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On the use of different constitutive models in data assimilation for 
slope stability 

Muhammad Mohsan , Philip J. Vardon *, Femke C. Vossepoel 
Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands   
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A B S T R A C T   

A recursive ensemble Kalman filter (EnKF) is used as the data assimilation scheme to estimate strength and 
stiffness parameters simultaneously for a fully coupled hydro-mechanical slope stability analysis. Two different 
constitutive models are used in the hydro-mechanical model: the Mohr-Coulomb (MC) model and the Hardening 
Soil (HS) model. The data assimilation framework allows the investigation of the effect of constitutive behaviour 
on its ability to estimate the factor of safety using measurements of horizontal nodal displacement at the sloping 
face. In a synthetic study, close-to-failure and far-from-failure cases of prior property estimations illustrate the 
effect of initial material property distribution with different material models. The results show that both models 
provide a reliable factor of safety when the distribution of prior parameters is selected close-to-failure. However, 
the HS model results in the improved estimation of factor of safety for the far-from-failure case while this is not 
the case for the MC model. In addition, for the same level of accuracy the computational effort required for the 
HS model is comparatively less than for the MC model.   

1. Introduction 

The stability of slopes is important for the construction and risk 
assessment of infrastructure. Man-made slopes are present in many ap-
plications, such as flood protection, transport infrastructure and open- 
pit mining, and the potential failure of these slopes can pose a signifi-
cant risk. 

There are a variety of methods to assess slope stability, e.g. limit 
equilibrium methods, numerical methods, empirical methods and 
probabilistic methods. With the development of numerical methods, 
such as the finite element method (FEM), it has become possible to 
analyse and predict the behaviour of geometrically complex slopes 
under hydro-mechanical non-steady-state conditions. The applicability 
of this type of analysis significantly depends upon the constitutive 
(stress-strain) behaviour of the material and the mathematical repre-
sentation of the behaviour used in FEM. 

In the past few decades, there have been significant developments in 
constitutive models. For example, the evaluation of non-linearity in 
elasticity, elasto-plasticity and hardening/softening are now regularly 
seen in more advanced constitutive models. Commercial software 
packages (e.g. PLAXIS) offer the possibility to include different consti-
tutive models, for example, a formulation representing linear-elastic 

perfectly plastic behaviour based on Mohr-Coulomb assumptions, or a 
hardening soil model, which is a more advanced non-linear elasto- 
plastic soil model that includes hardening (Plaxis, 2015). 

While numerical models have been shown to capture the hydro- 
mechanical processes occurring in soils, the representation of slope 
behaviour by numerical models often differs from what is observed in 
reality. This can be due to a poor representation of the physical processes 
(either in the governing equations or in the constitutive model), poorly 
known model parameters, a complex geometry, complex initial and 
boundary conditions, or a combination of these. To investigate or 
overcome these limitations, one can make use of measured behaviour of 
the slope. Measurements can be used in two ways: one way is to compare 
the numerical model output with the measurements and choose the best 
model formulation, and an alternative way is to assimilate the mea-
surements in a mathematically consistent way to find the most likely 
state and parameters given the measurements and the uncertainty in 
both model and measurements. 

In order to evaluate the performance of constitutive models from a 
comparison with measurements, several studies compare the displace-
ment produced by different constitutive models with field measure-
ments for a range of geomechanical problems (e.g. Brinkgreve et al., 
2006; Hsiung and Dao, 2014; Sekhavatian and Choobbasti, 2018). 
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Brinkgreve et al. (2006) demonstrate the functioning of three constitu-
tive models for a tunnel system. The authors compared field settlement 
and heave with FEM results which use the Mohr-Coulomb (MC) model, 
the Hardening soil (HS) model and the Hardening soil with small-strain 
stiffness (HSS) model. The authors conclude that the HSS model simu-
lates the most realistic settlement and heave for this case. Hsiung and 
Dao (2014) studied the performance of the MC, HS and HSS models 
(Plaxis, 2015) for an excavation case. The authors compare the wall 
deflection and ground settlement with field data and conclude that the 
displacement produced by the HSS model is closest to the field mea-
surements. Sekhavatian and Choobbasti (2018) compare movement 
prediction by FEM with field measurements in an underground exca-
vation case. The authors compare the results produced by a number of 
different material models with field measurements as an indication of 
model performance. However, this information was not used to refine or 
estimate the model parameters. 

As model parameters are often not well known, adjusting the pa-
rameters to values closer to the actual values can significantly improve 
model performance. This is often done manually as part of model cali-
bration. An alternative way to use measurements is an inverse analysis 
or data assimilation approach to estimate the poorly known model pa-
rameters. Possible measurements for these approaches include surface 
displacements, pore water pressure and stress or strain. For example, 
Ledesma et al. (1996) and Gens et al. (1996) utilised a maximum- 
likelihood method to estimate the Young’s modulus for a tunnel exca-
vation simulation in FEM. Lee and Kim (1999) utilised an extended 
Bayesian method in a simulation of a tunnel system for an inverse 
analysis of four parameters: elastic modulus, initial horizontal stress at 
rest, cohesion and friction angle. 

Zhou et al. (2007) proposed and implemented an extended Bayesian 
approach on an embankment and an excavation case. The author esti-
mated Young’s modulus for both the cases. Wang et al. (2013) con-
ducted a probabilistic inverse analysis for a slope-failure case in Taiwan, 
which included soil anchors. They estimated the strength parameters 
and anchor force in order to better understand the slope failure mech-
anism. Vardon et al. (2016) and Liu et al. (2018) used an ensemble 
Kalman filter (EnKF) approach on a slope-stability problem. The authors 
combined the random finite element method (RFEM) with the EnKF to 
estimate the hydraulic conductivity based on pore water pressure 
measurements in a steady-state and transient state seepage problem in a 
synthetic case. The improved estimation of hydraulic conductivity led to 
improved pore water pressure estimation, thereby improving the pre-
diction of slope stability. Another example of inverse analysis is pro-
vided by Kim and Finno (2020), who optimise model parameters of a 
hypoplastic clay model in the case of an excavation using the mea-
surements of lateral movements at an early stage of excavation with a 
gradient approach based on the Gauss-Newton method. 

The majority of the studies mentioned above utilised a data assimi-
lation approach to estimate either stiffness or strength parameters. The 
sole estimation of stiffness parameters does not give any information 
about the ultimate limit state of the system (factor of safety). On the 
other hand, the sole estimation of the strength parameters does not give 
sufficient insight into the pre-failure behaviour of the material, and re-
duces the ability of the data to be used to estimate the strength pa-
rameters. The objective of the present study is to explore the use of data 
assimilation to improve estimates of slope stability by assimilating the 
slope deformation measurements. To this end, simultaneous estimation 
of the stiffness and strength parameters are conducted for two different 
constitutive models that incorporate material non-linearity. The evalu-
ation of the slope-stability estimates will eventually support the devel-
opment of a data assimilation framework for robust assessment of slope- 
failure risks. 

