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Abstract. Multi-Objective Design Exploration (MODE) and its application are presented. 
MODE reveals the structure of the design space from the trade-off information and visualizes 
it as a panorama for Decision Maker. As an optimizer for MODE, Efficient Global 
Optimization (EGO) based on the Kriging model has been extended to Multi-EGO to solve 
multi-objective problems, which allow using Multi-Objective Genetic Algorithms efficiently. 
The resulting MODE was applied to the multi-disciplinary wing design problem and revealed 
the detailed trade-off information about aerodynamic and structural performance successfully. 

 
 
1 INTRODUCTION 

A typical Multidisciplinary Design Optimization (MDO) problem involves multiple 
competing objectives. While single objective problems may have a unique optimal solution, 
multi-objective problems (MOPs) have a set of compromised solutions, largely known as the 
trade-off surface, Pareto-optimal solutions or non-dominated solutions. These solutions are 
optimal in the sense that no other solutions in the search space are superior to them when all 
objectives are considered together.  

If one can find many Pareto-optimal solutions to reveal trade-off information among 
different objectives, a designer will be able to choose a final design with further 
considerations. Evolutionary Algorithms (EAs, for example, see Ref. 1) are particularly suited 
for this purpose. However, because EAs are a population-based approach, they generally 
require a large number of function evaluations. To alleviate the computational burden, the use 
of the response surface method (RSM) has been introduced as a surrogate model (for example, 
see Ref. 2).  

The surrogate model used in this study is the Kriging model.3,4 This model, developed in 
the field of spatial statistics and geostatistics, predicts the probability density distribution of 
function values at unknown points instead of the function values themselves. From this 
distribution, both function values and their uncertainty at unknown points can be estimated. 
By using these values, a balanced local and global search is possible. The criterion ‘Expected 
Improvement (EI)’ indicates the probability being superior to the current optimum in the 
design space. By selecting the maximum EI point as an additional sample point of the Kriging 
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model, the improvement of model accuracy and the exploration of global optimum can be 
achieved at the same time. This concept is expressed as Efficient Global Optimization 
(EGO).3 

EGO has been extended to Multi-EGO5 for MOPs. In Multi-EGO, the original MOP is 
converted to the MOP of maximization of EIs. MOGA finds the non-dominated solutions 
about EIs of the objective functions and then several points are selected from the non-
dominated solutions to update the Kriging model. Multi-EGO performs a balanced local and 
global search for MOPs. 

By incorporating Multi-EGO, the MDO system named as Multi-Objective Design 
Exploration (MODE)6 can be summarized as a flowchart shown in Fig. 1.  MODE is not 
intended to give an optimal solution. MODE reveals the structure of the design space from the 
trade-off information and visualizes it as a panorama for a designer. One will know the reason 
for trade-offs from non-dominated designs, instead of receiving an optimal design without 
trade-off information. 

 
Figure 1: Flowchart of Multi-Objective Design Exploration (MODE) with component algorithms 

2 AERO-STRUCTURAL WING SHAPE DESIGN OPTIMIZATION 
The present aero-structural wing shape design optimization is considered as follows: 
 
<Objective functions> 

Minimize  
- Drag at the cruising condition  
- Drag divergence between cruising and off-design conditions 
- Pitching moment at the cruising condition 
- Structural weight of the main wing 

 

Define design space 

Construct surrogate model 

Find non-dominated front 
of EIs 

Check the model and front 

Extract design knowledge   

Choose sample points 

Parameterization : NURBS 

Design of Experiment: Latin Hypercube 

Response Surface Method: Kriging Model 

Optimization: Adaptive Range Multi Objective 
Genetic Algorithms 

Uncertainty Analysis: Expected Improvement based on 
Kriging Model, statistics of design variables, etc.  

Data Mining: Analysis of Variance, Self-Organizing 
Map, etc. 

Multi-EGO
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<Design variables> (109 variables in total, see Ref. 7 for details) 
- 26 variables (NURBS) for each airfoil definition times 4 spanwise sections 

(2y/b= 0.1, 0.35, 0.7 and 1.0)  
- 5 twist angles to determine spanwise twist distribution  

 

<Constraints> 
- Rear spar heights > Required values 
- Strength and flutter margin > Required values 

 

In order to evaluate aerodynamic and structural performance, CFD and CSD modules are 
used as follows: 

 

1. Full potential analyses are performed for all Kriging sample points and Euler analyses 
are performed for several points to validate the accuracy of the full potential analyses. 

