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Chapter 1

Introduction

In this chapter we first present the motivation for the research addressed in this thesis. After
that, we indicate the scope of the research. Finally, we give a general overview of this thesis
including the outline and the main contributions.

1.1 Motivation

As the population in urban areas is increasing, the demand for transportation services is
also increasing rapidly. Since over 60% of the urban traffic is road traffic [110], the problems
caused by the increasing demand of road traffic, such as large numbers of injuries and
fatalities, frequent congestion, high levels of energy consumption and pollution, and high
levels of noise, are getting more and more severe [39, 104, 118]. In order to satisfy the
increasing demand for road transportation services and in order to mitigate the problems
caused by increasing road traffic, effective and efficient traffic control strategies for urban
transportation networks are urgently required. Urban traffic control consist of obtaining
traffic information and applying control measures e.g., control of traffic lights and dynamic
routing of vehicles. Conventionally, there is a traffic control center for each urban
transportation network. However, an urban transportation network may consist of a large
number of roads and intersections, which requires extensive communication efforts for
transferring the states of the network to the traffic control center. Besides, the dynamics of
traffic in the network are highly complicated, which requires extensive computation efforts
for solving the resulting large-scale traffic control problem. For reasons of scalability and
fast computation, a centralized control method will not be tractable for the control of
large-scale urban transportation network of the future.

Except for control of large-scale transportation networks, control of multi-agent systems
is also addressed in this thesis. Multi-agent systems, like transportation systems,
manufacturing systems, power systems, financial systems, are composed of multiple
subsystems with interactions [64]. Multi-agent systems research is facing a variety of
challenges, of which a crucial one is to design mechanisms for coordinating agents that
have limited information sharing with each other in order to protect confidential
information of local subsystems while at the same time still aiming for global performance
[43]. In order to achieve globally satisfactory performance, the agents need to assist each
other to make better decisions about their actions. However, the cooperation among agents
is made much more difficult when the individual agents have to regulate hybrid subsystems
that contain both continuous components and discrete components. In fact, this will result

1



2 Multi-agent control of transportation networks and of hybrid systems with limited information sharing

in having to solve mixed-integer programming problems in a distributed way, for which
there has not yet been a successful algorithm.

1.2 Scope of the research

In this thesis we investigate and develop efficient solution methods for control of urban
transportation networks and for control of multi-agent hybrid systems by employing
state-of-the-art control methods and optimization techniques.

For control of transportation networks, dynamic traffic routing refers to the control
process that influences the routes of traffic flows going through the network in response to
the real-time traffic conditions of the network. In this thesis, we focus on solving the
dynamic traffic routing problem for urban transportation networks by assuming all O-D
(origin - destination) traffic demands to be given. We aim to develop efficient solution
methods for the dynamic traffic routing problem so that the total travel cost including e.g.
the total time spent and the total energy consumption is minimized.

For control of multi-agent hybrid systems, we focus on a class of hybrid systems that are
governed by discrete inputs and that are subject to global hard constraints. In particular,
each subsystem is characterized by a convex objective function and a strictly increasing
constraint function with respect to the local control variable. Besides, each subsystem only
shares limited information with the external environment. We aim to develop a multi-agent
model predictive control method for such a class of hybrid systems based on a distributed
optimization algorithm. We apply the developed multi-agent control method to the
charging control of a fleet of electric vehicles.

Note that the control approaches that we develop in this thesis can similarly be extended
to other applications, e.g., control of power distribution networks and energy management
for smart buildings.

1.3 General overview of the thesis

1.3.1 Outline of the thesis

This thesis is divided into two parts. In the first part, we address the dynamic traffic routing
problem for urban transportation networks. In the second part, we address multi-agent
model predictive control of a class of hybrid systems with limited information sharing and
subject to global hard constraints. More specifically, Figure 1 illustrates the organization
and the relation between different parts and chapters of the thesis.

First, Chapter 2 gives an overview of the two main research topics i.e., control of urban
transportation networks and multi-agent control of hybrid systems. More specifically, we
present the surveys on the two main research topics, including the existing approaches,
challenges, and future trends.

After that, in Chapter 3 and Chapter 4, we focus on multi-agent dynamic routing of
cybercars in a cybernetic transportation network (i.e. a road network only open to
cybercars). More specifically, Chapter 3 presents a discrete-time and a discrete-event model
of the dynamics and the energy consumption of the whole fleet of cybercars in the network.
Besides, the main features of the two modeling methods are discussed. For the sake of
simplicity and fast computation, the discrete-time modeling is selected for controller
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design in the reminder of the thesis. In Chapter 4 we propose several multi-agent control
methods including multi-agent model predictive control and parameterized control for
dynamic routing of cybercars based on the discrete-time model of the dynamics and the
energy consumption of cybercars.

Next, in Chapter 5, we address the dynamic traffic routing problem for urban
transportation networks considering dynamics of traffic flows. We aim to minimize the total
travel cost of all flows including the total time spent and the total energy consumption. In
order to reach a well-balanced trade-off between the quality of solutions and the
computation costs, we propose two novel multi-agent control approaches for dynamic
traffic routing. First, the dynamic traffic routing problem is addressed based on network
division and a hierarchical control method is proposed. After that, the problem is addressed
based on merging nodes and links and a bi-level control method is proposed.

After that, Chapter 6 addresses the co-optimization problem of jointly determining the
orientation of urban road sections and the routes of traffic flows. More specifically, we
assume that the orientation of each road section in an urban transportation network can be
changed in each control period and focus on the co-optimization problem that jointly
determines the orientation of road sections in the network and the routes of traffic flows. By
assuming circular orientation of traffic flow in each elementary cycle of roads in the
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network and modeling the relation between the orientation of road sections and the
circular orientation of traffic flows in the elementary cycles, the number of binary variables
involved in the optimization problem is substantially reduced with respect to considering
the orientation of each road section independently.

In Chapter 7, we propose a multi-agent model predictive control method for a class of
hybrid systems governed by discrete inputs and subject to global hard constraints. The
proposed multi-agent control method is based on a distributed resource allocation
coordination algorithm and only requires limited information sharing from the local
control problems of the subsystems. Thanks to primal decomposition of the global
constraints, the distributed algorithm can always guarantee global feasibility of local
control decisions, even when stopped prematurely. Besides, since the control variables are
not continuous but discrete, a mechanism is developed to branch the overall solution space
based on the outcome of the resource allocation coordination algorithm at each node of the
search tree.

Finally, the thesis is concluded in Chapter 8, where the general summary of the thesis is
presented. Besides, several possible directions for future work are recommended.

Note that most of the material included in this thesis has already been published or is
under review. In particular, Chapter 3 is based on [76] and [81], Chapter 4 is based on [81]
and [82], Chapters 5 and 6 are based on [80], and Chapter 7 is based on [77–79].

1.3.2 Main contributions

The main contributions of the thesis with respect to urban traffic routing and multi-agent
control of hybrid systems are the following:

Urban traffic routing

• We develop two models for the dynamics and the energy consumption of cybercars in a
road network that is only open to cybercars, and propose several tractable and scalable
multi-agent control methods to solve the dynamic routing problem of cybercars.

• We propose two novel solution methods for dynamic traffic routing in urban
transportation networks.

• We propose an efficient solution method for jointly optimizing the orientation of
urban road sections and the routes of traffic flows.

Multi-agent control of hybrid systems

• We propose a novel multi-agent model predictive control for a class of hybrid systems
subject to global constraints that requires only limited information sharing among
local control agents and that guarantees the global feasibility of local control
decisions.



Chapter 2

Traffic Management and Control of Hybrid

Systems

In this chapter we present the background of the researches included in this thesis. The
chapter is organized as follows. Firstly, in Section 2.1 we introduce the concepts of optimal
control and model predictive control that are used both in traffic management and in
control of hybrid systems. After that, the introduction to traffic management control and
the introduction to control of hybrid systems are presented in Sections 2.2 and 2.3,
respectively. Finally, we summarize the chapter in Section 2.4.

2.1 Optimal control and model predictive control

Optimal control and model predictive control are dynamic control methods that determine
the control actions based on solving optimization problems. In this section we present the
general description, including the concepts and the advantages and disadvantages, of the
two control methods. Besides, we also present the algorithms that can be used to solve the
resulting optimization problems in the two control methods.

2.1.1 Optimal control

Theoretical framework

Optimal control determines a sequence of admissible control actions for a given system
over the entire control period by optimizing a performance function while satisfying the
operational constraints of the system, see, e.g., [14, 67, 121]. However, in optimal control,
the control inputs of the system are computed using only the measurements of the current
state of the system and the model of the system. Hence, optimal control is an open-loop
control approach that does not use any feedback. More specifically, a schematic diagram of
optimal control is given in Figure 2.1. The essential elements involved in optimal control of
a system are:

• a model of the system

• measurements of the initial state of the system

• an objective function

5
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Figure 2.1: Optimal control

• operational constraints of the system

Generally, a standard discrete-time optimal control problem is formulated as follows:

min
u

kend−1
∑

k=0

J
(

x(k),u(k),d(k)
)

+P
(

x(kend)
)

(2.1)

s.t. x(0) = x0

x(k +1) = Fmodel

(

x(k),u(k),d(k)
)

for k = 0,1, ...,kend −1

Gconstraint

(

x(k),u(k),k
)

≤ 0 for k = 0,1, ...,kend −1

where x(k) ∈R
n denotes the state of the system at time step k, u(k) ∈R

m denotes the control
input to the system at time step k, and d(k) ∈ R

h denotes the disturbances to the system
at time step k. Besides, the functions J (·) and P (·) determine the cost of the system at each
time step and the terminal penalty to the system respectively, and the functions Fmodel(·) and
Gconstraint(·) describe the dynamics of the system and the constraints imposed on the system
respectively.

Therefore, for a given simulation period [0,kendT ] with T denoting the sample time, the
optimal control of a system consists in determining a sequence of control actions
u = [uT(0),uT(1), ...,uT(kend −1)]T by solving an optimization problem (2.1).

Advantages and disadvantages

The main advantage of optimal control is that it can be used to control multi-input
multi-output dynamical systems and to handle the operational constraints of the systems
explicitly. However, since optimal control is essentially an open-loop control method, the
main drawback of optimal control is its performance loss or even incapability of satisfying
constraints due to model mismatch errors and environmental disturbances.

Optimization algorithms

For some cases where the resulting optimization problems are convex [20] or if the solutions
to the resulting optimization problems can be computed analytically [45, 101], the optimal
control method is able to find the optimal sequence of control actions efficiently.

However, for many cases, the resulting optimization problem is nonlinear and
nonsmooth, i.e. nonlinear programming problem, or even subject to constraint that the
control inputs are restricted to integer values, i.e. mixed integer programming problem.
Actually, those problems are nonconvex and are computationally hard to solve. Although
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there are several algorithms, e.g., multi-start sequential quadratic programming, multi-start
simulated annealing, and multi-start pattern search [15], developed for solving nonlinear
programming problem, and, e.g., genetic algorithm [100] and DIRECT [63], developed for
solving mixed integer programming problem, these algorithms cannot guarantee that the
global optimal solution is found.

2.1.2 Model predictive control

Theoretical framework

Model predictive control (MPC) has been widely recognized as a high-performance control
approach for complex and constrained systems [22, 83]. In MPC, the control actions over a
certain time span in the future are determined by solving a constrained optimization
problem that includes the model of the system, the operational constraints, and the goal of
control explicitly, in a receding horizon fashion.

Different from optimal control, MPC is a feedback control method that computes the
control input to the system repeatedly by solving an on-line optimization problem at each
control step. A schematic diagram of model predictive control is shown in Figure 2.2. More
specifically, at each control step k, the MPC controller first makes a measurement of the
current state x(k) of the system. After that, the controller uses a prediction model of the
system and on-line optimization to determine the optimal control actions over a given
prediction period

[

kT, (k + Np)T
)

, where Np denotes the prediction horizon. One possible
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way to reduce the computational complexity of the on-line optimization problem is to
assume that the control inputs beyond the control horizon Nc become constant, i.e.,
u(k + j )= u(k + j −1) for j = Nc, ..., Np −1. Therefore, the standard model prediction control
problem is formulated as follows:

min
u

Np−1
∑

j=0

J
(

x(k + j ),u(k + j ),d(k + j )
)

+P
(

x(k +Np)
)

(2.2)

s.t. x(k + j +1) = Fmodel

(

x(k + j ),u(k + j ),d(k + j )
)

for j = 0,1, ..., Np −1

Gconstraint

(

x(k + j ),u(k + j ),k + j
)

≤ 0 for j = 0,1, ..., Np −1

u(k + j ) = u(k + j −1) for j = Nc, ..., Np −1

where the variables and the functions have already been defined in (2.1).
After the optimal control sequence u∗ =

[

u∗T(k), ...,u∗T(k + Nc)
]T

are computed, only
the first control action u∗(k) is implemented on the real system, and subsequently the
horizon is shifted. At the next control step, the new state of the system is measured, and a
new optimization problem is solved using this new information. Recurrently, the receding
horizon control procedure is repeated until the end of the overall control period.

Advantages and disadvantages

As optimal control, MPC can be used to control multi-input multi-output dynamical
systems by taking into account the operational constraints of the system explicitly.
Compared with optimal control, one advantage of MPC is the feedback mechanism which
makes the system under the control of an MPC controller more robust to uncertainties and
disturbances. Another advantage of MPC is that the on-line optimization problems are
computationally less complex than the optimization problem involved in optimal control
since Nc and Np are smaller than kend. However, this comes at the cost of loosing
performance due to finite prediction and control horizons.

Optimization algorithms

The on-line optimization problems involved in MPC can be solved using the same
optimization algorithms as for solving the optimization problems involved in optimal
control.

Variants

So far we have presented the general concept of centralized MPC, where there is only one
MPC controller controlling a whole system. However, when dealing with large-scale
systems, centralized MPC would not be tractable due to the heavy communication burden
in acquiring the state of the system and the high computational complexity in solving the
resulting on-line optimization problems. Therefore, in order to deal with large-scale
systems, several alternative MPC approaches have been developed, such as:

• Decentralized MPC

• Distributed MPC
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• Hierarchical MPC

• Parameterized MPC

For the sake of simplicity, we only briefly describe the main idea of these alternative MPC
approaches.

In decentralized MPC [65, 116], the whole system is divided into a group of subsystems
that are independently controlled by local MPC controllers. More specifically, based on the
local state and the prediction model of the corresponding subsystem, each local MPC
controller determines the local control inputs to the subsystem by solving a local
optimization problem. Compared with centralized MPC, the main advantage of MPC lies in
the fact that the independent local optimization problems are much smaller and simpler,
and hence are much easier to solve. However, this advantage of fast control typically comes
at the cost of degraded overall performance.

Distributed MPC [23, 108] is an extension of decentralized MPC, where the local MPC
controllers also exchange information regarding their future control actions while solving
local optimization problems. More specifically, in distributed MPC, the local MPC
controllers do not solve their local problems independently but cooperatively by
exchanging information with each other to achieve global optimal performance. Compared
with centralized and decentralized MPC, distributed MPC is typically able to achieve a
well-balanced trade-off between performance and computation speed.

Hierarchical MPC [112, 113], which is also referred to as multi-level MPC, consists of
multiple control levels. In a hierarchical MPC control set-up, the MPC controllers at higher
levels have authority over the MPC controllers at lower levers, whereas the MPC controllers
at the same level have equality authority relationships. More specifically, the MPC
controllers at the high levels perform supervisory and strategic control of the system
typically using a macroscopic model of the system, while the local MPC controllers at the
lower levels perform operational control of the system. Besides, at any level, the controllers
communicate their decisions to the lower levels or even negotiate their decisions with the
higher levels.

Parameterized MPC [105] is based on a receding-horizon control scheme and
parameterized control laws. More specifically, in parameterized MPC, the control inputs are
parameterized and only the parameters are optimized with respect to the system
performance. Generally, the number of parameters is much smaller than the number of
control inputs over the control horizon. Therefore, the computational load for
parameterized MPC is much less than the standard MPC.

In the rest of this thesis we mainly apply the aforementioned alternative MPC methods
to the two main research topics: control of urban transportation networks and control of
large-scale hybrid systems.

2.2 Traffic management

Traffic management and control consists in obtaining traffic information, applying traffic
control, managing traffic demands and incident, etc. Its goal is to provide safe, reliable, and
sustainable travel in a changing environment, and at the same time, to take into account
economical, social and environmental factors, such as the total time spent and total energy
consumption of all vehicles. In this section we present an overview on traffic management
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and control by introducing some traffic flow models, traffic energy consumption models,
traffic management measures, and traffic control design methods for traffic networks.

2.2.1 Traffic flow models

Depending on the level of accuracy in describing the dynamical behaviors of individual
vehicles, the traffic flow models are typically classified into the following two categories:

• Microscopic traffic flow model

• Macroscopic traffic flow model

For the sake of simplicity, we only briefly describe the general concepts of the traffic flow
models in this section.

Microscopic traffic flow models

Microscopic traffic flow models aim to describe the dynamics of individual vehicles [8, 125],
including speeding up, braking, cruising, lane changing, and maintaining a safe distance
from other vehicles, etc. Therefore, microscopic traffic flow models can simulate the
dynamics of traffic flows in a detailed way and thus are often used as simulators for
evaluating the effectiveness of traffic control approaches. There have been some traffic flow
simulators developed based on microscopic traffic flow models, e.g. VISSIM developed by
PTV Group, Germany, and SUMO developed by the German Aerospace Center, Germany.
However, due to the high computational complexity, microscopic traffic flow models are
generally not used as prediction models in model-based control approaches. For this
reason, macroscopic traffic flow models, where the dynamics of traffic flows are described
in an aggregated way, are often used for on-line model-based control of large-scale traffic
networks.

Macroscopic traffic flow models

In macroscopic traffic flow models [8, 125], traffic flows are often considered to be similar to
fluid flows, and the dynamics of traffic flows are described through aggregated traffic
variables. Generally, in macroscopic traffic flow models, the dynamics of traffic flows over
different locations and different time periods are typically captured by the following three
aggregated variables:

• "Mean speed" is defined as the average speed of vehicles over a time period (time-
mean speed) or over an area (space-mean speed).

• "Density" is defined as the number of vehicles per unit length of the roadway.

• "Flow" is defined as the number of vehicles passing a reference point of the roadway
per unit of time.

Actually, a fundamental diagram is a mathematical description of the approximate
equilibrium relationship among these three aggregated variables [51, 66]. More specifically,
if one of the three aggregated variables is given, the other two can be determined using a
fundamental diagram. So far, most of the macroscopic traffic flow models,
Lighthill-Whitham-Richards (LWR) model [109], Cell Transmission Model (CTM) [32, 33],
and METANET model [92] etc, have been developed based on the fundamental diagram.
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2.2.2 Traffic energy consumption models

Traffic energy consumption models describe the energy consumption of traffic flows based
on their dynamics. Since the models of the dynamics of traffic flows are classified into the
microscopic category and the macroscopic category, the models of the energy consumption
of vehicles are also classified into those two categories accordingly.

Microscopic traffic energy consumption models

Microscopic traffic energy consumption models aim to describe the energy consumption of
individual vehicles over time and space. There have been several microscopic traffic energy
consumption models, e.g., CMEM [5], COPERT [134] and VERSIT+ [74], developed in the
literature. Due to the high accuracy in modeling the energy consumption in traffic networks
and the high computational complexity, microscopic traffic energy consumption models are
often used to evaluate the performance of traffic control approaches instead of being used
for on-line control.

Macroscopic traffic energy consumption models

Macroscopic traffic energy consumption models describe the energy consumption in traffic
networks based on aggregating the energy consumption factors of vehicles over time and
space. There have been several macroscopic traffic energy consumption models, MOBILE6
[133] and VT-macro [135], developed in the literature. Like macroscopic traffic flow models,
macroscopic traffic energy consumption model are mainly used as the prediction model for
on-line control purpose.

2.2.3 Traffic management measures

In order to manage a large-scale traffic network, many decision-making processes have to
be involved. A general description of the decision-making processes involved in the
management of transportation networks is as follows:

• Strategic decisions are the long-term decisions related to the construction and
changes of the transportation networks, e.g., building new road sections.

• Tactical decisions are the mid-term decisions related to the effective use of the existing
transportation networks, e.g., determining the orientation of road sections [93].

• Operational decisions are the short-term decisions related to scheduling or traffic
flow control, e.g., scheduling the traffic lights [37], determining speed limits on the
roadways [57], and routing the traffic flows [30], etc.

Generally, expanding the existing infrastructures of a transportation network is the most
straightforward way to deal with congestion. However, it is not the most efficient one. First
of all, it is monetarily costly and time consuming. Second, it may cause temporary blockage
in the network because of ongoing construction. Third, it is often only a temporary solution
and might not be able to satisfy the future demand. On the contrary, the tactical and the
operational management, which focus on making effective use of existing infrastructures,
are more sustainable and promising measures to tackle traffic congestion. From the control
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point of view, most existing literature has focused on the operational management of the
transportation networks.

2.2.4 Control design methods

In the literature there have been many different control design methods developed for
managing and controlling large-scale traffic networks [34, 99, 135]. In this section, we will
discuss the control design methods that are often used in practice such as

• Optimal control

• Model predictive control

• Parameterized feedback control

• Artificial-intelligence-based control

Note that among these control design methods, we have already presented the first two in
Section 2.1. Hence, in this section we only discuss the other two.

Parameterized feedback control

In order to deal with modeling errors and disturbances, feedback based on the state or the
output of a system is always involved in the control loop of the system. In parameterized
feedback control, the feedback control law is parameterized and the parameters need to be
tuned before the control law takes effect. Depending on whether the parameters are tuned
on-line, feedback control can be divided into static feedback control and dynamic feedback
control. In static feedback control methods, e.g., PID control, the parameters of the control
law are tuned off-line and then are taken to be fixed for on-line control [6]. In dynamic
feedback control methods, the parameters of the control law are updated via on-line
optimization at every control step [135].

Artificial-intelligence-based control

Artificial intelligence techniques have been used in controller design for large-scale systems.
In artificial-intelligence-based control methods, artificial intelligence techniques enable the
controllers to reason about the problems and to take actions accordingly [127]. The artificial-
intelligence-based control methods that are often used in controller design are:

• Fuzzy control determines the control inputs of a system based on a decision-making
process consisting of fuzzification, rule-based inference, and defuzzification [41].

• Neural-network-based control determines the control inputs of a system by trying to
mimic the way in which the human brain processes information [75].

• Reinforcement learning control determines the control inputs of a system by
enabling the controller to learn [2].

• Other artificial-intelligence-based control methods include those based on swarm
intelligence [17], case-based reasoning [1], and Bayesian networks [61], and those
based on combining different artificial intelligence techniques, such as fuzzy neural
networks [60].
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Since the artificial-intelligence-based control methods are not used in this thesis, we will not
explicitly discuss them. Interested readers are suggested to refer to the references mentioned
above.

2.3 Control of hybrid systems

A hybrid system is a dynamic system that contains both continuous components and
discrete components. Therefore, a hybrid system can exhibit continuous behavior, e.g.,
motion, and discrete behavior, e.g., mode switches. In this section we present an
introduction to control of hybrid systems, including description of the modeling
frameworks and of the control design methods.

2.3.1 Modeling frameworks

Models are the ultimate tools for understanding the complex interaction between the
continuous dynamics and the discrete dynamics of hybrid systems. Some well-known
classes of modeling frameworks that are often used to describe hybrid systems are:

• Mixed logical dynamic models [11]

• Piecewise affine models [117]

• Max-min-plus-scaling models [38]

• Linear complementarity systems [55]

• Extended linear complementarity systems [36]

• Switched systems [73]

• Hybrid automata [3]

In this section we briefly illustrate mixed logical dynamic models, piecewise affine models,
and max-min-plus-scaling models. For the other models, the readers are suggested to refer
to the references given above.

Mixed logical dynamic models

Mixed logical dynamic models describe linear hybrid systems using interdependent
physical laws, logic rules and operational constraints [11]. They are given by linear dynamic
equations subject to linear inequalities involving real and integer variables:

x(k +1) = Ax(k)+B1u(k)+B2δ(k)+B3z(k), (2.3a)

y(k) =C x(k)+D1u(k)+D2δ(k)+D3z(k), (2.3b)

E1x(k)+E2u(k)+E3δ(k)+E4z(k) ≤ e5 (2.3c)

where x(k) =
[

xT
real(k) xT

binary(k)
]T

with xreal(k) denoting the real state variables and xbinary(k)
denoting the binary state variables. Similarly, the system output and the control input have
the structure y(k) =

[

yT
real(k) yT

binary(k)
]T

and u(k) =
[

uT
real(k) uT

binary(k)
]T

. Besides, z(k) and
δ(k) are auxiliary real and binary variables, respectively.
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Piecewise affine models

Piecewise affine models [117] are extended from linear models and are capable of handling
hybrid phenomena. Mathematically, piecewise affine models are given by

x(k +1) = Ai x(k)+Bi u(k) (2.4a)

y(k) =Ci x(k)+Di u(k) (2.4b)

for
[

xT(k) uT(k)
]T

∈Ωi (2.4c)

where x(k) ∈R
nx , u(k) ∈R

nu , y(k) ∈R
ny denote the state, the control input and the output of

the system, respectively, and Ωi denotes a convex polyhedra in the space R
nx×R

nu . Note that
{

Ωi

}N

i is the partition of Rnx ×R
nu . Theoretically, piecewise affine models are able to model

nonlinear and nonsmooth processes with arbitrary accuracy.

Max-min-plus-scaling models

Max-min-plus-scaling expressions are built using operations including maximization,
minimization, addition and scalar multiplication and are defined by the following recursive
grammar

f :=α f1

∣

∣ f2 +β
∣

∣xi

∣

∣ f2

∣

∣min( f1, f2)
∣

∣max( f1, f2) (2.5)

where the symbol
∣

∣ stands for OR, xi with i ∈ {1,2, ...,n} denote the variables, α,β ∈ R are
constants, and f1, f2 are also max-min-plus-scaling expressions. More specifically, an
example of a max-min-plus-scaling expression is 7x3 +max

(

4x1 +x2,min(2x1 +5x2,3x3)
)

.

Max-min-plus-scaling models have been introduced to describe discrete event systems
[38]. Mathematically, they are given by

x(k +1) = fs
(

x(k),u(k), z(k)
)

(2.6a)

y(k) = fo
(

x(k),u(k), z(k)
)

(2.6b)

fc
(

x(k),u(k), z(k)
)

≤ c (2.6c)

where all elements of fs, fo and fc are max-min-plus-scaling expressions in terms of the state
variables x(k), the control input u(k) and the auxiliary variables z(k).

Equivalence of different modeling frameworks

Each class of modeling framework has its own advantages in describing hybrid systems that
belong to this class. More specifically, there have been control and verification techniques
proposed for mixed logical dynamic models [11, 12], stability criteria for piecewise affine
models [62], and conditions of well-posedness for linear complementarity systems [55].
Therefore for the study of a particular hybrid system, it would be beneficial to choose the
most appropriate modeling framework. Actually, mixed logical dynamic models, piecewise
affine models and max-min-plus-scaling models can be equivalently transformed into each
other [56]. This is of great importance in the sense that it facilitates the transfer of
theoretical results and synthesis tools from one class to any of the equivalent classes.
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2.3.2 Control design methods

There have been many methods presented in the literature for the control of hybrid
systems, such as optimal control [14, 67], model predictive control [22, 83], game-theoretic
control [9, 124], and sliding mode control [114, 131]. In this thesis, we focus on model
predictive control of a class of hybrid systems with limited information sharing. Note that
the theoretical framework of model predictive control have been described in Section 2.1.2.
For the sake of simplicity, we will not discuss the other control approaches, but we refer the
interested readers to the references given above.

The major challenge

The optimization-based control methods, such as optimal control and model predictive
control, used for control of hybrid systems were originally developed for control of
finite-dimensional continuous-time systems or discrete-time systems. However, due to the
interaction between the continuous dynamics and the discrete dynamics, it is quite
challenging to employ these methods for control of hybrid systems. The major challenge
lies in the fact that the resulting optimization problems that need to be solved to determine
the control inputs are computationally very complex. More specifically, due to the existence
of discrete variables, the resulting optimization problems for determining the control
inputs are actually integer programming problems or mixed integer programming

problems. Generally, these problems are computationally very hard to solve, especially
when the number of integer variables is large.

2.4 Summary

In this chapter the background of this thesis was explained. First, we have presented the
theoretical frameworks of optimal control and model predictive control, which will be used
later on in this thesis for both control of urban traffic networks and control of hybrid
systems. Since centralized MPC may become intractable in practice for large-scale systems,
we have also discussed some alternative MPC approaches including decentralized MPC,
distributed MPC, hierarchical MPC and parameterized MPC. After that, we have presented
an overview on traffic management and control by introducing traffic flow models, traffic
energy consumption models, traffic management measures, and traffic control design
methods. Finally, we have presented an introduction to control of hybrid systems including
a description of the modeling frameworks and of control design methods.
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Chapter 3

Modeling of the Dynamics and the Energy

Consumption of Cybercars

Automated driving technologies have already been developed for individual vehicles and
for platoons of vehicles. However, the lack of efficient methods for the control of all vehicles
in a road network is one of the biggest challenges that cybercars (i.e., fully automatic road
vehicles providing on-demand and door-to-door transportation service) are facing. When it
comes to fleet control, where all vehicles in a network is considered as a whole fleet,
cybercars can be characterized as moving decision making agents with on-board
processing and communication capabilities as well as abundant information of the
environment. Before an efficient fleet control method can be developed, a reasonably
accurate and sufficiently fast model of the dynamics of cybercars that is suited for control
design is needed. In this chapter, we present the modeling of the dynamics and the energy
consumption of cybercars in a cybernetic transportation network. The chapter is organized
as follows. In Section 3.1, we present the general description of a cybernetic transportation
network and the assumptions we make for modeling the dynamics and the energy
consumption of cybercars. Afterwards, in Section 3.2, we model the dynamics and the
energy consumption of cybercars using a discrete-time modeling method. Next, in Section
3.3, we present a discrete-event model of the dynamics and the energy consumption of
cybercars. Finally, in Section 3.4, we briefly discuss the features of the two modeling
methods and summarize this chapter.

Parts of this chapter have been published in [76] and [81].

3.1 General description

We consider a cybernetic transportation network (i.e. only open to cybercars) consisting of a
set of roads and a set of intersections. For the sake of simplicity, we refer to an intersection as
a ‘node’, and a road section between two intersections as a ‘link’. Each link is divided into a
number of segments that have typical lengths ranging between 50 m and 100 m. We assume
that, at any time, the desired speed of all cybercars in a segment is determined by the traffic
density (i.e., the number of vehicles per kilometer) in that segment, while the actual speed of
each cybercar is determined by its previous speed and its current desired speed. Moreover,
we assume each segment has a maximum allowed number of cybercars at the same time
(i.e. maximum capacity). More specifically, if the number of cybercars in a segment reaches
or exceeds the maximum capacity, that segment will be blocked. A blocked segment will be
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nodevirtual link segment

link

Cybernetic transportation network

departure point

Figure 3.1: Cybernetic transportation network

unblocked immediately when the number of cybercars in that segment becomes lower than
the maximum capacity. At any time, the energy consumption of a cybercar is a function of
its velocity, its acceleration (or deceleration), as well as its position (related to its potential-
energy change in case of link with slope). Without loss of generality, we assume the origins
and the destinations of all cybercars are always at nodes. Besides, we also assume that no
cybercar can cover a distance longer than the length of a segment within one simulation time
interval. Finally, we assume there are higher-level controllers assigning transport service
requests (including starting time, origin and destination) to each cybercar and we only focus
on modeling the dynamics and the energy consumption of cybercars.

In case of blocked departure links, cybercars are not able to enter the network even
when the times at which they are due to depart have come. In order to model the queues of
cybercars waiting at the origins due to blocked departure links, to each departure point, we
introduce a virtual link with zero length and infinite capacity. Without loss of generality, the
layout of a cybernetic transportation network can then conceptually be represented by the
graph shown in Figure 3.1, where a node is represented by a small solid circle while a link is
represented by a directed line with the arrow indicating the heading direction.

3.2 Discrete-time model

In this section, we present a discrete-time model of the dynamics and the energy
consumption of cybercars.

3.2.1 Definitions

Let T denote the length of the simulation time interval and let k denote the discrete-time
step counter. Let Tstart,i denote the starting time of cybercar i and Tstop,i denote the arrival
time of cybercar i at its destination. Let vi (k) denote the speed of cybercar i at time kT ,
li (k) and si (k) respectively denote the link and the segment in which cybercar i is running
at time kT , and xi (k) denote the position (measured along the longitudinal axis of a link)
of cybercar i in li (k) at time kT . Let lfinal,i denote the final link of cybercar i (i.e., the end
of lfinal,i is the destination of cybercar i ). Let ri (k) denote the selected route of cybercar i
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at time kT , and ui (k) denote the next link of cybercar i after li (k) on route ri (k). Let pstart
m, j

and pend
m, j

respectively denote the positions (measured along longitudinal axis) of the starting

point and the end point of segment m of link j , and let vfree,m, j denote the free-flow speed1

for segment m of link j . Letting Nm, j (k) be the number of cybercars in segment m of link j

at time kT , the traffic density in the segment is given by

ρm, j (k) =
Nm, j (k)

Lm, j
(3.1)

where Lm, j denotes the length of segment m of link j . Besides, let Cm, j (k) denote the
maximum capacity of segment m of link j and let bm, j (k) denote the binary blocking signal
of the segment with bm, j (k) = 1 the segment is blocked. Finally, let ∆m, j denote the change
of the number of cybercars in segment m of link j during one simulation time interval.
Note that we set ∆m, j for all m and j to be 0 at the start of every simulation time interval.

3.2.2 Equilibrium speed-flow relationship considering slope

Vehicles tend to accelerate when going downhill while they tend to decelerate when going
uphill. Based on the experimental results of geometric effects on the speeds of vehicles
presented in [132], the impact of the slope on the free-flow speed of a segment can be
modeled as follows:

vfree,m, j =







vfree,m, j ,0

(

1−δup,m, j tan(ϑm, j )
)

, if ϑm, j ≥ 0

vfree,m, j ,0

(

1+δdown,m, j tan(ϑm, j )
)

, if ϑm, j < 0

where ϑm, j denotes the angle of inclination of segment m of link j , vfree,m, j ,0 denotes the
free-flow speed of vehicles in segment m of link j if that segment is flat, δup,m, j and δdown,m, j

are relative terms that denote the impact of each 1% downhill and uphill grade on the free-
flow speed of cybercars in segment m of link j , respectively.

Besides, the critical traffic density of segment m of link j at which the maximal flow is
obtained may also be influenced by the slope. Also inspired by [132], one possible way to
model this influence is given by

ρcrit,m, j = ρcrit,m, j ,0

(

1+αm, j tan(ϑm, j )
)

where

ρcrit,m, j ,0 =
1

hcon,m, j vfree,m, j ,0 +Lveh

is the critical traffic density of segment m of link j if that segment would be flat, hcon,m, j is
the constant time headway of automated vehicles on segment m of link j , Lveh is the average
length of vehicles, and αm, j is a model parameter.

Finally, according to the macroscopic characteristics of semi-automated traffic presented
in [18], the equilibrium speed-flow relationship of cybercars in a segment with slope is given

1Free-flow speed is the speed that the drivers would drive when the traffic density on the road is very low
and the average distance headway is large.
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by

Vm, j

(

ρm, j (k)
)

=

{

vfree,m, j , if ρm, j (k) ≤ ρcrit,m, j
cm, j

ρm, j (k) +dm, j , if ρm, j (k) > ρcrit,m, j
(3.2)

with

cm, j =
vfree,m, j ·ρcrit,m, j ·ρjam,m, j

ρjam,m, j −ρcrit,m, j

dm, j =−
vfree,m, j ·ρcrit,m, j

ρjam,m, j −ρcrit,m, j

where ρjam,m, j is the jam traffic density of segment m of link j , i.e. the density at which the
traffic flow is 0 veh/h.

3.2.3 Speed change of a single cybercar

In the discrete-time modeling framework, the speed of a cybercar is assumed to be fixed
within one simulation time interval and is updated only at the end of the simulation time
interval. In particular, the update of the speed of cybercar i at simulation time step k is given
by

vi (k +1) = vi (k)+ξi

(

vdesired,i (k)−vi (k)
)

(3.3)

where vdesired,i (k) denotes the desired speed of cybercar i at kT and it is determined by (3.2),
and ξi indicates how fast cybercar i can change its speed based on the difference between
its desired speed and its current speed. To be more specific, ξi is given by

ξi =
amax,i T

vmax,i
< 1 (3.4)

where vmax,i and amax,i are the maximal speed and maximal acceleration rate of cybercar i ,
respectively.

