 10 15

Feature Value

#8: Yellow_Ratio

Corr-0.349 =+ Trend (siope=-0.038)
Mean |SHAPI 0.104 "7 Quacratic

Faature range: 5998 Quadratc it

SHAP range: 0510

oo

2 3
Feature Value

Feature Value

05

--10

Feature Value

05

L -10

15

Featura Valve

SHAP Value

SHAP Value

SHAP Value

08

#3: Segment_PC7
263 — - Trend (sope=0.005) e
Nioan [SHAPI. 0,160 <o Quadraic
Foature ange: 64 1 Sminton
SHAP range: 0625
-70
-60
-0
TH
30
20
10
o
o 2 a0 0 80
Feature Value
#6: PC1
cor 0680
Moan [SHAPI 0.106 .
Featurorange: 2 227 ’
‘SHAP range: 0,463 /
10
-5
oo £
H
05

=+ Trend (siope=0.13¢)

<o Quadratie it
-5 -0 05 00 05 10 15
Feature Value
#9: Earth_Pct
co-0940 =+ Trond (slope=0.024)
Moan [SHAPI 0052 " Quedra
Featurerange: 18761 Quedte it 175
SHAP ranger 0588
-150
-i2s
3
1003
A
H
£
75
50
25
°
00

00 25 50 75 100 125 150 175

Feature Value

Figure A.30: SHAP Analysis RandomForest leq_dba Comprehensive 4



A4. SHAP

Top Features Detailed Analysis: RandomForest - leq_dba
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Comprehensive Feature Group SHAP Analysis: RandomForest - leq_dba

Group Size vs Average Importance
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Comprehensive SHAP Feature Importance: RandomForest - zwicker_loudness_sone
Top 20 Features by SHAP Importance SHAP Bar Plot (Top 20) Cumulative SHAP Importance

Segment_PC5 0.0111 Segment_PC7 == 80% threshold
Segment_PC4 0.0113 Green_Ratio 90% threshold
Segment_PC3 0.0121 Plant_Pct — = 95% threshold
Color_Diversity 0.0123 Yellow_Ratio °
Segment_PC3 0.0125 Perception_More_Boring go8
Red_Ratio 0.0127 Segmentation_Complete g
Segment_PC2 0.0131 Perception_More_Depressin s
Segment_PC1 0.0134 Purple_Ratio 'El
Dominant_Segment 0.0137 Tree_Pct z 06
Segment_PC3 0.0146 PC1 <
PC1 0.0148 Segment_PC3 )
Tree_Pct 0.0163 Dominant_Segment 2 Egna/lytr_’eos needed:
Purple_Ratio 0.0169 Segment_PC1 2 04 9000’ 62
Perception_More_Depressin 0.0193 Segment_PC2 %
Segmentation_Complete 0.0233 Red_Ratio E o
Perception_More_Boring 0.0239 Segment_PC3 s
Yellow_Ratio 0.0243 Color_Diversity © 02
Plant_Pct 0.0279 Segment_PC3
Green_Ratio 0.0340 Segment PC4
Segment_PC7 0.0374 Segmem_m
0 0
0.008
Mean |SHAI mjz;g of Features
SHAP Impo! ancpdghsﬁ!i%utm#g e& Ee?«{ta %gmg?gfaQRyR%%I% sm ma&lt{ stical Summary
== Mean: 0.0099
Median: 0.0084 0.040

) Comprehensive SHAP Statistics:
wxe+ 95%ile: 0.0239

0.035 Total Features: 80
Mean Importance: 0.009900
100 — Std Importance: 0.006433
2 0.030 Max Importance: 0.037406
§ Min Importance: 0.001670
2 8 o 0.025 Zero Importance: 0
@ <
g T Concentration Analysis:
Q g £ 0.020 Top 10% features contribute: 26.1%
H Top 5% features contribute: 15.6%
g 0.015 Top 1% features contribute: 4.7%
40 Gini Coefficient: 0.3094
0.010 - Low inequality (features relatively equal)
20 0.005 Stability Analysis:
Average importance std 0.001755
Most stable feature:
0 0.000 Least stable feature: Yellow Ratio
0.026 -
Mean |SHAP Value| ’

