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Chapter 1

Introduction

1-1 Background

Unmanned Areal Vehicles (UAVs) are pilotless aircraft which are commonly used for civil,
military and commercial use. Some examples of its uses are monitoring crops, surveillance
of animals/borders, search and rescue, communications or package delivery (Koldaev, 2007).
There has been an increase in the use of these vehicles in the civilian areas as this technology
is more available in the market. It was estimated that the global spending on UAVs in 2009
reached $ 5.1 billion, and in the estimated span of 2010-2020, the cumulative Unmanned
Areal Vehicle (UAV) market will nearly be worth $ 71 billion (Brief, 2011).

The traditional package delivery methods are omnipresent and are an important aspect for the
current commercial aspect; however, it is an outdated 20th-century system, wasteful, and is
expensive. As a result, companies are working on different delivery technologies. Considering
the "DHL”, ” Amazon prime air” and ”Taco copter”, there has been some development with
the concepts of autonomously delivery drone systems (Milhouse, 2015)(Stolaroff, 2014). Using
the UAVs as a ”last-mile” package delivery hopes to change the outlook of the logistical
industry. Using UAVs as package delivery (Goh et al., 2017):

e Improves time management: since it may consist of active locating programs, thus easily
finding the target locations. The margin error would be lesser when finding the exact
target spot.

e Conserves Energy: these drones aid the workers to save their energy while making
deliveries. The risk of exhaustion is reduced, as the human involvement is replaced by
the devices

e Accessible to difficult locations: drones can be used to transport commodities in loca-
tions which may be problematic to reach by humans.

e Promote safety: As the drones are physically delivering the package, it reduces the
exposure of humans to possible hazardous situations when making deliveries.
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2 Introduction

These benefits allow the UAVs to be used in case of natural disasters to pass around supplies
and commodities to the people in need. This will be a useful tool in case of search and rescue
missions, where the people in need could be able to get essential supplies (such as medication,
water and food) delivered to them by UAVs.

Previously, UAVs had to be flown manually by a controller from the ground, while, there would
be additional operators for managing the sensors and missions. As there is much workload
involved with flying the UAVs manually, this leads to a high number of operators needed
to fly a few drones (Cummings, Bertucelli, Macbeth, & Surana, 2014). However, there is
research being conducted to change this aspect, and decrease the number of operators needed
to fly more drones, which will cause an improvement in commercial operations (Cummings
et al., 2014). To be able to control multiple UAVs with a reduced number of operators,
there needs to be a shift in the role of the human operators to a more supervisory control
(Mouloua, Gilson, & Hancock, 2003). As a result, a change from swarms and autonomous
control is expected; this results in the need for automation to deal with stochastic properties
or failure management. However, when dealing with stochastic properties, this could make
a situation over-constrained or "unsolvable” due to its dynamic nature. There may not be a
solution present for a given problem in a specific period during mission operation, resulting
in an algorithm to be not very efficient in circumstances like these. A human operator would
be more beneficial, as it may avoid specific constraint(s) to provide a solution in case of an
over-constrained problem in different stochastic situations.

1-2 Problem Statement

The shift in the role of the human operators to a supervisory control leads the human to
be out of the direct control loop. The inclusion of automation can result in a decrease in
Situation Awareness (SA), relying heavily on the autonomous system, and also the loss of
skills to operate the UAVs manually in case the automation is not able to operate successfully
(Chen, Barnes, & Harper-Sciarini, 2011). As a result, much research is being done to know the
best level of automation and achieve functional human-machine interactions. The versatility
and inventiveness of human beings often make a human-machine interactive system to solve
unforeseen situations (Woods, 2003). Thus, in case of an over-constrained scenario, it is
essential to provide the operator with the necessary information about the work done by the
automation and what will be achieved next by the automation. The operator should be able
to solve the problem and also be able to identify the problem. As a result, a design is needed
for the human-machine interface, which is advantageous to the needs of the operator for a
supervisory control (Cummings, Brzezinski, & Lee, 2007b).

Research (van Paassen, Borst, Ellerbroek, Mulder, & Flach, 2018) (Borst, Flach, & Ellerbroek,
2015) has been done on the use of interface design to aid the performance of the operator
by helping to coordinate between humans and automatic systems with the help of interface
design that shows the structure of the work domain in the manner which supports the human
knowledge-, rule- and skill-based problem-solving activities. The focus of these articles was
on the ground surveillance missions, where the visualisation of low-level information is put
effort on. Koerkamp et al. had worked on providing more integration of information which
would help in the higher level of mission planning (Koerkamp et al., 2019). His study was on
the development of the interface for the ground station for a multi-UAV system. Additionally,

A. Gupta Human Performance in Solving Multi-UAV Over-Constrained Dynamic Vehicle Routing Problems
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the ability of the human operator to be able to plan the mission in case of the disturbance of
the UAV or failure for a payload delivery mission. The mission that was implemented is the
Distance-Constrained Capacitated Vehicle Routing Problem (DCVRP), in which multiple
UAVs are able to deliver a payload to customers around. However, while respecting the
depot, payload capacity and distance constraint. The experiment was performed by students
of the university and resulted in showing that, during the failure of the UAVs, some of the
participants were not able to provide a solution to the scenarios. Besides, it was found that
when the optimisation was done autonomously, it took over 30 hours of solution time. As a
result, it is better to have a human-in-the-loop interface to be able to have a faster real-time
solution. Moreover, it is advantageous to have human operators, as the algorithm tends to
optimise the problem, whereas a human tends to satisfy. This feature would be beneficial
when there is no solution available from an algorithm possibility due to its over-constrained
nature. Thus, when there is no possible solution available for a particular constraint, a human
can relax one of the constraints and still be able to solve the problem. Therefore, the goal of
this research will be to analyse the approach taken by an operator for an over-constrained or
unsolvable situation, and then further analyse the approach to see the difference in solution
with different mission objectives, in case of different stochastic situations during mission
operation. A problem is considered over-constrained when all the constraints would not be
able to be satisfied, thus needed to relax one of them (Lau, Sim, & Teo, 2003) also, the
interface design was done by Koerkamp et al. (Koerkamp et al., 2019) will also be looked at,
to add more complexity to the interface design as he currently considered a generic vehicle in
his design.

1-3 Research Questions, Aims, and objectives

Even though the satisfy feature of the human is observed in this research, the optimise feature
needs to be observed to see the limit of the algorithm. There needs to be information collected
about Vehicle Routing Problem (VRP) to get a better insight into the different situations
possible with using an algorithm. The VRP algorithm is researched in order to get an insight
into the optimise feature of an algorithm. Additionally, a stochastic property during mission
operation is similar to the dynamic VRP. Thus there will be a focus on the dynamic algorithm
too. On the other hand, to understand the satisfy feature, the human performance on the
Traveling Salesman Problem (TSP) is observed. TSP is a variant of VRP. The performance
can show how well humans are to make optimal routes just by looking at the locations of
the customers and the possible vehicle routes (MacGregor & Chu, 2011). Besides, it would
provide an idea on the development of the experiment, as similar research would take place
in this research. Moreover, as the operator would be operating the system on a computer,
the supervisory control of the Multiple UAVs are considered. This will provide the necessary
information needed to know the different level of automation and workload that is required
from the human and the automation, which will be efficient for both the cases. Knowing about
the supervisory aspect will also aid in the design of the additional features in the interface of
the ground station of the UAV. The relation between human and automation is evaluated for
the successful functioning of the supervisory control of multiple UAVs. This aids in providing
information about the collaboration between the optimise and satisfy feature, thus evaluating
the necessary aspect needed to judge the amount of automation needed.
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The research framework, in combination with the research goal, can help formulate the re-
search question. The research question that is formulated is the following;:

How does the ecological ground station visualisation, for additional vehicle complexity, affect
the approach taken by a human to solve an over-constrained case for different mission ob-
jective in planning for distinct disturbances for a multi-UAV payload delivery mission during
operation?

As this research question includes much information that needs to be answered, it is divided
into several other sub-questions that need to be answered:

e What level of automation is required in the interface for it to be efficient to the opera-
tors?

e How does the visualisation help the human operator with the mission planning in case
of stochastic scenarios during mission operation?

e What are the limits and scope of a VRP algorithm currently present?

e How does a human recognise a pattern, and solve problems in a mission planning for
disturbance and failure management for a multi-UAV payload delivery mission?

e How should the tasks be divided between human and automation?

e What are the possible circumstances that may affect human thinking, thus affecting the
results of the solution?

e What visualisation can assist the operator for additional vehicle complexity?

The objective of this research is to observe how the satisfy feature of a human can solve
scenarios with no possible solution, depending on the different circumstances and distinct dy-
namic scenarios. In order word, how the human performs constraint relaxation dependent
on different circumstances. The human would be able to adjust one of the constraints to be
able to achieve the global mission. Additionally, test the use of human operators on different
stochastic cases during mission operation. Moreover, as the current interface developed by
Koerkamp has the use of one generic vehicle, there will be research done to add a layer of
complexity in the interface design (Koerkamp et al., 2019).

The objective will be achieved by initially evaluating the scenarios taken by Koerkamp, and
seeing how the variable vehicle specifications can alter the solution with the failure of the
vehicles, and then for unsolvable scenarios, how relaxing one of the constraints will be able
to give a solution for a simplified situation. Additionally, looking from theories regarding
ecological design, the interface developed will be updated for additional vehicle complexity and
then evaluated with the participants with over-constrained scenarios in different situations.

1-4 Research Scope

As discussed in Section 1-3, the aim is to observe how humans solve problems in case of an over-
constrained situation for different dynamic failures during mission operation. Additionally,
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another aim is to add a layer of complexity to the interface regarding the vehicle properties.
When taking into account the complexity of the vehicle and scenario, several options can be
considered to make the interface more realistic. The complexity of a problem could either
increase by adding more properties, or it might also occur by increasing the problem size, to
evaluate the scalability of the operator performance.

The complexity could either be added before the start of the mission (static), or after the
mission has started (dynamic), and these variables would be added to any problem dimension
as complexity may arise when the dimension of the problem is increased. Having a dynamic
problem may involve coming with a solution in real-time. In case of the static case, the differ-
ent load capacity, different customer demands, multiple depot and time window constraints
was not considered. Moreover, the wind conditions was not considered for the dynamic condi-
tion. In this research, the UAV will begin with battery deficit and changing customer location
will be considered. These stochastic properties are considered to see how an operator can
tackle the different stochastic situations during mission objective. Additionally, the scope of
this research is to add variable speeds and battery capacity to the existing problem. Also, due
to the over-constrained problem, the algorithms do not provide a quick solution, it is inter-
esting to understand the approach taken by participants when given a problem with more
vehicle information and different dynamic properties.

1-5 Report Structure

The thesis report is structured in the following way. Part I includes the thesis paper. Part II
includes all the appendices to the paper. The Appendices is structured as following: Appendix
A contains the Literature Study that is done to complete this research. Appendix B is
describing the Experiment Design that is subject to this research. Appendix C is providing the
Experiment Briefing which was given to the participant prior to the start of the experiment.
Appendix D is the Experiment survey that the participants had to complete during the
experiment. Appendix E displays the Results of the Experiments. Appendix F shows the
code architecture that is used during this research. Appendix G provides a final remark and
recommendations for furture research.
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Abstract—In case of finding an optimised solution in real-time, automation may not be a helpful tool to be able to select preferable
decisions and implement actions due to the complexity involved. More notably, in the case of an over-constrained dynamic vehicle
routing problem as there is no solution which can satisfy all the constraints in real-time with a limited number of vehicles. This also
resembles a real-life situation. However, as humans are good at problem-solving, there is a proposal to introduce a human to improve
the performance by presenting an interface. Thus, the automation will be used to acquire and analyse the necessary information and
display it in the interface, the human can then use this information to decide a preferable action and then implement it during mission

operation. An interface design from previous research, with additional features, was used for a payload delivery mission to control
Unmanned Aerial Vehicles. The human performance and the interface effectiveness is evaluated in an over-constrained dynamic
vehicle routing problem for different mission objectives. Results show that the interface supported the humans, and additionally, the
participants came up with a solution to satisfy the individual goal for a particular mission objective by relaxing specific constraints. It
could be established that humans can come up with a solution for the over-constrained problem in a limited time required, thus it is an
acceptable alternative which can be used to be able to come up with solutions. Having a human-in-the-loop is beneficial in case of a

vehicle routing problem.

Index Terms—Over-constrained Dynamic Vehicle Routing Problem, Interface Design, Mission objective, Human Control Performance,

Multi Unmanned Aerial Vehicles

1 INTRODUCTION

NMANNED Aerial Vehicles (UAVs) are pilot-less air-
Ucraft which have the potential to be used in many
logistical applications for civilian, military or commercial
purposes. Some examples of the use of UAVs are to monitor
crops, survey animals or borders, aid in search and rescue
operations, or deliver packages [1]. Increased availability
of UAVs in the market and their benefits have caused an
increase in their use [2]. The vehicles can be used to access
difficult locations, which may be problematic for a human
to reach. Moreover, UAVs promote safety for the workers, as
it reduces the exposure of hazardous situations to humans
[3]. However, when introducing multiple of these vehicles
in an area, there needs to be a route that each vehicle
can follow when there needs to be a delivery of goods to
multiple customers from a single point of origin, the depot.
Considering the objective function, an optimised route for
each of the vehicles needs to then be determined. This
problem is similar to a Vehicle Routing Problem (VRP) [4].

VRP are observed every day by a significant number
of distributors worldwide, and its solution have great eco-
nomic importance [5]. Recently, various suppliers and dis-
tributors are establishing the design of efficient strategies
for distribution to better the level of customer service. A
few market sectors, including delivery services, have also
reported that the use of an automated process of transporta-

A. Gupta is a graduate student, C. Borst is an assistant professor, and M. Mul-
der is a professor with the Control & Simulation Section, Faculty of Aerospace
Engineering, TU Delft, Delft, The Netherlands (e-mail: ankit1995@gmail.com,
c.borst@tudelft.nl, m.mulder@tudelft.nl).

tion makes a significant saving, which ranges from 5% to
20% of the total costs [5].

Over the years, there have been much insights and
algorithms obtained for the classical static deterministic
VRP [4]. However, in real life, the events may be more
dynamic. As during mission operation, there could be an
occurrence of stochastic events. For instance, there could
be vehicle failures, defects in the vehicle battery, or chang-
ing/additional /removal of customer locations [6].

Additionally, while optimising the routes, a limit on the
number of the vehicles along with the dynamic events,
may not enable a solution to satisfy all constraints while
satisfying all customers, which leads to an over-constrained
dynamic VRP [7].

One of the possibilities to retrieve a solution is to use
automation. But, there are several drawbacks identified
when using automation to solve VRPs:

1) Typically, automation is favourable in familiar situ-
ations, and for the aspects for which it is designed.
However, the execution of them in unexpected cir-
cumstances may be ambiguous. The algorithm for
optimisation needs to be formulated explicitly. Even
though in the decades of research, there is a great
variance of algorithms present, there remains a chal-
lenge in developing an algorithm which considers
every stochastic behaviour during mission opera-
tion. Thus, these theoretical solutions may not well
translate into real-life missions during a disturbance



(81 [91.

2) As VRPs require the most optimal solution in a
wide combination of possibilities, the algorithms
may take a great amount of time to solve. This might
not be an issue when the problem is static but, it
may become a liability in case of re-optimisation
during mission operation due to changing variables
[10] [11].

3) Algorithms usually assume an unlimited number of
vehicles when computing the optimised solution,
differing from a real-life situation. A limit on the
number of vehicles is one of the factors of an over-
constrained problem. The optimising algorithm will
be unable to produce the most efficient route while
satisfying all the constraints. In these cases, con-
straint(s) would need to relax to come up with a
solution which is known as constraint relaxation.
Additionally, contrasting mission objectives might
require the need to relax a different constraint [7]
[12].

When considering the different levels of automation,
having a high level of automation may be an obstacle in
case of an over-constrained dynamic VRP. The automation
may not be reliable enough due to its inability to solve these
situations, dependent on the different mission objectives
[13]. A proposed solution is to place a human in the control
loop to be able to make decisions and implement changes.
This will reduce the level of automation, and involves the
human operator during certain dynamic situations. Past
research shows that humans can perform well in solving
the Travelling Salesman Problem (TSP). Humans are good at
problem-solving and can produce a satisfactory (possibility
optimal) solution on the bases of visual depiction of the
location of customers and the routes of the vehicle [14], [15],
[16], [17]. In the case of over-constrained dynamic VRPs, this
versatile nature of humans can help them relax a constraint
during re-optimisation dependent on the mission objective
which provided to them.

To investigate this, this research paper utilises an inter-
face to be able to adequately represent the over-constrained
dynamic VRP to an operator in an experiment. The interface
would involve a certain level of automation, as it would
acquire and analyse the information, for the human to make
decisions with. The goal is to evaluate the performance of
the human along with the interface design.

For the experiment, the interface will demonstrate a
multi-UAV payload delivery system to represent a VRP. The
stochastic property presented in the scenarios will be battery
defects for the vehicles, and the addition of extra customers
to make an over-constrained dynamic VRP. Moreover, the
set of scenarios will be rotated 180-degrees to see a differ-
ence in the performance of diverse mission objectives. The
objective of the human-operator will be to relax constraint
caused by perturbations for limited vehicles during real-
time in a variety of mission.

The paper is composed as follows. Section 2 provides
information about VRP algorithms. Section 3 discusses the
interface that is used for the experiment. The experiment
is then explained in Section 4, after which, the results of
the experiment are delivered in Section 5. Moreover, the
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Fig. 1: Representation of VRP

discussion of the results is in Section 6. Lastly, Section 7
provides the conclusion.

2 THE VEHICLE ROUTING PROBLEM

As this research is observing a solution regarding the VRP,
this section explains the concepts which will be covered
throughout the paper, and the proposed implications that
will take place.

2.1 Definition

VRP can be defined as “the problem of designing optimal routes
from a depot to geographically scattered customers, subject to side
constraints” [4].