In this study, the effect of constitutive models on the calculation of 
the factor of safety is addressed by assimilating the measurements into 
the FEM simulation of a slope stability problem, under unsteady hy-
draulic conditions. A comparison of close-to-failure and far-from-failure 

prior parameter estimation cases helps to investigate the effect of ma-
terial non-linearity in two different constitutive models. A recursive 
EnKF is implemented for two different constitutive models (HS and MC). 
The performance of the resulting data assimilation systems is evaluated 
by their ability to estimate the horizontal displacement within the model 
domain and to predict the Factor of Safety (FoS) of the slope. In Section 
2, details of the forward model and the data assimilation method are 
presented. Section 3 presents an evaluation method and a synthetic 
example to evaluate the system’s performance, with the results pre-
sented in Section 4. Section 5 presents the discussion followed by con-
clusions. An investigation of the system’s sensitivity to various inputs is 
given in Appendix A and an algorithm for the Python data assimilation 
interface with PLAXIS is given in Appendix B. 

2. Methodology 

The method is made up of a forward model which simulates the 
physics of the problem, and a data assimilation method that combines 
this forward model with measurements to estimate constitutive model 
parameters and the corresponding state variables. A fully coupled 
hydro-mechanical FEM simulation is used as the forward model. In order 
to investigate the effect of constitutive models on the estimated state and 
the estimated FoS, two types of constitutive models are used, i.e., the MC 
and the HS models. A recursive EnKF is used as the data assimilation 
method to estimate the constitutive model parameters (e.g. friction 
angle, cohesion, stiffness) based on measurements (i.e. surface dis-
placements). The workflow in this study is controlled via Python, 
making use of the PLAXIS Python interface to control the PLAXIS ana-
lyses. The FEM equations are solved by PLAXIS and the data assimilation 
part is implemented and solved in Python (see Appendix B for details). 

2.1. Forward model 

2.1.1. Fully coupled hydro-mechanical slope stability model 
In soils under unsteady flow, both the mechanical and hydraulic 

behaviour must be considered. For the mechanical behaviour, equilib-
rium is considered, i.e.: 

∇⋅σ′

+∇p+ ρb = 0, (1)  

where ∇ is the gradient operator, ∇⋅ is the divergence, σ′ is the effective 
stress tensor, p is the pore pressure, ρ is the density and b are the body 
accelerations (e.g. from gravity). 

The constitutive behaviour can be expressed as: 

σ′

= D′

∊ (2)  

where D′ is the effective constitutive matrix and ∊ is the strain tensor. 
By substituting Eq. 2 into Eq. 1 and recognising that 

∊ = 0.5((∇u)+(∇u)T
) (where u is the displacement) yields the me-

chanical governing equation. The displacement is resolved into its x- and 
y-components and termed as horizontal displacements (ux) and vertical 
displacements (uy), respectively. 

For the hydraulic behaviour, the governing equation is the conser-
vation of mass which can be expressed as: 

∂(ρln)
∂t

= − ∇⋅v − Q (3)  

where ρl is the fluid density, n is the porosity, v is the velocity vector and 
Q is a source term. The derivative of the fluid density with time is 
calculated using the compressibility of the fluid (∂ρl/∂t = ρl/Kw⋅∂p/∂t, 
where Kw is 2183 MPa) and the change of porosity is evaluated from the 
change of the volumetric strain ∊vol. 

The velocity of water is incorporated via Darcy’s Law: 
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v = − k∇
(

p
ρlg

+ z
)

(4)  

where k is the hydraulic conductivity matrix, g is the gravitational 
constant, and z is the elevation. 

Both the governing equations have primary variables of displace-
ment and fluid pressure, and are therefore a coupled system of equa-
tions. In this work, the governing equations are solved using FEM by 
using the software PLAXIS (Plaxis, 2015). 

2.1.2. Constitutive models 
Stress-strain (constitutive) relationships of real soils are usually non- 

linear. The stiffness and shear strength of soil typically depends upon the 
stress level, the strain level and the stress history. A variety of consti-
tutive models exists to simulate soil behaviour. In this study, two types 
of constitutive models are used i.e. the Mohr-Coulomb (MC) model and 
the Hardening Soil model (HS). The MC model is commonly used in 
geotechnical analyses as it is simple and represents stress-dependent 
failure conditions reasonably well, but misses some realistic soil fea-
tures, i.e. non-linear elasticity, stress-dependent stiffness, hardening/ 
softening and plasticity before failure. On the other hand, the HS model 
takes into account these realistic features but is not as frequently used in 
geotechnical practice, partly due to the requirement of additional 
parameters. 

Mohr-Coulomb model: The MC model is a simple and well known 
linear-elastic perfectly-plastic model, which is used widely to represent 
soils. The linear elastic part of the Mohr-coulomb model is based on 
Hooke’s law, and is therefore not stress or strain dependent, and the 

Fig. 1. Representation of Mohr-Coulomb model.  

Fig. 2. Representation of Hardening soil model.  
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onset of plasticity is based on the Mohr-Coulomb failure criterion, i.e. a 
stress-dependent shear strength. Plastic deformations occur without any 
change in stress level, i.e. they are perfectly plastic. This also implies that 
the model is non-associated. A representation of the model is shown in 
Fig. 1. 

A total of five model parameters are required to implement the Mohr- 
Coulomb model. This includes the two elastic parameters, the Young’s 
modulus (E), Poisson’s ratio (ν), and three strength parameters, cohesion 
(c), friction angle (ϕ) and dilatancy angle (ψ). 

Hardening Soil model: The HS model is a nonlinear elasto-plastic 
soil model. The stress-strain relationship in a drained triaxial compres-
sion test is represented by the hyperbolic function (Fig. 2). The model 
shows a decreasing stiffness (stress-dependent stiffness) and irreversible 
plastic strains simultaneously when subjected to deviatoric loading. 
Three different stress-dependent stiffness parameters are considered to 
model soil behaviour. The stress-strain path due to primary loading is 
curved, which is modelled using E50, the stress-dependent stiffness due 
to the primary loading. 

E50 = Eref
50

(
ccos(ϕ) − σ3sin(ϕ)

ccos
(
ϕ
)
− pref sin

(
ϕ
)

)m

, (5)  

where Eref
50 is the reference stiffness modulus corresponding to the 

reference stress pref . The actual stiffness depends upon the minor prin-
cipal stress (σ3). The amount of stress dependency is given by the power 
m. 