Figure A.33: SHAP Analysis RandomForest zwicker_loudness_sone Comprehensive 2

Comprehensive SHAP Values Distributi rest - zwicker_| _sone
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Top Features Detailed y orest - zwicker_| _sone
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Comprehensive Feature Group SHAP Analysis: RandomForest - zwicker_loudness_sone
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SHAP Summary: SVR - leq_dba
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Comprehensive SHAP Feature Importance: SVR - leq_dba

Top 20 Features by SHAP Importance SHAP Bar Plot (Top 20)
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Comprehensive SHAP Statistics:
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Concentration Analysis:

Top 10% features contribute: 65.3%
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Top 1% features contribute: 16.1%

Gini Coefficient: 0.7853
- High inequality (few features dominate)

Stability Analysis:
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Comprehensive SHAP Values Distribution: SVR - leq_dba

Overall SHAP Values Distribution Positive vs Negative SHAP Values SHAP Sum per Sample
12 Mean: 0.2681
= Zoone = postve (364) .
175 - fean: 0.0034 - Negative (136) Sk 0548
I iet Hodian: 00000 o — o 3500)
150 .
. .
g o
125 I 8 g ° ° 0 © °
) oo
z z 5 © % °
£ 100 Z, H
& I & HE) L. s.
15 g
. E oo o o °
@ .
50 .
1. o
2
. | .
I Al :
o
- - - L ol m . i J -~ L 2
-0 EX 00 05 0 10 00 0 o 0 E3 E) “ E)
SHAP Vaus SHAP Value Sample Index
SHAP Distribution by Top 10 Features Q-Q Plot (Normality Test) SHAP Values Correlation (Top 15 Features) o
Normally tes p-vaue:0.000000 Soment
10 9 o .
Lors
. carn pe
05 05 - -050
° -
8 ° . 025
2 LI | £ . o
3 00 - — - - 4 2 o0 Segment_ &
H 0 2 000 §
H] H 4
H ° : Sogment 8
05 -05 4 [0
For
L4 --050
-10 -10 var
L -o7s
8 o o
100
> o - - [} 1 2 3
KGR & & & Theoreiclquatios
& e o & &S
o 5 Ed
Top Festures
'SHAP Values Percentile Analysis 25 ‘Sample SHAP Contributions (Extended) Comprehensive Statistics
ogh == Positive Contribution
015 = Negative Contibuion Comprehensive Distribution Statistics:
Total SHAP values: 4,060
Samples: 50
o010 Features: 80
§ Central Tendency:
s o Wean: 0.003351
5o H e S sneaan
3 £ Vode' regions [0.000, 0.000]
H &
5 o H 055 asarro
5 T07; 0080600
Range: 2.397512
005 Shape:
Skeuness: -4.4407
Kurtosis: 180.2864
Normatity p-vaiues 0.00000
010
' Directional Analysis:
o » 0 £} ® prey N e e e s s s e Positive ratio) 0.091
Porcentie R R NP N S
Sample

sample Consistency:
Sanple sun nean: 0.2681
Sanple sun std: 0.8446
2 Potential calibration issue

Figure A.40: SHAP Analysis SVR leq_dba Comprehensive 3



A4. SHAP

112

SHAP Value

SHAP Value

‘SHAP Value

o -0.024
Wiean [SHAPI: 0158

Top Features Comp ive SHAP Analysis: SVR - leq_dba
#1: Segment_PC3 #2: Fence_Pct
=+ Trend (sops=-0.000) Core 0500 =+ Trond (slope=0.027)
® ... Quadatict Mean SHAP: 0.111 +-+ Quadrati fit