To depict this, let B = (N, A) be a graph in which N =
{1,..,n} is a set of vertices which represent the delivery
locations. The depot is represented as vertex 1, as observed
in Fig. 1. A expresses the set of arcs. Each arc (¢, j) where i #
J is a non-negative distance matrix C' = ¢;;. The ¢;; can be
associated as the travel cost or the travel time. Fig. 1 displays
the C' for c;; and cy; with all the other vertices. Moreover,
consider there are K = {1,..,k} vehicles available at the
depot. The VRP designs its least cost vehicle route in such a
way that:

¢ Each location is visited at least once by exactly one
vehicle,

o All of the vehicles start and end at the depot, and

e Any other side constraints are completed.

2.2 Distance-Constrained Capacitated Vehicle Routing
Problem with Depot Constraints

There is an extensive variety of VRPs, subjected to a par-
ticular set of side constraints. This paper focuses on the
Distance-Constrained Capacitated Vehicle Routing Problem
(DCVRP), with an additional capacity constraint at the de-
pot. In other terms the side-constraints will be the distance
constraint for each vehicle limited by its battery flight time
life, the capacity constraint which is the inability to deliver
to more customers than the vehicle payload limit and a
depot constraint, that limits the number of vehicles which



take-off and land simultaneously at the depot. Hence, every
vehicle is delivering a payload to the customers from the
depot and ultimately returns.

The DCVRP can be formulated as the following [4] [11].
The optimised route is determined while minimising the
total cost of the summation of the vehicle routes. However,
the cost function has some constraints which are consid-
ered. The vehicles are required to cover all the required
customers. Additionally, each vehicle is required to depart
and arrive at the depot once, and ensuring that the routes
are joined, rather than having separate routes. Due to the
capacity constraint, the vehicle is not able to travel to more
customers than the quantity of the payload and due to the
distance constraint, unable to travel to a higher distance
capacity than the flight time limit. The routes are then
determined for the most optimised route.

2.3 Dynamic Vehicle Routing Problem

The VRP is identified as dynamic if part of the problem is
unknown and revealed dynamically during the execution of
the routes caused by perturbations, thus requiring the route
to be re-optimised [9]. The sources of this dynamic nature
include: changing demands from the customer (cancelling
the request, change/add/remove the location of the cus-
tomer, or demands), increase in the travel time or distance
due to a defect, or failure of a vehicle [6]. There are particular
drawbacks when computing a dynamic problem. Firstly, an
algorithm is only able to handle a specific perturbation.
Thus, to come up with a solution, the problem needs to
be well-defined [18]. Secondly, the problems may require
a long time to solve due to the tremendous computational
time required [6]. Thus, there is a need for an alternative
method to solve a dynamic problem.

2.4 Over-constrained Vehicle Routing Problem

Most algorithms assume an unlimited amount of vehicles
and the objective then is to gather the solution that would
either account for the least number of vehicles or minimise
the travel cost [19]. In real applications, there is a resource
constraint on the number of vehicles present or additional
constraints caused by disturbances. This may cause the
problem to be over-constrained, where it would not be able
to deliver to all customers while satisfying the constraints
[20]. Most of the algorithms currently dealing with an over-
constrained problem focus on a static scenario, rather than
a dynamic VRP, due to the increased complexity with the
uncertainty involved because of the perturbations. Due to
the high number of possibilities and combinations that
can take place in an over-constrained dynamic VRP; the
algorithm may not be computationally viable.

Additionally, to come up with a solution, one or more
of the constraints need to be relaxed [12]. The algorithms
do not take into account the possibilities of relaxing a spe-
cific constraint dependent on a particular mission objective
during operation. In a case where there may be a priority to
provide payload to as many customers as possible during an
over-constrained situation, there may also be a requirement
to satisfy the payload limit and relax the depot or flight
time constraint. On the other hand, for a standard delivery
mission, there may be a higher priority to let the UAVs

3

reach the depot safely while not maximising the payload
constraint. Introducing a human in the loop allows for an
adaptable changing of constraints depending on the mis-
sion provided during an over-constrained dynamic vehicle
routing problem.

In real life, there is a possibility that there is an over-
constrained problem which occurs due to the addition of
dynamic elements in them. For instance, during real-time, a
stochastic dynamic element occurs and then due to the lim-
ited number of vehicles and the constraints, there is an in-
ability to find a solution while the vehicles are continuously
operating. This will be an example of an over-constrained
dynamic VRP. This makes the problem increasingly complex
and difficult for an algorithm to solve in real-time.

Proposed Concept of Operation

Automation has four different levels involved: 1) informa-
tion acquisition, 2) information analysis, 3) decision and
action selection and 4) action implementation [21]. Rather
than having a completely autonomous situation, where the
automation will be able to implement the optimised action,
it can be used as a tool to provide relevant information for
letting humans make a proper decision. So, it acquires and
analysis the information. In this case, automation is not used
for decision and action selection and action implementation
due to the complexity involved in the problem. For an algo-
rithm, there needs to be a well-defined problem, and there
exists an algorithm for a specific type of problem. But, when
observing for a vast range of problems, automation does not
deem to be beneficial. Humans, on the other hand, are good
at problem-solving and can adapt to new situations.

Due to the increased difficulty in finding a solution
for the VRP algorithm, there is a possibility to add a
human-in-the-loop, to be able to provide with a solution.
To understand the role of humans in solving problems,
in previous research, it is shown that when humans were
given a TSP problem and asked to provide the shortest
distance possible in a limited time period, they were able
to find a solution which is close to the solution provided by
the algorithm, also with the increasing problem sizes and
complexity [14], [15], [16], [17]. Using humans for different
scales as operators would be beneficial to the experiment
due to their problem-solving skills. For an over-constrained
dynamic VRP, the human would be able to steer the solution
in a particular way where the algorithm would not seem
beneficial. Using the solving skills of the human, they would
be able to provide a solution in such a manner which would
suit a specific mission objective. But, there is a doubt about
the increasing number of waypoints which might affect
the ability of the human to solve a problem. Additionally,
the experiments mostly considered a single generic type of
vehicle, but, there is not much information available about
the effect of a fleet of vehicles in the information.

To be able to solve the routes optimally, the humans
would require a proper interface which would be able to
provide the necessary information in real-time to be able to
make decisions. As discussed, automation or optimisation
algorithms do not perform well in an over-constrained dy-
namic VRP, but, there could be a certain level of automation
provided in the interface for the human to make informative



decisions. Instead of letting the automation calculate the
solution, it can aid in visualising the problem and the
constraints. Thus, the automation would be able to compute
the constraints and visualise the “solution spaces”, but the
human would be able to make the control actions to be able
to solve the problem accordingly.

This paper will be a helpful tool in practical relevance as
it considers possible implications that may take place in real
life, and inspects the results of a human solution with vary-
ing dynamic aspects. Further, looking at the performance
of humans with different mission objectives and testing the
capability of the human to come up with a solution in a
limited period.

3 INTERFACE DESIGN

An interface is required to be able to perform the human-
in-the-loop experiment. It should be able to provide the
necessary information, to efficiently re-optimise the route.

3.1 Scope

This study considers the over-constrained dynamic VRP cor-
relating to a DCVRP. The high-level constraints examined in
the mission will be UAV flight time limit, the UAV payload
capacity, and the depot capacity. The problem will include
a single depot, and the vehicle will be permitted to leave
the depot and arrive once. The mission objectives observed
in the experiment is restricted to two varied applications.
One is to deliver essential resources during a search and
rescue mission, and the other is to deliver coffee beans. The
dynamic elements introduced in the mission operation was
battery deficiency and undelivered customers. To observe
the difference in the reaction of different UAVs, the fleet
contained two-vehicle type. The complexity was controlled
according to the payload capacity and the perturbation
severity. The dynamic elements were the addition of cus-
tomers and battery deficiency. This research left the weather,
vehicle separation requirements (including the separation
between the vehicles or the terrains), airspace restriction,
the characteristics of the UAV flight performance and the
communication range between the vehicle and depot, out-
side the limits of the research.

3.2 Information Requirement

Based on the properties of DCVRP and the research on
human performance in dealing with the TSP, the interface
would require the following to be able to help the operator
in achieving its goal:

1) A scaled-map visualising the customer location and
the depot.

2) Payload capacity for each vehicle.

3) Routes taken by the vehicles.

4) The time of arrival for the vehicles, to visualise the
limit of the depot capacity.

5) Battery level of each vehicle.

6) Ability to differentiate the fleet of vehicles used.

The interface developed by Koerkamp et al. is used as
it provides most of the parameters which would aid the
human operator to solve the over-constrained DCVRP [22].
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This design for the interface was inspired by a design from
air traffic control, which focused on the spatio-temporal
arrival management of aircraft, and the perturbation man-
agement in real-time. Also, in the experiment conducted in
the previous research, the interface was deemed beneficial
for the human-operators in finding an optimised solution in
case of failure of UAV in real-time with an increase in the
problem size. However, points 5) and 6) from the list had to
be added to the interface.

3.3 Additional Aspects Added to the Interface
3.3.1 Battery Level of the UAV

As defined in the scope, one of the dynamic elements in the
experiment was the battery deficiency, there was a need for
a battery icon to be able to visualise the UAV flight time.
The battery indicator from Fuchs et al. was adapted to this
interface, as it indicated the required performance of the
system (required battery level), the expected performance
of the system (predicted battery level) and lastly, the current
performance of the system present during the mission (cur-
rent battery level) [23]. Using the battery icon, the operator
will be able to observe the amount of irregularity during
the mission, and then be able to formulate and implement a
solution accordingly.

To inspect the battery condition, an indicator was created
as seen in Figure 2b. The height of the coloured bars repre-
sents the amount of battery that was present in the vehicle
ranging from 0% to 100%. The dashed lines represent the
battery capacity for future customer locations. The colour of
the block would go red below the battery icon to represent
the lack of battery present to go to that location or be green
otherwise.

The green represents that there is sufficient battery to
cover all the waypoints. Anything below the red line rep-
resents the extra battery that is left in the battery after
reaching the depot, as it can be seen in UAV 1 in Figure
2b. If the block turns red, the waypoint would not be able to
be reached. When considering UAV 2, it would safely cover
D5-D8 but, when the vehicle is going towards the depot, the
battery will drop below the icon as it represents that there is
not enough energy to ensure safe arrival to the depot. The
same information can also be visualised in the map view, as
depicted in Figure 2a also.

This is implemented in the interface by considering the

following relation:
a, =Y i 1)

i=1
where n = {1,..., N}, N is the total number of waypoints
which the UAV is travelling too. The specific waypoint (n —
th) of the battery indicator will turn red when a,, will exceed
the total energy (t;otq1) in the battery, or also visualised by:

ap > ttotal (2)

For short term memories, humans perform better with
relative information than absolute based on the research by
Henson [24]. Thus, the battery icons will show the battery
levels relative to the highest amount of battery in the fleet,
as the operator would be able to make a judgement about
the battery remaining relative to the other vehicles.
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(a) The map view shows the area that can be covered by
the two UAVs. The leg where UAV 2 will run out of battery
is visualised by red.

UAV 1 UAV 2
|_| 100 % 100 %

D5

D1 D6
D2

D7
D3

D4 D8
Depot

0% 0%
Depot

(b) UAV 1 has enough energy to visit all the waypoints,
however, UAV 2 does not have not have enough energy to
reach the depot after delivering to customer D8.

Fig. 2: Side by side view of the map view along with the
battery indicator. The battery icon is depicted similar to the
battery view.

A

Fig. 3: The use of different icons to represent the difference
in the type of vehicle used.

3.3.2 Icons for the fleet of vehicles used

As each scenario included two types of vehicle which had
different speeds and battery capacity, there needs to be a
differentiation between them. As humans respond well to
different icon sizes, it was adapted to the interface usage
[25]. The vehicles used in this experiment were the follow-
ing: one of them had a maximum flight time of 900 s and
airspeed of 20 m/s, and the other vehicle had a maximum
flight time of 750 s and an airspeed of 13 m/s.

Figure 3 displays the varying size of icons that were
used. The more prominent icon will represent the vehicle

5

with higher battery capacity and higher speed than the other
alternative vehicle.

The visualisation of the flight time constraint is done
using an ellipse as a guidance reference in the map view. The
definition of the ellipse can be seen in Figure 4. From this
representation, a is the semi-major axis, b is the semi-minor
axis, ¢ is the linear eccentricity and (c1, ¢z) is the centre.

Fig. 4: Definition of the ellipse

The ellipse can be defined as

(c1+a-cosf,co+b-sinh),0 <6 <2rm

In addition, the semi-minor axis, b can be defined as

b2 = g2 — 2
The semi-major axis a, is the sum of ¢4yq4i1able and half of
the sum of the flight time between F and F5.
tavailable can be defined as:

tavailable = ttotal - tused - tflightplan (3)

tiotal is the total time that the UAV is beginning with. In
this case, there are two vehicle types with random battery
deficiency defined in the beginning. When the vehicle goes
from one waypoint (z1,y;) to another waypoint (z2,y2),
the time of the vehicle reduces by Equation 4, which is the
tused

tused =t1—2 = v /(22 — 21)2 + (y2 — y1)? 4)

Lastly, tfiighipian is the total time that the vehicle is
planned to travel still. Thus, using all these variables would
provide the tqyqitabie that is left. The centre (c1,c2) is de-
termined as the halfway between the two-waypoints. So,
every time a vehicle passes a waypoint, the envelope of the
vehicle reduces by the distance that is travelled and the total
distance it has to travel. The ellipse needs to be oriented
dependent on the direction of the waypoints. The ellipse is
oriented by using the relation:

2’ =x-cosf —y-sind

Yy =y-sinf 4y -cosb

With the presence of different vehicle speed and flight
time limit, the ellipse will be visualised differently for the
different type of vehicles according to these formulas.



3.4 Layout, Structure and Functionality of the interface

Figure 5 gives a representation of the layout and the struc-
ture of the user interface design for a particular example.
This scenario includes two vehicles with four payload levels
each to deliver to five customers from the depot. In Figure
5a, the interface has four separate views. The map is seen
in &) , the payload detail in and the timeline in (C).
The battery view will appear at (D) when clicking on an
individual vehicle. At ¢, (Figure 5a), the interface shows the
mission overview by displaying the customer (D and the
location of the depot 2. Besides, it shows the pre-optimised
flightplans (3 of the vehicle. The dashed lines mean that the
UAV has not left the depot yet.

At t; (Figure 5b), the first UAV has left the depot, and
is flying towards the first customer. The first UAV left from
the depot (%), and is flying to the first customer 6. The
arrival time of the vehicle to the depot is indicated in the
timeline view with a block (7). As seen in the map view,
three customers - D1,D2,D5- appear who do not have a pre-
optimised route planned @. The colour of the UAV icon
is similar to the arrival time block corresponding to the
payload level of the vehicle. In which bright yellow is used
when all the payload is available, dark yellow is used when
the payload capacity is reduced and amber when there is no
more payload available.

At to (Figure 5¢) the departure of the second vehicle
occurs. The difference in the size of the icons would help
the operator to identify the different type of vehicles that are
being used. It can be observed in the timeline view ), the
arrival time overlaps with the first UAV, and so exceeding
the capacity of the depot. This can be avoided by either
stretching the path of the vehicle so that it would reach later,
or divert the path by delivering to undelivered customers.
Due to the overlap in the depot, the UAV icon along with
the arrival time block in the interface is coloured red to bring
it to attention to the operator and take a particular action.

Now that the two UAVs have launched, the user can use
these vehicles to change the trajectory to the undelivered
customers.

At t3 (Figure 5d) one of the UAVs is selected as indicated
by the green colour of the UAV icon and the arrival time
block. When the vehicle is selected, the payload view @
indicates the payload that is available for the vehicle. The
map view displays the envelope around the guidance
reference, which shows the area that can be reached with the
energy left. This is the locomotion constraint of the vehicle.
The battery icon @ indicates the battery level of the vehicle.
The battery does not start from the top due to the battery
deficiency that is present. Thus, the operator would have to
make a decision using the current level of battery level.

Figure 5e displays the flightplan leg which is selected at
t4 and the corresponding flight time constraint as indicated
by @ in the map view and the timeline view, in which the
vertical line displays the maximum flight time. Moreover,
the particular segment is also selected in the battery view
to represent a single leg. The red UAV icon and the arrival
time overlap displays depot congestion.

At ts (Figure 5f) the customer D2 is included in the
flightplan, indicated by a dashed line @ The battery icon
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includes the additional waypoint , and the payload level
is then decreased by one at (17).

In tg (Figure 5g), the modified plan is confirmed, and the
arrival time changed to (18).

At t7 (Figure 5h) displays that the other UAV has enough
capacity to go to D1. The battery capacity of the vehicle
is much lower than the capacity of the other vehicle.

At tg (Figure 5i) the flightplan leg is selected, in addition
to the flight time constraint, the required delay in clearing
the depot arrival time problem as conferred in . The UAV
would have to travel outside the red circle to avoid depot
congestion.

In tg (Figure 5j), customer D1 is added to the flightplan
as there is enough battery to cover that region, and it
would successfully avoid the depot congestion. The effect of
adding the waypoint to the battery is seen in @, a warning
for zero payloads is visualised in @

In 19 (Figure 5k), the updated flightplan is confirmed.
The vehicle colour changes to amber to signify that there
is no payload left in the vehicle. The vehicles managed

to deliver to 2 more customers, using an efficient route ,
while satisfying all the constraint.

However, there is still one customer left without the
payload. In this case, even though one of the vehicles has
enough payload left to provide to customer D5, there is not
enough battery left to deliver the payload and reach the
depot as it can be seen in in 11 (Figure 5l).