3.2.4 Dynamics of a single cybercar

Each cybercar i enters the network at Tstart,i . After that, at each simulation time step kT , with
xi (k), vi (k), li (k), si (k), ri (k) and Nm, j (k), ρm, j (k), bm, j (k) for all j and m given, the variables
xi (k +1), vi (k +1), li (k +1), and si (k +1) of cybercar i need to be determined. As cybercar
i may go from one segment (or link) to a different segment (or link) during one simulation
time interval, the change of the number of vehicles in the segments due to the change of the
position of cybercar i also needs to be captured.

From simulation time step kT to step (k + 1)T , the update of the dynamics of a single
cybercar i can be divided into five cases, which are characterized as follows:

• “same segment, same link": cybercar i stays in the same segment and the same link.

• “different segments, same link": cybercar i goes from one segment to the next one in
the same link.
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• “desired segment blocked": cybercar i reaches the end of its current segment, but its
desired next segment is blocked.

• “different links": cybercar i goes from its current link to its desired next link.

• “arrival": cybercar i arrives at its destination.

For the sake of simplicity of notation, in the following, we assume li (k) = j and si (k) = m

when we describe the update of the dynamics of cybercar i in each of the cases.

First, the conditions for the case of same segment, same link are:

Tstart,i < (k +1)T

xi (k)+
[

vi (k)+ξi

(

Vm, j

(

ρm, j (k)
)

−vi (k)
)]

T ≤ pend
m, j

where the function Vm, j (·) describes how the equilibrium speed of cybercars in segment m

of link j depends on the traffic density in that segment. One possible way to define Vm, j (·)
has been given in the Section 3.2.2. The dynamics of cybercar i are then updated by

vi (k +1) = vi (k)+ξi

(

Vm, j

(

ρm, j (k)
)

−vi (k)
)

xi (k +1) = xi (k)+vi (k +1)T

li (k +1) = li (k)

si (k +1) = si (k)

For the case of different segments, same link, the following conditions must be satisfied:

Tstart,i < (k +1)T

xi (k)+
[

vi (k)+ξi

(

Vm, j

(

ρm, j (k)
)

−vi (k)
)]

T > pend
m, j

bm+1, j (k) = 0

In this case, cybercar i first runs at the speed vaux,i (k) = vi (k)+ξi

(

Vm, j

(

ρm, j (k)
)

−vi (k)
)

in the

current segment. After reaching the end of the current segment, it enters the next segment

and runs at vaux,i (k)+ξi

(

Vm+1, j

(

ρm+1, j (k)
)

−vaux,i (k)
)

for the rest of the time interval. Then

the dynamics of cybercar i are updated by

vi (k +1) = vaux,i (k)+ξi

(

Vm+1, j

(

ρm+1, j (k)
)

−vaux,i (k)
)

xi (k +1) = pend
m, j +vi (k +1)τi

li (k +1) = li (k)

si (k +1) = si (k)+1

where τi denotes the remaining time during [kT, (k +1)T ] after cybercar i arrives at the end
of the current segment m:

τi = T −
pend

m, j
−xi (k)

vaux,i (k)
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Besides, the changes of the number of cybercars in segment m and segment m + 1 are
captured by

∆m, j ←∆m, j −1

∆m+1, j ←∆m+1, j +1

Next, the conditions for the case of desired segment blocked are given by

Tstart,i < (k +1)T

xi (k)+
[

vi (k)+ξi

(

Vm, j

(

ρm, j (k)
)

−vi (k)
)]

T > pend
m, j

bm+1, j (k) = 1

Given the desired next segment is currently blocked, cybercar i has to wait after arriving at
the end of the current segment. Therefore, the update of dynamics of cybercar i is given by

vi (k +1) = 0

xi (k +1) = pend
m, j

li (k +1) = li (k)

si (k +1) = si (k)

The conditions for the case of different links are:

Tstart,i < (k +1)T

xi (k)+
[

vi (k)+ξi

(

Vm, j

(

ρm, j (k)
)

−vi (k)
)]

T > pend
m, j

b1, j∗(k) = 0

where j∗ denotes the planned next link of cybercar i at kT . In this case, cybercar i enters
link j∗, and its dynamics are updated by

vi (k +1) = vaux,i (k)+ξi

(

V1, j∗
(

ρ1, j∗ (k)
)

−vaux,i (k)
)

xi (k +1) = vi (k +1)τi

li (k +1) = ui (k)

si (k +1) = 1

The changes of the number of cybercars in the last segment of link j and the first segment of
link j∗ are then captured by

∆m, j ←∆m, j −1

∆1, j∗ ←∆1, j∗ +1

Finally, for the case of arrival, the conditions are given by

Tstart,i < (k +1)T

xi (k)+
[

vi (k)+ξi

(

V
(

ρm, j (k)
)

−vi (k)
)]

T ≥ pend
m, j
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lfinal,i = j

In this case, cybercar i reaches its destination and its arrival time Tstop,i is obtained by

Tstop,i = kT +
pend

m, j
−xi (k)

vaux,i (k)
(3.5)

We assume cybercar i leaves the network after arriving at its destination. Then ∆m, j is
updated by

∆m, j ←∆m, j −1

3.2.5 Dynamics of the network

At every simulation time step, after the dynamics of all cybercars are updated, the states of
the whole network are updated by

Nm, j (k +1) = Nm, j (k)+∆m, j

ρm, j (k +1) =
Nm, j (k +1)

Lm, j

bm, j (k +1) =1

(

Nm, j (k +1) ≥Cm, j

)

where 1(·) is an indicator function defined by

1(a) =

{

1, if a is true
0, else

3.2.6 Energy consumption of a single cybercar

Generally, the energy consumption of a cybercar consists of the following five factors [84]:

• speeding up

• air drag

• rolling resistance

• going uphill

• energy losses in the energy-conversion chain

Assuming each cybercar has the same acceleration and deceleration rate, we use the graphs
in Figure 3.2 to calculate the first three consuming factors of a cybercar. For notational
convenience, in this section, we drop the subscript indicating the index of the cybercar for
all the variables. Note that in Figure 3.2, vinit and vnew respectively denote the speed of the
cybercar at the beginning and the speed at the end of a simulation interval, and t1 denotes
the absolute time instant at which vnew is reached. According to (3.3) and (3.4), t1 < (k +1)T

always holds.
It should also be noted that the effects of acceleration and deceleration of a cybercar are

non-negligible in the calculation of its energy consumption. Therefore, different from



26 Multi-agent control of transportation networks and of hybrid systems with limited information sharing

tt

vv

kTkT t1t1

vinit

vinit vnew

vnew

amaxamax

(k +1)T(k +1)T

Figure 3.2: Two possible cases of the speed change of a cybercar

Section 3.2.4 where the dynamics of a cybercar are updated assuming a constant speed in
every simulation interval, in this subsection, the acceleration and deceleration processes of
a cybercar are approximated and then taken into account in the energy consumption
calculation. In fact, acceleration and deceleration could also have been taken into account
in the update of the dynamics of a cybercar in Section 3.2.4, but the relative effect of that
would be much smaller than for the energy consumption calculation.

According to Figure 3.2, the cybercar is first accelerating or decelerating at a rate amax

during [kT, t1], which we define as the acceleration-deceleration period. For the cybercar in
this period, let Evar_kin denote the change of kinetic energy, Evar_air the energy consumption
needed to overcome the air drag, and Evar_rol the energy consumption needed to overcome
the rolling resistance. Based on [84], we have

Evar_kin = M

∫vnew

vinit

vd v =
1

2
M(v 2

new −v 2
init) (3.6)

Evar_air =

∫t1

kT

1

2
ρair Afrontv

3d t =
ρair Afront

∣

∣

∣v 4
new−v 4

init

∣

∣

∣

8amax
(3.7)

Evar_rol =

∫t1

kT
crM g vd t =

crM g
∣

∣

∣v 2
new −v 2

init

∣

∣

∣

2amax
(3.8)

where M and Afront denote respectively the mass and the effective frontal area of the
cybercar, ρair denotes the air density, cr denotes the rolling resistance coefficient, and g

denotes the gravitational acceleration.

After the acceleration-deceleration period, the cybercar keeps a constant speed vnew for
the rest of the simulation interval [t1, (k+1)T ], which we define as the constant-speed period.
In this period, the kinetic energy of the cybercar does not change. Then by defining Ect_air

and Ect_rol respectively as the energy consumption of the cybercar to overcome the air drag
and the rolling resistance during the constant-speed period, we have

Ect_air =
1

2
ρair Afrontv

3
new ·

(

T −
|vnew −vinit|

amax

)

(3.9)
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Ect_rol = crM g vnew ·

(

T −
|vnew −vinit|

amax

)

(3.10)

Furthermore, we consider the change of the potential energy of the cybercar, which is
denoted by Epot, during one simulation interval. If the cybercar stays in the same segment
m of the same link j within the simulation interval, given the angle of inclination ϑm, j of the
segment, we have

Epot = M g sin(ϑm, j ) · (xnew −xinit) (3.11)

where xnew and xinit are the positions of the cybercar in the link at the beginning and the end
of the simulation interval, respectively. If the cybercar goes from one segment to another
within the simulation interval, we have

Epot = M g
[

sin(ϑm, j )(pend
m, j −xinit)+ sin(ϑm+1, j )(xnew −pend

m, j )
]

(3.12)

Moreover, if the cybercar goes from the last segment of the current link to the first segment
of the next link within the simulation interval, we get

Epot = M g
[

sin(ϑm, j )(pend
m, j −xinit)+ sin(ϑ1, j∗ )xnew

]

(3.13)

By defining ηmotor as the efficiency of electric motors2, the actual energy consumption of
the cybercar during the simulation time interval [kT, (k +1)T ] becomes

E (vinit, vnew, xinit, xnew,ϑm, j ,ϑm+1, j , amax,T ) = max

(

Etotal

ηmotor
, 0

)

(3.14)

where

Etotal = Evar_kin +Evar_air +Evar_rol +Ect_air +Ect_rol +Epot

(3.15)

Moreover, if a cybercar uses regenerative braking, it could save part of the energy lost in
braking to recharge its onboard battery. By letting γrecover denote the round-trip energy
recovery coefficient3 of the regenerative braking system, we have

E (vinit, vnew, xinit,xnew,ϑm, j ,ϑm+1, j , amax,T ) =























Etotal

ηmotor
, if Etotal ≥ 0

γrecover ·Etotal

ηmotor
, if Etotal < 0

(3.16)

2According to [84], the maximal efficiency of electric motors is about 85% to 90%. That means for the best
case, only 90% of the electricity consumed in charging the onboard battery can be used to power the electric
vehicle.

3The round-trip energy recovery coefficient (i.e., the ratio between the amount of electric energy recovered
from braking and the amount consumed in accelerating) of an electric vehicle is around 38% [106].
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Finally, by defining Ei (k) as the amount of energy consumed by cybercar i during
[kT, (k +1)T ], we have

Ei (k) = E
(

vi (k), vi (k +1), xi (k), xi (k +1),ϑsi (k),li (k),ϑsi (k+1),li (k+1), amax,i ,T
)

(3.17)

3.3 Discrete-event model

A discrete-event model describes the dynamics of a system over a discrete sequence of events
in time. Different from a discrete-time model where the update of the state of a system is
be done periodically at every time step, in a discrete-event model the update of the state
of a system directly jump in time from one event to the next. In this section, we present a
discrete-event model of the dynamics and the energy consumption of cybercars.

3.3.1 Definitions

We define two types of events, namely segment events and cybercar events. More
specifically, a segment event is defined as the change of the number of cybercars in a
segment. There are three types of cybercar events:

• a cybercar is due to depart

• a cybercar arrives at the end of one segment

• the speed of a cybercar changes due to the occurrence of a segment event

Next, we define ni as the event counter for cybercar i and define ti (ni ) as the occurrence
time of the ni -th event for cybercar i . Besides, we define tnext,i as the predicted occurrence
time of the next event after the latest event for cybercar i . Finally, we define nm, j as the
event counter for segment m of link j . Note that for the rest of Section 3.3, the event-based
variables are defined in the same way as the corresponding time-based variables in Section
3.2.

3.3.2 Model of the dynamics of cybercars

The discrete-event modeling approach of the dynamics of cybercars consists of the following
steps:

• Initialization:

– for all cybercar i , we have ni = 0, ti (ni ) = 0, xi (ni ) = 0, vi (ni ) = 0, li (ni ) = 0,
si (ni ) = 0, and tnext,i = Tstart,i .

– for all segment m and all link j , we have nm, j = 0, Nm, j (nm, j ) = 0, bm, j (nm, j ) = 0,

and ρm, j (nm, j ) =
Nm, j (nm, j )

Lm, j

• Step 1: Determine the cybercar corresponding to the earliest next cybercar event:

i∗ = arg min
i

tnext,i
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• Step 2: Collect all the cybercars the next event of which will occur in the time window
[tnext,i∗ , tnext,i∗ +τwindow] in a set A:

A= {i |tnext,i ≤ tnext,i∗ +τwindow}

where τwindow denotes the length of the time window and it is typically selected as
τwindow > T . Note that if the next events of some cybercars occur in a very short time
window, then considering those next events separately in updating the dynamics of
cybercars will require frequent event checking and much computation. Since the
dynamics of cybercars will not change very much in a very short time, we consider
those events collectively to reduce the computational effort in updating the dynamics
of cybercars.

• Step 3: For all i ∈A, check:

– For each cybercar i that is due to depart (assuming ui (ni + 1) = j∗ for the sake
of compactness of notation), if b1, j∗ (n1, j∗) = 0, cybercar i is allowed to enter the
network. Then we have

∆1, j∗ ←∆1, j∗ +1

– For each cybercar i that wants to go from one segment to the next one in the same
link (assuming li (ni ) = j and si (ni ) = m), if bm+1, j (nm, j ) = 0, cybercar i is allowed
to go from one segment to the next one in the same link (“different segments,

same link"). Then we have

∆m, j ←∆m, j −1

∆m+1, j ←∆m+1, j +1

– For each cybercar i that wants to go from its current link to its desired next link
(assuming li (ni ) = j , si (ni ) = m and ui (ni +1) = j∗), if b1, j∗(n1, j∗ ) = 0, cybercar
i is allowed to go from its current link to its desired next link (“different links").
Then we have

∆m, j ←∆m, j −1

∆1, j∗ ←∆1, j∗ +1

– For each cybercar i that arrives at its destination (“arrival") (assuming li (ni ) = j

and si (ni ) = m), we have

∆m, j ←∆m, j −1

• Step 4: Update the dynamics of each cybercar i ∈ A (assuming li (ni ) = j , si (ni ) = m

and ui (ni +1) = j∗)

– For each cybercar i ∈A that arrives at the end of the current segment but cannot
enter the next segment (“desired segment blocked"), we have

ti (ni +1) = tnext,i
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vi (ni +1) = 0

xi (ni +1) = pend
m, j

li (ni +1) = li (ni )

si (ni +1) = si (ni )

– For each cybercar i ∈ A that arrives at the end of the current segment and is
allowed to enter the next segment (“different segments, same link"), we have

ti (ni +1)= tnext,i

vi (ni +1) = Fspeed

(

vi (ni ), Vm, j

(

ρm, j (nm, j )
)

, ti (ni +1)− ti (ni )

)

xi (ni +1)= pend
m, j

li (ni +1) = li (ni )

si (ni +1) = si (ni )+1

where the expression of the functions Fspeed(·) is given in Section 3.3.4.

– For each cybercar i ∈A that arrives at the end of its current link and is allowed to
enter the first segment of its desired next link (“different links"), we have

ti (ni +1) = tnext,i

vi (ni +1) = Fspeed

(

vi (ni ), Vm, j

(

ρm, j (nm, j )
)

, ti (ni +1)− ti (ni )

)

xi (ni +1) = 0

li (ni +1) = ui (ni +1)

si (ni +1) = 1

– For each cybercar i ∈A that arrives at its destination (“arrival"), we have

Tstop,i = tnext,i

• Step 5: After the update of the dynamics for all cybercars i ∈A, check for all m and j :

– If ∆m, j 6= 0, then we have

Nm, j (nm, j +1) = Nm, j (nm, j )+∆m, j

ρm, j (nm, j +1) =
Nm, j (nm, j +1)

Lm, j

bm, j (nm, j +1) =1

(

Nm, j (nm, j +1) ≥Cm, j

)

nm, j ← nm, j +1

• Step 6: Since the number of cybercars in each segment is updated at the end of the
time window [tnext,i∗ , tnext,i∗ +τwindow], the cybercars that have not arrived at the end
of their current segment at t = tnext,i∗ +τwindow have to adapt their speeds afterwards
due to the change of the number of cybercars in that segment (“same segment, same
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link"). We collect those cybercars in a set B.

– Assuming li (ni ) = j and si (ni ) = m, the updated dynamics of each cybercar i ∈B

are given by

ti (ni +1) = tnext,i∗ +τwindow

vi (ni +1) = Fspeed

(

vi (ni ), Vm, j

(

ρm, j (nm, j )
)

, ti (ni +1)− ti (ni )

)

xi (ni +1) = Fposition

(

xi (ni ), vi (ni ), Vm, j

(

ρm, j (nm, j )
)

, ti (ni +1)− ti (ni )

)

li (ni +1) = li (ni )

si (ni +1) = si (ni )

where the expression Fposition(·) is given in Section 3.3.4.

• Step 7: After updating the dynamics of cybercars and the state of the network, we need
to predict the occurrence time of new events (assuming li (ni+1) = h and si (ni+1)= o).

– For each cybercar i ∈A that arrives at the end of current segment but cannot enter
next segment (“desired segment blocked"), its predicted next event is at the end
of the time window [tnext,i∗ , tnext,i∗ + τwindow] when the number of cybercars in
each segment is updated. Therefore, we have

tnext,i ← tnext,i∗ +τwindow

ni ← ni +1

– For each cybercar i ∈A that arrives at the end of current segment and is allowed
to enter the next segment (“different segments, same link") or that arrives at the
end of current link and is allowed to enter the first segment of its desired next link
(“different links") is at , we have

tnext,i ← Ftnext

(

Lo,h , vi (ni +1), Vo,h

(

ρo,h (no,h)
)

, ti (ni +1)

)

ni ←ni +1

where the expression of the function Ftnext (·) is given in Section 3.3.5.

– For each cybercar i ∈B (“same segment, same link"), we have

tnext,i ← Ftnext

(

pend
o,h −xi (ni +1), vi (ni +1), Vm, j

(

ρo,h(no,h)
)

, ti (ni +1)

)

ni ← ni +1

• Step 8: go back to step 1 until all cybercars arrive at their destinations.
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Figure 3.3: Two possible cases of speeding up of a cybercar. In the first case, the cybercar has

not reached its desired speed when the next event occurs. In the second case, the

cybercar reaches its desired speed before the occurrence of the next event.

3.3.3 Modeling of the energy consumption of cybercars

The energy consumption of each cybercar i between two consecutive events ni and ni +1 is
given by

Ei (ni ) = E
(

vi (ni ), vi (ni +1), xi (ni ), xi (ni +1),θsi (ni ),li (ni ),

θsi (ni+1),li (ni+1), amax,i , ti (ni +1)− ti (ni )
)

Note that the expression of E (·) has been given in Section 3.2.6.

3.3.4 Functions to update the speeds and the positions of cybercars

We assume that when a cybercar i needs to adapt its speed due to the occurrence of an
event, it accelerates at a constant rate aacc,i or decelerates at a constant rate adec,i towards
its desired speed. Let ai (ni ) denotes the acceleration or deceleration of cybercar i from its
speed at ti (ni ) towards its desired speed after event ni . Then ai (ni ) = aacc,i when cybercar i

accelerates and ai (ni ) =−adec,i when it decelerates.
There are 2 cases of speeding up of a cybercar depending on whether the time period

between the current event ni and the next event ni + 1 is longer than the time cybercar i

needs to reach its desired speed after current event ni . These two cases are illustrated in
Figure 3.3. Based on Figure 3.3, we now explain how the speed and the position of cybercar
i are updated at the occurrence time of the next event. Since the cases when cybercar i is
accelerating and decelerating are the same except for the vertical position interchange of

vi (ni ) and Vm, j

(

ρm, j (nm, j )
)

, for the sake of simplicity of demonstration, only the former one

is shown in Figure 3.3.

First, if

ti (ni +1)− ti (ni ) <
Vm, j

(

ρm, j (nm, j )
)

−vi (ni )

ai (ni )

then according to the first case shown in Figure 3.3, vi

(

ni +1
)

and xi (ni +1) are given by

vi

(

ni +1
)

= vi

(

ni

)

+ai (ni )
[

ti (ni +1)− ti (ni )
]



Chapter 3 - Modeling of the Dynamics and the Energy Consumption of Cybercars 33

xi

(

ni +1
)

= xi (ni )+vi

(

ni

)

[

ti (ni +1)− ti (ni )
]

+0.5ai (ni )
[

ti (ni +1)− ti (ni )
]2

Otherwise, according to the second case shown in Figure 1 vi

(

ni +1
)

and xi (ni +1) are given
by

vi

(

ni +1
)

=Vm, j

(

ρm, j (nm, j )
)

xi

(

ni +1
)

= xi (ni )+dvar +dct

where dvar and dct denote the distances that the cybercar cover in the acceleration-
deceleration period and in the constant-speed period, respectively. More specifically, dvar

and dct are determined by

dvar =

V 2
m, j

(

ρm, j (nm, j )
)

−v 2
i

(

ni

)

2ai (ni )

dct =Vm, j

(

ρm, j (nm, j )
)

·

(

ti (ni +1)− ti (ni )−
Vm, j

(

ρm, j (nm, j )
)

−vi (ni )

ai (ni )

)

Therefore, there are two cases:

• case 1:

ti (ni +1)− ti (ni ) <
Vm, j

(

ρm, j (nm, j )
)

−vi (ni )

ai (ni )

• case 2:

ti (ni +1)− ti (ni ) ≥
Vm, j

(

ρm, j (nm, j )
)

−vi (ni )

ai (ni )

and Fspeed(·) and Fposition(·) are given by

Fspeed(·) =







vi

(

ni

)

+ai (ni )
[

ti (ni +1)− ti (ni )
]

, for case 1

Vm, j

(

ρm, j (nm, j )
)

, for case 2

Fposition(·) =

{

xi (ni )+vi

(

ni

)

[

ti (ni +1)− ti (ni )
]

+0.5ai (ni )
[

ti (ni +1)− ti (ni )
]2

, for case 1

xi (ni )+dvar+dct, for case 2

3.3.5 Prediction of occurrence time of new event

After event ni + 1, the states of the whole network are updated. Let us describe how the
occurrence time of a new event is predicted for cybercar i . After event ni +1, there is still a
distance of di for cybercar i to go before it arrives at the end of the segment it is running in.
Assuming li (ni +1) = h and si (ni +1) = o, di is given by
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• in the case of “same segment, same link":

di = pend
o,h −xi (ni +1)

• in the case of “different segments, same link" or “different links":

di = Lo,h

If cybercar i can reach the equilibrium speed V
(

ρo,h(no,h)
)

from vi (ni +1) before arriving

the end of segment q of link h , that is if

di >

V 2
o,h

(

ρo,h(no,h)
)

−v 2
i

(

ni +1
)

2ai (ni +1)

then the predicted occurrence time of the next event cybercar i is given by

tnext,i ← ti (ni +1)+
Vo,h

(

ρo,h(no,h)
)

−vi

(

ni +1
)

ai (ni +1)
+

di − d̃i

Vo,h

(

ρo,h (no,h)
)

with

d̃i =

V 2
o,h

(

ρo,h(no,h)
)

−v 2
i

(

ni +1
)

2ai (ni +1)

Otherwise, the predicted occurrence time of the next event of cybercar i is given by

tnext,i ← ti (ni +1)+ τ̃

where τ̃ is the solution to

vi

(

ni +1
)

τ̃+0.5ai (ni +1)τ̃2
= di

Let

ã = 0.5ai (ni +1), b̃ = vi

(

ni +1
)

, c̃ =−di

then we have

τ̃=
−b̃ +

√

b̃2 −4ãc̃

2ã

Therefore, there are two cases:

• case 1:

di >

V 2
o,h

(

ρo,h(no,h)
)

−v 2
i

(

ni +1
)

2ai (ni +1)
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• case 2:

di ≤

V 2
o,h

(

ρo,h(no,h)
)

−v 2
i

(

ni +1
)

2ai (ni +1)

and Ftnext (·) is given by

Ftnext (·) =















ti (ni +1)+
Vo,h

(

ρo,h(no,h )

)

−vi

(

ni+1
)

ai (ni+1) +
di−d̃i

Vo,h

(

ρo,h(no,h )

) , for case 1

tnext,i ← ti (ni +1)+ τ̃, for case 2

3.4 Summary

In this chapter we have considered the modeling of the dynamics and the energy
consumption of cybercars in a road network that is only open to cybercars. We have
presented two models, namely a discrete-time model and a discrete-event model. In the
discrete-time model, the dynamics of cybercars and the states of the network are updated at
every simulation time step. Therefore, the discrete-time model is straightforward to derive.
In contrast, in the discrete-event model, the dynamics of cybercars and the states of the
network are only updated when events occur. Hence, predicting the occurrence of events is
involved in the discrete-event model. Actually, the discrete-event model is more
time-efficient than the discrete-time model in online computation when the number of
cybercars is small. However, we focus on a cybernetic transportation network with a large
number of cybercars. Therefore, it is more time-efficient to use the discrete-time model for
predicting the dynamics and the energy consumption of cybercars.





Chapter 4

Multi-Agent Dynamic Routing of

Cybercars in Cybernetic Transportation

Networks

Although the fleet control problem for cybercars can be straightforwardly addressed in a
centralized control setting, for reasons of scalability and fast computation, a centralized
control method will not be tractable for the control of a large number of cybercars in the
large-scale cybernetic transportation systems in the future. In this chapter, we address the
dynamic routing of cybercars based on the discrete-time model of the dynamics and the
energy consumption of cybercars presented in Chapter 3. We consider minimization of the
combined system cost including the total time spent and the total energy consumption by
all cybercars and we propose several tractable and scalable multi-agent control methods
including multi-agent model predictive control and parameterized control for solving the
problem. Finally, experiments by means of numerical simulations illustrate the
performance of the proposed control methods.

Parts of this chapter have been included in [81] and [82].

4.1 Introduction

So far, there have been many automated driving technologies available for individual
vehicles [16, 129], such as automated lane change [54] and adaptive cruise control [31].
However, there is still no efficient method for the control of a fleet of vehicles. Hence, the
large-scale application of cybercars is still hindered. The performance of a cybernetic
transportation system depends on the control of cybercars for cooperative routing, collision
avoidance, platoon merge and split, etc. Therefore, in order to achieve high performance,
the fleet control problem for cybercars, where the cooperation of cybercars is explored by
considering all the cybercars in the whole fleet, must be addressed.

Actually, the fleet control problem for cybercars has already been considered in the
literature. More specifically, the problem was studied in [7] from a conceptual point of view
and a centralized fleet management system for cybercars was proposed. However, that
paper only focused on the design of the system architecture without addressing the fleet
control problem explicitly. In [13], a novel open-control concept that merges both
centralized and decentralized control approaches for cybercars was proposed. However,

37
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that paper only focused on demonstrating how a cybernetic transportation system may
benefit from the open-control concept in dealing with perturbations caused by the
environment, while it did not introduce a specific algorithm for fleet control of cybercars. In
[50], a specific instance of the fleet control problem for cybercars, i.e., the vehicle routing
problem for an on-demand transportation system, was studied by representing the road
network as a weighted complete graph and defining fixed attributes (travel time, travel cost,
etc) for each arc. However, that paper focused on solving the vehicle routing problem on a
daily basis without considering the real-time conditions of the network. In contrast, in this
chapter, we explore the dynamic routing problem of cybercars by considering the dynamics
and the energy consumption of cybercars according to the real-time conditions of the road
network. We develop efficient strategies for the dynamic routing of cybercars so that the
total costs for all cybercars, including the total time spent (TTS) and the total energy
consumption (TEC), are minimized.

By directly incorporating system constraints as inequalities in the control problem
formulation, model predictive control (MPC) has shown to be promising for control of road
traffic networks [48, 57, 69]. However, for reasons of scalability and fast computation,
centralized model predictive control will not be tractable for the control of large-scale
cybernetic transportation systems. Therefore, multi-agent control methods have to be
employed.

In multi-agent model predictive control, the overall control problem is first divided into
a set of subproblems, which are assigned to different agents. The agents then determine
their control actions by solving their local subproblems and coordinating with others [23].
Multi-agent MPC algorithms have been applied to power generation systems [128], chemical
processes [119], temperature regulation systems [94], and supply chains [86]. In this chapter,
the parallel multi-agent model predictive control scheme presented in [95] is adapted and
applied to the dynamic routing of cybercars.

Besides, in parameterized control, the control laws are parameterized and then
optimized over the parameters with respect to the overall performance of the whole system
for a set of representative scenarios. Parameterized control methods have been applied to
control of freeway traffic [135], of robotic systems [97], and of baggage handling systems
[123]. In this chapter, several computationally fast and scalable multi-agent parameterized
control methods are proposed for the dynamic routing of cybercars.

With respect to the literature, the main contributions of this chapter are addressing a
specific instance of the fleet control problem of cybercars, i.e., the dynamic routing of a fleet
of cybercars, and proposing several tractable and scalable multi-agent control methods to
solve the problem.

This chapter is organized as follows. In Section 4.2, the dynamic routing problem of
cybercars is formulated. In Section 4.3 and Section 4.4, we propose a multi-agent model
predictive control method and six different parameterized control methods for the dynamic
routing of cybercars, respectively. Section 4.5 presents a simulation study where the
performance of all proposed methods is assessed and compared. Finally, in Section 4.6, the
main contributions of this chapter are summarized, and some ideas of future work are
presented.
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4.2 Model predictive dynamic routing

Based on the discrete-time model presented in Chapter 3, we adopt a model predictive
control scheme to formulate the dynamic routing problem of cybercars.

During [kT, (k + Np)T ], the total time spent and the total energy consumption by all
cybercars are given by

JTTS(k) =
∑

i∈I (k,Np)

min
(

(k +Np)T −Tstart,i , Tstop,i −kT, Tstop,i −Tstart,i , NpT
)

+ J end
TTS(k) (4.1)

JTEC(k) =
Np−1
∑

h=0

∑

i∈I (k,Np)

Ei (k +h) + J end
TEC(k) (4.2)

where Np denotes the prediction horizon and I (k, Np) denotes the set of cybercars in the
network during [kT, (k + Np)T ], J end

TTS(k) and J end
TEC(k) denote respectively estimates of the

expected remaining total time spent and the expected remaining total energy consumption
by the cybercars still in the network at t = (k +Np)T from their positions at t = (k +Np)T to
their destinations. One possible way to obtain J end

TTS(k) and J end
TEC(k) is by using the speeds of

the cybercars still in the network at t = (k +Np)T and considering the shortest time routes
for those cybercars computed using e.g. Dijkstra’s algorithm [40] based on their speeds at
t = (k +Np)T .

In order to properly balance JTTS(k) and JTEC(k), who have possibly different units and
different orders of magnitude, the overall objective function is designed as

J (k) = w1
JTTS(k)

JTTS,typical
+w2

JTEC(k)

JTEC,typical
(4.3)

where JTTS,typical and JTEC,typical denote typical values1 of the total time spent and the total
energy consumption of all cybercars in one prediction period while w1, w2 are nonnegative
weights. Note that the control variable ri (k) for each cybercar i with i ∈ I (k, Np) is the route
to be selected from a finite set Ri (k) of possible routes2 from its current position to its
destination. Once the route ri (k) ∈ Ri (k) is determined, the link sequence following ri (k)
can be determined and then used as input for the model presented in Chapter 3.

Since the dynamics of cybercars are nonlinear and the control variables are discrete, this
results in a Nonlinear Integer Programming problem. Although there are several algorithms,
such as genetic algorithm [100], simulated annealing [100] and DIRECT [63], available for
solving this problem, in general, this problem is computationally very hard to solve,
especially when the number of cybercars is large. For reasons of scalability and fast
computation, a major challenge of achieving dynamic routing for a large fleet of cybercars
is to find efficient approximate solution methods. In the next two sections, we propose
efficient solution methods for the dynamic routing of cybercars.

1These values could e.g., be the averaged total time spent and the averaged total energy consumption of
cybercars over all prediction periods in a simulation where the routes of cybercars are predefined or a simple
routing strategy (e.g., shortest time route) is used.

2This set of routes could be obtained using a K-shortest path algorithm [44] to find a fixed a number of
possible routes from the end of the current link of cybercar i to its destination.
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Figure 4.1: Illustration of the interconnection between two subnetworks

4.3 Multi-agent model predictive dynamic routing

In this section, we propose a multi-agent model predictive control method for the dynamic
routing of cybercars according to standard multi-agent MPC methods from literature. Given
the similarities between the cybernetic transportation network considered in this chapter
and the transportation networks considered in [95], we adapt the parallel multi-agent model
predictive control scheme presented in [95].

4.3.1 Decomposing the overall network

The whole network is divided into a set G of subnetworks3. For each subnetwork, an agent
is assigned. At every control step, for each cybercar i , the sequence of subnetworks that
will be visited by a cybercar i is first extracted from the shortest-time route from its current
position to its destination computed by a shortest path algorithm based on the current traffic
condition. After that, the exact route of the cybercar through each subnetwork is determined
by the corresponding agent.

For each subnetwork g with a set of neighboring subnetworks Pg = {pg ,1, ..., pg ,ng }, we
define:

• Xg (k): local state at time kT including positions, speeds, links and segments of
cybercars in the local subnetwork g as well as the traffic densities and the blocking
signals of all the links in the local subnetwork

• Ug (k): local control variables i.e., routes of cybercars in the local subnetwork g

• ωin,g (k) = [ωT
in,pg ,1,g (k), ...,ωT

in,pg ,ng ,g (k)]T: external inputs from neighboring

subnetworks pg ,1, ...pg ,ng including the indices, entering points, entering times of the
cybercars from the neighboring subnetworks to the local subnetwork

• ωout,g (k) = [ωT
out,pg ,1,g (k), ...,ωT

out,pg ,ng ,g (k)]T: outputs to neighboring subnetworks

including the indices, exit points, and exit times of the cybercars from the local
subnetwork to its neighboring subnetworks

As an example, the interconnection of two subnetworks is illustrated in Figure 4.1.

3Note that dividing a network into subnetworks, for which an efficient algorithm has been proposed by
[47], is outside the scope of our work. We assume that the network and its division are given, and we only focus
on the design of the multi-agent model predictive dynamic routing method.
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4.3.2 MPC of a single subnetwork

We assume that at time kT , agent g has full knowledge of the current state of its own
subnetwork and of the cybercars in its own subnetwork. Then, given the external inputs
ωin,g (k) from neighboring subnetworks, agent g predicts the future local states using a local
model. Given the predicted future local states, we define the following local objective
function for agent g at time kT :

JTTS,g (k) =
∑

i∈Ωg (k)∪Ωg ,in (k)

min
(

(k +Np)T −Tstart,g ,i , NpT, Tstop,i −Tstart,g ,i , Tstop,i −kT,

Tcross,g ,i −Tstart,g ,i , Tcross,g ,i −kT
)

+ J leave
TTS,g (k) (4.4)

JTEC,g (k) =
Np−1
∑

h=0

∑

i∈Ωg (k)∪Ωg ,in(k)

Ei (k +h) + J leave
TEC,g (k) (4.5)

Jg (k) = w1
JTTS,g (k)

JTTS,typical
+w2

JTEC,g (k)

JTEC,typical
(4.6)

whereΩg (k) denotes the set of cybercars in subnetwork g at time kT ,Ωg ,in(k) denotes the set
of cybercars entering subnetwork g from neighboring subnetworks during [kT, (k +Np)T ].
More specifically, Ωg ,in(k) is extracted from the interconnected input ωin,g (k). Furthermore,
Tcross,g ,i denotes the time when car i leaves the subnetwork of agent g and enters another
subnetwork, J leave

TTS,g (k) and J leave
TEC,g (k) are estimates of the expected remaining total time spent

and the expected remaining total energy consumption by the cybercars still in subnetwork
g at time (k +Np)T , from (k +Np)T to the time they leave the local subnetwork.

Finally, the following local control problem is solved by agent g :

min
{ri (k)|i∈Ωg (k)∪Ωg ,in(k)}

Jg (k) (4.7)

subject to

ri (k) ∈ Ri ,g (k) (4.8)

where Ri ,g (k) is the finite set of possible routes for cybercar i to go through subnetwork g .

