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1
Introduction

The utilisation of Computational Fluid Dynamics (CFD) to address complex flow-related problems has become
increasingly customary in both academic and industrial settings. While the academic perspective entails
research into the development of new and improved methods for CFD and the development of turbulence
models, some notable industrial applications of CFD include the design and optimisation of aircraft, rocket
nozzles, cars, and even microprocessors [1, 2]. This increase in the employment of CFD is coupled with
the growth in the world’s computing resources in terms of the number of cores being used, however, not
necessarily in terms of the core speeds 1. Despite this gain in prevalence, it is worth noting that a majority of
commercial CFD software packages currently employ rudimentary numerical techniques developed around the
seventies, such as the Finite-Volume Method. While these methods are well adapted for advection-dominated
problems their extension to higher order methods is not trivial as Spectral Element methods. This constitutes
the method requiring excessive amounts of computational cost when attempting to capture complex flow
phenomena (for example turbulent boundary layers). Moreover, the methods tend to diverge when dealing
with particularly complex problems [3, 4] which require the addition of numerical dissipation for stabilisation.
This thus motivates the development of more advanced and robust numerical methods which are not susceptible
to such shortcomings.

One family of such advanced methods are structure-preserving or mimetic discretisations. These discretisa-
tion techniques are derived by employing the concepts from differential geometry which thereby enables the
discretisation to attain specific conservation properties. For any given physical problem, the (model) govern-
ing equations are often expressed in terms of partial differential equations that describe the conservation of
physical properties. The Navier-Stokes equations, for example, describe the conservation of mass (density),
momentum, and energy. It has been well established that traditional discretisation techniques fail to preserve
these continuous level symmetries at the discrete level. Mimetic methods on the other hand have been de-
signed to have the ability to preserve or mimic certain structures of the continuous equations at the discrete
level, hence the name ’mimetic’. The works presented in [5, 6] highlight some examples of such discretisation
techniques. Mimetic discretisation techniques have the tendency to reflect the true physical behaviour of the
governing equations, thereby helping to improve the stability/robustness and accuracy of the numerical so-
lution. However, like traditional techniques, they are not entirely robust in specific multiscale cases such as
under-resolved simulations or cases involving discontinuities in the flow.

The concept of under-resolved simulations ties into the idea of Large Eddy Simulations (LES) that is often
encountered in industrial applications. Such applications involve flow cases where highly refined meshes are
required to capture the full flow physics, however, the use of such meshes is unpractical/infeasible given the
associated cost. There exist numerous methods/approaches for LES, howbeit, the one method that emerges
from the concept of discretisation is the Variational Multiscale (VMS) method where the discrete solution
is regarded as a projection of the exact solution. The VMS employs an a priori scale separation, essentially
splitting the solution into a resolved and un-resolved part, whereby the resolved scales are solved by taking
into account the effect of the un-resolved scales. This approach thus offers a stabilisation technique for under-
resolved simulations.

The two frameworks, mimetic methods and VMS, have been extensively studied independently, however,
their combination offers the potential of achieving a favourable robust solver capable of handling complicated
1https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
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industrial problems. Moreover, the extension of the hybridised variant of mimetic methods towards advection-
dominated problems is an interesting avenue yet to be explored. Therefore, this thesis focuses on the extension
of the hybridised mimetic method and its combination with the VMS theory. Subsequently, the thesis goal
has been formulated as follows:

"To extend the hybrid mimetic Spectral Element framework for advection-dominated problems and
further equip the method with the ability to incorporate Variational Multiscale theory."

In order to fulfil this objective, the following research questions and sub questions have been posed:

1. What do the discrete equations look like for advection-dominated PDEs discretised using the hybrid
mimetic method?

a. What are the terms in the discrete equations and are they metric-free?

b. What do the Lagrange multipliers physically represent for advection-dominated problems in 1D and
2D?

c. Does the hybrid formulation conserve continuous-level invariants?

2. What does the multiscale formulation integrated within the hybrid mimetic method for linear PDEs look
like?

a. What is the additional term introduced into the equations with VMS theory?

b. What is the effect of the multiscale formulation on the discrete solution?

c. Does the multiscale formulation preserve structures of the continuous equations?

This report addresses the work carried out for answering the above research questions. First Chapter 2
addresses some of the relevant theoretical fundamentals of differential geometry necessary for deriving the
mimetic discretisation framework. The framework itself is subsequently presented in Chapter 3 in the form of
the mimetic Spectral Element Method. Thereafter, the fundamentals and implementation approaches for the
VMS are shown in Chapter 4. This chapter is then followed by the implementation of the established mimetic
and multiscale theories for linear problems in Chapter 5. The linear problems addressed in this chapter include
the 1D steady and unsteady linear advection-diffusion equation. Thereafter, mimetic approaches for non-linear
problems are presented in Chapter 6 which addresses the 1D Burgers’ equation and the 2D incompressible
Navier-Stokes/Euler equations. The chapter on non-linear problems does not include multiscale theory as
developing sub-scale models for such cases goes out of the scope of the present study. Lastly, Chapter 7 and
Chapter 8, respectively present the conclusions and future recommendations of this research.



2
Differential geometry

This chapter addresses various core concepts of differential geometry which set up the foundation for formu-
lating mimetic discretisation techniques. The theory presented in this chapter encompasses some fundamental
definitions of spaces, the objects that reside in them, and the different operators that can be applied to these
objects.

2.1. Manifold
Definition 2.1 ([7, 8]). An n-dimensional manifold comprises of a topological space M along with a set
of local coordinate neighborhoods {U0,U1, . . .} whereby each point of M exists in at least one of these U ,
(M = U0 ∪ U1 ∪ . . .). Moreover, there exists a bijective coordinate mapping ϕ Ui

: U i −→ Rn which maps U i

to an n-dimensional Euclidean space such that ϕ Ui
(U i) ⊂ Rn is open.

Generally speaking, a manifold is described as the most generic space wherein one can apply differential and
integral calculus in roughly the same manner as in Euclidean space [7]. Consequently, a manifold is commonly
referred to as a space that locally resembles Euclidean space at each point of the manifold. Furthermore, the
topological attribute of the space M highlights the fact that there is no natural measure of distances between
points, nor a measure of angles on a manifold.

2.2. Objects on manifolds
Having established the fundamental definition of a manifold, the various types of objects that live on manifolds
are described in this section.

2.2.1. Tangent vectors
Defining an n-dimensional vector space that is tangent to M at an arbitrary point is not entirely trivial as
defining a tangent basis in Euclidean space. In order to define a tangent space to an n-dimensional manifold
M, the Euclidean vectors are identified with directional differentiation as shown in Definition 2.2.

Definition 2.2 ([7]). Let p be a point on an n-dimensional manifold M and f be a real-valued smooth function
in the vicinity of p. The derivative of f with respect to a vector X located at point p is given by:

Xp(f) :=
∑

j

Xj
∂f

∂xj

∣∣∣∣∣
p

, (2.1)

where Xj are the components of the vector X. Any arbitrary vector at point p may be seen as a differential
operator that can be applied to real-valued smooth functions near p. Therefore, the operation generalises to the
form:

Xp :=
∑

j

Xj
∂

∂xj

∣∣∣∣∣
p

. (2.2)

3
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It is noted that Xp assigns a real number to each smooth function on M. Furthermore, there exist a set of

vectors at point p, namely


 ∂

∂x1

∣∣∣∣∣
p

,
∂

∂x2

∣∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣∣
p


, which form a basis for the tangent space to M at

point p and is denoted by TM.

2.2.2. Dual space
Definition 2.3 ([7]). A linear functional α defined on a vector space E is a real-valued linear function that
is a mapping α : E −→ R from E to the one dimensional vector space.

α(au+ bv) = aα(u) + bα(v), ∀ u,v ∈ E and ∀ a, b ∈ R. (2.3)

If E is a finite-dimensional vector space with n dimensions which has e1, e2, . . . , en as its basis, any arbitrary
vector v ∈ E can be expanded as a linear combination of the basis vectors v =

∑

j

vjej. Subsequently, applying

the functional α to v yields:

α(v) = α


∑

j

vjej


 =

∑

j

vjα(ej). (2.4)

Note that the linear functional α does not live in the vector space E, much like the Dirac Delta Functional does
not live in the space of continuous real-valued functions [7]. Instead, the linear functional lives in a different
space defined as follows:

Definition 2.4 ([7]). The set of all the linear functionals on the vector space E form a separate vector space
referred to as the dual space denoted by E∗. If E is n-dimensional, then so is E∗, which enables one to define
the dual basis σ1, σ2, . . . , σn. Every linear vector space has its dual space and the elements in the dual space
are referred to as covectors. Furthermore, the canonical dual basis satisfies the property:

σi(ej) = δij , (2.5)

which, along with the linearity of σ, can be used to show that applying σi to a vector v ∈ E simply extracts the
ith component of v

σi


∑

j

vjej


 =

∑

j

σi(ej)vj =
∑

j

δijvj = vi. (2.6)

Having established the notion of the dual space, it can then be applied to the aforementioned tangent space
in Definition 2.2 to construct the cotangent space denoted by T ∗

M. Given that the basis vectors of the

tangent space are the linear differentials


 ∂

∂x1

∣∣∣∣∣
p

,
∂

∂x2

∣∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣∣
p


, the basis of the cotangent space must

be [dx1,dx2, . . . ,dxn] in order to satisfy the Kronecker Delta property in Equation (2.5).

2.2.3. Differential forms
Definition 2.5 ([8]). The real-valued smooth functions that are defined on the n-dimensional manifold M are
referred to as the 0-forms.

Definition 2.6 ([8]). Let p be a point on an n-dimensional manifold M. The 1-forms, α(1), at p are
expressed by a linear combination of the basis vectors of the cotangent space at p

α(1) :=
∑

i

αidxi, ∀ αi ∈ R. (2.7)

As such, the 1-forms are seen as a linear functional α(1) : T M −→ R. In general. the space of k-forms on M
is denoted by Λ(k)(M).

One way of interpreting the differential form is that it is a means of measuring k-dimensional objects that live
in the manifold. This idea comes from the fact that applying the 1-form to a vector in TM is analogous to
the vector inner (dot) product in Euclidean space.
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Proof 2.1. Consider a vector and covector (1-form) pair which live in the tangent and cotangent spaces
respectively, v ∈ TM, α(1) ∈ T ∗

M. The vector and the covector may be expressed as a linear combination of
the basis vectors of their respective spaces which, although are known from Section 2.2.2, are represented by
e1, e2, . . . , en and σ1, σ2, . . . , σn respectively for the sake of clarity

v =
∑

j

vjej , α(1) =
∑

i

αiσi. (2.8)

Applying the linear functional α(1) to v and using the relations in Equation (2.4) and Equation (2.5) yields:

α(1)(v) =
∑

j

vjα
(1)(ej) =

∑

j

∑

i

vjαiσi(ej) =
∑

j

∑

i

vjαiδij =
∑

i

viαi ∈ R. (2.9)

An important aspect to note here is that the duality paring implied by the vector inner product of αi and vj is
independent of the choice of basis. The expansion coefficients αi and vj will change when using a different set
of basis, however, the duality paring is unchanged. This is the major distinction to the classic inner product
where a change of basis generally leads to a different metric tensor.

An alternative interpretation of the differential form is that it is any quantity that occurs under the integral
sign [8]. To demonstrate this notion, consider the expanded version of the 1-form from Equation (2.7).

α(1) = α1dx1 + α2dx2 + . . .+ αndxn (2.10)

By integrating Equation (2.10), one obtains:
∫
α(1) =

∫
α1dx1 + α2dx2 + . . .+ αndxn, (2.11)

where the integral on the right can be identified as the line integral.

The presented proof and analogy of the 1-form can be generalised to any k-form, wherein a k-form is con-
structed by taking the sums of the exterior products of the 1-forms.

Definition 2.7 ([7, 8]). For an n-dimensional manifold M, the exterior product or wedge product is the
mapping ∧ : Λ(k)(M)×Λ(l)(M) −→ Λ(k+l)(M) which maps two differential forms of lower degree to differential
forms of higher degree. The mapping satisfies the following properties for α(k) ∈ Λ(k)(M), β(l) ∈ Λ(l)(M),
γ(m) ∈ Λ(m)(M), and f ∈ Λ(0)(M):

α(k) ∧ β(l) = (−1)klβ(l) ∧ α(k) (2.12)
(
α(k) + β(l)

)
∧ γ(m) = α(k) ∧ γ(m) + β(l) ∧ γ(m) (2.13)

(
α(k) ∧ β(l)

)
∧ γ(m) = α(k) ∧

(
β(l) ∧ γ(m)

)
(2.14)

f(α(k) ∧ β(l)) = f(α(k)) ∧ β(l) = α(k) ∧ f(β(l)). (2.15)

A 2-form in a 2-dimensional manifold can be found by taking the exterior product of two 1-forms.

Proof 2.2. Consider the 1-forms α(1) and β(1) on a 2-dimensional manifold M ⊂ R2

α(1) = α1dx1 + α2dx2, β(1) = β1dx1 + β2dx2.

The exterior product of α(1) and β(1) is then given by:

α(1) ∧ β(1) = (α1dx1 + α2dx2) ∧ (β1dx1 + β2dx2)

=
�������:0
α1β1dx1 ∧ dx1 + α1β2dx1 ∧ dx2 + α2β1 dx2 ∧ dx1︸ ︷︷ ︸

=−dx1∧dx2

+
�������:0
α2β2dx2 ∧ dx2

= (α1β2 − α2β1) dx1 ∧ dx2.

One can recognise that the presented operation resembles the vector product in R2. However, unlike in vector
calculus where the 2D vector product produces a scalar, the wedge product of two 1-forms produces a 2-form.
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2.3. Operators on manifolds
2.3.1. Exterior derivative
The concept of derivatives is extensively used in the context of vector calculus where operators such as the
gradient (⇀∇), divergence (⇀∇ ·), and the curl (⇀∇ ×) are constructed using different combinations of the dif-
ferentials. In the context of differential geometry, however, these operators are unified into a single operator
referred to as the exterior derivative.

Definition 2.8 ([7]). The exterior derivative on an n-dimensional manifold M is a unique mapping
d : Λ(k)(M) −→ Λ(k+1)(M) which maps differential k-forms into differential (k + 1)-forms. This operator
satisfies the following properties:

d
(
α(k) + β(k)

)
= dα(k) + dβ(k), ∀α(k), β(k) ∈ Λ(k)(M) (2.16)

df =
∑

j

∂f

∂xj
dxj , ∀f ∈ Λ(0)(M) (2.17)

d
(
α(k) ∧ β(l)

)
= dα(k) ∧ β(l) + (−1)kα(k) ∧ dβ(l), ∀α(k) ∈ Λ(k)(M), β(l) ∈ Λ(l)(M) (2.18)

d
(
dα(k)

)
= 0, ∀α(k) ∈ Λ(k)(M). (2.19)

Example 2.9. Consider a 0-form f (smooth function) defined on a 3-dimensional manifold M ⊂ R3. Ap-
plying the exterior derivative to f using the property defined in Equation (2.17) yields:

df =

(
∂f

∂x1

)
dx1 +

(
∂f

∂x2

)
dx2 +

(
∂f

∂x3

)
dx3 ∈ Λ(1)(M). (2.20)

Hence, applying the exterior derivative to a 0-form results in a 1-form of which the components correspond
to the derivative of the function in each of the three directions. In Cartesian coordinates, these components
correspond to the gradient of f (⇀∇ f).

Example 2.10. Let α(1) be a 1-form defined on a 3-dimensional manifold M ⊂ R3.

α(1) = α1dx1 + α2dx2 + α3dx3 (2.21)

The exterior derivative of α(1) is thus given by:

dα(1) = dα1 ∧ dx1 + dα2 ∧ dx2 + dα3 ∧ dx3

=

[(
∂α1

∂x1

)
dx1 +

(
∂α1

∂x2

)
dx2 +

(
∂α1

∂x3

)
dx3

]
∧ dx1

+

[(
∂α2

∂x1

)
dx1 +

(
∂α2

∂x2

)
dx2 +

(
∂α2

∂x3

)
dx3

]
∧ dx2

+

[(
∂α3

∂x1

)
dx1 +

(
∂α3

∂x2

)
dx2 +

(
∂α3

∂x3

)
dx3

]
∧ dx3

=
���������(
∂α1

∂x1

)
dx1 ∧ dx1 +

(
∂α1

∂x2

)
dx2 ∧ dx1 +

(
∂α1

∂x3

)
dx3 ∧ dx1

+

(
∂α2

∂x1

)
dx1 ∧ dx2 +

���������(
∂α2

∂x2

)
dx2 ∧ dx2 +

(
∂α2

∂x3

)
dx3 ∧ dx2

+

(
∂α3

∂x1

)
dx1 ∧ dx3 +

(
∂α3

∂x2

)
dx2 ∧ dx3 +

���������(
∂α3

∂x3

)
dx3 ∧ dx3

=

(
∂α3

∂x2
− ∂α2

∂x3

)
dx2 ∧ dx3 +

(
∂α1

∂x3
− ∂α3

∂x1

)
dx3 ∧ dx1 +

(
∂α2

∂x1
− ∂α1

∂x2

)
dx1 ∧ dx2.

Therefore, the exterior derivative of a 1-form returns a 2-form of which the components can be unidentified to
be the components of the curl of α (⇀∇ ×α) in Cartesian coordinates.

Example 2.11. Let ω(2) be a 2-form defined on a 3-dimensional manifold M ⊂ R3.

ω(2) = ω1dx2 ∧ dx3 + ω2dx3 ∧ dx1 + ω3dx1 ∧ dx2. (2.22)
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Subsequently, applying the exterior derivative to ω(2) gives:

dω(2) = dω1dx2 ∧ dx3 + dω2dx3 ∧ dx1 + dω3dx1 ∧ dx2

=

(
∂ω1

∂x1

)
dx1 ∧ dx2 ∧ dx3 +

(
∂ω2

∂x2

)
dx2 ∧ dx3 ∧ dx1 +

(
∂ω3

∂x3

)
dx3 ∧ dx1 ∧ dx2

=

(
∂ω1

∂x1
+
∂ω2

∂x2
+
∂ω3

∂x3

)
dx1 ∧ dx2 ∧ dx3.

As apparent through the above expression, the exterior derivative of a 2-form results in a 3-form which has a
single component pertaining the sum of the derivatives of the components of ω in each direction. This single
component corresponds to the divergence of ω (⇀∇ · ω) in Cartesian coordinates.

Lastly, it is intriguing to focus on the property of the exterior derivative given in Equation (2.19) which states
that applying the exterior derivative twice returns a zero for all k-forms. Going back to the M ⊂ R3 case
considered in the prior examples shows that the property in Equation (2.19) reflects the well known vector
calculus relations which state that the curl of the gradient is zero ⇀∇ × (

⇀∇ [·]) = 0 and the divergence of
the curl is zero ⇀∇ · (⇀∇ × ⇀

[·]) = 0. Moreover, an important remark can be made about the exterior derivative
regarding its generality. While the exterior derivative can be interpreted with the gradient , curl and div in
Cartesian coordinates, the identities extend to curvilinear domains.

2.3.2. Interior product
Contrary to the exterior derivative, there exists an operator that acts to decrease the degree of a given
differential form. This operator is referred to as the interior product and it is applied to a k-form through
the means of a vector field.

Definition 2.12 ([7]). For an n-dimensional manifold M, let v ∈ TM be a vector field. The interior
product is defined as the mapping iv : Λ(k)(M) −→ Λ(k−1)(M) that transforms a differential k-form to a (k
- 1)-form under the vector field v, such that:

ivf = 0, ∀f ∈ Λ(0)(M) (2.23)

ivα
(1) = α(v), ∀α(1) ∈ Λ(1)(M) (2.24)

ivγ
(k) = γ(k) (v,w1,w2, . . . ,wk−1) , ∀γ(k) ∈ Λ(k)(M) with w1,w2, . . . ,wk−1 ∈ TM. (2.25)

The interior product satisfies the following properties:

iav+bwα
(k) = (aiv + biw)α(k), ∀α(k) ∈ Λ(k)(M), a, b ∈ R (2.26)

iv ◦ iwα(k) = −iw ◦ ivα(k), ∀α(k) ∈ Λ(k)(M) (2.27)

iv

(
α(k) ∧ β(l)

)
= ivα

(k) + (−1)kα(k) ∧ ivβ(l), ∀α(k) ∈ Λ(k)(M), β(l) ∈ Λ(l)(M). (2.28)

Note that, while the interior product maps differential forms in the direction opposite that of the exterior
derivative, the two are not inverses of each other as they describe fundamentally different aspects.

2.3.3. Lie derivative
Definition 2.13 ([7, 8]). The Lie derivative is an operator defined on an n-dimensional manifold M that
measures the change of a vector or differential k-form as it is transported by a vector field v generating a local
flow. The Lie derivative of a k-form α(k) along a vector field v is a mapping Lv : Λ(k)(M) −→ Λ(k)(M) from
a k-form to another k-form and is defined as follows:

Lvα
(k) := iv ◦ dα(k) + d ◦ ivα(k). (2.29)

This operator satisfies the following properties:

Lv ◦ dα(k) = d ◦ Lvα
(k), ∀α(k) ∈ Λ(k)(M) (2.30)

Lv ◦ ivα(k) = iv ◦ Lvα
(k), ∀α(k) ∈ Λ(k)(M) (2.31)

Lv

(
α(k) ∧ β(l)

)
= Lvα

(k) ∧ β(l) + α(k) ∧ Lvβ
(l), ∀α(k) ∈ Λ(k)(M), β(l) ∈ Λ(l)(M). (2.32)
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Applying the Lie derivative to the different differential forms associates with it certain vector proxies (v.p.) as
described by [9]:

α(0) ∈ Λ(0)(M) : Lvα
(0) v.p.

