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Full operator preconditioning and the accuracy of solving

linear systems

Stephan Mohr∗ Yuji Nakatsukasa† Carolina Urzúa-Torres ‡

Abstract

Unless special conditions apply, the attempt to solve ill-conditioned systems of linear
equations with standard numerical methods leads to uncontrollably high numerical error.
Often, such systems arise from the discretization of operator equations with a large number
of discrete variables. In this paper we show that the accuracy can be improved significantly
if the equation is transformed before discretization, a process we call full operator pre-
conditioning (FOP). It bears many similarities with traditional preconditioning for iterative
methods but, crucially, transformations are applied at the operator level. We show that while
condition-number improvements from traditional preconditioning generally do not improve
the accuracy of the solution, FOP can. A number of topics in numerical analysis can be
interpreted as implicitly employing FOP; we highlight (i) Chebyshev interpolation in poly-
nomial approximation, and (ii) Olver-Townsend’s spectral method, both of which produce
solutions of dramatically improved accuracy over a naive problem formulation. In addition,
we propose a FOP preconditioner based on integration for the solution of fourth-order dif-
ferential equations with the finite-element method, showing the resulting linear system is
well-conditioned regardless of the discretization size, and demonstrate its error-reduction
capabilities on several examples. This work shows that FOP can improve accuracy beyond
the standard limit for both direct and iterative methods.

1 Introduction

Ill-conditioned linear systems Ax = b cannot be solved to high accuracy: even with a backward
stable solution x̂ satisfying (A + ∆A)x̂ = b with ‖∆A‖2 = O(ε‖A‖2) where ε is on the order
of machine precision, it is well known that we only have ‖x̂− x‖2/‖x‖2 . εκ(A), where κ(A) =
‖A‖2‖A−1‖2 denotes the 2-norm matrix condition number [31, § 1.6]. In other words, once the
linear system has been set up, there is no way to reduce the numerical error, except by going to
higher-precision arithmetic or employing a symbolic solver [22, § 7.3], [31, § 1.3].

In this paper, we present and discuss a method that attempts to circumvent this deadlock
by taking the only possible route out: Reformulating the problem. The method is applicable
to systems of linear equations arising from the discretization of an equation posed in continu-
ous spaces, where the matrix of coefficients is the finite-dimensional representation of a linear
operator. Here it is often the discretization size that determines the conditioning of the linear
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problem: the higher the number of rows and columns of the matrix, the worse its conditioning
typically becomes, until one obtains garbage or even numerical blow-up [30].

Our approach is inspired by the preconditioning of linear systems used for the acceleration
of iterative methods. It shares the goal of transforming the problem into one that is more easily
solvable, and—often used as a historical explanation for the term “preconditioning” [47]—it usu-
ally aims at reducing the condition number. The crucial difference is the level of abstraction at
which the transformation takes place: Whereas traditional preconditioning applies transforma-
tion matrices to the potentially ill-conditioned linear system after discretization has taken place,
the presented method transforms the operator itself before discretization. We call our approach
full operator preconditioning (FOP), emphasizing the structural similarities, but indicating that
transformations take place on the operator level instead of the matrix level, and distinguishing
it from what is conventionally called operator preconditioning or PDE-inspired preconditioning
by other authors [3, 32, 35], which is a form of traditional preconditioning; see Section 2.4 for a
discussion.

Traditional (matrix) preconditioning has the goal of speeding up an iterative method for
solving linear systems by clustering the spectrum of the preconditioned matrix, so that a Krylov
subspace method converges in a small number of iterations [47]. While reducing conditioning
is sufficient in the symmetric case, it is neither sufficient nor necessary for fast convergence for
general matrices [22, Chapter 3.2]. An underappreciated fact is that, unless special structure is
present, matrix preconditioning does not improve the accuracy of the computed solution. FOP,
by contrast, does.

To illustrate the idea of FOP, we give the following rough example: Let L be a linear differ-
ential operator and u and f functions such that

Lu = f. (1.1)

Precise definitions are given in the next sections. This equation is normally tackled by choosing
an appropriate discretization such as finite differences [33], finite elements [29] or spectral meth-
ods [21, 44], which represents the operator L as a square matrix L. If L is highly ill-conditioned
κ(L) ≥ ε−1, then computed results could be useless even with an excellent (backward stable)
method.

Now assume that there is a solution operator R inverting the differential operator L with
appropriate boundary conditions. By applying R from the left, we transform equation (1.1) to

Iu = g, (1.2)

with the identity operator I and right-hand side g = Rf . While the form of equation (1.2) may
look tautologous with the trivial solution u = g, it was chosen intentionally to point out that
it is amenable to the same discretization-plus-numerical-solver strategy as the original equation.
But now the operator to be discretized is the identity instead of the differential operator L. A
reasonable discretization scheme then leads to well-conditioned matrices regardless of the the
number of terms.

Equation (1.1) is a type of operator equation. These equations are all tackled in a similar
fashion, and examples besides differential equations include integral equations and interpolation
[40, Ch. 12]. All examples considered later in this paper arise from operator equations. For this
reason, we dedicate the first part of Section 2 to introduce their discretization. We also discuss
two types of error—numerical and discretization error—which are affected differently by changing
the discretization. We then give our formal definition of FOP, highlighting the contrasts with the
traditional notion of preconditioning. We then explain why FOP can help improve the accuracy
in solving ill-conditioned linear systems while matrix preconditioning in general cannot, a fact
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that has been treated as a sidenote in the literature [22, § 7.3], and is—to our knowledge—first
discussed here in full detail.

As we will see, FOP is already implicitly part of many methods of numerical analysis. In
the following three sections, we demonstrate the power of the full-operator approach with three
examples. We start by looking at the classical subject of polynomial interpolation of a univariate
function. In Section 3.1, we formulate the task as the discretization of an operator equation
involving the identity operator. We interpret changes between different bases of polynomials as
FOP and show that such a change can lead to system-size-independent conditioning, completely
removing numerical instabilities.

Section 4 continues with a discussion of spectral methods. We investigate a method by Olver
and Townsend [39]: a change from Chebyshev to ultraspherical polynomials leads to a remarkable
reduction of the condition number and accurate solution. This can be regarded as an application
of FOP, however, it is not identified as such in the original paper.

In section 5, we turn to finite-element discretizations. Generalizing the observations in the
previous sections, we design a FOP preconditioner for fourth-order differential equations in one
dimension. It is based on the idea of solving the biharmonic equation algorithmically for the
finite-element basis functions and, as we show in Section 5, it reduces the growth of the norm
of associated matrices from O(n4) to O(1) while also guaranteeing their invertibility. Numerical
examples illustrate that it allows reduction of the total error below the limit imposed by numerical
error in the unpreconditioned system.

FOP is also related to the literature on integral equations. By recasting a problem (often
differential equation) as an integral equation, the resulting conditioning of the linear system is
often significantly better (e.g. [24, 25]), leading to more accurate solutions. This paper shows
that a similar idea can be employed in a number of problems in numerical analysis.

We conclude the paper with a summary, an outlook onto potential topics of further research,
and a statement about the implications of the topics discussed in this paper.

2 Mathematical basics

2.1 Numerical solution of operator equations

Let L be an operator between two infinite-dimensional Hilbert spaces V and W ,

L : V →W,

where L, V and W may encode boundary conditions as appropriate.
Suppose we are given the equation

Lu = f, (2.1)

where f ∈W , and we seek the solution u ∈ V .
Given n ∈ N, we approximate the solution u by a linear combination of trial basis functions

{φi}ni=1

ū :=

n∑
k=1

ukφk, with uk ∈ Rn, k ∈ {1, . . . , n} (2.2)

and we call Vn = span{φi}ni=1 the trial space. Further, we choose the same number of linearly
independent test basis functions {ψi}ni=1, which span the test space Wn = span{ψi}ni=1. These
basis functions are chosen such that Vn ⊂ V and Wn ⊂W .
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Inserting the approximation (2.2) into the operator equation (2.1) and taking the scalar
product inW with each of the test functions, we obtain a linear system of n equations for the same
number of unknown coefficients. Assembling the coefficients in the vector u = (u1, . . . , un) ∈ Rn,
we write the system in matrix form

Lu = b, (2.3)

where b and L have entries

b[j] = (ψj , f)W , for j ∈ {1, . . . , n},
L[j, k] = (ψj ,Lφk)W , for j, k ∈ {1, . . . , n},

(2.4)

and where (·, ·)W is the scalar product defined on the Hilbert space W . The linear system (2.3)
is then solved with an iterative or direct method [41] for computing a numerical solution û.