In such a case, the operator does have an option to
relax the battery constraint such that it would deliver to the
customer, but maybe not be able to reach back to the depot.
So in t12 (Figure 5m), the operator then selects a particular
flightplan leg to deliver to customer D5. t13 (Figure 5n)
displays the effect of adding customer D5 to the flightplan
leg. The red flightplan and the red battery bar shows the last
part of the plan will not be able to occur. So even though the
vehicle is delivering to the customer, there is not enough left
to reach the depot as it can be seen in @ Lastly, t14 (Figure
50) displays the confirmed flightplan, and the red bar in the
timeline view and the red line in the map view to visualise
the lack of battery to cover the last leg.
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(k) t10: Confirmed flightplan

(1) t11: Select UAV

Fig. 5: Step-by-step overview of the interface workings for a simple scenario.
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Fig. 5: (continued) Step-by-step overview of the interface workings for a simple scenario.

4 EXPERIMENT

To examine human performance in over-constrained
DCVRP in different mission objectives, an experiment is
performed with the human involved. The experiment eval-
uates the approach taken by the participants in different
mission objectives for a similar DCVRP, but with varying
scalability. The over-constrained DCVRP was constructed
and configured in a manner where the interface would be
able to aid the human operator. The objective and subjective
data from the experiment are gathered to conclude the
interface usage and the performance of the mission.

4.1 Participants

The experiment was completed by sixteen participants, who
were graduate students or staff from Delft University of
Technology (TU Delft), with an average age of 25.38 (SD =
7.1923). The group had fourteen males and two females. Ad-
ditionally, eight of the participants considered themselves as
regular gamers, and the rest did not.

4.2

The experiment had three with-in subject independent vari-
ables, which were the following:

Independent Variable

1) Payload Capacity: The problem size of the over-
constrained DCVRP dependent on the payload ca-
pacity of a single UAV. There were four payload
levels used: 4, 5, 6 and 7 payloads for each vehicle.
Each of the vehicles was provided with the same
number of payloads in every scenario

2) Perturbation Severity: To produce an over-
constrained problem, each scenario was either given
a single low-level vehicle, or double low-level ve-
hicles at the beginning of each scenario. The low-
level vehicle was defined as the vehicle which will
initially deliver to 2 customers and has the least
amount of battery capacity. In other words, at the
beginning of each scenario, this vehicle will have the
highest payload margin-left with the lowest amount
of battery.

3) Mission Objective: As the aim of the experiment was
to observe the difference of performance in varying
mission objectives given to the operators, there were
two objectives chosen. The initial one was a search

and rescue and the other one was to deliver coffee
beans.

The payload capacity variable sets the size of the sce-
nario, which is provided to the participant. Using the
number of payload capacity, the number of customers and
the quantity of the vehicles can then be determined. The
scenarios were designed in a manner which would allow
enough payload capacity in each of the vehicles to be able
to serve the undelivered customers. Increasing the payload
in each scenario would lead to an increase in the number of
customers in the area, and also the number of vehicles which
needed to be operated by the operator. The reason for this
variable was to first, observe the scalability of the interface.
This can provide information on how the information is
perceived with the increased number of vehicles and cus-
tomers. Secondly, to investigate human performance with
the different complexities of problems provided. Thirdly, to
observe if the strategy taken by the operator differs with the
difference in the problem size.

The perturbation severity decides the complexity of the
problem by having vehicles with the least amount of battery
with the most significant number of payload margin at
the beginning of the scenario. This variable was used to
define the complexity of the over-constrained DCVRP. In
the case of a single low-level vehicle, there was one vehicle
which delivered to two customers initially and had the
least amount of battery capacity. Thus the user would lose
at least one vehicle if they choose to serve all customers
in a scenario. Which means that it is possible to serve
the payload to all the customers, however, for one of the
vehicles, there may not be enough battery to reach the depot
after delivering to its last customer safely, or the user would
have to accommodate as many customers as possible while
considering the amount of battery and the depot conditions,
to ensure a proper arrival to the depot. Whereas, in the
double low-level vehicle scenarios, there are two vehicles
present which deliver to two customers and have the least
amount of battery capacity. The participant will be unable
to deliver to all customers without meeting the battery
capacity of at least two vehicles. The reasoning behind this
variable was to investigate the effect of the different scale of
perturbation on the solution quality provided by the human.

The mission objective is provided to the operator to
observe which constraints the operator chooses to relax



TABLE 1: Experiment Condition - Mission (M), Number of low-level vehicle (L) and Payload (P).

Mission: Search and Rescue Mission: Delivery Coffee Beans
Payload4 Payload5 Payload 6 Payload?7 | Payload4 Payload5 Payload 6 Payload 7
Single low-level vehicle | MIL1P4 MIL1P5 MIL1P6 MIL1P7 M2L1P4 M2L1P5 M2L1P6 M2L1P7
Double low-level vehicle | MIL2P4 MI1L2P5 M1L2P6 MIL2P7 M2L2P4 M2L2P5 M2L2P6 M2L2P7

dependent on the mission provided. The mission goals were
chosen to observe the constraint priorities that are set. The
two contrasting missions are chosen from the applications
of multi-UAVs.

In case of a search and rescue mission, there may be a
higher relevance to provide payload to as many customers,
and lesser on the well-being of the vehicle, while it may be
the other way around when delivering coffee. To observe
the difference in the effect of mission objective for the same
scenario, one set of the problem was given for one of the
mission objectives, and provided for the second mission
objective.

In search and rescue, the participants were asked to solve
the experiment with the following description:

There has been an avalanche in the mountains, and there are
people stuck in the area around. A Search & Rescue team is then
called upon to rescue the victims. However, in the meantime, the

team is providing the victims with some necessities, such as
medicine, food and water to be able to help them survive longer.

On the other hand, the delivery of coffee beans mission
entailed the following:

Every morning, a company delivers fresh coffee beans to various
customers around the area.

This variable is chosen to see the different constraints
that are prioritised dependent on the mission objectives
are given. As this is an over-constrained problem, it is
interesting to see which constraints will be prioritised by
the human. Additionally, it would also be possible to see
if there is a difference in the results provided by the hu-
man if they are given a mission objective. Furthermore,
the over-constrained DCVRP has been found challenging
for optimisation algorithms, as it is difficult to constraint
relax dependent on the mission objective provided during
operation.

4.3 Scenarios

The participants were asked to mitigate the effects caused
by battery deficiency and additional customers. While as-
signing the unassigned customers, the participants had to
relax constraints as prioritised by themselves, according to
the mission goals provided. The constraints considered in
this experiment were the flight time of the vehicles, payload
capacity of each vehicle and the depot capacity. Each mis-
sion was given eight different experiment conditions, see
Table 1. To investigate the effects of the mission objective,
the experimental conditions for the two missions were sim-
ilar. However, to avoid recognition, the set of experimental
conditions for one mission was rotated 180-degrees with
respect to the other mission. Thus, each participant was
given 16 experiment conditions. As both the missions have
similar experiment conditions, Table 2 defines the lists of
customers and number of vehicles per condition for one of

TABLE 2: The vehicles and customers per condition

nCustomers | nVehicles
M1L1P4 14 4
MI1L1P5 23 5
MI1L1P6 34 6
MI1L1P7 47 7
MI1L2P4 29 8
MI1L2P5 46 10
M1L2P6 67 12
MI1L2P7 92 14

the missions, which is dependent on the payload capacity
and the number of over-constrained vehicles.

To minimise the carry-over effect between the scenarios,
a balanced Latin square was utilised to sequence the exper-
iment conditions.

Each scenario lasted for five minutes. In all the scenarios,
a batch of UAVs was deployed every thirty seconds (equal
to the depot service time). The number of UAVs deployed
was equivalent to the depot capacity. The experiment only
allowed lateral waypoint modification control. Additionally,
there were two types of vehicles used in the scenario. One
of them had a higher maximum flight time of 900 s and
airspeed of 20 m/s, and the other vehicle had a maximum
flight time of 750 s and an airspeed of 13 m/s. In case of an
even number of vehicles, the two types of vehicles were
equally divided, whereas, in the case of an odd number
of vehicles, there was one more of the lower performing
vehicle.

To create the scenarios for the experiment, there was
an off-line VRP optimisation algorithm developed, which
allowed the inputs for different properties of vehicles used
and varying payload level. The scenario was first optimised
for the static case (before the addition of customers during
mission operation). The level of customers, in this case, was
determined by the payload margin for each of the vehicle
and the number of the low-level vehicles. Disregarding the
low-level vehicle, the rest of the fleet was given a payload
margin of one during mission operation. The number of
customers for the static condition was given in Table 3. Once
the number of customers was determined, the location for
them was then randomly generated. A minimum distance
criterion was applied to avoid the cluster of locations in a
particular area. The optimising algorithm then routed this
static scenario considering the DCVRP. For the algorithm,
the Google Optimisation (Google-OR) Tools was adapted to
feature the variable fleet capacity and properties [26]. The
Google-OR tool is a software which is suitable to solve the
combinatorial optimisation problem. The algorithm begins
by first finding the route from the start node, and then it con-
nects to the nodes which produce the lowest route section.
The next node is then added by iterating from the previous
node position while considering the constraints. The guided
local search algorithm is used to find the solution for the



TABLE 3: The number of customers per condition for the
static case.

nCustomers in the static case
MI1L1P4 11
MI1L1P5 18
MI1L1P6 27
MI1L1P7 38
M1L2P4 22
MI1L2P5 36
M1L2P6 54
M1L2P7 76

TABLE 4: Control variables.

Variable Value

UAV 1 - Max flight time [s] 900

UAV 1 - Airspeed [m/s] 20

UAV 2 - Max flight time [s] 750

UAV 2 - Airspeed [m/s] 13

Service Time [s] 30

Scenario Duration [s] 300

Payload Margin for high-level vehicles [-] 1
Sector Size [m?] 5000 x 5000
Depot Capacity (Rounded to the nearest integer) | 30% of nVehicles

algorithm, as it is considered an efficient solution for the
VRP [27].

Once the static case is represented, the stochastic ele-
ments need to be added. The rest of the customers were
then placed randomly around the area. An example of
the scenarios is shown in Figure 6. Figure 6a displays
the condition M1L1P4, which shows that for the search
and rescue mission objective, there is one low-level vehicle
(UAV 1) which is delivering to two customers, and each
vehicle has four number of payloads. Condition M1L1P4
will be rotated by 180-degrees to create condition M2L1P4
for the delivering coffee beans condition. Figure 6b shows
the condition M1L2P7, which displays that for the search
and rescue mission, there are two low-level vehicles (UAV 1
and UAV 3), and each vehicle has a total of seven payloads.
Condition M1L2P7 will be rotated by 180-degrees to create
condition M2L2P7 for the delivering coffee beans condition.
The battery defect was randomly selected for each vehicle,
but ensuring the low-level-vehicle had the lowest amount
of energy in the beginning. To validate if the scenarios were
over-constrained, it was run in the optimising algorithm to
see if the resulting scenarios indeed produced no solutions.
This was also checked with other solution strategies offered
in Google-OR tools.

4.4 Control Variable

The control variables considered in this experiment are the
depot service time, sector size, depot capacity, duration of
the scenario, UAV fleet, and the amount of extra payload
that is provided in each vehicle after mission operation. The
overview of the control variables can be seen in Table 4.

4.5 Dependent Variable

To examine human performance, along with the scalability
and functionality of the interface, the following dependent
variables are observed and recorded:
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Fig. 6: Two of the scenarios which were given to the partici-
pants.

1) Workload: Rating Scale Mental Effort (RSME) scores
and the total amount of clicks on the map-view of
the interface. The RSME score was provided by the
participants after the completion of each scenario in
the survey, and the clicks are registered to see the
number of changes that are done during the mis-
sion. Only the clicks for the map view are measured
as the changes in the routes were done through this
view.

2) Control Performance: The total distance flown, total
path stretch waypoints, relative payload remaining
before the mission and the relative energy margin
after the mission are complete. Total distance is the
sum of all the distance flown. The total path stretch
waypoints are used to understand the delay alloca-
tion. The relative payload remaining at the end of
the mission, in comparison with the total payload,
will provide us with the information about which
scenarios used the most payload and the relative
battery margin, in comparison with the total battery
in the beginning, is the capacity that is left after the
vehicles arrive at the depot, to show the robustness
in the solution.



3) Constraint Priority: Performance per constraint, and
ranking provided for the constraints for each sce-
nario. The performance per constraint measures the
percentage of the constraints that is satisfied in
each scenario. And the rank priority given for each
constraint was given by the participant after each
scenario in the survey.

4) Strategy: Satisfies versus optimise. The strategy
done by the participant was given in the survey
after each scenario is completed. Also, the method
taken to solve the problem was noted down during
solving.

5) Display usage rating for the different views in the
interface: Map, timeline, battery, and the payload
view. This rating was given by the participants after
each scenario was completed in the survey. Along
with the participant comments considered at the
end of the experiment by each participant.

4.6 Procedure

In the beginning, the participants were made to perform
an intake survey. The survey included questions about
age, gender, language and if they considered themselves as
gamers. Additionally, to test their spatial reasoning, the sur-
vey consisted of six image-based questions. This provided
information about the participants, as performing poorly in
this would affect the experiment performance. The mean
score of the reasoning test is 4.75 (SD = 1.2383) out of a
total of 6. Even though the survey was not timed, and the
participants were not asked to perform it is as quickly as
possible, the meantime to complete the survey was 309.12
seconds (SD = 121.42). As the mean score is greater than 3
out of a total of 6, it was considered substantial to partake
in the experiment.

After the survey, the participants were given a brief-
ing manual which explained about the over-constrained
dynamic VRP, the goal of the experiment, the experiment
setup, the control input, and each view of the interface.
The participants were asked to alleviate the effects caused
by battery defects and additional customers, causing it to
be an over-constrained problem during several multi-UAV
payload deliveries for two mission objectives. The control
goal of the experiment is to relax constraint(s) according to
there choice and optimise it for the shortest route. The brief-
ing manual also consisted of instructions, which described
the training scenarios. The participants used this instruction
with the interface to have a better idea about each of the
views.

The training had nine scenarios, which were untimed.

o The first three scenarios familiarised the participants
with each of the view and the controls that are
involved in it.

e The fourth scenario emphasised the importance of
differentiating the battery icon in the interface.

e In the fifth scenario, the participant was invited to
try out different combinations for a simple over-
constrained dynamic DCVRP.

o The next two scenarios explained the mission objec-
tives provided and tasked them to relax constraints
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and solve the problem with a single low-level vehi-
cle.

e The next two scenarios provided more examples of
solving these kinds of problem with the different
mission objective and double low-level vehicles.

Beginning with the last four training scenarios, the par-
ticipants were tasked to complete a post-scenario survey
after each run. The post-run survey consisted of a Rating
Scale Mental Effort (RSME) score [28].

Additionally, they were asked to provide a relative
amount of time interacting with the four different display
elements. Next, the participants were required to rank the
depot, payload, and flightplan constraint according to their
choice. Finally, they were tasked to classify the approach
taken to solve the problem, i.e., whether the approach taken
by them is classified as satisfies (achieving a solution that
reaches the overall goal) or optimise (achieving the best
solution that reaches the overall goal).

After the training was completed, the participants were
able to start with the experiment. The experiment run time
duration for each scenario was five minutes. After each run,
the participant would fill out the post-run survey, as done
during the training scenarios. The experiment then con-
cluded with a post-experiment survey. The survey inquired
the participants on the usefulness of the different views in
the interface: the map, battery, timeline, and payload view.
Additionally, the participants were made to comment on
the clarity and usefulness of the colour in the display, and
also the use of the different icons to signify the different
UAV type. Conclusively, the participants were permitted to
express or suggest any aspect about the interface or experi-
ment which was not covered in the previous questions.

4.7 Apparatus

The experiment took place in the Air Traffic Management
Laboratory (ATM Lab) at the Faculty of Aerospace Engi-
neering at Delft University of Technology (TU Delft). The
interface was presented as a software to the participants on a
30-inch display (60-Hz LED, 2560 x 1600 pixels). The display
was placed in front of the participants, and the control input
was done on the keyboard and the mouse.

4.8 Hypothesis (H)
H-1

It was hypothesised that the increase in the payload capacity
and an increase in the perturbation severity leads to an in-
crease in the workload, as if the information in the interface
increases, it will be more difficult for the participant to be
able to come up with a solution, and so increasing the work-
load for the participant. Additionally, there would be a need
for more re-routing with the increase in the payload and the
perturbation. In case of the search and rescue mission, there
would be a higher workload as the participants would most
likely attempt to provide the payload to as many customers
as possible, resulting in an increase in the workload for the
participant.



H-2

The increased number of payloads and perturbation sever-
ity would affect the control performance, as it would be
more challenging to focus on optimising the results for the
increase in customers and increase complications with the
increased number of perturbations. In case of search and res-
cue, as the participants would focus more on delivering to
more customers, the vehicles would travel longer distances
in comparison to the delivering coffee beans condition. Also,
the total distance should increase with the increase in the
number of payload and perturbation severity since the num-
ber of customers increases, and so, the distance travelled by
the vehicles would be higher too. The percentage of relative
payload remaining at the end of the scenario should be
lesser in case of search and rescue mission, in comparison to
the delivering coffee beans since more participants would be
delivering to more customers in case of the former mission.
Also, there would not be a lot of relative battery margin left
in case of search and rescue mission objective, in comparison
to the delivering coffee beans missions, as the participants
would maximise the battery of the vehicles in the fleet to be
able to deliver to as many customers as possible. The path
stretch should not play a major part, as it is an inefficient
method to divert the path to cause a delay in case of
exceeding the depot capacity constraint. It is hypothesised
that the participants would rather re-optimise the route such
that the depot congestion does not occur.

H-3

Regarding the constraint priority, it was hypothesised, that
in the case of the search and rescue mission, the participant
would provide the solution by delivering to as many cus-
tomers as possible, thus relaxing either the depot condition
or the flight time limit. On the other hand, in the case of
delivering coffee beans, it would be the other way around.
But, there would be no significant effect of payload capacity
and the perturbation severity on the constraints relaxed,
as the participants would probably start optimising for the
constraints kept in mind from the beginning.

H-4

With the increase in the number of payloads and pertur-
bation severity, there would be a shift from going to an
optimised solution to a satisfying solution due to the limited
time to come up with a solution due to the increase in
the number of customers present. With the mission objec-
tives, due to the over-constrained nature present, finding
a solution in a limited time period would also result in a
satisfactory solution instead of optimising it.