= v · ⇀∇ α (2.33)

α(1) ∈ Λ(1)(M) : Lvα
(1) v.p.

=
⇀∇ (v ·α) + ⇀∇ ×α× v (2.34)

α(2) ∈ Λ(2)(M) : Lvα
(2) v.p.

=
⇀∇ × (v ×α) + v ⇀∇ ·α (2.35)

α(3) ∈ Λ(3)(M) : Lvα
(3) v.p.

=
⇀∇ · (vα). (2.36)

2.3.4. Hodge ⋆ operator
It was noted in Section 2.2.2 that vectors and differential 1-forms (covectors) were related via the dual space.
Similarly, the 1-forms on an n-dimensional manifold are associated with (n - 1)-forms. This association
between the 1-form and (n - 1)-form generalises to any k-form and (n - k)-form through the means of the
Hodge ⋆ operator.

Definition 2.14 ([7, 9]). Let M be an n-dimensional manifold. The Hodge ⋆ operator is defined as the linear
mapping ⋆ : Λ(k)(M) −→ Λ(n−k)(M) that transforms a differential k-form to its dual (n - k)-form. Some
examples of applying the Hodge operator in R3 to different k-forms are:

Λ(0)(M) −→ Λ(3)(M) : ⋆ 1 = dx1 ∧ dx2 ∧ dx3 (2.37)

Λ(3)(M) −→ Λ(1)(M) : ⋆ dx1 ∧ dx2 ∧ dx3 = 1 (2.38)

Λ(1)(M) −→ Λ(2)(M) : ⋆ dx1 = dx2 ∧ dx3 (2.39)

Λ(2)(M) −→ Λ(1)(M) : ⋆ dx2 ∧ dx3 = dx1. (2.40)

Furthermore, applying the operator twice satisfies the following relation:

⋆ ⋆α(k) = (−1)k(n−k)α(k), ∀α(k) ∈ Λ(k)(M). (2.41)

One major thing to note is that, while all the other operators introduced in this section are purely topological,
the Hodge ⋆ operator is not, and is therefore metric dependent. The metric dependence originates from the
inclusion of the determinant of the metric tensor in the definition of the canonical form [9]. This metric
dependent factor exists to account for the curvature of the manifold. On a different note, there exists a
geometric interpretation for the Hodge operator which namely deals with the aforementioned notion of different
geometric orientations. To demonstrate this, consider the illustration shown in Figure 2.1 which shows the
different orientations assigned to each geometric object (differential forms) in R3. There namely two sets of
orientations, the outer and the inner. The outer orientation considers the points and lines to have a sense
of rotation, the surfaces having a flux, and the volumes having a source or sink like behaviour. The inner
orientation, on the other hand, considers the points to have a source or sink like behaviour, the lines to have a
circulation, and the surfaces and volumes having a sense of rotation within the plane and volume respectively.
Notice that the inner orientations of the k-forms directly match with the outer orientations of the (3 - k)-forms.
It is exactly this likeness between the two forms that the Hodge operator is based on. When applying the
Hodge, the orientation of a differential form is preserved under the operation, whereas the geometric object is
transformed.
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Outer-oriented

Inner-oriented

0-form 1-form 2-form 3-form

3-form 2-form 1-form 0-form

Figure 2.1: Outer and Inner oriented forms in R3

2.4. De Rham complex
A common theme that can be recognised from the behaviour of the different operators introduced in Section 2.3,
is that they connect the different spaces of differential forms to one another. The exact sequence of mapping
between differential forms can be summarised by the double De Rham complex which is shown in Figure 2.2
for R3.

R Λ(0)(M) Λ(1)(M) Λ(2)(M) Λ(3)(M) 0

RΛ̃(0)(M)Λ̃(1)(M)Λ̃(2)(M)Λ̃(3)(M)0

d d d

ddd

⇀∇ ⇀∇ × ⇀∇ ·

⇀∇⇀∇ ×⇀∇ ·

⋆ ⋆ ⋆ ⋆

Figure 2.2: The double de Rham complex in R3

The top row of this complex represents the space of differential forms in R3, and the bottom row represents
the corresponding dual space of differential forms denoted by Λ̃(k)(M). Moreover, the mapping along the
horizontal direction is done by the exterior derivative which is a purely topological operator that links to the
gradient, divergence, and curl operators in R3. The mapping along the vertical direction is done by the Hodge
⋆ operator, which is metric dependent as highlighted in Section 2.3.4.





3
Mimetic Spectral Element Method

Having discussed the mathematical concepts in the previous chapter, this chapter presents the framework
of the 1D and 2D mimetic Spectral Element Method (SEM). Moreover, this chapter discusses the approach
through which the numerical method employs the concepts of differential geometry introduced in the previous
chapter. Firstly, Section 3.1 briefly explains the types of meshes used for the SEM. Subsequently, Section 3.2
presents the different basis functions defined on the mesh for 1D and 2D cases. Section 3.3 thereafter, show
the derivation of the discrete operators which establishes a connection to the previous chapter on differential
geometry. Lastly, Section 3.4 presents the discrete representation of the De Rham sequence.

3.1. Mesh
As in any numerical method, the SEM requires a computational mesh which holds the discrete representation
of the physical quantities of a given model problem. As the discrete equations for the SEM are derived from the
weak (or variational) formulation of the governing equations, the nodes of the mesh are taken to integration
points of quadrature rules so as to aid numerical integration. A common quadrature rule applied in the SEM
is the Gauss-Lobatto quadrature given that it includes the endpoints. Moreover, it is quite common to use
two meshes for the mimetic SEM where the two meshes are referred to as the primal and the dual mesh. The
two meshes are staggered as depicted in Figure 3.1 and Figure 3.2 which show the primal and dual meshes
using 4 Gauss-Lobatto points in 1D and 2D respectively.

(a) Primal mesh (b) Dual mesh (c) Staggered mesh

Figure 3.1: Computational mesh in R1

(a) Primal mesh (b) Dual mesh (c) Staggered mesh

Figure 3.2: Computational mesh in R2

This nomenclature employed for naming the meshes is not arbitrary, as it relates to the concept of dual spaces
introduced in Chapter 2 and will be later explained in Section 3.3. The degrees of freedom that are defined

11



12 3. Mimetic Spectral Element Method

Figure 3.3: 1D inner oriented cell complex

on the two meshes are discrete differential forms. In R1, there are namely two differential forms, the 0-form
defined in points (nodes) and the 1-form defined in edges (between two nodes). Similarly in R2, there are
three different differential forms, namely the 0-form defined in points, the 1-forms defined along lines, and the
2-forms defined in surfaces. Subsequently, the different differential forms are assigned a set of orientations,
namely, the outer-orientation and the inner-orientation previously discussed in Section 2.3.4. For the 1D
cases in the present work, the sole inner-oriented forms shown in Figure 3.3 are sufficient for the discretisation.
The 2D case, on the other hand, requires both inner and outer orientations where the differential forms on
primal mesh have an outer-orientation and the differential forms on dual mesh have an inner-orientation. The
depiction of the two orientations is shown in Figure 3.4.

(a) Outer-oriented cell complex (b) Inner-oriented cell complex

Figure 3.4: Orientation of cell complexes in R2

The outer oriented primal mesh, as depicted in Figure 3.4a, entails the points (0-forms) having a sense of
rotation, the edges (1-forms) having the notion of flux through the edge, and the surfaces (2-forms) having
a source like orientation. On top of the orientations, the nodes, edges, and surfaces on both primal and dual
meshes are numbered.

3.2. Basis functions
Having established the concepts of the computational mesh, a description of the different function spaces used
for the mimetic SEM is presented in this section. There are a vast number of function spaces that could be
used as basis functions for the SEM such as the Fourier basis, or even B-splines. In the mimetic SEM, there are
namely two classes of bases, the nodal basis, and the edge basis [10]. The description of the two is presented
in the subsequent subsections.

3.2.1. 1D Nodal basis
As the name suggests, the nodal bases are the functions that are defined by a set of nodes or points. In the
1D case, these nodes are taken to be the points of the computational mesh (ξ0, ξ1, . . . , ξp), where the 1D nodal
basis (hi(ξ)) satisfies the following property:

hi(ξj) = δij . (3.1)

A function space that satisfies the above property is the space of Lagrange polynomials:

hi(ξ) :=

p∏

j=0

j ̸=i

ξ − ξj
ξi − ξj

, i = 0, 1, . . . , p. (3.2)
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Equation (3.2) describes a set of p+1 1D polynomials of order p. The essence of this basis is that if a quantity
ϕh is expanded as a linear combination of the nodal basis as shown in Equation (3.3):

ϕh = [h0, h1, . . . , hp]




ϕ0
ϕ1
...
ϕp


 , (3.3)

then ϕh represents a discrete differential 0-form and the expansion coefficients ϕi correspond to the evaluation
of ϕ at the nodes ξi due to the property in Equation (3.1).

ϕi = ϕ(ξi). (3.4)

3.2.2. 1D Edge basis
The edge basis functions ei(ξ) are a separate set of functions that satisfy the following property:

∫ ξj

ξj−1

ei(ξ) dξ = δij . (3.5)

The edge basis functions can be computed in terms of the nodal basis as shown below [10]:

ei(ξ) := −
i−1∑

j=0

dhj
dξ

, i = 1, 2, . . . , p. (3.6)

Given the property in Equation (3.5), if a quantity is expanded using the edge basis functions as shown in
Equation (3.7):

φh = [e1, e2, . . . , ep]




φ1

φ2

...
φp


 , (3.7)

then ϕh represents a discrete differential 1-form and the coefficients φi correspond to the integrated value
between two nodes

φi =

∫ ξi

ξi−1

φ dξ. (3.8)

The plots of the 1D nodal and edge Lagrange polynomials for p = 4 are shown in Figure 3.5 where the nodes
are taken to be the Gauss Lobatto points.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
ξ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

h
i

h0(ξ) h1(ξ) h2(ξ) h3(ξ) h4(ξ)

(a) Nodal Lagrange basis functions

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
ξ

−2

−1

0

1

2

3

4

5

e i

e1(ξ) e2(ξ) e3(ξ) e4(ξ)

(b) Edge basis functions

Figure 3.5: 1D nodal and edge basis functions for p = 4
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3.2.3. Multi-dimensional Basis
The extension of the above mentioned 1D bases to higher dimensions is naturally done by taking the tensor
product of the 1D polynomials. The exact combination of the 1D bases used in the tensor product for generating
the 2D bases is shown in Table 3.1.

Table 3.1: Basis functions in 1D and 2D

k-form basis 1D 2D

ψ(0) h(ξ) h(ξ)⊗ h(η)

ψ(1) e(ξ) [h(ξ)⊗ e(η) · n̂ξ, h(η)⊗ e(ξ) · n̂η]

ψ(2) N.A e(ξ)⊗ e(η)

The multidimensional k-form basis functions corresponding to polynomial degree of 2 (p = 2) are shown in
Appendix .1.

As highlighted before, there are three distinct differential forms that can be represented on a 2D mesh. As
such, there are three sets of basis functions for the 2D case. The basis functions ψ(k) are referred to as the
k-form basis functions stemming from their property that a quantity expanded using these bases represents a
discrete differential k-form. The k-form basis functions satisfy Korneker Delta properties similar to those of
their 1D constituents. As such, the 0-form basis satisfies the following property:

ψ
(0)
i (pj) = δij , (3.9)

with pj being the jth node of the mesh. The 1-form basis satisfies:
∫

lj

ψ
(1)
i dlj = δij , (3.10)

where lj corresponds to the jth edge of the mesh. Lastly, the 2-form basis satisfies:
∫

sj

ψ
(2)
i dsj = δij , (3.11)

where sj is the jth surface of the mesh. Subsequently, the discrete k-forms on the 2D computational mesh can
be expressed as follows:

α
(0)
h =

[
ψ
(0)
0 , ψ

(0)
1 , . . . , ψ(0)

n

]



α0

α1

...
αn


 (3.12)

β
(1)
h =

[
ψ
(1)
0 , ψ

(1)
1 , . . . , ψ(1)

m

]



β0
β1
...
βm


 (3.13)

ω
(2)
h =

[
ψ
(2)
0 , ψ

(2)
1 , . . . , ψ

(2)
l

]



ω0

ω1

...
ωl


 , (3.14)

where the expansion coefficients αi correspond to the nodal values of αh, βi correspond to the fluxes of βh over
the edges of the mesh, and lastly, ωi correspond to the integral value of ωh over the surfaces of the mesh. These
expansion coefficients are also commonly referred to as the degrees of freedom. It is worth noting that the basis
function presented thus far have all been constructed on the primal mesh. The procedure for constructing the
basis on the dual mesh is the same where one would use the dual nodes instead of the primal ones. However,
the explicit construction of the dual basis functions is not needed as there exists a unique mapping between
the primal and dual function spaces as shown in [11] and re-iterated in Section 3.3.2.
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3.3. Discrete operators
The derivation of the discrete operators that can be applied to the discrete differential forms is presented in
this section. The operators presented in this section correspond to the discrete counterparts of the operators
shown in Section 2.3.

3.3.1. Exterior derivative
To start off, the discrete counterpart of the exterior derivative is introduced in this section. The underlying
theorem behind all the derivations presented in this section is the Generalised Stokes’ theorem [11]:

∫

Ω

dω(k) =

∫

∂Ω

ω(k). (3.15)

Firstly, consider an inner oriented 1D domain with the points and edges numbered as shown in Figure 3.6.

p0 p1 p2l0 l1

Figure 3.6: 1D inner oriented mesh

Suppose that a quantity ϕ is expanded/represented using the 0-form (nodal) basis as follows:

ϕh := ψ(0)ϕ. (3.16)

Here, ϕh is the discrete representation of ϕ, ψ(0) is the row vector containing the 0-form basis functions, and ϕ
is the column vector containing the expansion coefficients (degrees of freedom). To derive the discrete exterior
derivative for this 1D case, consider the 1D gradient theorem applied between two neighbouring nodes pi and
pi−1: ∫ pi

pi−1

∂ϕ

∂x
dx = ϕ

∣∣∣
pi

− ϕ
∣∣∣
pi−1

. (3.17)

Recalling that expansion coefficients, ϕ, of a discrete 0-form correspond to the nodal evaluation of ϕ based on
the property in Equation (3.4). As such, the gradient theorem can be expressed exactly as follows:

∫ pi

pi−1

∂ϕ

∂x
dx = ϕi − ϕi−1 (3.18)

Writing out this differencing operation for the simple 1D mesh shown in Figure 3.6 yields:



∫ p1

p0

∂ϕ

∂x
dx

∫ p2

p1

∂ϕ

∂x
dx


 =

[
−1 1 0
0 −1 1

]

ϕ0
ϕ1
ϕ2


 . (3.19)

Now recall the property of the 1D 1-form (edge) basis function given in Equation (3.8) which states that the
expansion coefficients of a quantity expanded using the 1-form basis corresponds to the integral values of the
quantities between two neighbouring nodes. The differencing operation shown in Equation (3.19) yields the
exact integrated value of the gradient of ϕ over two mesh nodes and can thus be considered to be the expansion
coefficients of the 1-form basis function expanding the gradient of ϕ.

∂ϕh
∂x

=
[
ψ
(1)
1 , ψ

(1)
2

]



∫ p1

p0

∂ϕ

∂x
dx

∫ p2

p1

∂ϕ

∂x
dx


 (3.20)

∂ϕh
∂x

=
[
ψ
(1)
1 , ψ

(1)
2

] [ −1 1 0
0 −1 1

]

ϕ0
ϕ1
ϕ2


 (3.21)

∂ϕh
∂x

= ψ(1)E1,0ϕ. (3.22)

The differencing operator is written as E1,0 and is referred to as the incidence matrix. Following the shown
derivation, it is evident that this incidence matrix is a linear transformation that maps the degrees of freedom
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of discrete 0-forms to the degrees of freedom of discrete 1-forms, E1,0 : Λ
(0)
h (M) −→ Λ

(1)
h (M) and is therefore

the discrete counterpart of the exterior derivative in 1D.

E1,0 =

[
−1 1 0
0 −1 1

]
(3.23)

The construction of this incidence matrix can also be done geometrically following the orientations and num-
bering of the mesh shown in Figure 3.6. Considering the edge l0, it can be seen that its orientation points
to the right which is aligned with the direction of the left arrow of p1 but opposite to the right arrow of p0.
Assigning a +1 for the point that is aligned, a -1 for the miss-aligned point, and 0 for all the non-enclosing
points of l0 yields a vector [−1, 1, 0] which is equivalent to the first row of E1,0. Applying the same algorithm
for l1 yields [0,−1, 1] which is equivalent to the second row of E1,0. This algorithm can be generalised to 1D
meshes with an arbitrary number of points which are oriented and numbered as in Figure 3.6.

The constructed incidence matrix is for the primal mesh, however, following the De Rham sequence, there
exists an adjoint or dual operator, Ẽ1,0, which can be applied to the quantities defined on the dual mesh. The
exact relation between E1,0 and Ẽ1,0 can be found by considering the operator that is dual to the derivative
operator. Consider two real-valued functions u and v defined in a 1D domain Ω with boundary ∂Ω. The
derivative of the product of the two functions can be expanded using the product rule:

∂uv

∂x
= v

∂u

∂x
+
∂v

∂x
u. (3.24)

Now integrating the above equation over the domain Ω yields:
∫

Ω

∂uv

∂x
dx =

∫

Ω

v
∂u

∂x
dx+

∫

Ω

∂v

∂x
u dx (3.25)

uv
∣∣∣
∂Ω

=

∫

Ω

v
∂u

∂x
dx+

∫

Ω

∂v

∂x
u dx (3.26)

∫

Ω

v
∂u

∂x
dx = uv

∣∣∣
∂Ω

−
∫

Ω

∂v

∂x
u dx. (3.27)

The resulting expression shows that the dual operator of the 1D gradient is the negative gradient. More
specifically, although not apparent in the 1D case, the dual gradient operator is the negative of the transpose
of the gradient1. The found relation for the 1D gradient and its dual operator translates to the discrete setting
too, therefore,

Ẽ1,0 = −E1,0T + N1B(0). (3.28)

Similar to the 1D case, the incidence matrices for the 2D case are constructed by employing the geometric
notions of the differential operators such as the gradient (⇀∇), divergence (⇀∇ ·), and curl (⇀∇ ×) which relate
back to the Generalised Stokes’ theorem in Equation (3.15). To demonstrate this, consider a simple 2 × 2
staggered mesh with the orientations and numbering as shown in Figure 3.7.

Firstly, the incidence matrix E1,0 is derived on this mesh. For the construction of this operator, consider a
quantity defined in the points of the primal mesh, for instance the 2D vorticity field ω = [0, 0, ωz]

T where:

ωzh := ψ(0)ωz, (3.29)

is the discrete representation of ωz using the 0-form basis. Integrating the normal component curl of this
quantity over an edge li of the primal mesh can be expressed as:

∫

li

(⇀∇ × ω
)
· n̂ dli =

∫

li

[
∂ωz
∂y

, −∂ωz
∂x

, 0

]T
· n̂li dli = ± [ωz]∂li , (3.30)

where n̂li is the unit vector normal to li and [ωz]∂li is difference of ωz at the end points of li. To elaborate on
the expression in Equation (3.30), consider the integral over the edge l0:

∫

l0

(⇀∇ × ω
)
· n̂l0 dl0 =

∫

l0

[
∂ωz
∂y

, −∂ωz
∂x

, 0

]T
· [1, 0, 0]T dy (3.31)

=

∫

l0

∂ωz
∂y

dy (3.32)

= ωz

∣∣∣
p3

− ωz

∣∣∣
p0

= [ωz]∂l0 . (3.33)

1The origin of the transpose is more apparent when Equation (3.27) is expressed in a discrete setting
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p0 p1 p2

p3 p4 p5

p6 p7 p8

l0 l1 l2

l3 l4 l5

l6 l7

l8 l9

l10 l11

s0

s1

s2

s3

(a) Outer oriented primal mesh

s̃0 s̃1 s̃2

s̃3 s̃4 s̃5

s̃6 s̃7 s̃8

p̃0

p̃1

p̃2

p̃3

l̃6 l̃7

l̃8 l̃9

l̃10 l̃11

l̃0 l̃1 l̃2

l̃3 l̃4 l̃5

(b) Inner oriented dual mesh

Figure 3.7: 2× 2 Primal and Dual meshes

Similarly, consider the integral over l6:

∫

l6

(⇀∇ × ω
)
· n̂l6 dl6 =

∫

l6

[
∂ωz
∂y

, −∂ωz
∂x

, 0

]T
· [0, 1, 0]T dx (3.34)

= −
∫

l0

∂ωz
∂x

dx (3.35)

= −
(
ωz

∣∣∣
p1

− ωz

∣∣∣
p0

)
= − [ωz]∂l6 . (3.36)

In short, Equation (3.30) states that taking the difference of the neighbouring nodal values on the primal mesh
yields the integrated value of the curl of the quantity normal to the edge connecting the two points. Alike the
1D case, applying this differencing operation to all the edges and incorporating the difference operator in a
matrix yields the following:




∫

l0

(⇀∇ × ω
)
· n̂l0 dl0

∫

l1

(⇀∇ × ω
)
· n̂l1 dl1

...∫

l11

(⇀∇ × ω
)
· n̂l11 dl11




=




−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1







ωz0
ωz1
...
ωz8


 . (3.37)

Recalling the property of the 2D 1-form basis from Equation (3.10), one can show that2:

(⇀∇ × ω
)
=
[
ψ
(1)
0 , ψ

(1)
1 , . . . ψ

(1)
11

]




∫

l0

(⇀∇ × ω
)
· n̂l0 dl0

∫

l1

(⇀∇ × ω
)
· n̂l1 dl1

...∫

l11

(⇀∇ × ω
)
· n̂l11 dl11




(3.38)

2Note that while the example was shown for a Cartesian mesh, the approach is not limited to that. The described method can
be applied to other meshes which may be skewed, stretched, sheared, etc.
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(⇀∇ × ω
)
=
[
ψ
(1)
0 , ψ

(1)
1 , . . . ψ

(1)
11

]




−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1







ωz0
ωz1
...
ωz8


 (3.39)

(⇀∇ × ω
)
= ψ(1)E1,0ωz. (3.40)

E1,0 =




−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1




(3.41)

The differencing operator is thus the incidence matrix which maps the degrees of freedom of discrete differential
0-forms into the degrees of freedom of discrete 1-forms, E1,0 : Λ

(0)
h (M) −→ Λ

(1)
h (M), and can be viewed as the

discrete curl operator.