Solving the original equation (2.1) this way introduces two sources of error: First, there is
the error between the true solution u of (2.1) and its approximation by trial basis functions
ū =

∑n
k=1 ukφk, where uk are the components of the exact solution u to equation (2.3). We call

this the discretization error ED := ‖u− ū‖.
The other type of error is the numerical error EN := ‖u− û‖, which represents the error in

solving (2.3) in finite-precision arithmetic to obtain the computed solution û, and is estimated

by ‖u−û‖2‖u‖2 = O(εκ(L)).

Since the overall error of a computed solution is roughly the sum ED +EN of the discretiza-
tion and numerical errors, to obtain high accuracy we need both to be small. A ubiquitous
phenomenon in numerical analysis is that while increasing the discretization size n usually re-
duces ED, it also often worsens the conditioning of the linear system, thus increasing EN . For
small n we always have ED � EN ; as we increase n, at some point EN becomes the dominant
term, i.e. EN � ED. Moreover, EN keeps growing with n, resulting in a V-shaped accuracy
curve with respect to n; see e.g. [6, Fig. 3.3] and Figures 5.1,5.3. The goal of FOP is to suppress
the growth of EN and obtain an accuracy curve that improves steadily with n.

It is worth noting that in low-order methods such as some finite-difference and finite-element
methods, it has traditionally been ED that dominates; numerical errors and conditioning there-
fore appear to have gained little attention in the FEM literature. However, this may well change:
first, when high accuracy is needed, n may need to be large enough to enter the regime EN � ED.
Second, and more nontrivially, the breakeven point where ED ≈ EN = O(εκ(A)) depends on the
working precision ε, and a compelling line of recent research is to use low-precision arithmetic for
efficiency [1] in scientific computing and data science applications. In such situation, EN would
start dominating for a modest discretization size, making FOP an important technique to retain
good solutions.

2.2 Matrix-level preconditioning and FOP

As we review in the next section, in addition to larger errors, high condition numbers also often
result in a long runtime for many iterative methods which are chiefly employed for the solution
of this type of equation. This makes a reduction of κ(L) desirable, both for reasons of numerical
stability and computational speed. Two such reduction methods are contrasted in this paper,
which we call matrix preconditioning and FOP, respectively. We introduce them now.

One approach is to manipulate the equations after discretization. Traditionally, precondition-
ing involves the definition of suitable matrices Rl and Rr ∈ Rn×n, one potentially the identity,
and subsequent solution of

RlLRrv = Rlf , (2.5)
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for v ∈ Rn. The coefficient vector solving the original problem is obtained by

u = Rrv.

This is what we call matrix preconditioning. Note that Rl and Rr do not necessarily need to be
available as matrices; for many algorithms it suffices to be able to compute their linear action
on a vector [47]. The term matrix preconditioning instead refers to the fact that preconditioning
takes place after matrices have already been computed, in contrast to the next method.

In our main subject of FOP, instead of applying changes after the discretization has taken
place, we manipulate the equation on the operator level. Let

Rr : Ṽ → V, Rl : W → W̃

be linear operators and consider the equation

RlLRrv = Rlf. (2.6)

This is formally identical to the original operator equation (2.1), but with different (potentially
better) numerical properties. We now solve (2.6) as before: we choose new test and trial spaces

Ṽn = span (Φ1, . . . ,Φn) ⊂ Ṽ , W̃n = span (Ψ1, . . . ,Ψn) ⊂ W̃ ,

and discretize analogously as before to obtain

L̃ũ = b̃, (2.7)

where

L̃[j, k] = (Ψj ,RlLRrΦk)
W̃
, b̃[j] = (Ψj ,Rlf)

W̃
.

The solution of the original system is then approximated by u =
∑n
k=1 ũkRrΦk, where ũ =

(ũ1, . . . , ũn) is the solution of equation (2.7).

2.3 Operator preconditioning and FOP

It is crucial to distinguish FOP here from what is sometimes called operator preconditioning or
PDE inspired preconditioning in the literature [3, 32, 35]. They propose to find R : W → V
such that RL (resp. LR) is an endomorphism on the continuous level. Then, each operator
is discretized separately. Under some conditions on the discretization, the resulting matrices
are guaranteed to fulfill certain properties that make the matrix product RL (resp. LR) well-
conditioned. Importantly, in these methods, the system matrix L is not changed. Hence, in the
classification above, these are examples of matrix preconditioning.

Nevertheless, the operators proposed as continuous models for matrix preconditioners in [3]
and [35] lead to very potent FOP preconditioners, and the class of operators considered in [3]
contains the FOP preconditioners used in Sections 4 and 5 of this work, such that operator
preconditioning and FOP take inspiration from the same source.

FOP can also be understood as a change of the trial and test bases in V and W , with no
additional operators involved. Let R∗l : W̃ →W denote the adjoint of Rl. Then choosing

Vn = span{RrΦi}ni=1, Wn = span{R∗l Ψi}ni=1,

as trial and test spaces instead of the original span{φ1, . . . , φn} and span{ψ1, . . . , ψn} and fol-
lowing the regular discretization procedure in (2.3) with no preconditioning leads to the same
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system as the FOP procedure in (2.6). This equivalent formulation is sometimes helpful for
understanding an algorithm as an application of FOP or for deriving the form of the operators
R.

Independent of the interpretation of the preconditioning, a central requirement for FOP,
besides the abstract definition of suitable R, is the ability to compute elements of the matrix L̃
to sufficient accuracy—in particular an accuracy that is independent of the system size n and
the condition number κ(L) of the original matrix. If this is possible, FOP provides a way to
decidedly improve the numerical error. Before we make this statement more specific, we discuss
the power and limitation of matrix preconditioning.

2.4 Matrix preconditioning improves speed but not accuracy

A classical convergence bound for the conjugate gradient (CG) method shows that for a positive

definite linear system Lu = b, the L-norm error converges exponentially with constant

√
κ(L)−1√
κ(L)+1

.

Similar bounds hold for MINRES for symmetric indefinite systems [22, Chapter 8], [34]. Tra-
ditional matrix preconditioning thus aims to reduce the condition number, thereby speeding up
convergence. When GMRES is applied to nonsymmetric/nonnormal linear systems, reducing
the condition number does not necessarily improve speed [23]; however, one could solve the nor-
mal equation by CG once the system is well conditioned. Krylov subspace methods generally
converge rapidly when the spectrum is clustered at a small number of points away from 0; some
preconditioners aim to achieve this [47].

While a good (matrix) preconditioner can dramatically improve the speed, an aspect that is
often overlooked is that it does not improve the accuracy of the solution. A brief comment on
this is given in [22, Chapter 7.3].

To gain insight, consider the following situation: Let L be a matrix with arbitrary condition
number, and suppose we want to solve the equation

Lx = b (2.8)

Suppose also that an effective preconditioner R is available, so that RL is close to the identity.
Then the condition number of R must be similar to that of L: the matrix R approximates L−1,
and κ(L) = κ(L−1).

When solving (2.8) with a preconditioned iterative algorithm, each iteration involves one
multiplication of the current iterate by each L and R, see again [22, Chapter 8]. By [31, (3.12)],
matrix-vector multiplication on a computer suffers from an error proportional to the norm of the
matrix and the vector: It holds

fl(Lv) = Lv + ζ, with ‖ζ‖2 ≤ ε‖L‖2‖v‖2, (2.9)

where ε ≈ 10−16 is close to machine precision and fl(·) denotes the result of a floating-point
computation. Using the same fact again, we find

fl(R(Lv + ζ)) = R(Lv + ζ) + ξ, with ‖ξ‖2 ≤ ε‖R‖2‖Lv + ζ‖2.

Together, this leads to the estimate

‖RLv − fl(Rfl(Lv))‖2 = ‖Rζ + ξ‖2 ≈ 2ε‖R‖2‖L‖2‖v‖2 ≈ 2εκ(L)‖v‖2. (2.10)

Thus, if κ(L)ε is large, the error introduced in each iteration is large as well, and we can
not hope to obtain O(ε) accuracy in any of the iterates. This represents no improvement from
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nonpreconditioned iterative methods, for which the optimal residual is in the order of ε‖L‖‖u‖2,
see [22, section 7.3], implying a bound on the relative error from the true solution of εκ(L).