4.3.3 Multi-agent model predictive dynamic routing method

Considering the interconnections among subnetworks and given the formulation of the
local control problem of every subnetwork, we adapt the parallel multi-agent model
predictive control scheme presented in [95] and apply it to the dynamic routing of
cybercars. More specifically, the interconnecting constraints among subnetworks are
removed from the constraint set and added to the objective function in the form of
additional penalties based on an augmented Lagrangian formulation of the overall control
problem. By using such an approach, the formulated problem becomes separable and can
then be distributed over the agents. At each control step, the agents solve their local
problems iteratively for fixed Lagrange multiplers, followed by updating the Lagrange
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multipliers using local solutions. The iterations stop when the Lagrange multipliers do not
change anymore or the maximum allowed number of iterations is reached. After that, the
agents implement the control actions until the next control step, after which the whole
procedure is repeated.

4.4 Parameterized dynamic routing

Determining the routes for all cybercars by solving an online optimization problem requires
a huge computational effort. Therefore, in order to provide a balanced trade-off between
control performance and computational effort, we propose the use of parameterized
control methods. The main idea of parameterized control is to parameterize the control
decision-making process and to optimize the parameters of the control laws by solving an
optimization problem considering the performance of the control method, see [97] and
[123]. After that, the control inputs are determined by using the parameterized control laws
with the optimized parameters.

In parameterized dynamic routing of cybercars, the route selection process for cybercars
is described using a parameterized control law that is a function of the state of the network.
The parameters are optimized so as to optimize the routing performance including the total
time spent and the total energy consumption of cybercars. After that, at each control cycle,
the route of each cybercar is updated by selecting a route from a limited set of possible routes
from its current position to its destination.

At any time step, a finite set of possible routes for each cybcar from its current position
to its destination can be generated by using the current state of the network and by using
shortest-route algorithms. More specifically, before a shortest-route algorithm is called to
generate the limited sets of possible routes for cybercars, the estimated cost on each link j

based on the current state of the network is determined by:

c j =λ1
Llink, j

Llink,ave
+λ2

1

Tlink,ave

Msegment( j )
∑

m=1

Lm, j

Vm, j

(

ρm, j (k)
) (4.9)

where Llink, j denotes the length of link j , Llink,ave denotes the average of Llink, j over all links,
Tlink,ave denotes the average link travel time over all links, Msegment( j ) denotes the number of
segments in link j , λ1 and λ2 are given constants. One way to determine Tlink,ave is given by:

v̄free =

∑Mlink
j=1

∑Msegment( j )
m=1 vfree,m, j

∑Mlink
j=1 Msegment( j )

Tlink,ave =
Llink,ave

γ · v̄free

where Mlink denotes the number of links in the network, v̄free denotes the average free-flow
speed over all segments in all links, and γ is a model parameter.

In the following sections, we present the designs of six different parameterized control
methods for dynamic routing of cybercars.
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4.4.1 Parameterized control method 1

We define Ri (k) as the limited set of possible routes of cybercar i generated at time kT . After
that, for each r ∈ Ri (k), we define Lroute(r ) as the length of route r , Troute(r,k) as the estimated
travel time on route r , and Nroute(r,k) as the estimated number of cybercars on route r .

Since the length of each link is fixed, the length of the route r can be easily calculated by
summing up of the lengths of all the links belonging to route r . However, even if a route r

is given, the travel time and the number of cybercars on that route are still time-dependent.
Therefore, at any time when Troute(r,k) and Nroute(r,k) are used, they have to be calculated
based on the current states of all cybercars and of the network. We propose three approaches
to estimate Troute(r,k) and Nroute(r,k):

• Approach 1: Only use the current state of the network:

Troute(r,k) =
∑

j∈r

Msegment( j )
∑

m=1

Lm, j

Vm, j

(

ρm, j (k)
) (4.10)

Nroute(r,k) =
∑

j∈r

Msegment( j )
∑

m=1
Nm, j (k) (4.11)

where ρm, j (k) and Nm, j (k) respectively denote the traffic density and number of
cybercars in the m-th segment of link j at time step k.

• Approach 2: Predict the future states of the network assuming all cybercars follow the
current routes and using the simulation model:

ρ̄m, j (k) =
Np
∑

l=1

ρm, j (k + l )

Np
(4.12)

Troute(r,k) =
∑

j∈r

Msegment( j )
∑

m=1

Lm, j

Vm, j

(

ρ̄m, j (k)
) (4.13)

Nroute(r,k) =
∑

j∈r

Msegment( j )
∑

m=1

Np−1
∑

l=0

Nm, j (k + l )

Np
(4.14)

where ρ̄m, j (k) denotes the average traffic density on the m-th segment of link j over
[kT, (k +Np)T ].

• Approach 3: Predict the future states of the network assuming all cybercars follow the
current routes. In this approach, Nroute(r,k) is estimated in the same way as in
approach 2. However, different from approach 2, in this approach, Troute(r,k) is
estimated by

Troute(r,k) =
∑

j∈r

Msegment( j )
∑

m=1

Np−1
∑

l=0

Lm, j

Vm, j

(

ρm, j (k + l )
)

1

Np
(4.15)

Next, at time step k, for each cybercar i in subnetwork g ∈ G , we define a function for
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each r ∈ Ri (k):

ϕi

(

r,θg ,k
)

= θg ,1 ·
Lroute(r,k)

Lroute,ave,i (k)
+θg ,2 ·

Troute(r,k)

Troute,ave,i (k)
+

+θg ,3 ·
Nroute(r,k)

Nroute,ave,i (k)+κ
(4.16)

where θg ,1, θg ,2, and θg ,3 are the parameters for subnetwork g and Lroute,ave,i (k),
Troute,ave,i (k), and Nroute,ave,i (k) are respectively the average of Lroute(r,k), Troute(r,k), and
Nroute(r,k) over all r ∈ Ri (k) for cybercar i , and κ is a small positive number added to the
denominator to prevent division by 0. The route of each cybercar i in subnetwork g at kT is
then selected as

r ∗
i = arg min

r∈Ri (k)
ϕi

(

r,θg ,k
)

(4.17)

where θg =
[

θg ,1 θg ,2 θg ,3
]T

.

4.4.2 Parameterized control method 2

In this method, we first define Hn as the set of outgoing links from node n and Rn,d (k) as
the limited set of possible routes from node n to node d generated at time kT . After that, for
each j ∈ Hn , we define L j as the length of link j , and Tlink( j ,k) and Nlink( j ,k) as the estimated
travel time and estimated number of cybercars on link j at time kT , respectively.

We propose three approaches to estimate Tlink( j ,k) and Nlink( j ,k). More specifically, at
time step k, given the current states of all cybercars and the current conditions of the
network, Tlink( j ,k) and Nlink( j ,k) are estimated as follows:

• Approach 1:

Tlink( j ,k) =
Msegment( j )

∑

m=1

Lm, j

Vm, j

(

ρm, j (k)
) (4.18)

Nlink( j ,k) =
Msegment( j )

∑

m=1
Nm, j (k) (4.19)

• Approach 2:

Tlink( j ,k) =
Msegment( j )

∑

m=1

Lm, j

Vm, j

(

ρ̄m, j (k)
) (4.20)

Nlink( j ,k) =
Msegment( j )

∑

m=1

Np−1
∑

l=0

Nm, j (k + l )

Np
(4.21)

• Approach 3:

Tlink( j ,k) =
Msegment( j )

∑

m=1

Np−1
∑

l=0

Lm, j

Vm, j

(

ρm, j (k + l )
)

1

Np
(4.22)
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Next, for each j ∈ Hn , we define r̃ j ,di
as the shortest-time route from the end of link j to

the destination node di . After that, for each cybercar i in an incoming link of node n with
the link in subnetwork g , we define the following function:

ϕi ,n
(

j ,θg ,k
)

= θg ,1 ·
Llink, j +Lroute(r̃ j ,di

,k)

Lave,n,di
(k)

+θg ,2 ·
Tlink( j ,k)+Troute(r̃ j ,di

,k)

Tave,n,di
(k)

+θg ,3 ·
Nlink( j ,k)+Nroute(r̃ j ,di

,k)

Nave,n,di (k) +κ
(4.23)

where di denotes the destination of cybercar i , θg ,1, θg ,2 and θg ,3 are parameters for
subnetwork g , and Lave,n,di

, Tave,n,di
, and Nave,n,di

are respectively the average of Lroute(r,k),
Troute(r,k), and Nroute(r,k) over all r ∈ Rn,di

(k).

Finally, the route of each cybercar i in an incoming link of node n and in subnetwork g is
selected as follows:

• select the outgoing link from node n as

j∗ = arg min
j∈Hn

ϕi ,n
(

j ,θg ,k
)

(4.24)

where θg =
[

θg ,1 θg ,2 θg ,3
]T

.

• the entire route of cybercar i from node n to its destination di is selected as:

r ∗
i = { j∗}∪ r̃ j∗,di

(4.25)

4.4.3 Parameterized control method 3

Extended from method 1, parameterized control method 3 determines the route for each
cybercar in a sequential way with updated network information (i.e., updated travel time
and updated number of cybercars on a route) taking the updated routes of cybercars in the
subnetwork into account.

In this method, we define Mn,d (k) as the number of cybercars in the incoming links of
node n at step k and heading to destination d , and Sn,d (k) as the ordered set of the
cybercars ordered according to their predicted arrival times at node n (e.g, based on their
current speeds and the distance from their current positions to node n). After that, the
Mn,d (k) cybercars for every n and every d update their routes in the following sequential
way:

i) for each r ∈Rn,d (k), calculate Lroute(r,k), Troute(r,k) and Nroute(r,k)

ii) Let z = 1

a) for the z-th cybercar in Sn,d (k), update its route by

r ∗
i (z) = arg min

r∈Rn,d (k)
ϕi (z)

(

r,θg ,k
)
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where i (z) is the global cybercar index that corresponds to the z-th cybercar in
Sn,d (k).

b) update Troute
(

r ∗
i (z),k

)

and Nroute
(

r ∗
i (z),k

)

by

Troute
(

r ∗
i (z),k

)

←Troute
(

r ∗
i (z),k

)

·

(

1+
1

Lroute
(

r ∗
i (z)

)

)

Nroute
(

r ∗
i (z),k

)

← Nroute
(

r ∗
i (z),k

)

+1

c) if z < Mn,d (k), update z ← z +1 and go back to a); otherwise, stop the procedure.

Note that ϕi (·) in this method is the same as (4.16).

4.4.4 Parameterized control method 4

Also extended from method 1, parameterized control method 4 determines the splitting
rates of the group of cybercars over a limited set of possible routes.

In this method, for all r ∈ Rn,d (k), we first define Lmax
n,d ,route(k) as the length of the longest

route, T max
n,d ,route(k) as the longest estimated travel time following a route, and N max

n,d ,route(k) as
the largest number of cars on a route. Then we define

∆Lroute(r,k) = Lmax
n,d ,route(k)−Lroute(r,k)

∆Troute(r,k) = T max
n,d ,route(k)−Troute(r,k)

∆Nroute(r,k) = N max
n,d ,route(k)−Nroute(r,k)

After that, we define a function φn,d
(

·
)

as

φn,d
(

r,θg ,k
)

= θg ,1 ·
∆Lroute(r,k)

Lave,n,d (k)
+θg ,2 ·

∆Troute(r,k)

Tave,n,d (k)
+

+θg ,3 ·
∆Nroute(r,k)

Nave,n,d (k)
(4.26)

where θg ,1, θg ,2 and θg ,3 are parameters for subnetwork g .

Further, the percentage of the Mn,d (k) cybercars choosing route r ∈Rn,d (k) is determined
by

Pn,d
(

r,θg ,k
)

=
φn,d

(

r,θg ,k
)

∑

y∈Rn,d (k)φn,d
(

y,θg ,k
) (4.27)

Finally, the routes of cybercars in Sn,d (k) are updated as follows:

i) the first round
(

Pn,d
(

rfirst,θg

)

·Mn,d (k)
)

cybercars in Sn,d (k) select the first route rfirst in

Rn,d (k).

ii) after that, the following round
(

Pn,d
(

rsecond,θg

)

·Mn,d (k)
)

in Sn,d (k) select the second

route rsecond in Rn,d (k).

iii) ...
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ii) the remaining cybercars in Sn,d (k) select the last route rlast in Rn,d (k).

Note that after Rn,d (k) is generated by using (4.9) and by using a shortest route algorithm,
all the routes in Rn,d (k) are ordered in an increasing sequence based on their costs. Here,
{rfirst, ...,rlast} is the explicit representation of Rn,d (k).

4.4.5 Parameterized control method 5

Parameterized control method 5 is extended from method 2 as in the same way method 3 is
extended from method 1.

In this method, the Mn,d (k) cybercars for every n and every d update their routes in the
following sequential way:

i) for each j ∈ Hn , calculate Llink( j ,k) and Lroute(r̃ j ,di
,k), Tlink( j ,k) and Troute(r̃ j ,di

,k),
Nlink( j ,k) and Nroute(r̃ j ,di

,k).

ii) Let z = 1

a) for the z-th cybercar in Sn,d (k), update its route by first selecting the outgoing
link from node n as:

j∗ = arg min
j∈Hn

ϕi (z),n
(

j ,θg ,k
)

and then set the entire route r ∗
i (z) = { j∗}∪ r̃ j∗,di

b) update Troute
(

r ∗
i (z),k

)

and Nroute
(

r ∗
i (z),k

)

by

Troute
(

r ∗
i (z),k

)

← Troute
(

r ∗
i (z),k

)

·

(

1+
1

Lroute(r ∗
i (z))

)

Nroute
(

r ∗
i (z),k

)

← Nroute
(

r ∗
i (z),k

)

+1

c) if z < Mn,d (k), update z ← z +1 and go back to a); otherwise, stop the procedure.

Note that ϕi ,n(·) in this method is the same as (4.23).

4.4.6 Parameterized control method 6

Finally, parameterized control method 6 is extended from method 2 as in the same way
method 4 is extended from method 1.

Based on the definition of Lmax
n,d ,route(k), T max

n,d ,route(k) and N max
n,d ,route(k) in method 4, for each

j ∈ Hn , we first define

ψn,d
(

j ,θg ,k
)

= θg ,1 ·

Lmax
n,d ,route(k)−

(

Llink( j ,k)+Lroute(r̃ j ,d )
)

Lave,n,d

+θg ,2 ·

T max
n,d ,route(k)−

(

Tlink( j ,k)+Troute(r̃ j ,d )
)

Tave,n,d

+θg ,3 ·

N max
n,d ,route(k)−

(

Nlink( j ,k)+Nroute(r̃ j ,d )
)

Nave,n,d
(4.28)
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where θg ,1, θg ,2 and θg ,3 are parameters for subnetwork g . After that, the percentage of the
Mn,d (k) cybercars choosing route { j }∪ r̃ j ,d is determined by

Pn,d
(

j ,θg ,k
)

=
ψn,d

(

j ,θg ,k
)

∑

y∈Hn
ψn,d

(

y,θg ,k
) (4.29)

Finally, given Pn,d
(

j ,θg ,k
)

for all j ∈ Hn , all cybercars in Sn,d (k) update their routes in the
way same as in method 4.

4.4.7 Tuning the parameters for parameterized control methods

To tune the parameters of the proposed parameterized control methods, we proceed as
follows. We define a scenario as a case where the transport service requests including the
starting times, the origins and the destinations of all cybercars, are given. Then, the
performance of a parameterized control method on a specific scenario of the dynamic
routing of cybercars is evaluated by

Jo(θ) = w1 ·
JTTS,o

JTTS,typical,scenario
+w2 ·

JTEC,o

JTEC,typical,scenario
(4.30)

where o is the index of the scenario,θ =
[

θT
1 θT

2 ...
]T

, JTTS,o and JTEC,o respectively denote
the total time spent and the total energy consumption by all cybercars, JTTS,typical,scenario and
JTEC,typical,scenario respectively denote the typical values4 of the total time spent and the total
energy consumption by all cybercars in a representative scenario.

Finally, given a number N scenario of representative scenarios, the parameters θ of the
parameterized control method are tuned by minimizing the sum of Jo(θ) over the
representative scenarios. More specifically, the parameters θ are tuned by solving the
following nonlinear programming problem:

min
θ

Nscenario
∑

o=1
Jo(θ) (4.31)

s.t. model equations

which is nonconvex and can be solved by using multiple runs of nonconvex optimization
algorithms, e.g. genetic algorithm, simulated annealing, pattern search, or sequential
quadratic programming [15].

4.5 Simulation study

In this section, we perform simulation experiments to compare and assess the performance
of the proposed control methods for dynamic routing of cybercars. We consider the
network shown in Figure 4.2, where there are 11 nodes and 18 links. Note that in Figure 4.2,
the number next to a node represents the index of the node, and a number next to a link

4These values are e.g., the values of total time spent and total energy consumption of all cybercars in a
numerical simulation where the routes of all cybercars are fixed or a simple route control strategy (e.g., fastest
route) is used.
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Figure 4.2: Road network used in the case study

Table 4.1: Flow division of cybercars in every scenario

Flows able to update routes Flows with fixed routes
Index O - D Percentage Index O - D Percentage

1 5 - 7 40% 6 2 - 3 20%
2 1 - 10 15% 7 9 - 10 20%
3 8 - 3 15% 8 2 - 10 30%
4 2 - 11 15% 9 9 - 3 30%
5 9 - 4 15%

represents the index of the link. Each link is 200 meters long and has 4 segments, with each
segment 50 meters long. In the simulations, we generated 30 scenarios, of which 20 are
used for tuning the parameters of the proposed control methods and the other 10 are used
for evaluating the performance of the proposed control methods. For every scenario o, we
set a number Ncar,enabled of cybercars that are allowed to update routes and generate a
random number Ncar,fixed of cybercars with fixed routes. This is done for the reason of
considering more cybercars in the network without dramatically increasing the
computational complexity of the control problem for centralized MPC and multi-agent
MPC. More specifically, for every scenario o, Ncar,enabled is determined by

Ncar,enabled,o = 200+15×
(⌈o

3

⌉

−1
)

and Ncar,fixed is a random integer uniformly distributed in the interval [100,200]. After the
numbers Ncar,enabled and Ncar,fixed are set, the cybercars are divided into 9 flows, which are
summarized in Table 4.1. Note that for every three consecutive scenarios starting from
o = 1, we use the first two for tuning the parameters of the proposed parameterized control
methods and use the third one for testing the control performance.

For every scenario, we define the departure times of cybercars for each of the origin-
destination flows as follows. For each of the flows 1, 2 and 3, the departure time of the first
cybercar is a random number uniformly distributed in the interval [0.8,1.6] s. In order to
create congestion we let the first cybercar of flows 4 and 5 depart later than that of flows 1,
2, and 3, by adding an offset of 40 s. So the departure time of the first cybercar in each of the
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flows 4 and 5 is (40+a) s, where a is a random number uniformly distributed in [0.8,1.6]. For
the subsequent cybercars in flows 1 to 5 the time interval between the departure times of two
consecutive cybercars is a random number uniformly distributed in [0.8,1.6] s. Besides, for
each flow of cybercars with fixed routes, the departure time of the first cybercar is (1.2+b)
s, where b a random number uniformly distributed in [10,20]. After that, the time interval
between the departure times of two consecutive cybercars is 1.2 s.

The other parameters used in the simulations are: T = 1s, w1 = 0.7, w2 = 0.3, Np = 20,
JTTS,typical,scenario = 73202 s and JTEC,typical,scenario = 11.6767 kWh, vfree,m, j = 60 km/h for all m

and all j , the length of each cybercar is Lveh = 3.2 m, the mass of each cybercar is M = 1000 kg,
the efficiency of the electric motor is ηmotor = 0.85, the round-trip energy recovery coefficient
of the electric motor is γrecover = 0.38. Besides, the time interval between two consecutive
control steps is Tc = 20 s. The simulations are performed using Matlab 2015a on a cluster
computer consisting of 4 blades with 2 eight-core E5-2643 processors, and 3.3 GHz clock
rate and 64 GiB memory per blade.

We tuned the parameters for the six proposed parameterized control methods with
three different approaches for estimating the travel time and the number of cybercars on a
route. For tuning the parameters of each of the 18 combinations, we run the solver fmincon

of the Matlab Optimization Toolbox with the sequential quadratic programming (SQP)
algorithm 60 times using random starting points to solve the nonlinear programming
problem (4.31). For simplicity of representation, we refer to the six proposed parameterized
dynamic routing methods with their three different estimation approaches as PCx-y , where
x is the index of the parameterized dynamic routing method and y denotes the index of the
estimation approach, e.g., PC4-3 presents the parameterized dynamic routing method 4
with estimation approach 3. The CPU times for tuning the parameters for the proposed
parameterized control methods are in the range of 0.97 ·105 to 1.61 ·105 seconds.

After tuning the parameters, we evaluate the performance of the parameterized control
methods on the 10 different testing scenarios. In order to show the effectiveness of the
proposed parameterized control methods, we compare the performance of the proposed
parameterized control methods on the testing scenarios with those of centralized model
predictive control, multi-agent model predictive control, and three greedy control methods
using Dijkstra’s Algorithm. We refer to centralized model predictive control, multi-agent
model predictive control, and greedy control methods in the following way:

• C-MPC: centralized MPC using multiple runs of the genetic algorithm with a limited
total computation time (i.e., for all runs together) of 3600 s at each control step

• MA-MPC: multi-agent MPC with each agent solving its local problem using bilevel
optimization with the following procedure:

– fix the binary variables and next solve the problem to obtain the real decisions
using fmincon/SQP

– solve the binary optimization problem using the genetic algorithm

with a limited total computation time of 3600 s at each control step. Note that in each
local problem of the MA-MPC method, the binary optimization variables are the routes
of cybercars. The real optimization variables are the entering times of the cybercars
from other subnetworks to the local subnetwork.
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Table 4.2: Average online computation times (s) of the control methods

Control methods Average online computation times (s)
Centralized MPC 69586
Multi-agent MPC 66502

Greedy control 0.07 - 0.14
Parameterized control 0.37 - 4.02

• GC1: greedy control method 1, i.e., shortest distance routing method, using Dijkstra’s

algorithm based on (4.9) with λ1 = 1 and λ2 = 0

• GC2: greedy control method 2, i.e., shortest time routing method, using Dijkstra’s

algorithm based on (4.9) with λ1 = 0 and λ2 = 1

• GC3: greedy control method 3, i.e., combined distance and time routing method, using
Dijkstra’s algorithm based on (4.9) with λ1 = 0.3 and λ2 = 0.7

The average online computation times of all control methods over the testing scenarios are
summarized in Table 4.2. For the sake of compactness, only the ranges of average online
computation times of the greedy control (GC) methods and the parameterized control (PC)
methods are provided.

Since GC3 has the best performance among all the greedy control methods, we use GC3
as the benchmark and calculate the performance improvement of the other control
methods for the testing scenarios. More specifically, the performance improvement of a
routing method on a specific scenario o compared with that of GC3 on the same scenario is
given by

Pim,o =
JGC3,o − Jo

JGC3,o
×100%

The average performance improvement and the standard deviation of the performance
improvement of the routing control methods compared with GC3 over all the testing
scenarios are summarized in Table 4.3. In this table, the average performance improvement
of a routing control method compared with GC3 over all the testing scenarios is given by

P̄im =

∑N testing

o=1 Pim,o

N testing

with N testing denoting the number of testing scenarios, and the standard deviation of the
performance improvement of a routing method compared with GC3 over all the testing
scenario is given by

σim =

√

∑N testing

o=1 (Pim,o − P̄im)2

N testing

Note that in the second column, a positive number in a cell indicates that the
corresponding control method performs better than GC3 on the average over all the testing
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Table 4.3: Average performance improvement and standard deviation of the performance

improvement of the other control methods with respect to GC3 for all testing

scenarios, where a positive number indicates a better performance

Control method Performance improvement P̄im Standard deviation σim

C-MPC 6.36% 4.4%
MA-MPC 1.45% 1.4%

GC1 -4.20% 3.7%
GC2 -0.71% 2.3%

PC1-1 2.67% 7.7%
PC1-2 4.46% 8.7%
PC1-3 3.45% 7.9%
PC2-1 1.99% 7.5%
PC2-2 2.92% 7.7%
PC2-3 3.29% 8.6%
PC3-1 3.89% 7.7%
PC3-2 2.86% 8.8%
PC3-3 4.26% 8.4%
PC4-1 5.04% 8.1%
PC4-2 3.46% 8.4%
PC4-3 2.95% 8.3%
PC5-1 1.45% 8.3%
PC5-2 3.24% 7.4%
PC5-3 3.18% 7.2%
PC6-1 3.90% 8.3%
PC6-2 1.87% 8.1%
PC6-3 1.36% 8.9%
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Figure 4.3: Performance of GC3, centralized MPC, multi-agent MPC and PC4-1 for all testing

scenarios
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scenarios. We found that parameterized control method 4 with estimation approach 1 (i.e.
PC4-1, the flow-splitting-rate-based parameterized control method) has the best
performance among all the proposed parameterized control methods and it has an average
performance improvement of 5.04% on the testing scenarios compared with GC3.
Therefore, PC4-1 is selected as the representative of the proposed parameterized control
methods to compare further with centralized model predictive control, multi-agent model
predictive control, and GC3 on all the testing scenarios. More specifically, Figure 4.3 shows
the performance of centralized model predictive control, multi-agent model predictive
control, GC3, and PC4-1 for all the testing scenarios.

Actually, we are performing state feedback routing control of cybercars with the proposed
parameterized control methods. Different from the prediction of future state of the network
in model predictive control where the decision variables are free, in estimation approach
2 and approach 3, the future state of the network are estimated assuming the routes of all
cybercars are fixed. If the updated routes of the cybercars are much different from the fixed
ones for estimating the future states of the network, then the actual state of the network
after the control step could be very different from the estimated state obtained by estimation
approach 2 and approach 3. Therefore, even though only the current state of the network
are used in estimation approach 1, there is no guarantee that estimation approach 2 and
approach 3 perform better than estimation approach 1 in estimating the travel time and
the number of cybercars on the routes in the network. Hence, there is no guarantee that a
proposed parameterized control method with estimation approach 2 or approach 3 would
have better performance in routing control of cybercars than that with estimation approach
1.

Further, it is seen from Table 4.3 that the centralized model predictive control method
perform the best on the testing scenarios with an average performance improvement of
6.36% compared with GC3. However, this is achieved by consuming much more
computational power, see Table 4.2. For the multi-agent model predictive control method,
since the overall problem is an mixed integer nonlinear programming problem, there is no
guarantee of convergence of interconnecting variables among subnetworks. In fact, even if
given the same computational budget as that of the centralized model predictive control
method, the multi-agent model predictive control method does not obtain a performance
that is comparable to that of centralized model predictive control. In contrast, the proposed
parameterized control method PC4-1 provides a comparable average performance to that
of the centralized model predictive control method on the testing scenarios with much less
online computation time, also see Table 4.2. For the standard deviations of the performance
improvement compared with GC3, those of the centralized model predictive control
method and the multi-agent model predictive control method are smaller than those of the
parameterized control methods. That is because the centralized model predictive control
method and the multi-agent model predictive control method use online optimization for
every scenario while the parameters of the parameterized control methods are tuned based
on representative scenarios and then fixed for online use.

Finally, it is seen from Figure 4.3 that PC4-1 performs better than GC3 on 9 of the 10
testing scenarios and performs better than the multi-agent model predictive control
method on 7 of the testing scenarios. Besides, the centralized model predictive control
method only performs better than PC4-1 on 6 of the testing scenarios while on the other 4 it
is outperformed by PC4-1. Moreover, it has to be noted that the average online computation
time of PC4-1 for all the testing scenarios is only 0.42 s. Therefore, the parameterized
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control method PC4-1 is an efficient method for the dynamic routing of a fleet of cybercars.

4.6 Summary

We have addressed the dynamic routing problem of a fleet of cybercars considering the
dynamics and the energy consumption of every cybercar according to the real-time
conditions of the road network. To minimize the total cost for all cybercars, i.e. a
combination of the total time spent and the total energy consumption, we have developed
tractable and scalable multi-agent control methods including multi-agent model predictive
control and parameterized control. Numerical simulation results indicate that the flow
splitting rate based parameterized control method shows comparable control performance
to that of centralized model predictive control while requiring much less online
computation time. Besides, the flow-splitting-rate-based parameterized control method
can be easily applied to road networks with arbitrary topology. Therefore, the
flow-splitting-rate-based parameterized control method is effective in solving the dynamic
routing problem of a fleet of cybercars.

In our future work, we will first focus on increasing the computational efficiency of the
proposed control methods by investigating different levels of model aggregation.
Furthermore, we will consider other fleet control problems of cybercars, in particular the
problem of assigning transport service requests to cybercars.



Chapter 5

Efficient Routing of Traffic Flows for Urban

Transportation Networks

In order to satisfy the increasing demand for road transportation services and to mitigate
the problems caused by increasing road traffic, effective and efficient traffic control
strategies for urban transportation networks are highly required. Dynamic traffic routing,
which selects routes for the traffic flows according to the real-time conditions of the
network, is a promising control strategy. In this chapter we propose two novel multi-agent
control approaches for dynamic traffic routing in urban transportation networks, namely,
hierarchical traffic routing based on network division and bi-level traffic routing based on
merging nodes and links. We also illustrate the proposed control approaches for dynamic
traffic routing using numerical simulation case studies.

Parts of this chapter have been included in [80].

5.1 Introduction

A number of research works exist on the topic of dynamic traffic routing
[10, 26, 30, 68, 87, 88, 102, 103, 126]. More specifically, in [107] the dynamic traffic routing
problem was formulated assuming that flows of vehicles select minimum-time routes at
each time step and then it was solved using an optimal control approach to minimize the
total travel time of all vehicles. However, that paper did not take into account the total
energy consumption of the vehicles. In [87, 88], the dynamics of traffic flows in a network is
modeled explicitly using a detailed traffic simulator i.e., DYNASMART developed in [89],
and a simulation-based approach is proposed for solving the dynamic traffic routing
problem. More specifically, the simulation-based approach focuses on traffic simulations
and may require much computational efforts. In [26], the properties of mathematical
programming models of time-varying flows were explored, and a linear programming
formulation was proposed for the dynamic traffic routing problem based on the
first-in-first-out (FIFO) properties of traffic flows on individual links. More specifically, the
linear programming formulation has the advantage of being suitable for developing
efficient solution methods for dynamic traffic routing from a centralized point of view.
However, it may require extensive communication efforts in sensing the state of the
network. Besides, in [68] the dynamic traffic routing problem was presented in the format
of a discrete-time nonlinear optimal control problem for finding the system optimum. The
resulting nonlinear optimal control problem was solved using a feasible-direction

55
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algorithm. Moreover, in [126] the dynamic travel times due to potential traffic congestion
were modeled based on queue theory and a dynamic traffic routing approach was proposed
to minimize the total travel time of all traffic flows. Due to nonlinearity of the model, the
trade-off of solution quality and calculation time of the approach was also discussed. In
[10], a METANET-like model was proposed to describe the flows of platoons in Automated
Highway Systems, and the optimal dynamic routing problem was approximated by a
mixed-integer linear problem. In [102, 103] the response behaviors of the drivers towards
real-time routing information were accounted for in the dynamic traffic routing problem.
After that a fuzzy control based methodology was solved proposed to solve the problem. In
[30] an Ant Colony Routing algorithm was proposed to solve the dynamic traffic routing
problem such that a well-balanced trade-off between control performance and
computational speed was achieved.

Based on some of the work discussed above, a control center is required for each urban
transportation network guiding traffic flows in the network. However, an urban
transportation network may consist of a large number of roads and intersections, which
requires extensive communication efforts for transferring the states of the network to the
traffic control center and results in extensive computation efforts in solving the resulting
large-scale routing optimization problem. To solve the problem, we propose two novel
multi-agent control approaches for dynamic traffic routing in urban transportation
networks, which are hierarchical traffic routing based on network division, and bi-level
traffic routing based on merging nodes and links. More specifically, in the hierarchical
traffic routing approach, a large-scale network is divided into a group of subnetworks and to
each subnetwork a local subnetwork traffic routing controller is assigned. At the high level,
the interconnecting flows among subnetworks are determined by a centralized network
traffic routing controller. After that, the flows within each subnetwork are determined by
the corresponding subnetwork traffic routing controller considering minimization of the
total travel cost in the subnetwork and minimization of the difference between the sum of
traffic flows on the boundaries of the subnetwork and the flows prescribed by the high-level
controller. In the bi-level traffic routing approach, nodes and links of a network are merged
into a set of aggregated nodes and a set of aggregated links. To each aggregated node a local
traffic routing controller is assigned. At the aggregated level the flows on the aggregated
links are determined by a centralized traffic routing controller. At the original level, where
the actual network is considered, the flows on the actual links are determined by the local
traffic routing controllers by negotiating with neighboring local controllers.

With respect to the literature, the main contribution of our work is proposing two
scalable and efficient multi-agent control approaches for dynamic traffic routing. The
chapter is organized as follows. Section 5.2 describes the general dynamic traffic routing
problem. In Section 5.3, we develop the hierarchical dynamic traffic routing approach.
Next, the bi-level dynamic traffic routing approach is presented in Section 5.4. Besides,
Section 5.5 illustrates the two proposed approaches using numerical simulation study
cases. Finally, in Section 5.6, we summarize the main contributions of the chapter and
propose some ideas for future work.
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subnetwork 2

subnetwork 1

subnetwork 3

Figure 5.1: An urban transportation network divided into a group of subnetworks

5.2 Problem description

An urban transportation network consists of a set of roads and a set of intersections. For the
sake of simplicity, we refer to an intersection as a ‘node’, and a road section between two
intersections as a ‘link’. Therefore, an urban transportation network can conceptually be
represented by a graph with a set of nodes and a set of links. We consider a discrete-time
model of the dynamics of traffic flows in urban transportation networks, where T denotes
the length of the simulation time interval and k denotes the simulation step counter.
Besides, we assume that all traffic demands originate from source nodes (origins) and target
at destination nodes (destinations) and all O-D (origin-destination) traffic demands are
obtained via O-D estimation [136]. Finally, we aim to find optimal routes for all O-D traffic
demands so that the total travel cost including e.g. the total time spent and the total energy
consumption of all the traffic flows is minimized.

5.3 Traffic routing based on network division

In this section, we consider an urban transportation network that has been divided into a
group of subnetworks. More specifically, the network is divided by creating the boundaries
of the subnetworks on links as shown in Figure 5.1. We consider a high-level network where
each subnetwork is mapped to a high-level node and the connection from one subnetwork
to another is mapped to a high level-link. Now, we propose a hierarchical traffic routing
framework for urban transportation networks:

• The network traffic routing controller on the high-level determines traffic flows
between subnetworks based on the high-level representation of the network. These
flows are computed so that the performance (including total time spent and total
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energy consumption of all flows) of the network is optimized. Then these flows are
communicated to the subnetwork traffic routing controllers.

• Considering that the sum of traffic flows on the boundary of two subnetworks should
be as close as possible to the high-level flow between the two subnetworks determined
by the network traffic routing controller, each subnetwork traffic routing controller on
the low-level determines the traffic flows on each link in the local subnetwork. The
flows within each subnetwork are computed so that the performance (including total
time spent and total energy consumption of all flows within the subnetwork and the
flow consistency between high level flows and the local flows) of the subnetwork is
optimized.

Note that dividing the network is outside the scope of our work. Therefore, we assume that
an urban transportation network and its division are given [47], and we only focus on the
design of the network traffic routing controller and the subnetwork traffic routing controller.

5.3.1 Design of the network traffic routing controller

In the fully dynamic case, the travel cost, e.g. travel time and energy consumption, from one
subnetwork to another may vary along the time. Accounting for the real-time change of the
travel cost directly in the model used for controller design will require high computational
efforts in the control decision making procedure. In order to achieve a well-balanced trade-
off between control performance and computation speed, we propose to use a quasi-static
procedure [30, 120] for the traffic routing controller. More specifically, at each iteration in the
quasi-static procedure, a forward simulation is first performed and the travel costs on each
link is determined based on the predicted states of the link in the simulation. After that, the
travel costs are kept fixed for the control period to let the controller make decisions based
on those fixed travel costs. At the end of each iteration, the traffic states are updated and a
new iteration starts with updated travel costs. In this section, we present the network traffic
routing based on the quasi-static procedure.