The non-linear elastic part is modelled based upon the stress- 
dependent unloading reloading stiffness modulus: 

Eur = Eref
ur

(
ccos(ϕ) − σ3sin(ϕ)

ccos
(
ϕ
)
− pref sin

(
ϕ
)

)m

, (6)  

where Eref
ur is the reference re/-unloading stiffness at reference pressure 

pref . The Eur parameter is used to simulate the non-linear unloading 
reloading stress-strain path. The elastic components are calculated ac-
cording to the Hookean elastic relationship for drained triaxial stress 
path: 

∊e
1 =

q
Eur

. (7) 

The HS model is a double-hardening plasticity model as it allows two 
types of hardening: shear hardening and cap hardening. The shear- 
hardening part controls the hyperbolic behaviour in deviatoric stress 
paths, and the cap-hardening part deals with irreversible compaction in 
primary compression. Due to the onset of loading, the material starts 
yielding as soon as the shear strength is mobilised. As a result, increased 
deviatoric plastic strain is generated as the loading increases, which 
apparently leads to a reduction of the stiffness. This is represented by the 
shear hardening yield function. At the end of shear strength mobi-
lisation, when the Mohr-Coulomb failure criterion is reached, failure 
occurs. The flow rule for shear hardening is non-associated. 

A cap yield surface is defined to compute the plastic volumetric 
strain that is measured in isotropic compression. This yield surface 
represents an ellipse in stress space and it is centred around the origin of 
the stress space. The preconsolidation pressure defines the current po-
sition of the cap. The evolution of preconsolidation pressure with 
volumetric strain is formulated by a hardening rule which reads: 

Eoed = Eref
oed

(
ccos

(
ϕ
)
− σ′

3sin
(
ϕ
)

ccos
(
ϕ
)
− pref sin

(
ϕ
)

)m

, (8)  

where Eref
oed is the reference odometer stiffness at reference pressure pref . 

The input parameters of the HS model are the strength parameters: 
cohesion (c), friction angle (ϕ) and dilatancy angle (ψ). The stiffness 
parameters are the secant stiffness at reference pressure in standard 

drained triaxial test (Eref
50 ), the tangent stiffness at reference pressure for 

primary odometer loading (Eref
oed), the loading unloading stiffness at 

reference pressure (Eref
ur ), the Poisson’s ratio for unloading reloading (νur) 

and a parameter m which controls the stress-level dependency for all 
three stiffness parameters. 

2.1.3. Forward modelling and stability analysis 
FEM simulations are used as a forward model, taking into account 

changes in external water loads. A hydro-mechanical FEM model com-
putes the behaviour and state of the slope. After a defined period of time, 
the hydro-mechanical analysis is followed by the stability analysis, 
which results in an estimate of the FoS (the ratio of the original strength 
to the reduced strength of the material at failure). Slope stability is 
computed using FEM with a strength reduction method. The forward 
model calculates the results until the time when a stability analysis is 
required. After the stability analysis, the forward analysis resumes using 
the conditions immediately prior to the stability analysis. The calculated 
stability, therefore, can change over time reflecting the changes in 
hydro-mechanical conditions. In the stability analyses, the strength 
properties of the soil (tan(ϕ) and c in both the constitutive models used 
here) are successively reduced until failure. 

2.2. Data assimilation with the recursive ensemble Kalman filter 

Data assimilation has the objective to find the posterior distribution 
of a state and/or parameter given the measurements of the state. A 
commonly used method for data assimilation is the EnKF (Evensen, 
1994) which is an ensemble-based formulation of the Kalman filter 
(Kalman, 1960), originally developed for state estimation in oceanog-
raphy. The method uses an ensemble of model realisations to represent 
the error covariances. Since then, EnKF has been implemented in diverse 
fields including numerical weather prediction (e.g. Houtekamer and 
Mitchell, 2005; Szunyogh et al., 2005), oceanography (e.g. Bertino et al., 
2003; Keppenne and Rienecker, 2003), hydrology (e.g. Reichle et al., 
2002; Chen and Zhang, 2006), geotechnical engineering (e.g. Vardon 
et al., 2016; Mavritsakis, 2017; Liu et al., 2018), and petroleum reservoir 
history matching (e.g. Evensen, 2009; Aanonsen et al., 2009; Oliver and 
Chen, 2011; Glegola et al., 2012; Nævdal et al., 2002). 

EnKF is very effective in state estimation (e.g. Evensen, 1994; Hou-
tekamer and Mitchell, 1998; Miller et al., 1999; Hamill et al., 2000; 
Tamura et al., 2014) and joint parameter-state estimation (e.g. Lor-
entzen et al., 2001; Nævdal et al., 2005; Nævdal et al., 2002; Skjervheim 
and Evensen, 2011). In the case of parameter estimation, it is common to 
estimate the parameters first and then rerun the model with these 
updated estimates of the parameters to find the solution of the model 
state. The EnKF has been successfully applied for parameter estimation 
in applications in a range of fields. In the field of petroleum engineering, 
Nævdal et al. (2002) implemented the EnKF for history matching with a 
two dimensional near-well reservoir model to estimate the permeability 
of the reservoir. The EnKF provided a better parameter estimation and 
consequently better production forecasts. In the field of atmospheric 
modelling, Annan et al. (2005) implemented the EnKF for estimation of 
parameters from radiation, convection and surface parametrisation. The 
authors concluded that the EnKF can handle multivariate parameter 
estimation comfortably and demonstrated the method to be useful in 
determining structural deficiencies in the model which can not be 
improved by tuning and can be a useful tool to guide model develop-
ment. Skjervheim and Evensen (2011) applied EnKF on a history 
matching problem to estimate the permeability parameter in a reservoir 
simulation model. It was concluded that the EnKF can be successfully 
used for history matching but is computationally more expensive than 
the Ensemble Smoother. A possible disadvantage of the EnKF is the 
Gaussian approximation applied in the update scheme. Furthermore, the 
repeated restarting of the forward model after each EnKF update needs a 
significant amount of computational effort, this recursive 
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implementation of the EnKF ensures that the state is updated along with 
the parameters. Due to the good state, parameter and combined state- 
parameter estimation, relative computational efficiency and the 
continuous and close to Gaussian distribution (or distributions which 
could be transformed to Gaussian), the EnKF approach has been 
selected. Moreover, the approach is consistent with earlier work by 
Vardon et al. (2016) and the present study can be seen as an extension of 
that work. In the present study, the recursive EnKF is implemented to 
estimate poorly known parameters in a hydro-mechanical slope-stability 
forward model. 

To formulate the principles of data assimilation, it is assumed that 
the model output at the measurement location y is obtained by running 
the forward model with input model parameters θ and mapping the 
outcome to measurement space. This can be represented by the operator 
g in the following equation: 

y = g(z), (9)  

in which 

z = ( x θ )T (10)  

where y ∈ RNm is a vector of model output at measurement locations, 
z ∈ ℝNx+Nθ is a combined state-parameter vector, i.e., a vector of model 
state x ∈ RNx and model parameters θ ∈ ℝNθ and g is the model oper-
ator which maps the prior state-parameter vector into measurement 
space. In this study, the model is considered to be perfect and model 
uncertainty is implicitly taken into account within the parameter un-
certainty. Here, Nm is the number of measurements, Nx is the number of 
state points and Nθ is the number of parameters. 