S o
L
oo
-
S
:
0 §
H
. o0
N Lo
o
e L -100
. |- -200
w0 m o
Festor Value
#4: Plant_Pct
— - T dope-82)
. i G
ture range: 6,624 Olsic s
SHAP range: 0.628 6
N
®
s N
L]
3 -4
3
oS
B
L,
Lo
o 1 2 s s s
Feature Valus
#7: Segment_PC6
e — Tt =099
i ol I
“ealure range: 15.177 Qesic 2
S o
o
Lo
Lo 2
=
H
L.
B
Lo
o
| -
2 0 2 4 e O
Foature Value

Foalure range: 26 865 -25
02| SHinp rango. 1.591

20
E] 15 3
3 ]
5 g
H ]
F H
10
08
-10
s
12
°
°
14 o
o B 0 15 2 2
Feature Value
#5: Segment_PC5
030 | cor 0200 =+ Trond sop
Mean [SHAP|: 0.059 «+++ Quadratic fit %o
Foaturorange. 53255
SHiAP ango. 0292
025
-40
020
=
3 H
So1s 2
5 g
3 g
H §
H H
20
010
00s 10
000
o
3 10 2 ) W E)
Feature Value
#8: Segment_PC4
=+ Trond sope=-0.043)
S uadatent
"
0z
3
01
2
s H
o H
H S
& A 4
00 oo emmme o
Lo

12
Feature Value

SHAP Value

SHAP Value

#3: Earth_Pct

o 0833
Vioan [SHAP]

0086 °
Feature ange: 18 761 -175
40| SHAP range: 1203

-150
08
o -125
L 100§
H
H
75
50
25
°
F+ =+ Trond (sope=0.033)
° <o Quadtatft
oo
00 25 50 75 100 125 150 175
Feature Value
#6: Grass_Pct
cor 0302 — - Trend (sope=0.019)
02 | ean [SHAPI. 0059 ++++ Quadatic fit
Featurorange: 11380
SHAP ranga: 0716 o »
-03
-04
-0
°
o 2 4 6 10
Feature Value
#9: Segment_PC10
o 0007
Nian [SHAPY. 0,026 o
Featuro rango: 31 850
0.15 | SHAP range: 0295
10
kS
H

L]
005
L-10
°®
-0.10
-
=+ Trend (sope=0.000) °
< Quadratift
-5 -0 5 o 5 0 1
Feature Value

Figure A.41: SHAP Analysis SVR leq_dba Comprehensive 4



A4. SHAP

113

Segment_PC10

Segment_PC4

‘Segment_PCs

Grass_Pet

‘Segment_PC5

Plant_Pet

Earth_Pot

Fence_Pet

Segment PC3

Segment_ =-

Fence_Pc

Earhpe

Plant_Po

Segment_

Grass e

Feature Importance Ranking

016

006

002 004 008

Joosro
Joosoz

Joosar

oosea

o830
0665

o.1105

6 012 o1 o1
Mean [SHAP Value|

SHAP Values Correlation Matrix

.l R e
o

H

000 §

019 o1 017 ©
--025

033 006 033 --050

13

-1.00

Top Features Detailed Analysi

Feature Value

400

200

SVR - leq_dba

Feature Value Distributions

o
A L. = = o
> & < & <
& g o8 22
& &S r

Top Foatures
Interaction Analysis

Feature Interaction Analysis:

Strong SHAP Correlations (|r| > 0.3):
0.33

Feature Unigueness Analysis
Segnent PC3: High (0.175)

t
Grass_Pct: High (0.184)

Feature Value Ranges
nt_PC3:

Segnent_PC3:

Range: 895.057, Std: 139.881
Fence_Pct:

Range: 26.865, Std: 5.142
Earth_Pct:

Range: 18.761, Std: 5.232
Plant_pct.