Definitions

By letting ñ denote a high-level node and l̃ denote a high-level link, we define

• t̃ (z)

l̃
: average travel time on link l̃ at the iteration z in the quasi-static procedure

• ẽ (z)
l̃

: average energy consumption of a vehicle traveling through link l̃ at the iteration z

in the quasi-static procedure

• Ñ : set of high-level nodes

• L̃ : set of high-level links

• D̃: set of high-level final destinations

• Ĩñ : set of incoming links of node ñ

• Õñ : set of outgoing links of node ñ

• D̃ñ,d̃ (k): traffic demand from node ñ to final destination d̃ for interval
[

kT, (k +1)T
)
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travel time

inflow outflow

q̃ in
l̃ ,d̃

q̃out
l̃ ,d̃

l̃

t̃ (z)
l̃

Figure 5.2: Travel time on a link causes a time delay between the inflow and the outflow

• q̃ in
l̃ ,d̃

(k): flow entering link l̃ traveling towards final destination d̃ for interval
[

kT, (k +

1)T
)

• q̃out
l̃ ,d̃

(k): flow leaving link l̃ traveling towards final destination d̃ for interval
[

kT, (k +

1)T
)

• Q̃ñ,d̃ (k): queue of traffic towards final destination d̃ but waiting at node ñ for interval
[

kT, (k +1)T
)

• q
cap

l̃
: capacity of link l̃

Modeling of dynamics of traffic flows between subnetworks

We model the dynamics of traffic flows between subnetworks by considering flow
consistency at each node, time delay between inflow and outflow on each link,
non-negativity of traffic flows and traffic queues, and capacity of each link. For modeling
the dynamics of traffic flows among subnetworks, we assume that the average travel time
t̃ (z)

l̃
is an integer multiple of T .
First, at any time step, the sum of outgoing traffic flows from node ñ is equal to the sum

of traffic flows entering node ñ. More specifically, the flow consistency at node ñ is given by

∑

j∈Õñ

q̃ in
j ,d̃

(k) ·T +Q̃ñ,d̃ (k)−Q̃ñ,d̃ (k −1) = D̃ñ,d̃ (k) ·T +
∑

j∈Ĩñ

q̃out
j ,d̃

(k) ·T, ∀d̃ ∈ D̃, ñ 6= d̃ (5.1)

Note that
∑

j∈Õñ
q̃ in

j ,d̃
(k) · T is equal to the total traffic flow leaving node ñ through its

outgoing links at time step k, and Q̃ñ,d̃ (k)− Q̃ñ,d̃ (k −1) is the difference in queue length at
node n. Besides,

∑

j∈Ĩñ
q̃out

j ,d̃
(k) ·T is equal to the total traffic flow entering node n through

its incoming links at time step k, and D̃ñ,d̃ (k) · T is equal to the amount of traffic flow
entering node n at time step k due to the traffic demand, .

Second, when a traffic flow enters a link, it will take some time to reach the end of the
link, as shown in Figure 6.4. More specifically, the relationship between the incoming flow
and the outgoing flow of link l̃ is given by

q̃out
l̃ ,d̃

(k) = q̃ in
l̃ ,d̃

(

k −
t̃ (z)

l̃

T

)

(5.2)

Since the traffic flow must not be negative and the sum of traffic flows on a link going to
different destinations must not exceed the capacity of the link, the flow constraints are given
by

q̃ in
l̃ ,d̃

(k) ≥ 0 (5.3)
∑

d̃∈D̃

q̃ in
l̃ ,d̃

(k) ≤ q̃
cap

l̃
(5.4)
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Besides, the queue of traffics waiting at a node must not be negative. Then we have

Q̃ñ,d̃ (k) ≥ 0 (5.5)

Formulation of traffic routing among subnetworks

Various objectives, e.g., the total time spent and the total energy consumption of all flows
and all traffic queues, can be considered. First, the total time spent of all flows and all traffic
queues is given by

JTTS =
∑

d̃∈D̃

∑

l̃∈L̃

kend−1
∑

k=0

t̃ (z)

l̃
· q̃ in

l̃ ,d̃
(k) ·T +

∑

d̃∈D̃

∑

ñ∈Ñ

kend−1
∑

k=0

Q̃ñ,d̃ (k) ·T

+
∑

d̃∈D̃

∑

l̃∈L̃

τ̃l̃ ,d̃ · q̃ in
l̃ ,d̃

(kend) ·T +
∑

d̃∈D̃

∑

ñ∈Ñ

ι̃ñ,d̃ ·Q̃ñ,d̃ (kend) (5.6)

where kend denotes the time step corresponding to the end of the simulated period [0,kendT ],
τ̃l̃ ,d̃ denotes a measure of the remaining average travel time from link l̃ to destination d̃ ,

and ι̃ñ,d̃ denotes a measure of the remaining travel time from node ñ to destination d̃ . One

possible way to determine τ̃l̃ ,d̃ and ι̃ñ,d̃ is using t̃ (z)
l̃

for all links and the shortest time routes
computed by Dijkstra’s algorithm [40]. Second, the total energy consumption of all flows and
all traffic queues is given by

JTEC =
∑

d̃∈D̃

∑

l̃∈L̃

kend−1
∑

k=0

ẽ (z)
l̃

· q̃ in
l̃ ,d̃

(k) ·T +
∑

d̃∈D̃

∑

ñ∈Ñ

kend−1
∑

k=0

Q̃ñ,d̃ (k) ·eidle,T

+
∑

d̃∈D̃

∑

l̃∈L̃

χ̃l̃ ,d̃ · q̃ in
l̃ ,d̃

(kend) ·T +
∑

d̃∈D̃

∑

ñ∈Ñ

ς̃ñ,d̃ ·Q̃ñ,d̃ (kend) (5.7)

where eidle,T denotes the average amount of energy consumed by a vehicle idling for the
interval of length T , χ̃l̃ ,d̃ denotes a measure of the remaining energy consumption of a

vehicle from the beginning of link l̃ to destination d̃ , and ς̃ñ,d̃ denotes a measure of the

remaining energy consumption of a vehicle from node ñ to destination d̃ . One possible way
to determine χ̃l̃ ,d̃ and ς̃ñ,d̃ is using ẽ (z)

l̃
for all links and the shortest time routes.

Finally, in order to properly balance JTTS and JTEC, who have possibly different units and
different orders of magnitude, the problem to determine the flow fractions on the high-level
links is formulated by

minimize
q̃ in,q̃out,Q̃

J := w1
JTTS

JTTS,typical
+w2

JTEC

JTEC,typical
(5.8)

subject to flow dynamics over the simulated period

initial conditions

where the bold symbols q̃ in, q̃ out and Q̃ are respectively the compact expressions
containing q̃ in

l̃ ,d̃
(k), q̃out

l̃ ,d̃
(k) and Q̃ l̃ ,d̃ (k) for l̃ ∈ L̃ , ñ ∈ Ñ , d̃ ∈ D̃ and k ∈ {0,1, ...,kend − 1}.

Besides, JTTS,typical and JTEC,typical denote typical values1 of the total time spent and the total

1These values could e.g., be the total time spent and the total energy consumption of all traffic flows in a
simulation where the routes of all flows are fixed or where a simple routing strategy (e.g., shortest-time route)
is used.



Chapter 5 - Efficient Routing of Traffic Flows for Urban Transportation Networks 61

energy consumption of traffic flows and traffic queues for the period of length kendT . Note
that the optimization problem (5.8) is a linear programming (LP) problem and it can be
solved efficiently by using the well-developed LP algorithms [35] like simplex algorithm,
ellipsoid algorithm, or interior-point algorithm.

Quasi-static traffic routing procedure

Given t̃ (z)
l̃

and ẽ (z)
l̃

for each l̃ ∈ L̃ , we have formulated the optimal traffic routing among
subnetworks. However, considering that the travel time and the energy consumption from
one subnetwork to another may change with the traffic states, we propose to solve the
dynamic traffic routing problem among subnetworks using the following quasi-static
procedure:

i) Initialize t̃ (1)

l̃
and ẽ (1)

l̃
for each l̃ ∈ L̃ based on historical data.

ii) At each iteration z, solve the optimization problem (5.8) to obtain the flows among
subnetworks

iii) Update t̃ (z+1)
l̃

and ẽ (z+1)
l̃

for each l̃ ∈ L̃ based on the flows obtained in Step ii)

iv) Stop if the solution to the optimization problem (5.8) converges or the allowed
maximum number of iteration is reached; otherwise go back to Step ii).

Note that the models to update t̃ (z)

l̃
and ẽ (z)

l̃
for each l̃ ∈ L̃ based on the predicted traffic

states are described next.

Given q in
l̃ ,d̃

(1), ..., q in
l̃ ,d̃

(kend) and qout
l̃ ,d̃

(1), ..., qout
l̃ ,d̃

(kend) for all l̃ and d̃ determined by solving

the optimization problem (5.8) at the current iteration z, the traffic density in link l̃ towards
destination d̃ at time step k is determined by

ρ l̃ ,d̃ (k) = ρ l̃ ,d̃ (k −1)+

(

q in
l̃ ,d̃

(k)−qout
l̃ ,d̃

(k)
)

·T

L l̃

(5.9)

where L̃ l̃ denotes the length of link l̃ . After that, the traffic density in link l̃ at step k is given
by

ρ l̃ (k) =
∑

d̃∈D̃

ρ l̃ ,d̃ (k) (5.10)

Further, the equilibrium speed of vehicles traveling in link l̃ at step k is determined by

v l̃ (k) =Vl̃

(

ρ l̃ (k)
)

(5.11)

where the function Vl̃ (·) describes how the equilibrium speed of vehicles depends on the
traffic density. One possible way to determine Vl̃ (·) has been presented in Section 3.2.2 of
Chapter 3. Then, the average speed of vehicles traveling on link l̃ is given by

v̄ (z+1)

l̃
=

1

kend

kend−1
∑

k=0

v l̃ (k) (5.12)
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and the average travel time of link l̃ at next the iteration z +1 is given by

t̃ (z+1)

l̃
= round

(

L̃ l̃

v̄ (z+1)
l̃

·T

)

·T (5.13)

After that, ẽ (z+1)

l̃
is updated by

ẽ (z+1)

l̃
= Fl̃

(

v̄ (z+1)

l̃
, t̃ (z+1)

l̃
,L l̃

)

(5.14)

where the function Fl̃ (·) is obtained via heuristics or via experimental data. One possible way
to define Fl̃ (·) has been presented in Section 3.2.6 of Chapter 3.

5.3.2 Design of the subnetwork traffic routing controller

In this section, we present the subnetwork traffic routing approach based on the
quasi-static procedure. Note that for the rest of Section 5.3.2, the variables without tilde
pertain to links and nodes within each subnetwork and they are defined in the same way as
the corresponding variables with tilde for high-level links and high-level nodes in Section
5.3.1.

Model of dynamics of traffic flows within a subnetwork

For modeling the dynamics of traffic flows within a subnetwork, we assume that the average
travel time t (z)

l
is an integer multiple of T . After that, the flow consistency at each node, the

time delay between inflow and outflow on each link, the non-negativity of traffic flows and
traffic queues, and the capacity of each link within the subnetwork are modeled in the same
way as (5.1)-(6.7).

Formulation of traffic routing within a subnetwork

The total time spent of all traffic flows and traffic queues within a subnetwork g is given by

JTTS,g =
∑

d∈D

∑

l∈Lg

kend−1
∑

k=0

t (z)
l

·q in
l ,d (k) ·T +

∑

d∈D

∑

n∈Ng

kend−1
∑

k=0

Qn,d (k) ·T

+
∑

d∈D

∑

l∈Lg

τl ,d · ·q in
l ,d (kend) ·T +

∑

d∈D

∑

n∈Ng

ιn,d ·Qn,d (kend) (5.15)

where Lg and Ng denote the set of links and the set of nodes within subnetwork g ,
respectively. The total energy consumption of all traffic flows and all traffic queues within a
subnetwork g is given by

JTEC,g =
∑

d∈D

∑

l∈Lg

kend−1
∑

k=0

e (z)
l

·q in
l ,d (k) ·T +

∑

d∈D

∑

n∈Ng

kend−1
∑

k=0

Qn,d (k) ·eidle,T

+
∑

d∈D

∑

l∈Lg

χl ,d ·q in
l ,d (k) ·T +

∑

d∈D

∑

n∈Ng

ςn,d ·Qn,d (kend) (5.16)



Chapter 5 - Efficient Routing of Traffic Flows for Urban Transportation Networks 63

Besides, considering the sum of traffic flows on the links on the boundary of two
subnetworks should be as close as possible to the flows between the two subnetworks
determined by the network traffic routing controller, the mismatch of the flows at the two
levels for subnetwork g is given by

JFM,g =
∑

g∗∈V
in

g

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

d∈Nd̃

∑

l∈Lg ,g∗

q in
l ,d (k)

)

− q̃ in
l̃g ,g∗ ,d̃

(k)

∣

∣

∣

∣

∣

∣

∣

∣

1
+

∑

g ′∈V
out

g

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

d∈Nd̃

∑

l∈Lg ′,g

q in
l ,d (k)

)

− q̃ in
l̃g ′ ,g ,d̃

(k)

∣

∣

∣

∣

∣

∣

∣

∣

1

(5.17)

where V
in

g is the set of subnetworks from which subnetwork g has incoming flows, V
out

g is
the set of subnetworks to which subnetwork g has outgoing flows, Lg ,g∗ is the set of links
on the boundary between g and g∗ directed to subnetwork g , l̃g ,g∗ is the high-level link
directed from subnetwork g∗ to subnetwork g , and l̃g ′,g is the high-level link directed from
subnetwork g to subnetwork g ′.

Finally, in order to properly balance the three objectives, the traffic routing within a
subnetwork g is formulated by

minimize
q in

g ,q out
g ,Q g

Jg := w1
JTTS,g

JTTS,typical
+w2

JTEC,g

JTEC,typical
+w3

JFM,g

JFM,typical
(5.18)

subject to local flow dynamics over the simulated period

initial conditions

where q in
g , q out

g and Qg are respectively the compact expressions containing the q in
l ,d (k),

qout
l ,d (k) and Qn,d (k) for l ∈ Lg , n ∈ Ng d ∈ D and k ∈ {0,1, ...,kend − 1}. Besides, JFM,typical

denotes the typical value2 for the mismatch of traffic flows.

Quasi-static traffic routing within a subnetwork

The traffic routing procedure within a subnetwork is the same as that used for the traffic
routing among subnetworks. More specifically, the optimization variables q in

g , qout
g and Qg

for the traffic routing problem within a subnetwork g are computed in the same way as the
one used for computing the optimization variables for the traffic routing problem among
subnetworks.

5.4 Bi-level traffic routing based on merging nodes and links

In Section 5.3, we have presented hierarchical traffic routing based on network division. In
this section, we propose another alternative multi-agent control approach for traffic routing
based on merging nodes and links. Conceptually, merging nodes and links in a network is
different from dividing a network into subnetworks. More specifically, when merging nodes
and links, nodes are merged first and links are merged automatically, and the topological
features of the network are still maintained. In contrast, when dividing a network into

2This value could e.g., be the average of mismatch of traffic flows at the two levels for all subnetworks in
a simulation where a simple strategy (e.g. shortest-time route) is used separately for traffic flow routing at the
two levels.
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Figure 5.3: Graphical representation of an original road network, where the actual nodes and

the actual links within each dotted ellipse are merged into an aggregated node in

Figure 5.4. The dotted ellipses are not essential and they are only used to highlight

the actual nodes and the actual links that are merged into aggregated nodes.

subnetworks, a large number of nodes and links are grouped simultaneously into a
subnetwork, and the topological features of the network may not be maintained.

Different from the hierarchical traffic routing based on network division, for traffic
routing based on merging nodes and links, we develop a bi-level control approach where a
centralized controller at the aggregated level determines the traffic flows on the aggregated
links for the entire aggregated network and a set of local controllers assigned to aggregated
nodes cooperatively determine traffic flows on original links considering minimizing the
differences between the sums of traffic flows on the original links merged into aggregated
links and the flows on the corresponding aggregated links.

5.4.1 Aggregation of nodes and links in a network

Given an urban transportation network conceptually represented by a set of nodes and a set
of link, an aggregated network can be generated by grouping nodes based on their
geographical positions, their functions, e.g., origins, intermediate nodes, or destinations,
and the number of incoming and outgoing links, etc. As an example, the network shown in
Figure 5.4 is an aggregated one for the actual network in Figure 5.3. More specifically, due to
the merging of nodes, some actual links are merged into aggregated nodes while others are
merged into aggregated links. Note that Figure 5.4 shows the aggregated nodes and the
aggregated links which of course differ from the actual nodes and the actual links. Also note
that generating an aggregated network from an actual network, for which efficient
algorithm has been proposed by [25], is outside the scope of our work. Therefore, we
assume an actual network and its aggregated network are given, and we only focus on
dynamic traffic flow routing on the aggregated level and on the original level. Besides, for
the bi-level approach, we refer to the aggregated level as the high level, and refer to the
original level as the low level.

5.4.2 Centralized traffic routing at the high level

By defining the variables for aggregated links and aggregated nodes in the same way as the
corresponding variables for high-level links and high-level nodes are defined in Section 5.3.1,
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Figure 5.4: Aggregated representation of the road network shown in Figure 5.3

the design of the centralized traffic routing controller at the high level is the same as the
design of the network traffic routing controller presented in Section 5.3.1.

5.4.3 Distributed traffic routing at the low level

Before formulating the traffic routing problem at the low level, as illustrated in Figure 5.3,
we need to consider that some actual links are merged into aggregated nodes while others
are merged into aggregated links and that each aggregated link connects to two aggregated
nodes. Besides, the flow consistency at the low level within each aggregated node must be
maintained and the sum of flows on the actual links merged into each aggregated link should
be as close as possible to the flow on the aggregated link. Based on these considerations, we
define the flows on the actual links merged in an aggregated link connecting two aggregated
nodes as the interconnecting variables between these two aggregated nodes, and propose to
assign an agent to each aggregated node focusing on:

• negotiating with other agents on the interconnecting variables,

• maintaining the flow consistency at the low level for each local agent,

• minimizing the total travel cost of all flows for each local agent,

• minimizing the difference between the sum of flows on the original links merged into
each aggregated link and the flows on the aggregated links determined on the high
level.

Therefore, we first formulate the local traffic routing problem for a local agent. Next, we
define the combined overall dynamic flow routing problem at the low level and propose
multi-agent control methods to solve the problem. Note that the variables in Section 5.4.3
without tilde pertain to actual links and actual nodes and they are defined in the same way
as the corresponding variables with tilde for aggregated links and aggregated nodes.

Interconnection of aggregated nodes

For each aggregated node ñ with a set of neighboring aggregated nodes Ññ,neighbor = {p̃ñ,1,
p̃ñ,2, ..., p̃ñ,Mñ }, we define:

• ωin,ñ = [ωT
in,p̃ñ,1,ñ ,ωT

in,p̃ñ,2,ñ , ...,ωT
in,p̃ñ,Mñ

,ñ]T: external inputs from neighboring

aggregated nodes including all flows on the actual links merged in all the incoming
aggregated links of node ñ
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Figure 5.5: Illustration of interconnection between two aggregated nodes

• ωout,ñ = [ωT
out,p̃ñ,1,ñ ,ωT

out,p̃ñ,2,ñ , ...,ωT
out,p̃ñ,Mñ

,ñ]T: external outputs to neighboring

aggregated nodes including all flows on the actual links merged in all the outgoing
aggregated links of node ñ

As an example, the interconnection of two aggregated nodes is illustrated in Figure 5.5.

Modeling of dynamics of traffic flows at the low level

At the low level, the flow consistency at each node, the time delay between inflow and
outflow on each link, the non-negativity of traffic flows and traffic queues, and the capacity
of each link are modeled in the same way as (5.1)-(6.7).

Local problem of an agent

For each aggregated node ñ, the total time spent of local traffic flows and local traffic queues
at the low level is given by

JTTS,ñ =
∑

d∈D

∑

l∈Lñ

kend−1
∑

k=0

t (z)
l

·q in
l ,d (k) ·T +

∑

d∈D

∑

n∈Nñ

kend−1
∑

k=0

Qn,d (k) ·T

+
∑

d∈D

∑

l∈Lñ

τl ,d ·q in
l ,d (kend) ·T +

∑

d∈D

∑

n∈Nñ

ιn,d ·Qn,d (kend) (5.19)

where Lñ is the set of links merged into aggregated node ñ and interconnecting incoming
links and interconnecting outgoing links of aggregated node ñ, and Nñ is the set of nodes
merged into aggregated node ñ. The total energy consumption of local traffic flows and local
traffic queues is given by

JTEC,ñ =
∑

d∈D

∑

l∈Lñ

kend−1
∑

k=0

e (z)
l

·q in
l ,d (k) ·T +

∑

d∈D

∑

n∈Nñ

kend−1
∑

k=0

Qn,d (k) ·eidle,T

+
∑

d∈D

∑

l∈Lñ

χl ,d ·q in
l ,d (kend) ·T +

∑

d∈D

∑

n∈Nñ

ςn,d ·Qn,d (kend) (5.20)

Besides, the agent assigned to aggregated node ñ should also consider minimizing the
difference between the sum of flows on the actual links merged into each aggregated link
and the flows on the aggregated links determined on the aggregated level. More specifically,
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this objective is given by

JFM,ñ =
∑

d̃∈D̃

∑

l̃∈L̃ñ

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

d∈Nd̃

∑

l∈Ll̃

q in
l ,d (k)

)

− q̃ in
l̃ ,d̃

(k)

∣

∣

∣

∣

∣

∣

∣

∣

1
(5.21)

where L̃ñ is the set of aggregated incoming links and aggregated outgoing links of aggregated
node ñ, and Ll̃ is the set of actual links merged into aggregated link l̃ .

Finally, in order to properly balance the three objectives, the local problem for each agent
ñ is formulated by

minimize
q in

ñ ,q out
ñ ,Q ñ

Jñ := w1
JTTS,ñ

JTTS,typical
+w2

JTEC,ñ

JTEC,typical
+w3

JFM,ñ

JFM,typical
(5.22)

subject to local flow dynamics over the simulated period

initial conditions

Combined overall control problem on the low level and distributed control methods

The combined overall control problem at the low level is the problem formed by the
aggregation of the local problems including the interconnecting constraints for all ñ ∈ Ñ :

ωin,p̃ñ,1,ñ =ωout,ñ,p̃ñ,1

...
ωin,p̃ñ,Mñ

,ñ =ωout,ñ,p̃ñ,Mñ

(5.23)

Generally, standard distributed control methods rom literature [4, 23, 85, 94, 119], e.g.
distributed MPC based on dual decomposition and alternative direction method of
multipliers, and distributed MPC based on agent negotiation, can be used to solve the
combined overall control problem.

Initial values for the interconnecting values for negotiation among agents can be
generated from the flows on the aggregated links determined at the high level. By letting the
symbol y in q

in,(y)
l ,d

(k) denote the negotiation counter in the distributed control approach,

the initial value for q
in,(y)
l ,d

(k) with l ∈Ll̃ can be given by

q in,(0)
l ,d

(k) =
βl ,d

∑

d∈Nd̃

∑

j∈Ll̃
β j ,d

· q̃ in
l̃ ,d̃

(k) (5.24)

where βl ,d is a parameter associated with link l and destination d that represents the rate
of traffic flow on link l towards destination d over the total traffic flow on aggregated link l̃

towards aggregated destination d̃ . The value of βl ,d may be determined statistically by using
historical data or analytically by taking the features of link l into account, such as the capacity
of the link, the average travel time on the link, the length of the link, and the characteristics
(e.g., the number of incoming links and the number of outgoing links) of nodes connected
to the link, etc.

Quasi-static traffic routing procedure at the low level

We also use a quasi-static decision-making procedure for traffic routing at the low level. This
quasi-static procedure is the same as the quasi-static procedure used for the traffic routing
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Figure 5.6: The network used in the case study for dynamic traffic routing

Table 5.1: Lengths of links in the representative subnetwork shown in Figure 5.7

link length (m) link length (m)
a, b, c 300 l 300

d, f 600 m, q 800
e, g 700 n, r 700
h 300 o, s 700

i, j, k 300 p, t 500

among subnetworks in Section 5.3.1.

5.5 Simulation study

In this section, we perform simulation experiments to illustrate the two methods proposed
above. The simulations are performed using Matlab 2015b on a cluster computer consisting
of 4 blades with 2 eight-core E5-2643 processors, and 3.3 GHz clock rate and 64 GiB memory
per blade.

5.5.1 Simulation setup

We consider the network shown in Figure 5.6, where there are 32 nodes and 80 links. The
network consists of 4 identical substructures. For the sake of simplicity in indicating the
lengths of all links in the network, one representative substructure has been shown in
Figure 5.7 to help refer to links. The lengths of all links in this subnetwork are summarized
in Table 5.1. For hierarchical traffic routing based on network division, we divide the
network into 4 subnetworks as shown in Figure 5.8. The resulting high-level network
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Figure 5.7: Substructure of the subnetwork used to indicate the lengths of all links
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Figure 5.8: Division of the network used in the case study for dynamic traffic routing

representation is shown in Figure 5.9. For bi-level traffic routing based on merging nodes
and links, we consider merging the nodes in the network into 9 aggregated nodes as shown
in Figure 5.10. Correspondingly, the links in the network are merged into 24 aggregated
links. The resulting aggregated network is shown in Figure 5.11.

We consider a case where there are 6 origin-destination pairs with nonzero traffic
demand. More specifically, the 6 pairs of traffic demands are from node 1, node 2, node 3,
node 3, node 4, and node 5 to node 6, node 6, node 6, node 8, node 8, and node 8,
respectively. Besides, the profiles of the traffic demands are shown in Figure 5.12. The other
parameters used in the simulation are: T = 10 s, kend = 100, w1 = 0.7, w2 = 0.3,
JTTS,typical = 1.0708× 106 s, JTEC,typical = 918.06 kWh. In addition, the threshold to check
convergence of solutions to traffic routing optimization problem used in Step iii) of the
quasi-static procedure of Section 5.3.1 is set to 0.1, and the allowed maximum number of
iterations used in Step iii) of the quasi-static procedure of Section 5.3.1 is set to 100.
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Figure 5.9: High-level representation of the network used in the case study for dynamic traffic

routing

1

9 10

25 32

1

2

3

4 5 7 6

8

2
1
1

1
2

2
6

9

10
11

12

3

1
3

1
4

2
7

1
3 1
4

1
5

1
6

1
7

1
9

1
8

2
0

4 1
5

1
6

2
8

21

2223

24

5

1718

29

25

26

27

28293130

32

6
1
9

2
0

3
0

33

34
35

36

7

2
1

2
2

3
1

3
73
8

3
9

4
0

4
1

4
3

4
2

4
4

82
3

2
4

45

46

47

48
49

50

51

52

53

54

55

56

57
58

59

60

61
62

63

64

65

66

67

68

69

70

71
72

73
74

75

76

7778

79

80

Figure 5.10: Merging nodes in the network used in the case study for dynamic traffic routing
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Figure 5.12: Profiles of traffic demands in the case study for dynamic traffic routing
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Table 5.2: Simulation results for each subnetwork on the lower level

Subnetwork JTTS,g (s) JTEC,g (kWh) Jg computation time (s)
1 2.4944×105 346.06 0.2761 8.86
2 3.1938×105 379.66 0.3328 19.98
3 2.2491×105 249.97 0.2287 13.32
4 1.4000×105 194.30 0.1550 5.01

Moreover, for bi-level traffic routing based on merging nodes and links, at each iteration of
the quasi-static procedure, the allowed maximum number of negotiations among agents of
the distributed traffic routing algorithm of Section 5.4.3 is set to 100.

5.5.2 Hierarchical traffic routing

The simulation results of hierarchical traffic routing based on network division are as follows.
At the high level, the quasi-static procedure stops at the 7th iteration. The resulting total
time spent and total energy consumption of all high-level traffic flows and traffic queues are
JTTS = 9.1940×105 s and JTEC = 852.18 kWh, respectively. Besides, the value of the objective
function is J = 0.8930. The computation time used in solving the high-level traffic routing
problem is 0.73 s. At the low level, the quasi-static procedures for subnetworks 1, 2, 3 and
4 stop at the 9th, the 18th, the 15th, and the 7th iteration, respectively. Besides, for each
subnetwork, the total time spent JTTS,g and the total energy consumption JTEC,g of traffic
flows and traffic queues, the mismatch JFM,g of high-level flows and lower-level flows, the
value Jg of local objective function, and the computation time are summarized in Table 5.2.
Finally, for the overall control performance evaluation, the resulting overall total time spent
and the overall total energy consumption of traffic flows and traffic queues of the network
are Joverall,TTS = 7.8007× 105 s and Joverall,TEC = 1032.80 kWh, respectively, and the overall
performance Joverall = 0.8474.

5.5.3 Bi-level traffic routing using distributed control at the low level

For bi-level traffic routing based on merging nodes and links, we first used distributed
traffic routing at the low level. Given the similarities between the urban transportation
networks considered in this chapter and the transportation networks considered in [95], we
adapt the distributed control scheme presented in [95] for distributing traffic routing at the
low level. The simulation results are as follows. At the high level, the quasi-static procedure
stops at the 21th iteration. The resulting total time spent and total energy consumption of
all aggregated-level traffic flows and traffic queues are JTTS = 9.5690 × 105 s and
JTEC = 792.52 kWh, respectively. Besides, the value of the objective function is J = 0.8845.
The computation time used in solving the traffic routing problem at the high level is 16.83 s.

At the low level, when the distributed control algorithm is used to solve the combined
overall traffic routing problem, the local agents do not reach agreement on the
interconnecting flows among aggregated nodes at all iterations in the quasi-static
procedure. To explain this result, we take link 16 as an example. Link 16 is an
interconnecting link between aggregated node 3 and aggregated node 9. The agents of
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aggregated node 3 and aggregated node 9 need to negotiate on the values of q in
16,d (k) for all

d and k. However, the two agents do not reach agreement on those values during
negotiation. More specifically, the values of q in

16,6(10) determined by the agent of aggregated

node 3 and the values of q in
16,6(10) determined by the agent of aggregated node 9 during

negotiation at the 1st iteration of the quasi-static procedure are shown in Figure 5.13. It is
seen that the two agents have an oscillating disagreement on determining the values of
q in

16,6(10) and such an oscillating disagreement will not be resolved by further negotiation.
Actually, during negotiation, the two agents have an oscillating disagreement in
determining the values of q in

16,6(k) for many simulation steps k. Moreover, the quasi-static
procedure does not stop before the allowed maximum number of iterations was reached.
Since the solutions to the overall combined traffic routing problem on the original level did
not converge within the allowed maximum number of iterations, much computation time,
which is actually 2.1467×105 s, had been spent by the time when the quasi-static procedure
stopped.

Since further negotiation would not resolve the oscillating disagreement among agents,
in order to save computation time, we reduced the allowed maximum number of
negotiations among agents to 25. Then, the corresponding simulation results of solving the
combined overall traffic routing problem using the distributed control algorithm are as
follows. The computation time used in solving the combined overall traffic routing problem
distributed control is 46013 s. Besides, for each aggregated node, the total time spent JTTS,ñ

and the total energy consumption JTEC,ñ of traffic flows and traffic queues, and the value Jñ

of the local objective function are summarized in Table 5.3. Finally, for the overall control
performance evaluation, the resulting overall total time spent and the overall total energy
consumption of traffic flows and traffic queues of the network are Joverall,TTS = 1.1503×106 s
and Joverall,TEC = 945.87 kWh, respectively, and the overall performance Joverall = 1.0611.
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Table 5.3: Simulation results for each aggregated node with using distributed control at the

low level

Aggregated node JTTS,ñ (s) JTEC,ñ (kWh) Jñ computation time (s)
1 1.3973×105 144.89 0.1387 1986.75
2 6.1289×104 65.16 0.0614 1763.56
3 2.7192×105 193.54 0.2410 3734.21
4 6.6149×104 70.10 0.0662 1433.89
5 4.2476×105 353.15 0.3931 2157.33
6 1.1920×105 118.59 0.1167 1812.45
7 2.5838×105 213.05 0.2385 2311.72
8 1.0047×105 103.21 0.0994 3568.91
9 5.5771×105 401.10 0.4957 26145.13

Bi-level traffic routing using decentralized control at the low level

Alternatively, by fixing the values for the interconnecting variables by using (5.24), the overall
combined control problem at the low level can be decomposed into a group of separated
subproblems. Each subproblem can be solved individually by a local agent. In that case,
an alternative decentralized control approach can be used. By using this alternative control
approach, the computation time for solving the combined overall problem can be reduced.
However, the quality of solution might be degraded.

In order to achieve a well-balanced trade-off between quality of solution and
computation speed, we then solved the combined overall traffic routing problem at the low
level using the alternative decentralized control approach. The simulation results of using
the alternative decentralized control approach on the original level are as follows. The
quasi-static procedures for aggreagted nodes 1, 2, 3, 4, 5, 6, 7, 8, and 9 stop at the 5th, the
5th, the 10th, the 4th, the 5th, the 5th, the 6th, the 9th, and the 28th iteration, respectively.
Besides, for each aggregated node, the total time spent JTTS,ñ and the total energy
consumption JTEC,ñ of traffic flows and traffic queues, the value Jñ of the local objective
function, and the computation time are summarized in Table 5.4. Finally, for the overall
control performance evaluation, the resulting overall total time spent and the overall total
energy consumption of traffic flows and traffic queues of the network are
Joverall,TTS = 1.0020 × 106 s and Joverall,TEC = 978.84 kWh, respectively, and the overall
performance Joverall = 0.9749.

5.5.4 Comparison of the hierarchial approach and the bi-level approach

At the high level

The comparison of the hierarchical traffic routing approach and the bi-level traffic routing
approach at the high level is summarized in Table 5.5. It is seen that the value of the
objective function at the high level for the hierarchical approach is very close to that for the
bi-level approach. Actually, the formulations of the high-level traffic routing problem in the
two approaches are exactly the same. The only difference of the two approaches at this level
is the representation of the network. More specifically, the numbers of nodes and links are
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Table 5.4: Simulation results for each aggregated node with using decentralized control at the

low level

Aggregated node JTTS,ñ (s) JTEC,ñ (kWh) Jñ computation time (s)
1 1.8083×105 167.77 0.1730 5.45
2 8.8685×104 77.09 0.0832 3.76
3 2.1113×105 164.93 0.1919 9.70
4 8.7201×104 80.49 0.0833 2.88
5 2.6353×105 204.68 0.2382 5.02
6 1.5447×105 152.19 0.1507 3.33
7 1.4974×105 132.71 0.1413 6.64
8 1.6795×105 143.31 0.1564 6.04
9 4.3344×105 280.99 0.3752 56.27

Table 5.5: Comparison of the hierarchical approach and the bi-level approach at the high level

Approach JTTS (s) JTEC (kWh) J computation time (s)
Hierarchical 9.1940×105 852.18 0.8930 0.73

Bi-level 9.5690×105 792.52 0.8845 16.83

different in the two representations, and the lengths of the links in those two
representations of the same network are also different. This implies that the travel costs of
traffic demands from their origins to destinations would be similar in the two
representations of the same network. Therefore, given the same problem formulation and
the close representations of the same network, the value of the objective function at the
high level for the hierarchical approach is close to that for the bi-level approach. However,
the computation time used in solving the high-level traffic routing problem for the
hierarchical approach is much shorter than the computation time used in solving the
high-level traffic routing problem for the bi-level approach. That is because the number of
aggregated nodes and aggregated links in Figure 5.11 is larger than the number of high-level
nodes and high-level links in Figure 5.9. Thus, the number of decision variables of the
aggregated-level traffic routing problem is larger than that of the high-level traffic routing
problem. Moreover, in the quasi-static procedure, the number of iterations needed for
solving the high-level traffic routing problem for the bi-level approach is larger than that
needed for solving the high-level traffic routing problem for the hierarchical approach.
Therefore, at the high level, the control approach based on network division is more
efficient than the control approach based on merging nodes and links is solving the
dynamic traffic routing problem.

At the low level

The comparison of the hierarchical traffic routing approach and the bi-level traffic routing
approach at the low level is summarized in Table 5.6. Note that the computation time for
each approach given in Table 5.6 is the parallel computation time, i.e. the computation time
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Table 5.6: Comparison of the hierarchical approach and the bi-level approach at the low level

Approach Joverall,TTS (s) Joverall,TEC (kWh) Joverall computation time (s)
Hierarchical 7.8007×105 1032.80 0.8474 19.98

Bi-level distributed 1.1503×106 945.87 1.0611 26145.13
Bi-level decentralized 1.0020×106 978.84 0.9749 56.27

needed for solving the most time-consuming local subproblem. It is seen that hierarchical
approach at the low level performs better than the two variants of the bi-level approach.
More specifically, the overall Joverall and the computation time of the hierarchical approach
is the lowest among the three approaches.