A forward model run provides a prediction of the model state evo-
lution for a unique set of values of the uncertain parameters. If the model 
has no errors, the model output can be seen as a prediction (y) of the 
‘truth’. The measurements are the window to this actual state, and 
contain errors: 

d = y+ e, (11)  

where d ∈ RNm is a vector of the measurements with Nm being the 
number of measurements. The errors e ∈ RNm include measurement er-
rors and representation errors. In this study, measurement errors are 
assumed to be normally distributed with zero mean. The distribution of 
the state-parameter vector z is assumed to also be normally distributed 
around a known mean. 

Bayes’ theorem gives the joint probability (f) for z and y given the 
measurements d as: 

f (z, y|d)∝f (d|y)f (y|z)f (z). (12)  

From Eq. 12, the posterior probability for z given d can be written as: 

f
(

z|d
)

∝
∫

f
(

d|y
)

f
(

y|z
)

f
(

z
)

dy = f
(

d|g
(

z
))

f
(

z
)

. (13)  

Making use of the assumption that the priors have a Gaussian distribu-
tion, Eq. 13 can be written as: 

f
(

z|d
)

∝exp
{

−
1
2

J
}

. (14)  

The cost function J is defined as follows: 

J
(

z
)
=
(
z − zf)TC− 1

zz

(
z − zf

)
+(g(z) − d)TC− 1

dd

(
g
(

z
)
− d
)
, (15)  

where zf is the prior estimate of z, Czz ∈ ℝ(Nx+Nθ)×(Nx+Nθ) is the error 
covariance of zf , and Cdd ∈ ℝNm×Nm is the error covariance of mea-
surements. It can be shown that for normally distributed variables, the 
maximum likelihood estimate of f(z|d) is equivalent to minimising the 

cost function J in Eq. 15. In case of an operator g(z) that can be 
approximated with a linear operator G that relates the output to the 
parameters and state via y = Gz, minimising the cost function gives the 
following solution, known as the Kalman filter (Kalman, 1960): 

za = zf +K
(
d − g

(
z
))
, (16)  

Ca
zz =

(
I − KG

)
Czz, (17)  

and 

K = CzzG
(
GCzzGT − Czz

)− 1
, (18)  

where K is the Kalman gain, superscript “a” shows the analysis and 
superscript “f” represents the prior estimate. 

In EnKF, an ensemble of forward model simulations is used to 
approximate the error covariance Czz. The Kalman equation for each 
ensemble member i ∈ Ne can be written as: 

za
i = zf

i +Ke( di − g
(
zf

i

))
, (19)  

and 

Ke = Ce
zzG
(
GCe

zzG
T − Cdd

)− 1
, (20)  

where Ce
zz is the combined state-parameter error covariance matrix. 

Here 

di = d+ ∊i (21)  

represents the perturbed measurements for each ith member, with ∊i 
having the same distribution as the measurement errors e in Eq. 11, 
following the approach of (Burgers et al., 1998). 

Consider the matrix Zf
t ∈ R(Nx+Nθ)×Ne containing Ne realisations of z at 

time t: 

Zf
t =

(
zf

1, z
f
2,….., zf

N .
)

(22)  

The ensemble mean is then stored in each column of Zf
t ∈ R(Nx+Nθ)×Ne : 

Zf
t = Zf

t INe , (23)  

where INe ∈ RNe×Ne is a matrix with each element equal to 1
Ne

. The 

ensemble perturbation matrix Z′

t ∈ R(Nx+Nθ)×Ne is now defined as follows: 

Z′

t = Zf
t − Zf

t . (24)  

The combined state-parameter error covariance matrix Ce
zz ∈

R(Nx+Nθ)×(Nx+Nθ) can be written as follows: 

Ce
zz =

Z′

t

(
Z′

t

)T

Ne − 1
, (25)  

where Ce
zz consists of the state and parameter error covariances as well as 

the cross-covariances between state and parameters. 
At assimilation time step t, the available measurements are stored in 

vector dt . For each ensemble member i, this measurement vector is 
perturbed with ∊i as in Eq. 21. The vectors di,t are then stored in matrix 
Dt ∈ ℝNm×Ne : 

Dt =
(
d1,t, d2,t,…, dNe ,t

)
. (26)  

With these matrices, the analysis equation at time t becomes: 

Za
t = Zf

t +Ce
zzG

T(GCe
zzG

T + Cdd
)− 1
(

Dt − GZf
t

)
, (27)  

where G ∈ ℝNe×(Nx+Nθ) is the linear measurement operator which re-
lates the state-parameter matrix to measurement space. 
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2.3. Implementation of the data assimilation for the slope-stability 
problem 

In this study, the EnKF described in Section 2.2 is implemented with 
the forward model of Section 2.1. The resulting model for the hydro- 
mechanical behaviour of given slope geometry is then used to esti-
mate the state (x), parameters (θ) and eventually the FoS. The state in 
the case of this setup, could be displacements of the sloping surface, or 
observed strain. Parameters would represent the material properties in 
the hydro-mechanical model simulation and could be for example the 
parameters of stiffness and strength, E/Eref

50 , c
′ and ϕ’. The selection of 

state and parameters to estimate this particular study will be discussed 
in Section 3. The setup of the numerical approach is illustrated in Fig. 3. 

At t = 0, the numerical approach starts with a set of prior ensemble 
members which represent our prior assumption of the state (x) and 
parameters (θ). In our case, these model parameters (θ) are sampled 

from a normal distribution with a prior mean and standard deviation for 
each of the parameters in θ: 

f
(
θ
)
= 𝒩

(
θf ,Cθθ

)
(28)  

Based on the prior assumptions on parameters, the forward model is run 
from t = 0 to t = tassim. The synthetic measurements at t = tassim are 
assimilated to estimate model parameters (θ̂) and state variable (x̂), 
defined as the expected value of the posterior distribution. In the syn-
thetic experiment, the modelled field measurements are sampled from 
the vector z by means of the operator G which maps the state-parameter 
space to the measurement space. As G in this case combines the forward 
model operator with an interpolation of the model variables to the 
location of the measurements at the slope, the interpolation in G has the 
form of [I|0] which has ”1” only at specified locations. Cdd ∈ ℝNm×Nm in 
Eq. 27 is in this case a matrix with all the diagonal elements equal to the 

Fig. 3. Setup of the data assimilation and forward model, where 
[

zf
1 zf

2 … zf
Ne

]T 
is the ensemble of prior state-parameter estimates; g is the model operator; EnKF 

represents the data assimilation (recursive EnKF); d is the measurement vector; 
[

za
1 za

2 … za
Ne

]T is the ensemble of posterior state-parameter estimates; and ℳ is 
the FoS calculation. 