As discussed in the introduction, the εκ(L) error bound is also the “best” bound with a direct
method that gives a backward stable solution. Regardless of the preconditioner or numerical
method, it is essentially impossible to obtain a solution with better than εκ(L) accuracy, once
the linear system is given.

It should be noted that these are all worst-case estimates. However, the following example
as well as the more realistic analyses in Sections 3.2, 4.1 and 5.1 show that such bounds give
a good sense of the order of magnitude of the actual error. In Figure 2.1, five random ma-
trices with varying condition number were generated in Rn×n with n = 100 as L = USU>,
where S = diag{1, 2, . . . , n} and U ∈ Rn×n is a random orthogonal matrix. The exact solution
was drawn randomly from Rn. The systems were solved using three methods: (i) GMRES; (ii)
preconditioned GMRES, using the inverse of the matrix as a preconditioner, computed via im-
plementing L−1 = US−1U>; and (iii) a direct solver, using LU factorization with pivots. With
unpreconditioned GMRES, the relative error decreases at first, more rapidly for lower condition
numbers. It then stagnates at a value (which we call the limiting error) that is proportional to
the condition number of the matrix, close to the upper bounds in equation (2.10), as indicated
by ticks of the y-axis. Crucially, the preconditioned GMRES method converges in a single step
but leads to roughly the same limiting error. The relative error of the solution obtained from
the direct method lies close to this bound as well.

Figure 2.1: Relative error as a function of iteration count for GMRES on linear systems with
prescribed condition numbers in R100×100. The left panel shows unpreconditioned GMRES, the
right preconditioned GMRES with L−1 as the preconditioner. Dashed lines in the left panel
indicate the error of the solution obtained with a direct method. Ticks in the y axis are set at
εκ(L) for the different used matrices L, where ε = 10−16 is close to machine precision.

This illustrates that the limiting error of the numerical solution roughly scales linearly with
κ(L), no matter what algorithm or preconditioner is used.

One exception to this is when special structure in the matrices can be exploited. When tighter

7



bounds than (2.9) hold, matrix preconditioning does improve the condition number and error
with the same factor. If, for example, the matrix preconditioner is diagonal, multiplication can be
performed row or column-wise with machine accuracy, as no summation of elements is involved.
In fact, diagonal preconditioning is often equivalent to one of the simplest forms of FOP, namely,
the rescaling of the basis. However, unless such special cases apply, matrix preconditioning only
improves the speed of iterative methods.

So far in this section, we have seen that ill-conditioned matrices lead to high numerical error,
and that matrix preconditioning does not alleviate this issue. This holds even when the matrix
preconditioner improves the convergence of iterative methods as if the preconditioned system
has a lower condition number. When error reduction is desired, the only effective alternative is
to remove the ill-conditioning altogether. This is what FOP achieves.

With FOP, it is possible to obtain a solution to the original problem but through a different
linear system L̃ũ = b̃ with significantly lower condition number κ(L̃). The system matrix L̃ can
be obtained precisely, as it is not the result of some potentially ill-conditioned matrix operation.
The system can then be solved with improved accuracy (and speed if an iterative solver is used).
Coming up with a good preconditioner for FOP is not trivial. However, some rules can guide
this process. The next section introduces the framework which will be used to investigate FOP
preconditioners.

It is worth reiterating that to improve accuracy with FOP, the goal should always be to
reduce the conditioning: If the spectrum is clustered but κ(L̃) = κ(L), then only the speed will
be improved, and not the accuracy.

2.5 Operator-norm inheritance by discretized matrix

As the condition number is composed of the norm of the matrix and its inverse, both factors
need to be bounded to control its growth. Bounding the norm of the inverse, or even ensuring
invertibility at all, is often a complex issue that involves additional assumptions in many solution
algorithms [7]. Few general statements can be made, and bounds in the following sections are
established on a case-by-case basis. On the contrary, simple bounds for the norm of the matrix
are available. They are inherited from the boundedness of the operator in the continuous setting.
This is known and commonly used in the analysis of Galerkin methods, yet often overlooked in
other contexts. We therefore discuss this here in more generality.

As a necessary assumption for most standard stability theorems concerning the solution of
the original equation [10, Chapter 6], [12, Chapter 1], we assume the operator L : V →W to be
continuous, i.e. there is a constant CL > 0 such that

‖Lv‖W ≤ CL‖v‖V , for all v ∈ V,

where ‖ · ‖W and ‖ · ‖V are the norms induced by the scalar products on W and V . The infimum
of all such constants CL is called the norm of the operator, and we denote it by ‖L‖. Note that
this norm depends on the norms of the spaces V and W . Since ‖ · ‖W is induced by a scalar
product, the norm of L is given by

‖L‖ = sup
v∈V
v 6=0

‖Lv‖W
‖v‖V

= sup
w∈W
w 6=0

sup
v∈V
v 6=0

(w,Lv)W
‖w‖W ‖v‖V

.

An analogous statement holds for the norm of a matrix. We formulate it here for the Euclidean
norm on Rn:

‖L‖2 = max
v∈Rn

‖Lv‖2
‖v‖2

= max
w∈Rn
w 6=0

max
v∈Rn
v 6=0

w>Lv

‖w‖2‖v‖2
.
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Inserting the definition (2.4) of the matrix-representation of L, we obtain

‖L‖2 = max
w∈Rn
w 6=0

max
v∈Rn
v 6=0

w>Lv

‖w‖2‖v‖2
= max

w∈Rn
w 6=0

max
v∈Rn
v 6=0

∑n
j=1

∑n
k=1(wjψj ,Lvkφk)W

‖w‖2‖v‖2

≤ ‖L‖ max
w∈Rn
w 6=0

∥∥∥∑n
j=1 wjψj

∥∥∥
W

‖w2‖2
max
v∈Rn
v 6=0

‖
∑n
k=1 vkφk‖V
‖v2‖2

= ‖L‖Γ̃ψ(n)Γ̃φ(n). (2.11)

Here, we make use of the fact that on Rn the norms induced by the bases φj and ψk are
equivalent to the Euclidean norm. In other words, for each n ∈ N, there are constants γ̃φ(n) ≤
Γ̃φ(n) and γ̃ψ(n) ≤ Γ̃ψ(n) such that

γ̃φ(n)‖v‖2 ≤

∥∥∥∥∥
n∑
k=1

wkφk

∥∥∥∥∥
V

≤ Γ̃φ(n)‖v‖2,

and analogously for W . The equivalence of all norms on a finite-dimensional vector space does
not mean that these constants do not depend on n. In fact, by equation (2.11), the scaling of Γ̃φ
and Γ̃ψ with n is the determining factor for the growth of the norm of the matrix L, as ‖L‖ does
not depend on n. Note that, in addition to n, these constants depend on the choice of the basis
and on the norm of the spaces V or W . Often, results of the form Γ̃φ(n) = Γφn

µ are available,
where µ ∈ Z, explicitely stating the n-dependence of the norm equivalence.

We immediately obtain a desirable criterion for the spaces V and W and for the trial and
test functions: The test functions must be chosen such that their growth is limited in the norms
on V and W , with respect to which L must be bounded.

One way to guarantee this criterion is by dividing each basis element by their norm. This cor-
responds to diagonal preconditioning. For some problems, this resolves the problem of exploding
norms: See for example [4], who discuss diagonal preconditioning for finite-element methods with
highly refined meshes. In other cases, such preconditioning negatively impacts the norm of the
inverse of L, and thus leads to minor or no improvements of the condition number. We discuss
such an application in Section 5.

The above process shows the beauty of the full operator approach for preconditioning, as
important bounds can be derived directly from the operator properties.

3 FOP for polynomial interpolation in 1D

We begin our discussion with a very simple and well-known numerical task: the polynomial
interpolation of a function f on the interval [−1, 1] by a polynomial q.

In order to formulate this problem, we introduce some notation. For n ∈ N, let Pn−1 be the
space of polynomials of degree up to n − 1, and {xj}nj=1 be a set of n predetermined nodes in
[−1, 1]. For q ∈ Pn−1, we require that q interpolates f at {xj}nj=1:

q(xj) = f(xj), for all j ∈ {1, . . . , n}. (3.1)

By choosing a basis {φi}ni=1 of Pn−1, we can write the interpolant q ∈ Pn−1 as q(x) =
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∑n
j=1 qjφj(x). Then, plugging this into (3.1), we obtain the linear system

φ0(x1) φ1(x1) . . . φn−1(x1)

φ0(x2)
. . . φn−1(x2)

...
. . .