The relation described in Equation (3.30) naturally translates to a geometric interpretation which can be used
to construct the incidence matrix E1,0. Following the numbering and orientations of the points and edges in
Figure 3.7a, one can observe that the direction of the flux over l0 has a negative contribution (-1) coming
from the rotation of p0 and a positive contribution (+1) coming from p3, given that the former has an induced
direction opposite to the flux, and the latter has an induced direction aligned to the flux. Similarly, p0 has
a positive contribution to the flux at l6 and p1 has a negative contribution to l6. Applying this procedure to
every edge of the mesh and its confining nodes and collecting the entries (±1) into a matrix where the rows
correspond to the edge number and columns correspond to the point number, yields the matrix E1,0.

For the derivation of the second incidence matrix on the primal mesh, consider a vector field ũ defined as a
1-form3:

uh := ψ(1)u. (3.42)

The Gauss Divergence theorem states that the integral of the divergence of ũ over a surface is equal to the
flux of ũ over the boundary: ∫

si

⇀∇ · ũ dsi =

∮

∂si

ũ · n̂ dl. (3.43)

Given that the expansion coefficients of the discrete 1-form (ui) correspond to the fluxes over the edges, the
integral of the divergence of ũ can be exactly written as follows:




∫

s0

⇀∇ · ũ ds0
∫

s1

⇀∇ · ũ ds1
∫

s2

⇀∇ · ũ ds2
∫

s3

⇀∇ · ũ ds3




=




−u0 + u1 − u6 + u8
−u1 + u2 − u7 + u9
−u3 + u4 − u8 + u10
−u4 + u5 − u9 + u11


 (3.44)

3The tilde is added to make the distinction between the quantity (ũ) and the vector of expansion coefficients of the 1-form basis
(u)
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


∫

s0

⇀∇ · ũ ds0
∫

s1

⇀∇ · ũ ds1
∫

s2

⇀∇ · ũ ds2
∫

s3

⇀∇ · ũ ds3




=




−1 1 0 0 0 0 −1 0 1 0 0 0
0 0 0 −1 1 0 0 0 −1 0 1 0
0 −1 1 0 0 0 0 −1 0 1 0 0
0 0 0 0 −1 1 0 0 0 −1 0 1







u0
u1
...
u11


 . (3.45)

Following the same procedure as for E1,0 by using the property of the 2-form basis:

⇀∇ · ũ =
[
ψ
(2)
0 , ψ

(2)
1 , ψ

(2)
2 , ψ

(2)
3

]




∫

s0

⇀∇ · ũ ds0
∫

s1

⇀∇ · ũ ds1
∫

s2

⇀∇ · ũ ds2
∫

s3

⇀∇ · ũ ds3




(3.46)

⇀∇ · ũ =
[
ψ
(2)
0 , ψ

(2)
1 , ψ

(2)
2 , ψ

(2)
3

]



−1 1 0 0 0 0 −1 0 1 0 0 0
0 0 0 −1 1 0 0 0 −1 0 1 0
0 −1 1 0 0 0 0 −1 0 1 0 0
0 0 0 0 −1 1 0 0 0 −1 0 1







u0
u1
...
u11


 (3.47)

⇀∇ · ũ = ψ(2)E2,1u (3.48)

E2,1 =




−1 1 0 0 0 0 −1 0 1 0 0 0
0 0 0 −1 1 0 0 0 −1 0 1 0
0 −1 1 0 0 0 0 −1 0 1 0 0
0 0 0 0 −1 1 0 0 0 −1 0 1


 . (3.49)

Thus, the incidence matrix E2,1 maps the degrees of freedom of discrete differential 1-forms into the degrees
of freedom of discrete 2-forms E2,1 : Λ

(1)
h (M) −→ Λ

(2)
h (M) and is the discrete divergence operator.

Having concluded the derivations for the discrete exterior derivatives on the primal mesh (E1,0 and E2,1), the
next step is to derive the discrete exterior derivatives on the dual mesh (Ẽ1,0 and Ẽ2,1). The derivation/con-
struction of these incidence matrices on the dual mesh can be done in two ways. The first approach is the one
which has been previously employed, namely, using the geometric notion of the generalised Stokes’ theorem
where the Gradient theorem in Equation (3.50) over the nodes and edges of the dual mesh yields the discrete
gradient operator Ẽ1,0, and similarly, Stokes’ theorem in Equation (3.51) over the edges and surfaces of the
dual mesh results in the discrete dual curl operator Ẽ2,1.

∫

l̃i

⇀∇ φ dl̃i = [φ]∂l̃i (3.50)

∫

s̃i

⇀∇ ×φ ds̃i =

∮

∂s̃i

φ · t̂ dl̃. (3.51)

The alternative approach is to use the idea that the operators on the dual mesh are the adjoint or dual of the
operators on the primal. Consider a scalar function f and a vector field u defined in an arbitrary domain Ω
that has a boundary ∂Ω. The divergence of the product of f and u can be expressed as follows:

⇀∇ · (fu) = (
⇀∇ f)Tu + f

⇀∇ · u. (3.52)

Now integrating the above equation over the domain Ω yields:
∫

Ω

⇀∇ · (fu) dΩ =

∫

Ω

(
⇀∇ f)Tu dΩ +

∫

Ω

f
⇀∇ · u dΩ. (3.53)

Applying the Gauss Divergence theorem to the left hand side term:
∫

∂Ω

(fu) · n̂ dΓ =

∫

Ω

(
⇀∇ f)Tu dΩ +

∫

Ω

f
⇀∇ · u dΩ (3.54)

∫

Ω

f
⇀∇ · u dΩ = −

∫

Ω

(
⇀∇ f)Tu dΩ−

∫

∂Ω

(fu) · n̂ dΓ. (3.55)
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Equation (3.55) thus shows that the adjoint/dual of the divergence operator is negative the transpose of the
gradient operator plus the boundary term.

Similarly, consider two vector fields u and v defined in the domain Ω with boundary ∂Ω. The divergence of
the cross product of the two vectors can be written as follows:

⇀∇ · (v × u) =
(⇀∇ × u

)T
v − uT

(⇀∇ × v
)
. (3.56)

Alike the previous case, integrating the above equation over Ω and applying the Gauss Divergence theorem
gives:

∫

Ω

⇀∇ · (v × u) dΩ =

∫

Ω

(⇀∇ × u
)T
v dΩ−

∫

Ω

uT
(⇀∇ × v

)
dΩ (3.57)

∫

∂Ω

(v × u) · n̂ dΓ =

∫

Ω

(⇀∇ × u
)T
v dΩ−

∫

Ω

uT
(⇀∇ × v

)
dΩ (3.58)

∫

Ω

(⇀∇ × u
)T
v dΩ =

∫

Ω

uT
(⇀∇ × v

)
dΩ−

∫

∂Ω

(v × u) · n̂ dΓ. (3.59)

Thus, Equation (3.59) shows that the dual of the curl operator is the transpose of itself again with an additional
boundary term.

The found (continuous) relation for the dual divergence and dual curl operator translate to their discrete
counterparts which gives the following expressions for Ẽ1,0 and Ẽ2,1:

Ẽ1,0 = −E2,1T + N1B(0)

Ẽ2,1 = E1,0T + N0B(1).
(3.60)

Having constructed all the incidence matrices for the 2D case, one can show a very important property of
these operators, namely that applying the exterior derivative twice to any 0-form yields a zero.

d ◦ dω(0) = 0, ∀ω(0) ∈ Λ(0)(M) (3.61)

This relation effectively reflects that the divergence of the curl of a quantity in the nodes of the primal mesh
is zero, and that the curl of the gradient of a quantity on the nodes of the dual mesh is zero.

⇀∇ · ⇀∇ × u = 0, ∀u ∈ Rn (3.62)
⇀∇ × ⇀∇ f = 0, ∀f ∈ R (3.63)

The property of the gradient, divergence, and curl operator is encapsulated by the incidence matrices whose
product must yield exactly zero. Taking the product of the two incidence matrices on the primal mesh defined
in Equation (3.41) and Equation (3.49) gives a matrix with zeros in all its entries.

E2,1E1,0 = 0 (3.64)

Applying the same idea to the incidence matrices on the dual mesh is not as straightforward given the presence
of the boundary terms. In the case where the boundary terms vanish, for instance when using periodic
boundaries, the following identity hold:

Ẽ2,1Ẽ1,0 = −E1,0TE2,1T = 0. (3.65)

For the more general case where the boundary terms do not vanish, the product Ẽ2,1Ẽ1,0 is more involved but
in the end it is found to be zero as shown in [11].

3.3.2. Hodge operator
A number of different works that employ the Finite/Spectral element method, resort to deriving the weak
form of the governing equations. To demonstrate the weak form, consider a generic governing equation given
below where L is a linear differential operator.

Lα(k) = 0, α(k) ∈ Λ(k)(M) (3.66)

The weak form of the governing equation is found by taking the wedge product of the equation with the Hodge
of a test function v and integrating over the domain. This wedge Hodge operation is denotes the L2 inner
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product of the two quantities. For the Galerkin method, the test function is taken from the same function
space as the solution space leading to the following:

∫

Ω

Lα(k) ∧ ⋆ v(k) = 0, ∀v(k) ∈ Λ(k)(M), (3.67)

Now expressing the solution α(k) and test function v(k) in a discrete finite-dimensional space using the k-form
basis gives:

α
(k)
h :=

[
ψ
(k)
0 , ψ

(k)
1 , . . . , ψ(k)

p

]



α0

α1

...
αp


 = ψ(k)α (3.68)

v
(k)
h :=

[
ψ
(k)
0 , ψ

(k)
1 , . . . , ψ(k)

p

]



v0
v1
...
vp


 = ψ(k)v. (3.69)

Substituting these discrete forms into Equation (3.67) yields the following:

viαj

∫

Ω

Lψ
(k)
j ∧ ⋆ ψ(k)

i = 0 (3.70)

where the summation notation is implied over index i and j. Since the above equation holds for all vh ∈
Λ
(k)
h (M), the coefficients vi can be omitted, resulting in the following algebraic equation that can be solved

to find the unknown αjs:

αj

∫

Ω

Lψ
(k)
j ∧ ⋆ ψ(k)

i = 0. (3.71)

The solution to the algebraic system in Equation (3.71) will be the one that weakly satisfies L α
(k)
h = 0.

While the exact form the differential operator L will vary for different physical problems, it is still quite
common that one will encounter the integral of the wedge product of the k-form basis with its Hodge when
deriving the weak form. This integral term is referred to as the k-form mass matrix M(k) and is defined as
follows:

M(k) :=

∫

Ω

[
ψ(k)T dx1 ∧ dx2 ∧ . . . ∧ dxk

]
∧ ⋆
[
ψ(k)dx1 ∧ dx2 ∧ . . . ∧ dxk

]
. (3.72)

The Hodge operator in Equation (3.72) is considered to act as its continuous form, namely, that it maps
k-forms to (n-k)-forms while leaving the point-wise values of the k-form unaffected. In other words, taking
the dual of a 1-form in 1D for instance, gives a 0-form:

⋆ψ(1)ω = ψ̃(0)ω̃, (3.73)

however, the relation ψ(1)ω = ψ̃(0)ω̃ still holds in a point-wise sense. Using this idea, the Hodge of the k-form
in Equation (3.72) need not be computed and the original k-form can be used instead with the inclusion of the
metric tensor stemming from the definition of the Hodge operator [9]. The resulting expression for the k-form
mass matrix is then given by:

M(k) =
√
det(g)

∫

Ω

[
ψ(k)T dx1 ∧ dx1 ∧ . . . ∧ dxk

]
∧
[
ψ(k)dxk+1 ∧ dxk+2 ∧ . . . ∧ dxn

]
(3.74)

M(k) = ±
√
det(g)

∫

Ω

ψ(k)Tψ(k)dx1 ∧ dx2 ∧ . . . ∧ dxk, (3.75)

where
√
det(g) is the square root of the determinant of the metric tensor and the ± is there to account for the

sign of the product of the basis vectors (dxi). These k-form mass matrices essentially map discrete k-forms to
discrete (n-k)-forms, M(k) : Λ

(k)
h (M) −→ Λ̃

(n−k)
h (M). Therefore, the mass matrices act as the discrete Hodge

operators. One important thing to note is that, unlike the incidence matrices, the mass matrices include metric
dependence and are therefore subjected to the approximations/errors coming from the domain discretisation.

As previously mentioned in Section 3.2.3, the dual mesh and dual basis functions need not be explicitly
constructed. The reason for this is highlighted in [11] which in short relates to the mass matrices. Consider a
discrete k-form α

(k)
h defined in an n-dimensional manifold:

α
(k)
h := ψ(k)α. (3.76)
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Its dual α̃(n−k)
h lives in the space of discrete (n-k)-forms:

α̃
(n−k)
h := ψ̃(n−k)α̃. (3.77)

The dual degrees of freedom α̃ can be computed using the k-form mass matrix as follows:

α̃ = M(k)α. (3.78)

Furthermore, as previously highlighted, α and α̃(n−k)
h must be equal in a strong (point-wise) sense.

ψ(k)α = ψ̃(n−k)α̃ (3.79)

ψ(k)α = ψ̃(n−k)M(k)α. (3.80)

For the above expression to be equal, the dual basis functions ψ̃(n−k) must be:

ψ̃(n−k) = ψ(k)M(k)−1

. (3.81)

3.3.3. Interior product
To obtain a discrete interior product operator, it was noted in [9] that the interior product is adjoint/d-
ual to the wedge product. This duality paring implied the following relation ∀α(k)

h ∈ Λ
(k)
h (M), ∀β(k−1)

h ∈
Λ
(k−1)
h (M),∀vh ∈ T Mh

:
∫

Ωh

(
ivh

α
(k)
h

)
∧ ⋆β(k−1)

h =

∫

Ωh

α
(k)
h ∧ ⋆

(
β
(k−1)
h ∧ v♭h

)
. (3.82)

The ♭ superscript on the vector vh is referring to the musical operator which maps vectors from the tangent
space to a 1-form, ♭ : T M −→ Λ(1)(M). Now defining a new variable γ(k−1)

h to be the interior product of α(k)
h

under vector vh:
ivhα

(k)
h = γ

(k−1)
h = ψ(k−1)γ, (3.83)

and substituting it into Equation (3.82) yields:
∫

Ωh

γ
(k−1)
h ∧ ⋆β(k−1)

h =

∫

Ω

α
(k)
h ∧ ⋆

(
β
(k−1)
h ∧ v♭h

)
. (3.84)

Expanding all the discrete differential forms using their respective k-form basis functions results in the follow-
ing:

βT
∫

Ωh

ψ(k−1)Tψ(k−1)γ = βT
∫

Ωh

v♭hψ
(k−1)Tψ(k)α (3.85)

One can recognise that the integral on the left side of the above equation corresponds to the (k-1)-form mass
matrix. The integral on the right, however, is not quite the mass matrix as it contains the product of the
(k-1)-form basis with the k-form basis. This matrix acts as a projection matrix with the vector field and is
expressed as M(k−1,k)

vh .
βTM(k−1)γ = βTM(k−1,k)

vh
α. (3.86)

Since the above equation holds for all β, it can be eliminated which results in the following expression for γ:

γ =
(
M(k−1)

)−1

M(k−1,k)
vh

α. (3.87)

Therefore, the discrete interior product may be written as follows:

ivh
α
(k)
h = γ

(k−1)
h = ψ(k−1)T

[(
M(k−1)

)−1

M(k−1,k)
vh

α

]
. (3.88)

The interior product in its continuous form is metric free, however, the discrete form derived above proves
to have strong metric dependencies coming from the mass matrix (M(k−1)−1

) and the projection matrix
(M(vh,k−1)

k ). There are, however, certain cases where at least the projection matrix can be metric-free which
will be later discussed in Section 5.1.2. Concerning the mappings involved in the discrete interior product, it
can be seen that the projection matrix maps the k-form to a dual (k - 1)-form under the weight of the vector
v, and the mass matrix acts as the discrete Hodge operator mapping the dual quantity to the primal space.
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3.3.4. Lie derivative
As highlighted in Section 2.3.3, the Lie derivative of a k-form can be expressed by some combination of the
exterior derivative and the interior product. Having derived the discrete counterparts of both the exterior
derivative and the interior product in the previous sections, the discrete Lie derivative can be readily found by
simply re-writing Equation (2.29) using the discrete operators. The resulting discrete Lie derivative is given
as follows:

Lvh
α
(k)
h := Ek,k−1

(
M(k−1)

)−1

M(k−1,k)
vh︸ ︷︷ ︸

d ◦ ivh

α
(k)
h +

(
M(k)

)−1

M(k,k+1)
vh

Ek+1,k

︸ ︷︷ ︸
ivh

◦ d

α
(k)
h . (3.89)

3.4. Discrete De Rham complex
As previously shown in Section 2.4, the sequence of applying the various operators on a manifold can be
elegantly summarised by the De Rham sequence. Naturally, there also exists a discrete version of the De
Rham complex which is shown in Figure 3.8 and Figure 3.9 for 1D and 2D respectively. The concept of the De
Rham complexes shown here for the discrete cases are the same as the continuous case only difference being
that the continuous operators are replaced by their discrete counterparts.

R Λ
(0)
h (M) Λ

(1)
h (M) 0

RΛ̃
(0)
h (M)Λ̃

(1)
h (M)0

E1,0

Ẽ1,0

M(0) M(1)

Figure 3.8: Discrete De Rham complex in R1

R Λ
(0)
h (M) Λ

(1)
h (M) Λ

(2)
h (M) 0

RΛ̃
(0)
h (M)Λ̃

(1)
h (M)Λ̃

(2)
h (M)0

E1,0 E2,1

Ẽ1,0Ẽ2,1

M(0) M(1) M(2)

Figure 3.9: Discrete De Rham complex in R2

3.5. Hybrid Spectral Element Method
The derivations and concepts presented in this chapter thus far have primarily tackled the Spectral method,
that is, a mesh with only a single element. A single element alone can be quite restrictive, thus, it is customary
to extend to multiple elements giving rise to the SEM. This extension to the multi element case is discussed
in this section.