Fig. 4. Setup of the data assimilation and forward model in a synthetic twin experiment, where z′ is the state-parameter vector used to create synthetic observations; 
e is normally distributed measurement noise; dsynth is the vector containing synthetic measurements; For all other symbols, please see Fig. 3. 
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variance of the measurement device. After each EnKF update, the for-
ward model is rerun from t = 0 to next assimilation step to keep the 
model state consistent with the parameter estimates of the previous step. 
The measurements at the next assimilation step are assimilated to up-
date the model state and parameter estimates. In this way, the data is 
assimilated for all the time steps. The resulting posterior ensemble of 
state- and parameter estimates is then used for the calculation of the FoS. 

3. Synthetic twin experiment 

A synthetic twin experiment is a common approach to evaluate the 
performance of data assimilation methods. In this experiment, synthetic 
measurements are generated from a synthetic “truth” data-set, which 
mimics the observed reality. The data assimilation should reconstruct 
this “truth” within the assumed accuracy of the measurements. The 
“truth” is the output from a specific simulation of the forward model 
with a certain initial state and specified model parameters, typically 
different from the mean of the prior distribution of the state and 

parameter estimates of the ensemble used in the data assimilation. By 
sampling measurements of the “true” state from the output of the 
simulation and after adding realistic noise, synthetic measurements are 
obtained. The concept of a synthetic twin experiment is illustrated in 
Fig. 4. 

An idealised slope has been considered to illustrate and test the 
approach. The geometry of the slope is shown in Fig. 5. The initial stress 
state of the slope system is calculated by using gravity loading and the 
initial pore-water pressure distribution is calculated assuming steady- 
state groundwater flow considering the water level CD. Above the line 
CD, the degree of saturation is determined by the soil water retention 
curve. This hydraulic behaviour of the unsaturated soil is modelled by 
the model of Van Genuchten (1980). Following the initial stress state, 
the slope experiences a water level fluctuation of the line CD, which is 
included via a variable hydraulic boundary condition. The water level 
fluctuation has been simulated by applying Dw = 12 − (sint + sin3t), 
where t is the time in days and Dw is the water level in meters from the 
bottom of the slope (see Fig. 6). The change of hydraulic loading are the 
only cause of deformations and are obtained from the fully coupled 
hydro-mechanical analysis. Synthetic measurements are obtained by 
sampling the model output of horizontal displacements (ux) at the 
sloping face (along the line ACB) and adding realistic noise to mimic 
geodetic measurements. For this study, synthetic measurements are 
sampled at the peaks and troughs of Dw and at regular intervals of 
200 days (see red arrows in Fig. 6). These synthetic measurements are 
assimilated after 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 and 
2000 days. 

Both the MC and HS models are used in separate analyses to test their 
influence on the results. The stiffness and (effective) strength parameters 
are decided to be estimated simultaneously, as plasticity (although no 
full plastic mechanism) can occur prior to failure. This allows both the 
serviceability limit state and ultimate limit state (slope reliability) to be 
investigated. To decide which parameters to estimate in the data 
assimilation, an average sensitivity score (AvSS) is calculated to study 
the effect of model parameters (E/Eref

50 , c
′ and ϕ’) on the horizontal nodal 

displacements at the slope. First, the sensitivity score (SS) for each 
parameter i is calculated by: 

SSi =
100
⃒
⃒F
(
θi,max

)
− F

(
θi,min

)⃒
⃒

∑n
j=1

⃒
⃒
⃒F
(

θj,max − F
(

θj,min

)⃒
⃒
⃒

(29)  

where θi is a certain parameter (E/Eref
50 , c

′ or ϕ’). The SS gives the pa-
rameter’s sensitivity, F(θi,max) is the model output (in our case horizontal 
nodal displacement at sloping face) when θi = θi,max, F(θi,min) is the 
model output when θi = θi,min and n is the total number of parameters 
varied to study the sensitivity. While studying the sensitivity of a specific 
parameters the other parameters are kept constant. The AvSS is calcu-
lated by averaging the SS for all time steps. The parameter variation and 
AvSS can be seen in Table 1. It can be concluded from Table 1 that in the 
case of the MC model E and ϕ’ and, in the case of HS model Eref

50 and ϕ’ 

Fig. 5. Geometry of the slope (dimensions in m) and black circles represents the measurement points.  

Fig. 6. Fluctuation of the water (Dw) level in CD. The red arrows represent the 
assimilation points. 

Table 1 
Parameter variation and average sensitivity score (AvSS) for MC and HS.  

Parameter variations AvSS (%)  

E/Eref
50 (kPa)  ϕ’ (◦) c′ (kPa)  MC HS 

θE/Eref
50 ,min = 10000,

θE/Eref
50 ,max = 40000  

27 10 45.44 37.62 

30000 θϕ,min = 20,
θϕ,max = 35  

10 42.77 48.53 

30000 27 θc,min = 5,
θc,max = 15  

11.78 13.84  
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are the parameters which have the highest sensitivity. Hence, these 
parameters are selected to be estimated in this study. This means that 

θ = ( E ϕ
′

)
T in the MC case and θ =

(

Eref
50 ϕ

′
)T 

in the HS case. The 

state variable (x) for both cases is horizontal nodal displacements (ux). 
The input model parameters for the synthetic measurements are 

shown in Table 2, which result in an initial factor of safety of 1.50 for 
both models representing the synthetic “truth”. To evaluate the two 
constitutive models, two separate numerical experiments are selected 
for each model: a close-to-failure and a far-from-failure prior parameter 
estimation. The synthetic measurements in both experiments are iden-
tical, but the prior ensemble of the synthetic close-to-failure case has a 
mean factor of safety of close to 1.0 while the prior ensemble of the 
synthetic far-from-failure case has a mean factor of safety of close to 2.0. 
The input model parameters for prior parameter estimation are shown in 
Table 3. The model parameters to be estimated, i.e., the stiffness (E or 
Eref

50 ) and the strength (ϕ’) parameters, are sampled from their prior 
distributions to form the prior model ensemble. 

A fully coupled hydro-mechanical analysis is conducted from t =
0 − 200 days for each ensemble member. The horizontal nodal 
displacement vector (ux) is stored in a forecast matrix (see Eq. 22) for 
each ensemble member. Then, available synthetic measurements of 
horizontal nodal displacement at t = 200 days are assimilated by using 
the recursive EnKF. The output of the EnKF provides a new estimation of 
the E/Eref

50 and ϕ’ for each ensemble member as well as the model state. 
The model parameters (E/Eref

50 and ϕ’) are then used in the fully coupled 
hydro-mechanical analysis from the initial stage (t = 0) until the time of 
the next available measurements (t = 400 days). These measurements 
are then assimilated to update the estimates of model parameters. This 
process is repeated until all data has been assimilated. 

The data is assimilated for the first 2000 days after which the forward 
model provides an estimate of horizontal displacement and FoS for the 
period from 2000 days to 3600 days. The setup uses fifty ensemble 
members for the comparison of the two constitutive models. The 
ensemble size, the number of measurements and simulated measure-
ment error are based on sensitivity analyses (Appendices A.1–A.3). 