Besides, for the two variants of the bi-level approach, the one using decentralized
control performs better than the one using distributed control in both overall performance
Joverall and computation time. The results can be explained as follows. In the distributed
traffic routing control of the bi-level approach, the agents do not reach agreement on the
interconnecting flows. By the time when the allowed maximum number of negotiation is
reached, the agents just take their current decisions, which are parts of the oscillating
disagreements among the agents and can be far away from the optimum. As a result, the
overall performance of all agents may be far away from the global optimal performance.
Besides, since the local agents do not reach agreement on the interconnecting flows at all
iterations in the quasi-static procedure and the quasi-static procedure does not stop until
the allowed maximum number of iterations is reached, much computation time is spent on
the unrewarding negotiation among agents and the non-converging quasi-static procedure.
In decentralized traffic routing control of the bi-level approach, the flows on the
interconnecting links are first fixed by using (24) and then each subproblem is solved
individually. Since the fixed values of traffic flows on the interconnecting links are not
optimal, the resulting overall performance is also worse than the global overall optimal
performance. Moreover, the computation time for solving the local traffic routing problem
for aggregated node 9, which is the most time-consuming node in the bi-level approach, is
longer than that for solving the local traffic routing problem for subnetwork 2, which is the
most time-consuming subnetowrk in the hierarchical approach.

5.6 Summary

In this chapter we have addressed the dynamic traffic routing problem for urban
transportation networks. In general, this problem is computationally very hard to solve. To
reduce the computational efforts in solving the problem, we have proposed a novel
hierarchical control approach based on network division and a novel bi-level control
approach based on merging nodes and links. Simulation-based case studies show that the
hierarchical control approach based on network division is more effective than the bi-level
control approach based on merging nodes and links in solving the dynamic traffic routing
problem.

One possible extension of the work presented in this chapter is to perform more
detailed case stuidies for an extensive assessment of the efficiency of the hierarchical traffic
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routing approach and the bi-level traffic routing approach, e.g., quantifying the
communication efforts of the two approaches.





Chapter 6

Co-optimization of the Orientation of

Road Sections and the Routes of Traffic

Flows

In this chapter we address the co-optimization problem that jointly determines the
orientation of road sections and routes of traffic flows by assuming that the orientation of
each road section in the network can be changed in each control period. We consider a
circular orientation for each elementary cycle, which is a series of connected road sections
encircling an area that is not encircled by other string of roads in the network, and we map
the orientations of road sections using the orientation of these elementary cycles. Given the
number of elementary cycles is much smaller than the number of road sections in the
network, the number of binary variables involved in the co-optimization problem is
reduced substantially w.r.t considering the orientation of each road section independently.
Therefore, the resulting co-optimization problem can be solved more efficiently.

Parts of this chapter have been included in [80].

6.1 Introduction

Due to inadequate urban planning, in many big cities, the main commercial and business
areas are concentrated in the center while the residential areas are spread outside the city
center. As people commute between their work places and their homes daily, in those cities
there are always high traffic demands from outside the city center to the city center in the
morning rush hours as well as high traffic demands from the city center to outside the city
center in the evening rush hours. Conventionally, after the urban transportation networks
are constructed, the orientation of the road sections in the network is fixed. As a
consequence, the roads directed from city center to outside the city center are not
sufficiently used in the morning rush hours. A similar argument holds for the roads directed
from outside the city center to the city center in the evening rush hours. Therefore, in this
chapter we consider co-optimization of the orientation of road sections and the routes of
traffic flows for urban transportation networks.

Different from the urban transportation network design problems considered in [46],
where the orientation of roads in the network are fixed once determined, we assume the
orientation of each road section in an urban transportation network can be changed in each

79
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control period, e.g., in the morning rush hours and in the evening rush hours. We focus on
the co-optimization problem that jointly determines the orientation of road sections in the
network and the routes of traffic flows. Generally, the co-optimization problem for a
large-scale network contains a large number of binary optimization variables, which makes
the problem computationally hard to solve. However, by considering a circular orientation1

in each elementary cycle in the graph corresponding to the road network and mapping the
orientations of road sections using the orientation of these elementary cycles, the number
of binary variables involved in the co-optimization problem is reduced substantially w.r.t
considering the orientation of each road section independently.

With respect to the literature, the main contribution of this chapter consists in proposing
a novel mixed-integer linear programming formulation with a reduced number of binary
optimization variables for the co-optimization problem.

The chapter is organized as follows. Section 6.2 describes the general co-optimization
problem. In Section 6.3, we define the variables used in the chapter. After that, the relation
between the orientation of links and the circular orientation of traffic flows in each
elementary cycle is described in Section 6.4. Besides, the model of dynamics of traffic and
the objective function of the co-optimization problem are presented in Section 6.5 and in
Section 6.6, respectively. Further, the co-optimization problem is formulated in Section 6.7.
Moreover, Section 6.8 illustrates a simulation case study of the proposed method. Finally, in
Section 6.9, we summarize the main contribution of the chapter and propose some ideas
for future work.

6.2 Problem description

Conceptually, an urban road network can be represented as a graph shown in Figure 6.1,
where each elementary cycle has been indicated by a dashed line. We assume that each road
section that is shared by two elementary cycles, has two independent unidirectional lanes.
Each unidirectional lane in a road section is referred to as a link and each intersection is
referred to as a node. Note that efficient algorithms for detecting elementary cycles in a given
network have been developed in [72, 122]. In our work, we assume a network is given with
elementary cycles already determined, and we only focus on the co-optimization problem
of determining the orientation of road sections and the routes of traffic flows.

We assume that each link has a constant travel time that is determined statistically
based on the historical data. We also assume that all O-D (origin-destination) traffic
demands are given by higher-level controllers. Provided the O-D demands, a model
describing the dynamics of traffic flows in the network is given in Section 6.5. We aim to
jointly determine the orientation of the elementary cycles and the optimal routes for traffic
flows (i.e., the optimal assignment of traffic flows on each link) so that all O-D traffic
demands are handled and the total travel cost including e.g. the total time spent and the
total energy consumption of all the traffic flows is minimized.

1In many urban areas, one-way road sections are used to achieve higher traffic flow as drivers may avoid
encountering oncoming traffic or turning through oncoming traffic. This one-way scheme typically results in
(elementary) cycles with a circular orientation.
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Figure 6.1: Schematic representation of an urban road network with elementary cycles

(dashed lines)

clockwise counterclockwise

Figure 6.2: Two possible circular orientations for traffic flows in a ring of roads

6.3 Definitions

We consider there are two possible circular orientations, i.e. clockwise and counterclockwise,
for traffic flows in each elementary cycle, as shown in Figure 6.2. After that, we define

• k: simulation step counter

• T : length of the simulation time interval

• tl : average travel time on link l

• el : average energy consumption of a vehicle traveling through link l

• N : set of nodes

• L : set of links

• D: set of final destinations

• In : set of incoming links of node n

• On : set of outgoing links of node n

• Dn,d (k): traffic demand from node n to final destination d for interval
[

kT, (k +1)T
)
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Figure 6.3: Definition of σl ,n

• q in
l ,d (k): flow entering link l traveling towards final destination d for interval

[

kT, (k +

1)T
)

• qout
l ,d (k): flow leaving link l traveling towards final destination d for interval

[

kT, (k +

1)T
)

• Qn,d (k): queue length of traffic towards final destination d but waiting at node n for
interval

[

kT, (k +1)T
)

• q
cap
l

: capacity of link l

• δi : circular orientation of traffic flows in elementary cycle i ; δi = 1 represents
clockwise orientation while δi = 0 represents counterclockwise orientation.

• σl ,n : direction of link l that is connected to node n. As illustrated in Figure 6.3, σl ,n = 1
indicates that link l is directed towards node n, and σl ,n = 0 indicates that link l is
directed away from node n.

• Ln : set of incoming links and outgoing links of node n

• Ni : set of nodes in elementary cycle i

• Ri : set of links in elementary cycle i

6.4 Model of the relation between the orientation of links and

the circular orientation in each elementary cycle

The clockwise (or counterclockwise) orientation of traffic flows in an elementary cycle can
be mapped to the orientation of the links in that elementary cycle. More specifically, given
δi for each elementary cycle i , the variables2 σl ,n for all n ∈Ni and l ∈Ri ∩Ln are explicitly
determined by δi as follows. First, the orientation of elementary cycle i is mapped to the
orientation of link l . Next, given the orientation of link l , the variable σl ,n is either given by

σl ,n = δi (6.1)

as the cases (a) and (b) indicated in Figure 6.4, or is given by

σl ,n = 1−δi (6.2)

as the cases (c) and (d) indicated in Figure 6.4.

2Note that at first sight a single variable σl would seem sufficient to describe the direction of the traffic
flow on link l . However, this would make the equation of the traffic model in Section 6.5 much more complex.
Therefore, we also include the node index as an extra subscript in σ.
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Figure 6.4: Relation between the circular orientation of an elementary cycle and the

orientation of the links in that elementary cycle.

6.5 Model of dynamics of traffic flows

For modeling the dynamics of traffic flows, we assume that the average travel time tl of link
l is an integer multiple of T . Based on the circular orientation of each elementary cycle,
we describe the model of the dynamics of traffic flows considering flow consistency at each
node, time delay between inflow and outflow on each link, non-negativity of traffic flows and
traffic queues, and capacity of each link.

Firstly, at each node n, the sum of outgoing traffic flows from node n is equal to the sum
of traffic flows entering node n. More specifically, considering the orientation of the links
that are connected to node n, the flow consistency at each node n is given by

∑

l∈Ln

q in
l ,d (k) · (1−σl ,n) ·T +Qn,d (k)−Qn,d (k −1) = Dn,d (k) ·T +

∑

l∈Ln

qout
l ,d (k) ·σl ,n ·T (6.3)

∀d ∈D, n 6= d

Note that if σl ,n = 1 with l ∈ Ln , then link l is an incoming link of node n. Accordingly,
qout

l ,d (k) ·σl ,n ·T is equal to the incoming traffic flow of node n from link l at time step k,

and q in
l ,d (k) · (1−σl ,n) ·T is equal to zero. If σl ,n = 0 with l ∈ Ln , then link l is an outgoing

link of node n. Accordingly, q in
l ,d (k) · (1−σl ,n ) ·T is equal to the outgoing traffic flow from

node n that enters link l at time step k, and qout
l ,d (k) ·σl ,n · T is equal to zero. Therefore,

∑

l∈Ln
q in

l ,d (k)·(1−σl ,n)·T is equal to the total traffic flow leaving node n through its outgoing

links at time step k, and
∑

l∈Ln
qout

l ,d (k)·σl ,n ·T is equal to the total traffic flow entering node n

through its incoming links at time step k. Besides, Dn,d (k)·T is equal to the amount of traffic
flow entering node n at time step k due to the traffic demand, and Qn,d (k)−Qn,d (k−1) is the
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difference in queue length at node n.

Secondly, the relationship between the incoming flow and the outgoing flow of each link
l is given by

qout
l ,d (k) = q in

l ,d

(

k −
tl

T

)

, ∀d ∈D (6.4)

Thirdly, since the traffic flows must not be negative and the sum of traffic flows on a link
going to different destinations must not exceed the capacity of the link, the flow constraints
are given by

q in
l ,d (k) ≥ 0, ∀l ∈L , ∀d ∈D (6.5)
∑

d∈D

q in
l ,d (k) ≤ q

cap
l

, ∀l ∈L (6.6)

Finally, the queue length of traffics waiting at a node must not be negative. Therefore, we
have

Qn,d (k) ≥ 0, ∀n ∈N , ∀d ∈D (6.7)

6.6 Objectives

We consider minimizing the total travel cost including the total time spent and the total
energy consumption of all traffic flows and traffic queues. More specifically, the total time
spent of all traffic flows and traffic queues is given by

JTTS =
∑

d∈D

∑

l∈L

kend−1
∑

k=0

q in
l ,d (k) ·T · tl +

∑

d∈D

∑

n∈N

kend−1
∑

k=0

Qn,d (k) ·T

+
∑

d∈D

∑

l∈L

q in
l ,d (kend) ·T ·τl ,d +

∑

d∈D

∑

n∈N

Qn,d (kend) · ιn,d (6.8)

where τl ,d denotes a measure of the remaining average travel time from link l to destination
d , and ιn,d denotes a measure of the remaining travel time from node n to destination d . One
possible way to determine τl ,d and ιn,d is using tl for all links and the shortest time routes
computed by Dijkstra’s algorithm [40]. The total energy consumption of all traffic flows and
traffic queues is given by

JTEC =
∑

d∈D

∑

l∈L

kend−1
∑

k=0

q in
l ,d (k) ·T ·el +

∑

d∈D

∑

n∈N

kend−1
∑

k=0

Qn,d (k) ·eidle,T

+
∑

d∈D

∑

l∈L

q in
l ,d (kend) ·T ·χl ,d +

∑

d∈D

∑

n∈N

Qn,d (kend) ·ςn,d (6.9)

where eidle,T denotes the average amount of energy consumed by a vehicle idling for the
interval of length T , χl ,d denotes a measure of the remaining energy consumption of a
vehicle from link l to destination d , and ςn,d denotes a measure of the remaining energy
consumption of a vehicle from node n to destination d . One possible way to determine χl ,d

and ςn,d is using el for all links and the shortest time routes.

Note that (6.8) and (6.9) are linear expressions of q in
l ,d (k) and Qn,d (k) for all l ∈L , n ∈N ,
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and d ∈D.

6.7 Problem formulation

Note that σl ,n for all links and nodes are just introduced to help describe the modeling of
dynamics of traffic flows. In Section 6.4, we have already shown that σl ,n for all n ∈ Ni and
l ∈ Ri ∩Ln can be explicitly expressed by using δi . Therefore, σl ,n in (6.3) for all links and
nodes can be replaced by δi for all elementary cycles. Since the number of elementary cycles
is much smaller than the number of links in the network, the number of binary optimization
variables of the problem is substantially reduced by replacing all σl ,n with all δi .

Although the number of binary optimization variables is then greatly reduced, the
problem is still very hard to solve due to the nonlinearities of q in

l ,d (k) ·δi and qout
l ,d (k) ·δi in

(6.3). However, according to [11], (6.3) can be transformed into a set of mixed integer linear
expressions by introducing auxiliary real variables z in

l ,d (k) = q in
l ,d (k) ·δi , zout

l ,d (k) = qout
l ,d (k) ·δi

and the following extra linear constraints:

z in
l ,d (k) ≤ M in

l ,d ·δi

z in
l ,d (k) ≥ min

l ,d ·δi

z in
l ,d (k) ≤ q in

l ,d (k)−min
l ,d · (1−δi )

z in
l ,d (k) ≥ q in

l ,d (k)−M in
l ,d · (1−δi )

zout
l ,d (k) ≤ Mout

l ,d ·δi

zout
l ,d (k) ≥ mout

l ,d ·δi

zout
l ,d (k) ≤ qout

l ,d (k)−mout
l ,d · (1−δi )

zout
l ,d (k) ≥ qout

l ,d (k)−Mout
l ,d · (1−δi )

where M in
l ,d and min

l ,d are respectively the upper bound and lower bound of q in
l ,d (k), and Mout

l ,d

and mout
l ,d are respectively the upper bound and lower bound of qout

l ,d (k). Therefore, the
co-optimization problem can be formulated as a mixed-integer linear programming (MILP)
problem with binary decision variables δi for all elementary cycles of roads, and real
decision variables q in

l ,d (k), Qn,d (k) and z in
l ,d (k) for l ∈L , n ∈N , and d ∈D. More specifically,

the co-optimization problem of jointly determining the circular orientation of road sections
and routes of traffic flows is formulated by

minimize
q in,q out,Q ,z in,z out,δ

J := w1
JTTS

JTTS,typical
+w2

JTEC

JTEC,typical
(6.10)

subject to flow dynamics over the simulated period

initial conditions

where q in, qout, Q , z in and z out are respectively the compact expressions containing q in
l ,d (k),

qout
l ,d (k), Qn,d (k), z in

l ,d (k) and zout
l ,d (k) for all l ∈L , d ∈D and k ∈ {0,1,2, ...,kend−1}, and δ is the

compact expression containing δi for all elementary cycles of roads. Besides, JTTS,typical and
JTEC,typical denotes typical values of the total time spent and the total energy consumption of
traffic flows over the simulated period. Note that problem (6.10) can be solved efficiently by
using state-of-the-art MILP solvers like CPLEX, GUROBI, MOSEK, or XPRESS.



86 Multi-agent control of transportation networks and of hybrid systems with limited information sharing

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8 9

10 11

12
13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

1

2

3

4

5

6

7

Figure 6.5: The network used in the case study for the co-optimization of the orientation of

road sections and the routes of traffic flows

Table 6.1: Lengths of links in the network shown in Figure 6.5

link length (m) link length (m) link length (m)
1 400 10, 11 300 21, 22 600
2 400 12, 13 400 23 400
3 700 14, 15 400 24 500

4, 5 450 16 450 25 500
6, 7 700 17, 18 600 26 650
8, 9 300 19, 20 500 27 400

6.8 Simulation study

For co-optimization of the orientation of road sections and the routes of traffic flows, we
consider the network shown in Figure 6.5, where there are 12 nodes, 27 links, and 7
elementary cycles. The lengths of all links are listed in Table 6.1. We consider a case where
there are 4 origin-destination pairs with nonzero traffic demands. More specifically, the 4
pairs of traffic demands are from node 1, node 2, node 8, and node 11 to node 9, node 10,
node 10, and node 2, respectively. The profiles of the traffic demands are shown as in Figure
6.6. The other parameters used in the simulation are: T = 10 s, kend = 100, w1 = 0.7,
w2 = 0.3, JTTS,typical = 5.0472 × 105 s, and JTEC,typical = 155.76 kWh. The simulation is
performed using Matlab 2015b on a cluster computer consisting of 4 blades with 2
eight-core E5-2643 processors, and 3.3 GHz clock rate and 64 GiB memory per blade.

In the simulation, we solve the resulting mixed-integer linear programming problem
(6.10) using CPLEX. The computation time needed for solving the problem is 33.32 s. The
results are that the links in elementary cycles 1, 2, 3, and 7 are directed to circle
counterclockwise while the links in elementary cycles 4, 5, and 6 are directed to circle
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Figure 6.6: Profiles of traffic demands in the case study for the co-optimization of the

orientation of road sections and routes of traffic flows

clockwise. The resulting network with the orientation of each link indicated is shown in
Figure 6.7. Besides, the traffic demands from node 1 to node 9 take the route consisting of
links 2, 3, and 23 in sequence; the traffic demands from node 11 to node 8 take the route
consisting of links 25 and 26 in sequence. Moreover, the traffic demands from node 2 to
node 10 first take link 6 to reach node 6 and the traffic demands from node 8 to node 10 first
take link 21 and link 12 to reach node 6. Afterwards, the two traffic demands mix together
and take either link 10 or link 11 to reach node 5 and further take either link 8 or link 9 to
reach node 4. Finally, from node 4, the traffic flows take link 16 to reach their final
destination, i.e., node 10. The resulting total time spent and the total energy consumption
of all traffic flows and all traffic queues are JTTS = 3.8685× 105 s and JTEC = 164.45 kWh,
respectively, and the value of the objective function is J = 0.8533.

The simulation results are explained as follows. If the links in elementary cycle 1 and
elementary cycle 2 were directed clockwise, the least costly route for the traffic demands
from node 2 to node 10 would be the one consisting of links 2, 1, and 16. However, in that
case, the traffic demands from node 1 to node 9 could not take their least costly route
consisting of links 2, 3, and 23. Given the profiles of traffic demands shown in Figure 6.6, the
traffic demand from node 2 to node 10 is about half as many as those from node 1 to node 9.
Therefore, from the system optimum point of view, it is more beneficial to enable the traffic
demand from node 1 to node 9 to take the least costly route, which is only possible if the
links in elementary cycles 2, 3, and 7 are directed counterclockwise. Given the links in
elementary cycle 2 are directed counterclockwise, the traffic demand from node 2 to node
10 cannot take the least costly route. In that case, the best alternative is to take link 6 to
reach node 6 and then take the least costly route from there to node 10. Actually, the least
costly route from node 6 to node 10 is the shortest route consisting of either link 10 or link
11 from node 6 to node 5, followed by either link 8 or link 9 from node 5 to node 7, and then
finally link 16 from node 4 to node 10. Therefore, for the whole network, it is better to let the
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Figure 6.7: The solution for orientation of the network in the case study for the co-optimization

of the orientation of road sections and routes of traffic flows

links in elementary cycle 4 to be directed clockwise. Likewise, the least costly route of the
traffic demand from node 8 to node 10 conflicts with that of the traffic demand from node
11 to node 8. Although the traffic demand from node 8 to node 10 is comparable to those
from node 11 to node 8, the extra cost for the traffic demand from node 11 to node 8 to take
an alternative route is much higher than that for the traffic demand from node 8 to node 10
to take its alternative route. Therefore, for the whole network, it is more beneficial to let the
traffic demand from node 11 to node 8 to take the least costly route consisting of links 25
and 26, which is only possible if the links in elementary cycle 5 and elementary cycle 6 are
directed clockwise. After that, the best alternative for the traffic demand from node 8 to
node 10 is to take link 21 to reach node 7, then to take link 12 or link 13 to reach node 6, and
to take the least costly route from node 6 to node 10.

6.9 Summary

We have addressed the co-optimization problem that jointly determines the orientation of
road sections and the routes of traffic flows for urban transportation networks. To reduce the
computational efforts for solving the problem, we have started from a setting in which the
orientation of traffic flows is circular in each elementary cycle in the network. The resulting
co-optimization problem can be solved more efficiently than considering the orientation
of each road section independently. A simulation-based case study shows that the novel
approach is suitable for on-line optimization. Possible extensions of the work presented in
this chapter include combining the dynamic orientating of road sections and the dynamic
routing of traffic flows i.e. considering dynamic travel time of each link in the network, and
proposing an efficient solution method for the whole problem.
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Chapter 7

Multi-Agent Model Predictive Control of

Hybrid Systems with Limited Information

Sharing

In this chapter we develop a multi-agent model predictive control method for a class of
hybrid systems governed by discrete inputs and subject to global hard constraints. We
assume that for each subsystem the local objective function is convex and the local
constraint function is strictly increasing with respect to the local control variable. The
proposed multi-agent control method is based on a distributed resource allocation
coordination algorithm and it only requires limited information sharing among the local
agents of the subsystems. Thanks to primal decomposition of the global constraints, the
distributed algorithm can always guarantee global feasibility of the local control decisions,
even in the case of premature termination. Moreover, since the control variables are
discrete, a mechanism is developed to branch the overall solution space based on the
outcome of the resource allocation coordination algorithm at each node of the search tree.
Finally, the proposed multi-agent control method is applied to the charging control
problem of electric vehicles under constrained grid conditions. This case study highlights
the effectiveness of the proposed method.

Parts of this chapter have been included in [79].

7.1 Introduction

7.1.1 Multi-agent hybrid systems and their control

Multi-agent systems, like transportation systems, manufacturing systems, power systems,
financial systems, are composed of multiple subsystems with interactions [64]. Multi-agent
systems research is facing a variety of challenges [71], of which a crucial one is to design
mechanisms for coordinating agents that have limited information sharing with each other
in order to protect confidential information of local subsystems while at the same time still
aiming for global performance [43]. Typical global control goals for multi-agent systems
involve synchronizing motions of agents, maximizing resource utility, and minimizing
control costs. In order to achieve globally satisfactory performance, given limited
information of other subsystems, the agents need to assist each other to make better
decisions about their actions [24]. Thanks to its straightforward design procedure, where

91
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hard system constraints are incorporated directly as inequalities in the formulation of the
control problem, model predictive control has shown to be a promising control strategy for
multi-agent systems [23, 42, 95, 112].

However, the cooperation among agents is made much more difficult when the
individual agents have to regulate hybrid subsystems [27] that contain both continuous
components and discrete components, such as switches and overrides. In fact, this will
result in having to solve mixed-integer programming problems in a distributed way, for
which there has not yet been a universally successful algorithm [49]. Moreover, many
system-theoretic concepts and control strategies, such as model predictive control and
Artificial Intelligence based control [21, 96], still require further examination and research
in this setting [91].

7.1.2 Multi-agent model predictive control for hybrid systems with global

hard constraints

We focus on a class of hybrid systems that are governed by discrete inputs and that are
subject to global hard constraints. In particular, each subsystem is characterized by a
convex objective function and a strictly increasing constraint function with respect to the
local control variable. Besides, each subsystem only shares limited information with the
external environment. Actually, such hybrid systems are ubiquitous, and an important
example are a group of systems with on/off switches sharing a given amount of resources.
More specifically, concrete real-life examples include the charging of a fleet of electric
vehicles sharing a given power level provided by the grid, and the operation of a number of
appliances sharing a given amount of energy in smart buildings. We aim to develop a
multi-agent model predictive control method for such a class of hybrid systems based on a
distributed resource allocation coordination algorithm.

A resource allocation is a plan for using the available resources to achieve goals for the
future. In principle, such planning may be done by centrally scheduling the actions of the
systems that require resources [59]. However, for reasons of scalability and fast computation,
it will not be tractable to schedule the actions of a large number of systems in a centralized
way. Actually, the scheduling of the actions of the systems that require resources can be done
in a distributed way based on the primal decomposition [20] of the overall problem. More
specifically, in primal decomposition, which is naturally applicable to resource allocation
scenarios, the allocation of resources can be represented by auxiliary variables and these
variables are optimized using a master problem [98]. A resource allocation coordination
algorithm that is based on the primal decomposition of the overall problem, has already
been developed for continuous optimization problems with global capacity constraints by
[29].

In fact, a multi-agent control method based on the primal decomposition of the overall
control problem will always guarantee the global feasibility of local control decisions.
However, since all the control variables are discrete in the control setting considered in the
paper, issues such as oscillatory behavior of the discrete decision variables could arise if the
resource allocation coordination algorithm is applied directly. As a result, the global
optimality of the algorithm cannot be guaranteed anymore.

In this chapter, we develop a mechanism based on the branch-and-bound paradigm [70]
to improve the solution found when using the resource allocation coordination algorithm
only. More specifically, this is achieved by building the search tree according to the outcome
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of the resource allocation coordination algorithm at each node and by returning the best
solution found when the overall method stops.

In the literature, a mechanism has been proposed in [19] to deal with the oscillatory
behavior of the discrete decision variables. That mechanism is also based on the
branch-and-bound paradigm but it uses a distributed algorithm based on the dual
decomposition of the overall problem. Since in the dual decomposition approach
constraints are relaxed and accounted for in the objective by using penalties for violations,
it cannot be guaranteed that the constraints are always satisfied during iterations.
Moreover, a general framework of embedded optimization based on the branch-and-bound
paradigm has been presented in [49] for model predictive control of hybrid systems, which
includes the class of hybrid systems considered in our work. However, that paper focuses
on building a problem-specific branch-and-bound search tree by pre-processing heuristics.
So, to our best knowledge, an online and problem-independent algorithm for the control of
the class of hybrid systems considered here has not yet been proposed in the literature.

In our previous work [77], we have integrated a resource allocation coordination
algorithm into the branch-and-bound paradigm. However, in [77], we assumed the solver
to have full information of the overall problem, and we did not consider protecting the
confidential information of the local subproblems. In the contrast, the main contribution of
this chapter consists in reducing information sharing among local control agents, which
helps protecting the confidential information of the local subproblems.

With respect to the literature, the multi-agent control method proposed in this chapter
only requires limited information sharing among local control agents. In addition, it
guarantees the global feasibility of local control decisions and it is also able to efficiently
search the overall solution space online by making use of the outcome of the resource
allocation coordination algorithm at each node of the tree.

The chapter is organized as follows. In Section 7.2, the considered class of hybrid
systems with subsystems governed by discrete inputs and subject to global hard constraints
is formalized. In Section 7.3, the resource allocation coordination algorithm based on a
projected subgradient method is presented. In Section 7.4, we present the overall proposed
multi-agent model predictive control method. In Section 7.5, we consider charging control
of a fleet of electric vehicles as an application example of the proposed method and assess
the performance of the proposed method in a simulation study. Section 7.6 summarizes the
results of this chapter and presents some ideas for future work.

7.2 Model predictive control for a class of hybrid systems

In this section, we focus on the control problem formulation of hybrid systems governed
by discrete inputs and subject to global hard constraints. Assume that a large-scale hybrid
system consists of N subsystems such that:

• each subsystem is controlled by a control agent

• each control agent has a dynamical model of its subsystem

• each control agent has to solve its local problem

• each agent does not have any information of the models and the local control
problems of other subsystems
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• subsystems together have to satisfy global hard constraints

7.2.1 Model of subsystem dynamics

Let the dynamics of subsystem i be given by the following deterministic discrete-time model
with discrete inputs:

xi ,k+1 = Ai xi ,k +Bi ui ,k (7.1)

yi ,k =Ci xi ,k +Di ui ,k (7.2)

where at time step k, for subsystem i , xi ,k ∈ R
ni ,x is the local continuous state, yi ,k ∈ R

ni ,y

the local continuous output, ui ,k ∈ Ui ,k ⊂ R
ni ,u the local discrete input with ui ,k,v ∈ Ui ,k,v ,

Ui ,k,v ⊂ R a finite set of scalar values, and Ui ,k =Ui ,k,1 ×Ui ,k,2, ...,Ui ,k,ni ,u , and Ai ∈ R
ni ,x×ni ,x ,

Bi ∈R
ni ,x×ni ,u , Ci ∈R

ni ,y×ni ,x and Di ∈R
ni ,y×ni ,u .

7.2.2 Model predictive control of a single subsystem

In model predictive control, at each control cycle, the control agent determines its local
control input by computing the optimal control input sequence over a finite prediction
horizon of Np steps according to an objective function describing the control goals, subject
to a model of the subsystem and operational constraints. After that, the control agent
applies the first control input in that sequence to its subsystem and waits until the next
control cycle starts. For the sake of simplicity of notation, in the following, a bold variable is
used to denote the compact expression of variables over the prediction horizon, e.g.,
x i ,k = [ xT

i ,k xT
i ,k+1 ... xT

i ,k+Np−1 ]T.

Assume that the maximum amount of resources θi ,k+l ∈ R available to subsystem i for
l = 0, ..., Np − 1 is given. Then control agent i makes a measurement of the local state xi ,k

of its subsystem at time step k. After that, the following optimization problem is solved by
control agent i :

min
ui ,k

Np−1
∑

l=0

Ji (ui ,k+l , xi ,k+l ) (7.3)

subject to xi ,k+1+l = Ai xi ,k+l +Bi ui ,k+l

Gi (ui ,k+l ) ≤ θi ,k+l

ui ,k+l ∈Ui ,k+l

for l = 0, ..., Np −1

where Ji : Ui ,k+l ×R
ni ,x → R is assumed to be a convex function w.r.t. ui ,k+l for a given xi ,k+l

that gives the cost per prediction step and Gi : Ui ,k+l → R is assumed to be a monotonic
strictly increasing function w.r.t. ui ,k+l that gives the amount of resources consumed by
subsystem i per prediction step.
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7.2.3 Global constraints

Let rk+l denote the total amount of resources available for all the subsystems at time step
k + l . Then the global constraints over the prediction horizon are given by

N
∑

i=1

θi ,k+l = rk+l , for l = 0, ..., Np −1 (7.4)

7.2.4 Combined overall control problem

We aim to achieve global optimal system performance. Therefore, we define the combined
overall control problem by aggregating the local control problems and including the global
constraints (7.4), i.e.,

min
uk ,θk

N
∑

i=1

Np−1
∑

l=0

Ji (ui ,k+l , xi ,k+l ) (7.5)

subject to xi ,k+1+l = Ai xi ,k+l +Bi ui ,k+l

Gi (ui ,k+l ) ≤ θi ,k+l

ui ,k+l ∈Ui ,k+l

N
∑

i=1

θi ,k+l = rk+l

for i = 1, ..., N and l = 0, ..., Np −1

where uk = [uT
1,k uT

2,k ... uT
N ,k ]T and θk = [θT

1,k θ
T
2,k ... θT

N ,k ]T.
Since each local agent does not have information of the local models and local problems

of other agents, none of the agents has full information of the overall problem. Therefore, it is
not possible to solve the combined overall control problem (7.5) in a centralized way. To deal
with this issue, in the following sections, we will develop a multi-agent control method to
solve the combined overall control problem by introducing a resource allocation coordinator
that only requires very limited information from the local agents.

7.3 Resource allocation coordination

Before presenting the overall multi-agent model predictive control method, in the section,
we first describe the resource allocation coordination algorithm on which the overall
control method will be based. In the resource allocation coordination algorithm, the
maximum amount of resources allocated to each subproblem is represented by an auxiliary
variable and then the coordination is achieved by solving a master problem that optimizes
all the auxiliary variables [98].

7.3.1 Primal decomposition

By dropping xi ,k and the time step k and l , problem (7.5) can be simplified as

min
u,θ

N
∑

i=1

Ji (ui ) (7.6)
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subject to Gi (ui ) ≤ θi , i = 1, ..., N

ui ∈Ui , i = 1, ..., N

N
∑

i=1

θi = r

Now, let us define

pi (θi ) = min
ui∈Ui , Gi (ui )≤θi

Ji (ui ) (7.7)

Then, problem (7.6) can be written as

min
θ

N
∑

i=1

pi (θi ) (7.8)

subject to
N
∑

i=1

θi = r

Problem (7.8) is called the master problem.

7.3.2 Optimization algorithm

Actually, if all optimization variables ui are continuous, the master problem (7.8) can be
solved efficiently by using a subgradient method, which is a simple iterative method for
solving convex optimization problems [115]. More specifically, given a convex problem with
decision variable u, classical subgradient methods search for the solution to the problem by
using the following iteration:

u(z+1)
=Π

(

u(z)
−α(z)h

(

u(z))
)

where z denotes the iteration step, h
(

u(z)
)

denotes a subgradient of the objective function of
the problem at u(z), α(z) denotes the step size at step z, and Π(·) denotes the projection onto
the constrained solution space.

It can be derived that in problem (7.7), a subgradient of pi (θi ) at θi is given by −λi , with
λi the corresponding Lagrange multiplier to the constraint Gi (ui ) ≤ θi [15, Chapter 6.4.2]. In
particular, the projected subgradient method is given in [29] as

θ(z+1)
i

= θ(z)
i

+ξ(z)
(

λ(z)
i

−
1

N

N
∑

j=1

λ(z)
j

)

(7.9)

where ξ(z) is a diminishing step size that satisfies

ξ(z)
> 0, lim

z→+∞
ξ(z)

= 0,
+∞
∑

z=1
ξ(z)

=+∞,
+∞
∑

z=1
(ξ(z))2

<+∞ (7.10)

Note that in (7.9), −λ(z)
i

is used as the subgradient of pi (·) at θ(z)
i

and a projection is used to

guarantee that the constraint
∑N

i=1θ
(z)
i

= r is satisfied for all iterations.

In fact, the corresponding λi to the constraint Gi (ui ) ≤ θi in problem (7.7) can in general
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Algorithm 7.1 Resource allocation coordination algorithm for problems with discrete
optimization variables

Inputs: r , N , ξ and Ji , Gi , Ui for all i

i) Initialize θ(1)
i

for all i and set z = 1.

ii) At iteration z, each agent i solves its local problem

u∗,(z)
i

= argmin
ui∈Ui , Gi (ui )≤θ(z)

i

Ji (ui )

and obtains λ(z)
i

using (7.11).

iii) Update θ(z+1)
i

for all i using (7.9).

iv) Stop if |θ(z+1)
i

− θ(z)
i

| ≤ ǫ for all i or if the maximum number of iterations is reached;
otherwise set z ← z +1 and go back to step ii).

Outputs: u∗,(z)
i

and θ(z)
i

be computed by

λi =











−
dT

i ,J·di ,G

dT
i ,G·di ,G

, if−
dT

i ,J·di ,G

dT
i ,G·di ,G

> 0

0, otherwise

(7.11)

where di ,J and di ,G are respectively the derivatives of Ji (·) and Gi (·) w.r.t. u∗
i

with

u∗
i = arg min

ui∈Ui , Gi (ui )≤θi

Ji (ui )

More specifically, the explicit resource allocation coordination algorithm for problems with
discrete optimization variables is presented in Algorithm 7.1.