3.5.1. Mesh
The mesh for the multi element setting is simply constructed by adding a number of single elements like
Figure 3.1 (for 1D) or Figure 3.2 (for 2D) in a sequence. Each element has its respective set of basis functions
used for expressing the various (nodal, edge, etc) degrees of freedom. For ease of generalisation, the basis
functions are define in a reference element, ξ ∈ [−1, 1] in 1D and (ξ, η) ∈ [−1, 1]2 in 2D. Thus the computations
involving the basis functions are executed in the reference element and then transform to each physical element.
The transformation is done via a mapping Φ which is expressed as follows for the 1D case:

Φ(ξ) :=
a

2
(1− ξ) +

b

2
(1 + ξ), ξ ∈ [−1, 1], (3.90)

the depiction of which is shown in Figure 3.10. An important quantity used in the transformations is the

Jacobian J =
∂Φ

∂ξ
which acts to scale the quantities when moving from the reference element to the physical

one. This approach can be generalised for multi-dimensional cases as well, see [11] for details.
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−1 1ξ a bx

Φ(ξ)

Figure 3.10: Illustration of mapping between the 1D reference and physical element

The mapping between the reference and physical elements is one key component of the multi-element case.
The other key component relates to the manner by which information is passed between the elements. This
is associated to enforcing some level of continuity between the elements. There are primarily two approaches
to enforce said continuity amongst the elements, namely by either employing the gathering matrix approach
or using the hybrid method. The latter is the approach considered in the present work. The hybrid method
involves introducing additional degrees of freedom at the element interfaces which are used to enforce the
desired continuity constraints. Examples of this hybrid setup for the 1D and 2D cases are shown in Figure 3.11
and Figure 3.12 respectively. Note that since only periodic problems are considered in the 2D case, the depicted
2D mesh in Figure 3.12 shows the Lagrange multipliers specific to the periodic case. The example 1D mesh

λ0

p0 p1 p2l0 l1

λ1

p3 p4 p5l2 l3

λ2

p6 p7 p8l4 l5

λ3

Figure 3.11: Example hybrid 1D mesh with p = 2 and N = 3 elements

in Figure 3.11 depicts a mesh with N = 3 elements with each element containing three (transformed Gauss-
Lobatto) points leading to every element containing three quadratic p = 2 polynomials. Hereforth, for any
given 1D mesh, the variables p and N are used to refer to the degree of the polynomial and number of elements
respectively. The numbering shown in the figure highlight the global numbering of the degrees of freedom on
the mesh where the λs are the additional Lagrange multipliers used to enforce inter element continuity and
boundary conditions. Note that for case of periodic boundary conditions, λ3 is redundant as periodicity
between point 8 and 0 can be enforced using only λ0.

Moving on to the 2D case, the example hybrid mesh in Figure 3.12 shows the global numbering of the degrees
of freedom for a mesh comprised of 3×3 elements which each element containing quadratic (p = 2) polynomials
for the nodal degrees of freedom. The extension of the hybrid formulation to the 2D case involves the addition
of a few more Lagrange multipliers as shown in Figure 3.12. The desired continuity in the 2D case is the
continuity between the nodal degrees of freedom and the continuity between the edge degrees of freedom,
that is, continuity of the pointwise quantities and the continuity of the fluxes over the elements. For this
reason, there are three set of Lagrange multipliers introduced, namely λ, γ, and θ. The λs map out to enforce
continuity of the fluxes between the elements, whereas the γs are used to enforce continuity of the pointwise
quantity. The γs on their own are in fact insufficient to obtain a unique solution to the constrained problem,
hence the addition of θ. The θs are designed to enforce a constraint on the Lagrange multipliers λ themselves
which in the end guarantee uniqueness of the solution to the constrained problem.

3.5.2. Constraints with Lagrange multipliers
With the Lagrange multipliers introduced, the approach for using them to enforce the desired constraints to a
discrete algebraic system is discussed in this subsection. Consider an algebraic problem in the following form
constructed on the 1D example mesh from Figure 3.11:

Au = f , (3.91)

where u is a vector containing the nodal degrees of freedom organised based on the global numbering of the
nodes shown in Figure 3.11. Now suppose one wishes to enforce the solution to be equal to zero at the domain
boundaries and pointwise continuous at the elements. Then the constraints on the degrees of freedom read as
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Figure 3.12: Example hybrid 2D periodic mesh with p = 2 and 3× 3 elements
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follows:
u0 = 0

u3 − u2 = 0

u6 − u5 = 0

u8 = 0.

(3.92)

These constraints may be imposed using the Lagrange multipliers λ as the boundary variables as follows:
∫

∂Ωk

λ[u] dΓk = 0, (3.93)

where [u] represents the jump in the value of u at the element boundary between neighbouring elements. The
above expression may be rewritten as follows:

λTEλ,0u = 0, (3.94)

where the jump operator is replaced by a differencing matrix Eλ,0 and λ and u are the vectors containing
the Lagrange multipliers and nodal degrees of freedom respectively. This Eλ,0 shares a similarity with the
previously described incidence matrices in the sense that they are both topological operators which simply
include ±1 as their entries.

Going back to the original algebraic problem, reformulating the problem with the inclusion of the constraints
using the Lagrange multipliers yields the following system:

Au+ Eλ,0
T

λ = f (3.95)

Eλ,0u = 0 (3.96)
[
A Eλ,0T

Eλ,0 ∅

] [
u
λ

]
=

[
f
0

]
. (3.97)

This concept can be further extended to the 2D case using the same procedure which will lead to additional
topological operators, namely Eλ,1, Eγ,0, and Eθ,γ [12]. Further details on this 2D case are explored for the
case of the 2D Navier-Stokes equations in Section 6.2. In addition to that, all subsequent sections pertaining
the discussion on the hybrid method also include the discussion on the physical representation of the Lagrange
multipliers for the specific problem.

3.6. Time march
As the goal of this study is targeted towards advection problems, the choice of temporal discretisation is an
important aspect to consider. Using the concepts introduced earlier in this chapter, one can discretise the
spatial terms of any given time dependent PDE and arrive at semi-discrete equation which describes the time
evolution of the degrees of freedom. This semi-discrete system can be discretised using any given time marching
scheme to arrive at a fully discrete system. The choice of the time march scheme employed in this thesis is
the Crank-Nicolson scheme which shall be elaborated within this section.

As the Crank-Nicolson scheme is a subset of a broader class of multistage Runge-Kutta methods, the focus is
first set on multistage methods. Consider a generic time dependent problem describing the time evolution of
a variable u as follows:

∂u

∂t
= F (t, u). (3.98)

If tn represents the time at the nth time level, ∆t = tn+1 − tn, and un = u(tn), then an s-stage Runge-Kutta
predicts the solution at the new time level (u(tn+1) = un+1) using the previous time level as follows:

un+1 = un +∆t

s∑

i=1

biki, (3.99)

where ki is given by:

ki = F


t+ ci∆t, u

n +∆t

s∑

j=1

aijkj


 , (3.100)

and the coefficients aij , bi, ci are real numbers typically taken from the Butcher Tableau of the given s-stage
scheme as follows:
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c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

...
...

cs as1 as2 . . . ass
b1 b2 . . . bs

Implicit methods include a full table whereas explicit methods generate lower triangular structure for the table
(aij).

The Butcher Tableau for the Crank-Nicolson scheme is given by:

0 0 0
1 0.5 0.5

0.5 0.5

Which gives the following for the 1 step update equation that is second order accurate:

un+1 = un +∆t F

(
1

2
(tn + tn+1),

1

2
(un + un+1)

)
= un +∆t F

(
tn+

1
2 , un+

1
2

)
. (3.101)

This Crank-Nicolson scheme has been employed in many different mimetic discretisation techniques, see for
example [4, 13]. The reason for its popularity within the class of mimetic methods is attributed to the fact
that it is a sub-set of Gauss methods which are proven to be energy-conserving, reversible, and algebraically
stable [14].





4
Variational Multiscale

This chapter presents a description of the VMS theory including its theoretical background and its applications.
The focus of this study is on the residual-based algebraic VMS method, thus, this chapter focuses on that
method in particular. Firstly, Section 4.1 discusses the origin and the mathematical foundation of the multiscale
method. Subsequently, Section 4.2 addresses some examples of the applications of VMS in the context of LES
including a brief discussion on discontinuity-capturing.

4.1. Residual Based Variational Multiscale theory
Many different problems in physics and engineering have a multiscale nature where the behaviour of the small
scales has a significant influence on the larger scales. In the context of fluid flows, the multiscale nature
appears in the dynamics of turbulent flows wherein the small turbulent scales drain energy from the large
scales. This behaviour poses issues for under-resolved numerical simulations as the absence of the small scales
in the numerical solution deprives the system of the energy drain mechanism leading to incorrect/nonphysical
time evolution of the solution. Residual-based VMS theory offers a consistent stabilisation method for such
multiscale problems. The manner by which the residual-based VMS method is incorporated into a weak form
in the framework of Finite/Spectral Element methods is presented in this section.

4.1.1. Formulating the VMS method
The first stabilisation approach for Finite-Element methods was the Streamline Upwind Petrov Galerkin
(SUPG) formulation. The essence of SUPG was that it would include a stabilisation term/parameter into the
discrete equations that introduced diffusion in the streamwise direction and also helped in eliminating spurious
oscillations in the numerical solution [15]. The VMS method itself originates from the re-interpretation of
SUPG formulation stemming from the series of works in [16–25] as well as [26], and was first introduced in
[27]. The essence of VMS is that it employs an a priori scale separation thereby differentiating the so-called
resolved scales which are directly computed in the simulation, and the un-resolved (small) scales whose effect
on the resolved scales needs to be accounted for. This concept of scale separation is applied to the variational
form of the governing equations leading to the weak form being split into two separate formulations [28]. To
demonstrate this, consider a generic form of a PDE shown below:

Lϕ = f, x ∈ Ω ∈ Rn (4.1)

The weak form of the above PDE can be found by multiplying the equation with a test function v and
integrating it over the domain. Note that while this approach does produce the weak form of the PDE,
it is not the formal way of arriving at it. The formal approach for obtaining the weak form employs the
minimisation of an energy functional. However, such a functional may not exist for any generic case, which
is the reason for not applying the formal approach. In any case, employing the aforementioned approach of
multiplying with a test function and integrating over the domain yields:

∫

Ω

Lϕ ∧ ⋆ v =

∫

Ω

f ∧ ⋆ v, ∀v ∈ V. (4.2)

Another important remark is that the test space should be from the same space as the residual of the PDE.
This leads to the test space being the same as the trial space for elliptic problems, which is in fact the Galerkin

29
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formulation. This formulation, however, is no longer valid for general hyperbolic problems. Nevertheless, the
adaptation to this hyperbolic case is a separate challenging task in itself. Hence the classic Galerkin approach
is employed for hyperbolic problems as well. In the traditional Galerkin Finite/Spectral element method,
the solution and test space would be taken to be some finite-dimensional function space and it was precisely
this finite-dimensional function space that was the origin of the multiscale problem. Thus, [27] proposed the
following split of the function spaces:

V := Vh ⊕ V ′ (4.3)
v := vh + v′ (4.4)
ϕ := ϕh + ϕ

′, (4.5)

where the subscript h refers to the finite-dimensional space where the resolved (large) scales live, and the
superscript ′ refers to the infinite-dimensional space where the un-resolved (small) scales live. This approach
was formally introduced in [29] where the VMS theory was further expanded upon. Inserting this split into
the weak form in Equation (4.2) yields the following expression:

∫

Ω

L
(
ϕh + ϕ

′) ∧ ⋆ (vh + v′) =
∫

Ω

f ∧ ⋆ (vh + v′). (4.6)

Noting that the two function spaces emerging from the split are linearly independent, one can obtain two
separate weak forms where one corresponds to the so-called resolved scale equation (v′ = 0) and the other is
the so-called un-resolved scale equation (vh = 0).

∫

Ω

L
(
ϕh + ϕ

′) ∧ ⋆ vh =

∫

Ω

f ∧ ⋆ vh (4.7)
∫

Ω

L
(
ϕh + ϕ

′) ∧ ⋆ v′ =
∫

Ω

f ∧ ⋆ v′ (4.8)

The resolved scale equation in Equation (4.7) yields a finite-dimensional system that can be solved to find the
resolved scales provided that there is (at least some) information on the un-resolved scales. On the contrary, the
un-resolved scale equation in Equation (4.8) is infinite-dimensional meaning that has to be solved analytically
provided some simplifying assumptions thus yielding a small scale model.

4.1.2. Residual based small scales
Considering the case of turbulent fluid flow, for instance, it would be ideal that the small (or sub-grid) scale
model be residual-driven such that the model would "turn off" when the solution is well resolved. The small
scale weak form in Equation (4.8) can actually be shown to be residual driven. For example, assuming L is
a linear operator allows for Equation (4.7) to be written as follows:

∫

Ω

Lϕh ∧ ⋆ vh +
∫

Ω

Lϕ′ ∧ ⋆ vh =

∫

Ω

f ∧ ⋆ vh (4.9)
∫

Ω

Lϕh ∧ ⋆ vh +
∫

Ω

ϕ′ ∧ ⋆ L̃ vh =

∫

Ω

f ∧ ⋆ vh, (4.10)

where L̃ is the dual of the linear operator L . Similarly, Equation (4.8) can be rewritten as follows:
∫

Ω

Lϕh ∧ ⋆ v′ +
∫

Ω

Lϕ′ ∧ ⋆ v′ =
∫

Ω

f ∧ ⋆ v′ (4.11)
∫

Ω

Lϕ′ ∧ ⋆ v′ =
∫

Ω

(f − Lϕh) ∧ ⋆ v′ (4.12)
∫

Ω

ϕ′ ∧ ⋆ L̃ v′ = −
∫

Ω

Rϕh ∧ ⋆ v′. (4.13)

One can observe that the right-hand side of Equation (4.12) corresponds to the residual of the resolved scales
which is denoted by Rϕh. This structure of the un-resolved scale problem is not limited to linear problems,
as the weak form of non-linear PDEs also produces a very similar structure, albeit with some additional terms
[28] involving both the resolved and un-resolved components. Since the present work only focuses on the
incorporation of multiscale theory for linear problems, the treatment for non-linear operators is excluded from
the discussion.



4.2. Application of the multiscale theory 31

4.1.3. Small scale Green’s function
Having shown the elegant property that the un-resolved scale equation is driven by the residual of the resolved
scales, the subsequent step is to come up with an approach to solve it. This subsection presents a brief discussion
on Greens’ function approach to arrive at an algebraic expression for the un-resolved scales. One can easily
recognise that the un-resolved scale problem in Equation (4.13) is a global problem as the integral spans the
entire domain. This global nature of the small scales poses issues in terms of the practical implementation
of the VMS method. As such, the problem is localised to an element level problem where one seeks an
estimate of ϕ′ over each element of the mesh [30]. This is thus an approximation applied to generate a small
scale model suitable for practical applications. The process of applying such a approximation can be seen
as selecting a projection P that maps the exact infinite-dimensional solution ϕ to a finite-dimensional ϕh,
P : ϕ ∈ V −→ ϕh ∈ Vh. The choice of the value imposed at the element boundaries for ϕ′ determines the
projection type. While explicit relations of the boundary interface values for ϕ′ can only be found for a handful
of cases, there are some distinguished cases where imposing ϕ′ = 0 at the element boundaries gives the H1

projector [28].

With the H1 projector in mind, the element’s Greens’ function can be set up as follows:

L̃ ge(x, s) = δ(x− s), x, s ∈ Ωek (4.14)
ge(x, s) = 0, x ∈ ∂Ωek (4.15)

where Ωek is the kth element of the discretised domain,
n⋃

k=0

Ωek = Ωh. The element’s Green’s function satisfying

the element-wise boundary condition can generally be computed analytically for the adjoint operator L̃ and
can be directly substituted into Equation (4.13) which gives1:

∫

Ωek

L̃ ge(x, s) ϕ
′ dΩsek = −

∫

Ωes

ge(x, s) Rϕh dΩ
s
ek

(4.16)

∫

Ωek

δ(x− s) ϕ′ dΩsek = −
∫

Ωek

ge(x, s) Rϕh dΩ
s
ek

(4.17)

ϕ′(x) = −
∫

Ωek

ge(x, s) Rϕh dΩ
s
ek

(4.18)

Equation (4.18) thus gives an explicit equation which can be solved to find the exact (pointwise) ϕ′ under the
approximations imposed through the projection. However, solving the exact integral equation can be rather
expensive and impractical. In addition to that, the exact ϕ′ values are unnecessary given that pointwise
values are undefined in Sobolev spaces where everything is defined in an L2 sense. Thus, to avoid computing
the pointwise values of u′, the Greens’ function appearing in the integral may be simplified such that it
only contains the terms necessary to obtain the correct integral of u′ in the resolved scale equation. This
simplification step is designed to reduce Equation (4.18) into an algebraic expression in the following form:

ϕ′(x) ≈ −τ Rϕh, (4.19)

where τ is commonly referred to as the stabilising parameter that encapsulates the necessary effects of the
Greens’ function, see [30] for further details. Several different approaches for this algebraic VMS method employ
different techniques to obtain the required (approximate) u′ for their desired projection. Some examples and
applications of the use of VMS theory are presented in the subsequent section.

4.2. Application of the multiscale theory
The first use of VMS in the context of LES can be found in [31, 32] where the small scale model was tuned to
capture the physical behaviour of the small-scales. This process did not use the residual-based approach nor the
Green’s function as previously described and instead treated the small scale model as a scaled diffusion term.
This concept emerged from the classical LES and RANS turbulence modelling techniques. The residual-based
approach using the Greens’ function was first applied in [33] and was further elaborated in [34]. Additionally,
the works on the VMS method focused on the construction of the stabilisation parameter τ . The work
presented in [27] suggested that the element-averaged Greens’ function can be a suitable approximation of τ
for low-ordered basis functions. Furthermore, the paper suggested an extension to higher-order methods by
1Note the integration variable is switched to s as the goal is to obtain ϕ′ as a function of x and not s
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employing bubble functions. Alternatively, other works arrive at an approximation of τ by using asymptotic
scaling arguments [28, 35]. Other examples of VMS being used in the LES framework can be found in [36–38].

The stabilisation that the VMS method offers is not just limited to the field of under-resolved simulations.
The use of VMS methods in the context of capturing discontinuities is also something found in the litera-
ture. Unlike shock (discontinuity) fitting, the underlying principle behind discontinuity-capturing methods is
to (locally) add artificial viscosity to the solution, thereby suppressing the unwanted oscillations [39]. The
first approach for eliminating such spurious oscillations in Finite-Element methods was to employ the SUPG
formulation [15]. As such, the subsequent approaches for discontinuity-capturing introduce their stabilisation
(discontinuity-capturing) operator in a similar manner. For instance, [40] uses the so-called Y Zβ shock cap-
turing approach which is a residual-driven operator introduced in [41]. Moreover, the works in [35] proposed
a discontinuity-capturing framework that employs the Variational Multiscale analysis in combination with the
Variational Entropy theory [42]. This proposed discontinuity-capturing method employs a residual-based ap-
proach whereby Variational Entropy viscosity (artificial viscosity) is introduced in the discrete solution in the
regions where the conservation of Variational Entropy is violated. While this concept of discontinuity-capturing
is a compelling topic to explore, it falls out of the scope of the present study.

The vast majority of the aforementioned applied examples of the multiscale theory focus on methods such
as (low order) Finite-elements or Isogeometric analysis. The present study, on the other hand, addresses the
incorporation/extension of the VMS into the high-order mimetic SEM. The exact approach for achieving this
extension is described in the subsequent chapters.



5
Linear problems

This chapter presents the work carried out on applying the hybrid mimetic discretisation technique and multi-
scale theory on 1D linear advection problems. Firstly, Section 5.1 addresses the approach for discretising and
incorporating multiscale theory for the steady advection-diffusion problem where the results of the numerical
experiments performed are presented at the end of the section. Subsequently, Section 5.2 presents similar
discussions for the unsteady case wherein both parabolic and hyperbolic cases are considered.

5.1. 1D steady advection-diffusion
The steady advection-diffusion equation is one of the simplest model equations exhibiting advection and
diffusion phenomenon, as suggested by the name. For the considered 1D case, the governing equation is
characterised as a linear second-order boundary value problem which reads:

c
∂u

∂x
− ν

∂2u

∂x2
= f, x ∈ Ω ∈ [0, 1] (5.1)

u(0) = u(1) = 0, (5.2)

where c and ν are positive constants representing the advection speed and diffusion coefficient respectively,
and f is some given real-valued function acting as a source term. For the test cases considered in this section,
f is taken to be a constant function equal to 1. Moreover, the considered problem is subject to homogeneous
Dirichlet boundary conditions as highlighted by Equation (5.2), for which the exact solution with f = 1 can
be found to be:

uexact(x) = −−e c
ν x+ x+ e

c
ν x − 1

c
(
e

c
ν − 1

) . (5.3)

The second-order boundary value problem in Equation (5.1) can be expressed as two first-order equations by
defining a new quantity q as follows:

q − ∂u

∂x
= 0 (5.4)

c
∂u

∂x
− ν

∂q

∂x
= f. (5.5)

This reformulation yields the mixed formulation of Equation (5.1) which will be used in the subsequent sub-
section alongside Equation (5.1) itself. In Section 5.1.1, the model equation is reformulated at the continuous
level by expressing it in a weak form. Thereafter, the equation is discretised using the mimetic framework in
Section 5.1.2 and the numerical tests of the scheme are presented in Section 5.1.3. Subsequently, the integration
of multiscale theory and its results are presented in Section 5.1.4 and Section 5.1.5 respectively.