...
φ0(xn) φ1(xn) . . . φn−1(xn)


︸ ︷︷ ︸

=:Lφ


q0

q1

...
qn−1

 =


f(x1)
f(x2)

...
f(xn)

 (3.2)

for the coefficients of q. We call Lφ ∈ Rn×n the interpolation matrix (with respect to the basis
{φi}n−1

i=0 ). If the interpolation nodes {xj}nj=1 satisfy xi 6= xk for i 6= k, then (3.2) has a unique
solution [2, Theorem 3.1]. However, we point out that the condition number of the matrix Lφ
determines the accuracy and speed with which the linear system can be solved.

A straightforward choice for the basis for Pn−1 is the set of monomials {µi}n−1
i=0 , where

µi(x) := xi, i ∈ N+ := N ∪ {0}. Under this choice, the matrix Lµ is called the Vandermonde
matrix of the points set {xj}nj=1. Unfortunately, despite the simplicity of its structure, it is
known for being notoriously hard to solve [19]. In fact, for most choices of xj ∈ R, the condition
number of the Vandermonde matrix can be shown to grow at least exponentially in n [5].

Other combinations of basis polynomials and interpolation points can lead to better condition
numbers. Consider, for instance, the Chebyshev polynomials of the first kind, defined by

Tk(x) = cos(k arccos(x)), x ∈ [−1, 1], k ∈ N+.

Note that for each k ∈ N+, Tk is a polynomial of degree k [46, Chapter 3]. Thus, {Tk}n−1
k=0 forms

a basis of the space Pn−1. Therefore, we can define LT (n) as the interpolation matrix constructed

using {Ti}n−1
i=0 and the degree-n Chebyshev nodes

xj = cos

(
2j − 1

2(n+ 1)

)
, for j ∈ {1, . . . , n}, (3.3)

as interpolation nodes. It is known that the matrix LT (n) is well conditioned [43] with κ (LT (n)) =√
2 for all n ∈ N.

Although these facts about Lµ and LT (n) are well known, we believe that FOP brings a new
insight as to why one system behaves numerically so much better than the other.

3.1 Polynomial interpolation as discretization of an operator equation

The task of polynomial interpolation can be understood as discretizing the operator equation

Iu = f,

with the identity operator I and a particular choice of (suitable) trial and test spaces V and W ,
respectively. Let {φi}n−1

i=0 be a basis of Pn−1 and define the trial-space basis operator Xφ : Rn →
Pn−1 as

Xφu =

n−1∑
k=0

ukφk.

Further, let {xj}nj=1 be the set of n interpolation points. We define the test operator Wx : W →
Rn as

Wxf = (δx1(f), . . . , δxn(f))>,

10



where δx is the delta distribution centered at the point x. Then, the linear system (3.2) for this
discretization can be rewritten as

Lφq = f , (3.4)

with f =Wxf , and L[i, j] := (WxIXφ)[i, j] = δxj (φi) for i ∈ {0, . . . , n− 1}, j ∈ {1, . . . , n}.
It is clear that choosing a different basis {Φi}n−1

i=0 for Pn−1 defines a new trial-space basis
operator XΦ and also a new matrix LΦ =WxIXΦ.

3.2 FOP vs. matrix preconditioning

Now suppose that Lφ is ill-conditioned, whereas LΦ is well-conditioned. Then it is desirable
to solve systems involving the matrix LΦ rather than Lφ. This can be achieved by right-
preconditioning: instead of solving (3.4), we work with

LΦv = LφR
φ
Φv = f ,

where Rφ
Φ = X−1

φ XΦ ∈ Rn×n is the basis transformation from {Φi}n−1
i=0 to {φi}n−1

i=0 . One could

then obtain the original vector q = Rφ
Φv, though this could involve an ill-conditioned basis

transformation (so it is advisable to work with the well-conditioned basis Φ as much as possible).
There are two options to implement such right preconditioning. One the one hand, one could

employ matrix preconditioning, i.e. discretizing first, and multiplying the matrices afterward.
When the matrices Lφ and Rφ

Φ are known, this amounts to numerical matrix multiplication

LφR
φ
Φ for direct solution or the application of an iterative solver employing one matrix-vector

multiplication with both Lφ and Rφ
Φ per iteration. On the other hand, one could compute the

matrix LΦ directly—in this case by evaluating the polynomial basis Φk at the interpolation
nodes—and employing a numerical solver, which avoids matrix multiplication with Lφ. Almost
always, the first alternative does nothing to improve the accuracy of the final result.

Let us illustrate this with Lµ and LT (n). For this, the matrix C := R
T (n)
µ can be computed

explicitly, e.g. [46, Ch. 2]. Therefore, a polynomial in Pn−1 given by its vector of coefficients
u ∈ Rn in the Chebyshev basis has coefficients C>u = (X−1

µ XT (n))u in the monomial basis.
We proceed to compare solving Lµx = b and LT (n)x = b with GMRES. We start by gen-

erating a function with prescribed coefficients in the monomial basis
∑n−1
k=0 qkφk in which the

coefficients are drawn from the standard normal distribution qk ∼ N(0, 1), and compute the
right-hand side f(x1) via (3.2), taking xi to be the Chebyshev nodes (3.3). We then solve the
linear system (3.2) using (a maximum of n steps of) GMRES, without and with right precon-
ditioning C. As the focus is to examine the best possible accuracy, we ran GMRES with the
tightest tolerance: the convergence tolerance is set to ε and maximum number of iteration n.
For reference we also present the analogous result with (well-conditioned) Chebyshev coefficients
(without preconditioning), wherein the ’exact’ coefficients are obtained using Chebfun [16]. The
results are shown in Figure 3.1.

As expected, numerical error limits the use of matrix-level preconditioning for improving ac-
curacy. Figure 3.2 shows the condition numbers of the monomial interpolation matrix Lµ, the
Chebyshev interpolation matrix LT (n), and the matrix obtained by multiplying Lµ and C> with
finite-precision arithmetic for n up to 70. C is obtained by the above recursion relation. As
expected, the condition number of the Vandermonde matrix κ(Lµ) grows exponentially, while
κ(LT (n)) stays constant. Matrix preconditioning is stable until n ≈ 45, beyond which the asso-
ciated condition number increases unpredictably, even surpassing that of the original matrix Lµ.
As the condition number κ(Lµ) climbs to 1018 > 1/ε, neither κ(Lµ) nor the condition number of
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Figure 3.1: Relative 2-errors of the computed solutions averaged over 100 draws.
Solutions for Lµx = b (monomial basis, with and without preconditioner C), and LT (n)xT = b
(Chebyshev basis) were obtained with GMRES. x and q are sampled randomly from an n-
dimensional standard normal distribution, and the same right-hand side b is used for the three
linear systems.

Figure 3.2: Condition numbers of Lµ, LT (n) and LµC
>.

the product with the preconditioner can be expected to be numerically accurate. This explains
the flattening of κ(Lµ).

3.3 Analysis and Discussion

In order to study the condition numbers of interest, we make use of the fact that κ(L) =
‖L‖2‖L−1‖2 and turn our attention to the norm of the matrices Lµ, LT (n) and their inverses.
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Moreover, we leverage the operator perspective from (3.4) to find estimates for these norms
following the spirit of equation (2.11).

First, the Sobolev embedding theorem guarantees that functions f ∈ H1(−1, 1) are almost
everywhere equal to a continuous function. Moreover, there is a constant α > 0, independent of
f , such that [36, Chapter 7]

‖f‖L∞(−1,1) ≤ α‖f‖H1(−1,1), for all f ∈ H1(−1, 1). (3.5)

By letting the delta distributions act on the continuous representation of functions inH1(−1, 1),
they belong to the space H−1(−1, 1) with norm

‖δxj‖H−1(−1,1) = sup
v∈H1(−1,1)

δxj (v)

‖v‖H1(−1,1)
≤ sup
v∈H1(−1,1)

‖v‖L∞(−1,1)

‖v‖H1(−1,1)
≤ α. (3.6)

Then, for any interpolation basis {φi}ni=1 in H1(−1, 1), we obtain

‖Lφ‖2 = max
v∈Rn

max
w∈Rn

w>Lφv

‖w‖2‖v‖2
= max

v∈Rn
max
w∈Rn

∑
j,k

wjvkδxj (φk)

‖w‖2‖v‖2

≤ max
v∈Rn

max
w∈Rn

∑
j,k

wjvkα‖φk‖H1(−1,1)

‖w‖2‖v‖2
≤ α max

1≤l≤n
‖φl‖H1(−1,1),

where in the last line, we used (3.5) and the Cauchy-Schwarz inequality.
For the monomials in [−1, 1], since δ(φk) ≤ 1, this estimate is easily improved to ‖Lµ‖ ≤ n,

which is still not sharp. Thus, the norm of Lµ is relatively well-behaved. This implies that the
exponential increase in the condition number of the Vandermonde matrix κ(Lµ) comes from the
contribution of the inverse, i.e., the presence of small singular values.