7.3.3 Problems arising when applied to optimization problems with

discrete decision variables

Actually, if the problem (7.6) is strictly convex, the global optimum is always attained by
using the resource allocation coordination algorithm presented above. However, even if Ji (·)
and Gi (·) are strictly convex functions, the overall problem is still not convex if ui is a discrete
variable. In fact, in that case, if the resource allocation coordination algorithm is directly
applied to the problem, the discrete decision variables may exhibit oscillatory behavior (i.e.
the computed optimal values oscillate from one iteration to the next), and hence the global
optimum may not be attained. To be more specific, a simple numerical example is given next
to show the problem of directly applying the resource allocation coordination algorithm to
an optimization problem with discrete decision variables.
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Figure 7.1: Example of oscillatory behavior in the case of discrete optimization variables

Consider the following resource allocation problem:

min
u1,u2

(u1 −3)2
+2(u2 −2)2

subject to u1 ∈ {−1.5,1.2,2.4,3.4,4.5}

u2 ∈ {−1,0.6,2.5,3.8,4.2}

u1 +u2 ≤ 4.5

The global optimum to this problem is u∗
1 = 1.2 and u∗

2 = 2.5. Figure 7.1 shows the behavior
of the values of the discrete decision variables when the resource allocation coordination
algorithm is directly applied to this simple example. Note that the dotted line included in
the figure is only used to highlight the oscillatory behavior of the value of u2. It is clearly
shown that the value of u1 converges to 1.2 during the iterations while that of u2 oscillates
between 0.6 and 2.5. Therefore, the global optimum is only part of the oscillation.

7.4 Multi-agent model predictive control method based on

resource allocation coordination

Although the values of the control decision variables may oscillate when the resource
allocation coordination algorithm is applied to the combined overall control problem (7.5),
the oscillations of the values of the control decision variables can be used as a guideline for
branching the overall solution space. In this section, we develop a multi-agent control
method for the combined overall control problem (7.5) by integrating the resource
allocation coordination algorithm into a search tree building mechanism for the overall
solution space. The communication structure used in the method is shown in Figure 7.2.

7.4.1 Resource allocation coordinator

The resource allocation coordinator is in charge of allocating the resource to the
subsystems. More specifically, receiving λ

(z)
i ,k for all i from local agents, the resource
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Figure 7.2: Communication structure of the multi-agent model predictive control method

allocation coordinator updates the amounts of resource allocated to local agents by

θ
(z+1)
i ,k

= θ
(z)
i ,k

+ξ(z)
(

λ
(z)
i ,k

−
1

N

N
∑

j=1

λ
(z)
j ,k

)

, for i = 1, ..., N (7.12)

with diminishing step size ξ(z) satisfying (7.10).

7.4.2 Local agent

Each local agent focuses on solving its local control problem and communicating the
Lagrange Multiplier associated with the local constraint to the coordinator. More
specifically, given the allocated maximal amount θ

(z)
i ,k

of resources from the resource
allocation coordinator, each local agent i solves its local control problem (7.3) to obtain
u
∗,(z)
i ,k and then calculates

λ(z)
i ,k+l

=











−
dT

i ,k+l ,J ·di ,k+l ,G

dT
i ,k+l ,G

·di ,k+l ,G
, if −

dT
i ,k+l ,J ·di ,k+l ,G

dT
i ,k+l ,G

·di ,k+l ,G
> 0

0, otherwise

(7.13)

where di ,k+l ,J and di ,k+l ,G for l = 0, ..., Np −1 are respectively the derivatives of Ji (·) and Gi (·)
w.r.t ui ,k+l at u∗,(z)

i ,k+l
.

7.4.3 Multi-agent control procedure

The overall multi-agent control procedure consists of two levels of subprocedures:

• the lower-level resource allocation coordination subprocedure

• the higher-level subprocedure to branch the solution space and to improve the current
best solution to the overall control problem

More specifically, the overall procedure of the multi-agent control method is shown in Figure
7.3.
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Lower-level subprocedure

The resource allocation coordination subprocedure (involving the coordinator and the local
agents), the schematic representation of which is shown in Figure 7.2, can be explicitly
described as follows:

i) The coordinator proposes an initial plan for allocating resources to local agents and
communicates the corresponding proposed amount θ

(1)
i ,k

of resources to each local
agent i .

ii) At iteration z, each local agent i receives a proposed value θ
(z)
i ,k

from the coordinator
and evaluates it by solving its local control problem (7.3). After that, agent i determines
λ

(z)
i ,k

using (7.13) and then communicates it to the coordinator, indicating how much
the agent would benefit from extra resources.

iii) At iteration z, based on the proposed value θ
(z)
i ,k

communicated to each local agent i

and λ
(z)
i ,k

received from each local agent i , the coordinator proposes an updated plan

of resource allocationθ
(z+1)
i ,k

for all agents using (7.12) and communicates it to the local
agents.

iv) During the iterations, the evolution of local control decisions is checked (by the local
agents). Depending on whether local control decisions oscillate, two cases can occur:

– In the case where oscillation of local control decisions is detected (see Remark 1),
stop the lower-level subprocedure and return:

* the best proposal of resource allocation (with the lowest sum of the cost
functions of local agents) so far

* the index of the local control decision variable for which oscillation is
detected

* the discrete values between which the given control decision variable
oscillates

– In the case where no oscillation of local control decisions is detected:

* if the allowed maximum number of iterations is reached or
∣

∣θ(z+1)
i ,k+l

− θ(z)
i ,k+l

∣

∣ ≤ ǫ holds for all i and for all l , stop the subprocedure and
return the best proposal of resource allocation (with the lowest sum of the
cost functions of local agents) so far

* otherwise, set z ← z +1 and go to step ii)

Remark 1.

The oscillation of a discrete decision variable ui ,k+l ,v is characterized by the following
condition, the proof of which can be found in Appendix A:

u∗,(z+1)
i ,k+l ,v 6= u∗,(z)

i ,k+l ,v , sgn
(

∆θ(z+1)
i ,k+l

)

6= sgn
(

∆θ(z)
i ,k+l

)

(7.14)

where ∆θ(z)
i ,k+l

= θ(z)
i ,k+l

− θ(z−1)
i ,k+l

. Therefore, we diagnose the oscillation of discrete
decision variables by detecting the condition (7.14) for each i , l and v .
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Figure 7.3: Schematic diagram of the higher-level subprocedure

Higher-level subprocedure

The procedure to improve the current best solution, the schematic diagram of which is
shown in Figure 7.3, is given by:

a) call the lower-level subprocedure

b) update the best solution to the overall problem found so far by comparing the
corresponding values of objective function to the current best solution and the newly
found solution by the lower-level subprocedure

c) depending on whether local control decisions oscillate

– if ui ,k+l ,v is found to oscillate between α ∈ Ui ,k+l ,v and β ∈ Ui ,k+l ,v , separate
Ui ,k+l ,v into two sets:

* set U (1)
i ,k+l ,v

←Ui ,k+l ,v \{γ | γ ∈Ui ,k+l ,v , γ≤α}

* set U (2)
i ,k+l ,v ←Ui ,k+l ,v \{γ | γ ∈Ui ,k+l ,v , γ>α}

and solve the two branches in parallel

– if no oscillation of local discrete decision variables is detected, stop and return
the best solution found so far

d) when the computation time or number of information exchanges between the
coordinator and the local agents reaches a predefined upper bound or Ui ,k+l ,v for all
i , l , v in all calls of the lower-level sub-procedure has only one single element, stop the
procedure.

7.5 Charging control of electric vehicles

As an example of the developed multi-agent model predictive control method, in this
section we address the charging control of a fleet of electric vehicles under constrained grid
conditions.
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Due to their higher energy efficiency and lower emission of pollutants, electric vehicles
are used more and more. Charging this increasing number of electric vehicles will
inevitably cause additional load to the electrical power distribution grid [58]. Therefore, a
smart charging control strategy that balances the charging demands of electric vehicles is
highly preferred by the distribution grid operators. So far, intelligent charging control of
electric vehicles has been addressed by using distributed integer linear optimization [130],
sequential quadratic programming [28, 52], dynamic programming [53], and heuristic
methods [111]. In this section, we assume that each electric vehicle is equipped with a
charging controller and each controller only shares limited information with the external
environment, and apply the proposed multi-agent model predictive control method to the
charging of a fleet of electric vehicles under constrained grid conditions.

We focus on the optimal charging control of a fleet of electric vehicles at a charging
station within a given time period, e.g. a day. We assume that there is a charging point for
each vehicle in the station. Given the profile of the electricity price, the arrival and the
departure times of all electric vehicles at the charging station, and the maximum power
limit provided by the grid, we aim to charge all electric vehicles up to the required levels
while minimizing the total cost of electricity use.

7.5.1 Definitions

We define k as the discrete-time step counter, T as the length of the simulation time interval,
with a typical value of 15 minutes, and kd as the last step of the overall charging period.
Then define Nv as the total number of electric vehicles under consideration. Define Ti ,arrival,
Ti ,departure as the arrival time and the departure time of electric vehicle i at the charging
station, respectively. Without loss of generality, we assume Ti ,arrival and Ti ,departure are integer
multiples1 of T . Define si ,k as the state of charge of electric vehicle i at time kT and s

req
i

as
the required state of charge of electric vehicle i before departing from the charging station.
Define C

p
i

as the capacity of the battery of electric vehicle i and di ,tol as the allowed tolerance
on the difference between the state of charge of electric vehicle i at its departure time and
s

req
i

. Besides, we assume the charging power of each electric vehicle within a simulation
interval is constant and define pi ,k as the amount of power consumed by electric vehicle
i in the time interval

[

kT, (k + 1)T
)

. Finally, we define ui ,k as the binary control variable
indicating whether electric vehicle i is charging in the time interval

[

kT, (k +1)T
)

.

7.5.2 Model of the charging of an individual electric vehicle

First, the amount of power consumed by an electric vehicle i within the time interval [kT, (k+

1)T ] is given by

pi ,k =

{

F
(

si ,k
)

, if ui ,k = 1

0, if ui ,k = 0
(7.15)

1If an electric vehicle arrives earlier or departs later than a sampling time instant, it will not be charging in
the partial time slot within which it arrives or departs.
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Figure 7.4: Electric vehicle charging using the CPCV option. With this option, the vehicle is first

charging with constant power until the critical state of charge scritical is reached.

After that, it is charged with constant voltage until its battery is fully charged.
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si ,k

pi ,k

Figure 7.5: Charging profile of an electric vehicle under charging control

where the function F (·) describes how the amount of power consumed by electric vehicle i

depends on its state of charge. Next, the state of charge of electric vehicle i is updated by

pi ,k = F
(

si ,k
)

·ui ,k (7.16)

si ,k+1 = si ,k +
pi ,k ·T

C
p
i

(7.17)

There are in general two charging options available for electric vehicle chargers [90],
namely Constant Current-Constant Voltage (CCCV) and Constant Power-Constant Voltage
(CPCV). In our work, we assume all electric vehicles are charged using the CPCV option.
More specifically, the profile of the function F (·) for the CPCV option is shown in Figure 7.4.
Moreover, in order to make the model of the charging of an electric vehicle clearer, Figure
7.5 shows the dynamics of the state of charge of an electric vehicle under charging control.
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7.5.3 Global constraints

At any time, the total amount of power consumed by all electric vehicles must not exceed
the maximum amount of power that can be provided by the grid. Therefore, the constraints
imposed by the capacity of the grid on all electric vehicles are given by

Nv
∑

i=1

pi ,k ≤ Pk,max, k = 1, ...,kd (7.18)

where Pk,max denotes the maximum power limit provided by the grid, which can be steady
or time-variant.

7.5.4 Charging cost

If the profile of the price of electricity is given, the total cost on charging all electric vehicles
is given by:

J =
Nv
∑

i=1

ki ,departure−1
∑

k=ki ,arrival

pi ,k ·T ·ck (7.19)

where ck denotes the price of electricity at in the time interval
[

kT, (k +1)T
)

and

ki ,arrival =
Ti ,arrival

T
, ki ,departure =

Ti ,departure

T

7.5.5 Problem formulation

Normally, the state of charge of a battery is limited to the interval [0.2,0.9] [90]. This mainly
relates to battery life time aspects: charging the remaining 10%-20% before fully charged has
shown to result in quicker battery degradation [90]. According to [90], if the CPCV option
is used, an electric vehicle can be charged with constant power up to more than 90% of the
capacity of its onboard battery. As we adopt the CPCV option, if we define si ,critical as the
critical state of charge of electric vehicle i , according to [90], we have si ,critical > 0.9 for all i .
In order to make the life time of a battery longer, the state of charge of the battery should
be limited at most to 0.9. Therefore, we assume that the user always selects s

req
i

such that
s

req
i

≤ 0.9. Hence, assuming s
req
i

is sufficiently smaller than si ,critical and T is not too large, we
can assume that

si ,k ≤ si ,critical (7.20)

holds for all k and for all i . Then, the function F (·) with the CPCV option can be simplified as

F
(

si ,k
)

=

{

pi ,constant, if si ,k ≤ si ,critical

0, otherwise

The charging model (7.16)-(7.17) of an electric vehicle can then be simplified to

si ,ki ,departure
= si ,ki ,arrival

+

ki ,departure−1
∑

k=ki ,arrival

pi ,constant ·ui ,k ·T

C
p
i
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and the constraint si ,ki ,departure
≥ s

req
i

−di ,tol, which presents the charging requirement for each
electric vehicle i , can be written as

s
req
i

− si ,ki ,arrival
−di ,tol

pi ,constant ·T
·C

p
i
≤

ki ,departure−1
∑

k=ki ,arrival

ui ,k (7.21)

Further, since all the control variables are all binary values, the constraint (7.21) can be
rewritten as

ki ,departure−1
∑

k=ki ,arrival

ui ,k ≥ mi (7.22)

where mi is an integer constant given by

mi = ceiling

(

s
req
i

− si ,ki ,arrival
−di ,tol

pi ,constant ·T
·C

p
i

)

Finally, including for all i the constraint (7.22) via penalty term to the objective function with
a sufficiently large weight βi and a normalization factor 1/(ki ,departure−ki ,arrival), the optimal
charging control problem of a fleet of electric vehicles under constrained grid conditions can
be formulated as

min
u

Nv
∑

i=1

(

1

Ji ,cost,typical

ki ,departure−1
∑

k=ki ,arrival

pi ,constant ·T ·ck ·ui ,k

+
βi

ki ,departure−ki ,arrival

∣

∣

∣mi −

ki ,departure−1
∑

k=ki ,arrival

ui ,k

∣

∣

∣

)

(7.23)

subject to
Nv
∑

i=1

pi ,constant ·ui ,k ≤ Pk,max, k = 1, ...,kd

where u = [uT
1 uT

2 ... uT
Nv

]T with ui = [ui ,ki ,arrival
... ui ,ki ,departure−1]T, and Ji ,cost,tyical is the typical

value for the charging cost of electric vehicle i , which is used to normalize the real charging
cost of electric vehicle i . Alternatively, Ji ,cost,tyical can be given by cost related to the average
or maximum number of steps needed to charge from the current state of charge to the
required level. Note that problem (7.23) is a specific case of the general combined control
problem (7.5). Therefore, the proposed multi-agent control method is applicable to the
optimal charging control problem of electric vehicles.

7.5.6 Numerical simulation study

Now we apply the proposed multi-agent control method to the charging control problem
(7.23) of electric vehicles. In this simulation study, we consider two cases where respectively
5 and 20 electric vehicles need to be charged. With the simpler Case 1, we aim to show that
the proposed multi-agent control method finds the global optimal solution while with the
more complicated Case 2, we aim to show the flexibility and effectiveness of the proposed
method when limiting the computation and communication budget. The information of all
vehicles in both cases is summarized in Tables 7.1 and 7.2, respectively.
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Table 7.1: Data for 5 electric vehicles charging with P max = 8kW in Case 1.

i karrival kdeparture sinitial sreq C P (kWh) pconstant (kW)
1 3 6 0.60 0.80 9 3.5
2 1 4 0.35 0.45 7.1 2.5
3 2 5 0.40 0.60 8 3
4 5 10 0.60 0.90 8.5 2.7
5 4 8 0.50 0.70 7.5 3.2

Table 7.2: Data for 20 electric vehicles charging with P max = 36kW in Case 2.

i karrival kdeparture sinitial sreq C p (kWh) pconstant (kW)
1 3 6 0.60 0.80 9 3.5
2 1 4 0.35 0.45 7.1 2.5
3 2 5 0.40 0.60 8 3
4 5 10 0.60 0.90 8.5 2.7
5 4 8 0.50 0.70 7.5 3.2
6 3 9 0.30 0.50 7.8 3.5
7 2 7 0.45 0.75 8.3 2.9
8 1 5 0.60 0.80 8.6 3.1
9 2 6 0.40 0.65 7.7 3.4

10 6 10 0.50 0.75 8.8 3.7
11 4 8 0.65 0.85 8.6 3.2
12 2 6 0.43 0.63 7.5 2.4
13 1 5 0.38 0.58 8.2 3.1
14 2 7 0.55 0.85 8.8 2.8
15 2 6 0.40 0.60 7.6 3.1
16 1 9 0.45 0.65 7.9 3.3
17 3 9 0.50 0.80 8.4 2.8
18 3 8 0.60 0.85 8.5 3
19 2 6 0.55 0.70 7.6 3.1
20 7 11 0.60 0.85 8.7 3.3
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Figure 7.6: Profile of the electricity price for Case 1
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Figure 7.7: Profile of the electricity price for Case 2

The total number of binary control variables in Case 1 is
∑5

i=1(ki ,departure −ki ,arrival) = 18
while in Case 2 it is

∑20
i=1(ki ,departure−ki ,arrival) = 89. The parameters used in the simulations

are T = 15 min, di ,tol = 0.02, and βi = 200 for all i . Besides, for each electric vehicle i ,

Ji ,cost,typical =

(

ki ,departure − ki ,arrival

)

· T · c̄ · pi ,constant with c̄ denoting the average price of

electricity for the simulated period; the maximum number of iterations in the resource
allocation coordination algorithm is set to 1000 and ǫ = 0.001; the simulated period is 165
minutes and the profiles of the electricity price for Case 1 and Case 2 are shown in Figures
7.6 and 7.7. The simulations are performed using Matlab 2013b on a cluster computer
consisting of 4 blades with 2 eight-core 3.3 GHz E5-2643 processors, and 64 GiB memory
per blade.

In the simulation for Case 1, no limit is imposed on the maximum computation time or
on the maximum number of information exchanges between the coordinator and the local
control agents. The simulation results are summarized in Table 7.3. Note that the overall
problem is a mixed integer linear programming problem and therefore it can be solved
efficiently in a centralized way by using state-of-the-art solvers like CPLEX, GUROBI,
MOSEK and XPRESS, which yield the globally optimal solution, provided the overall
problem would be fully known by a single control agent. However, in the control setting we
consider in this chapter, local control agents only share limited information with the
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Table 7.3: Simulation results for Case 1

CPLEX proposed multi-agent control method
Jopt 2.3907 2.3907
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Figure 7.8: Charging dynamics of the 5 electric vehicles with the proposed multi-agent

charging control method in Case 1

coordinator. Therefore, neither the coordinator nor any of the local control agents have full
information of the overall problem. In Table 7.3, the solution found by using CPLEX for this
case is included to validate the solution found by the proposed multi-agent control method.
In fact, from Table 7.3, it is clearly seen that the proposed multi-agent control method finds
the globally optimal solution for Case 1. Besides, the computation time of the proposed
method is 68.76 seconds. Finally, the charging dynamics and the total power consumption
of the 5 electric vehicles with the proposed multi-agent charging control in this case are
shown in Figures 7.8 and 7.9, respectively. It is clearly seen that the electric vehicles are
charged up to the required level without exceeding the maximum power limit provided by
the grid, and that they are charged as much as possible when the price of electricity is low.
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Figure 7.9: Total power consumption of the 5 electric vehicles with the proposed multi-agent

charging control method in Case 1
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Table 7.4: Simulation results for Case 2

CPLEX A1 A2 A3 A4
Jopt 9.1946 75.9733 9.6983 75.9733 9.6983

In the simulations for Case 2, the proposed method without limiting the computation
time or the number of information exchanges between the coordinator and the local control
agents takes too much computation time. Therefore, we decided to use four alternatives that
generate feasible solutions in a limited time:

• Alternative 1 (A1): depth-first search; Mmax = 300000; tmax =∞

• Alternative 2 (A2): breadth-first search; Mmax = 300000; tmax =∞

• Alternative 3 (A3): depth-first search; tmax = 60000 s; Mmax =∞

• Alternative 4 (A4): breadth-first search; tmax = 60000 s; Mmax =∞

where tmax denotes the maximum computation time (in seconds) and Mmax denotes the
maximum number of information exchanges between the coordinator and the local control
agents. Note that in the depth-first search approach, the search tree is explored as far as
possible along each branch before backtracking, while in breadth-first search, the search
tree is explored as widely as possible on each level of nodes before moving to the next level.

The simulation results of using all the four variants of the proposed method are
summarized in Table 7.4. Note that the result found by using CPLEX for this case is also
included in Table 7.4 to help indicate how far away the solutions found by the four
alternatives are from the globally optimal one. Besides, Figure 7.10 shows the evolution of
the values of the overall objective function as a function of the number of nodes that have
been visited in the search tree for each of the alternatives. It can be seen from Table 7.4 and
Figure 7.10 that although the solutions found by the variants of the proposed multi-agent
control method are not the same as the globally optimal solution, the best values of the
overall objective function found by the second and the fourth alternatives are close to the
globally optimal one. Moreover, given the same computation and communication budget,
in the proposed multi-agent control method, breadth-first search generates better results
than depth-first search.

Next, in order to show the effectiveness of the proposed multi-agent control method in
balancing the quality of solution and the computation time, we conducted another
simulation for Case 2 using breadth-first search, Mmax = ∞ and a lower value for tmax of
tmax = 1200 s (i.e. 20 minutes). The evolution of the values of the overall objective function
in this simulation is shown in Figure 7.11. More precisely, the best value of the overall
objective function found using breadth-first search in the given 20 minutes of computation
time is 9.7270 and the corresponding charging dynamics and total power consumption of
the 20 electric vehicles are shown in Figures 7.12 and 7.13, respectively. Note that in order
to assess how far the behavior of the proposed controller is from optimality, we have
compared the total power consumption of the electric vehicles with the proposed control
method and with centralized optimal control using CPLEX in Figure 7.13. It is seen that the
proposed multi-agent controllers show a behavior that is similar to the one of the
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Figure 7.10: Evolution of Jopt as a function of the number of nodes visited in the search tree for

the alternatives for Case 2
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Figure 7.11: Evolution of Jopt as a function of the number of nodes visited in the search tree for

Case 2 using breadth-first search with tmax = 1200s and Mmax =∞.

centralized optimal controller with only slight differences. Besides, the best value of the
overall objective function found using breadth-first search in 20 minutes of computation
time is close to the globally optimal one and the electric vehicles are all charged up to the
required levels without exceeding the maximum power limit imposed by the grid.
Therefore, although each control agent only communicates very limited information (i.e.
only the Lagrange multiplier associated with the charging power constraint) to the
coordinator and only limited computation time is available, the proposed multi-agent
control method can still effectively balance the solution quality and the computation time.

Finally, as a first step to investigate the robustness of the proposed multi-agent control
method, we consider that the power supply provided by the grid is disturbed and perform a
closed-loop receding horizon control simulation for Case 2. More specifically, we consider

the power supply predicted by the controllers is constantly P
predicted
k,max = 36 kW while the actual
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Figure 7.12: Charging dynamics of the 20 electric vehicles with the proposed multi-agent

charging control method in Case 2 given 20 minutes of computation time

2 4 6 8 10
Time step

0

5

10

15

20

25

30

35

T
ot

al
 p

ow
er

 c
on

su
m

pt
io

n 
(k

W
) multi-agent control

centralized control

Figure 7.13: Total power consumption of the 20 electric vehicles with the proposed multi-

agent charging control method given 20 minutes of computation time and with

centralized optimal control for Case 2

power supply at each step k is given by

P actual
k,max = 36+ω [kW]

where ω is a normally distributed pseudorandom number with mean 0 and standard
deviation 5. The resulting power consumption of all electric vehicles with the proposed
multi-agent charging control method, the predicted power supply, and the actual power
supply are plotted in Figure 7.14. In order to highlight the effect of the disturbance on the
actual power consumption of the vehicles, we also plot the power consumption of vehicles
(indicated by red dashed line) in the undisturbed case. It is seen that when the actual power
supply is higher than the level that is needed for the control action to be implemented, the
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Figure 7.14: Power consumption of the 20 electric vehicles with the proposed multi-agent

control method given 20 minutes of computation time in Case 2 when the power

supply is disturbed

vehicles are charged with the control action of the proposed method fully implemented.
When the actual power supply is lower than the needed level, the control action of the
proposed method is not fully implemented in order to respect the actual charging
constraints. In that case, the control action of the proposed method is implemented in a
way that the vehicles with higher charging-emergency-rate have higher priority to change.
Note that in this simulation, the charging-emergency-rate ̺i ,k of a vehicle i at a simulation
step k is defined by

̺i ,k =
remaining state of charge

remaining charging time
=

s
req
i

− si ,k

ki ,departure−k

In this way, the actual power consumption is always lower than the actual power supply
provided by the grid. Actually, the vehicles that are not charged due to insufficient power
supply at certain time steps are charged at later time steps under the control of the
proposed method. Besides, the value of the cost function for the disturbed case is 9.6948,
which corresponds to a small performance drop of about 3.3% compared with the value
9.3865 of the cost function for the undisturbed case. Therefore, the proposed multi-agent
control method is still working adequately when the power supply is disturbed.

7.6 Summary

We have considered multi-agent model predictive control for a class of hybrid systems
governed by discrete inputs and subject to global hard constraints where each subsystem
has a local convex objective function and a strictly increasing constraint function. We
focused on the scenario where each subsystem only shares limited information with the
external environment, and we developed a novel multi-agent model predictive control
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method by integrating a distributed resource allocation coordination algorithm into a
solution space branching mechanism. With the distributed resource allocation algorithm,
the global feasibility of the local control decisions is always guaranteed. With the solution
space branching mechanism, the search tree for the overall solution space is built smartly
based on the outcome of the distributed resource allocation coordination algorithm.
Results for the charging control of a fleet of electric vehicles in a simulation study show that
the proposed multi-agent control method effectively balances the solution quality, the
computation time, and the communication burden.

Possible extensions of the work presented in this chapter include developing a
distributed algorithm to compute the global lower bound of the overall objective function,
and combining that algorithm with the search tree building mechanism developed in this
chapter. In addition, more complex and more challenging case studies considering
coordinating both charging-to-vehicle (G2V) and discharging-to-grid (V2G) of electric
vehicles may be performed. An extensive assessment including the stability and the
robustness of the developed multi-agent control method can also be performed.





Chapter 8

Conclusions and Future Research

This thesis has presented efficient control approaches for urban transportation networks
and for hybrid systems with limited information sharing. In this chapter, we highlight the
contributions of the thesis and summarize some open issues that can be investigated in the
future.

8.1 Contributions of the thesis

The contributions of the thesis can be summarized as follows:

• Models of the dynamics and the energy consumption of cybercars have been

developed.

To facilitate the development of efficient control methods for cybercars, in Chapter 3,
we have developed a discrete-time model and a discrete-event model for the dynamics
and the energy consumption of cybercars.

The discrete-time model is straightforward to derive. In contrast, the discrete-event
model involves checking the order of occurrence of events. The benefit of using the
discrete-event model lies in the fact that it is more efficient than the discrete-time
model when the number of cybercars is small. However, we focus on a cybernetic
transportation network with a large number of cybercars. Therefore, it is more
efficient to use the discrete-time modeling method to describe the dynamics and the
energy consumption of the cybercars.

• Efficient and scalable multi-agent dynamic routing methods for cybercars have

been developed.

Although control of a large number of cybercars can be straightforwardly addressed
in a centralized control setting, for reasons of scalability and fast computation, a
centralized control method will not be tractable for the large-scale use of cybercars in
the future. To contribute to the development of cybernetic transportation systems, in
Chapter 4, we have focused on a specific case of the fleet control problem, e.i.
dynamic routing, of cybercars, and we have developed several tractable and scalable
multi-agent control methods, including multi-agent model predictive control and
parameterized control, for solving the problem.

We have implemented simulation case studies for comparing the performance of the
all the developed control methods. The simulation results have indicated that the

115
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flow-splitting-rate-based parameterized control method performs the best among all
the proposed multi-agent control methods. Remarkably, for the given case study the
flow-splitting-rate-based parameterized control method shows comparable control
performance to that of centralized model predictive control while requiring much less
online computation time. Besides, the flow-splitting-rate-based parameterized
control method can be easily applied to road networks with arbitrary topology.
Therefore, we have concluded that the flow splitting rate based parameterized control
method is effective in solving the dynamic routing problem of a fleet of cybercars.

• Efficient methods for routing of traffic flows in urban transportation networks have

been developed.

To reduce the computational efforts in solving the dynamic routing problem of traffic
flows in large-scale urban transportation networks, in Chapter 5, we have proposed
a novel hierarchical control approach based on network division and a novel bi-level
control approach based on merging nodes and links.

We have also implemented a simulation-based case study for comparing the
hierarchical control approach and the bi-level control approach. It has been shown
by the case study that the hierarchical control approach is more effective than the
bi-level control approach in solving the routing problem of traffic flows. Besides, the
hierarchical control approach is more flexible and can be extended to include
multiple control layers.

• A novel formulation for co-optimization of the orientation of road sections and the

routes of traffic flows has been developed.

In Chapter 6, we have assumed that the orientation of each road section in an urban
road network can be changed in each control period and we have addressed the co-
optimization problem that jointly determines the orientation of road sections in the
network and routes of traffic flows. Although the co-optimization problem for a large-
scale network contains a large number of binary optimization variables, which makes
the problem computationally hard to solve, we have developed a novel formulation for
the co-optimization problem by considering a circular orientation in each elementary
cycle of the network and mapping orientations of road sections using the orientation
of these elementary cycles.

With the formulation developed in Chapter 6, the number of binary variables
involved in the co-optimization problem is reduced substantially w.r.t. considering
the orientation of each road section independently. It has been shown by a
simulation-based case study that the proposed formulation is suitable for on-line
optimization.

• Multi-agent model predictive control for a class of hybrid systems with limited

information sharing has been developed.

In Chapter 7, we have developed a multi-agent model predictive control method for a
class of hybrid systems based on the integration of a distributed resource allocation
coordination algorithm and a solution space branching mechanism. We have focused
on the scenario where each subsystem only shares limited information with the
external environment. The proposed multi-agent control method has two main
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advantages. First, thanks to the distributed resource allocation algorithm, which is
based on the primal decomposition of the global constraint, the global feasibility of
the local control decisions is always guaranteed. Second, with the solution space
branching mechanism, the search tree for the overall solution space is built based on
the outcome of the distributed resource allocation coordination algorithm.

We have applied the proposed multi-agent model predictive control method to the
charging control of a fleet of electric vehicles. The simulation results have showed that
the proposed multi-agent control method effectively balances the solution quality, the
computation time, and the communication burden.

The work of this thesis has been presented in three journal papers [79–81] and three
international conference papers [76, 77, 82].

8.2 Recommendations for future work

In this section, we recommend some possible topics for future research based on the work
presented in this thesis.

• More efficient modeling of the dynamics and the energy consumption of a fleet of

cybercars

In Chapter 3, we have developed a discrete-time model and a discrete-event model
for the dynamics and the energy consumption of cybercars. Due to their difference in
determining the time instants for updating the states of the system, the discrete-time
model is more efficient when the number of cybercars is large while the discrete-event
model is more efficient when the number of cybercars is small.

Since we focus on the dynamic routing of a large fleet of cybercars, we have used the
discrete-time model in the design of the routing controllers. However, it has been
observed that the frequency of occurrence of events does not have to be high even if
the number of cybercars is large. For instance, if the positions of all the cybercars in
the network are far from the ends of the segments that they are running in, even if the
number of cybercars is large, the time length between the current moment and the
occurrence time of the next event is still longer than the length of a simulation time
interval in the discrete-time modeling approach. In that case, it is not efficient to only
use the discrete-time modeling method. One possible way to address this issue is to
make the most out of the discrete-time model and the discrete-event model by
combining both of them. More specifically, we can propose a condition to determine
which modeling method is potentially more time-efficient in predicting the future
dynamics of the system. After that, at each control step, the more time-efficient
model is selected by checking the condition.

• Combining the dynamic routing of cybercars with the scheduling of cybercars

In Chapter 4, we have addressed the dynamic routing of a fleet of cybercars by
assuming that there are higher-level controllers assigning transport service requests,
including starting time, origin and destination, to each cybercar. We have also
assumed that there is a sufficient number of cybercars and that each cybercar leaves
the network after delivering a transport service.
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To make our work more of practical value, we need to consider that there is a given
fixed number of cybercars in the network. Thus, we need to consider combining the
dynamic routing of cybercars with the scheduling of them. More specifically, at each
control step, for each cybercar still delivering transport service or on the way to pick
up next passengers we need to update their routes while for each cybercar that has
finished delivering a transport service we need to determine which transport service
the cybercar should deliver next or whether the cybercar should be charged
considering the energy level of its onboard battery. Besides, we need to consider
minimizing a combined system cost consisting of the total time spent by all
passengers (including waiting time for picking up and transport service delivery time)
and the total energy consumption of all the cybercars (including delivering service
and charging costs, etc). Further, we need to develop efficient solution methods, e.g.
parameterized control approaches, for the combined problem.

• Distributed dynamic routing of cybercars based on alternative distributed model

predictive control algorithms

In Chapter 4, we have applied the distributed model predictive control algorithm
presented in [95] to the dynamic routing of cybercars. However, it has been shown by
the simulation results that the dynamic routing method based on that distributed
model predictive control algorithm does not show comparable control performance
with respect to that of the centralized model predictive control method.

In order to fully explore the potential of distributed model predictive control on the
dynamic routing of cybercars, it is recommended that other distributed model
predictive control algorithms [85], such as DMPC based on alternative direction
multiplier method (ADMM) [23], feasible cooperation-MPC (FC-MPC) [119], and
distributed MPC based on a cooperative game [86], etc, should also be adapted to the
distributed dynamic routing of cybercars and be evaluated extensively by means of
simulation case studies.

• Further assessment of the routing methods for traffic flows developed in this thesis

For the hierarchical control approach and the bi-level control approach developed in
Chapter 5, we have performed a simulation case study to compare their control
performance and computational speed. It has been suggested by the simulation
results that the hierarchical control approach is more efficient than the bi-level
control approach in the sense of yielding a better control performance and requiring
less computation time. Actually, the advantage of the bi-level control approach over
the hierarchical control approach is that it requires less communication efforts for
transferring the states of the network to the control agents. However, in the case
study, which serves as our first step to evaluate the two approaches, we have not yet
considered the comparison of the required communication efforts of the two
approaches.

In order to assess the performance of the two approaches comprehensively, it is
recommended that more detailed case studies, where comparisons of the control
performance, the computational speeds and the communication burdens of the two
approaches are all involved, should be performed.
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• Integration of dynamic orientating of road sections and dynamic routing of traffic

flows

In Chapter 6, we have developed a novel formulation for the co-optimization problem
that jointly determines the orientations of road sections and the routes of traffic flows
by assuming a constant travel time on each road section. However, for real
applications in traffic networks, the travel time on each road section varies depending
on the real-time conditions of traffic in the road section. Actually, the formulation we
have developed also works for the case where the travel time on each road section is
not fixed. In that case, the dynamic orientating of road sections can be integrated
with the dynamic routing of traffic flows.

Given the discrete nature of the orientating decision variables and the nonlinear
dependence of the link travel time on the states of the network, the resulting problem
is actually a mixed integer nonlinear programming problem. Although it is
computationally hard to solve such a problem, it is recommended that the gain in
performance and the increase in computation time should be investigated. Based on
the investigation, an approximate solution method, e.g. hierarchical and heuristic
control approach, which achieves a well-balanced trade-off between the solution
quality and the computation time, may be developed for solving the integrated
problem.

• More efficient multi-agent model predictive control methods for classes of hybrid

systems with limited information sharing

The multi-agent model predictive control method developed in Chapter 7 has shown
high effectiveness in balancing the solution quality, the computation time, and the
communication burden. One possible way to further improve the efficiency of the
method is to develop a distributed algorithm to compute the global lower bound of
the overall objective function, and to combine that algorithm with the search tree
building mechanism that has been developed in this thesis. More specifically, in the
new overall multi-agent control method, the global lower bound will be computed by
the newly developed distributed algorithm while the global upper bound will be
computed by the distributed resource allocation coordination algorithm. After that,
the bounding technique in the standard branch-and-bound paradigm can be used.
Further, the search tree building mechanism developed in this thesis can be used as
the branching technique in the standard branch-and-bound paradigm to further
explore the solution space.

• Additional research recommendations

The multi-agent control approaches developed in this thesis can be extended to other
applications such as:

– Control of multi-modal urban transportation networks

In Chapters 3 and 4, we have addressed the dynamic routing of a fleet of
cybercars in a network that is only open to cybercars. An interesting and
challenging research topic based on this work is to consider a network that is
open to heterogeneous classes of vehicles, such as cybercars, human-driven
cars, buses, trucks, and trams, etc. Actually, in such a network, the
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human-driven vehicles may not follow the routes determined by the routing
controllers. Therefore, one of the main challenges in addressing the dynamic
routing of vehicles in a network with mixed traffic is modeling the behaviors of
drivers.