5.1.1. Continuous form
To derive the weak form, it is convenient to consider the mixed formulation through which the geometric
representation of the physical quantities can be more easily recognised. Equation (5.4) states that q is the
derivative of u, where if u is expressed as a 0-form (u ∈ Λ(0)(M)) then q must be a 1-form (q ∈ Λ(1)(M)).
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Employing this representation, the Galerkin weak form of Equation (5.4) is found by testing the equation with
η(1) as follows:

∫

Ω

q(1) ∧ ⋆ η(1) −
∫

Ω

du(0) ∧ ⋆ η(1) = 0, ∀η(1) ∈ Λ(1)(M) (5.6)

Subsequently, the (Galerkin) weak form of Equation (5.5) is found by testing the equation with v(0). Note,
however, that the exterior derivative of the 1-form q does not exist in 1D. Thus the exterior derivative is
moved to the test function which yields the adjoint operator where the additional emerging boundary terms
are ignored given the essential boundary conditions in Equation (5.2).

c

∫

Ω

du(0) ∧ ⋆ v(0) + ν

∫

Ω

q(1) ∧ ⋆ dv(0) =
∫

Ω

f (0) ∧ ⋆ v(0), ∀v(0) ∈ Λ(0)(M) (5.7)

Alternatively, one can derive the Galerkin weak form by directly testing Equation (5.1) with test function v(0)
which gives:

∫

Ω

L u(0) ∧ ⋆ v(0) =
∫

Ω

f (0) ∧ ⋆ v(0), ∀v(0) ∈ Λ(0)(M), with L := c
∂

∂x
− ν

∂2

∂x2
. (5.8)

For this direct approach, the advection term simply involves taking the derivative of u(0) by applying the
exterior derivative. The diffusion term on the other hand requires the exterior derivative to be applied twice
on u(0) which is not possible. Thus, the derivative is once again moved to the test function and boundary
terms are ignored given the essential boundary conditions.

c

∫

Ω

du(0) ∧ ⋆ v(0) + ν

∫

Ω

du(0) ∧ ⋆ dv(0) =
∫

Ω

f (0) ∧ ⋆ v(0) (5.9)

The two approaches for deriving the weak form inevitably lead to expressions that are mathematically identical.
This fact is reiterated in the subsequent subsection where the weak forms are discretised.

5.1.2. Discrete form
With the weak forms derived in the previous subsection, the discrete algebraic system can be derived by
substituting the respective continuous k-forms for their discrete representations shown below:

uh := ψ(0)u, ∈ Λ
(0)
h (M) (5.10)

qh := ψ(1)q, ∈ Λ
(1)
h (M) (5.11)

fh := ψ(0)f , ∈ Λ
(0)
h (M) (5.12)

vh := ψ(0)v, ∈ Λ
(0)
h (M) (5.13)

ηh := ψ(1)η, ∈ Λ
(0)
h (M) (5.14)

Starting with the weak form of the mixed formulation, the discrete algebraic system of Equation (5.6) reads:

ηT
[∫

Ωh

ψ(1)Tψ(1) dΩh

]
q − ηT

[∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0u = 0 (5.15)

M(1)q −M(1)E1,0u = 0. (5.16)

Similarly the discrete system for Equation (5.7) reads:

c vT
[∫

Ωh

ψ(0)Tψ(1) dΩh

]
E1,0u+ ν vTE1,0T

[∫

Ωh

ψ(1)Tψ(1) dΩh

]
q = vT

[∫

Ωh

ψ(0)Tψ(0) dΩh

]
f (5.17)

cM(0,1)E1,0u+ ν E1,0TM(1)q = M(0)f . (5.18)

The two discrete systems in Equation (5.16) and Equation (5.18) can be combined together in a matrix form
as follows:

[
M(1) −M(1)E1,0

ν E1,0TM(1) cM(0,1)E1,0

] [
q
u

]
=

[
0

M(0)f

]
. (5.19)

Employing the same substitution approach for Equation (5.9) gives:

c vT
[∫

Ωh

ψ(0)Tψ(1) dΩh

]
E1,0u+ ν vTE1,0T

[∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0u = vT

[∫

Ωh

ψ(0)Tψ(0) dΩh

]
f

(5.20)

cM(0,1)E1,0u+ ν E1,0TM(1)E1,0u = M(0)f . (5.21)
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One can easily recognise the equivalence between Equation (5.19) and Equation (5.21) where term E1,0u in
the diffusion term has been treated separately as q in the mixed formulation1. On a more intriguing note, the
nature of the advection and diffusion operators can be assessed by considering their constituent matrices. The
advection term comprises of the incidence matrix E1,0 along with the matrix M(0,1). As discussed in Section 3.3
the E1,0 incidence matrix is the discrete exterior derivative and is a topological operator. On the other hand,
the M(0,1) matrix is constructed via the L2 inner product of the 0-form basis and the 1-form basis:

M(0,1) :=

[∫

Ωh

ψ(0)Tψ(1) dΩh

]
. (5.22)

Since both the bases are defined on a reference domain ξ ∈ [−1, 1], the above integral reads as follows when
transformed to the physical domain using the concepts described in Section 3.5:

M(0,1) :=

[∫

Ωh

ψ(0)T (ξ(x))
1

�J
ψ(1)(ξ(x))�Jdξ

]
. (5.23)

As the 1-form basis involves the derivative of the 0-form basis, it needs to be scaled by the inverse Jacobian
of the transformation ( 1

J ) when expressing it in physical coordinates (x). Similarly, the integral must also be
scaled, not by the inverse but by the Jacobian itself. This then leads to the cancellation of the Jacobian term
from the integral. This cancellation means that the matrix M(0,1) is unaffected by the stretching of the physical
domain. Therefore, it can be concluded that this matrix is metric-independent much like the incidence matrix.
For the diffusion term, on the other hand, the operators include the incidence matrices on the primal and dual
which are metric independent, along with the discrete metric-dependent Hodge operator in the form of the
1-form mass matrix M(1). The sequence of applying the said operators for the advection and diffusion terms
can be visually summarised by considering the path followed in the De Rham sequence shown in Figure 5.1.
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(a) Advection operator
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(b) Diffusion operator

Figure 5.1: The path followed in the discrete De Rham sequence for advection and diffusion terms for the steady
advection-diffusion problem

The green links shown in Figure 5.1 are metric-free mappings whereas the red links are metric-dependent.
Looking at Figure 5.1a, the advection operator consists of an initial mapping of the 0-form u to a 1-form,
followed by a projection to the dual 1-form. The diffusion operator also initially maps u from a 0-form to a
1-form, then maps the 1-form to its dual 0-form, and finally maps the solution to the dual 1-form.

Thus far, the discrete systems in Equation (5.19) and Equation (5.21) have been derived for individual elements.
To impose element-wise continuity and the essential Dirichlet boundary conditions, Lagrange multipliers λ are
introduced as discussed in Section 3.5. For the example 1D mesh shown in Figure 3.11, the constraints read:

u0 = 0

u3 − u2 = 0

u6 − u5 = 0

u8 = 0,

(5.24)

which reads as follows when expressed in a matrix form:

Eλ,0u = 0. (5.25)

Here Eλ,0 is a topological operator containing ±1 that enforces the desired constraint which has the following
structure for the mesh in Figure 3.11:

Eλ,0 =




1 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 1


 . (5.26)

1Both discrete systems are mathematically equivalent, and the experiments in the subsequent subsection employ the form in
Equation (5.21)
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Both systems in Equation (5.19) and Equation (5.21) can be expressed as a generic linear system in the form
of Aû = f̂ , and adding the constraint to the system through the Lagrange multipliers yields the following:

Aû+ Eλ,0
T

λ = f̂ (5.27)

Eλ,0û = 0 (5.28)
[
A Eλ,0T

Eλ,0 ∅

] [
û
λ

]
=

[
f̂
0

]
. (5.29)

The Lagrange multipliers are additional degrees of freedom which undoubtedly increases the size of the linear
system, thereby increasing the cost of the computation. However, these Lagrange multipliers do carry a
physical meaning which can thus give some additional information about the numerical solution. To obtain
the physical representation of λ, consider Equation (5.21) in its complete form where the boundary terms are
not excluded:

cM(0,1)E1,0u+ ν E1,0TM(1)E1,0u− ν N1B E1,0u = M(0)f . (5.30)

Here, N1 is the discrete trace operator introduced in Equation (3.28) and B is a sampling matrix which returns
the gradient of the solution times the test function value at the element boundaries when applied to E1,0u.
Given that the test function’s value at the element boundaries is simply 1, the boundary term solely comprises

the diffusive flux
(
ν
∂u

∂x

)
. Furthermore, it can be noted that the manner by which the Lagrange multipliers

are introduced in Equation (5.27) is reminiscent of this boundary term. Therefore, the Lagrange multipliers’
physical representation is found to be the diffusive flux.

5.1.3. Numerical experiments
With the discrete system in place, a set of numerical experiments were carried out and their results are
presented in this subsection. All the cases considered have the same problem setup with the advection speed
c = 1, the aforementioned source term of f = 1, and diffusion coefficient ν = 0.01 with the exception of the
convergence tests where a value of ν = 0.025 was used in order to improve the clarity of the figures. Before
moving on to the results, it is worth noting that the solution that is being sought lives in the H1

0 space. In other
words, the exact solution and its derivative are square integrable in the domain. This fact implies that the
best possible numerical (finite-dimensional) solution is the H1

0 projection of the exact solution. The approach
for obtaining this projection is described in Appendix .2, where the exact solution is given by Equation (5.3).
All the results presented in this subsection are accompanied by this H1

0 projection for comparison.

To start off, the derived algebraic system was first verified by comparing the numerical solution to the exact
solution. The error of the numerical solution and of the H1

0 projection with respect to the exact solution was
computed in the L2 and H1 error norms for different mesh refinements using different polynomial degrees and
number of elements. The corresponding error curves are shown in Figure 5.2 where the variation of the error is
plotted against the number of degrees of freedom (nDOF ) which includes the number of Lagrange multipliers.
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Figure 5.2: h-convergence of the Galerkin scheme and the H1
0 Projection computed in the L2 and H1 error norms using the

exact solution
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It is observed that the slopes of the different curves in the range of large number of degrees of freedom are
approximately one higher than the degree of the polynomial used in the discretisation when computing the
error using the L2 norm. There is the exception for the p = 8 case where the error reaches values in the order
of 1 × 10−12 where round-off errors come into play before the slope is allowed to settle. This observed rate
of convergence is in line with the expected rate wherein the L2 error of an approximation using pth degree
polynomials converges at a rate of p+1. In the H1 norm, however, the slopes of error curves are approximately
the same as the degree of the polynomial. The reason for this slower rate of convergence in the H1 error norm
is attributed to the fact that the L2 error of the derivative of the numerical solution decreases at pth order
given that the derivative of a polynomial of degree p, is a polynomial of degree p− 1. Moreover, the absolute
error values in the H1 norm are considerably larger than the L2 error which clearly indicates that the error in
the gradient of the solution is the dominant error term.

On another note, it is evident that both the Galerkin scheme and the H1
0 Projection behave very similarly

when the mesh is highly refined. The difference between the two is more pronounced for particularly coarse
meshes where the Galerkin scheme yields a poorer solution as compared to the H1

0 Projection. To further
assess the behaviour of the Galerkin scheme, the discrete solution and its derivative are plotted alongside the
H1

0 Projection and the exact solution for different mesh refinements in Figure 5.3 and Figure 5.4. Considering
the behaviour of the Galerkin solution on coarse meshes shown in Figure 5.3a and Figure 5.3b, it is evident
that the discrete solution has an oscillatory behaviour. This behaviour is attributed to the fact that the mesh
is too coarse to capture the sharp layer of the solution around x = 1. Once the mesh is sufficiently refined to
capture the sharp layer, the oscillations are greatly reduced and the solution closely follows the exact solution.
In contrast to the Galerkin solution, the H1

0 Projection yields an interpolant that closely follows the exact
solution which is nodally exact for the p = 1 case and produces minor oscillations at the last element for larger
degree polynomials.
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Figure 5.3: Solution to the steady advection-diffusion equation for different order polynomials with N = 5 uniform elements
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Considering the derivative of the numerical solution, the source of the large errors in the H1 norm becomes
more apparent. As seen through Figure 5.4a, Figure 5.4b, and Figure 5.4c there is generally a large miss match
between the derivative of the numerical and exact solutions. The first point to address is the discontinuous
jumps in the solution gradient. This is attributed to the fact that the applied Lagrange multiplier approach
for enforcing continuity only ensures C0 continuity meaning that the solution is continuous but the derivatives
are not. Secondly, the large gradient at x = 1 is something that both the Galerkin and H1

0 Projection methods
naturally fail to capture on coarse meshes. However, it can be noted that the H1

0 Projection does smoothly
capture the constant part of the solution gradient for all meshes while only producing a slight jump when
transitioning to the final element. Lastly, given that the numerical schemes are consistent, both methods tend
to closely approach the exact solution when sufficiently many degrees of freedom are used as apparent through
Figure 5.3d and Figure 5.4d.
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Figure 5.4: Derivative of the solution to the steady advection-diffusion for different order polynomials with N = 5 uniform
elements

All things considered, the distinct differences in the coarse meshes between the Galerkin and the optimal H1
0

Projection, suggest that the Galerkin scheme is sub-optimal. In order to improve the Galerkin solution in
the said coarse meshes, one must account for the un-resolved components of the solution. The succeeding
subsection describes the approach to do exactly that by employing multiscale theory.
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5.1.4. Variational Multiscale
In order to incorporate multiscale theory into the Galerkin approach, consider the following multiscale split of
the function spaces:

Λ(k)(M) = Λ
(k)
h (M)⊕ Λ(k)′(M) (5.31)

u(k) = uh + u′ (5.32)

v(k) = vh + v′, (5.33)

where Λ
(k)
h (M) is the finite-dimensional resolved space and Λ(k)′(M) is the infinite-dimensional un-resolved

space. Plugging this split into Equation (5.8) gives:
∫

Ω

L (uh + u′) ∧ ⋆ (vh + v′) =
∫

Ω

f (0) ∧ ⋆ (vh + v′), (5.34)

which simplifies to the following given the linearity of L :
∫

Ω

L uh ∧ ⋆ (vh + v′) +
∫

Ω

L u′ ∧ ⋆ (vh + v′) =
∫

Ω

f (0) ∧ ⋆ (vh + v′). (5.35)

Using the linear independence of the resolved and un-resolved function spaces, the resolved scale equation can
be derived by setting v′ = 0 which gives:

∫

Ω

L uh ∧ ⋆ vh +
∫

Ω

L u′ ∧ ⋆ vh =

∫

Ω

f (0) ∧ ⋆ vh. (5.36)

It is more convenient to move the linear operator to the test function instead of applying it to u′. By moving
the operator to the test function the adjoint operator is introduced where the emerging boundary terms
involving the boundary evaluation of u′ are neglected given that the essential Dirichlet boundary conditions
in Equation (5.2) result in u′ = 0 at the (domain) boundaries. The resulting resolved scale equation is thus:

∫

Ω

L uh ∧ ⋆ vh +
∫

Ω

u′ ∧ ⋆ L̃ vh =

∫

Ω

f (0) ∧ ⋆ vh, where L̃ := −c ∂
∂x

− ν
∂2

∂x2
. (5.37)

In a similar manner, the un-resolved scale equation is derived by setting vh = 0 and then applying the adjoint
operator where the boundary evaluation of u′ is again neglected. The un-resolved scale equation is thus given
by:

∫

Ω

L uh ∧ ⋆ v′ +
∫

Ω

L u′ ∧ ⋆ v′ =
∫

Ω

f (0) ∧ ⋆ v′ (5.38)
∫

Ω

L u′ ∧ ⋆ v′ = −
∫

Ω

(
L uh − f (0)

)
∧ ⋆ v′ (5.39)

∫

Ω

L u′ ∧ ⋆ v′ = −
∫

Ω

Ruh ∧ ⋆ v′ (5.40)
∫

Ω

u′ ∧ ⋆ L̃ v′ = −
∫

Ω

Ruh ∧ ⋆ v′, (5.41)

where Ruh is the residual of the resolved equation. Naturally, the un-resolved scale problem is a global problem
as can be seen through Equation (5.41) where the integral spans the entire domain Ω. In order to simplify this
global problem into a problem that is more practical to implement, an approximation is applied where u′ is
assumed to be zero at the element boundaries. This approximation step reduces the global un-resolved scale
problem into a local problem in each element at the cost of only obtaining an estimate of u′ over each element.
Applying the said simplification can be seen as selecting the H1 projector as the scale separation projector.
This means that the multiscale solution must coincide with the H1 Projection of the exact solution provided
the correct u′ is obtained. Obtaining the correct u′ for arbitrary cases (arbitrary basis functions for example)
is by no means a straightforward approach to generalise. Nonetheless, a generalised approach for obtaining an
approximate u′ by solving the local un-resolved scale problem in Equation (5.41) is presented in this section.

To solve the local problem for u′, the elements Greens’ function ge(x, s) is computed as follows:

L̃ ge(x, s) = δ(x− s), x ∈ Ωe (5.42)
ge(x, s) = 0, x ∈ ∂Ωe (5.43)
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The imposed homogeneous Dirichlet boundary condition on ge(x, s) follows from the approximation where
u′ = 0 at the element boundaries. The exact element Greens’ function can be computed analytically for the
linear advection-diffusion operator which reads:

ge(x, s) =

{
C1(s)

(
1− e−2α x

h

)
, x ≤ s

C2(s)
(
e−2α x

h − e−2α
)
, x ≥ s

(5.44)

C1(s) =
1− e−2α(1− s

h )

c (1− e−2α)
(5.45)

C2(s) =
e2α

s
h − 1

c (1− e−2α)
(5.46)

α =
ch

2ν
, (5.47)

where, h is the element width and α is the element Péclet number. Substituting this elements Greens’ function
as the test function into Equation (5.41) (v′ = ge(x, s)) yields the following integral expression for u′:

u′(x) = −
∫

Ωe

ge(x, s)Ruh ds. (5.48)

The above equation is capable of returning the point-wise estimate of u′, however, as discussed in Section 4.1.3,
Finite/Spectral element methods only deal with Sobolev spaces where pointwise values are not required as
apparent through Equation (5.37) where u′ only appears as a weighted integral. As such, u′ only needs to
be correct in an integral sense. For piecewise linear (p = 1) basis functions, most commonly used in Finite-
Element methods, u′ only needs to be a constant given that the advection-diffusion operator applied to a
polynomial of degree one is a constant function. This constant approximation for u′ is found by computing
the 0th moment of the element Greens’ function, τ , and multiplying it with the residual.

τ =
1

h

∫

Ωe

∫

Ωe

ge(x, s) dxds (5.49)

τ =
h

2c

(
coth(α)− 1

α

)
(5.50)

u′ ≈ −τRuh (5.51)

This is a common approach employed for obtaining the estimate u′ for many cases in the literature. In the
results that follow in the subsequent subsection, this approach is referred to as the ’Classical VMS’.

While this element-averaged approach is elegant, it does not generalise to arbitrary high-ordered basis functions.
The definition of τ must be adjusted in order to generalise this form for obtaining u′ in Equation (5.51). To
arrive at a new definition for τ for the generalised case, consider the following approach where the inverse
adjoint linear operator is applied to Equation (5.42) [30]:

L̃ −1L̃ ge(x, s) = L̃ −1δ(x− s) (5.52)

ge(x, s) = L̃ −1δ(x− s). (5.53)

Now applying the assumption that the inverse adjoint operator can be expressed as a polynomial τ(x, s):

ge(x, s) ≈ τ(x, s) δ(x− s) (5.54)∫

Ωe

ge(x, s) ds ≈ τ(x). (5.55)

Considering the polynomial τ(x) to be expressed using the 1-form edge basis functions ei(x) over each of the
N elements yields the following definition for τ(x).

τ(x) :=

N∑

k=0

p∑

i=1

τki e
k
i (x), (5.56)

τki :=

∫ xk
i

xk
i−1

∫ hk

0

g(x, s) dsdx (5.57)

The expression for u′ can then be written in the same form as Equation (5.51) using this new definition of
τ(x),

u′ ≈ −τ(x)Ruh. (5.58)
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If this new generalised approach is applied to the p = 1 case, one arrives back to the element averaged Greens’
function estimate. This is due to the fact that the expansion coefficients τki simply becomes the integral of the
Greens’ function over the entire element, and the sole edge basis for p = 1 is a constant function e1(x) = 1

h .

Employing the same degrees of freedom as the classical SEM case, the resolved scale equation becomes:
∫

Ω

L uh ∧ ⋆ vh
︸ ︷︷ ︸

Au

+

∫

Ω

(−τRhuh) ∧ ⋆ L̃ vh
︸ ︷︷ ︸

Multiscale term

=

∫

Ω

fh ∧ ⋆ vh
︸ ︷︷ ︸

f̂

. (5.59)

The discrete form of the operator L is represented by A, and its adjoint or dual operator (L̃ ) can be proven
to be −AT . The discrete equation is then given by:

Au+AT τRhuh = f̂ , (5.60)

where τ is a diagonal matrix containing the evaluation of the polynomial in Equation (5.56) at the Gauss-
Lobatto integration nodes and Rh is the discrete residual operator. This residual operator takes the form:

Rhuh = ψ(1)(x)
(
c E1,0

)
−ψ(0)(x)M(0)−1

(
ν
(
−E1,0TM(1) + N1B

)
E1,0

)
u− f , (5.61)

where ψ(0)(x) and ψ(1)(x) are matrices containing the evaluation of the 0-form and the 1-form basis functions
respectively at the Gauss-Lobatto integration points (x). It is important to note that the solution at boundaries
is not driven by PDE, hence, evaluating the residual at the boundaries is not sensible. Thus, the residual must
be forced to zero at the boundaries. This, however, is not possible for the p = 1 case as the residual will be a
constant function over each element. If the residual is set to zero for this case, it would be zero throughout the
element thereby negating the effect of the VMS. For p > 1 on the other hand, it is possible to force this zero
residual value at the domain boundaries and the presented implementation does employ this concept. Noting
this and bringing everything together into a single system yields:


A+AT τ

(
ψ(1)(x)

(
c E1,0

)
−ψ(0)(x)M(0)−1

(
ν
(
−E1,0TM(1) + N

)
E1,0

))

︸ ︷︷ ︸
R


u = f̂ +AT τf (5.62)

(
A+AT τR

)
u = f̂ +AT τf . (5.63)

Using the previously described Lagrange multiplier approach to enforce continuity and boundary conditions
gives: [

A+AT τR Eλ,0T

Eλ,0 ∅

] [
u
λ

]
=

[
f̂ +AT τf

0

]
. (5.64)

Comparing this system to the base Galerkin method, it is clear that the VMS simply introduces additional
terms to the left and right-hand sides of the linear system. Moreover, these additional terms do not change
the number of degrees of freedom being solved which adds no significant additional costs (apart from the
evaluation of the additional terms) for solving when compared with the Galerkin method.