H-5

As the map view can provide a majority of the information
regarding the scenarios, it would be the display which
would be utilised the most. Nonetheless, the other displays
would be able to support the human to make a decision
during re-optimisation. The battery view will aid in visual-
ising the flight time limit that is there in each vehicle, and
the difference in icon size will differentiate the vehicle type.
This will be used to make a strategy to re-optimise during
the scenario. With the increase in the perturbation severity
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and payload capacity, this will result in the interface being
less efficient due to the cluster formed with increased routes,
especially for the map view. The participants will use the
interface equally to make informed decision to be able to
complete a route during re-optimising the routes in both the
mission objectives.

4.9 Data Analysis

In case the data are normally distributed, the three-way
repeated measure ANOVA is used to test the within-group
effects. In case the data are not normally distributed, Fried-
man’s ANOVA test is used. For all the tests, the significance
level () is set as 0.05. To control the Type I error when multi-
ple hypotheses (m) are being tested, a Bonferroni correction
is used. This adjusted the significance level to %

5 RESULTS

In this section, the results for each dependent measure is
discussed.

5.1 Workload

Figure 7 shows the clustered boxplot of the RSME score for
each condition. When the participants were solving the sce-
narios, it was observed that the primary source of workload
during the search and rescue mission was to accommodate
the maximum amount of customers, whereas, while deliv-
ering coffee beans, there was a higher focus to have the
vehicle arrive safely to the depot while attempting to deliver



to as many customers as possible. When noticing for the
payload capacity, there does not seem to be a clear difference
with the increase in the number of payloads. Additionally,
comparing for the difference between the number of low-
level vehicles with the RSME score, there seems to be higher
workload in the use of double low-level vehicles, than single
low-level vehicle (F(1,15) = 59.331,p < 0.05). Moreover,
there is a higher RSME score given for the search and rescue
mission, compared to the objective to deliver coffee beans
(F(1,15) =9.784,p < 0.05).

Figure 8 displays the clustered boxplot of the total num-
ber of clicks that were performed on the map view. As
the map view is used to make the changes, the amount
of clicks is proportional to the number of variations that
were done by the participant. Thus, a higher number of
clicks with correlate to a higher workload. It can be ob-
served that there is an increase in the total number of clicks
with an increase in the number of payloads per scenario
(F'(3,45) = 7.632,p < 0.05). Furthermore, there is a higher
number of clicks in case of the double low-level vehicle than
the single low-level vehicle (F'(1,15) = 102.669,p < 0.05).
When comparing the difference in the total number of clicks
between the two scenarios, it can be seen that the there
is a higher number of clicks in the map view in case of
delivering coffee beans compared to the search and rescue
mission objective (F(1,15) = 4,929,p < 0.05), other than
for the case of single low-level vehicle and the 7 payload
capacity case. During search and rescue, the participants
were just providing the payload to all the customers and not
about optimising for any solution. These results indicated
that increasing the number of payloads and the total number
of low-level vehicles increases the total number of clicks for
the delivering coffee beans scenario; however, there is an
increase in the mental effort due to the number of low-level
vehicles and for the search and rescue mission objective.

5.2 Control Performance

Figure 9 shows the clustered box plot of the total distance
flown for each condition and mission objective. It can
be seen that the increase in the level of payload causes
an effect on the total distance flown (F'(2.505,37.578) =
730.853,p < 0.05). Observing the number of low-level
vehicles, there is a higher distance flown for the double
low-level vehicle, rather than a single low-level vehicle
(F'(1,15) = 3595.119,p < 0.05). This was expected, as in-
creasing these variables provide an increase in the problem
size of the over-constrained DCVRP, which leads to more
distance to be flown. There is an effect with the mission ob-
jective on the distance flown (F(1,15) = 16.223,p < 0.05).
A higher distance is flown for the search and rescue mission,
in comparison with delivering coffee beans. This is due to
the fact that as the vehicles were made to travel around
more to be able to cover a larger amount of customers to
deliver to during search and rescue, and in case of coffee
beans, the participants were delivering to lesser customers
around the area, and getting the vehicles safely back to the
depot. It can also be observed in the figure that, for each
scenario, results of the participants were close to each other.
As also seen in Table 5, the standard deviation is not high
relative to the magnitude of the total mean distance. Thus,
the performance of humans tended to be close to the mean.
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TABLE 5: The statistical information of the total distance for
each experiment condition.

Standard
Deviation [km] Mean [km]
M1L1P4 2.10 32.10
MI1L1P5 2.32 40.26
MI1L1P6 2.34 50.77
MI1L1P7 4.92 59.05
M1L2P4 4.24 59.71
MI1L2P5 4.00 66.46
M1L2P6 5.43 83.23
M1L2P7 5.52 93.30
M2L1P4 2.33 29.58
M2L1P5 2.14 38.25
M2L1P6 3.41 48.65
M2L1P7 4.72 57.39
M2L2P4 3.98 58.04
M2L2P5 3.34 63.43
M2L2P6 4.38 83.24
M2L2P7 5.16 92.52

Figure 10 displays the clustered boxplot for the amount
of relative battery left after each condition and mission
objective aiding to understand how the performance of
the participants is affected. Knowing the battery margin,
relative to the total battery before the mission start, available
at the end explains about how the participants were solving
these problems, even though, it was not asked to optimise
for this. This analysis shows the combined battery level of
all vehicles when they complete their route and return at
the depot. There is no effect on the level of payloads on the
battery margin following the completion of each scenario.
However, it can be seen that there is an effect caused by
the number of low-level vehicle. There is a higher vehicle
battery margin-left for the double low-level vehicle, than the
single low-level vehicle (F'(1,15) = 49.105, p < 0.05). Thus,
the vehicles were used for greater capacity in case of the
double low-level vehicle. There is also a higher margin-left
in case of the delivery of coffee beans in comparison with
the search and rescue mission (F'(1,15) = 2.234,p < 0.05).

Figure 11 displays the clustered boxplot for the amount
of relative payload left after each condition and mission ob-
jective to understand how the different dependent variables
affect this result. This analysis is done through evaluating
the sum of the payload that is left in the vehicle once it
arrives at the depot, and comparing it to the total number
of payloads to judge the relative margin. There is no effect
on the number of low-level vehicles on the percentage
of payload that is remaining at the end of the scenario.
However, it can be seen that there is an effect caused by
the payload level and the mission objective provided. As
the payload capacity increases, the percentage of payload
remaining decreases (F'(3,45) = 100.899,p < 0.05). So
relative to the total number of payloads, the participants left
lesser payloads at the end with the increasing number of
payload capacity. When observing for the different mission
objectives, there is also a higher payload-margin remaining
in case of the delivery of coffee beans in comparison with
the search and rescue mission (F'(1, 15) = 68.655, p < 0.05).

Figure 12 displays the bar chart for the total number
of path stretch done by participants at each condition and
mission objective. This was done by the participants to
delay the vehicles in case the depot capacity constraint. It
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Fig. 12: Bar Chart for the total path stretch waypoints used in
each condition and mission objective.

is analysed that there is no effect on the number of payload
level, payload capacity and mission objective on the number
of path stretch done. This was not used much through the
experiment.
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5.3 Constraint Priority

Figure 13 displays the clustered bar chart for the feasibility
of each of the constraints for every condition and mission
objective. The constraints were considered infeasible if: un-
able to serve as many customers as possible by using the
limited payload of the vehicle, overrunning the provided
flight time limit or by congestion in the depot. For each
of the figure, there is no effect on the number of payload
level and number of the low-level vehicles on the variable.
Figure 13a observes the total percentage of customers that
were served in each scenario provided. In case of search and
rescue, there was more customers delivered in comparison
to the case of delivering coffee beans. The next constraint
analysed was in Figure 13b. This figure depicts the number
of vehicles which satisfies the battery constraint in each
of the scenarios. The vehicles which satisfy the battery
constraints are higher in case of delivering coffee beans
than compared to the search and rescue mission. Figure 13c
displays the vehicles which satisfy the depot constraint for
each of the scenarios. There is a higher number of vehicles
which satisfy the depot constraint while delivering coffee
beans in comparison with the search and rescue mission.

Figure 14 displays the clustered bar chart for the priority
rank given for each constraint after every scenario by the
participants. Figure 14a provides the ranking given to the
payload constraint, in which the priority was to provide the
payload to as many customers as possible. For each of the
ranks, there seem to be no effects of payload level and the
number of low-level vehicle on the rankings given, however,
there is an effect by the mission objective provided to the
participants. Most of the participants gave the highest rank
to the payload constraint in case of search and rescue.

Additionally, when observing the rankings given for
this constraint for delivering coffee beans, the majority of
the participants gave a second or third ranking. Figure
14b provides the rank given by the participants for the
flight time constraint. As similar to the ranking for the
payload constraint, there is no effect of payload level and
the number of low-level vehicles on each of the rank given
to the flight time constraint. However, the mission scenario
provides a difference in the rank given. For search and
rescue, the majority of participants gave it a second priority
for this variable. Whereas, in the case of delivering coffee
beans, most of the participants ranked it first. Figure 14c
provides the rank given by the participants for the depot
constraint. Similar to the other two clustered bar charts for
the constraints, the payload level and the number of the low-
level vehicle does not affect the ranks given for the depot
constraint. In both of the missions, the depot constraint was
mostly given the lowest rank.

5.4 Strategy

Figure 15 displays the clustered bar chart of the ratings
given by the participants regarding providing a solution
which satisfies or optimises post every scenario. It can be
analysed that perturbation severity and the payload capac-
ity do not affect the assessment done by the participant. But
considering the different mission objective, the participants
tended to satisfy more in case of search and rescue missions,
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in comparison to delivering coffee beans, except for the con-
dition with single low-level vehicle and 7 payload capacity.
This means that the participants attempted to optimise the
results in case of delivering coffee beans and use the vehicles
efficiently, but, in case of the search and rescue missions,
there was more effort on delivering to as many customers as
possible while relaxing the battery and the depot constraint.

When observing the results of each of the participants,
there was some interesting strategy. While sacrificing the
vehicles, the participants were able to deliver the payload to
as many customers as attainable and letting it fail while it is
performing the last leg to fly towards the depot. As a result,
the failed vehicle would drop down somewhere close to the
depot.

Additionally, the strategy taken by most of the par-
ticipants was to use the vehicles with the higher battery
capacity and higher speed to go to customers further away
from the depot, whereas the vehicles with the lower battery
capacity and speed were used to provide the customers
closer to the depot. The participants attempted to provide
the payload to the customers farther away from the depot,
and if needed, neglected the customers closer to the depot.
Moreover, the participants tended to sacrifice the smaller
icon vehicle if needing to provide to as many customers as
possible.

5.5 Display Usage

Figure 16 displays the clustered box plot for the usage of
each view per condition and mission objective. From the
graphs, it is clear that there is no significant effect of the
payload level, the number of low-level vehicles, the mission
scenario or a combination of them on the map view usage.
Figure 16a focuses on the map view. It can be observed
that, in comparison to the other views, the map view has
the highest usage. The mean for every scenario and mission
are all about the same range. Figure 16b displays the usage
of the battery view for each of the conditions. Figure 16¢
displays the usage of the timeline view for each of the
condition. Figure 16d displays the usage of the payload view
for each of the condition.

6 DISCUSSION

Unlike hypothesised in H-1, the workload as judged by
the RSME score of the participants was not affected by the
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payload level. But the participants provided a higher score
in case of an increase in the perturbation severity and for
the search and rescue mission objective. This implies that
the growth in the number of customers did not provide a
significant workload on the participants, but, increasing the
complexity by varying the number of the low-level vehicle
made it more difficult to re-optimise the solution. Also, in
case of a search and rescue mission, the participants felt a
higher workload as they to deliver to as many customers as
possible with the limited resource and time limit.

The number of clicks on the map view does increase with
the increment of payload level and perturbation severity.
So, the participants had to make more changes during the
mission. These variables aided in an increase in the num-
ber of customers and the vehicle. Thus, this also resulted
in a higher click count on the map view to re-optimise
the solution for the dynamic situations due to the higher
number of factors on the screen. In a limited period, having
a higher click on the map-view means that the participant
had to make more changes, and so increasing the workload.
Further, in case of search and rescue missions, the partici-
pants clicked more on the interface to attempt to provide the
payload to as many customers as possible. When looking at
the individual solution of the participants, they tended to
be very close to each other. So, in the case of each problem,
they tended to take a similar strategy in place.

As hypothesised in H-2, The control performance is
influenced by the dependent variables. Increasing the per-
turbation severity and the payload level increased the total
distance flown because more customers needed to be cov-
ered for the limited number of vehicles. In the search and
rescue mission objective, as more customers are delivered
too, this is increasing the total distance flown in comparison
to the delivering coffee beans. But, as it can be seen that
the distance travelled by the participants were not deviated
comparing to the mean, the solution provided by them were
close to each other. Thus, the human have a similar solution
strategy in mind when re-optimising the solution.

The effect of the mission objective is visualised in the
relative battery margin and the relative payload, after the
mission is complete, as there is lesser capacity left in case
of search and rescue for both the factors thus attempting to
minimise the two and so delivering to as many customers
as possible. When considering the total number of path
stretch done, it was observed that there was no effect on
the dependent variable on this number. The participants
were rather re-optimising the routes to deliver customers
in such a way as to avoid a collision in the depot due to the
efficiency involved.

When looking at the control performance for each of the
participants, they were still getting used to the interface in
the initial runs of the experiment. Not all the participants
reached a steady-state at the beginning of the experiment.
Therefore, there should be more emphasis on adding some
extra training scenarios before the start of the experiment
to be able to get the participants more familiar with the
interface

Unlike optimisation algorithms, the participants were
able to relax a constraint to be able to provide their goal
in a limited amount of time for a dynamic situation. Even
though this time limit may not allow making an optimised
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Fig. 16: Clustered Box plot for the usage of each view per condition and mission objective.

solution, but the subjects tended to come up with more
of a satisfying approach. Additionally, dependent on the
mission provided to them, they were able to come up with
a solution conditional on the mission objective for a varying
dynamic situation for an over-constrained problem. Hence,
as this problem is more similar to a real-life situation, it
is beneficial to have human in the control-loop because
they at least reach a certain solution to their choosing. As
discussed with the different level of automation, humans
are thus able to make decisions and implement actions
while the automation is used to provide information and
analysis with the information to provide the user with the
necessary information. The automation is helpful to give
quick information which can be further used by a human
due to there problem-solving skills.

Hypothesis H-3 holds, and also clearly seen in the results
that there is no real significant effect of the perturbation
severity and the payload level on the constraints that were
relaxed in each scenario. But, the mission objective provides
a distinction in the results for the perturbation. The subjects
differentiated the priorities set dependent on the missions
given. Future research could attempt to providing more
mission objectives to see the effect of them on the constraints
that are relaxed.

Unlike as hypothesised in H-4, the payload severity
and the number of payloads did not affect the judgement
of strategy given by the participants, whether the result
provided was more towards the satisfy or optimise. But they
claimed that in case of search and rescue, they tended to
satisfy the result, so just trying to get a result at the end of
the time limit. Furthermore, in the case of delivering coffee
beans situations, as there was more focus on the vehicles, the
humans attempted to optimise the problem and got an effi-

cient result. When considering the participant strategies in
the post-scenario survey, the information provided seemed
to be unreliable to gain insight into the strategy taken. It
was observed that often, the participants chose the answer
opposing the strategy executed.

As hypothesized in H-5, the interface adapted from the
previous study was deemed adequate for human perfor-
mance in case of solving an over-constrained multi-UAV
dynamic DCVRP as the participants were able to come up
with a solution in a limited amount of time.

The interface assisted the participants to satisfy the goal
set in place by them. The additional aspects added to the
interface also provided support in the strategy taken in the
experiment. The battery icon presented the visual aid to
be able to predict the amount of battery in the interface
and predict future performance. Consequently, informing
the user of the possible customers could be reached effec-
tively. The distinctive icon size was able to differentiate the
vehicles that are used in the interface. According to the
type of vehicle, the participants tended to deliver to further
customers by using the vehicle with higher battery capacity
and speed while using the other vehicles to deliver to the
customers nearby. If needed, the smaller icon vehicles were
used more to sacrifice in comparison to the big icon vehi-
cles. Thus, the different icon sizes influenced the solution
provided.

The elements in the interface were considered useful
for the participants. The map view was able to provide a
very definite overview of the situation. Notably, the ellipses
which display the flight time constraint provided the par-
ticipants with the essential information about the maximum
reach that can take place for the vehicles and was beneficial
during re-routing. The battery, timeline and the payload



view were less helpful. The colour scheme on the map view
was able to provide the same information as the payload
view. Thus, the participants did not spend much time
interacting with it. The participants observed the payload
view during re-routing to help grasp the payload margin. A
possible improvement would be to have the payload margin
located within the map view to provide quicker feedback.
The battery icon was used to know the current, future and
planned battery capacity at each customer waypoint once
clicked on a particular vehicle. Thus letting the participants
plan a re-route depending on the battery left in the vehicle.
The participants provided positive feedback for this view, as
it provided them with the necessary information to be able
to re-optimise to customers. However, it seemed that when
the problem size was increasing, it was getting increasingly
more challenging to interact with the battery icon. Moreover,
as the colour of the flightplan leg in the map view represents
the same aspect as the battery icon, it was deemed unnec-
essary at some points. Lastly, the timeline view was used to
determine the depot congestion that is occurring.

Due to the limited time, participants focused on re-
routing according to the mission objective and observed the
depot congestion at the end. The view was not regarded
as very significant during re-optimisation. The participants
were getting entangled with the colour scheme, as it pro-
vided to be messier to observe with the increase in the
problem size. Thus, the timeline view would only be sig-
nificantly used during smaller mission scenarios, giving the
participants enough time to observe the depot congestion.