Remark 3.1. We observe that the boundedness of the condition number results from two key
properties:

(P1) the orthogonality of the columns in the interpolation matrix; and

(P2) the controlled behavior of the norms of the columns.

In view of (P1), one could want to extend the idea of orthogonal-column interpolation matrices
LΦ to other choices of trial bases. This can easily be done for other orthogonal polynomials, see
[37] for a detailed discussion.

4 FOP for spectral methods

In the next two sections, we give examples of FOP in the context of differential equations. In
this section, we focus on spectral methods, and we turn to finite element methods in the next.

Spectral methods are known for their excellent convergence properties [44, Chapter 4]. If the
solution of the problem is analytic, the error decreases faster than any negative power of the
discretization size. However, in their most straightforward implementation, spectral methods
suffer from a fast increase of the condition number, leading to slow convergence and numerical
instabilities. For high-order differential operators, or if high accuracy is desired, this quickly be-
comes prohibitive. The combination of these properties makes spectral methods ideal candidates
for FOP.
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Several preconditioning techniques have been presented in the literature. Basic examples
include low-order finite element or finite difference preconditioners, or spectral discretizations
of the differential operator with variable coefficients replaced by constants [10, § 4.4]. These
methods rely on linear operations which can only be computed with finite precision. As discussed
in Section 2.4 and exemplified in Section 3.2, preconditioning only improves accuracy if no
multiplication between ill-conditioned matrices takes place.

One family of methods that achieve accuracy improvement is known as integration precon-
ditioning [39]. These methods use relations between the spectral basis and the derivatives of its
elements, which under certain conditions form orthogonal global bases on their own. An early
version of integration preconditioning was presented by Clenshaw [13], and the method was
later developed in [14, 15, 17]. We focus here on one particular realization given by Olver and
Townsend [39], which uses the relationship between Chebyshev and ultraspherical polynomials.
We add a new viewpoint to the analysis by explicitly formulating the operators that are used for
FOP. This allows us to identify them as generalized integral operators and to show they meet
the desired criteria laid out in Section 2.5.

4.1 Unpreconditioned spectral methods

Let L be a linear differential operator of order N . As before, we limit ourselves to the interval
[−1, 1]. We assume the leading-order coefficient to be non-singular, so that without limitation of
generality we may write the operator in normalized form

L =
dN

dxN
+ aN−1

dN−1

dxN−1
+ · · ·+ a1

d1

dx1
+ a0, (4.1)

with continuous functions aN−1, . . . , a0 : [−1, 1]→ R.
We want to solve the problem

Lu = f, for x ∈ (−1, 1), such that Bu = c,

where f : [−1, 1] → R, c ∈ RN and B is a linear operator imposing N linearly independent
(boundary) constraints on the solution u.

Choosing Chebyshev polynomials φk = Tk as the trial basis, we search for an approximate
solution in the finite-dimensional space Vn = span{φi}n−1

i=0 . As the trial basis, projection onto
the functions Tk/‖Tk‖2L2(ρ) is common, which decomposes the result of the application of the
differential operator in terms of the Chebyshev polynomials and leads to the representation
matrix

L[i, j] =
(φi,Lφj)L2(ρ)

‖φi‖2L2(ρ)

.

For this choice, differentiation is represented by a dense upper-triangular matrix D, found
for example in [21]. Further, due to the convolution formula for Chebyshev polynomials

2TmTk = Tm+k + T|m−k|, (4.2)

multiplication with polynomial coefficient functions aj is replaced by multiplication with banded
matrices M(aj) with bandwidth 2 deg(aj) + 1 [14]. Nonpolynomial functions are first expanded
in terms of Chebyshev polynomials up to machine accuracy and then converted into matrix form.

To make the solution of the system of equations unique, boundary conditions need to be
incorporated. For this, we make use of the method of boundary bordering: The last N rows
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Figure 4.1: Condition number κ(A) and norms ‖A‖2 and ‖A−1‖2 of the spectral representa-
tion matrix with Chebyshev basis for the differential equation (4.3) with Dirichlet boundary
conditions.

of the n × n matrix L are omitted and replaced, conventionally swapped to the top of the
linear system, by the N linearly independent equations coming from the application of B to the
approximation u =

∑
ujφj . We denote the matrix L with the last N rows left out as L[N ], such

that we obtain the system Au = b with1

A :=

(
Bφ0 Bφ1 . . . Bφn−1

L[N ]

)
, and b :=


c

(ψ0, f)/(ψ0, ψ0)
. . .

(ψn−N−1, f)/(ψn−N−1, ψn−N−1)

 .

As a specific example, consider the differential equation

d2

dx2
u+ 10

d

dx
u+ 100xu = f, such that u(±1) = 0. (4.3)

Figure 4.1 shows the condition number of A as a function of the discretization size. We con-
firm that it increases as O(n2N ) for a differential operator of order N as predicted for Chebyshev
polynomials [8, § 7.7]. Also displayed in the figure are the 2-norms of the matrix A and of its
inverse. While ‖A−1‖2 is nearly constant, the factor ‖A‖2 is responsible for the rapid growth
of the condition number κ(A) = ‖A‖2‖A−1‖2. Far from conclusive for general differential equa-
tions, this example shows that bounds on the norm of the matrix L, such as the bound (2.11)
inferred from the continuity of the operator, can be of use in the development and understanding
of preconditioners.

4.2 Ultraspherical polynomials

As already shown in Section 3, structural properties of matrices representing the same operator
but obtained with different trial and test bases may differ fundamentally. The method presented

1Note that only in this section we use A instead of L for the coefficient matrix; this is because A contains rows
that explicitly reflect the boundary conditions, in addition to the discretized operator L. Elsewhere, boundary
conditions are not explicitly in L, either because they are not present or because the basis functions satisfy them.
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in [39] is a beautiful example of this. Retaining Chebyshev polynomials as the trial-space basis,
they switch the test-space basis to ultraspherical polynomials, thereby reducing the growth of
the condition number from O(n2N ) to O(n).

Futher, this may be seen as an application of FOP: The three operations involved in con-
structing the spectral matrix L—differentiation, multiplication and basis change—may be com-
puted by a recursion. This allows the computation of the preconditioned matrix without any
ill-conditioned matrix multiplication.

For λ ∈ N, the ultraspherical polynomials (C
(λ)
k )k∈N of order λ are defined as the family of

polynomials orthogonal with respect to the L2-scalar product with weight

ρ(λ)(x) = (1− x2)λ−1/2, x ∈ (−1, 1)

and normalized such that

C
(λ)
k (x) =

2k(λ+ k − 1)!

(λ− 1)!k!
xk +O(xk−1).

Together with the Chebyshev polynomials, they fulfill the defining properties

dC(λ)

dx
=

{
2λC

(λ+1)
k−1 , for k ≥ 1,

0, for k = 0.
and

dTk
dx

=

{
kC

(1)
k−1, for k ≥ 1,

0, for k = 0,
(4.4)

such that λ-fold differentiation between Chebyshev and order-λ ultraspherical polynomials is
represented by the matrix

Dλ = 2λ−1(λ− 1)!


λtimes︷ ︸︸ ︷

0 . . . 0 λ
λ+ 1

λ+ 2
. . .


To compute the matrix representation L̃ of the operator L, coefficient functions aj are resolved

to machine accuracy in terms of ultraspherical polynomials of order j. Due to a convolution
formula similar to that for Chebyshev polynomials (4.2), multiplication by the expansion of aj
can be written as a matrix Mj(aj) acting on the coefficients of an order-j ultraspherical series,
see equations (3.6) to (3.9) in [39]. Coefficients of a C(λ)-series are converted to a C(λ+1)-series
by applying the matrix

Sλ =


1 − λ

λ+2
λ
λ+1 − λ

λ+3
λ
λ+2 − λ

λ+4

. . .
. . .