5.1.5. Numerical experiments with VMS
The solutions obtained using the derived VMS approaches are plotted in Figure 5.5 and Figure 5.6 alongside
the base Galerkin solution and the H1

0 Projection for different degree polynomials. Considering the solution
corresponding to p = 1 in Figure 5.5a, it is observed that both the Classical and High-order VMS solutions
exactly coincide with the optimal H1

0 projection. This is due to the fact that the constant u′ estimate provided
by the element averaged Greens’ function captures just the essential component of the exact u′ to produce the
correct weighted integral of u′ in the resolved scale equation. The observation also confirms the fact that the
Classical VMS and the new proposed High-order VMS do indeed equate to one another for the p = 1 case.

For larger p, the Classical VMS behaves rather poorly by being too diffusive as apparent though Figure 5.5b,
Figure 5.5c, and Figure 5.5d. The general behaviour of the Classical VMS solution is that it behaves fairly
similar to the High-order VMS and the H1

0 Projection in the linear regime, however, it tends to fall short to
capture the sharp gradient at x = 1 even when sufficiently refined. The reason the Classical VMS behaves so
poorly for p > 1 is due to the invalid assumption of u′ being constant over each element. This leads to the
Classical VMS being inconsistent for p > 1. In contrast, the High-order VMS closely follows the exact solution
and behaves similarly to the H1

0 Projection although it is no longer exact as for the p = 1 case. The addition
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of the High-order VMS also shows its effect in the solution gradient prediction as seen in Figure 5.6. The close
likeness between the High-order VMS and the H1

0 Projection results in the two solutions behaving in a very
similar manner.
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Figure 5.5: Solution to the steady advection-diffusion using the Galerkin and multiscale formulation for different order
polynomials with N = 5 uniform elements
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Figure 5.6: Derivative of the solution to the steady advection-diffusion using the Galerkin and multiscale formulation for
different order polynomials with N = 5 uniform elements

The reason for the High-order VMS no longer coinciding with the H1
0 Projection can be found by analysing

the localised version (u′ = 0 at ∂Ωk) of the un-resolved scale equation in Equation (5.41). This un-resolved
scale equation can be numerically solved using high-degree polynomials to obtain an approximate u′. For this
problem, a polynomial space of degree 12 polynomials is used and the residual of the resolved scales computed
using the High-order VMS method is considered. The numerically computed estimate u′ for each of the
residuals from the different VMS cases (using the aforementioned different polynomial degrees) are plotted in
Figure 5.7. It must be noted, however, that this pointwise evaluation of u′ is not required and only its integral
is of interest. Hence, the integral of the computed u′ over each element is plotted in a bar graph alongside the
integral of τRuh in Figure 5.7. As seen through Figure 5.7a, the integral of τRuh exactly matches up with
the integral of the exact u′. As such, the effect of the exact u′ required for the H1 projection is obtained for
the p = 1 case. For the other values of p, it can be seen that the integral values of τRuh do not necessarily
match with the exact u′ where it is under-approximated in some cases and overestimated in others. This leads
to the High-order VMS approach for p > 1 only being close to the exact H1

0 Projection, but not exact.
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Figure 5.7: Prediction of the un-resolved scales using τRuh compared to the exact un-resolved scales of steady
advection-diffusion for different order polynomials with N = 5 elements

On another note, an interesting component of the solution that is yet to be considered is the Lagrange
multipliers λs used to enforce solution continuity over the elements and the boundary conditions. As highlighted

earlier, these Lagrange multipliers physically represent the diffusive flux ν
∂u

∂x
at the element boundaries.

Consequently, the computed Lagrange multipliers for the different methods and mesh refinements are plotted
in Figure 5.8 alongside the exact diffusive flux. Concerning the predictions of the diffusive flux through the
Lagrange multipliers, it is observed that the base Galerkin scheme yields poor predictions on coarse meshes
as seen through Figure 5.8a and Figure 5.8b. However, the predictions do improve for finer meshes. The two
VMS approaches on the other hand closely follow exact diffusive flux with the High-order variant naturally
performing better for higher-order polynomials. The nature of these Lagrange multipliers has the potential to
be used in post-processing routines to improve the scheme’s prediction of the solution gradient which would
omit the discontinuous jumps in the gradient. This, however, was not used in the present work.
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Figure 5.8: Lagrange multipliers to the steady advection-diffusion problem for different order polynomials with N = 5 elements
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Figure 5.9: h-convergence of the Galerkin and multiscale solutions to the steady advection-diffusion computed in the H1 error
norm using the exact solution

Concerning the error behaviour of the High-order VMS scheme, the H1 errors of the VMS and Galerkin
schemes for different degree polynomials are plotted in Figure 5.9 for varying number of degrees of freedom.
As indicated by Figure 5.9a, both the Galerkin and High-order VMS schemes tend to converge at the same



46 5. Linear problems

rate which confirms the consistency of the VMS approach. Moreover, the difference between the Galerkin, H1
0

Projection, and the High-order VMS is most prominent when very few number of degrees of freedom are used.
As such, H1 errors for the different schemes in the non-asymptotic region of the convergence curve are plotted
in Figure 5.9b. Through this plot, it is apparent that the H1 errors of the High-order VMS scheme are closer
to that of the optimal H1

0 Projection. More specifically, the errors of the two schemes are exactly coincident
for p = 1, reasonably close for p = 2, and only a slight improvement over the Galerkin scheme for p = 4. This
suggests that, while the newly proposed High-order VMS does improve the Galerkin solution by bringing it
closer to the optimal H1

0 Projection, it is not capable of reproducing the H1
0 Projection itself.

In summary, it can be concluded that an improvement is achieved by incorporating multiscale theory into
the Galerkin approach. The addition of the multiscale term associates no additional computational costs over
the base Galerkin scheme and tends to provide a consistent approach that reduces the absolute error of the
numerical solution in coarse meshes. It is noted that the proposed VMS approach does not produce the exact
optimal H1

0 Projection for arbitrary degree polynomials. This is attributed to the fact that u′ is only obtained
as an estimate for p > 1.

5.2. 1D unsteady advection-diffusion
Having concluded the section on the steady problem, the focus is now set on the full unsteady advection-
diffusion equation in 1D. The considered domain for this problem is taken to be a periodic domain ranging
between 0 and 1 where the governing equation and problem setup reads as follows:

∂u

∂t
+ c

∂u

∂x
− ν

∂2u

∂x2
= 0, x ∈ Ω ∈]0, 1[ (5.65)

u(0, t) = u(1, t), ∀t ≥ 0 (5.66)
u(x, 0) = f(x). (5.67)

This particular model equation describes the transport and diffusion of a quantity u over time where the
initial distribution of the quantity is described by f(x). Like for the steady case, the advection speed c and
the diffusion coefficient ν are considered to be constant values. This linear problem is characterised as a
second-order parabolic equation for ν > 0. In the case where ν = 0, the problem then becomes hyperbolic
where the exact solution can be found in the following form:

u(x, t) = u(x− ct, 0) = f(x− ct). (5.68)

A crucial thing to note about the physical behaviour of the solution for this hyperbolic case is that the integral
of the solution and the integral of the squared solution are preserved over time. To demonstrate this, consider
the integral of the PDE over the periodic domain:

∫

Ω

∂u

∂t
dΩ = −c

∫

Ω

∂u

∂x
dΩ = −cu

∣∣
∂Ω

= 0, (5.69)

where the resulting boundary evaluation cancels due to periodic boundaries leading to the integral of u being
preserved. Similarly, multiplying the PDE by u and integrating gives:

∫

Ω

u
∂u

∂t
dΩ = −c

∫

Ω

u
∂u

∂x
dΩ (5.70)

1

2

∫

Ω

∂u2

∂t
= − c

2

∫

Ω

∂u2

∂x
dΩ = − c

2
u2
∣∣
∂Ω

= 0, (5.71)

where periodicity leads to the right-hand side cancelling, which shows the conservation of the integral of u2 in
time. In the parabolic case, the integral of u is conserved, however, u2 decays over time.

For the numerical tests considered in this section, both the parabolic and hyperbolic cases are considered.
First, the Galerkin weak forms are derived in Section 5.2.1 for a number of formulations of the continuous
equation with the solution represented as different k-forms. These continuous formulations are thereafter
discretised in Section 5.2.2 using the mimetic method which aims to preserve the aforementioned integral of u
in both parabolic and hyperbolic cases along with conserving the integral of u2 for the hyperbolic case. This is
then followed by the results of the test cases including both parabolic and hyperbolic problems in Section 5.2.3
and Section 5.2.4 respectively. Lastly, the integration of multiscale theory into the Galerkin formulation, along
with its results are presented in Section 5.2.5 and Section 5.2.6.
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5.2.1. Continuous form
Like for the steady case, the Galerkin weak form of the governing equation for u expressed as a k-form is
derived by testing Equation (5.65) with a test function v(k):

∫

Ω

(
∂u(k)

∂t
+ L u(k)

)
∧ ⋆ v(k) = 0, ∀v(k) ∈ Λ(k)(M) where L := c

∂

∂x
− ν

∂2

∂x2
. (5.72)

The quantity u can be expressed as any generic k-form in 1D where each representation can be associated with
a physical interpretation. For instance, expressing u as a 0-form corresponds to the solution being defined
in points. Whereas, u as a 1-form corresponds to the solution being defined along edges (1D volumes). The
latter case can be argued to present a more physical solution representation for advection cases. This is
attributed to the fact that advection problems deal with the transport of quantities such as mass (density) or
momentum which are typically associated with volumetric quantities. Nonetheless, both representations are
equally reasonable to be used, at least in the 1D setting. Hence both representations are considered in this
section.

Starting off with u defined as a 0-form in the primal space yields the following weak form:
∫

Ω

∂u(0)

∂t
∧ ⋆ v(0) + c

∫

Ω

du(0) ∧ ⋆ v(0) + ν

∫

Ω

du(0) ∧ ⋆ dv(0) = 0, (5.73)

where the advection term is simply computed by taking the exterior derivative of u and the diffusion term
is computed by moving the second exterior derivative to the test function yielding the adjoint operator. It
must be noted here that the boundary terms emerging from the adjoint operator are neglected given that
the periodic domain has no boundaries. The advection and diffusion terms in the above weak form can be
recognised as being the same as for the steady case where the unsteady case simply adds a temporal derivative
term to the equation.

In a similar manner, u can be defined as a 1-form in the dual space. For this representation of the solution,
the exterior derivative of the quantity does not exist. As such, the derivatives are computed by first mapping
the solution to its dual 0-form and then applying the exterior derivative. The corresponding weak form thus
reads:

∫

Ω

∂ũ(1)

∂t
∧ ⋆ ṽ(1) + c

∫

Ω

d ⋆ ũ(1) ∧ ⋆ ṽ(1) + ν

∫

Ω

d ⋆ ũ(1) ∧ ⋆ d ⋆ ṽ(1) = 0. (5.74)

Again, the boundary terms for the adjoint operator in the diffusion term are neglected given the periodic
boundary condition. Alternatively, instead of taking the derivative of the solution for the advection term, the
derivative could be moved to the test function which yet again yields the adjoint operator (where boundary
terms are neglected) and the weak form reads as follows:

∫

Ω

∂ũ(1)

∂t
∧ ⋆ ṽ(1) − c

∫

Ω

ũ(1) ∧ ⋆ d ⋆ ṽ(1) + ν

∫

Ω

d ⋆ ũ(1) ∧ ⋆ d ⋆ ṽ(1) = 0. (5.75)

Given that the advection terms in both Equation (5.74) and Equation (5.75) are exactly equivalent at the
continuous level, one can take a linear combination of the two as shown below to arrive at a new formulation
for the advection term.

∫

Ω

∂ũ(1)

∂t
∧ ⋆ ṽ(1) − a

(
c

∫

Ω

ũ(1) ∧ ⋆ d ⋆ ṽ(1)
)
+ (1− a)

(
c

∫

Ω

d ⋆ ũ(1) ∧ ⋆ ṽ(1)
)

+

ν

∫

Ω

d ⋆ ũ(1) ∧ ⋆ d ⋆ ṽ(1) = 0.

(5.76)

A commonly used formulation of the above equation is the Skew-Symmetric (S-S) form which entails taking
a = 0.5. As the name suggests, this form of the advection term yields a skew-symmetric advection operator
when discretised as will be later presented in Section 5.2.2.

Lastly, consider u to be defined as a 1-form in the primal space. Since the exterior derivative does not exist
for a 1-form, the derivatives of the solution are computed by first mapping the solution to a 0-form through
the interior product and then applying the exterior derivative. For the advection term, the vector quantity
used for the interior product is the advection speed c := c∂x where ∂x is the basis vector in the tangent space.
Similarly, the vector quantity for the interior product in the diffusion term is solely the basis vector ∂x. This
approach thus yields the following weak form:

∫

Ω

∂u(1)

∂t
∧ ⋆ v(1) +

∫

Ω

d ◦ icu(1) ∧ ⋆ v(1) + ν

∫

Ω

d ◦ i∂xu(1) ∧ ⋆ d ◦ i∂xv(1) = 0. (5.77)

The advection term for this case can be recognised to be the Lie derivative of a 1-form.
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5.2.2. Discrete form
Having derived the weak forms for the numerous different continuous formulations of the linear advection-
diffusion equation, their respective discrete forms are derived in this subsection. Firstly the semi-discrete
system is derived for each of the different weak forms. Thereafter, the fully discrete system is derived by
discretising the time derivative.

Starting with the first weak form in Equation (5.73), the corresponding discrete representation of the solution
and test functions are as follows:

uh := ψ(0)u, ∈ Λ
(0)
h (M) (5.78)

vh := ψ(0)v, ∈ Λ
(0)
h (M). (5.79)

Substituting these discrete forms into Equation (5.73) and applying the discrete exterior derivative in the form
of the incidence matrix E1,0 yields the following:

vT
[∫

Ωh

ψ(0)Tψ(0) dΩh

]
∂u

∂t
+ c vT

[∫

Ωh

ψ(0)Tψ(1) dΩh

]
E1,0u+ ν vTE1,0T

[∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0u = 0

(5.80)

M(0) ∂u

∂t
+ cM(0,1)E1,0u+ ν E1,0TM(1)E1,0u = 0 (5.81)

∂u

∂t
= −M(0)−1

(
cM(0,1)E1,0 + ν E1,0TM(1)E1,0

)
u. (5.82)

The resulting semi-discrete system can be expressed in the following way for compactness:

∂u

∂t
= A(0)u. (5.83)

This particular scheme is henceforth referred to as the "nodal" scheme. With the derived semi-discrete system,
the types of operators appearing in the system and their properties can be assessed. Firstly it can be recognised
that the terms inside the brackets in Equation (5.82) are identical to the ones for the steady advection-diffusion
case. This comes as no surprise as the spatial operator and the choice of degrees of freedom are the same
in both cases. In this unsteady case, however, there is the inverse of the mass matrix (M(0)−1

) appearing
in the equation. This inclusion of the inverse mass matrix naturally changes the mappings associated with
the advection and diffusion term compared to the steady case. Upon distributing the inverse mass matrix
over the two terms, it is evident that the advection term includes the discrete Lie derivative of the 0-form.
The sequence of applying the Lie derivative to a 0-form can be schematically shown in the discrete De Rham
complex as depicted in Figure 5.10a. Similarly, the sequence of mappings corresponding to the diffusion term
is shown in Figure 5.10b. Like in the previous depiction of the De Rham sequence, the green links show the
metric-free operations and the red links show the metric-dependent ones.
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Figure 5.10: The path followed in the discrete De Rham sequence for the advection and diffusion terms for the unsteady
advection-diffusion equation with the solution expressed as a 0-form on the primal mesh

Starting with the advection term, one can observe it comprises the metric-free incidence matrix and a metric-
dependent interior product. The interior product actually contains a metric free term which is the M(0,1) matrix
that was described in the steady case, however, this matrix is accompanied by M(0)−1

though which the metric
dependence is introduced. The diffusion term again consists of the two topological incidence matrices along
with the two metric-dependent mass matrices creating a full loop around the De Rham sequence.

Next, the weak form in Equation (5.74) is considered where the following discrete representation is substituted
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into the equation:

uh := ψ̃
(1)
ũ, ∈ Λ̃

(1)
h (M) (5.84)

vh := ψ̃
(1)
ṽ, ∈ Λ̃

(1)
h (M). (5.85)

The resulting discrete system reads as follows:

ṽT
[∫

Ωh

ψ̃
(1)T

ψ̃
(1)

dΩh

]
∂ũ

∂t
+ c ṽT

[∫

Ωh

ψ̃
(1)T

ψ(1) dΩh

]
E1,0 ⋆ ũ+

ν ṽT ⋆ E1,0T
[∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0 ⋆ ũ = 0.

(5.86)

Replacing the continuous Hodge ⋆ operator with its discrete counterpart in the form of the mass matrix and
employing the concept presented in [11], the dual polynomials can be expressed as the mass matrix times the
primal polynomials, ψ̃

(1)
= ψ(0)M(0)−1

:

ṽT
(
M(0)−1

)T [∫

Ωh

ψ(0)Tψ(0) dΩh

]
M(0)−1 ∂ũ

∂t
+ c ṽT

(
M(0)−1

)T [∫

Ωh

ψ(0)Tψ(1) dΩh

]
E1,0M(0)−1

ũ+

ν ṽT
(
M(0)−1

)T
E1,0T

[∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0M(0)−1

ũ = 0

(5.87)

ṽT

�
����(
M(0)−1

)T
������
M(0)M(0)−1 ∂ũ

∂t
+ c ṽT

���
��(

M(0)−1
)T

M(0,1)E1,0M(0)−1

ũ+

ν ṽT

��
���(

M(0)−1
)T

E1,0TM(1)E1,0M(0)−1

ũ = 0

(5.88)

∂ũ

∂t
+ cM(0,1)E1,0M(0)−1

ũ+ ν E1,0TM(1)E1,0M(0)−1

ũ = 0 (5.89)

∂ũ

∂t
= −

(
cM(0,1)E1,0 + ν E1,0TM(1)E1,0

)
M(0)−1

ũ (5.90)

∂ũ

∂t
= Ã

(1)
ũ (5.91)

This derived scheme is subsequently referred to as the "edge" scheme. Considering the discrete operators that
appear in the semi-discrete system for this dual 1-form representation, it is evident that these are identical
to the ones in Equation (5.82). The difference, however, lies in the order that these operators are applied. In
Equation (5.90) the inverse mass matrix is the first operation applied whereafter the previously established
advection-diffusion operator is applied. As a consequence, the sequence of mappings in the discrete De Rham
sequence changes to the one depicted in Figure 5.11.

R Λ
(0)
h (M) Λ

(1)
h (M) 0

RΛ̃
(0)
h (M)Λ̃

(1)
h (M)0

E1,0

2

1
3
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Figure 5.11: The path followed in the discrete De Rham sequence for the advection and diffusion terms for the unsteady
advection-diffusion equation with the solution expressed as a 1-form on the dual mesh

At this point, it is worth addressing an intriguing characteristic of the discrete systems in Equation (5.82) and
Equation (5.90) arising from the choice of degrees of freedom. When u is expressed as a 0-form, the degrees of
freedom correspond to nodal values on the mesh, much like the classical Finite-Difference method. Applying
the incidence matrix is effectively applying a differencing operator as commonly done in the Finite-Difference
case. Lastly, the projection of the derivative back to the original space of nodal values is done using a metric-
dependent term involving the mesh spacing for the Finite-Difference case whereas the described formulation
in Equation (5.82) uses the interior product. Thus, in essence, Equation (5.82) acts as an extension of the
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simple Finite-Difference method to higher-order. Similarly, for u expressed as a dual 1-form, a connection can
be made between Equation (5.90) and the well-known Finite-Volume method. As Finite-Volume methods are
associated with their degrees of freedom defined within volumes where an initial metric-dependent operation is
applied to reconstruct the flux/nodal values after which the derivative is applied. The sequence of operations
seen in Equation (5.90) shows a close resemblance to this process where the initial discrete Hodge operator
in the form of the inverse mass matrix acts as the flux reconstruction process and the remaining operators
compute the derivative and project it back to the initial space. This connection between the SEM and central
Finite Difference/Volume method is shown in Appendix .5.