7 CONCLUSION

Some of the drawbacks involving using automation to solve
problems is that: 1) the problem needs to be well defined,
and may not work efficiently in ambiguous situations, 2)
the time it takes to solve the problem and 3) the difficulty
to solve over-constrained problem, as there is no particular
solution which satisfies all the constraint. Thus, as humans
are good at problem-solving, they could be an alternative
in solving these algorithms. So, the goal of this study is
to investigate the human performance in multi-UAV over-
constrained dynamic DCVRP, to investigate how the human
performs in the drawback situation of automation. This was
solved on the interface, which used automation to be able to
acquire and analyze the information and the humans would
decide and implement the action. The interface design and
the performance was judged on the bases of workload,
control performance, constraint priority, strategy and dis-
play usage. The human was able to re-optimise the over-
constrained problem during real-time, with the introduction
of dynamic situations with increasing problem sizes and
relaxed constraints dependent on the mission operation.
Thus, it can be concluded that humans are a good option
when considering solving complicated problems, and so
beneficial to have a human-in-the-loop.

Further research can be done on introducing a higher
level of automation in the interface or achieving a balance
between automation and human. This may result in a more
optimal solution. For instance, the human would input its
re-optimised route in a dynamic problem in the interface,
and the automation could use that to optimise the problem
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further, also dependent on humans judgement on the con-
straints that need to be relaxed dependent on the mission
objective.
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Appendix A

Literature Study

This chapter presents a review of literature on the supervisory control of Multiple UAVs
in Section A-1,vehicle routing problem in Section A-2 and human performance in solving
travelling salesmen problem in Section A-3.

A-1 Supervisory control of Multiple UAVs

This section is about the human supervisory control of multiple UAVs. It deals with how
the human and the automation work with each other. The relation between human and
automation is evaluated for the successful functioning of the supervisory control of multiple
UAVs. This aids in providing information about the collaboration between the optimise and
satisfy feature, thus evaluating the necessary aspect needed to judge the amount of automation
needed from the interface. This section begins by discussing the supervisory control loop,
followed by the operator workload. Moreover, the effects of situational awareness to the
system are discussed. Lastly, an explanation is given about the optimise and satisfy feature
due to different levels of automation.

A-1-1 Supervisory control

As it can be illustrated in Figure A-1, in supervisory control, a human is supervising a
computer system, which in return controls the process. As the human is not controlling the
process directly, there is some sort of automation and processing present in the computer
system. Generally, for a few variables sometimes, the computer can close the automatic
control loop, thus the role of the human operator is to be able to guide the automation
(Sheridan, 1992). In such a case, the human is observing the actions done by the automation.
The human assesses the desirability and the quality of the actions and intervenes if needed.
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Figure A-1: Human Supervisory Control (Sheridan & Verplank, 1978)

There are five sequential functions of the human supervisory present: planning, teaching,
monitoring, intervening and learning (Sheridan, 1992). During planning, the human deter-
mines a strategy after which can allocate and prioritise tasks. Moreover, the human teaches
or is instructing the computer on the plan, after which monitors the automation and then
identifying any anomalies that are present during the execution of the plan and the possible
failures that exist with it. However, in case of emergency cases or to improve the performance,
the operator will be able to intervene to re-guide the system or overrule the automation. The
operator can learn from past experiences to be able to increase performance in the future.
Figure A-2 shows the human supervisory function shown as a nested loop. In the research,
as the operator would need to plan and execute information in case of dynamic scenarios, the
interface should be able to provide relevant information to the operators. The information
should be necessary to be able to aid the operator to make proper decisions.

il

Flan - Teach Monitor Intervens Learn —

Figure A-2: The human supervisory function displaced as nested loops (Sheridan, 1992)

The concept of the human supervisory function can be used for the command and control of
the multi-UAV. As discussed in (Cummings, Bruni, et al., 2007), the representation of the
system can be seen in Figure A-3. The figure represents N UAVs the accompanying low-level
control loops and an underlying global mission and the payload management loop. The most
inner loop is for the flight controls and the basic guidance involved with it. After which,
the second loop involves the navigation loop, which is responsible for the avoidance of the
obstacle and the waypoints of the route. Lastly, the global loop can find the mission level
control where the information from the sensors and payload is established, and the guidance
of the global goals and the performance of the mission is given. The monitoring of the system
health and status is also represented by comparing the state of the UAV with the information
with the nominal performance of the model.

However, for this research, the focus lies on the failure management of a multi-UAV system by
the human operator; the navigation and flight control loop is expected to be fully automated.
This limits the scope of the research, and also, provides the operator with enough cognitive
resources to be able to make proper control performance. In this research, the user must
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Figure A-3: The system control loop for Multiple-UAV (Cummings, Bruni, et al., 2007)

have enough information to be able to intervene and provide the best solution possible. This
can be achieved when providing the user with useful information to be able to make useful
decisions.

A-1-2 Workload by the operator

As this research is considering the case of Multi-UAV supervisory control, attaining tolerable
operator workload is essential for the overall effectiveness of the mission, and it deserves
attention when designing the interface and display. As mentioned in (Jahns, 1973), it is
divided into several functions: input load, operator effort and performance. The input loads
are about the events or the factors which are external to the human operator, operator effort
is related with the internal factors involved and performance is related to the capacity of the
data output which is generated by human operator (Johannsen, 1979). Figure A-4 displays
the attributes of operator workload besides with the number of measures of performance.

When looking at a human-machine system, the input load is usually a predetermined factor,
which is established by the experiment and system design, and the effort and performance
are assessed.

Regarding the operator effort, the Subjective effort ratings should be able to provide the
workload faced by the human during operation. The subjective effort rating is a technique
to get information about the operator effort, and it was based on questionnaires. One of the
majorly accepted and a well known subjective effort rating is the NASA- Task Load Index
(TLX) (Hart & Staveland, 1988). As this research focuses on how the operator is relaxing the
constraints dependent on the circumstances provided for an over-constrained problem during
mission objective, it is relevant to observe the actions taken by the operator. The performance
will be able to judge how the interface can assist the humans in solving problem, and which
constraints are relaxed dependent on different circumstances.
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Figure A-4: Attributes of operator workload (Jahns, 1973) (Johannsen, 1979)

A-1-3 Situation awareness

Situation awareness (SA) is defined as ” the perception of the elements in the environment
within a volume of time and space, the comprehension of their meaning, and the projection
of their status in the near future” (Endsley, 1988). In this research, there needs to be a
sufficient level of SA of the mission by the operators. According to the definition, there are
three levels of SA: the perception of data and element in the environment, understanding the
current situation and showing the future states and events. These are Level 1,2 and 3 of SA
respectively. To get the SA, the information needs to be obtained from the environment. The
information from the real world is put into the system. However, the system usually does not
take all the information from the real world. After which, the system displays the information
gathered in the interface. However, not all of the information gathered is displayed on the
interface. Finally, the information that is gathered from the real world and the interface
might not be complete when transmitting it to the human operator due to the constraints
involving perceptual, attention and working memory.

Additionally, M. R. Endsley presents several system characteristics that would improve the
situational awareness of the operator (Endsley, 1988). The level of availability of the appro-
priate environmental features given to the operator affects the persons’ ability to obtain SA.
Also, SA is affected in the way the information is presented. Using automation has a bad
influence on situational awareness is it used for human decision making and active system
control. However, it is a positive aspect if it used for peripheral tasks. As a result, when
developing the interface for the operators, it is essential to provide the user with the necessary
information to make decisions during mission operation. The user should be able to see which
constraints are not being satisfied to be aware of the decisions that are made. Giving too
much information to the user may also hamper the decisions made by the operator.

The operator workload and situational awareness are not independent concepts. However,
the operator workload can affect the SA. The SA decreases when the operator is made to have
a high workload due to the limit of cognitive resources, and it can even decrease when the
operator does not have much to do, as the operator may experience boredom and complacency

(Andre & Wickens, 1995) (Rodgers, Mogford, & Strauch, 2000).
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A-1-4 Effects of Automation

Usually, automation is used to help the operator in performing tasks, which would help in
reducing the workload and preventing overload of information (Cummings, Brzezinski, & Lee,
2007a). Even though there are positive impacts, automation can degrade human performance
rather than making it better (Council et al., 1998). As the level of automation increases, there
might be too much reliance by the operator to the system and also result in loss of skills for
performing the tasks manually, in case of an emergency involved. Thus, it may increase the
workload, and decrease the situational awareness (Chen et al., 2011).

On the other hand, when considering the solution solving taken by the human to solve a
problem, it is evaluated that approach taken tends to go towards satisfying the problem.
This would result in the solution to have possible errors, and there is high reliability on the
user. Whereas, when considering the utterly autonomous system, it tends to optimise. This
uses higher processing power, and would possibly require more time to solve considering the
nature of the problem. As a result, as it can be seen in Figure A-5, the research would focus
on the combination of the two as it can use the advantage of the quick solution time of the
human to provide a solution for an over-constrained problem in varied situations for different
dynamic cases. So, the human will be able to relax some of the constraints to achieve results.
Additionally, the interface given should complement the human performance and not make
it to complicated when making a solution.

Figure A-5: The approach that is evaluated in this literature review

A-2 The Vehicle Routing Problem

This section presents the definition of VRP and the various types of VRP that are currently
present and used for research purposes. When considering the distribution of goods and
planning, VRP is a central aspect. There is a wide variety of VRP that are currently present
to solve the different kinds of problems. This chapter would provide a more in-depth insight
about the optimise part of the algorithm, and the scope at which the algorithm is extended
towards as this research would be based on the over-constrained dynamic problem. The limits
of the research on VRP is also evaluated.
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A-2-1 Definition

The VRP can be defined as "the problem of designing optimal delivery or collection routes
from one or several depots to several geographically scattered cities or customers, subject to
side constraints” (Laporte, 1992).

Let B = (C,A) be a graph in which C = (1,..,n) is a set of vertices which represent the delivery
locations, however, vertex 1 is considered the depot, as it can be observed in Figure A-6. In
addition, A are the arcs. Each arc (i,j) i # j is a non-negative distance matrix C = ¢;;.
The ¢;; can be associated as the travel cost or the travel time. The notations are shown for
location 1 and 2, in Figure A-6. When considering the matrix, ¢;; = ¢j;. The VRP designs
its least cost vehicle route in such a way that:
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Figure A-6: Example of VRP problem

1. Each location is visited at least once by exactly one vehicle;
2. All of the vehicles start and end at the depot;

3. Some other side constraints are completed.

Some of the common side constraints that are considered for the research are :

1. Restriction of capacities: A demand (d;) is attached to each of the vertexes i;1, and so
the sum of all of the weights of the vehicle routes should not exceed the capacity of the
vehicle. As a result, this is known as . Also, the number of cities that are constrained
by the capacity of the vehicle.
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2. Restriction of total time: the length of the route of the vehicle shall not exceed the
prescribed bound. The length includes the travel time between the cities (c;;), and the
stopping time in each of the cities (9;) on the route.

3. Time windows: the location i is visited within a specific time interval [a;, b;], addition-
ally, waiting would be allowed in the location 3.

4. Precedence relations among the locations: there is a requirement for location 4 to be
visited before location j.

A-2-2 The taxonomy

The VRP can be divided into several criteria. Figure A-7 shows the overview of the different
criteria that are present, but it focuses more on the due to the nature of this research
(Psaraftis et al., 2016). There is a lot of different information present in the context of these
problems, but not very relevant information regarding the over-constrained dynamic problem.
However, due to the scope of the research, only the relevant one will be covered. These sections
have a variety of types present, but, there is a dependence between the categories that are
present. Only the delivery is considered in this situation (one-to-many). Additionally, the
transportation mode that is considered is the air in this case, as only the UAVs are examined in
this case. In addition, the number of available vehicles will be multiple and a limited number
of UAVs in the scenario. This will be to test the scalability of the user in the research. Due
to the scope of the research, the time constraints for the arrival of the commodity to the
customer is not considered. Lastly, as the aim is not to develop an additional DVRP, thus
the additional information about solution methods are not considered as this research focuses
on the human performance of the over-constrained DVRP in different situations.

DVRP taxonomy
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Figure A-7: The overview of the taxonomy of the VRP (Psaraftis et al., 2016)
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A-2-3 Type of problems

A VRP can either be static or dynamic. Also, the problem can either be a deterministic or a
stochastic one. As a result, a combination of the two is present, which results in the following
type of problems: , , , and . The VRP can be defined as dynamic if ”the input of the problem
is received and updated concurrently with the determination of the route” (Psaraftis et al.,
2016). However, if all the routes are determined before the vehicle has departed, and there
are no changes, then the VRP is considered static. Moreover, as the routes are not optimised
overtime when the plans are determined, thus, the problem is considered static. On the other
hand, if the routes are re-optimised or even if the output is a function of the inputs which
evolve in real-time, then the problem will be considered dynamic.

A VRP is considered if all the inputs are known before the vehicle has departed, and there
are no stochastic inputs present. Referring to Figure A-6, the VRP can be formulated as
following (Laporte, 1992):

Minimise:

Z Cijajij (A—l)

Subject to:

Zmij =1 (i=1,..,n) (A-2)

=1 (j=1,..,n) (A-3)
=1

S ag =l K| (= 1,un) (A-4)
j=1
Y @i =151-v(S) (5€N;|5[#0) (A-5)
1,jES

Equation A-1 is the total cost of the summation of the vehicle routes, and it has to be
minimised. However, the cost function has some constraints which have to be taken care
of. Equation A-2 and Equation A-3 make sure that the vehicles can cover all the required
customers. Equation A-4 makes sure that there are | K | vertices which leave the depot.
Thus, each vehicle is leaving the depot once. Equation A-5 provides the capacity constraints
and is a sub tour elimination constraints. v(S) is the required lower bound on the number of
vehicles that is appropriate to visit all the vertices of S in the most optimal solution. At the
end, Equation A-6 is the decision variable for z;;. The variable is equal to 1 when the route
needs to be taken part of the optimal solution.
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Some other VRPs are considered both static and stochastic (SS). An example of this type of
problem is considered in (Jaillet, 1985), which is the . In case of a PTSP, there is a a priori
route set in place. However, at each of a node, there is a probability p that the customer is
present. The a priori route is determined before it is known which customers will be present
at the nodes. This information will be revealed later. As a result, even though it is a static
problem, but due to the stochasticity of the customer, it is considered a SS problem. Even
though the 'posteriori PTSP’ is a problem which is close to the actual PTSP; however, due
to the different solution it provides, it is a different problem. The contrary to SS problem is
called the dynamic and deterministic (DD). However, when calling it deterministic, it may
seem misleading as it may show that the inputs are already known before the start of the
mission, which is, however, not the case. A VRP is considered DD whenever the problem is
Dynamic, but, there is no stochastic information provided in the future. The dynamically
evolved inputs are known beforehand. For example, the location of a customer may not be
known until the customer in question requested the service. Alternatively, also, nothing is
known about the quantity that is demanded until the information is represented. As a result,
the input is only revealed when it appears.

Some papers which had showed instances of using DD are (Psaraftis, 1980), (Ichoua, Gen-
dreau, & Potvin, 2003) and (Gendreau, Guertin, Potvin, & Séguin, 2006). Thus, it is observed
that each dynamic scenario had a different solution method involved to solve the problem.
When there are several dynamic situations present into the system, a very technology ad-
vanced system is needed, or several types of algorithms would need to be considered. As
a result, this research would focus on how a human operator would solve different dynamic
cases with the aid of the interface.

A-2-4 Objective function

A major criterion that is considered in the taxonomy is the objective function of the algo-
rithm. Certain aspects can be maximised or minimised when considering a function. This is
important to know as it would mention how the optimisation of the VRP algorithm would be
achieved. When the different papers were seen regarding the VRP problems that are present,
the objective function that was presented was of a wide variety. Some examples of the
objectives function that was observed was :

To be minimised:

Route Cost or the money that is spent

Route Distance

Travel time

Total delay

number of vehicles

To be maximised:
e Quality of service, thus, optimising for the possible request of the customer
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e Profit

However, in this research, as an over-constrained problem will be observed, there may be
a need for a constraint relaxation to be able to have a suitable solution (Lau et al., 2003).
An approach taken for static over-constrained is to make a hierarchical cost structure and
observing the results. This means observing the different constraints as a sequence. This
approach may seem more favourable for static situations or for a particular circumstance in
which the user is under. However, for different circumstances, there might be a need for
different constraints that need to be relaxed in a dynamic situation. Also, when observing
over-constrained problem for dynamic situations, they tend to have complexity issues and
tend to focus only on a specific problem (Jussien & Boizumault, 1997). Thus, the focus
of this research will be on having a better understanding of how human operators would
be able to provide a solution in dynamic cases, for over-constrained problems in different
circumstances. The humans could be able to cover a broader range of problems, and so may
prove more effective during dynamic situations due to their versatility.

A-2-5 Nature of Dynamic Element

The nature of the dynamic element in the dynamic VRP can be in some forms. This may
include how the request takes place, in which the order that is taken can be cancelled or the
demand changes according to the scenario. There may also be a change in travel time or
service time. Additionally, there could also be an observation of changing customer locations.
However, for this research, the dynamic element that occurs is the lack of the vehicle or
the availability due to the breakdown of the vehicle. To have a better understanding of the
resulting problem, different approaches regarding the failure of vehicles were observed (Li,
Mirchandani, & Borenstein, 2009), (Chang, Chen, & Hsueh, 2003) and (Mu, Fu, Lysgaard,
& Eglese, 2011). However, the algorithms were observed to be for a specific problem. This
research will thus use the problem-solving skills of the human operator and test the capability
for different circumstances.

A-3 Human performance in solving Travelling Salesman Problems

This section deals with how the human can solve the Travelling Salesman Problem (TSP). The
TSP represents a classic VRP. The difference is that the VRP considers a greater number of
vehicles, as compared to the one vehicle for TSP (Restori, 2004). As there will be participants
involved in the experiment, it is important to know the human performance in solving the
TSP. The TSP is evaluated as it would provide feedback of how well is the human ability
to contribute in the problem solving of the problem that is in hand, hence give a better
understanding about the satisfy feature of an operator. There are several papers which analyse
the behaviour and the performance of the human, such as (MacGregor & Ormerod, 1996),
(Dry et al., 2006), (MacGregor & Chu, 2011) and (Vickers, Butavicius, Lee, & Medvedev,
2001).