 , (4.5)

to its vector of coefficients while a Chebyshev series can be converted to a C(1)-series with the
operator

S0 =


1 − 1

2
1
2 − 1

2
1
2 − 1

2
. . .

. . .

 . (4.6)
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Combining these steps, the differential operator is found by computing

L̃ = DN + SN−1MN−1(aN−1)DN−1 + · · ·+ SN−1 . . .S0M0(a0) (4.7)

The matrices Dj are composed of a single off-diagonal, while the matrices Sj constist of the

main-diagonal and one off-diagonal. This results in a banded matrix L̃.
As before, this matrix is truncated to size (n−N)×n and complemented with the N boundary

conditions to obtain the system matrix Ã(n). Numerical experiments indicate that the condition
number of these matrices grow as O(n) [39, § 3.3]. Applying the diagonal preconditioner

R =
1

2j−1(j − 1)!
diag

1, . . . , 1︸ ︷︷ ︸
N times

,
1

N
,

1

N + 1
, . . .

 (4.8)

from the right, it is shown in [39, § 4] that

AR = I + Kn, (4.9)

where sequence of n× n matrices Kn converges to a compact operator K : `2λ → `2λ between the
Hilbert spaces

`2λ =

u = (uk)k∈N : ‖u‖`2λ =

√√√√ ∞∑
k=0

u2
k(1 + k2)λ

 ,

and the range of possible λ determined by the boundary conditions B. For Dirichlet boundary
conditions, this includes λ = 0. By uniform convergence of orthogonal projection in the spectral
bases, if I + K is invertible, the condition number of the matrices AR in the relevant `2λ-norm
converges to that of I +K [39, § 4]. In other words, growth of the condition number as n→∞
has been improved from O(n2N ) to O(1) by a change of basis and the multiplication with a
diagonal operator R.

4.3 Basis change as FOP

While it is clear that the application of the operator R can be seen as a form of FOP, the FOP
present in the basis change needs explicit formulation. We define the basis-change preconditioner

Rl(C(N)
k ) = Tk, (4.10)

mapping an ultraspherical polynomial of order N and degree k to the Chebyshev polynomial of
degree k. By extending Rl to linear combinations and then to series, the operator is well-defined
on the space of L2(ρ(N)) with weight ρ(N)(x) = (1− x2)N−1/2.

Applying this operator from the left to the original equation Lu = f and decomposing in
terms of the Chebyshev test basis with the ρ(0)-scalar product leads to the same matrix as
decomposing the original equation directly in terms of the ultraspherical test basis with the
ρ(N)-scalar product: Recall that the pure-Chebyshev method leads to the matrix

L[j, k] =
(Tj ,LTk)L2(ρ(0))

‖Tj‖2L2(ρ(0))

,
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while the Chebyshev-ultraspherical method results in

L̃[j, k] =
(C

(N)
j ,LTk)L2(ρ(N))

‖C(N)
j ‖2

L2(ρ(N))

.

Multiplying the original equation with Rl and using the pure-Chebyshev formula, we obtain

(Tj ,RlLTk)L2(ρ(0))

‖Tj‖2L2(ρ(0))

=
(Tj ,Rl

∑∞
m=0 C

(N)
m L̃[m, k])L2(ρ(0))

‖Tj‖2L2(ρ(0))

=

∞∑
m=0

(Tj , TmL̃[m, k])L2(ρ(0))

‖Tj‖2L2(ρ(0))

= L̃[j, k],

(4.11)

the same matrix as in the Chebyhsev-ultraspherical case.
Hence, the basis change between Chebyshev and ultraspherical polynomials is a case of op-

erator FOP. Together with the right-preconditioner

Rr(Tk) =
1

2N−1(N − 1)!

{
Tk, if k < N,
Tk
k , if k ≥ N,

(4.12)

it serves to bound the operator L on the space L2(ρ(0)). Without preconditioning, the order-N
differential operator L is unbounded as an operator L : L2(ρ(0)) → L2(ρ(0)). After applying
preconditioners from the left and the right, it is shown that the representation in terms of
Chebyshev polynomials of the operator RlLRr : L2(ρ(0)) → L2(ρ(0)) equals the identity plus
a compact operator. By the isometry between L2(ρ(0)) and `2, this implies the continuity of
RlLRr.

In fact, the two preconditioners serve as an N -fold integration, inverting the N -th derivative

Rl
dN

dxN
Rr = I : L2(ρ(0))→ L2(ρ(0)).

In this, aside from providing the factor 1/(2N−1(N − 1)!), the right preconditioner serves to
counteract an assymetry in the definition of Chebyshev and ultraspherical polynomials. While

the differentiation of an ultraspherical polynomial C
(λ)
k does not lead to a factor depending on

the degree k of the polynomial, differentiating the Chebyshev polynomial Tk does. This single

linear scaling coming from the first change from Tk to C
(1)
k -series is cancelled by Rr.

In infinite-precision arithmetic, traditional matrix preconditioning with the truncated diago-
nal operator R from the right and the matrix version of Rl with entries

Rl[j, k] = (Tj ,Rl(Tk))L2(ρ(0))

from the left would lead to a solution equivalent to that of the Chebyshev-ultraspheri-cal method.
Given that precision is infinite, numerical error does not play a role, and a speedup of iterative
methods would occur as predicted by the condition-number improvement induced by the precon-
ditioning. In finite-precision arithmetic, this suffers from the multiplication of the ill-conditioned
matrices L and Rl.

For FOP it is thus crucial that the matrix L̃ is computed to machine precision by use of
recursion relations as in equation (4.7) instead of by evaluating the matrix product L̃ = RlL.

Similarly, the right-hand side f has to be discretized directly in terms of ultraspherical poly-
nomials. The alternative, a conversion of the Chebyshev discretization f with components (Tj , f)
into the ultraspherical representation by forming the product with Rl, suffers again from the bad
conditioning of the matrix multiplication.
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5 FOP for finite-element methods

As laid out in the previous section, N -fold integration is a potential preconditioner for normalized
differential operators of order N . In the context of spectral methods, we relied on recursive
relationships between Chebyshev and ultraspherical polynomials to construct the algorithm.
Now, we present an application of integration preconditioning for finite-element methods.

Here, we focus on fourth-order differential equations in one dimension with Dirichlet and
Neumann boundary conditions, approximating functions by the cubic Hermite element [9, § 3.2].

In this section, we briefly give an overview of the treatment of fourth-order differential equa-
tions with the finite element method and then describe the algorithm used for FOP. We show that
our new method successfully improves the accuracy of solutions to the biharmonic equation and
other fourth-order linear differential equations by avoiding an otherwise catastrophic increase of
the condition number.

5.1 Finite elements for fourth-order differential equations

We consider linear, fourth-order differential equations of the form{
Lu = d4

dx4u+ a3
d3

dx3u+ a2
d2

dx2u+ a1
d1

dx1u+ a0u = f, on (−1, 1)

u(±1) = u′(±1) = 0,
(5.1)

where ai : (−1, 1)→ R, i = 0, . . . , 4 are smooth functions.
Let H1(−1, 1), H1

0 (−1, 1) and H2(−1, 1) be Sobolev spaces defined as usual [9, Ch. 1], and
L2(−1, 1) be the space of square-integrable functions in (−1, 1). In addition, we introduce the
space H2

0 (−1, 1) := {u ∈ H2(−1, 1) : : u(±1) = u′(±1) = 0}.
The weak formulation corresponding to (5.1) is: find u such that

a(u,w) = (f, w)L2(−1,1), ∀w ∈ H2
0 (−1, 1),

where we introduced the bilinear form a : H2
0 (−1, 1)×H2

0 (−1, 1)→ R defined as

a(w, u) = (w,Lu)L2(−1,1)

= (w′′ − (a3w)′, u′′)L2(−1,1) + (−(a2w)′ + a1w, u
′)L2(−1,1)

+ (a0w, u)L2(−1,1), (5.2)

For simplicity, we assume that the coefficient functions aj are such that the bilinear form a is
continuous and elliptic in H2

0 (−1, 1).
We choose Hermite finite elements for the trial and test basis [18, Chapter 10] on a uniform

mesh for (−1, 1). As before, we turn the differential equation into a 2n×2n linear system Lu = b
with

L[j, k] = a(φj , φk)L2(−1,1), for j, k ∈ {1, . . . , 2n}

and right-hand side

b[j] = (φj , f)L2(−1,1), for j ∈ {1, . . . , 2n}.