Moving further with the derivations of the discrete systems, the weak form in Equation (5.75) is considered.
Substituting in the same discrete dual 1-form representations from Equation (5.84) and Equation (5.85) gives:

∂ũ

∂t
− c E1,0TM(1,0)M(0)−1

ũ+ ν E1,0TM(1)E1,0M(0)−1

ũ = 0 (5.92)

∂ũ

∂t
= −

(
−c E1,0TM(1,0) + ν E1,0TM(1)E1,0

)
M(0)−1

ũ (5.93)

∂ũ

∂t
= Ã

(1)

SBPũ. (5.94)

This scheme with the adjoint advection operator is referred to as the Summation By Parts ("SBP") scheme,
which is a nomenclature borrowed from literature where similar adjoint operators are applied.

Similarly, the discrete system of the Skew-Symmetric ("S-S") form of Equation (5.76) is found as follows:

∂ũ

∂t
+

1

2

(
cM(0,1)E1,0M(0)−1

M(0)−1

ũ− c E1,0TM(1,0)M(0)−1

ũ
)
+ ν E1,0TM(1)E1,0M(0)−1

ũ = 0 (5.95)

∂ũ

∂t
= −

(
1

2

(
cM(0,1)E1,0 − c E1,0TM(1,0)

)
+ ν E1,0TM(1)E1,0

)
M(0)−1

ũ (5.96)

∂ũ

∂t
= Ã

(1)

S-Sũ. (5.97)

Lastly, considering Equation (5.77) with the following representations:

uh := ψ(1)u, ∈ Λ
(1)
h (M) (5.98)

vh := ψ(1)v, ∈ Λ
(1)
h (M) (5.99)

gives the following discrete system:

vT
[∫

Ωh

ψ(1)Tψ(1) dΩh

]
∂u

∂t
+ vT

[∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0M(0)−1

M(0,1)
c u+

ν vT (M(0,1)
∂x

)T (M(0)−1

)TE1,0T
[∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0M(0)−1

M(0,1)
∂x

u = 0

(5.100)

M(1) ∂u

∂t
+M(1)E1,0M(0)−1

M(0,1)
c u+ ν (M(0,1)

∂x
)T (M(0)−1

)TE1,0TM(1)E1,0M(0)−1

M(0,1)
∂x

u = 0 (5.101)

∂u

∂t
= −

(
E1,0M(0)−1

M(0,1)
c + ν M(1)−1

(M(0,1)
∂x

)T (M(0)−1

)TE1,0TM(1)E1,0M(0)−1

M(0,1)
∂x

)
u (5.102)

∂u

∂t
= A(1)u. (5.103)

This scheme is henceforward referred to as the "Lie" scheme. For this scheme, the corresponding path followed
in the discrete De Rham sequence is depicted in Figure 5.12.
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Figure 5.12: The path followed in the discrete De Rham sequence for the advection and diffusion terms for the unsteady
advection-diffusion equation with the solution expressed as a 1-form on the primal mesh
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The advection term simply involves the Lie derivative much like the case for the nodal expansion of u. However,
the order of applying the incidence matrix and the interior product is reversed given that u is defined as a
1-form on the primal.

With all the semi-discrete systems in place, a fully discrete system is obtained by discretising the temporal
derivative using the Crank-Nicolson time march scheme as follows:

∂u

∂t
= Au (5.104)

un+1 − un
∆t

= Aun+
1
2 (5.105)

un+1 − un
∆t

=
1

2
Aun+1 +

1

2
Aun (5.106)

un+1 − ∆t

2
Aun+1 = un +

∆t

2
Aun (5.107)

[
I − ∆t

2
A

]
un+1 =

[
I +

∆t

2
A

]
un (5.108)

Lun+1 = Run (5.109)

Since this time march approach simply involves solving a linear system every time step, the verification of the
time march scheme implementation is done for a generic case which is shown in Appendix .3.

Note that up until this point, no continuity between the elements or boundary conditions have been imposed
on the discrete system. Imposing the required constraints via the Lagrange multipliers yields a linear system
in the following form to be solved every time step:

[
L ΛT

Λ ∅

] [
un+1

λ

]
=

[
Run

0

]
. (5.110)

The goal of the Lagrange multipliers is to constrain the solution such that the nodal values are matched at the
element boundaries. This approach is identical to the steady case. However, the composition of the matrix
Λ must be adjusted based on the representation of u. When u is expressed as a 0-form, the Λ matrix is the
aforementioned topological Eλ,0 matrix which is adjusted for the periodic boundaries. If u is represented as a
dual 1-form, then it must be first mapped to the points before applying the continuity constraint which results
in Λ = Eλ,0M(0)−1

. Lastly, when u is expressed as a 1-form in the primal space, a special treatment is required.
This 1-form representation’s dual is the dual 0-form which does not include the (element) boundary points. As
such, the approach followed to overcome this was to interpolate the solution at the element boundaries using
the 1-form basis functions and constrain that pointwise value to be continuous over the elements. This gives
Λ = Eλ,0ψ(1)(x) where ψ(1)(x) is a matrix containing the evaluation of the edge basis at the mesh nodes. One
thing to note here is that this presented "Lie" scheme in the current formulation does not produce a solution
for p = 1. This is down to the fact that the bases for this scheme are edge basis functions which are constant
functions when p = 1. This results in the solution being represented as element-wise constants which have a
derivative of zero. As such, this particular case with p = 1 is ignored when presenting results for this scheme.

Alternatively, one can apply a different approach by generating a time evolution equation for the Lagrange
multipliers, see Appendix .4. While this approach is practically feasible it is not very desirable as it involves
unwanted and unnecessary dynamics of the Lagrange multipliers. As such, the use of this formulation was
disregarded. Nonetheless, it serves as a useful tool to analyse the properties of the full (coupled) global system
and was used to check the energy conservation property of the numerical scheme.

5.2.3. Numerical experiments with diffusion
For the numerical tests in this subsection, a truncated Fourier series of a square wave is used. The corresponding
equation for the initial condition reads:

f(x) = u(x, 0) = d+

m∑

n=1

1

nπi
((1− e−nπid)− (1− enπid)) cos

(
n

2π

(x1 − x0)
x

)
+

m∑

n=1

i

nπi
((1− e−nπid) + (1− enπid)) sin

(
n

2π

(x1 − x0)
x

)
,

(5.111)

where i is the imaginary number i =
√
−1, d is the duty cycle of the square wave, and (x1−x0) is the difference

between the domain endpoints, which for the considered case is 1. All the tests considered in this section use a
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duty cycle d = 0.25 and truncated series at m = 4. Expressing the initial condition as a Fourier series has the
advantage that the exact solution for the unsteady advection-diffusion can be found by simply phase shifting
the different wave numbers in time and damping each wave number by ν times the square of the wave number.
The exact solution thus reads:

uexact(x, t) = d+

m∑

n=1

1

nπi
((1− e−nπid)− (1− enπid)) cos

(
n

2π

(x1 − x0)
(x− ct)

)
e
−ν

(
n 2π

(x1−x0)

)2
t
+

m∑

n=1

i

nπi
((1− e−nπid) + (1− enπid)) sin

(
n

2π

(x1 − x0)
(x− ct)

)
e
−ν

(
n 2π

(x1−x0)

)2
t
.

(5.112)

Using this exact solution, each of the derived numerical schemes was verified by computing the L2 error
between the numerical and exact solution after one complete period (t = 1). Plotting this L2 error for all the
derived schemes with different degree polynomials varying the number of degrees of freedom yields the plots in
Figure 5.13. Since only the spatial convergence is being tested, the time step size has to be sufficiently small
to ensure that the temporal errors are significantly smaller than the spatial ones. As such, a different time
step size was used for each polynomial degree. For the cases in Figure 5.13a, time step sizes of ∆t = 5× 10−3,
∆t = 1 × 10−3, and ∆t = 2 × 10−5 were used for p = 1, p = 2, and p = 4 cases respectively. The p = 2,
p = 3, and p = 4 cases in Figure 5.13b use the same three time step sizes. Starting off with the error curves
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Figure 5.13: h-convergence of the different numerical schemes for the unsteady advection-diffusion problem computed in the L2

error norm against the exact solution at t = 1

in Figure 5.13a it can be seen that the rate of convergence is of order p + 1. This rate is in line with the
expected rate as all the schemes shown in Figure 5.13a express the discrete solution as pth degree polynomials.
In general, all the different schemes behave in a very similar manner as suggested by the error curves being
nearly indistinguishable in the plot. Considering Figure 5.13b on the other hand, fairly unusual behaviour is
observed where, apart from the p = 2 case, the rate of convergence does not come close to the expected rate.
The expected rate of convergence for this "Lie" scheme is order p given that the solution is expressed using
the 1-form edge basis functions which include polynomials of degree p − 1. The fact that the two curves in
Figure 5.13b attain a slope that does not match the expected rate of convergence combined with the large
error values for a sufficiently large number of degrees of freedom, suggests that there are exist some form of
inconsistency in the approach.

The source of the inconsistency is apparent when considering the time evolution of the solution shown in
Figure 5.14 in Figure 5.15. Through these plots, it can be observed that all the consistent numerical schemes
(nodal, edge, etc) behave as expected by closely following the exact solution. However, the "Lie" scheme
seems to produce significant over and undershoots at the element boundaries as seen in Figure 5.14. This poor
approximation may seem like it is attributed to the lower order polynomial space (p− 1 degree polynomials)
used in this discretisation, however, similar observations are made for the case where p = 8 in Figure 5.15
albeit to a lesser extent. These observations clearly indicate that the continuity constraint forced through
the Lagrange multipliers is the source of the inconsistency. As noted earlier when the scheme was derived,
the continuity constraint for this scheme was set up by interpolating the solution to the boundary nodes and
forcing these interpolated values to be continuous at the boundaries. The relatively poorer solutions obtained
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Figure 5.14: Time evolution of the numerical solutions to the linear advection-diffusion problem for N = 8, p = 2, and
∆t = 1× 10−3
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Figure 5.15: Time evolution of the numerical solutions to the linear advection-diffusion problem for N = 8, p = 8, and
∆t = 1× 10−3
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using this technique which show no clear sign of convergence, suggest that this approach is unsuitable. While
the over and undershoots at the element boundaries tend to decrease when using higher-degree polynomials, it
does not completely vanish. In this discussion about the continuity constraints, it can be noted that even the
other consistent schemes produce poorer solution predictions at the element boundaries given that the current
formulation only ensures C0 continuity. However, these errors are of a much lesser extent compared to the Lie
scheme and more importantly, there are nearly eliminated for larger p. Concerning the Lagrange multiplier,
it can be shown that they physically represent boundary terms emerging from the adjoint operator used in
the weak form alike the steady case. However, it must be noted that the Lagrange multipliers are scaled by
the time step size (∆t) and other components of the matrices used in the semi-discrete system. For instance,
consider the semi-discrete system of the "nodal" scheme in its complete form:

∂u

∂t
= −M(0)−1

(
cM(0,1)E1,0 + ν E1,0TM(1)E1,0 − ν N1B E1,0

)
u, (5.113)

where the boundary term can be seen to be expressed as νM(0)−1N1BE1,0u. Given the inclusion of the inverse
mass matrix, the boundary term is scaled differently than in the steady case. More specifically, the scaling
factor is M(0)−1N1 which ends up being one over the first (or last) weight of the Gauss-Lobatto quadrature(

1
w0

)
given that M(0)−1

is a diagonal matrix with the inverse of the Gauss-Lobatto quadrature weights in its
entries. Combined with the time step size ∆t emerging from the time discretisation, the complete scaling term
is ∆t

w0
. Thus, the Lagrange multipliers for the "nodal" scheme are given by:

λnodal =
∆t

w0
ν
∂u

∂x
. (5.114)

Similarly, the physical representation of the Lagrange multipliers for the "edge" scheme can be found to be:

λedge = ∆t w0 ν
∂u

∂x
. (5.115)

Applying this procedure allows one to obtain the physical interpretation of the Lagrange multipliers for any
given scheme that includes the boundary terms from the adjoint operator. One important remark is that
there might be multiple boundary terms appearing from the weak form, for instance, the "SBP" scheme has
boundary terms emerging from both the advection and diffusion terms. In such cases, the terms are first scaled
like shown before and added appropriately to their appearance in the weak form.

Correspondingly, the time evolution of the scaled Lagrange multipliers λ̃ is plotted for the different schemes
below. The scaling is done in such a manner that the resulting quantity only contains the physical quantity
of interest such as the diffusive flux. For example, the scaled Lagrange multipliers for the "nodal" scheme are
computed as follows:

λ̃nodal =
w0

∆t
λnodal. (5.116)

The plots in Figure 5.16 show the scaled Lagrange multipliers of the "nodal", "edge", and "Lie" schemes at
different time instances for p = 8 and N = 202. It can be seen that the Lagrange multipliers start off as all
zeros given that they are initialised as such, and then they closely follow the exact solution which is physically
the diffusive flux at each time instance. Similar observations can be made for the plots in Figure 5.17 and
Figure 5.17 which show the (scaled) Lagrange multipliers for the "SBP" and "S-S" schemes where the exact

solution is given by −cu+ ν
∂u

∂x
and −1

2
cu+ ν

∂u

∂x
for the two respective formulations.

2Note, all the shown cases use N = 20 elements simply to be able to sample the values at sufficiently many points to be compared
to the exact solution.
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Figure 5.16: Time evolution of the (scaled) Lagrange multipliers to the linear advection-diffusion problem for N = 20, p = 8,

and ∆t = 1× 10−3 where the exact solution is the exact diffusive flux ν
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Figure 5.17: Time evolution of the (scaled) Lagrange multipliers to the linear advection-diffusion problem for N = 20, p = 8,
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Figure 5.18: Time evolution of the (scaled) Lagrange multipliers to the linear advection-diffusion problem for N = 20, p = 8,

and ∆t = 1× 10−3 where the exact solution is −1

2
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Now the focus is turned to the conservation qualities of the derived schemes. It is well established that the
continuous level solution to the unsteady advection-diffusion problem in Equation (5.65) conserves the total
integral of the solution over time. This conservation property is physically analogous to conserving mass
(density), or momentum, where the advection term transports the quantity and the diffusion term spreads
it over the domain all the while ensuring the total amount of the quantity is unchanged over time. For this
conservation property to be achieved at the discrete level, the semi-discrete system must satisfy a specific
property. To demonstrate this property, consider the conservation property expressed in a mathematical sense
as follows:

∂

∂t

∫

Ω

uh dΩ = 0. (5.117)

Given that integration and differentiation commute, the above expression can be rewritten as:
∫

Ω

∂uh
∂t

dΩ = 0. (5.118)

The above condition may be assessed by replacing the test vector v with a row vector of 1s (vT = [1, 1, ...1] =
1T ) in the above derived weak forms. To demonstrate this, consider the semi-discrete system in Equation (5.82)
re-written below:

vTM(0) ∂u

∂t
= −vT

(
cM(0,1)E1,0u+ ν E1,0TM(1)E1,0

)
u. (5.119)

Substituting in the row vector of 1s gives:

1TM(0) ∂u

∂t
= −1T

(
cM(0,1)E1,0u+ ν E1,0TM(1)E1,0

)
u, (5.120)

where the term on the left represents the sum of the time derivatives of the dual 1-form degrees of freedom(∑
i ũi, with ũ = M(0)u

)
. Given the fact that the 1-form degrees of freedom represent integral values of the

quantity between the mesh nodes, the left-hand side term exactly reflects integral in Equation (5.118). Thus,
for the discretisation to conserve the integral of the solution over time, the right-hand side term must equal
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zero for all u:

1T
(
cM(0,1)E1,0u+ ν E1,0TM(1)E1,0

)
u = 0, ∀u ∈ Rn (5.121)

1T
(
cM(0,1)E1,0u+ ν E1,0TM(1)E1,0

)
= 0. (5.122)

The generalised condition for achieving the conservation property for an arbitrary semi-discretised weak form
is thus given by:

1TA = 0, (5.123)

where A is the matrix representing the discrete spatial operators appearing in the semi-discrete system. The
property in Equation (5.123) is satisfied up to the level of round-off errors for all the derived semi-discrete
systems which thus proves that the derived schemes attain the conservation of the solution integral at the
discrete level3. Moreover, since the proof never involved time discretisation, this discrete conservation property
can be achieved for any arbitrary stable time march scheme.

To assess this conservation property, the conservation error is computed by taking the absolute difference
between the discrete solution’s integral at the initial condition and at time t, giving the error curves shown in
Figure 5.19. Note, all the integrals are computed using a high degree of precision Gauss-Lobatto quadrature,
hence the notation in the integrals uses Ω as opposed to the discrete Ωh.
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Figure 5.19: Conservation of the integral of the solution over time for the unsteady advection-diffusion equation with different
degree polynomials where N = 8 and ∆t = 1× 10−3

3Note that in the hybrid case, 1TA will return non-zero values at the element boundaries. The non-zero values are positive on
one boundary and negative the same number on the other boundary which causes them to exactly cancel when continuity and
periodicity are imposed
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As seen in the plots in Figure 5.19, the conservation error is generally observed to be in the order of 1×10−14−
1 × 10−13. This error value is approaching the level of machine round-off errors which are to be expected.
However, the error is seen to steadily grow over time which is not particularly ideal. The exact reason for
this growth is uncertain at this stage leading to a postulation that there is some form of error accumulation
over each time step caused by the conservation condition in Equation (5.123) is being satisfied up to the level
of round-off errors. Following this reasoning, one can expect to observe smaller errors when fewer time steps
are taken. This is confirmed when considering Figure 5.20 where the conservation errors for the cases with
∆t = 1× 10−2 are shown. Thus, as the number of time steps is reduced by one order of magnitude, so is the
conservation error. While this observation confirms that the error is accumulated over the number of time
steps, it does not explain why there is a bias. This concept is naturally encountered in the hyperbolic case
as well and further discussion pertaining to this error accumulation behaviour is presented in the subsequent
subsection.
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Figure 5.20: Conservation of the integral of the solution over time for the unsteady advection-diffusion equation with different
degree polynomials where N = 8 and ∆t = 1× 10−2

Another property of the advection-diffusion to be assessed is the decay of the squared solution over time. This
is physically analogous to the diffusion of kinetic energy over time. To derive this kinetic energy evolution equa-
tion, one can replace the test function in the weak form with the solution itself. In the discrete setting, this is
achieved by pre-multiplying the generic fully discrete system from Equation (5.106) by un+

1
2 = 1

2

(
un+1 + un

)

as follows4:

un+1 − un
∆t

=
1

2
A(k)

(
un+1 + un

)
(5.124)

1

2

(
un+1 + un

)T un+1 − un
∆t

=
1

4

(
un+1 + un

)T
A(k)

(
un+1 + un

)
(5.125)

1

2

(
un+1

)2 − (un)
2

∆t
=
(
un+

1
2

)T
A(k)un+

1
2 . (5.126)

The matrix A(k) can be expressed as a combination of a symmetric and skew-symmetric component as follows:

A(k) =
1

2

(
A(k) +A(k)T

)

︸ ︷︷ ︸
symmetric

+
1

2

(
A(k) −A(k)T

)

︸ ︷︷ ︸
skew-symmetric

. (5.127)

Substituting this back into Equation (5.126) gives:

1

2

(
un+1

)2 − (un)
2

∆t
=
(
un+

1
2

)T (1

2

(
A(k) +A(k)T

)
+

1

2

(
A(k) −A(k)T

))
un+

1
2 (5.128)

1

2

(
un+1

)2 − (un)
2

∆t
=

1

2

(
un+

1
2

)T (
A(k) +A(k)T

)
un+

1
2 +

((((((((((((((((
1

2

(
un+

1
2

)T (
A(k) −A(k)T

)
un+

1
2 , (5.129)

4Note that this analysis procedure does not work for the hybrid case where A(k) is a block diagonal matrix. Thus, the constrained
global system shown in Appendix .4 was used whenever this analysis technique was invoked.
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where the last term cancels due to the property of skew-symmetric matrices. The remaining symmetric
component is an n × n matrix which has n orthonormal set of eigenvectors V = [v0,v1, . . .vn−1] and n
distinct real eigenvalues {λsym

0 , λsym
1 , . . . λsym

n−1}5. Subsequently, the symmetric component may be expressed as
follows:

A(k) +A(k)T = V −1ΛV = V TΛV , (5.130)
where Λ is a diagonal matrix containing the eigenvalues. Finally, substituting this back to the energy evolution
equation and defining a new variable w := V u leads to:

1

2

(
un+1

)2 − (un)
2

∆t
=

1

2

(
un+

1
2

)T
V TΛV un+

1
2 (5.131)

1

2

(
un+1

)2 − (un)
2

∆t
=

1

2

(
wn+ 1

2

)T
Λwn+ 1

2 =
1

2

n∑

i=0

λsym
i

(
w
n+ 1

2
i

)2
. (5.132)

Equation (5.132) thus shows that the eigenvalues of the symmetric component of A(k) dictate the energy
evolution in time. In the parabolic case where ν > 0, the sum in Equation (5.132) produces a negative number
indicating a decay in the integral of u2 over time. This is thus consistent with the physical diffusion process.
Computing the integral of the squared discrete solution for each scheme and plotting its evolution over time
against the time evolution of the exact solution yields the plots shown in Figure 5.21.
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Figure 5.21: Time evolution of the integral of the square of the solution to the unsteady advection-diffusion equation with
different degree polynomials where N = 8

The decay rate observed through Figure 5.21a with lower order polynomials does not match that of the exact
solution. However, this rate is better matched when higher-degree polynomials are used. The cause of this
5Not to be confused with the Lagrange multipliers λ
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mismatch in coarse meshes is attributed to the fact that these meshes do not resolve all wave numbers of
the solution. Given that the decay rate is proportional to the wave number squared, when the highest wave
numbers are not resolved, only the decay rate associated with the smaller resolved wave numbers is observed.
On another note, one can clearly see that the decay rate for the "Lie" scheme does not quite match the
one of the exact solution even for relatively finer meshes. This could again be due to the oscillations caused
by inconsistent boundary continuity treatment used in the "Lie" scheme. These oscillations cause over and
undershoot of the solution which seems to integrate to zero as seen in Figure 5.19 but naturally does not cancel
when it is squared and then integrated. Analogous to the integral of the sin function over 1 period, where the
integral is zero, but the squared integral is not zero.