As a TSP will have a significant number of possible solutions. Finding a ”reasonable” solution
may take an extended amount of time. For instance, a 20-node problem would require around
8000 calculations (MacGregor & Ormerod, 1996). Due to the characteristic of the problem, it
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is interesting to see how human beings solve TSP. It would provide an exciting physiological
task to explore, as it is testing the performance of humans for visually represented problems.
To test this performance, MacGregor and Ormerod took 29 subjects which were students from
the university (MacGregor & Ormerod, 1996). The students were given seven TSP problems,
which included 20 points. Thus the performance of the subjects on these scenarios would
provide a better understanding of the human performance for a lower number of customers
regarding this research. As the data points of the problem were given, the problems were
plotted and can be seen in Figure A-8.

To create the problem: the coordinate of the points on the boundary of the hull was first
determined with the vertices of the regular polygon with the number of sides, using the polar
coordinates with a radius of 80 mm. For instance, for 4 points on the boundary of the hull,
the coordinates were then determined with the interior angles of 45°, 135°, 225°, and 315°.
To introduce some irregularity in the point, random angles were added between +5° and
-5°. After the points in the boundary of the hull were determined, the polar coordinate of
the central points was then randomly generated with a constraint that the points should fall
within 40 mm from the centre of the original regular polygon. Once all the 20 points were
generated for the problems, these were the problems that were given to the student.

The problems were presented on separate sheets of 11 x 8.5 in. Each subject was tested on the
problems that were given to them. They were presented in three different orders. The data
was taken in a classroom setting. The students were given booklet with the problem with a
page of instructions provided. The instructions asked them to select a starting point for each
of the problem, and then draw what they thought is the shortest path, and passing through
all the points and returning to the starting point chosen. The subjects were also asked to
indicate the direction of the travel and the starting point taken for each of the problems.
There was no time limit provided to them. However, the instructions provided a limit of 5
minutes for each of the problem given to them. When completed, the students handed in the
booklet with the solutions, and the times were noted to the nearest minute.

The results had shown that nine subjects had left one or more of the problems incomplete
by not able to incorporate all the points. The path lengths were taken and then provided for
the primary data to analysis. The first results can be observed in Figure A-9. It shows the
minimum, mean and maximum values produced from the different problems by the subjects,
along with the standard deviation (z). A random sample of 100 solutions was generated for
the problem, to get a sample mean and standard deviation. These values were used to judge
the performance of the subjects to the standard scores. When converting the standard score
to percentile, it was observed that the subjects path lengths for each problem were beyond
99.99th percentile.

When comparing it with the heuristic algorithm, the best solution which is obtained by the
human was similar to the best solution which was obtained by one of the algorithms, as it can
be observed in Figure A-10. Thus, the best rational solution is comparable to the optimum
solution. This experiment thus proves that a human is capable of providing a suitable solution
based on visual representation, and so will be a positive aspect during the experiment in this
research.

Moreover, to test the scalability of the human performance on the varying number of TSP,
the experiment conducted by Dry, Lee, Vickers and Huges were seen (Dry et al., 2006). They
considered human solution time for the TSP with the increase in the number of nodes. Forty
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Figure A-8: The 20 node problems which were given to the subjects (MacGregor & Ormerod,
1996)
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Subjects’ Path Lengths

Number of — -
Interior ~ __ Minimum Mean _Maximum
Points Score z Score z Score z
4 707.49 8.26 724.27 8.15 816.03 7.53
6 703.89 7.16 746.32 7.16 846.50 6.50
8 737.61 734 76240 734 830.16 6.82
10 70893 7.60 721.81 7.60  745.03 7.39
12 692.60 7.79 71970 7.79 82850  6.57
14 675.80 7.68 72736 7.68 830.68 6.42
16 599.72 6.23 644.14 6.23 73454 5.18

Figure A-9: The minimum, mean and maximum path length that is produced from the results,
with the corresponding z value (MacGregor & Ormerod, 1996)

Number of ) Percentage Above Optimal

Interior Optimal Subject NN Subject NN
Points Solution Minimum Minimum LA CHCI Mean Mean

4 703.81 3.0 4.1 3.1 2.5 5.4 8.4

6 703.89 1.2 1.2 20.1 53 7.3 8.8

8 725.31 1.7 33 13.7 5.8 5.2 9.4

10 698.83 1.4 0 6.0 4.8 33 9.5

12 688.33 0.6 0 234 3.6 4.6 7.1

14 663.61 1.9 1.5 10.0 4.4 9.6 154

16 593.81 1.0 15.0 0.8 0.05 8.5 21.7

Note—NN, Nearest Neighbor; LA, Largest Interior Angle; CHCI, Convex Hull, with cheapest
insertion criterion.

Figure A-10: The comparison between the Heuristic solution with respect to the human solution
(MacGregor & Ormerod, 1996)
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participants completed the TSP condition. The nodes were presented on a 14 x 14 cm square.
The nodes chosen were black dots which had a diameter of 1.5 mm.

For the TSP condition, there were 10,000 random problems created with 10, 20, 30, ...... 120
nodes. According to some parameters chosen, a total of 20 problems were chosen from the
sample for the experiment. Figure A-11 displays an example of the problem given to the
participants, and the solution which gave the least distance. The participants were given
three problems (with 30, 60 and 90 nodes) to do before commencing the experiment.

Figure A-11: Example of the 40 node TSP along with the optimal solution (Dry et al., 2006)

The array was presented to a coloured monitor computer. The participants were required to
left-click on the starting node. After which by dragging the cursor of the mouse, to the next
node, a straight line was drawn between the two. It was possible to delete the line by right-
clicking on the line and clicking the delete option. The participants were given the freedom
to connect the nodes, however. The only instruction provided was to draw the shortest
continuous pathway, which passed through all the nodes. There was no time restriction
imposed. The participants were given the result on how far were they from comparison with
the optimal solution which was obtained through different heuristic solutions.

Figure A-12 compares the average length of the participant solution concerning the optimal
solution obtained from different heuristic approaches. The graph can display that the esti-
mated optimal solution is closely approximated to the estimated solution length, with the
deviation asymptotic around 0.11 when the problem size increases over 70 nodes. As a result,
regarding this research, it can be established that human performance is still excellent by
increasing the number of nodes. Thus, using humans for different scales as operators would
be beneficial to the experiment due to their problem-solving skills.
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Appendix B

Experiment Design

B-1 Experiment Conditions

The experiment conditions that is used in the experiment can be seen in Table B-1. The num-
ber of customers is determined by the number of low-level vehicles and the number of payload
for each of the vehicle, which were two of the independent variable. The number of vehicles
and the customers is determined by using Equation B-1 and Equation B-2, respectively. The
resulting value for the experimental condition can be seen in Table B-2. The control variable
for the experiment can be seen in Table B-3.

nVehicles = nLowLevelVeh - nPayload (B-1)

nCustomers = nPayload-nLowLevelVeh-(nPayload— 1)+ (nPayload —2) + (3-nLow LevelVeh — 3)
(B-2)

Human Performance in Solving Multi-UAV Over-Constrained Dynamic Vehicle Routing Problems A. Gupta



48

Experiment Design

Table B-1: Experiment Condition - Mission (M), Number of low-level vehicle (L) and Payload

(P).

Mission: Search and Rescue

Mission: Delivery Coffee Beans

Payload 4 Payload 5 Payload 6 Payload 7

Payload 4 Payload 5 Payload 6 Payload 7

Single low-level vehicle | MIL1P4  MILIP5  MILIP6  MIL1P7 | M2L1P4 M2LIP5 M2LIP6  M2L1P7
Double low-level vehicle | MIL2P4  M1L2P5  MIL2P6  MIL2P7 | M2L2P4  M2L2P5 M2L2P6  M2L2P7
Table B-2: The vehicles and customers per condition

nCustomers | nVehicles
M1L1P4 14 4
MI1L1P5 23 5
MI1L1P6 34 6
MI1L1P7 47 7
M1L2P4 29 8
M1L2P5 46 10
M1L2P6 67 12
M1L2P7 92 14
Table B-3: Control variables.
Variable Value

UAV 1 - Max flight time [s] 900

UAV 1 - Airspeed [m/s] 20

UAV 2 - Max flight time [s] 750

UAV 2 - Airspeed [m/s] 13

Service Time [ 30

Scenario Duration [s] 300

Payload Margin for high-level vehicles [-] 1

Sector Size [m?] 5000 x 5000
Depot Capacity (Rounded to the nearest integer) | 30% of nVehicles

A. Gupta
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B-2 Experiment Matrix
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Table B-4: Experiment matrix for the conducted
runs, with one break halfway the experiment.

experiment. Each participant first goes

through 9 training runs, followed

by 16 experiment
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The following table visualises the condition provided for the training scenarios.

Table B-5: Training Runs

Category Scenario
T1 | Interface acclimatization Flight Time Constraint
T2 | Interface acclimatization Payload Constraint
T3 | Interface acclimatization Depot Congestion
T4 | Interface acclimatization Different vehicle icons
T5 | Over-constrained DVRP  nCustomers: 6 maxPayload: 3 nVehicles: 2
T6 | Over-constrained DVRP  nCustomers: 12 maxPayload: 5 nVehicles: 4 nLowLevelVeh: 1 Mission: Search and Rescue
T7 | Over-constrained DVRP  nCustomers: 12 maxPayload: 5 nVehicles: 4 nLowLevelVeh: 1  Mission: Delivering Coffee Beans
T8 | Over-constrained DVRP  nCustomers: 18 maxPayload: 5 nVehicles: 4 nLowLevelVeh: 2 Mission: Search and Rescue
T9 | Over-constrained DVRP  nCustomers: 18 maxPayload: 5 nVehicles: 4 nLowLevelVeh: 2 Mission: Delivering Coffee Beans
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(c) training3

(d) training4

Figure B-1: Training scenarios
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Figure B-1: Training scenarios (continued)
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B-4 Experiment Scenarios

The following are the experiment scenarios which were given to the participants.
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Figure B-2: Experiment scenarios
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Figure B-2: Experiment scenarios (continued)
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Figure B-2: Experiment scenarios (continued)
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Figure B-2: Experiment scenarios (continued)
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Appendix C

Experiment Briefing

C-1 Introduction

Thank you for participating in this experiment! The goal of this experiment is to investigate
human control performance for an over-constrained multi-UAV (Unmanned Aerial Vehicle)
dynamic vehicle routing problems (DVRP) in varying mission objectives. Consider a scenario
in which payload needs to be delivered to customer locations using multiple payload carrying
UAVs. The vehicles all start and end their flight at the depot. The assignment of all the
customer locations to specific vehicles is the essence of the VRP. Figure C-1 shows a visual
representation of an example mission.

Example Mission

50

45

40}

35+

Figure C-1: Example mission of a multi-UAV vehicle routing problem, with the depot at the
center (20;25), 5 vehicles and 14 customer locations.
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In this experiment, it is your task to mitigate the effects caused by battery defects
and additional customers causing it to be an over-constrained problem during
several multi-UAV payload delivery missions.

You will be presented with several VRP scenarios in which there will be vehicles present
with battery defects, additionally, there will be presence of extra customers within the lo-
cation. These unassigned locations will somehow have to be included in the flightplans of
the remaining vehicles, while considering the constraints (flight time, payload capacity and
depot capacity). However, due to the presence of dynamic situations and the limited number
of vehicles, it would not be possible to satisfy all constraints while assigning payload to all
the customers, thus making the problem over-constrained. So, it is your decision on which
constraints to relax or what is priorities by you (providing payload to customers, or ensuring
a safe arrival of the UAVs or a combination of both) in different missions.

Please consider the following goals during the execution of your control task:

1. Optimize all UAV routes for shortest distance.

The experiment starts with a number of training scenarios, which allow you to familiarize
yourself with the control task and the interface. At the end of each scenario you will fill
out the web-survey. You are also asked to fill out the web-survey for a large portion of the
training scenarios to familiarize yourself with the usage of this tool.

Note: each scenario is time limited to 5 minutes, which means you only have
limited time to identify and execute an updated routing.

An explanation of the experiment setup is up next, followed by a review of the training
scenarios, which you will use as a guide to follow along. If you have any questions when
reading the subsequent chapters or during the training phase of the experiment, please do
not hesitate to ask!
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C-2 Experiment Setup

The interface you will use consists of three distinct windows: the map view, the payload
view and the timeline view. Additionally, there is also a battery view that is available when
clicked on a certain vehicle. Each of these windows show relevant information for successful
execution of your control task. Figure C-2 shows a visual representation of the interface and
experiment setup you will use.

Figure C-2: Experiment setup consisting of keyboard, mouse, display and desktop PC (not
shown).

The map view (as depicted in Figure C-3b and Figure C-3e) shows all UAVs, their routes and
all customer locations. Also, after selecting a vehicle, the area that is within range given the
available flight time is shown. If relevant, superimposed on this view is the area that needs
to be avoided when the depot capacity is exceeded. This will help you in determining the
required path stretching to introduce sufficient delay to solve the depot conflict.

The payload view (as depicted in Figure C-3a and Figure C-3d) shows the remaining payload
for the selected vehicle. It will also show this information when hovering over a UAV without
selecting it. When zero payload remaining is reached and when insufficient payload is available
for successful mission execution, a corresponding textual warning will appear. Also, the color
of the payload level indicator corresponds to the UAV color in the map view display.

The timeline view (as depicted in Figure C-3c and Figure C-3f) shows the arrival times of all
vehicles at the depot. After arrival at the depot, UAVs require a 30 second service window.
Due to constraints at the depot, the amount of vehicles allowed to arrive at the same time is
limited. This ensures a safe arrive of the vehicle to the depot. This constraint is indicated
by the red zone in the timeline view. Also, the color of the arrival block corresponds to the
color associated with the payload level.

Lastly, the battery view (as depicted in Figure C-4) appears when selected on a certain vehicle.
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The icon shows the battery level that is currently available with the height of the coloured
column provided. The dashed lines at the lower positions indicate the level of battery that is
available after delivering to a respective customer. The level below the red line indicates the
amount of battery that is still available after the vehicle reaches the depot. When adding a
removing a certain customer, the battery will display an updated battery indication. Also,
when hovering over a certain location in the battery, the indicated flight plan will lighten
up. Green represents a good status of the battery, and red indicates that there will not be
sufficient battery to reach the customer at all (as depicted in Figure C-5).
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The following control inputs are available for you to interact with the interface:

P: start scenario

LMB click: select UAV / select leg

RMB click: deselect UAV / deselect leg / discard FLTPLN change
Enter: confirm FLTPLN change

CTRL + LBM click + leg selected: add WPT

CTRL + LBM click + UAV selected: remove WPT

The following colors are used in the interface:

Grey: flightplan and customer locations associated with UAV that is to depart the
depot in the future.

Cyan: flightplan and customer locations associated with inactive UAV.
Magenta: flightplan and customer locations associated with active UAV.

White: flightplan and customer locations associated with active and modified UAV
flightplan.

Green: selected UAV.

Amber: unvisited customer locations.

Red: infeasibility due to insufficient available flight time, payload or depot capacity.
Green: (on battery view): Sufficient battery to reach the customers

Several shades of yellow (on payload view): UAV payload level.
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Figure C-3: Interface views for an example inactive and active UAV case.
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Figure C-4: battery indication that shows when clicking on a certain vehicle

Figure C-5: Insufficient battery to complete the last leg
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C-3 Training Scenarios

You will now go through a number of training scenarios to familiarize yourself with solving
dynamic vehicle routing problems and with the use of the interface. Please double-click on
the “UAV-sim” icon on the desktop, fill out your participant ID, press “Enter”, and maximize
the screen.

C-4 Training 1: Flight Time Constraint

Observe the cyan colored depot in the center of the map view, the three amber colored
unassigned customer locations and the dashed gray colored flightplan with customer locations
associated with a UAV that is to depart the depot in the future in the bottom left.

> Click inside the map view and press “P”.

Observe the gray flightplan with associated customer locations now turn cyan, indicating a
flying UAV.

> Select (LMB) the UAV.

Observe the payload level in the payload view and the flight time available in both the map
and timeline view (green vertical line depicts latest feasible depot arrival time). Also, observe
the battery in the UAV, and the available battery that is left in the vehicle. Observe the
reduction in battery with time. Now incorporate customer location D4 that lies within range
into the flightplan.

> Select (LMB) a specific flightplan leg.

> Add (CTRL + LMB) the customer location DA4.

> Click (Enter) to confirm the changed flightplan.
Adding a customer to the flightplan is also updated in the battery icon to observe the quantity
that is left after. Now also incorporate the other unvisited customer location D5 into the
flightplan.

> Select (LMB) the UAV.

> Select (LMB) a specific flightplan leg.

> Add (CTRL + LMB) the customer location.
Observe, the red leg, indicating the UAV will not be able to fly back from the last customer
to the depot location. This can be seen in the battery view too, as there is not sufficient

energy left. This means that even though the last customer will get the payload, however,
the UAV will die off at a point before the depot.
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> Confirm (Enter) the changed flightplan.

Observe, the same red leg, but now also the red UAV icon and the red arrival block indicating
an infeasibility.Proceed to remove the last customer location from the flightplan.

> Select (LMB) the UAV.
> Remove (CTRL + LBM) the last waypoint.

> Confirm (Enter) the changed flightplan.
Lastly, add Customer D6. The waypoints can also be selected through the battery icon

> Select (LMB) the UAV.

> Hover the mouse over a specific block over the battery to observe the flightplan leg it
is associated with.

> Select (LMB) a specific block on the battery which displays the flightplan leg which is
closest to the Customer D6.

> Add (CTRL + LMB) a waypoint at any desired location.
> Deselect (RMB) the UAV.
Observe the changes made to the flightplan now being discarded. Observe, the battery indi-

cator which shows that there is sufficient battery to reach this customer, also indicated by
the green eclipse which gives the range of the vehicle.