4. Results of the data assimilation 

4.1. Displacement estimates 

In this section, the posterior horizontal nodal displacement (ux) es-
timates based on the prior and estimated parameters are presented. 
Fig. 7 shows the prior and posterior ensemble of horizontal nodal 
displacement at point A (see Fig. 5) for the four different cases. This data 
is one of the measurements used for the data assimilation. The blue lines 
represent the ensemble prediction of horizontal nodal displacement at 
point A based on the prior ensemble of parameters (see Table 3), with 
the heavy blue line representing the mean. The red lines show the 
ensemble prediction based on the estimated parameters at 2000 days. 
The green stars are the synthetic measurements at point A for different 
time steps. The time period is divided into an assimilation and a pre-
diction window. The black dashed line represents the true displacement 
at point A. 

The results of horizontal nodal displacement show a sinusoidal 
behavior, due the variable hydraulic boundary conditions. Overall, the 
spread of the horizontal nodal displacement of the prior ensemble 
(shown in blue lines) is larger than that of the estimated ensemble pa-
rameters at 2000 days (shown in red lines) in all cases. By comparing the 
results of close-to-failure case for the MC and the HS models, it can be 
seen that displacement of the HS model analysis (Fig. 7c) is larger than 
the displacement from the MC model analysis (Fig. 7a). This is due to the 
stress-dependent stiffness in the prior HS ensemble. Due to an increase in 
loading, the stiffness reduces and shear strength starts mobilizing results 
in the larger displacements. On the other hand, this is not the case in the 
MC ensemble which has single stress-independent stiffness parameter 
and perfect plasticity develops at failure. The spread in the prior dis-
tribution of the ensemble displacement is also larger for the HS model 
than for the MC model. 

In the far-from-failure case, the analysis shows that the model pro-
duces a smaller displacement than in the close-to-failure case (see 
Figs. 7a and 7b or Figs. 7c and 7d). This is because the strength prop-
erties are higher in far-from-failure, and therefore plastic deformation is 
very limited. 

4.2. Material parameter estimates 

In this section, the estimation of poorly known parameters are pre-
sented at different time steps. Fig. 8 shows the true stiffness (E/Eref

50 ) 
parameters, the initial distribution of stiffness (E/Eref

50 ) parameters and 
the estimated stiffness (E/Eref

50 ) parameters after 1000 days and 
2000 days for the close-to-failure case. The mean posterior estimate of 
the stiffness (E/Eref

50 ) approaches the true stiffness and its posterior 
variance reduces with each assimilation step. At 1000 days, the esti-
mated stiffness (E) mean and standard deviation for MC case is μE =

20663 and σE = 1642. In case of the HS model, the mean and standard 

Table 2 
“Truth” model parameters for MC and HS.  

Parameters Truth model parameters Unit 

MC HS 

Effective friction angle (ϕ’)  25 25 ◦

Effective cohesion (c′ )  10 10 kPa 

Dilatancy angle (ψ)  0 0 ◦

Young’s modulus (E) 20000 – kPa 
Eref

50  
– 20000 kPa 

Eref
oed  

– Eref
50  

kPa 

Eref
ur  – 3Eref

50  
kPa 

Poisson’s ratio (ν)  0.3 – – 
Poisson’s ratio for unloading/reloading (νur)  – 0.2 – 
Power (m) – 0.5 – 
Unsaturated unit weight (γd)  19 19 kN/m3 

Saturated unit weight (γs)  20 20 kN/m3 

Hydraulic conductivity (kx = ky)  1.0 1.0 m/day 
VGM parameter (ga)  3.83 3.83 m− 1  

VGM parameter (gn)  1.3774 1.3774 – 
VGM parameter (gl)  1.25 1.25 – 

Saturated volumetric water content (θs)  0.403 0.403 – 
Residual volumetric water content (θr)  0.025 0.025 – 

*Note: VGM stands for Van Genuchten model and the properties are taken from 
Wösten et al. (1999). 

Table 3 
Initial estimation of model parameters for MC and HS.  

Parameters Close-to-failure case Far-from- failure case Distribution Unit 

Effective friction angle (ϕ′ )  μ = 20, σ = 3 (both)  μ = 35, σ = 2 (both)  Normal ◦

Young’s modulus (E) μ = 25000, σ = 5000 (MC)  μ = 25000, σ = 5000 (MC)  Normal kPa 

Eref
50  

μ = 25000, σ = 5000 (HS)  μ = 25000, σ = 5000 (HS)  Normal kPa  
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deviation of stiffness (Eref
50 ) at 1000 days is μEref

50
= 19874 and σEref

50
=

1363. At 2000 days, the estimated mean stiffness and standard de-
viations for the MC and the HS model simulations are μE = 20565 and 
σE = 655 and μEref

50
= 19572 and σEref

50
= 1053, respectively. Fig. 9 shows 

that effective strength parameter (ϕ’) for both models improves sub-
stantially during the first 1000 days, and changes less after that. The 
response of both models is similar for close-to-failure case. 

Figs. 10 and 11 show the parameter estimation for far-from-failure 
case. Fig. 10 shows that the mean of the stiffness parameters (E/Eref

50 ) 
also approaches towards the true stiffness and shows the similar trend as 

of close-to-failure case for both the MC and the HS model. Fig. 11 shows 
the initial and estimated effective strength parameter (ϕ’) at 1000 days 
and 2000 days. The effective strength parameter (ϕ’) does not improve 
in the case of MC model. However, the effective strength parameter (ϕ’) 
significantly improves in estimates of the HS model and the posterior 
ensemble mean approaches the true solution. The effectiveness of the 
data assimilation is likely related to the dependence of the stiffness Eref

50 
to the effective strength parameter (ϕ’) (see Eq. 5) as well as the 
dependence of horizontal nodal displacement to stiffness and strength 

)b()a(

(c) (d)

Fig. 7. Ensemble prediction of the horizontal displacement based on (i) the prior ensemble of parameters (blue lines) and (ii) estimated parameters at 2000 days, 
after all data have been assimilated (red lines). Green stars represent the measurements in assimilation window and the black dashed line represents the true 
displacement at point A of the slope. 

Fig. 8. Estimation of stiffness parameter for the MC and HS soil models at 
t = 1000 and t = 2000 days (close-to-failure). Fig. 9. Estimation of friction angle for the MC and HS soils model at t = 1000 

and t = 2000 days. Two curves (1000-day_HS_ϕ
′

and 2000-day_MC_ϕ
′

) are 
overlapping in this figure (close-to-failure). 
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parameters at all stages in the HS model, whereas there is no dependence 
between these parameters in the MC model. In the MC model far-from- 
failure case, only very limited plasticity occurs in the ensemble mem-
bers, leading to a negligible (or zero) cross-correlation between the 
effective strength parameter (ϕ’) and horizontal nodal displacement (ux) 
in the covariance matrix (see Eq. 25). 

4.3. Factor of safety 

The ultimate objective of this study is to improve the estimate of the 
FoS making use of available measurements of slope deformation. 