2. Using the pressure distribution obtained from FP/Euler analyses, structural and flutter 
analysis models are generated by FLEXCFD which is an aeroelastic-structural 
interface code (Fig. 2). 

3. Structural optimization to minimize the wing weight that satisfies the strength and 
flutter requirements is conducted.  

 

Given the wing outer mold line for each individual, the finite element model of wing box is 
generated automatically by the FEM generator for the structural optimization. The wing box 
model mainly consists of shell elements representing skin, spar and rib, and other wing 
components are modeled using concentrated mass elements. In the present study, MSC. 
NASTRAN8 is employed for the structural and aeroelastic evaluations.  

The overall flowchart of the present Multi-EGO for aero-structural wing design is given in 
Fig. 3. In the present optimization, the Kriging model has been updated five times. In total, 
160 sample points were evaluated. 

 
Figure 2: CFD unstructured mesh and CSD structured mesh 

3 RESULTS 

Figure 4 shows plots of two-dimensional trade-offs based on the performance of the 
baseline configuration and those of the additional sample points after every iteration step. As 
iteration progresses, individuals move toward the optimum direction in terms of all objective 
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functions. It means that the additional sample points for the update were correctly selected. 
One of the additional sample points (Point A in Fig. 4) has improvements of 6.2 counts in 
drag, 0.4 counts in drag divergence, 79.4 counts in pitching moment, and 74.0 kg in wing 
weight compared with the baseline design. 
 

 
 

Figure 3: Flowchart of the present Multi-EGO for aero-structural wing design 

Latin Hypercube Sampling 
Design variables

CFD (FP/Euler) 
Load condition Pressure distribution

Structural optimization 
code + NASTRAN  

Strength & flutter 
requirements Static analysis model 

Flutter analysis model 

Construction of initial 
Kriging model 

MOGA 
(Maximization of EIs) 

Selection of additional 
sample points  Update of Kriging model 

Mesh generation module 

CCFFDD&&CCSSDD  mmoodduullee  

Wing-body 
configuration 
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ooppttiimmiizzaattiioonn  mmoodduullee  
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(e) Drag divergence – Wing weight    (f) Pitching moment – Wing weight 

Figure 4: Two-dimensional trade-offs based on the full potential analysis 
 
Because the present MDO considers four objectives, Fig. 4 requires six plots to visualize 

the trade-offs. To visualize the entire design space in the two-dimensional map, Self-
Organizing Map (SOM)9,10 proposed by Kohonen was applied to the solutions uniformly 
sampled from the design space. Figure 5 shows the resulting SOM with 13 clusters 
considering the four objectives. Furthermore, Fig. 6 shows the same SOMs colored by the 
four objectives, respectively. These color figures show that the SOM indicated in Fig. 5 can 
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be grouped as follows: 
The right edge area corresponds to the designs with low drag, low pitching moment and 

low wing weight. The upper right area corresponds to those with high drag divergence. The 
upper left corner corresponds to those with high drag and high pitching moment. The lower 
left corner corresponds to those with low drag divergence and high wing weight.  
 
 

 
 

Figure 5: SOM of solutions uniformly sampled from the design space. 
 

 
 

     
                                                  (a) Drag                                                (b) Drag divergence 
 

     
                                                 (c) Pitching moment                            (d) Wing weight 
 

Figure 6: SOM of solutions uniformly sampled from the design space  
colored by the objective functions. 
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As a result, there is no sweet spot in this design space that improves all four design 
objectives. However, if the drag divergence is tolerable, the right edge area can be a sweet 
spot for design.  

4 CONCLUSIONS 
EGO has been extended to Multi-EGO and incorporated into MODE successfully. The 

resulting MODE was applied to the wing design problem that considers the aerodynamic and 
structural performance simultaneously. As a result of the present optimization, several 
solutions dominating the baseline configuration were generated with 160 function evaluations, 
which was a drastic reduction compared with that of conventional EAs. One of them has 
improvements of 6.2 counts in drag, 0.4 counts in drag divergence, 79.4 counts in pitching 
moment, and 74.0 kg in wing weight compared with the baseline design.  

Visual data mining for the design space was performed using SOM. SOM obtained from 
the solutions uniformly sampled from the design space revealed that the sweet spot could 
exist if the drag divergence was tolerable. The use of data mining will provide more 
knowledge about the design space and extract more information from the optimization 
process. 
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