For the biharmonic equation with aj = 0 for j = 0, . . . , 3, the matrix L has condition number
observed to be increasing proportionally to n4. At the same time, the use of Hermite elements
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leads to fast convergence of the error: Figure 5.1 shows the relative error of the finite element
approximation to the true solution u = (1− x2)2 measured in the H2-norm,

‖u‖2H2(−1,1) =

∫ 1

−1

(
u2 + (u′)2 + (u′′)2

)
dx

and L2(−1, 1) norm, respectively, as well as a multiple of the condition number. For n < 1200,
the error decreases as n−2. This is the expected discretization error in H2-norm for Hermite
elements [42, Chapter 2.4]. If n is increased further, the error starts behaving erratically and
begins to increase approximately proportional to κ(L), with the constant of proportionality close
to machine accuracy. This indicates that discretization error is being overtaken by numerical
error beyond that point.

In the L2(−1, 1)-norm, Hermite elements guarantee O(n−4) convergence of the discretization
error for smooth solutions [42, Chapter 2.4]. In the present case, this means that numerical
issues overtake discretization as the main error source already at n ≈ 300, which is also depicted
in Figure 5.1 together with the comparison to n−4.

Figure 5.1: Relative error ‖u− û‖/‖u‖ as a function of the number of cells n of the finite-element
approximation û to the true solution u = (1 − x2)2 of the biharmonic equation with constant
right-hand side u(4)(x) = 24. The solution is approximated with Hermite elements, and error
is computed in H2 and L2 norms. Integrals were computed using Gaussian quadrature with 11
quadrature points per cell. Also shown are the expected O(n−2)-scaling of the error and the
multiple εκ(L) of the involved matrix, where ε = 10−18 is close to machine precision.

5.2 Integration preconditioning for fourth-order differential equations

Consider now an operator R to be used as a right preconditioner for the differential equation
Lu = f . Replacing u byRv, where v is any function that is mapped byR to the same smoothness
and boundary properties as u,

Rv ∈ H2
0 (−1, 1), (5.3)

we find for w ∈ H2
0 (−1, 1) that Rv may also replace u in the bilinear form a(w,Rv).
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Figure 5.2: Condition numbers of the non-preconditioned and preconditioned method for the
biharmonic equation L1 and the differential operator L2 defined in equation (5.5)

The system matrix for the preconditioned operator equation is again obtained by computing
the bilinear form on all 2n× 2n pairs of Hermite basis functions and is given by its entries

L̃[j, k] = a(φj ,Rφk).

Notably, the knowledge of a(·,R·) for arbitrary arguments is not required. Instead, for the
computation of the matrix evaluation of the preconditioner on the elements φk of the Hermite
basis and computation of a on pairs of φj and Rφk is sufficient.

For a fourth-order differential operator with leading-order term d4

dx4 , we use four-fold integra-
tion as the preconditioner. Moreover, for L : H2

0 (−1, 1)→ H−2(−1, 1), the four-fold integration
preconditioner is chosen such that it takes care of boundary conditions, i.e. R : H2

0 (−1, 1) →
H−2(−1, 1).

Computing Φk = Rφk for k ∈ {1, . . . , 2n} is straightforward. During the cell-wise integration
of φk, k ∈ {1, . . . , 2n}, in each of the n + 1 cells, 4 degrees of freedom arise in the form of
integration constants. The first 4n of these are chosen such that Φk and its first three derivatives
are continuous on the boundaries between the cells. Because φk is continuous with continuous
first derivative, it follows that Φk ∈ H2(−1, 1). The last four integration constants are determined
by the boundary conditions of H2

0 (−1, 1). Hence, Φk ∈ H2
0 (−1, 1) is guaranteed.

The resulting functions Φk = Rφk are used as the trial-space basis. The matrix L̃ is computed
numerically using Gaussian quadrature. After solving the system L̃v = b, we reconstruct the
solution û =

∑2n
k=1 vkΦk.

Instead of growing as O(n4), the condition number of L̃ approaches a constant as n → ∞.
Figure 5.2 shows the condition number of the matrices L and L̃ for the biharmonic equation

L1 =
d4

dx4
u (5.4)

and for the equation with operator

L2 =
d4

dx4
+ α sin(20πx)

d3

dx3
+ α cos(20πx3)

d2

dx2
+

αx

1 + x2
(5.5)
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Figure 5.3: Relative error of the approximation to the solution u = (1 − x2)2 obtained with
non-preconditioned, matrix-preconditioned with the inverse of the stiffness matrix of the bihar-
monic equation, and operator-preconditioned Hermite FEM for the two differential equations
with differential operators L1 and L2 defined in equations (5.4) and (5.5). Note that matrix
preconditioning and the unpreconditioned method lead to the same relative error.

with α = 200. We see that up to n = 1000, the condition number of the preconditioned matrices
does not increase beyond 100 and 10000, respectively, whereas condition numbers obtained from
the standard algorithm show a clear O(n4) growth.

Accordingly, solutions obtained from the preconditioned method do not suffer from an erratic
increase of error for high n as in Figure 5.1. A comparison is shown in Figure 5.3. As before, for
the nonpreconditioned method, the error starts to increase once εκ(L) grows to the range of the
discretization error and it remains above 10−7 for all n. The same holds for matrix precondition-
ing: The matrix equivalent of four-fold differentiation is the finite-element discretization of the

biharmonic operator d4

dx4 . Using the inverse of this matrix as a preconditioner leads to no visible
changes in the relative error. On the other hand, FOP is able to find solutions to the problem
with error as low as 10−10 at n = 5000, and with no deviations from the trend of decreasing
error when n is increased.

This accuracy is possible because the condition number of the FOP system matrix L̃ remains
bounded. As we shall see, this is a consequence of two conditions:

i) the operator L̃ := LR is an endomorphism in H−2(−1, 1) [11, 32].
Indeed, this condition allows us to state the following: Let b̃(·, ·) : H−2(−1, 1)×H−2(−1, 1)→

R be the bilinear form of L̃. By the properties of L and R, there exist constants β̃, C̃b ∈ R > 0
such that

β̃ ‖u‖2H−2(−1,1) ≤ |b̃(u, u)| ≤ C̃b ‖u‖2H−2(−1,1) ∀u ∈ H−2(−1, 1). (5.6)

It is worth noticing that using R as a left preconditioner would also lead to a suitable FOP.
Indeed, in that case we would have the endomorphism L̂ := RL : H2

0 (−1, 1) → H2
0 (−1, 1),

satisfying for some β̂, Ĉb > 0

β̂ ‖u‖2H2
0 (−1,1) ≤ |b̂(u, u)| ≤ Ĉb ‖u‖2H2

0 (−1,1) ∀u ∈ H2
0 (−1, 1). (5.7)
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ii) The Hermite basis functions are well-conditioned.
In order to see this, we examine the mass matrix

M[j, k] = (φj , φk)L2(−1,1). (5.8)

Recalling the definition and support of the Hermite functions [9, § 3.2], integration yields the
structure of the mass matrix

M = ∆x


A B
B> A B

B> A B
. . .

. . .

 ∈ R2n×2n (5.9)

with the 2× 2 blocks

A =

(
26/35 0

0 2/105

)
, B =

(
9/70 13/420
−13/420 −1/140

)
.

Proposition 5.1. For all n ∈ N, the matrix M in (5.9) satisfies

κ(M) ≤ 39
1 + δ

1− δ
, δ =

3 +
√

13/3

8
(< 0.64).

Proof. The idea is to use Gerschgorin’s theorem to a diagonally scaled matrix M̃ := DMD,

where D = diag(D1,D1, . . .) ∈ R2n×2n, with D1 =
(√35/26 0

0
√

105/2

)
; that is, we apply a diagonal

scaling such that DMD has 1’s on the diagonal2.
Then M̃ is in the same form as M (5.9), with A,B replaced with Ã, B̃ respectively, where

Ã =

(
1 0
0 1

)
, B̃ =

(
9/52

√
13/(8

√
3)

−
√

13/(8
√

3) −3/8

)
.