Fig. 10. Estimation of stiffness for the MC and HS soil models at t = 1000 and 
t = 2000 days (far-from-failure). 

Fig. 11. Estimation of friction angle for the MC and HS soil models at t = 1000 
and t = 2000 days. Two curves (1000-day_HS_ϕ’ and 2000-day_HS_ϕ’) are 
overlapping on the left side and three curves (Prior ϕ’, 1000-day_MC_ϕ’ and 
2000-day_MC_ϕ’) are overlapping on the right side of figure (far-from-failure). 

Fig. 12. Probability distribution of factor of safety at 2000 days based on the 
prior and estimated parameters at 1000 and 2000 days (close-to-failure). 

Fig. 13. Probability distribution of factor of safety at 2000 days based on the 
prior and estimated parameters at 1000 and 2000 days. Two curves (FoS_H-
S_estimated parameters at 1000 days and FoS_HS_estimated parameters at 
2000 days) are overlapping on the left side and three curves (FoS with prior 
parameters, FoS_MC_estimated parameters at 1000 days and FoS_MC_estimated 
parameters at 2000 days) are overlapping on the right side of the figure (far- 
from-failure). 

Fig. 14. Probability distribution of factor of safety at 3000 days based on the 
prior and estimated parameters at 1000 and 2000 days (close-to-failure). 
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Figs. 12 and 13 show the FoS distributions for the two models at 
2000 days with the prior parameters and the parameters estimated using 
data until 1000 and 2000 days. In the close-to-failure case (see Fig. 12), 
the FoS estimated from the model simulation with the prior parameters 
has a distribution with mean (μFoS)= 1.26 and standard deviation 
(σFoS)= 0.327. With parameters estimated at 1000 days and 2000 days, 
only very limited differences are observed between the factors of safety 
as calculated using the two constitutive models. Both models show a 
substantial effect of the data assimilation on the FoS estimate, giving a 
better approximation of the true FoS, and resulting in a posterior FoS 
estimate with a small variance. Often slopes are required to be assessed 
against a target reliability, and a narrower disitribution of FoS suggests a 
higher reliability. This will likely have a positive effect on the assess-
ment of this FoS against a target reliability. In the far-from-failure case, 
similar behaviour of the FoS estimation is observed as in the case of the 
estimation of the strength parameter (ϕ’) in Section 4.2, i.e., the MC 
model results are substantially unaffected by the data assimilation, 
remain far from the truth and have a broader distribution of the poste-
rior estimate of the FoS. As a consequence, in the far-from-failure case, 
the slope reliability of the MC model does not appear to be realistic, 
despite of the assimilation of measurements of displacement. 

To demonstrate the behaviour of the models during the prediction 
window, the factor of safety is plotted at 3000 days in Fig. 14 for the close- 
to-failure case for both material models. It can be seen that the posterior 
estimate of the factor of safety remains stable throughout the prediction 
window. This is not surprising, considering the stable behaviour of the 
simulations during this time (Fig. 7) and the fact that there are no tem-
poral material behaviour or geometry changes in the model. 

5. Discussion 

The above analyses reveal a number of key points regarding the use 
of data assimilation in geotechnical analyses. For most realistic slopes 
(FoS<≈ 3), the results suggest that there is scope with relatively limited 
stress perturbations to improve reliability estimations using displace-
ment measurements. 

With the MC model, the most commonly used geotechnical material 
model, horizontal displacement has no dependence on the strength pa-
rameters in the elastic region, this means that these parameters have 
dependence only if sufficient plasticity is occurring, i.e., in the close-to- 
failure case. A good estimate of the prior ensemble is needed for this 
material model, given that there needs to be a dependence on the 
displacement and the strength properties, in the representation of the 
model error covariance of the assimilation scheme (Eq. 25). In contrast, 
the HS model has a dependence of the elastic behaviour on the strength 
parameters (Eqs. 5, 6, 8), which means that even with a prior estimation 
that is less accurate, the data assimilation will be effective. This result 
stresses the importance of choosing a constitutive model for data 
assimilation which is able to characterise the typical interplay between 
strength (as represented by the friction angle parameter) and stiffness. 

It can also seen that the number of measurements and number of 
ensemble members is able to be lower for the HS model (Appendices A.1 
and A.3). This may be counter-intuitive, given that it is more complex 
and resembles more realistic geotechnical behaviour, however this is 
likely due to the stronger correlation between the strength and stiffness 
parameters in the HS model. Both of these effects will have the impact of 
reducing computational effort of the analyses, which will be significant 
in more complex analyses. 

The notion that, especially in the case of the HS model, the assimila-
tion of measurements of displacement leads to more realistic estimates of 
the strength and stiffness parameters and the associated nodal displace-
ment in the slope, already after a small number of assimilation steps, 
suggests that the use of data assimilation techniques for slope-reliability 
estimates are promising. It should be noted though, that this study de-
scribes a synthetic case only, and assumed values of measurement errors 

have optimistic values. A more realistic configuration with more realistic 
model properties will require further study. Specifically, the spatial 
variability of materials within the slope has not been taken into account, 
and it is thought that this will have an impact, in particular on the 
required number of measurement points. Moreover, the temporal sam-
pling of the measurements in this study has been regular and beneficial 
for the reconstruction of the temporal variations of the deformation. 
Additional research would be required to investigate the performance of 
the data assimilation setup under different measurement conditions. 

Key limitations of this approach (EnKF) include (i) the Gaussian 
approximation in the update scheme, which means that the EnKF is 
difficult to implement on non-Gaussian problems; (ii) the recursive na-
ture of the recursive EnKF, which results in restarting realizations after 
each parameter update step, which can be computationally expensive. In 
this study, computational expenses are furthermore increased by the 
need to run ensemble realizations sequentially due to the way licenses of 
PLAXIS software are linked to specific computational nodes. 

6. Conclusion 

The influence of two different constitutive models on factor of safety 
is studied by using data assimilation with the recursive ensemble Kal-
man filter in a slope stability model. In a synthetic twin experiment that 
mimics a slope geometry and assimilates synthetic measurements of 
slope deformation into a hydro-mechanical model, the use of the Mohr- 
Coulomb and the Hardening Soil models is tested. The HS model is seen 
to estimate the factor of safety with a narrow posterior distribution, 
starting from a wide prior distribution of material parameters, including 
those not encompassing the actual parameters. For this calculation, the 
HS model requires less computational effort than the MC model for 
similar or even more accurate estimates of horizontal displacement. The 
results suggest that constitutive models which have an influence of the 
strength behaviour in the elastic zone, e.g. those which include a smooth 
transition between elastic and plastic zones, are more effective in data 
assimilation schemes than those in which the relation between stiffness 
and strength parameters is less well represented. When choosing a 
constitutive model that captures these relations, the results of this study 
suggest that the use of data assimilation techniques for slope-reliability 
estimates offers the opportunity to improve slope-reliability estimates 
with relatively limited stress perturbations. 
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Appendix A. Sensitivity of the displacement estimates to the data assimilation setup 