– Control of baggage handling systems

In large and busy airports, there are large-scale baggage handling systems
transporting the baggage using destination coded vehicles (DCVs) from the
check-in area to the gates and from the gates to the baggage claim area. Given
the O-D (origin-destination) demands, the optimal routing of flows of DCVs for
these baggage handling systems can be described in a similar fashion as the
optimal routing of flows of vehicles in urban transportation systems. Therefore,
the methods similar to the routing methods proposed for traffic flows in urban
transportation networks in this thesis can be used for routing of flows of DCVs in
baggage handling systems.

– Management of smart electricity grids

Electricity grids can be very complex. Therefore, control of these grids, where
the optimal power flows are computed so that the overall performance of the
network is maximized, is really challenging. In particular, due to the increasing
penetration of renewable energy (e.g., wind, solar, tides, and geothermal heat) in
electricity generation and the varying availability of those energy sources,
control of a large electricity grid involves challenging tasks including predicting
the profiles of availability of renewable energy in different regions, predicting the
profiles of electricity demands in different regions, and optimizing the electricity
generation and distribution.



Appendix A

Properties of Algorithm 7.1

This addendum contains the proof of the optimality conditions and the proof of the
oscillation detecting conditions for discrete optimization variables when Algorithm 7.1
presented in Chapter 7 is applied to optimization problems with discrete optimization
variables. More specifically, we consider the following optimization problem:

min
u

N
∑

i=1

fi (ui ) (A.1)

subject to ui ∈Di

N
∑

i=1

gi (ui ) ≤ r

where ui is a scalar, fi (·) is a convex function, gi (·) is a monotonically strictly increasing
function, and Di is a finite discrete set. We will explain

• Whether the global optimum is found if none of the optimization variables oscillates;

• How to detect oscillations of discrete optimization variables

when Algorithm 7.1 presented in Chapter 7 is directly applied to (A.1).

A.1 Optimality conditions

First, we define

• if fi (·) is strictly convex, then

ubest
i = arg min

ui ∈Di

fi (ui )

• If fi (·) is not strictly convex, then

f best
i = min

ui∈Di

fi (ui )

ubest
i = min

ui∈Di , fi (ui )= f best
i

ui

After that, letting
∑N

i=1θi = r , we decompose the overall problem (A.1) into N subproblems:

121
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• if fi (·) is strictly convex, then subproblem i is defined by

min
ui

fi (ui )

subject to ui ∈Di

gi (ui ) ≤ θi

• if fi (·) is not strictly convex, then subproblem i is defined by

min
ui

fi (ui )

subject to ui ∈Di

gi (ui ) ≤ θi

ui ≤ ubest
i

Further, based on the definition of ubest
i

, the following three cases can occur:

Case 1:
∑N

i=1 gi (ubest
i

) < r

Case 2:
∑N

i=1 gi (ubest
i

) = r

Case 3:
∑N

i=1 gi (ubest
i

) > r

Before applying Algorithm 7.1 to the three cases, we want to stress for any subproblem that,
given θi ,

• If θi ≥ gi (ubest
i

), then constraint gi (ui ) ≤ θi does not pose any restriction. Therefore,
u∗

i
= ubest

i
and1 λi = 0.

• If θi < gi (ubest
i

), then u∗
i
< ubest

i
and λi = −

f
′

i
(u∗

i
)

g
′

i
(u∗

i
)
> 0 with f

′

i
(u∗

i
) < 0 since fi (u∗

i
) >

fi (ubest
i

) and fi (·) is convex, and with g
′

i
(u∗

i
) > 0 since gi (u∗

i
) is a monotonically strictly

increasing function.

where u∗
i

is the solution of subproblem i with θi given and λi is the Lagrange multiplier
corresponding to the constraint gi (ui ) ≤ θi in the subproblem.

Note that if Algorithm 7.1 is applied, the resource allocation at each iteration step z is
updated by

θ(z+1)
i

= θ(z)
i

+ξ(z)
(

λ(z)
i

−
1

N

N
∑

j=1

λ(z)
j

)

(A.2)

with

ξ(z)
> 0, lim

z→+∞
ξ(z)

= 0,
+∞
∑

z=1
ξ(z)

=+∞,
+∞
∑

z=1
(ξ(z))2

<+∞

In the remaining of this section, we let N = 2 and prove some properties of the evolution
of θ(z)

i
and u∗,(z)

i
when Algorithm 7.1 is applied to the problem (A.1) in the aforementioned

three cases. In Section A.3, we will prove the properties of Algorithm 7.1 for N > 2.

1When θi = gi (ubest
i

), the corresponding λi is free. However, in that case we set it equal to 0 by definition.
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mode 1.1 mode 1.2

mode 1.3

persistent

not persistent not persistent

Figure A.1: Mode transition diagram of Case 1 with the final mode marked in red

For Case 1

In this case,
∑2

i=1 gi (ubest
i

) < r . Since
∑2

i=1θi = r , we consider the following three modes:

• mode 1.1: θ(z)
1 > g1(ubest

1 ) and θ(z)
2 < g2(ubest

2 )

• mode 1.2: θ(z)
1 < g1(ubest

1 ) and θ(z)
2 > g2(ubest

2 )

• mode 1.3: θ(z)
1 ≥ g1(ubest

1 ) and θ(z)
2 ≥ g2(ubest

2 )

The mode transition diagram of Case 1 is shown in Figure A.1, of which the proof is given in
the following propositions.

Definition: A persistent mode such that once it has been reached, the system stays in that
mode.

Proposition 1.1: Let δ2 = min
u2∈D2, u2<ubest

2

−
f
′

2 (u2)

g
′

2(u2)
; then λ(z)

2 ≥ δ2 > 0 holds for all z in mode 1.1.

Proof: First, since −
f
′

2 (u2)

g
′

2(u2)
> 0 holds for all u2 < ubest

2 and u2 ∈ D2, it is directly proved that

δ2 > 0. Further, if mode 1.1 is active at any step z, then θ(z)
2 < g2(ubest

2 ). Therefore,

u∗,(z)
2 < ubest

2 . Also note that u∗,(z)
2 ∈ D2. Hence, λ(z)

2 = −
f
′

2

(

u
∗,(z)
2

)

g
′

2

(

u
∗,(z)
2

) ≥ δ2 always holds in mode

1.1. 2

Proposition 1.2: Mode 1.1 is not persistent.

Proof: Let us assume that the system stays in mode 1.1 from some step z0 on and show that
this leads to a contradiction.

If the system is in mode 1.1 at step z0, then θ
(z0)
1 > g1(ubest

1 ) and θ
(z0)
2 < g2(ubest

2 ). In this

mode, u
∗,(z0)
1 = ubest

1 , λ(z0)
1 = 0 and u

∗,(z0)
2 < ubest

2 , λ(z0)
2 > 0. According to (A.2), in this mode, at

step z0 +1 we have

θ
(z0+1)
1 = θ

(z0)
1 −

1

2
·ξ(z0)

·λ
(z0)
2

θ
(z0+1)
2 = θ

(z0)
2 +

1

2
·ξ(z0)

·λ
(z0)
2
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Since
∑+∞

z=z0
ξ(z) = +∞ and λ(z)

2 ≥ δ2 > 0 holds for all z in mode 1.1, it is straightforwardly

derived that at a certain step z0 + K with K ≥ 1, either θ
(z0+K )
1 > g1(ubest

1 ) or

θ
(z0+K )
2 < g2(ubest

2 ) does not hold. This contradicts the condition of mode 1.1. Therefore,
mode 1.1 is not persistent and the system will definitely switch to another mode. 2

Proposition 1.3: Let δ1 = min
u1∈D1, u1<ubest

1

−
f
′

1 (u1)

g
′

1(u1)
; then λ(z)

1 ≥ δ1 > 0 holds for all z in mode 1.2.

Proof: The proof of this proposition is similar to the one of Proposition 1.1.

Proposition 1.4: Mode 1.2 is not persistent.

Proof: The proof of this proposition is similar to the one of Proposition 1.2.

Proposition 1.5: Mode 1.3 is persistent.

Proof: Suppose the system is in mode 1.3 at step z0; then we show that the system stay in
mode 1.3 for all z > z0. If the system is in mode 1.3 at step z0, then θ

(z0)
1 ≥ g1(ubest

1 ) and

θ
(z0)
2 ≥ g2(ubest

2 ) at step z0. In this mode, u
∗,(z0)
1 = ubest

1 , λ(z0)
1 = 0 and u

∗,(z0)
2 = ubest

2 , λ(z0)
2 = 0.

According to (A.2), at step z0 +1 we have

θ
(z0+1)
1 = θ

(z0)
1

θ
(z0+1)
2 = θ

(z0)
2

It is clear that θ(z)
1 = θ

(z0)
1 and θ(z)

2 = θ
(z0)
2 holds for all z > z0. Therefore, mode 1.3 is

persistent. Besides, the overall optimal solution [ubest
1 ubest

2 ]T is directly attained in this
mode.

Proposition 1.6: There exists a finite integer M > 0 such that at any z ≥ M , mode 1.3 is active
i.e., θ(z)

1 ≥ g1(ubest
1 ) and θ(z)

2 ≥ g2(ubest
2 ).

Proof: Let us assume mode 1.3 will never be reached and show that this leads to a

contradiction. First, define λmax
2 = max

u2∈D2 , u2<ubest
2

−
f
′

2 (u2)

g
′

2(u2)
. Since limz→+∞ξ(z) = 0, given

ε=
2
(

r−
∑2

i=1 gi (ubest
i

)
)

λmax
2

, there exists an M > 0 such that ξ(z) < ε for all z ≥ M .

Second, since mode 1.1 and mode 1.2 have been proved not to be persistent, if mode 1.3
will never be reached, there are always mode switches either from mode 1.1 to mode 1.2 or
from mode 1.2 to mode 1.1. Assume there is a switch from mode 1.1 to mode 1.2 at some
step z1 with z1 > M (i.e. at step z1 mode 1.1 is active and at step z1 +1 mode 1.2 is active).
Then according to the conditions of mode 1.1 and mode 1.2, we have

θ
(z1)
1 > g1(ubest

1 ), θ
(z1)
2 < g2(ubest

2 )

θ
(z1+1)
1 < g1(ubest

1 ), θ
(z1+1)
2 > g2(ubest

2 )

Hence, we have

θ
(z1+1)
1 −θ

(z1)
1 < θ

(z1+1)
1 − g1(ubest

1 ) < 0

0< θ
(z1+1)
2 − g2(ubest

2 ) < θ
(z1+1)
2 −θ(z)

2
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Since mode 1 is active at step z1, we have θ
(z1+1)
1 −θ

(z1)
1 = −

1
2 ·ξ

(z1) ·λ
(z1)
2 and θ

(z1+1)
2 −θ

(z1)
2 =

1
2 ·ξ

(z1) ·λ
(z1)
2 (see the proof of Proposition 1.1). As a consequence, we have

−
1

2
·ξ(z1)

·λ
(z1)
2 < θ

(z1+1)
1 − g1(ubest

1 ) < 0

0 < θ
(z1+1)
2 − g2(ubest

2 ) <
1

2
·ξ(z1)

·λ
(z1)
2

So

−
1

2
·ξ(z1)

·λ
(z1)
2 < θ

(z1+1)
1 +θ

(z1+1)
2 − g1(ubest

1 )− g2(ubest
2 ) <

1

2
·ξ(z1)

·λ
(z1)
2

Since θ
(z1)
2 < g2(ubest

2 ), u
∗,(z1)
2 < ubest

2 . So λ
(z1)
2 =−

f
′

2

(

u
∗,(z1)
2

)

g
′

2

(

u
∗,(z1)
2

) <λmax. Therefore, we have

θ
(z1+1)
1 +θ

(z1+1)
2 − g1(ubest

1 )− g2(ubest
2 ) <

1

2
·ξ(z1)

·λmax
2

If the switch from mode 1.1 to mode 1.2 happens at z1 > M , we have

θ
(z1+1)
1 +θ

(z1+1)
2 − g1(ubest

1 )− g2(ubest
2 ) <

1

2
·ε ·λmax

2

and then

θ
(z1+1)
1 +θ

(z1+1)
2 − g1(ubest

1 )− g2(ubest
2 ) < r −

2
∑

i=1

gi (ubest
i )

Since θ
(z1+1)
1 +θ

(z1+1)
2 = r , we have

g1(ubest
1 )+ g2(ubest

2 ) >
2

∑

i=1

gi (ubest
i )

Clearly, this results in a contradiction since
∑2

i=1 gi (ubest
i

) = g1(ubest
1 )+ g2(ubest

2 ). Therefore,
the assumption that mode 1.3 is never reached does not hold. 2

Proposition 1.7: There exists a finite integer M > 0 such that the global optimum
[ubest

1 ubest
2 ]T is attained at z = M .

Proof: According to Proposition 1.6, there exists a finite integer M > 0 such that at any
z ≥ M , θ(z)

1 ≥ g1(ubest
1 ) and θ(z)

2 ≥ g2(ubest
2 ). Therefore, we have θ(M)

1 ≥ g (M)
1 (ubest

1 ),

θ(M)
2 ≥ g2(ubest

2 ) and u∗,(M)
1 = ubest

1 , u∗,(M)
2 = ubest

2 . Since f1(ubest
1 ) ≤ f1(u1) holds for all u1 ∈ D1

and f2(ubest
2 ) ≤ f2(u2) holds for all u2 ∈ D2, it is directly derived that [ubest

1 ubest
2 ]T is the

global optimum. Finally, since u∗,(z)
1 = ubest

1 , u∗,(z)
2 = ubest

2 holds for all z ≥ M , the global
optimum is attained at z = M . 2

Graph-aided explanation

Based on some figures, in this section we will present a more intuitive explanation for the
properties of the evolution of θ(z)

i
and u∗,(z)

i
when Algorithm 7.1 is applied to problem (A.1)

in Case 1. We first arrange each Di as an ordered set where the elements are ordered in an
increasing fashion. After that, for each subproblem i , we define the Lagrange multiplier λi



126 Multi-agent control of transportation networks and of hybrid systems with limited information sharing

corresponding to gi (ui ) ≤ θi as a function of θi and make a plot showing the relationship
between the values of λi and the values of θi . Finally, we present the calculation of θ(z)

i
in

Algorithm 7.1 to help explain the evolution of θ(z)
i

and u∗,(z)
i

.

First, we let

D1 = {u1,n1 , u1,n1−1, ..., u1,1, ubest
1 , ..., u1,largest}, n1 ≥ 0

D2 = {u2,n2 , u2,n2−1, ..., u2,1, ubest
2 , ..., u2,largest}, n2 ≥ 0

with

u1,n1 < u1,n1−1 < ... < u1,1 < ubest
1 < ... < u1,largest

u2,n2 < u2,n2−1 < ... < u2,1 < ubest
2 < ... < u2,largest

Note that gi (·) a monotonically strictly increasing function. Therefore, we have

g1(u1,n1 ) < ... < g1(u1,1) < g1(ubest
1 ) < ... < g1(u1,largest)

g2(u2,n2 ) < ... < g2(u2,1) < g2(ubest
2 ) < ... < g2(u2,largest)

Second, given fi (·), gi (·), Di and θi , the solution u∗
i

to subproblem i is given by

u∗
i =



















































ui ,ni
, if gi (ui ,ni

) ≤ θi < gi (ui ,ni−1)

ui ,ni−1, if gi (ui ,ni−1) ≤ θi < gi (ui ,ni −2)

...

ui ,1, if gi (ui ,1) ≤ θi < gi (ubest
i

)

ubest
i

, if θi ≥ gi (ubest
i

)

(A.3)

Then, the Lagrange multiplier λi corresponding to the constraint gi (u∗
i

) ≤ θi is given by

λi =































































−
f
′

i
(ui ,ni

)

g
′

i
(ui ,ni

)
, if gi (ui ,ni

) ≤ θi < gi (ui ,ni −1)

−
f
′

i
(ui ,ni −1)

g
′

i
(ui ,ni −1)

, if gi (ui ,ni−1) ≤ θi < gi (ui ,ni −2)

...

−
f
′

i
(ui ,1)

g
′

i
(ui ,1)

, if gi (ui ,1) ≤ θi < gi (ubest
i

)

0, if θi ≥ gi (ubest
i

)

(A.4)

Therefore, the dependence of λi on θi can be expressed as λi = φi (θi ), where φi is a
piecewise constant function. Although the explicit profile of φi (·) depends on fi (·), gi (·) and
Di , without loss of generality, representative profiles of φ1(·) and φ2(·) that describe (A.4)
are given in Figure A.2. Since θ1 +θ2 = r , we have

θ2 = r −θ1
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Figure A.2: Representative profiles of φ1(·) and φ2(·)
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θ2

θ1

λ

g1(ubest
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0
r −g2(ubest

2 ) r −g2(u2,5)

Figure A.3: Representative profiles of φ1(·) (in red) and φ3(·) (in blue) showing the values of λ1

and λ2 along the axis of θ1 in Case 1

Therefore, given r , the dependence of λ2 on θ1 is given by λ2 =φ2(θ2) =φ2(r −θ1) =φ3(θ1).
Furthermore, given the profiles of φ1(·) and φ2(·) shown in Figure A.2 and
g1(ubest

1 )+ g2(ubest
2 ) < r in Case 1, the dependence of λ1 and λ2 on θ1, i.e. the profile of φ1(·)

and φ3(·), is shown in Figure A.3.

Finally, before presenting the calculation of θ(z)
1 in Algorithm 7.1, we divide the axis of θ1

into three domains:

• domain 1: θ1 < g1(ubest
1 )

• domain 2: θ1 > r − g2(ubest
2 )

• domain 3: g1(ubest
1 ) ≤ θ1 ≤ r − g2(ubest

2 )

It is seen from Figure A.3 that in domain 1, λ1 > λ2 = 0; in domain 2, λ2 > λ1 = 0; in domain
3, λ1 =λ2 = 0. Note that in Algorithm 7.1, the update of θ(z+1)

1 at each iteration step z is given
by

θ(z+1)
1 = θ(z)

1 +ξ(z)λ
(z)
1 −λ(z)

2

2
(A.5)

with

ξ(z)
> 0, lim

z→+∞
ξ(z)

= 0,
+∞
∑

z=1
ξ(z)

=+∞,
+∞
∑

z=1
(ξ(z))2

<+∞

Based on Figure A.3, it can be derived that
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• if θ(z1)
1 is in domain 1, then θ

(z1+1)
1 = θ

(z1)
1 +ξ(z1) λ

(z1)
1
2 with λ

(z1)
1 ≥ δ1 > 0 (see proposition

1.3), which implies that θ(z1+1)
1 moves towards domain 3. Given that

∑+∞
z=1 ξ

(z) = +∞,

there exists a finite integer M1 ≥ z1 such that θ(M1)
1 is in domain 1 and θ

(M1+1)
1 is not in

domain 1.

• if θ(z2)
1 is in domain 2, then θ

(z2+1)
1 = θ

(z2)
1 −ξ(z2) λ

(z2)
2
2 with λ

(z2)
2 ≥ δ2 > 0 (see proposition

1.1), which implies that θ(z2+1)
1 moves towards domain 3. Given that

∑+∞
z=1 ξ

(z) = +∞,

there exists a finite integer M2 ≥ z2 such that θ(M2)
1 is in domain 2 and θ

(M2+1)
1 is not in

domain 2.

• Since θ(z)
1 moves towards domain 3 with an increase of ξ(z) λ

(z)
1
2 when it is in domain 1 or

with a decrease of ξ(z) −λ
(z)
2

2 when it is in domain 2, given that limz→+∞ ξ(z) = 0 and that
the width of domain 3 satisfies |r −g1(ubest

1 )−g1(ubest
2 )| > 0, there exists a finite integer

M > 0 such that θ(M)
1 reaches domain 3.

• if θ(z)
1 is in domain 3, then θ(z+1)

1 = θ(z)
1 , which implies that θ(z)

1 reaches a steady value.

Therefore, in Algorithm 7.1 no matter what is the value of θ(1)
1 , θ(z)

1 will reach a point within

domain 3 for a finite z and stay at that point afterwards. Since g1(ubest
1 ) ≤ θ(z)

1 ≤ r − g2(ubest
2 )

in domain 3 and θ(z)
1 + θ(z)

2 = r , we have θ(z)
2 ≥ g2(ubest

2 ) in domain 3. More specifically,

within domain 3, we have θ(z)
1 ≥ g1(ubest

1 ) and θ(z)
2 ≥ g2(ubest

2 ). Moreover, given

θ(z)
1 ≥ g1(ubest

1 ) and θ(z)
2 ≥ g2(ubest

2 ), according to (A.3) we have u∗,(z)
1 = ubest

1 and u∗,(z)
2 = ubest

2
with [ubest

1 ubest
2 ]T being the global optimum.

Remark

In Case 1, “θ(z)
1 is in domain 1” is equivalent to “mode 1.2 is active”; “θ(z)

1 is in domain 2” is

equivalent to “mode 1.1 is active”; “θ(z)
1 is in domain 3” is equivalent to “mode 1.3 is active”.

Therefore, the graph-aided explanation of the evolution of θ(z)
1 presented above is consistent

with the mode transition diagram in Case 1, i.e. Figure A.1. Although the mathematical proof
of the mode transition diagram in Case 1 has been given in Proposition 1.1 to Proposition
1.7, the explanation of the evolution of θ(z)

1 based on Figure A.3 provides a more intuitive
understanding of Figure A.1.

For Case 2

In this case,
∑2

i=1 gi (ubest
i

) = r . Since
∑2

i=1θi = r , we consider the following three modes:

• mode 2.1: θ(z)
1 > g1(ubest

1 ) and θ(z)
2 < g2(ubest

2 )

• mode 2.2: θ(z)
1 < g1(ubest

1 ) and θ(z)
2 > g2(ubest

2 )

• mode 2.3: θ(z)
1 = g1(ubest

1 ) and θ(z)
2 = g2(ubest

2 )

The mode transition diagram of Case 2 is shown in Figure A.4, of which the proof is given in
the following propositions.

Proposition 2.1: Mode 2.1 is not persistent.
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mode 2.1 mode 2.2

mode 2.3

not persistent not persistent

persistent

Figure A.4: Mode transition diagram of Case 2 with the final state marked in red

Proof: The proof of this proposition is similar to the one of Proposition 1.2.

Proposition 2.2: Mode 2.2 is not persistent.

Proof: The proof of this proposition is similar to the one of Proposition 1.4.

Proposition 2.3: Mode 2.3 is persistent.

Proof: The proof of this proposition is similar to the one of Proposition 1.5. The overall
optimal solution [ubest

1 ubest
2 ]T is attained in this mode.

Proposition 2.4: In mode 2.1,
∣

∣θ(z)
1 − g1(ubest

1 )
∣

∣ and
∣

∣θ(z)
2 − g2(ubest

2 )
∣

∣ are strictly decreasing as
functions of z.
Proof: If mode 2.1 is active at step z0, we have θ

(z0)
1 > g1(ubest

1 ) and θ
(z0)
2 < g2(ubest

2 ) and

θ
(z0+1)
1 = θ

(z0)
1 −

1

2
·ξ(z0)

·λ
(z0)
2

θ
(z0+1)
2 = θ

(z0)
2 +

1

2
·ξ(z0)

·λ
(z0)
2

If mode 2.1 is still active at step z0+1, we have θ
(z0+1)
1 > g1(ubest

1 ) and θ
(z0+1)
2 < g2(ubest

2 ). Then
we have

∣

∣θ
(z0+1)
1 − g1(ubest

1 )
∣

∣−
∣

∣θ
(z0)
1 − g1(ubest

1 )
∣

∣= θ
(z0+1)
1 − g1(ubest

1 )−
(

θ
(z0)
1 − g1(ubest

1 )
)

= θ
(z0+1)
1 −θ

(z0)
1 =−

1

2
·ξ(z0)

·λ
(z0)
2 <−

1

2
·ξ(z0)

·δ2 < 0
∣

∣θ
(z0+1)
2 − g2(ubest

2 )
∣

∣−
∣

∣θ
(z0)
2 − g2(ubest

2 )
∣

∣= g2(ubest
2 )−θ

(z0+1)
2 −

(

g2(ubest
2 )−θ

(z0)
2

)

= θ
(z0)
2 −θ

(z0+1)
2 =−

1

2
·ξ(z0)

·λ
(z0)
2 <−

1

2
·ξ(z0)

·δ2 < 0

Note that δ2 has been defined in Proposition 1.1. 2

Proposition 2.5: In mode 2.2,
∣

∣θ(z)
1 − g1(ubest

1 )
∣

∣ and
∣

∣θ(z)
2 − g2(ubest

2 )
∣

∣ are strictly decreasing as
functions of z.
Proof: The proof of this proposition is similar to the one of Proposition 2.4.
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Proposition 2.6: Let σ1 = max
u1∈D1 , u1<ubest

1

−
f
′

1 (u1)

g
′

1(u1)
and σ2 = max

u2∈D2 , u2<ubest
2

−
f
′

2 (u2)

g
′

2(u2)
. Given σmax =

max{σ1,σ2}, θ(1)
1 and θ(1)

2 , a large integer K and and a small real number ǫ = σmax

2 ξ(K ), there

exists a finite integer M > K such that
∣

∣θ(z)
1 − g1(ubest

1 )
∣

∣ < ǫ and
∣

∣θ(z)
2 − g2(ubest

2 )
∣

∣ < ǫ hold for
all z > M .

Proof: If there is a switch from mode 2.1 to mode 2.2 at step z0, we have θ
(z0)
1 > g1(ubest

1 ) and

θ
(z0)
2 < g2(ubest

2 ) and θ
(z0+1)
1 < g1(ubest

1 ) and θ
(z0+1)
2 > g2(ubest

2 ), and also

∣

∣θ
(z0)
1 − g1(ubest

1 )
∣

∣= θ
(z0)
1 − g1(ubest

1 ) < θ
(z0)
1 −θ

(z0+1)
1 <

1

2
·ξ(z0)λ

(z0)
2 <

1

2
·ξ(z0)σmax

∣

∣θ
(z0+1)
1 − g1(ubest

1 )
∣

∣= g1(ubest
1 )−θ

(z0+1)
1 < θ

(z0)
1 −θ

(z0+1)
1 <

1

2
·ξ(z0)λ

(z0)
2 <

1

2
·ξ(z0)σmax

∣

∣θ
(z0)
2 − g2(ubest

2 )
∣

∣= g2(ubest
2 )−θ

(z0)
2 < θ

(z0+1)
2 −θ

(z0)
2 <

1

2
·ξ(z0)λ

(z0)
2 <

1

2
·ξ(z0)σmax

∣

∣θ
(z0+1)
2 − g2(ubest

2 )
∣

∣= θ
(z0+1)
2 − g2(ubest

2 ) < θ
(z0+1)
2 −θ

(z0)
2 <

1

2
·ξ(z0)λ

(z0)
2 <

1

2
·ξ(z0)σmax

Likewise, if there is a switch from mode 2.2 to mode 2.1 at step z0, we have

∣

∣θ
(z0)
1 − g1(ubest

1 )
∣

∣<
1

2
·ξ(z0)σmax

∣

∣θ
(z0+1)
1 − g1(ubest

1 )
∣

∣<
1

2
·ξ(z0)σmax

∣

∣θ
(z0)
2 − g2(ubest

2 )
∣

∣<
1

2
·ξ(z0)σmax

∣

∣θ
(z0+1)
2 − g2(ubest

2 )
∣

∣<
1

2
·ξ(z0)σmax

If mode 2.3 is not reached for any z < ∞, then there are repeated mode transitions
between mode 2.1 and 2.2 since neither mode 2.1 nor 2.2 is persistent. Therefore, no matter
what is the value of K , there exists a finite integer M > K such that a mode switch (no matter
it is from mode 2.1 to mode 2.2 or from mode 2.2 to mode 2.1) occurs at step M . Hence, we
have

∣

∣θ(M)
1 − g1(ubest

1 )
∣

∣<
1

2
·ξ(M)σmax

<
1

2
·ξ(K )σmax

= ǫ

∣

∣θ(M+1)
1 − g1(ubest

1 )
∣

∣<
1

2
·ξ(M)σmax

<
1

2
·ξ(K )σmax

= ǫ

∣

∣θ(M)
2 − g2(ubest

2 )
∣

∣<
1

2
·ξ(M)σmax

<
1

2
·ξ(K )σmax

= ǫ

∣

∣θ(M+1)
2 − g2(ubest

2 )
∣

∣<
1

2
·ξ(M)σmax

<
1

2
·ξ(K )σmax

= ǫ

Since we have also proved in Proposition 2.4 and 2.5 that
∣

∣θ(z)
1 −g1(ubest

1 )
∣

∣ and
∣

∣θ(z)
2 −g2(ubest

2 )
∣

∣

are strictly decreasing in mode 2.1 and 2.2, we can conclude that at any step z > M ,
∣

∣θ(z)
1 −

g1(ubest
1 )

∣

∣< ǫ and
∣

∣θ(z)
2 − g2(ubest

2 )
∣

∣< ǫ always hold.

Finally, if mode 2.3 is reached at z1 <∞, no matter what is the value of K , there exists a
finite integer M > K such that

∣

∣θ(z)
1 −g1(ubest

1 )
∣

∣< ǫ and
∣

∣θ(z)
2 −g2(ubest

2 )
∣

∣< ǫ hold for all z > M .

More specifically, if z1 < K , then for any z > z1, we have |θ(z)
1 − g1(ubest

1 )| = 0 < ǫ and

|θ(z)
2 − g2(ubest

2 )| = 0 < ǫ. Then, by letting M = K + 1 > z1, for any z > M , we have
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...

...

...

...

θ1

λ

g1(ubest
1 )g1(u1,2)g1(u1,5)g1(u1,7)

0

r −g2(ubest
2 )

r −g2(u2,5)

Figure A.5: Representative profiles of φ1(·) (in red) and φ3(·) (in blue) showing the values of λ1

and λ2 along the axis of θ1 in Case 2

|θ(z)
1 − g1(ubest

1 )| = 0 < ǫ and |θ(z)
2 − g2(ubest

2 )| = 0 < ǫ. If z1 > K , by letting M = z1, for all z > M ,

we have |θ(z)
1 − g1(ubest

1 )| = 0 < ǫ and |θ(z)
2 − g2(ubest

2 )| = 0 < ǫ. 2

Proposition 2.7: limz→∞θ(z)
1 = g1(ubest

1 ) and limz→∞θ(z)
2 = g1(ubest

2 ).
Proof: The proof of this proposition can be directly derived from Proposition 2.6 with
K =∞.

Graph-aided explanation

As for Case 1, we also present a more intuitive explanation for the properties of the evolution
of θ(z)

i
and u∗,(z)

i
when Algorithm 7.1 is applied to problem (A.1) in Case 2. Note that the

procedure of explanation in this case is the same as that in Case 1. Therefore, for this case,
we skip the parts that are identical to those in Case 1, and we only present the parts that are
different from those in Case 1.

First, given the profiles of φ1(·) and φ2(·) shown in Figure A.2 and g1(ubest
1 )+ g2(ubest

2 ) = r

in Case 2, the dependence of λ1 and λ2 on θ1, i.e. the profile of φ1(·) and φ3(·), is shown in
Figure A.5.

Next, we divide the axis of θ1 into three domains:

• domain 1: θ1 < g1(ubest
1 )

• domain 2: θ1 > g1(ubest
1 )

• domain 3: θ1 = g1(ubest
1 )

It is seen from Figure A.5 that in domain 1, λ1 > λ2 = 0; in domain 2, λ2 > λ1 = 0; in domain
3, λ1 =λ2 = 0. Note that in Algorithm 7.1, the update of θ(z+1)

1 at each iteration step z is given
by (A.5). Based on Figure A.5, it can be derived that

• domain 3, which is actually a point on the axis of θ1, is the equilibrium point of θ(z)
1 .

Therefore, in Algorithm 7.1 no matter what is the value of θ(1)
1 , as the iteration step z goes to

+∞, θ(z)
1 will reach the equilibrium point where θ(z)

1 = g1(ubest
1 ). Since θ(z)

1 + θ(z)
2 = r and

∑2
i=1 gi (ubest

i
) = r in Case 2, we have θ(z)

2 = g2(ubest
2 ) at the equilibrium point. More

specifically, at the equilibrium point, we have θ(z)
1 = g1(ubest

1 ) and θ(z)
2 = g2(ubest

2 ). Moreover,

according to (A.3) we have u∗,(z)
1 = ubest

1 and u∗,(z)
2 = ubest

2 with [ubest
1 ubest

2 ]T being the global
optimum.
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mode 3.1 mode 3.2

mode 3.3

not persistent

mode 3.1 mode 3.2

mode 3.3

or

not persistent

not persistent

not persistent not persistent

not persistent

mode 3.1 mode 3.2

mode 3.3

not persistent not persistent

persistent

or

(a) (b) (c)

(u

Figure A.6: Mode transition diagram of Case 3 with the final state marked in red

For Case 3

In this case,
∑2

i=1 gi (ubest
i

) > r . Since
∑2

i=1θi = r , we consider the following three modes:

• mode 3.1: θ(z)
1 ≥ g1(ubest

1 ) and θ(z)
2 < g2(ubest

2 )

• mode 3.2: θ(z)
1 < g1(ubest

1 ) and θ(z)
2 ≥ g2(ubest

2 )

• mode 3.3: θ(z)
1 < g1(ubest

1 ) and θ(z)
2 < g2(ubest

2 )

The mode transition diagram of Case 3 is shown in Figure A.6, of which the proof is given in
the following propositions.

Proposition 3.1: Mode 3.1 is not persistent.
Proof: The proof of this proposition is similar to the one of Proposition 1.2.

Proposition 3.2: Mode 3.2 is not persistent.
Proof: The proof of this proposition is similar to the one of Proposition 1.4.

Proposition 3.3: Given
f
′

1 (u1)

g
′

1(u1)
6=

f
′

2 (u2)

g
′

2(u2)
for all u1 ∈ D1 and u2 ∈ D2 with u1 < ubest

1 and u2 <

ubest
2 , then either u∗,(z)

1 or u∗,(z)
2 will not reach a stable value.

Proof: Since mode 3.1 is not persistent, given mode 3.1 is active at some step z1 > 0 with
u
∗,(z1)
1 = ubest

1 , there will be a switch from mode 3.1 to either mode 3.2 or mode 3.3. Assume

the switch happens at step z2 with z2 > z1; then we have u
∗,(z2)
1 < ubest

1 . Therefore, u
∗,(z2)
1 6=

u
∗,(z1)
1 .

Since mode 3.2 is not persistent, given mode 3.2 is active at some step z3 > 0 with u
∗,(z3)
2 =

ubest
2 , there will be a switch from mode 3.2 to either mode 3.1 or mode 3.3. Assume the switch

happens at step z4 with z4 > z3, we have u
∗,(z4)
2 < ubest

2 . Therefore, u
∗,(z4)
2 6= u

∗,(z3)
2 .

Depending on whether mode 3.3 is persistent, two situations are considered. First, if
mode 3.3 is not persistent, given mode 3.3 is active at some step z5 with u

∗,(z5)
1 < ubest

1 and

u
∗,(z5)
2 < ubest

2 , there will be a switch from mode 3.3 to either mode 3.1 or mode 3.2. If the

switch is from mode 3.3 to mode 3.1 and happens at step z6 with z6 > z5, we have u
∗,(z6)
1 =

ubest
1 and then u

∗,(z6)
1 6= u

∗,(z5)
1 . If the switch is from mode 3.3 to mode 3.2 and happens at z7

with z7 > z5, we have u
∗,(z7)
2 = ubest

2 and then u
∗,(z7)
2 6= u

∗,(z5)
2 .

Second, if mode 3.3 is persistent, given mode 3.3 is active at step some step z8, we have
u
∗,(z8)
1 < ubest

1 , λ(z8)
1 > 0 and u

∗,(z8)
2 < ubest

2 , λ(z8)
2 > 0. According to (A.2), in this mode, θ(z8+1)

1
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and θ
(z8+1)
2 are given by

θ
(z8+1)
1 = θ

(z8)
1 −

λ
(z8)
2 −λ

(z8)
1

2
·ξ(z8)

θ
(z8+1)
2 = θ

(z8)
2 +

λ
(z8)
2 −λ

(z8)
1

2
·ξ(z8)

Since λ
(z8)
1 = −

f
′

1

(

u
∗,(z8)
1

)

g
′

1

(

u
∗,(z8)
1

) , λ(z8)
2 = −

f
′

2

(

u
∗,(z8)
2

)

g
′

2

(

u
∗,(z8)
2

) and
f
′

1

(

u
∗,(z8)
1

)

g
′

1

(

u
∗,(z8)
1

) 6=
f
′

2

(

u
∗,(z8)
2

)

g
′

2

(

u
∗,(z8)
2

) , we have λ
(z8)
1 6= λ

(z8)
2 .