Now by Gerschgorin’s theorem, (and since M̃ is symmetric) the eigenvalues of M̃ must lie in
[1 − 1

8 (3 +
√

13/3), 1 + 1
8 (3 +

√
13/3)] = [1 − δ, 1 + δ]. Since this is a positive interval, it

follows that M̃ is positive definite and the eigenvalues are equal to the singular values. Therefore
κ(M̃) ≤ 1+δ

1−δ . Finally, κ(M) ≤ κ(M̃)κ(D)2 and κ(D)2 = κ(D1)2 = 39, completing the proof.

Next, we proceed to prove in a more general way why these two conditions guarantee that
we arrive at a well-conditioned system.

Theorem 5.2. Let X be a Hilbert space, and b a bounded bilinear form b(·, ·) : X ×X → R so
that there exists M > 0 such that |b(v, u)| ≤M‖u‖X‖v‖X for all v ∈ X. Suppose that b further
satisfies

β ‖u‖2X ≤ |b(u, u)| ∀v ∈ X, (5.10)

for some β > 0.
Let Xh ⊂ X be a finite dimensional space such that dim(Xh) = N and Xh = span{qi}Ni=1.

Then the matrix Bh defined by (Bh)ij = b(qj , qi) satisfies

κ(Bh) ≤ M

β
(κ(Q))2, (5.11)

2This is equivalent to normalizing the basis functions to have unit norms; which is known to minimize the
condition number up to a factor

√
n with a diagonal scaling [31, Thm. 7.5].
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where Q = [q1, . . . , qN ] is a quasimatrix3, i.e., a matrix whose columns are functions (e.g. [16]).

Proof. First, let B ∈ L(X,X) be the bounded linear mapping corresponding to the bilinear form
b.

For any u = (u1, . . . , uN )>,v = (v1, . . . , vN )> ∈ CN of unit norm ‖u‖2 = ‖
mathbfv‖2 = 1, we have

(Bhv)[j] = b(qj ,

N∑
`=1

v`q`), u>Bhv = b(

N∑
`=1

u`qj ,

N∑
`=1

v`q`).

Hence by the assumption (5.10) we have

β‖
N∑
`=1

v`q`‖2X ≤ |v>Bhv|. (5.12)

We can bound ‖
∑N
`=1 v`q`‖X as

σmin(Q) ≤ ‖
N∑
`=1

v`q`‖X ≤ σmax(Q). (5.13)

It follows that |v>Bhv| ≥ σ2
min(Q)β for any unit vector v; this implies ‖Bhv‖2 ≥ σ2

min(Q)β for
any unit norm vector v, and therefore σmin(Bh) ≥ σ2

min(Q)β.
We next bound σmax(Bh) = ‖Bh‖2 from above. The first bound in (5.10) and (5.11) yield

|u>Bhv| ≤Mσ2
max(Q), for any u,v of unit norm. This means Bh ≤Mσ2

max(Q).
Putting these together, we conclude that

κ(Bh) ≤ Mσ2
max(Q)

σ2
min(Q)β

=
M

β
(κ(Q))2.

This result shows that the linear system is well-conditioned if the operator after FOP has
a tightly bounded bilinear form, and a well-conditioned basis Q is used for the discretization,
ideally κ(Q) not growing with the discretization N .

It is worth noting that the presence of (κ(Q))2 in (5.16) appears to be necessary, and is not
an artifact of the analysis. To see this, consider the case LR = I (the ’ideal FOP’); then L̃h is
the Gram matrix of Q, so κ(L̃h) = (κ(Q))2.

Let us now return to the specific examples in Figure 5.3. Since the mass matrix (5.8) has
the property κ(M) = (κ(Q))2. Theorem 5.2 and Proposition 5.1 imply that κ(L̃1h) is bounded
independently of n for (5.4), for which β = M = 1.

5.3 Perturbed identity after FOP

In many cases, such as (5.5), the operator after FOP is a perturbed identity I+K. In such cases
we have the following.

3A quasimatrix has (among other decompositions inheriting matrix decompositions) the QR factorization [45]
Q = Q̃R, where Q̃ has orthonormal columns (with respect to (·, ·)X), and R ∈ RN×N is upper triangular. The
condition number is defined by the matrix condition number κ(Q) = κ(R).
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Corollary 5.3. Let R be such that

LR = I +K : X → X, (5.14)

where I is the identity operator, and K is bounded, i.e., there exists MK > 0 such that (u,Ku)X ≤
MK‖u‖X‖v‖X for all u, v ∈ X. Suppose that

βK‖u‖2X ≤ (u,Ku)X ∀u ∈ X, (5.15)

for some constant βK > −1. Then we have

κ(L̃h) ≤ 1 +MK
1 + βK

(κ(Q))2 (5.16)

where L̃h is the Galerkin matrix of L̃ := LR using the basis functions {qi}Ni=1, and Q =
[q1, . . . , qN ].

Proof. By the assumptions, we have

(1 + βK)‖u‖2X ≤ (u, (I +K)u)X , (v, (I +K)u)X ≤ (1 +MK)‖u‖X‖v‖X (5.17)

for all u, v ∈ X. Therefore, the result follows from Theorem 5.2.

Remark 5.4. Theorem 5.3 indicates that two conditions ensure L̃h is well-conditioned: (i) that
the FOP is effective so that the FOP’d operator is a “small” perturbation of identity, and (ii)
a well-conditioned basis Q is chosen. We suspect that the assumptions in Corollary 5.3 are
stronger than necessary, and that κ(L̃h) could be bounded by a constant under a looser condition
than (5.15).

Remark 5.5. A good FOP often results in the form (5.14) with a compact K. For instance, in
the example (5.5), under the assumption of continuously differentiable coefficient functions and
by compactness of the embeddings Hλ+1(−1, 1) ⊂ Hλ(−1, 1) for λ ≥ 0 [28, Chapter 1], we have
LR = I +K, where

K =

(
a3

d3

dx3
+ a2

d2

dx2
+ a1

d1

dx1
+ a0

)
R

is a compact operator.
The “identity plus compact operator” resembles the situation in Section 4.2. Compactness of

K can be useful for verifying its properties, such as (5.15).

Furthermore, the extension to LR = I + K highlights another specialty of FOP: When
investigating the properties of any form of preconditioning, we aim for statements about the
resulting matrices. Analysis of matrix-preconditioning schemes may take place on the matrix
level, for example by bounding the generalized Rayleigh coefficient (u>Lu)/(uR−1u) [47]. This
is also possible when all elements and operators on the continuous space have representations in
terms of infinite-dimensional matrices, such as in the case of spectral methods. For other cases
of FOP, however, another option is to perform analysis on the levels of the operators themselves.
This diffuses the classical distinction between numerical linear algebra and analysis of differential
equations and calls for joint treatment of the whole solution process, a claim that is already being
pushed for by other authors such as [38] and [41].
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6 Discussion

FOP can dramatically improve the accuracy of computed solutions in a variety of contexts. Our
analysis identifies three properties required for a successful FOP. First, one needs to identify
an operator such that its composition with L is an endomorphism. Second, the test and trial
basis must be chosen to be conforming and well-conditioned. With these two properties, one
can guarantee that the condition number remains bounded. Third, after FOP is applied, the
matrix and right-hand side in the linear system need to be computed with high accuracy. As
discussed in Section 5, this can be guaranteed by requiring that the preconditioned operator L̃
is continuous.

We have highlighted two classical applications (polynomial interpolation and spectral meth-
ods) that can be regarded as an instance of FOP. We believe that many other high-accuracy
algorithms (existing and forthcoming) could also be understood as a form of FOP, and that
much can be learned by revisiting existing methods and establishing connections from this per-
spective.

It is important to point out the potential drawbacks of FOP. First, some desirable structures
in the unpreconditioned system may be lost. For example, the FOP in Section 5 results in
dense matrices. This negates the sparsity of the unpreconditioned system, one of the typical
benefits of FEM. Another drawback is the difficulty of finding a good FOP, that is, identifying
an operator verifying the first property listed above. Fortunately, this is also needed in operator
preconditioning [32]. Therefore, investigations of such operators have already taken place in the
literature, see for example [47, 26, 27, 20] and the references therein. Building on this well-
established knowledge about operator preconditioning, it remains to come up with a suitable
discretization.

For many applications of scientific computing, this is an open challenge. By overcoming it,
one would obtain solutions with unprecedented accuracy.
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