A sensitivity analysis is conducted to study the influence of number of measurements, measurement error and ensemble size on the numerical data 
assimilation setup to the displacement estimates. In order to evaluate the final results, the normalised root mean square error (NRMSE) is calculated 
for the horizontal nodal displacement in the entire model domain. Considering that the root mean square error RMSE of horizontal nodal displacement 
(in meters) is given by: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nux

∑Nux

i=1

(
uxt

i
− uxe

i

)2

√
√
√
√ . (30)  

The NRMSE is given by: 

NRMSE =
RMSE
RMSEi

(31)  

where Nux is the total number of unknown horizontal displacements in the slope, i.e., the number of nodes in the model, uxt
i 
is the true horizontal nodal 

displacement at node i and uxe
i 
is the estimated horizontal nodal displacement at this node. The normalised root mean square error (NRMSE) is the ratio 

between the RMSE and its value for the prior RMSE estimate. The normalisation facilitates the comparison of the resulting deformations of different 
magnitudes. The lower the NRMSE, the closer the result is to the true displacement. It should be kept in mind that the expected value of the difference 
between uxt

i − uxe
i should in the ideal case be equal to the measurement error. In this section, the sensitivity analysis for the close-to-failure case is 

presented, i.e., the case where the prior ensemble of parameters have been selected such, that the slope is in a condition close to failure. Note that while 
studying the sensitivity of one factor of the data assimilation setup, the other factors are kept constant. 

A.1. Sensitivity to the number of measurements 

In order to choose the required number of measurements in data assimilation scheme for the model comparison, several cases with different 
number of measurements are selected. Fig. 15 shows the NRMSE for different number of measurements (m) for the MC and the HS model. All 

(a)

(b)

Fig. 15. RMSE estimation of the horizontal nodal displacement for different number of measurements for the (a) MC and (b) HS material models.  
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measurement points are located on the sloping face starting from point A towards C (see Fig. 5). A set of m = 2, 5, 10 and 20 measurements is selected 
to study the sensitivity of the horizontal displacement estimate to the number of measurements. Fig. 5 illustrates the location of the measurements for 
the number of measurements m = 10. The NRMSE for all nodal points in the mesh geometry is plotted against the time, and is seen to generally 
decrease with time, meaning that after each assimilation step, the resulting deformation estimate is closer to the truth. 

It can be seen from Fig. 15a that the NRMSE for the MC case converges more slowly towards the expected value for the NRMSE when m = 2 and m =
5. Some fluctuations in the NRMSE values are observed with this number of measurements. However, in the case of m = 10 and m = 20, the solution 
quickly approaches the expected value of the NRMSE, with the majority of the improvement occurring within the first data assimilation steps. In case 
of the HS model, the NRMSE of the estimated horizontal displacement does not fluctuate (see Fig. 15b). The NRMSE reaches its expected value even 
with a relatively low number of measurements (m = 2 or 5). It can be seen from Fig. 15 that m>=10 appears to be an effective choice for the number of 
measurements for both models. Because of this, a value of m = 10 was used in Section 4 of this study. 

A.2. Sensitivity to the measurement error 

In order to study the effect of the measurement error, several experiments are performed with different measurement error variance. Fig. 16 shows 
the NRMSE of horizontal nodal displacement resulting from different choices of the measurement error variance ∊. In case of the MC model (see 
Fig. 16a), it can be seen that the when the error variance is 10− 5 m2, the NRMSE fluctuates, but does not converges towards the expected value of the 
NRMSE, which should be for each case equal to the value of ∊ chosen for that case. For error variance of 10− 6 m2, the NRMSE still fluctuates. For error 
variances less than 10− 6 m2, the solution is seen to quickly approach its expected value. 

In case of the HS model (see Fig. 16b), the NRMSE fluctuates when the error variance is 10− 5 m2, but with a significantly lower level than for the 
MC model. When the error variance is less than 10− 6 m2, a satisfactory solution is obtained. For both models, the horizontal displacement approx-
imates the true horizontal displacement within the assumed error margin when the error is less than 10− 7 m2. In a realistic case, measurements of 
deformations at the slope would be available from geotechnical devices (inclinometer, laser sensor, extensometer) or geodetic measurements 
(levelling, InSAR or laser). With current geodetic/geotechnical measurement techniques (e.g. Hou et al., 2005; Lovas et al., 2008; Abellán et al., 2009) 
it is realistic to measure at an accuracy of ≈1 mm (equivalent to an error variance of 10− 7 m2), therefore a value of 10− 7 m2 measurement error is 
assumed in Section 4 of this study. 

(a)

(b)

Fig. 16. RMSE estimation of the horizontal nodal displacement for different choices of the measurement error variance for the (a) MC and (b) HS material models.  
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A.3. Ensemble size 

Several cases with different ensemble members (Ne) are used to study the influence of different ensemble sizes on the estimate of the horizontal 
nodal displacement in the mesh of the synthetic slope. Fig. 17 shows the NRMSE resulting from different ensemble sizes. In case of the MC model 
(Fig. 17a), the NRMSE reduces to around 10% of the prior RMSE and then oscillates when the number of ensemble members is less than 50. In case of 
the HS model (Fig. 17b), the NRMSE converges towards the expected value of the NRMSE with ensemble members, Ne⩾ 30. For this reason, an 
ensemble size of Ne = 50 is selected in Section 4 of this study. 

Appendix B. Algorithm for the Python data assimilation interface with PLAXIS 

In this section, a general algorithm (Algorithm 1) of the computation and a partial source code is presented. 

Algorithm 1. A general algorithm for the python data assimilation interface with PLAXIS. In this algorithm, h is the FEM analysis, and p refers to the 
constant properties during FEM and data assimilation, i.e., geometry and various material properties. For all other symbols see the manuscript.    

Input: Prior parameter distributions, Dw, p, d   
Output: Za, FoS   

1: Initialisation ▹ Python 
2: Read input and define variables ▹ Python 
3: Initialise the state-parameter vectors for all ensemble members ▹ Python 
4: Develop a connection between Python and PLAXIS ▹ Python 
5: while t⩽tassim do  ▹ Python 
6: Read water level time series Dw(t)
7: while i⩽Ne do   
8: Instruct PLAXIS to set up realisation i ▹ Python 
9: Instruct PLAXIS to execute realisation i until assimilation time t ▹ Python 

10: Execute PLAXIS simulation, such that ux,FoS = h(θ,Dw,p) ▹ PLAXIS 
11: Extract required output from PLAXIS (i.e. ux) and develop Zf  ▹ Python 
12: Compute data assimilation analysis, Za = EnKF(Zf ,d,p) ▹ Python  

(a)

(b)

Fig. 17. RMSE estimation of the horizontal nodal displacement for different ensemble size for (a) MC and (b) HS material models.  
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B.1. Key elements of source code
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