Please now close the simulator. Double-click on the “UAV-sim” icon on the desktop, fill out
your participant ID, press “Enter”, and maximize the screen to get set up for the next training
scenario.

C-5 Training 2: Payload Constraint

This scenario is similar to the previous one. Observe the single gray UAV flightplan and
unassigned customer locations.

> Click inside the map view and press “P”.

> Include all unassigned customer locations in the UAV flightplan.

Observe, after including the last unassigned customer location into the UAV flightplan, the
waypoint color change to red. Also note the red UAV icon color and red arrival block indi-
cating an infeasibility.

> Hover over the UAV and notice the textual warning in the payload view.
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> Remove one of the customer locations from the flightplan, to make it feasible again.
> Remove some more customer locations from the UAV flightplan.

Notice the payload level indicator come up. Also notice the change of color of the UAV icon,
the payload level indicator, and the arrival block to more and more brighter shades of yellow.

Please now close the simulator and re-open it to get set up for the next training scenario.

C-6 Training 3: Depot Congestion

Observe the gray UAV flightplans, the payload capacity and the depot arrival constraint.
> Click inside the map view and press “P”.

Notice the red UAV icon and the red arrival block.

> Select the red arrival block in the timeline view.

> Select the last flightplan leg (the one connected to the depot) in the map view.
Observe the green zone around the flightplan leg.

> Place a waypoint inside the zone.

> Select the UAV and the leg again and place a waypoint in this zone.

Notice how the zone helps you to introduce sufficient path stretching to solve the conflict. It
is also possible to solve depot arrival infeasibilities by rearranging customer locations within
a flightplan or by exchanging customer locations between UAVs.

Be aware that the Depot capacity may defer in each of the scenarios

Please now close the simulator and re-open it to get set up for the next training scenario.

C-7 Training 4: Different vehicle icons

Now that you are familiar with using the interface, observe the use of the different icons
used for the vehicles. When you click on the vehicles, you can observe the different battery
capacity that is present in the vehicle. As a result, this effects the maximum reach of the
vehicle. Also, the different icon size signify a difference in the speed. This experiment will
use two different icons. The bigger icon means that the vehicle will have a higher battery
capacity (max. battery capacity = 900 sec and vehicle speed = 20 m/s) and speed than the
other one (max. battery capacity = 750 sec and vehicle speed = 13 m/s).
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> Click inside the map view and press “P”.

Observe the different speeds at which the vehicle is moving. Additionally, the maximum reach
of the two vehicles, when clicking on the icon.

> Include all unassigned customer locations in the UAV flightplan.

Note that even though the flightleg of the two vehicles are similar, due to the difference in
the battery capacity, one of the vehicle is not able to provide the payload to the customer.

Please now close the simulator and re-open it to get set up for the next training scenario.

C-8 Training 5: Over-constrained DVRP problem

It is time to solve the first over-constrained DVRP. This means that it is not possible to be
able to satisfy all customers, while following all the constraints. So in this case, one or more
constraints have to be relaxed in order to achieve your goal.

> Click inside the map view and press “P”.

Observe that, even though the two vehicles have the same icon, they have different levels of
battery. This is due to the battery defect that may occur during the mission.

> Incorporate all unassigned customer locations in the flightplans of the remaining UAVs.

Observe that even though the vehicle is providing the payload to the customer, one of the
vehicle will not have enough battery to reach the depot, thus permanently damaging the
vehicle. Observe that the customer will be served, but it will not ensure a safe arrival to the
depot.

The decision to relax which constraint to keep or let go depends on you. This may also be
affected by the mission given to you too. Try out different combinations that is possible
within the scenario.

Please now close the simulator and re-open it to get set up for the next training scenario.

C-9 Training 6: Search & Rescue

Your results may depend on the mission that is given to you. Observe the grey box on the
top left of the screen. Before starting any experiment, please see this box to know the mission
that is given to you.

In this case, you can observe, ”Search & Rescue”. So consider this mission when you are
making changes in the flight plan:
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> There has been an avalanche in the mountains, and there are people stuck in the area
around. A Search & Rescue team is then called upon to rescue the victims. However,
in the mean time, the team is providing the victims with some basic necessities, such as
medicine, food and water to be able to help them survive longer. This is done through
very expensive UAVs provided

With keeping this in mind, now try working on the training.
> Click inside the map view and press “P”.

Make the necessary changes according to you.

When you are satisfied with the new routing you created,

> Close the simulator.
> Fill out the web-survey.

> Start the simulator.

C-10 Training 7: Delivering Coffee beans

Here is another mission that is given to you, as observed in the grey box. Remember to
always check this grey box during the experiment.

In this case, you can observe, ”Delivery coffee beans”. So consider this mission when you are
making changes in the flight plan:

> Every morning, a company delivers fresh coffee beans to various customers around the
area. This delivery is done through the use of expensive UAVs.

With keeping this in mind, now try working on the training.
> Click inside the map view and press “P”.
Make the necessary changes according to you.

> Close the simulator.
> Fill out the web-survey.

> Start the simulator.
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C-11 Training 8- 9: Overconstrained DVRP
It is now time to solve more over-constrained DVRP.
> Click inside the map view and press “P”.

Try the different combinations possible within the scenario. You may prioritise the safety of
the vehicles (thus ensuring that they reach the depot and maintain the depot constraint),
while not satisfying all customers. Or, prioritise the delivery of the payload (thus ensuring
that the payloads reach the customer, while damaging the vehicles). Or, a combination of
both.

When you are satisfied with the new routing you created,

> Close the simulator.
> Fill out the web-survey.
> Start the simulator.
You are now ready to start the experiment! Remind yourself of the goals of your

control task and the 5 minute time limit on the scenarios. Also, please do not
close the simulator before the timer is at zero. Good luck!

Reminder:

P: start scenario

LMB click: select UAV / select leg

RMB click: deselect UAV / deselect leg / discard FLTPLN change

Enter: confirm FLTPLN change

CTRL + LBM click + leg selected: add WPT

CTRL + LBM click + UAV selected: remove WPT

Do not forget to press Enter after each updated flightplan
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Appendix D

Experiment Survey

To process the participant survey, a web form was made for them to fill out. There were
three forms created. 1) The intake survey - the survey which provides information about the
participant, and tests their problem-solving ability, 2) the post-scenario survey - this survey
was provided after a few of the training scenarios and all the experiment scenario, and 3) post-
experiment survey - this is the survey given to the participants at the end of the experiment
to be able to get a feedback. The survey was provided to the participant in a web browser.
It was run through a local web server and made through PHP. The form was able to output
the result per participant. This chapter displays a survey that was given to the participants.
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D-1 Intake Survey

10/10/2019 Experiment Survey | A. Gupta

Human performance in solving over-constrained multi-UAV
dynamic vehicle routing problem in different mission objectives

Please fill out your participant ID.

Submit

Copyright © A. Gupta
All rights reserved.

localhost/index.php 171
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10/10/2019 Experiment Survey | A. Gupta

Human performance in solving over-constrained multi-UAV
dynamic vehicle routing problem in different mission objectives

Please fill out the following questions.

Age:

Gender:

Male Female

Language:

Dutch English

Do you consider yourself a regular video game player?

No Yes

Q1: Which of the bottom figures should logically take the place of the question mark in the upper set?

oAt I e A g I RGN B PVt
7 Yo vy 2
e | | rare| | g | || @

Yok * + 1 4 A VT
o{é go + +ﬁ+ﬁ+ z?o * 43{}%
% e AS S RA Vg i+ 2

Q2: Which of the bottom figures should logically take the place of the question mark in the upper set?

[ []e [ []
L))
(] (] oe ]

127.0.0.1/intake.php?pID=4

13
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10/10/2019 Experiment Survey | A. Gupta

Q3: Which cube results when folding the unfolded cube?

SN N

Q4: Which cube results when folding the unfolded cube?

LIRS ¢

Q5: Which of the bottom figures can be composed of the individual parts?

<l

127.0.0.1/intake.php?plD=4 s
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10/10/2019 Experiment Survey | A. Gupta
(6] (@) (@] @)
Q6: Which of the bottom figures can be composed of the individual parts?
(6] (@) (@) @)
Copyright © A. Gupta
All rights reserved.
127.0.0.1/intake.php?pID=4 3/3
Human Performance in Solving Multi-UAV Over-Constrained Dynamic Vehicle Routing Problems A. Gupta



78 Experiment Survey

D-2 Post Scenario Survey

10/10/2019 Experiment Survey | A. Gupta
Human performance in solving over-constrained multi-UAV
dynamic vehicle routing problem in different mission objectives
Please fill out the Rating Scale Mental Effort.
150 =
140 —
130 —
120 —
+—— — — extreme effort
110 —
T —_ — — — very great effort
100 — 9
01 - great effort
80 —
0| —4T————— considerable effort
60 - —— rather much effort
50 —
40 T —— some effort
a0 - — — a little effort
20 —
- — — — — almost no effort
10 —
g - —— absolutely no effort
127.0.0.1/rsme.php?lang=1&plD=4&run=1 12
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10/10/2019 Experiment Survey | A. Gupta

Please fill out the following questions.

Please give an estimate of the relative amount of time you spent interacting with the 4 display elements
(0-100%, total 100%).

Map View
Timeline View
Payload View

Battery View

Please rank the given constraints according to their importance by you (Rank 1 is the highest)

Payload Constraints

Flight time limit

Depot Capacity

Payload constraints: Serving as many customers as possible by using the limited payload of the vehicle.
Flight time limit: Respecting the battery limit of the vehicle. Thus enuring to have enough battery to reach
the depot safely.

Depot Capacity: Ensuring a safe arrival and departure of the vehicle to the depot by having a time
interval.

How would you describe the way you came up with a solution for the scenario?
Satisfice Optimize

Satisfice: achieving a solution that achieves your overall goal.
Optimize: achieving the best solution to achieve your overall goal.

Submit

Copyright © A. Gupta
All rights reserved.

127.0.0.1/rsme.php?lang=18&plD=4&run=1 22
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D-3

Post Experiment Survey

10/10/2019 Experiment Survey | A. Gupta

Human performance in solving over-constrained multi-UAV dynamic vehicle
routing problem in different mission objectives

Please fill out the following questions.

How do you assess the usefulness and the functionality of the map view?
Please provide examples in your elaboration.

How do you assess the usefulness and the functionality of the timeline view?
Please provide examples in your elaboration.

How do you assess the usefulness and the functionality of the payload view?
Please provide examples in your elaboration.

How do you assess the usefulness and the functionality of the battery view?
Please provide examples in your elaboration.

127.0.0.1/post.php?plD=4 13
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10/10/2019 Experiment Survey | A. Gupta

How do you assess the usefulness and clarity of the color use in the display?
Please provide examples in your elaboration.

How do you assess the usefulness and clarity of the use of different icons to signify the different UAV type in the display?
Please provide examples in your elaboration.

Do you have any other comments or suggestions with respect to the interface or the experiment?

Submit

127.0.0.1/post.php?plD=4 .

Human Performance in Solving Multi-UAV Over-Constrained Dynamic Vehicle Routing Problems A. Gupta



82

Experiment Survey

10/10/2019

Copyright © A. Gupta
All rights reserved.

127.0.0.1/post.php?plD=4

Experiment Survey | A. Gupta

3/3
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E-1 Participant Characteristics

Experiment Results

Table E-1 summarizes the information provided by the particpants in the experiment. This
information is obtained through the intake survey.

Table E-1: Participant Characteristics

‘Age Gender Language Gamer Test Score Test Time (s)

P1
P2
P3
P4
P5
P6
pP7
P8
P9
P10
P11
P12
P13
P14
P15
P16

23
22
23
24
26
23
24
23
24
24
52
23
28
24
23
23

Male
Female
Male
Male
Male
Male
Male
Male
Female
Male
Male
Male
Male
Male
Male
Male

English
English
English
English
Dutch
English
English
English
English
English
Dutch
Dutch
English
English
English
English

True
False
True
True
True
False
False
False
True
False
False
True
True
False
False
True

D

RN RO RO UTO O WO U Ot

251
262
130
357
277
529
217
296
314
264
181
202
322
296
540
208
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E-2 Particular Participant Solution

This section displays the participant solution for the maximum and minimum travelled dis-
tance for the participants. The figures only display the routes chosen by the participants, and
do not visualise the constraints.

(a) pl4-scenario00-min (b) p2-scenario00-max
(c) pl4-scenario01-min (d) pl6-scenario0l-max

Figure E-1: Participant solution
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S

(a) p15-scenario02-min (b) p2-scenario02-max

SR

(d) p2-scenario03-max

(c) pl6-scenario03-min

Figure E-2: Participant solution (continued)
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HK

(a) pl6-scenario04-min

(b) p4-scenario04-max

IR

(c) p9-scenario05-min (d) pll-scenario05-max

Figure E-3: Participant solution (continued)
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(a) pl6-scenario06-min (b) pl-scenar i006-max
/

7
A \\L/
RN

(c) pl2-scenario07-min (d) p2-scenar i007-max
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(a) pl6-scenario08-min (b) p12-scenario08-max
(c) p8-scenario09-min (d) p5-scenario09-max

Figure E-5: Participant solution (continued)
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i

(a) pl0-scenariol0-min

(b) pl-scenariol0-max

(c) p7-scenarioll-min (d) pll-scenarioll-max

Figure E-6: Participant solution (continued)
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A

(a) pl6-scenariol2-min (b) pll-scenariol2-max
; § E A E :% A
(c) p3-scenariol3-min (d) p10-scenariol3-max

Figure E-7: Participant solution (continued)
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(a) pl2-scenariol4-min (b) p6-scenariol4-max

(c) p9-scenariol5-min (d) p2-scenariol5-max

Figure E-8: Participant solution (continued)
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E-3 Post-Survey Participant Feedback

This section lists all comments obtained from participants in the post-survey. The following
questions were asked:

. How do you assess the usefulness and the functionality of the map view? Please provide

examples in your elaboration.

. How do you assess the usefulness and the functionality of the timeline view? Please

provide examples in your elaboration.

How do you assess the usefulness and the functionality of the payload view? Please
provide examples in your elaboration.

How do you assess the usefulness and the functionality of the battery view? Please
provide examples in your elaboration.

. How do you assess the usefulness and clarity of the color use in the display? Please

provide examples in your elaboration.

How do you assess the usefulness and clarity of the use of different icons to signify the
different UAV type in the display? Please provide examples in your elaboration.

Do you have any other comments or suggestions with respect to the interface or the

experiment?

The comments of the particpants can be found in Table E-2, Table E-3, Table E-4, Table E-5,
Table E-6, Table E-7 and Table E-8.

Table E-2: Q1: How do you assess the usefulness and the functionality of the map view? Please
provide examples in your elaboration.

Participant ‘ Comment

P1 The map view is useful in rerouting the drone/flight path in terms of payload
and battery. So for instance the payload and the battery helps one in selecting
destinations close or far away from the depot. Could do with more screen area.

P2 The map view was clear enough for the task. The colors used (indicating the
payload left and the possibility to return to the depot) were very useful.

P3 map view was useful in providing me with an overview of all the UAV’s and all
the points of delivery. Could quickly devise a plan based on where everything was
located

P4 The map view shows a good overview of the airspace through the use of a dark
neutral background and bright highlight colors.

P5 The colours in the map view made it easy to distinct when aircraft were out of
battery.

P6 Useful - hints displays waypoint constraints

p7 The map view is the most useful area of the interface. The color codes are well
planned and hence I did not have to refer to the other areas of the interface often
and the problems could be solved using only the map view.

A. Gupta
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P8

P9

P10

P11

P12

P13

P14
P15
P16

Very useful, for almost all the experiments, it was the one I relied on the most.
Most of the information needed is inferred from the map view. The only vague
aspect is when it comes to the warnings/conflicts. The other views help clarify
what conflict occured.

Ma view is the most important of the four. So much attention / eye-focus is needed
on the vehicles and routes themselves that there is no time for the attention to
wander away from the map view.

Map is probably the most important view. I used this to try an optimize the flight
path.

Map is extremely important as it gives you the picture in terms of distances to fly.
This allows you to go back and forth solutions to see if you can further improve
on the chosen solutions. Without this display the task would be impossible.
really nice, can see information on all the parts (payload, battery etc) in it. With
one look you could get info on all the systems, so helps to keep the focus in one
spot instead of having to look around at 4 different displays

Extremely useful once you get the an of it, all other views become secondary and
are used only to confirm the FP you set in the map view.

Very USeful

very useful

The map is usefull and gives a general overview the scenario being studied, how-

ever, the selection of waypoints could be more easier instead of selecting and
deselecting each UAV.

Table E-3: Q2: How do you assess the usefulness and the functionality of the timeline view?
Please provide examples in your elaboration.

Participant ‘ Comment

P1 The timeline view is good but could take a lesser area of the screen. I feel the user
would mostly choose between payload and battery. So even though the it is an
essential view to the practicality of the problem it is less relevant.

P2 The timeline view was good enough and useful to check the arrival time at the
depot

P3 Timeline was useful in seeing where the time conflicts were and being able to see
which uav’s were contributing to the problem.

P4 The timeline view serves it purpose in indicating conflicts at the depot. A clearer
representation of time allocation of aircraft being serviced would be to have
hangars . Aircraft would be assigned to any free hangar for the duration of their
service, and in such way depot availability would be more easily distinguishable.

P5 I rarely used it. It was only useful when all other constraints were met.

P6 Did not really look at it, used the map instead to creation diversionswaypoints.

p7 I think after the map view the timeline view is quite useful. The fact that I could
click a landing block and get to the corresponding aircraft makes using this area
quite easy.
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P8

P9

P10

P11

P12

P13

P14

P15
P16

Timeline view was useful for avoiding crashes at the depot. This is more important
for the ”deliver coffee bean problem”. The time till arrival at the depot is not very
helpful, as it is not very intuitive to look at the time. Rather, it is more useful to
look at the number of legs and the length of each leg. However, the colors yellow
and orange are sometimes hard to distinguish, especially when the aircraft are of
small size.