Therefore, also because
∑+∞

z=z8
ξ(z) = +∞ and λ

(z8+ j )
1 6= λ

(z8+ j )
2 with j ≥ 0, θ

(z8+ j )
1 keeps

increasing (or decreasing) and θ
(z8+ j )
2 keeps decreasing (or increasing) until at step z9 with

z9 > z8 either u
∗,(z9)
1 6= u

∗,(z8)
1 or u

∗,(z9)
2 6= u

∗,(z8)
2 . 2

Proposition 3.4: Given
f
′

1 (u1)

g
′

1(u1)
6=

f
′

2 (u2)

g
′

2(u2)
for all u1 ∈ D1 and u2 ∈ D2 with u1 < ubest

1 and u2 <

ubest
2 , depending on the value of r , the mode transition diagram of Case 3 can be any of the

three kinds shown in Figure A.6.
Proof: The proof will be given using the graph-aided explanation.

Graph-aided explanation

As for Case 1 and Case 2, based on some figures, we present a more intuitive explanation for
the properties of the evolution of θ(z)

i
and u∗,(z)

i
when Algorithm 7.1 is applied to problem

(A.1) in Case 3. The procedure of explanation in this case is the same as that in Case 1.
Therefore, for this case, we skip the parts that are identical to those in Case 1, and we only
present the parts that are different from those in Case 1.

First, since g1(ubest
1 )+ g2(ubest

2 ) < r in Case 3, the profiles of φ1(·) and φ3(·) along the axis
of θ1 will intersect. Depending on different values of r and different profiles of φ1(·) and
φ2(·), φ1(·) and φ3(·) may intersect in various ways. Two representative examples are shown
in Figures A.7 and A.8 for the profiles of φ1(·) and φ2(·) shown in Figure A.2 where we consider
representative values rx (for Figure A.7) and r y (for Figure A.8) of r with rx > r y . We call the
case of intersection of φ1(·) and φ3(·) shown in Figure A.7 subcase 3.x and we call the one
shown in Figure A.8 subcase 3.y. In the following, we will explain the evolution of θ(z)

i
and

u∗,(z)
i

in subcase 3.x and in subcase 3.y. Note that the explanation of the evolution of θ(z)
i

and

u∗,(z)
i

in other cases of intersection of φ1(·) and φ3(·) can be done in a similar way.

For subcase 3.x

Given the dependence of λ1 and λ2 on θ1 shown in Figure A.7, we divide the axis of θ1 into
two domains:

• domain 1: θ1 < g1(ubest
1 )

• domain 2: θ1 ≥ g1(ubest
1 )

It is seen from Figure A.7 that in domain 1, λ1 > λ2; in domain 2, λ2 > λ1. Note that in
Algorithm 7.1, the update of θ(z+1)

1 at each iteration step z is given by (A.5). Based on Figure
A.7, it can be derived that

• if θ(z1)
1 is in domain 1, then θ

(z1+1)
1 > θ

(z1)
1 , which implies that θ(z1+1)

1 moves towards
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r −g2(ubest
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r −g2(u2,5)
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1

Figure A.7: Representative profiles of φ1(·) (in red) and φ3(·) (in blue) showing the values of λ1

and λ2 along the axis of θ1 in subcase 3.x
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1

u
∗,(z)
2

Figure A.8: Representative profiles of φ1(·) (in red) and φ3(·) (in blue) showing the values of λ1

and λ2 along the axis of θ1 in subcase 3.y
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domain 2. Given that
∑+∞

z=1 ξ
(z) = +∞, there exists a finite integer M1 ≥ z1 such that

θ
(M1)
1 is in domain 1 and θ

(M1+1)
1 is in domain 2.

• if θ(z2)
1 is in domain 2, then θ

(z2+1)
1 < θ

(z2)
1 , which implies that θ(z2+1)

1 moves towards
domain 1. Given that

∑+∞
z=1 ξ

(z) = +∞, there exists a finite integer M2 ≥ z2 such that

θ
(M2)
1 is in domain 2 and θ

(M2+1)
1 in domain 1.

• for ǫ an arbitrarily small positive number, given that limz→+∞ ξ(z) = 0, there exists a
finite integer M > 0 such that |θ(z)

1 − g1(ubest
1 )| < ǫ holds for all z ≥ M , which implies

that θ(z)
1 will converge to a small neighborhood of the point θ1 = g1(ubest

1 ); moreover,

the value of u∗,(z)
1 oscillates between u1,1 and ubest

1 as a function of z after θ(z)
1 reaches

the small neighborhood |θ(z)
1 − g1(ubest

1 )| < ǫ.

• the oscillation of the value of u∗,(z)
1 as a function of z is characterized by the jumps of

the value of u∗,(z)
1 between u1,1 and ubest

1 at steps zjump, j with j denoting the index of

the jump. Each jump of the value of u∗,(z)
1 at a step zjump, j is characterized by

u
∗,(zjump, j+1)
1 6= u

∗,(zjump, j )
1

sgn
(

∆θ
(zjump, j+1)
1

)

6= sgn
(

∆θ
(zjump, j )
1

)

with ∆θ
(zjump, j )
1 = θ

(zjump, j )
1 −θ

(zjump, j−1)
1 .

Note that after θ(z)
1 reaches the small neighborhood |θ(z)

1 − g1(ubest
1 )| < ǫ, “θ(z)

1 is in domain

1” is equivalent to “mode 3.3 is active”; “θ(z)
1 is in domain 2” is equivalent to “mode 3.1 is

active”. Therefore, the graph-aided explanation of evolution of θ(z)
1 presented above is

consistent with the mode transition diagram indicated by (a) in Figure A.6.

Remark

If we swap θ1 and θ2, u1 and u2, and λ1 and λ2, then the graph-aided explanation presented
above describes the evolution of θ(z)

2 , which is consistent with the mode transition diagram
indicated by (b) in in Figure A.6.

For subcase 3.y

Given the dependence of λ1 and λ2 on θ1 shown in Figure A.8, we divide the axis of θ1 into
four domains:

• domain 1: θ1 ≤ r − g2(u2,3)

• domain 2: r − g2(u2,3) < θ1 ≤ r − g2(u2,5)

• domain 3: r − g2(u2,5) < θ1 < g1(u1,2)

• domain 4: θ1 ≥ g1(u1,2)

It is seen from Figure A.8 that in domain 1, λ1 > λ2; in domain 2, λ2 > λ1; in domain 3,
λ1 >λ2; in domain 4,λ2 >λ1. Note that in Algorithm 7.1, the update of θ(z+1)

1 at each iteration
step z is given by (A.5). Based on Figure A.8, it can be derived that
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• if θ(z1)
1 is in domain 1, then θ

(z1+1)
1 > θ

(z1)
1 , which implies that θ(z1+1)

1 moves towards
domain 2. Given that

∑+∞
z=1 ξ

(z) = +∞, there exists a finite integer M1 ≥ z1 such that

θ
(M1)
1 is in domain 1 and θ

(M1+1)
1 is not in domain 1.

• if θ(z2)
1 is in domain 2, then θ

(z2+1)
1 < θ

(z2)
1 , which implies that θ(z2+1)

1 moves towards
domain 1. Given that

∑+∞
z=1 ξ

(z) = +∞, there exists a finite integer M2 ≥ z2 such that

θ
(M2)
1 is in domain 2 and θ

(M2+1)
1 is not in domain 2.

• if θ(z3)
1 is in domain 3, then θ

(z3+1)
1 > θ

(z3)
1 , which implies that θ(z3+1)

1 moves towards
domain 4. Given that

∑+∞
z=1 ξ

(z) = +∞, there exists a finite integer M3 ≥ z3 such that

θ
(M3)
1 is in domain 3 and θ

(M3+1)
1 is not in domain 3.

• if θ(z4)
1 is in domain 4, then θ

(z4+1)
1 < θ

(z4)
1 , which implies that θ(z4+1)

1 moves towards
domain 3. Given that

∑+∞
z=1 ξ

(z) = +∞, there exists a finite integer M4 ≥ z4 such that

θ
(M4)
1 is in domain 4 and θ

(M4+1)
1 is not in domain 4.

• for ǫ an arbitrarily small positive number, given that limz→+∞ ξ(z) = 0, depending on
the value of θ(1)

1 , the convergence of θ(z)
1 will be either

– there exists a finite integer M > 0 such that
∣

∣θ(z)
1 −

(

r − g2(u2,3)
)∣

∣ < ǫ holds for all

z ≥ M , which implies that θ(z)
1 will converge to a small neighborhood of the point

θ1 = r − g2(u2,3).

or

– there exists a finite integer M > 0 such that
∣

∣θ(z)
1 −g1(u1,2)

∣

∣< ǫ holds for all z ≥ M ,

which implies that θ(z)
1 will converge to a small neighborhood of the point θ1 =

g1(u1,2).

• if θ(z)
1 converges to the small neighborhood

∣

∣θ(z)
1 −

(

r − g2(u2,3)
)∣

∣ < ǫ, then the value

of u∗,(z)
2 oscillates between u2,3 and u2,4 as a function of z after θ(z)

1 reaches the small

neighborhood. The oscillation of the value of u∗,(z)
2 as a function of z is characterized

by the jumps of the value u∗,(z)
2 between u2,3 and u2,4 at steps zjump, j . Each jump of the

value of u∗,(z)
2 at a step zjump, j is characterized by

u
∗,(zjump, j+1)
2 6= u

∗,(zjump, j )
2

sgn
(

∆θ
(zjump, j+1)
2

)

6= sgn
(

∆θ
(zjump, j )
2

)

with ∆θ
(zjump, j )
2 = θ

(zjump, j )
2 −θ

(zjump, j−1)
2 .

• if θ
(zjump, j )
1 converges to the small neighborhood

∣

∣θ(z)
1 − g1(u1,2)

∣

∣ < ǫ, then the value of

u∗,(z)
1 oscillates between u1,2 and u1,3 as a function of z after θ(z)

1 reaches the small

neighborhood. The oscillation of the value of u∗,(z)
1 as a function of z is characterized

by the jumps of the value of u∗,(z)
1 between u1,2 and u1,3 at steps zjump, j . Each jump of
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the value of u∗,(z)
1 at a step zjump, j is characterized by

u
∗,(zjump, j+1)
1 6= u

∗,(zjump, j )
1

sgn
(

∆θ
(zjump, j+1)
1

)

6= sgn
(

∆θ
(zjump, j )
1

)

with ∆θ
(zjump, j )
1 = θ

(zjump, j )
1 −θ

(zjump, j−1)
1 .

Note that θ(z)
1 < g1(ubest

1 ) and θ(z)
2 < g2(ubest

2 ) hold within
∣

∣θ(z)
1 −

(

r − g2(u2,3)
)∣

∣< ǫ and within
∣

∣θ(z)
1 −g1(u1,2)

∣

∣< ǫ. Therefore, no matter which small neighborhoodθ(z)
1 eventually converges

to, the graph-aided explanation of evolution of θ(z)
1 presented above is consistent with the

mode transition diagram indicated by (c) in Figure A.6.

A.2 Oscillation detection of a discrete optimization variable

Proposition 4.1: The oscillation of the value of a discrete optimization variable ui can be
determined by detecting u∗,(z+1)

i
6= u∗,(z)

i
and sgn

(

∆θ(z+1)
i

)

6= sgn
(

∆θ(z)
i

)

.

Proof: The proof of this proposition has been given in the graph-aided explanation for Case
3 in Section A.1, especially in the discussion of subcase 3.1 and subcase 3.2.

A.3 General properties

In the previous sections, we have proved some properties of applying Algorithm 7.1
presented in Chapter 7 to the problem (A.1) with N = 2 for Case 1 where

∑N
i=1 gi (ubest

i
) < r ,

for Case 2 where
∑N

i=1 gi (ubest
i

) = r , and for Case 3 where
∑N

i=1 gi (ubest
i

) < r . In this section,
we prove that the properties for Case 1 and for Case 2 still hold when Algorithm 7.1 is
applied to the problem for any N > 2. Note that for Case 3, when N > 2, the explanation for
the properties of applying Algorithm 7.1 to (A.1) is very complicated, especially the
explanation for the oscillation of the discrete optimization variables. For the sake of
simplicity, we do not present the explanation for the properties of applying Algorithm 7.1 to
(A.1) for Case 3 with N > 2.

We define I (z)
1 =

{

i |θi ≥ gi (ubest
i

)
}

, I (z)
2 =

{

j |θ j < g j (ubest
j

)
}

, and I = {1,2, ..., N }. It is

obvious that I = I (z)
1 ∪ I (z)

2 holds for all iteration step z.

For Case 1

Proposition 5.1: In the case
∑N

i=1 gi (ubest
i

) < r , there exists a finite integer M ≥ 0 such that at

all steps z ≥ M , I (z)
2 =;.

Proof: In this case, with
∑N

i=1 gi (ubest
i

) < r , we want to prove that no matter what the values

of θ(1)
i

for i ∈ I are, θ(z)
i

will eventually reach a steady state with θ(z)
i

≥ gi (ubest
i

) for all i . In
order to prove I2 will eventually be empty, we first assume that I2 will never be empty and
then find a contradiction.

At any step z > 0, we have λ(z)
i

= 0 for all i ∈ I (z)
1 and λ(z)

j
> 0 for all j ∈ I (z)

2 . Now let us
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define

λ̄(z)
=

1

N

(

∑

j∈I (z)
2

λ(z)
j

+
∑

i∈I (z)
1

λ(z)
i

)

=
1

N

∑

j∈I (z)
2

λ(z)
j

If I (z)
2 6= ; at step z > 0, we have λ̄(z) > 0. We define for all i ∈ I

δi = min
ui∈Di , ui<ubest

i

−
f
′

i
(ui )

g
′

i
(ui )

Further, we define

δmin
= min

i∈I
δi

Since fi (·) is convex and fi (ubest
i

) < fi (ui ) for ui ∈ Di with ui < ubest
i

, we have f ′
i

(ui ) < 0 for
ui ∈ Di with ui < ubest

i
. In addition, since gi (·) is monotonically strictly increasing, we have

g ′
i
(·) > 0. Therefore, we have −

f
′

i
(ui )

g
′

i
(ui )

> 0 for ui ∈ Di with ui < ubest
i

and it is directly derived

that δi > 0 holds for all i ∈ I and δmin > 0. Therefore, if I (z)
2 6= ; at step z, then for every

j ∈ I (z)
2 , we have u∗,(z)

j
< ubest

j
and λ(z)

j
=−

f
′

j
(u

∗,(z)
j

)

g
′

j
(u

∗,(z)
j

)
≥ δmin. So we have

λ̄(z)
≥

δmin

N
> 0

Now let us define

σi = max
xi ∈Di , ui<ubest

i

−
f
′

i
(ui )

g
′

i
(ui )

σmax
= max

i∈I
σi

Like δi and δmin
i

, σi > 0 holds for all i ∈ I and σmax > 0. Besides, σmax is finite since I and all

Di have finite elements. Therefore, if I (z)
2 6= ; at step z, we have for all j ∈ I (z)

2

λ(z)
j

− λ̄(z)
<λ(z)

j
≤σmax

Now let us define the nonnegative function

J (z) =
N
∑

i=1

(

θ(z)
i

− gi (ubest
i )

)2

Then

J (z +1)− J (z) =
N
∑

i=1

(

θ(z+1)
i

−θ(z)
i

)(

θ(z+1)
i

+θ(z)
i

−2gi (ubest
i )

)
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At any step z, if I (z)
2 6= ;, we have

J (z +1)− J (z)

=
∑

i∈I (z)
1

−ξ(z)λ̄(z)
(

θ(z+1)
i

+θ(z)
i

−2gi (ubest
i )

)

+
∑

j∈I (z)
2

ξ(z)
(

λ(z)
j

− λ̄(z)
)(

θ(z+1)
j

+θ(z)
j

−2g j (ubest
j )

)

=

N
∑

i=1

−ξ(z)λ̄(z)
(

θ(z+1)
i

+θ(z)
i

−2gi (ubest
i )

)

+
∑

j∈I (z)
2

ξ(z)λ(z)
j

(

θ(z+1)
j

+θ(z)
j

−2g j (ubest
j )

)

Further, since

N
∑

i=1

−ξ(z)λ̄(z)
(

θ(z+1)
i

+θ(z)
i

−2gi (ubest
i )

)

=−ξ(z)λ̄(z)
( N
∑

i=1

θ(z+1)
i

+

N
∑

i=1

θ(z)
i

−2
N
∑

i=1

gi (ubest
i )

)

=−2ξ(z)λ̄(z)
(

r −

N
∑

i=1

gi (ubest
i )

)

≤−2ξ(z)δ
min

N

(

r −
N
∑

i=1

gi (ubest
i )

)

and

∑

j∈I (z)
2

ξ(z)λ(z)
j

(

θ(z+1)
j

+θ(z)
j

−2g j (ubest
j )

)

=
∑

j∈I (z)
2

ξ(z)λ(z)
j

(

θ(z)
j

+ξ(z)
(

λ(z)
j

− λ̄(z)
)

+θ(z)
j

−2g j (ubest
j )

)

=
∑

j∈I (z)
2

(

ξ(z))2
λ(z)

j

(

λ(z)
j

− λ̄(z)
)

+
∑

j∈I (z)
2

2ξ(z)λ(z)
j

(

θ(z)
j

− g j (ubest
j )

)

<
∑

j∈I (z)
2

(

ξ(z))2
λ(z)

j

(

λ(z)
j

− λ̄(z)
)

<
∑

j∈I (z)
2

(

ξ(z))2
(σmax)2

< N ·
(

ξ(z))2
(σmax)2

we have

J (z +1)− J (z) <−2ξ(z)δ
min

N

(

r −
N
∑

i=1

gi (ubest
i )

)

+N ·
(

ξ(z))2
(σmax)2

Moreover, let K be an arbitrary finite integer. Then, if I (z)
2 6= ; at any of step z ∈ {1,2, ...,K }, we

have

J (K +1) < J (1)−
2δmin

N

(

r −

N
∑

i=1

gi (ubest
i )

) K
∑

z=1
ξ(z)

+N · (σmax)2
K
∑

z=1

(

ξ(z))2
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Since
∑+∞

z=1 ξ
(z) =+∞ and

∑+∞
z=1(ξ(z))2 <+∞, we can always select K such that

J (1)−
2δmin

N

(

r −

N
∑

i=1

gi (ubest
i )

) K
∑

z=1
ξ(z)

+N · (σmax)2
K
∑

z=1

(

ξ(z))2
< 0

Then we obtain

J (K +1) < 0

This contradicts the fact that J (·) is a nonnegative function. Therefore, the assumption that
I (z)

2 6= ; at any of step z ∈ {1,2, ...,K } does not hold, i.e. I (M)
2 =; at some step M ≤ K .

Since we have proved that I (M)
2 = ; at some step M ≤ K , then we have θ(M)

i
≥ gi (ubest

i
),

u∗,(M)
i

= ubest
i

and λ∗,(M)
i

= 0 for all i ∈ I . Therefore, we have for all i ∈ I

θ(z)
i

= θ(M)
i

, ∀z ≥ M

and θ(z)
i

≥ gi (ubest
i

) holds for all z ≥ M . It is proved that I (z)
2 is empty for all z ≥ M . 2

Proposition 5.2: In the case
∑N

i=1 gi (ubest
i

) < r , there exists a finite integer M ≥ 0 such that
the overall optimal solution is attained at step z = M .
Proof: According to Proposition 5.1, there exists a finite integer M ≥ 0 such that I (M)

2 = ;.

Then, θ(M)
i

≥ gi (ubest
i

) holds for all i ∈ I and we have u∗,(M)
i

= ubest
i

for all i ∈ I . Since fi (ui ) ≥

fi (ubest
i

) holds for all i ∈ I , u∗,(M)
i

= ubest
i

with i ∈ I is the overall optimal solution. Note that

since θ(z)
i

= θ(M)
i

for all z > M , we have u∗,(z)
i

= u∗,(M)
i

= ubest
i

. Therefore, the overall optimal
solution is also attained at step z > M . 2

For Case 2

Proposition 6.1: For any ε > 0, given
∑N

i=1 gi (xbest
i

) = r −ε , there exists a finite M ≥ 0 such

that at any step z ≥ M , I (z)
2 =;.

Proof: We first assume that I2 will never be empty and then obtain a contradiction. Next, we
show that once I2 is empty, it stays empty afterwards.

In the proof of Proposition 5.1, we have derived that at any step z, if I (z)
2 6= ;, then we

have

J (z +1)− J (z) <−2ξ(z)δ
min

N

(

r −
N
∑

i=1

gi (ubest
i )

)

+N ·
(

ξ(z))2
(σmax)2

Since
∑N

i=1 gi (ubest
i

) = r −ε, we have

J (z +1)− J (z) <−2ξ(z)δ
min

N
·ε+N ·

(

ξ(z))2
(σmax)2

First, let K be an arbitrary finite integer. Then, if I (z)
2 6= ; at each of step z ∈ {1,2, ...,K }, we

have

J (K +1) < J (1)−
2δmin

N
·ε ·

K
∑

z=1
ξ(z)

+N · (σmax)2
K
∑

z=1

(

ξ(z))2
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Since
∑+∞

z=1 ξ
(z) =+∞ and

∑+∞
z=1(ξ(z))2 <+∞, for any ε> 0, we can always select K such that

J (1)−
2δmin

N
·ε ·

K
∑

z=1
ξ(z)

+N · (σmax)2
K
∑

z=1

(

ξ(z))2
< 0

Hence, we obtain

J (K +1) < 0

This contradicts the fact that J (·) is a nonnegative function. Therefore, the assumption that
I (z)

2 6= ; at each step z ∈ {1,2, ...,K } does not hold. That is to say, I (M)
2 =; at some step M ≤ K .

Since we have proved that I (M)
2 = ; at some step M ≤ K , then we have θ(M)

i
≥ gi (ubest

i
),

u∗,(M)
i

= ubest
i

and λ∗,(M)
i

= 0 for all i ∈ I . Therefore, we have for all i ∈ I

θ(z)
i

= θ(M)
i

, ∀z ≥ M

and θ(z)
i

≥ gi (ubest
i

) holds for all z ≥ M . Hence, it has been proved that I (z)
2 is empty for all

z ≥ M . 2

Proposition 6.2: For any ε> 0, given
∑N

i=1 gi (ubest
i

) = r −ε , there exists a finite integer M ≥ 0

such that at any step z ≥ M , 0 ≤ θ(z)
i

− gi (ubest
i

) for all i ∈ I and
∑N

i=1

(

θ(z)
i

− gi (ubest
i

)
)

= ε .

Proof:
According to Proposition 6.1, there exists a finite integer M ≥ 0 such that at all step z ≥ M ,
I (z)

2 = ;. Therefore, at any step z ≥ M , we have θ(z)
i

≥ gi (ubest
i

) for all i ∈ I . Since θ(z)
i

−

gi (ubest
i

) ≥ 0 at all step z ≥ M , we have for all i ∈ I , θ(z)
i

− gi (ubest
i

) ≤
∑N

i=1

(

θ(z)
i

− gi (ubest
i

)
)

.

Further, since
∑N

i=1 gi (ubest
i

) = r −ε and
∑N

i=1θ
(z)
i

= r , we have
∑N

i=1

(

θ(z)
i

− gi (ubest
i

)
)

= ε and

θ(z)
i

− gi (ubest
i

) ≤ ε. 2
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Summary

Multi-Agent Control of Urban Transportation Networks and of

Hybrid Systems With Limited Information Sharing

This thesis is divided into two parts. In the first part, we address the dynamic traffic routing
problem for urban transportation networks. In the second part, we address multi-agent
model predictive control of a class of hybrid systems with limited information sharing.

Dynamic traffic routing for urban transportation networks

In this part of the thesis, we address the dynamic traffic routing problem at different levels,
namely dynamic traffic routing considering dynamics of individual vehicles, dynamic
traffic routing considering dynamics of traffic flows, and co-optimization of the orientation
of road sections and the routes of traffic flows. Usually, solving a dynamic traffic routing
problems for a large-scale urban transportation network requires extremely high
computational efforts. The main contribution of this part of the thesis consists in
developing efficient solution methods for dynamic traffic routing problems with a
well-balanced trade-off between the quality of solutions and the computation costs.

Thanks to the fast development of automated driving technologies, the application of
cybercars, which are fully automatic road vehicles providing on-demand and door-to-door
transportation service, has been pushed forward greatly. However, the lack of efficient
control methods for a large number of cybercars throughout a road network is still one of
the biggest challenges that hinder the widespread application of cybercars. To contribute to
development of the cybernetic transportation system, we address the dynamic routing
problem for cybercars considering minimization of the combined system cost including the
total time spent and the total energy consumption of all cybercars. We first propose a model
of the dynamics and the energy consumption of cybercars based on a description of the
dynamics of every single cybercar and the states, e.g. traffic densities, of the road network.
After that, we propose several tractable and scalable multi-agent control methods including
multi-agent model predictive control and parameterized control for dynamic routing of
cybercars.

Next, we propose two novel multi-agent dynamic traffic routing methods considering
dynamics of traffic flows, namely hierarchical traffic routing based on network division and
bi-level traffic routing based on merging nodes and links. In the hierarchical traffic routing
approach, a large-scale network is divided into a group of subnetworks and each
subnetwork is assigned a local subnetwork traffic routing controller. At the higher level, the
interconnecting flows among subnetworks are determined by a centralized network traffic
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routing controller. After that, the flows within each subnetwork are determined by the
corresponding subnetwork traffic routing controller considering minimization of the total
travel cost in the subnetwork and minimization of the difference between the total traffic
flows on the boundaries of the subnetwork and the flows prescribed by the high-level
controller. In the bi-level traffic routing approach, nodes and links of a network are merged
into a set of aggregated nodes and a set of aggregated links. For each aggregated node, a
local traffic routing controller is assigned. At the aggregated level, the flows on the
aggregated links are determined by a centralized traffic routing controller. At the original
level, where the actual network is considered, the flows on the actual links are determined
by the local traffic routing controllers by negotiating with neighboring local controllers.

Finally, we address the co-optimization of the orientation of road sections and the
routes of traffic flows. Conventionally, after an urban transportation networks has been
constructed, the orientations of road sections are fixed. As people commute between home
and work daily, the roads directed from the city center to outside the city center are often
not sufficiently used in the morning rush hours. A similar argument holds for the roads
directed from outside the city center to the city center in the evening rush hours. To solve
this problem, we assume that the orientation of road sections can be changed at each
control period and we formulate the co-optimization problem of jointly determining the
orientation of road sections and the routes of traffic flows as a mixed-integer linear
programming problem. By assuming circular orientation of traffic flows in each elementary
cycle in the graph corresponding to the network, we explicitly model the orientations of
road sections using the orientations of these elementary cycles. Since the number of
elementary cycles is much smaller than the number of road sections, the number of binary
variables involved in the co-optimization problem is reduced substantially w.r.t considering
independent orientation of each road section. Therefore, the resulting co-optimization
problem can be solved more efficiently.

Control of a class of hybrid systems with limited information sharing

Control of large-scale systems, like transportation systems, manufacturing systems, power
systems, etc., is facing a variety of challenges. Among the challenges, a crucial one is to
design mechanisms for coordinating agents that have limited information sharing with
each other in order to protect confidential information of local subsystems while at the
same time still aiming for global performance. Thus, to achieve globally satisfactory
performance, given limited information of other subsystems, the agents need to assist each
other to make better decisions about their actions. However, cooperation among agents is
made much more difficult when the individual agents have to regulate subsystems that are
governed by discrete inputs instead of by continuous inputs. In fact, this will result in
having to solve integer programming problems in a distributed way.

In this part of the thesis, we develop a multi-agent model predictive control method for
a class of hybrid systems governed by discrete inputs and subject to global hard constraints.
We assume that for each subsystem the local objective function is convex and the local
constraint function is strictly increasing with respect to the local control variable. The
proposed control method is based on a distributed resource allocation coordination
algorithm and only requires limited information sharing among the local agents of the
subsystems. Thanks to primal decomposition of the global constraints, the distributed
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algorithm can always guarantee global feasibility of the local control decisions, even in the
case of premature termination. However, since the control variables are discrete, global
optimality cannot be attained by only using the resource allocation coordination algorithm.
In order to tackle this problem, a mechanism is developed to branch the overall solution
space based on the outcome of the resource allocation coordination algorithm at each node
of the search tree. Finally, results for the charging control of a fleet of electric vehicles under
constrained grid condition in a simulation study show that the proposed control method
effectively balances the solution quality, the computation time, and the communication
burden.

Renshi Luo





Samenvatting

Multi-Agent Regelen van Stedelijke Vervoersnetwerken en

Hybride Systemen met Beperkte Uitwisseling van Informatie

Dit proefschrift bestaat uit twee delen: Het eerste deel gaat over dynamische
verkeersroutering in stedelijke vervoersnetwerken. Het tweede deel behandeld
modelgebaseerd voorspellend regelen voor een klasse van hybride systemen met beperkte
uitwisseling van informatie.

Dynamische verkeersroutering voor stedelijke vervoersnetwerken

In dit deel van de thesis behandelen we het dynamische verkeersrouteringsprobleem op
verschillende niveaus, namelijk op het niveau van de individuele voertuigen en op het
niveau van de verkeersstromen. Verder beschouwen we de gelijktijdige optimalisatie van de
rijrichting van wegdelen en de routes van verkeersstromen. Normaal gesproken vereist het
oplossen van een dynamisch verkeersrouteringsprobleem voor een groot stedelijk
vervoersnetwerk enorm veel rekenkracht. De hoofdbijdrage van dit onderdeel van dit
proefschrift ligt dan ook in de ontwikkeling van efficiënte oplossingsstrategieën voor
dynamische verkeersrouteringsproblemen waarbij we een evenwichtige afweging maken
tussen de kwaliteit van oplossingen en de rekenkosten.

Dankzij de snelle ontwikkeling van geautomatiseerde rijtechnologieën is de toepassing
van cybercars, zijnde volledig geautomatiseerde voertuigen die op aanvraag een
deur-tot-deur service bieden, sterk naar voren geschoven. De verdere uitbreiding van de
toepassing van cybercars wordt echter nog belemmerd door de afwezigheid van efficiënte
regelstrategieën voor grote aantallen cybercars in een wegennet. Om bij te dragen aan de
verdere ontwikkeling en toepassing van cybercars behandelen we het dynamische
routeringsprobleem voor cybercars waarbij we ons richten op het minimaliseren van de
totale kosten, welke onder andere afhangen van de rijtijd en energieconsumptie van alle
voertuigen in het netwerk. Als eerste presenteren we een model van de dynamica en
energieconsumptie van cybercars. Dit model is gebaseerd op de dynamica van de
afzonderlijke voertuigen en op de toestand van het netwerk, met inbegrip van onder andere
de verkeersdrukte. Aansluitend presenteren we verschillende handel- en schaalbare
multi-agent regelstrategieën, waaronder multi-agent modelgebaseerd voorspellend regelen
en geparametriseerd regelen, voor de dynamische routering van cybercars.

Vervolgens presenteren we twee nieuwe multi-agent dynamische
verkeersrouteringsmethoden die rekening houden met de dynamica van verkeersstromen:
hiërarchische verkeersroutering op basis van netwerkdivisie, en verkeersroutering op twee
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niveaus gebaseerd op het samenvoegen van knooppunten en links. In de hiërarchische
methode voor verkeersroutering wordt het netwerk verdeeld in verschillende
deelnetwerken. Aan elk van de deelnetwerken wordt een lokale verkeersrouteringsregelaar
toegewezen. Op centraal niveau worden de verkeersstromen tussen de onderling
verbonden deelnetwerken bepaald door een centrale verkeersregelaar. Vervolgens worden
de verkeersstromen in de deelnetwerken bepaald door de bijbehorende lokale regelaar
waarbij we de totale reiskosten in het deelnetwerk minimaliseren en tegelijkertijd de
verkeersstromen tussen de verschillende deelnetwerken zo goed mogelijk laten
overeenkomen met de verkeersstromen bepaald door de overkoepelende regelaar. De
bi-level verkeersrouteringsregelaar voegt verschillende knooppunten en links samen. Aan
elk van de samengestelde knooppunten wordt een lokale regelaar toegewezen. De
verkeersstromen op de samengestelde links worden bepaald door een overkoepelende
regelaar. De verkeersstromen op de oorspronkelijke links worden vervolgens bepaald door
de lokale regelaars die onderhandelen met de regelaars van naastgelegen links.

Tenslotte adresseren we de gelijktijdige optimalisatie van de rijrichting van wegdelen en
de routes van verkeersstromen. Gewoonlijk ligt de rijrichting van een wegdeel vast na
constructie. Aangezien mensen pendelen tussen huis en werk worden de wegdelen die het
verkeer de stad uitleiden niet volledig benut in de ochtendspits, en de wegdelen die het
verkeer de stad inleiden niet volledig benut in de avondspits. Om dit probleem aan te
pakken, veronderstellen we dat de rijrichting van elk wegdeel op elk regeltijdstip aangepast
kan worden, en formuleren we het probleem van de gelijktijdige optimalisatie van de
rijrichting van wegdelen en de routes van verkeersstromen als een lineair
programmeerprobleem met variabelen die reële dan wel gehele getalswaarden aannemen.
Door het veronderstellen van circulaire verkeersstroomrichtingen in elke elementaire cirkel
van de netwerkgraaf, modelleren we expliciet de richting van de wegdelen gebruikmakend
van de richtingen van deze elementaire cirkels. Aangezien het aantal elementaire cirkels
veel kleiner is dan het aantal wegdelen, is het aantal te optimaliseren binaire variabelen
aanzienlijk verminderd ten opzichte van het afzonderlijk beschouwen van elk wegdeel. Het
resulterend optimalisatieprobleem kan hierdoor efficiënter worden opgelost.

Het regelen van een klasse hybride systemen met beperkte uitwisseling van

informatie

Grootschalige systemen, zoals transport-, productie- en aandrijfsystemen, kampen met een
groot aantal uitdagingen op besturingsgebied. Een cruciale uitdaging ligt in het ontwerpen
van mechanismen voor coördinerende agenten die slechts beperkt informatie met elkaar
kunnen uitwisselen. Door slechts beperkt informatie uit te wisselen kan vertrouwelijke
informatie wordt beschermd en tegelijkertijd een zo groot mogelijke algehele prestatie
worden nagestreefd. Om bevredigende algehele prestaties te behalen, moeten de
verschillende agenten elkaar helpen om adequate beslissingen te maken betreffende hun
acties. Zulke samenwerking is echter erg lastig wanneer de individuele agenten
deelsystemen regelen die worden beheerst door discrete inputvariabelen in plaats van
continue inputvariabelen. Dit resulteert erin dat een programmeerprobleem met discrete
variabelen op een gedistribueerde manier moet worden opgelost. In dit deel van het
proefschrift ontwikkelen we een multi-agent, modelgebaseerde voorspellende
regelstrategie voor een klasse van hybride systemen die gekenmerkt worden door discrete
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inputvariabelen en die onderhevig zijn aan globale, harde beperkingen. We veronderstellen
dat voor elk deelsysteem de lokale doelfunctie convex is, en dat de lokale beperkingsfunctie
strikt stijgend is met betrekking tot de lokale regelvariabele. De voorgestelde regelstrategie
is gebaseerd op een gedistribueerd brontoewijzingsbeleid, en vereist enkel beperkte
uitwisseling van informatie tussen de lokale agenten van de verschillende deelsystemen.
Dankzij de primaire ontleding van de globale beperkingen kan het gedistribueerde
algoritme altijd de globale haalbaarheid van de lokale regelbesluiten garanderen, ook in het
geval van vroegtijdige beëindiging. Echter, aangezien we te maken hebben met discrete
inputvariabelen, kan het globale optimum niet worden bereikt door enkel gebruik te maken
van het brontoewijzingsbeleid. Om dit probleem aan te pakken, hebben we een
mechanisme ontwikkeld om de totale oplossingsruimte te vertakken op basis van de
uitkomst van het brontoewijzingsbeleid bij elk knooppunt van de zoekboom. Een
simulatiestudie betreffende het opladen van een wagenpark in de aanwezigheid van een
beperkt elektriciteitsnet laat zien dat de voorgestelde regelstrategie een goede afweging
maakt tussen de kwaliteit van oplossingen, de rekentijd en de communicatiebelasting.

Renshi Luo
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