Ra 824, Std: 1.537

nge: 6.
Segnent_PC5:
Range: 53.255, Std: 7.448
Grass_Pct:
Range: 11.380, Std: 2.371

SHAP Value

SHAP Value Distributions

o

8
JE
< 42‘6\
To Fesares

Features Summary

Top Features Sunmary:

1. Segnent PC3

58.0%
- Weak/complex relationship

2. Fence pct

Positive SHAP: 50.0%
- Strong negative relationship
3. Earth pet
mportance: 0.0865
Correlation: 6.833
Positive SHAP: 2

2.0%
- Strong positive relationship

4. Plant pct

9
74.0%
- Weak/conplex refationship

6. Grass pct

.6y
- Strong negative relationship

Overall Analysis:
Top 6 features contribute: 0.6688
Average inportance: 0.0743
Tnportance range: 6.1x

Figure A.42: SHAP Analysis SVR leq_dba Comprehensive 5




A.4. SHAP 114
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Comprehensive Residual Statistics:
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Dependence Tests
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Quality Assessment:

x Biased (mean = 0)

X Not normally distributed
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“ No autocorrelation

“ Honoscedastic
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Figure A.57: Comprehensive Residual Analysis 12

300



A 5. Residual Analysis

127

10

Residuals

Residuals

Cumlative Probability

Trend siope: -0.9844

Residuals vs Predicted Values

(Warning: significant trend)

i i Analysis: TabNet - z

25
Predicted Values.

Residuals vs True Values

— Empiical COF
== Normal CDF

6
True Values

Empirical vs Theoretical CDF

Residuals Distribution

4
Residuals

- — Nomatt
T Wean- 00574
04 L
03
H
H
02
01
00
2 o l s 1
Rosiduals
‘Standardized Residuals
o | outrs
>20:10 ° 2
o) 10
.
S 4
]
2 .
.
4 e
B . .
0o s o 2s a5 a0
Predicted Vlues
Absolute Residuals vs Predictions
0
oty esy 08
o amsisisiey
.
.
£,
B o
2 o ©
o
000 %8 o
5° o
o 8 o °
8 o0&
0 o L]
oo s o s a0

Predicted Values

Ordered Values.

Residuals

ker_loudness_sone

10

Q-Q Plot (Normality Check)

Theoretical quanties.

Residuals vs Observation Order

Autocorr: 00365,

100 150
Observation Order
Statistical Summary

Comprehensive Residual Statistics:

Basic Statistics:
Mean: 0.03742;

Distribution Tests
Normality test p-value: 0.000000
Jarque-Bera p-value: 0.0
> Residuals NOT normally distributed

Outlier Analysis
Outliers (>20): 10/289 (3.5%)
outliers (>30): 3/289 (1.6%)

Dependence Tests:
Autocorrelation: -0.0355
Heterosced. indicator: 0.0408

Quality Assessment
x Biased (nean # 0)
X Not normally distributed
7 Few outliers (<5%)
“ No autocorrelation
“ Homoscedastic
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Figure A.64: Comprehensive Residual Analysis 7
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Figure A.65: Comprehensive Residual Analysis 8
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Detailed Noise Analysis for Almere
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Figure A.66: Almere Detailed Noise Map
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Detailed Noise Analysis for Amsterdam
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Figure A.67: Amsterdam Detailed Noise Map

Detailed Noise Analysis for Eindhoven
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Figure A.68: Eindhoven Detailed Noise Map
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Detailed Noise Analysis for Groningen
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Figure A.69: Groningen Detailed Noise Map

Detailed Noise Analysis for Haag
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Figure A.70: Haag Detailed Noise Map
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Detailed Noise Analysis for Rotterdam
Rotterdam - LEQ QBA Levls

Rgtterdam - Zwicker Loudn
- N v P

ess Levels

=y

Loudness (sone)

Figure A.71: Rotterdam Detailed Noise Map
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Figure A.72: Tilburg Detailed Noise Map
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Detailed Noise Analysis for Utrecht
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Figure A.73: Utrecht Detailed Noise Map
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City-wise Noise Comparison Analysis
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Figure A.75: Cross-City Average Noise Level Comparison Chart
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