It is great when arriving at a solution and then checking for depot conflicts. During
the actual reorganization of the routes, however there wasn’t a lot of need for it.

This view is useful only once the flight plan is already chosen. I used it at the end
just to minimize conflicts.

Map is extremely important as it gives you the picture in terms of distances to fly.
This allows you to go back and forth solutions to see if you can further improve
on the chosen solutions. Without this display the task would be impossible.

I only used it when there was a conflict at the arrival. So useful when that happens,
otherwise i didnt look at it

Rather useful, only for when assessing whether two drones will collide. Apart
from that, they do not play at all any importance to someone who prioritizes the
payload over time.

slightly useful

It’s clear

I haven’t used it that much in most experiments but maybe some changes can be
done. If the experiments take into account the total time to reach the depot, refuel
the uavs and depart, perhaps this functionality could be expanded in that sense.

Table E-4: Q3: How do you assess the usefulness and the functionality of the payload view?
Please provide examples in your elaboration.

Participant ‘

Comment

P1

P2

P3

P4

P5

P6

P7

A. Gupta

The payload view is really useful and is handy in terms of functionality. It is easy
to read when the clock is ticking.

It was useful to assess quickly if there was enough payload to make another delivery
before returning back to the depot

Payload view was useful to determine how many points could be traveled to.
The payload view works fine by given a good indication of the unused payload at
a glance. Even though it’s situated in the lower left corner, the gauge is large and
clear enough to allow swift reading of the data.

The payload view was good. However, I used the map view more often. Payload
view was mainly used when i could not directly distinguish from the colours in the
map what the payload was.

Preferred to use the map instead to tell me whether a drone has spare payload or
not.

Well understanding the color codes, the remaining payload number per aircraft
can be estimated, thus I did not have to look at this area of the interface quite
often.
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P8

P9

P10

P11

P12

P13

P14
P15
P16

Payload view was more important in the scenarios when there were many cus-
tomers. In simpler situations, just monitoring the color of the aircraft sufficed, as
there was not much pressure to make urgent decisions.

It is great for checking which flight I have to focus on, but the information that is
contained could be shown in the map view, without having to select each vehicle to
check for the amount of payload, e.g. showing the number of un-allocated payloads
next to the vehicle.

This view was probably equally as important as the battery view however I found
myself looking at the battery view more than this one.

It is useful, but I only used it at the end of the scenarios to see if, after trying
to optimize the use of the swarm of UAVs for the purpose set, there were any
conflicts. Then simply extending the path of one of more UAVs would solve it.
good, I used it to see if I could divert smaller planes that had payload left to closer
locations such that a big plane got a payload back to bring to a more distant
location. Very useful if you want to get to all locations

Very useful when trading off between dropping off drones at points other than the
depot, and along the way. They also have the tendency of influencing the decision,
i.e. a drone with more payload is more likely to be sacrificed by taking as man
points as possible.

not at all usefull

Clear

Usefull, easy to interface with.

Table E-5: Q4: How do you assess the usefulness and clarity of the battery view in the display?
Please provide examples in your elaboration.

Participant ‘ Comment

P1 The battery view is really clear and easy to use. The demarcations (dotted lines)
allowed me to understand what percentage of the battery is being consumed for
which path. Though ideally I would place it next to the payload view (towards
the bottom panel).

P2 Useful to check whether the UAV was capable of delivering more before returning
back to the depot.

P3 Battery view was useful to determine the remaining battery life

P4 Personally I barely used the battery view itself, as the projected range on the map
view is more indicative of the aircraft capabilities. It helps in seeing how much
battery is missing to perform a certain route, but the range indication on the map
is a lot more practical.

P5 Battery view was good, as it showed when the batter was depleted. The additional
colours in the map were an added benefit.

P6 Again, preferred the map as it directly gave me hints on action.

p7 This area of the interface is the one that I use the less. I felt that the representation
of the problem in the map view is quite apt.
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P8 I did not make much use of the battery view. Whenever I encountered a conflict
for an aircraft, the red color on the leg as well as the green bubbles helped me get
the information needed about battery level.

P9 Never looked at it, as most of the battery limitations were very nicely displayed
in the map view.

P10 I used this a lot to make sure the routes were possible.

P11 Very important as well, as you are looking for UAVs that can still deliver some-
thing, if they cannot then you can see whether another UAV can do part of the
delivery such that the UAV you are considering may do another path. So you are
iterating on delivering the packages in the best way you can see.

P12 I rarely looked at, cause on the map view you can also see if it will make it or not
and what areas could still be reached

P13 Very little usefulness, as the information is already provided within the map view,
with regards to how you can create a new route. Have used it very little along the
whole experiment.

P14 Not at all useful

P15 Clear

P16 Easy to interface to select and deselect the paths.

Table E-6: Q5: How do you assess the usefulness and clarity of the color use in the display?
Please provide examples in your elaboration.

Participant ‘ Comment

P1 The colours are clear. They are bright and thus are easily identifiable, which is
useful in terms of clarity. Even though it might not be aesthetically pleasing but
the colours prevented confusion while rerouting.

P2 Good, enough for a good understanding

P3 Colors are always useful. Could quickly identify where the problems lied.

P4 The color scheme used in general is very user friendly. The dark background
reduces eye strain/fatigue and allows more focus on the highlighted items in the
FOV, as these draw more attention.

P5 The colours were really chosen good! Good to easily distinguishable when doing
the experiment.

P6 Good, colors are intuitive, red and green occur in bad and good situations respec-
tively.

p7 The colors in the display are very useful.

P8 Timeline view was useful for avoiding crashes at the depot. This is more important
for the deliver coffee bean problem . The time till arrival at the depot is not very
helpful, as it is not very intuitive to look at the time. Rather, it is more useful to
look at the number of legs and the length of each leg.

P9 It takes a lot of time to: select the vehicle and look at the bottom left. It is a
necessary information though.

P10 Very useful, the colors helped to give me an overview of the status of each UAV.

P11 It was useful as it connected some of the ’dots” in understanding the relations

A. Gupta

between the various constraints.
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P12

P13

P14

P15
P16

Usefulness was good, could see from the map view if there was payload left, or
too little payload, if areas can be reached or not. Maybe for the color of the plane
the three colors indicating payload left over can be more clear instead of yellow,
orange and red, maybe green orange and red or so. The red color really help to
check if there was a probem somewhere

Extremely useful, as it eases the cognitive process. The difference between amber
and yellow for example helped a lot to reroute drones without looking in the
payload view. In some cases a collision color between two drones appeared, even
though one of them would have no reached the depot, which was a little bit
misleading. It would be nice to show the color of the drop off zones that are not
in the flight plan in a blinking way to make sure you do not miss anything.

some other color should e used instead of orange cz sometimes it is difficult to
differentiate from yellow specially when there are too many veicles.

It’s clear

Quite usefull, however, in some cases I did not distinguish the UAVs from the
color. When that happened was when it couldn’t reach the depot.

Table E-7: Q6: How do you assess the usefulness and clarity of the use of different icons to
signify the different UAV type in the display? Please provide examples in your elaboration.

Participant ‘

Comment

P1

P2

P3

P4

P5
P6

P7
P8

P9

Yeah the icons are extremely clear and it is good that the locations are just dia-
monds and nothing more. The icon selections keeps the screen neat and prevents
chaos.

Not useful. The size of the UAV was not important for the task. In the end, it
only matters the battery capacity and payload.

It was highly useful as then when clicking on a UAV i already had a plan in mind
for the strategy i was going to use. For the smaller UAV’s i knew they had a high
capacity but low battery, whereas with a large UAV it had low capacity but a
large battery capacity. Therefore with the small uav i already planned to make it
take over points in the area which were going to be delivered to by the big uav,
and then i could make the big uav travel points far away.

I didn’t take UAV size or speed into account, as to me other parameters had a
higher importance: range and payload.

UAYV types could be just the same size. Did not pay attention to the UAV types.
It’s okey for me, I imagine some people would have issues with discerning as the
shape size difference is quite small.

The icon sizes make the use of the interface quite intuitive.

It was a good indicator for speed. However, often times there were slower UAVs
that had quite a bit of battery life. I think it biases the user to check for the larger
UAVs first, when sometimes a smaller UAV has the capability of traversing large
distances.

Never looked at it, as most of the battery limitations were very nicely displayed
in the map view.
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P10

P11

P12

P13

P14

P15
P16

Useful: T was able to - at a glance - know whether a UAV was going to have a
enough battery to take on a longer route.

That was sufficient for its purpose. Larger symbols mean extended range. These
were the guys you were hoping for to get during the scenarios as they could be
used to deliver at more remote places.

Good, I really could see which planes I wanted to go long distances and which the
shorter ones.

Quite useful, generally the bigger drones had more battery and that played an
important part in the overall optimization strategy.

well different icons were useful but I would suggest to use different shapes instead
different sizes.

It’s useful

Easy to interface, the problem seems well represented.

Table E-8: Q7: Do you have any other comments or suggestions with respect to the interface
or the experiment?

Participant ‘

Comment

P1

P2

P3

P4

P5

P6

pP7

P8

A. Gupta

The experiment was fun to execute. There is of course a learning curve that
one goes through in using the tool but that becomes clearer with every tutorial
and definitely every exercise. So the first few experiments/scenarios might not be
performed best, as the user is still getting used to the tool, however by the 3rd the
user is completely aware and used to the controls and thus can focus more on the
problem at hand.

In the coffee beans scenario it should be made clear what is more important for the
company (economically, or in terms of image etc.). It could be added something
like: If the coffee beans are not delivered, the costumers will have a bad image of
the company and possibly stop buying product (future economic damage to the
company). On the other hand, if the UAV does not return to the depot, there is
an economic impact since it will need rescue later on and it can be very expensive.
Controls can be a bit finicky thus preventing actions from sometimes being done
correctly, thus wasting time. Could maybe have some data being displayed over
the uav icon so one wouldn’t have to press the drone icon to get battery and
capacity details.

Very well designed experiment. Some levels were overwhelmingly difficult, give me
a break. Well done!

Yeah, please add the escape button to the experiment. (makes it easier for gamers).
Also try to limit the amount of clicks per action.

Control was not always very intuitive, left click should also deselect when not
clicking on anything.

I experienced a few glitches during the experiment runs, other than that I don’t
think any suggestions.

However, the colors yellow and orange are sometimes hard to distinguish, especially
when the aircraft are of small size.
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P9

P10

P11

P12

P13

P14

P15
P16

The difference between 0 payload (orange) some payload (yellow) was sometimes
not too clear.

Knowing which drone will be dispatched to take on a specific route before it leaves
the depot might be useful. At the very least it may alter the approach in deciding
the solution.

Very important because it allows you to see whether the UAV will survive. Basi-
cally in the S&Rescue scenarios you did not care much for the UAVs but just the
payload delivery. In the Coffee scenarios it was the opposite.

No

A one button control Z, to cycle multiple attempts at rerouting one drone would
be nice.

Well, it would be nice to if operator knows the path a particular type of UAV will
follow, it would help more in optimizing he rerouting strategy. Different delivery
points should have different weights as that would help in prioritizing the delivery
points and accordingly rerouting the routes.

Unselect could be done by clicking somewhere else

Just one: the dynamical behaviour makes the experiments quite interesting. De-
pending on the scenario, the ATM manager choose whether he/she will risk the
uavs to save people or deliver any materialistic good. Thence, one way to improve
would consider including refueling at the depot or other stations located in the
map.
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Appendix F

Code Architecture

F-1 Vehicle Routing Problem Optimisation

The Vehicle Routing Problem optimisation is used to be able to create the scenarios for the
experiment which is then given to the participants and also used to test if the problem was
solvable with the addition of the dynamic element. As the addition of the new customers
and the battery defect was defined right at the beginning of the experiment, the problem was
considered a static problem to test if the problem was solvable. The algorithm is based on
the Google Optimization Tools or the Google OR Tools which is a library designed to
generate the best solution for a problem, out of a large number of possible solutions. Figure F-
1 displays the functions used to generate the solution. The algorithm was able to adjust the
velocities and maximum horizon battery for the vehicles to see the effect of these variables on
the scenarios. The algorithm was able to adjust the payload capacity, velocities and maximum
horizon battery for the vehicles to see the effect of these variables on the scenarios. This was
crucial for the design of the scenarios. The tool was integral in providing a quick approach
as when a problem was taking too much time, there was a time limit set, and also a Search
Control was used occasionally to provide a first solution strategy.

After the solution is produced, the result is then used by PlotScenario which makes the plot
to be able to visualise the problem.

F-2 Multi-UAV Simulator

The multi-UAV simulator is based on JAVA, and it was extended from Koerkamp et al. The
code was based on the MUFASA editor (MEDIT). To develop the interface, the Eclipse Luna
Version 4.4.2 and Java version 1.6 was used. The simulator made use of the scenario files from
the scenarios folder that was generated by the VRP optimisation code. The sequence of the
scenario given to the participants was based on the number given to them, and outputted
through setup.txt file in the experiment-design folder. When the interface was started,
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the simulator inquired about the participant ID and then based on this, displays the scenario.
At each run, the interface creates a log file in the logs directory. There is also a logs-click
folder, which contains the click logs. The logs directory helped to show the routes which were
taken by the participants at all time, and the logs-click shows the clicks that were done by
the user.

The architecture of the multi-UAV simulator is displayed in Figure F-2. the main frame is in
the package +atclib.ssd.main. The SSDFrame is the main executable in the code. The
Mission object defines the scenario. The fleet of the UAV is defined in UAV objects. This
also contains the Flightplan, and additionally contains the waypoint objects.

The click log and the data aids in getting the result from the participants and is contained
in 4atclib.ssd.main package under ClickLogger and DataLogger. For the map view,
the +atclib.ssd.display.elements package includes the files. There is an additional ob-
ject for the Battery indicator which is in GLBatteryIndicator. For the timeline view,
+atclib.ssd.display.timewindow package includes the object for it. For the payload
view,+atclib.ssd.display.payloadwindow package includes the objects for it. The en-
velope around the UAV are in PerformanceEnvelope and PathStretchEnvelope, This is
used to visualise the constraints to the users. To be able to export the code, a runnable file
was created by File > Export > Runnable JAR file.

F-3 Experiment Survey

For the experiment survey, a web form was created and this was based on PHP and HTML.
The way it was presented to the participants can be seen in Figure F-3. To run the survey on
the machine, XAMPP is used to run it on the localhost. The results from the survey form will
generate a data file for a particular ID that is inputted by the user. Once a participant ID is
created, it would not be possible to start the survey with the same ID to avoid repetition of
the value.

F-4 Post Experiment Data Processing

From the data, the results had to be calculated for the dependent variable. The scripts were
based on MATLAB. The data is first converted to .mat format, and then the data is then
analysed and lastly, the figures are created for the dependent variable. The architecture code
for post-processing can be seen in Figure F-4. The three parse files were run to be able to
convert the log files. And then the data is processed to calculate the required information for
each of the dependent variables and generate the figures, which is automatically saved.
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from ortools.constraint_solver
import pywrapcp, routing_enums_pb2

Main
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Locations, Demands,
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Vehicle Horizon
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Figure F-1: Vehicle Routing Problem optimization code architecture.
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Figure F-2: Multi-UAV simulator code architecture (Koerkamp et al., 2019)
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Figure F-3: Survey web form code architecture (Koerkamp et al., 2019)

processExperiment
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‘ processed data |
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| parseLogSurveyFiIe| | parseResultFile | | parseLogClickFile |
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Figure F-4: Post processing code architecture (Koerkamp et al., 2019)
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Appendix G

Concluding Remarks and
Recommendations

This chapter presents a more elaborate overview of recommendations in addition to the pa-
per. Section G-1 discusses the experiment and interface design, and Section G-2 presents
suggestions for future work.

G-1 Interface and Experiment Design

The interface was effective in use, and the participants used it to a great extent. However,
the map view was the most useful one as it provided a summary of most of the information.
Some of the participants could not focus on any other view as the map view was enough for
them in a limited period. A suggestion for the timeline view is to decrease the area of the
screen as it was not used as much. Also, the arrival blocks were confusing for the participants
as it was difficult to associate which block was for which vehicle. Thus, it is recommended to
add a vehicle number and put it on the block in the timeline view to be able to get a quick
grasp on which block is for which vehicle. For the payload view, it provided an initial value
for the total number of payloads, but then the colour scheme in the map view provided a
clear knowledge about the amount.

In the map view, it would have been more convenient for the participants to be able not to
deselect the UAV each time they don’t want to make a decision, and rather it deselects on its
own when it goes to another vehicle.

To produce an efficient result by the participant, there could be a window in the view which
would display the cost of the solution, and so it would provide the user with a better solution
rather than only doing it visually. For the experiment, as the participants got used to the
controls after doing a few scenarios, thus it is recommended to increase the training volume
for future experiments.

There was a lot of colour that is used in the interface, thus it is suggested that the experiment
should be screened for colour blind participants.
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It is assumed that the user could be able to handle a greater number of payloads, thus in
the future, it is recommended to take more customers into account, and also to see how the
performance of the participant’s changes with more number of mission objectives.

G-2 Future Work

A few suggestions for future work are as follows. There could be additional of more dynamic
scenarios to make the experiment more realistic. Some additional aspects that could be added
in the interface are by introducing wind. This would introduce an asymmetry into the system,
making it more difficult to solve the problem. More suggestions are: adding a 3D element
into the interface, thus considering buildings and their height while making a decision. Also,
it is possible to add a time-window for the customers, to provide an estimate to when they
will get the payload. Some minor changes that can be added on also are to, consider moving
customers and also using multiple depots rather than using a single one.

To make an optimisation code, only the Google OR tools was used for this. There should be
more algorithms that could be investigated to possibly asses the scenarios further. Also, to
investigate the results of the participants, an algorithm could be created to be able to solve
the over-constrained problem and then compare the results of the algorithm with the human
to have a better idea on how the human results different with automation.
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