5.2.4. Numerical experiments without diffusion
With the numerical tests completed for the parabolic case, the same set of tests are considered here for the
hyperbolic case by turning off the diffusion term (ν = 0). To start off, consider the time evolution of the
numerical solutions shown in Figure 5.22 and Figure 5.23. Due to the absence of diffusion, the dispersive
errors of the scheme along with the effect of the weak C0 inter-element continuity are more prominent in the
coarser mesh. These errors are naturally reduced when using higher degree polynomials as apparent through
Figure 5.23. However, the "Lie" scheme behaves significantly poorer as compared to the other (consistent)
schemes in this hyperbolic case by dispersing more and producing significant jumps at the element boundaries
as seen through Figure 5.22. These issues with the "Lie" scheme do tend to minimise, although not completely
vanish when the mesh is refined (need to zoom in the plots in Figure 5.23 to see the effect).
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Figure 5.22: Time evolution of the numerical solutions to the linear advection problem for N = 8, p = 2, and ∆t = 1× 10−3
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Figure 5.23: Time evolution of the numerical solutions to the linear advection problem for N = 8, p = 4, and ∆t = 1× 10−3

Moving on to the discussion on the physical analogue to the Lagrange multipliers for this hyperbolic case.
Unlike the parabolic case where the diffusion term always produces a boundary term in the weak form, the
general hyperbolic case does not produce any additional boundary terms with the exception of the cases where
the adjoint advection operator is used (eg the "SBP" and "S-S" schemes). As such, the physical interpretation
of the Lagrange multipliers is not easily obtained for the general hyperbolic problem. Only the "SBP" and
"S-S" schemes have boundary terms which included the solution value itself and thus the Lagrange multipliers
for these schemes represent the scaled version of the solution at the element boundaries, effectively the plots
in Figure 5.18 and Figure 5.17 with ν set to zero. For the other schemes, however, it is not trivial what the
Lagrange multipliers physically represent. For p = 1 it was found that the Lagrange multipliers represent some
scaled version of the second derivative of the solution as seen in Figure 5.24. However, this does not generalise
for any arbitrary p as the Lagrange multipliers for p = 2 appear dissimilar to the exact second derivative seen
through Figure 5.25.
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Figure 5.24: Time evolution of the (scaled) Lagrange multipliers for the linear advection problem with N = 100, p = 1, and
∆t = 1× 10−3
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Figure 5.25: Time evolution of the (scaled) Lagrange multipliers for the linear advection problem with N = 100, p = 2, and
∆t = 1× 10−3

Following this discussion, the focus is now set on the conservation properties of the derived schemes. The
conditions the (semi) discrete systems must satisfy to achieve discrete conservation of u and u2 have already
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been introduced in Equation (5.123) and Equation (5.132). The condition in Equation (5.123) is satisfied up to
round-off errors for both parabolic and hyperbolic cases which guarantees the conservation of u in time. The
conservation of u2 on the other hand depends on the eigenvalues of the semi-discrete system to ensure that
Equation (5.132) equates to zero. All the derived schemes produce a semi-discrete system with all imaginary
(complex conjugate pairs) eigenvalues. This results in Equation (5.132) equating to zero (close to round-off
errors) which therefore ensures the conservation of u2 in time. An alternative way to view this conservation
property is by recognising that the stability contour corresponding to un+1

un = 1 for the Crank-Nicolson scheme
is the imaginary axis. This means that when a semi-discrete system with purely imaginary eigenvalues is
marched in time using the Crank-Nicolson scheme, the amplitude of the solution is unchanged (no diffusive
errors) which leads to the scheme conserving u2 over time.

To assess these conservation properties of the numerical schemes, the conservation errors at each time step
were computed and are shown in Figure 5.26 and Figure 5.27. Considering that the value of the conservation
errors seen in Figure 5.26 is close to the level of machine round-off errors, it suggests that the schemes conserve
the integral of u over time. However, like the parabolic case, a steady increase in the conservation error is
observed due to some form of error accumulation.
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Figure 5.26: Conservation of the integral of the solution over time for the linear advection equation with different degree
polynomials where N = 8 and ∆t = 1× 10−3

The conservation errors for u2 have similar behaviour as for the conservation of u for the consistent schemes.
Even the "Lie" scheme with p = 2 shows comparable conservation qualities as seen in Figure 5.27b. For larger
p however, the conservation error of the "Lie" scheme is considerably higher than the rest. This error does
tend to decrease for larger p but still significantly larger than the other schemes as seen through Figure 5.27c
and Figure 5.27d.
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(d) p = 8

Figure 5.27: Conservation of the integral of the squared solution over time for the linear advection equation with different degree
polynomials where N = 8 and ∆t = 1× 10−3

Once again, steady growth of the conservation error is observed. As previously mentioned, this growth is likely
attributed to the conservation property of the discrete system being satisfied only up to machine round-off
errors. As such the time march process accumulates some error in each time step. In Figure 5.20 this fact was
highlighted by considering a test with a larger time step (taking fewer time steps). In a similar fashion, the
same kind of observations can be made by considering many time steps as shown in Figure 5.28. Here, the
schemes are marched in time up to t = 100 and the conservation errors appear to steadily grow to considerable
values albeit at a slow rate.
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(a) Conservation of the integral of the solution (b) Conservation of the integral of the squared solution

Figure 5.28: Conservation of the integral of the solution and the squared solution over a large time period for the linear
advection equation with N = 8, p = 8, and ∆t = 1× 10−3

To further assess this idea of error accumulation, the conservation error between two consecutive time steps
(tn+1 and tn) are computed and plotted in Figure 5.29.
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Figure 5.29: Conservation of the integral of the solution and the squared solution over each time step for the linear advection
equation with N = 8, p = 8, and ∆t = 1× 10−3

As opposed to the error computed with respect to the initial condition, the error at each consecutive time step
is always at the level of machine round-off error (except the conservation error of u2 for the "Lie" scheme due
to the aforementioned boundary inconsistency). An important thing to note here is that taking the sum of all
these errors at each consecutive time step yields the exact conservation error value with respect to the initial
condition at the final time level.

N∆t−1∑

n=0

∫

Ω

uh(x, t
n+1) dΩ−

∫

Ω

uh(x, t
n) dΩ =

∫

Ω

uh(x, t
N∆t) dΩ−

∫

Ω

uh(x, 0) dΩ (5.133)

Considering the sign of the error at each consecutive time step, one finds a bias in the sign of the error, that is
the error is more often positive than it is negative or vice versa. This amounts to adding an error every time
step in the order of machine round-off errors that has one specific sign (positive or negative) more often than
the other, which causes an accumulation of errors over the time march. The exact origin for this positive bias
is yet unknown, however, it can be speculated that it has something to do with the element-wise continuity
constraint. Hyperbolic problems have their preferential direction of information transfer which is determined
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by the characteristic lines. The current approach of transferring information between elements through the
Lagrange multipliers does not consider this characteristic direction and therefore is capable of transferring
information in any direction. Consequently, this multi-direction information transfer naturally tampers with
the physics of the equations and is likely to be the cause of the observed error bias. This was found to have
a more significant effect on non-linear problems than on linear problems thus, a more elaborate discussion
on this topic is presented in the subsequent chapter. While this error growth issue may seem alarming, by
simply taking a step back and considering the relative orders of magnitude reassures the quality of the derived
schemes. Considering the fact that the sought solution and its integral properties are of order 1×100−1×101

and the largest observed conservation error growth rate in Figure 5.28 is in the order of 1 × 10−16 per time
step6, it is safe to say that the error growth does not pose any significant threat to any practical application.

5.2.5. Variational Multiscale
Having concluded the results for both the parabolic and hyperbolic cases in the previous subsection, this
subsection presents the discussion regarding the inclusion of VMS theory in the unsteady case. For this
incorporation of multiscale theory into the derived Galerkin schemes, the standard multiscale split is applied:

Λ(k)(M) = Λ
(k)
h (M)⊕ Λ(k)′(M) (5.134)

u(k) := uh + u′ (5.135)

v(k) := vh + v′. (5.136)

Inserting this split into Equation (5.72) yields:
∫

Ω

(
∂(uh + u′)

∂t
+ L (uh + u′)

)
∧ ⋆ (vh + v′) = 0. (5.137)

The equation can be simplified using the linearity of the time derivative and L which gives:
∫

Ω

(
∂uh
∂t

+
∂u′

∂t
+ L uh + L u′

)
∧ ⋆ (vh + v′) = 0. (5.138)

Alike the steady case, resolved scale equation is derived by setting v′ = 0 and replacing the linear operator
acting on u′ with its adjoint7:

∫

Ω

∂uh
∂t

∧ ⋆ vh +
∫

Ω

∂u′

∂t
∧ ⋆ vh +

∫

Ω

L uh ∧ ⋆ vh +
∫

Ω

L u′ ∧ ⋆ vh = 0 (5.139)
∫

Ω

∂uh
∂t

∧ ⋆ vh +
∫

Ω

∂u′

∂t
∧ ⋆ vh +

∫

Ω

L uh ∧ ⋆ vh +
∫

Ω

u′ ∧ ⋆ L̃ vh = 0, where L̃ := −c ∂
∂x

− ν
∂2

∂x2
. (5.140)

Similarly, setting vh = 0 to derive un-resolved scale equation:
∫

Ω

∂uh
∂t

∧ ⋆ v′ +
∫

Ω

∂u′

∂t
∧ ⋆ v′ +

∫

Ω

L uh ∧ ⋆ v′ +
∫

Ω

L u′ ∧ ⋆ v′ = 0 (5.141)
∫

Ω

∂u′

∂t
∧ ⋆ v′ +

∫

Ω

L u′ ∧ ⋆ v′ = −
∫

Ω

(
∂uh
∂t

+ L uh

)
∧ ⋆ v′ (5.142)

∫

Ω

∂u′

∂t
∧ ⋆ v′ +

∫

Ω

L u′ ∧ ⋆ v′ = −
∫

Ω

Ruh ∧ ⋆ v′. (5.143)

Looking at the form of the un-resolved scale equation, it is evident that it involves the unsteady advection-
diffusion operator acting on u′ with the residual of the resolved scales as the source term. The issue here is that,
unlike the steady case, a generic Greens’ function for the unsteady case is not easily found. A slightly heuristic
approach that can be applied is the assumption that the un-resolved scales’ time derivative is zero which
implies that these scales respond instantaneously and thus have no dynamics of their own. This assumption
is commonly referred to as the quasi-steady sub-scales assumption [32, 43] and is described below.

6 10−11

105
given that there were 100,000 time steps

7the boundary terms are ignored due to periodic boundary conditions
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Quasi-steady sub-scales

Invoking the quasi-steady sub-scale assumption,
∂u′

∂t
= 0, the un-resolved scale equation simplifies to the

following:
∫

Ω

L u′ ∧ ⋆ v′ = −
∫

Ω

Ruh ∧ ⋆ v′ (5.144)
∫

Ω

u′ ∧ ⋆ L̃ v′ = −
∫

Ω

Ruh ∧ ⋆ v′. (5.145)

This form of the un-resolved scale equation is identical to the steady case presented earlier in the chapter. As
such, the approximation for u′ can be found in the same way by employing the element’s Greens’ function
resulting in the expression for u′ in the previously established form:

u′ ≈ −τ(x)Ruh. (5.146)

Substituting this estimation for u′ into the resolved scale equation and ignoring the temporal gradient of the
un-resolved scales gives:

∫

Ω

∂uh
∂t

∧ ⋆ vh +
∫

Ω

L uh ∧ ⋆ vh
︸ ︷︷ ︸

M(k) ∂u

∂t
−Au

+

∫

Ω

(−τRhuh) ∧ ⋆ L̃ vh = 0. (5.147)

The discrete form of the resolved component of the solution expressed as any k-form can be written as a
semi-discrete system involving the k-form mass matrix and a discrete advection-diffusion operator like the one
in Equation (5.82). Since the operator L is represented in the discrete setting by A, and its adjoint operator
(L̃ ) can be proven to be Ã = −AT . Thus, the semi-discrete system incorporating the multiscale term is then
given by:

∂u

∂t
= M(k)−1

(
Au− Ã(−τRhuh)

)
, (5.148)

where Rh is the discrete residual operator. For the sake of demonstration, consider u to be expressed as a
0-form which gives the following form for the residual operator:

Rhuh =
un+1 − un

∆t
+
[
ψ(1)(x)

(
c E1,0

)
−ψ(0)(x)M(0)−1

(
ν
(
−E1,0TM(1) + N1B

)
E1,0

)]

︸ ︷︷ ︸
R

un+
1
2 . (5.149)

Discretising
∂u

∂t
using the Crank-Nicolson scheme gives the following fully discrete system:

un+1 − un
∆t

=
1

2
A(0)

(
un+1 + un

)
+

1

∆t
Ã

(0)
τ
(
un+1 − un

)
+

1

2
Ã

(0)
τR

(
un+1 + un

)
. (5.150)

At this point, the conservation properties of the discrete system can already be assessed using the criteria
stated in Equation (5.123) and Equation (5.126). The derived system satisfies Equation (5.123) which ensures
that the scheme will preserve the integral of u over time. The evolution u2 on the other hand proves to be
suboptimal for the hyperbolic case. Considering the evolution equation u2 derived by testing Equation (5.150)
with un+

1
2 gives:

1

2

(
un+1 + un

)T un+1 − un
∆t

=
1

4((((((((((((((((
un+1 + un

)T
A(0)

(
un+1 + un

)
+

1

2∆t

(
un+1 + un

)T
Ã

(0)
τ
(
un+1 − un

)
+

1

4

(
un+1 + un

)T
Ã

(0)
τR

(
un+1 + un

) (5.151)

1

2

(un+1)2 − (un)2

∆t
=

1

∆t

(
un+

1
2

)T
Ã

(0)
τ
(
un+1 − un

)
+
(
un+

1
2

)T
Ã

(0)
τRun+ 1

2 , (5.152)

where the first term on the right cancels given that the base Galerkin scheme conserves the integral of u2 for
hyperbolic cases. The additional terms introduced through multiscale theory do not cancel in the hyperbolic
case suggesting that the conservation of u2 is destroyed. Moreover, numerical tests with this scheme showed
growth of u2 over time which is far from ideal. The cases in the literature that do employ the quasi-steady
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sub-scales assumption eg [28, 32, 43] do not address this energy-conserving property for the hyperbolic case.
Instead, they focus predominately on parabolic problems where the multiscale term acts to add artificial
viscosity to stabilise the system.

This issue of conserving u2 in time in the hyperbolic case can be attributed to the fact that the construction
of u′ is incorrect since the exact u′ would have the conservation properties. The main culprit of the incorrect
u′ can be thought to be the quasi-steady sub-scales assumption. Hence, an alternative formulation must be
considered in order to satisfy the desired conservation properties. For ease of implementation, it would be
ideal to have a formulation where neglecting the time derivative is mathematically justified.

Dynamic orthogonal sub-scales

The work in [44] on orthogonal sub-scales is a promising approach to consider where the time derivative exactly
cancels from the resolved scale equation. In this framework, u′ is constrained to be orthogonal to the resolved
space Λ

(k)
h (M) in a L2 sense as follows:

∫

Ω

vhu
′ dΩ = −

∫

Ω

vhτRuh dΩ +

∫

Ω

vhτV h,ort dΩ = 0, ∀vh ∈ Λ
(k)
h (M), (5.153)

where V h,ort is the projection of the residual onto the test space. The orthogonal u′ is thus given by:

u′ ≈ −τ(Ruh − V h,ort) = −τΠ⊥
τ Ruh. (5.154)

Since energy conservation in the hyperbolic case is the problem of interest, diffusion shall be ignored and the
orthogonal residual operator for the linear hyperbolic problem reads:

Rhuh =
un+1 − un

∆t
+
[
ψ(1)(x)

(
c E1,0

)]

︸ ︷︷ ︸
R

1

2
(un+1 + un) (5.155)

Π⊥
τ Ruh =

[
R− cM(0)−1

τ M(0,1)
τ E1,0

] 1
2
(un+1 + un). (5.156)

Constructing this residual operator for the linear problem where the matrices M(0)−1

τ and M(0,1)
τ are computed

using a high degree of precision quadrature, leads to the residual operator attaining zeros in all its entries for
all τ :

Π⊥
τ Ruh = 0. (5.157)

Consequently, the use of this orthogonal residual in the unresolved scale equation gives:
∫

Ω

∂u′

∂t
∧ ⋆ v′ +

∫

Ω

L u′ ∧ ⋆ v′ = −
∫

Ω

Π⊥
τ Ruh ∧ ⋆ v′ = 0, (5.158)

of which the corresponding strong form of the un-resolved scale equation reads:

∂u′

∂t
+ L u′ = 0. (5.159)

This equation simply describes the transport of u′ over time with no energy exchange with the resolved scales
as the source term is zero. This is a physically sound result as the linear advection equation simply acts
to advect (phase shift) the different wave numbers independently without exchanging any energy between
the wave numbers. This holds true in the discrete setting as well given that the base Galerkin scheme is
energy-conserving.

Given that this orthogonal sub-scales approach yields the correct physical behaviour of the un-resolved scales,
this was the chosen approach to be studied. Applying this orthogonal sub-scale approach yields the following
resolved scale equation:

∫

Ω

∂uh
∂t

∧ ⋆ vh +�������
∫

Ω

∂u′

∂t
∧ ⋆ vh +

∫

Ω

L uh ∧ ⋆ vh +
∫

Ω

u′ ∧ ⋆ L̃ vh = 0. (5.160)

Given the simplicity of this linear problem, the modelling of u′ was done using the strong form itself. For
modelling u′, the following two questions need answering:

• How to represent u′ such that it is orthogonal to the resolved test space?
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• How to evolve u′ in time?

The first question inevitably determines the desired spatial projection of the exact solution. A suitable pro-
jection for this advection case is the L2 projection which is one that was chosen. Given the solution (test)
space comprises Lagrange polynomials of degree p, it is known that Legendre polynomials of degree p + 1
and above are exactly orthogonal to the solution space. Thus, u′ may be expressed using the set of Legendre
polynomials of degree greater than or equal to p + 1. Obtaining this representation requires interpolation of
the initial condition. Consider two methods to interpolate the initial condition for uh and u′. Method 1:
First interpolate the initial condition with the resolved function space (Lagrange polynomials of pth degree)
to obtain uh, then compute u′ by taking the difference between the exact u and uh. Finally, interpolate this
u′ using the orthogonal subspace of the un-resolved scales (Legendre polynomials of degree p+ 1 and higher);
Method 2: First interpolate the initial condition using the full set of Legendre polynomials, then find u′ by
setting the coefficients of the non-orthogonal functions (polynomials of degree p and lower) to zero. Next, find
uh by taking the difference between u and u′ and interpolating using Lagrange polynomials (resolved function
space). The interpolated (discrete) u′ is referred to as ũ′ where Legendre polynomials of degree p + 1 up-to
p+ 3 were used for both interpolation methods.

The two methods yield different solutions for the interpolation of the initial condition. The corresponding
discrete representations of the resolved and un-resolved components found using the two methods are shown
in Figure 5.30 and Figure 5.31.
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Figure 5.30: Interpolation of the resolved and un-resolved components of the initial condition using Method 1
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Figure 5.31: Interpolation of the resolved and un-resolved components of the initial condition using Method 2
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Comparing the total solution uh + ũ′ produced by the two methods in Figure 5.32 below, clearly shows that
Method 2 is the better approach. The reason for Method 1 being worse is due to the fact that it attempts to
interpolate u′ using purely higher degree polynomials which results in the Galerkin (L2) interpolation missing
the low order components of the solution.
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Figure 5.32: Comparison of the total solution uh + ũ′ produced by the two methods for the interpolation of the initial condition

With the approach for representing u′ established, the next step was to tackle the second question for modelling
u′ in time. This step may be viewed as selecting the desired projection of the solution in time. This, however,
is a difficult task as there is no natural/generalisable way to link the resolved scale’s time march with the time
evolution of the un-resolved scales in the current framework. More specifically, the point to consider here is that
the Galerkin scheme with the Crank-Nicolson time march on coarse meshes is subject to dispersive errors along
with the poor transfer of information at the element boundaries through the Lagrange multipliers. Without a
general approach to pass the mentioned deficiencies to the un-resolved scale time evolution while conserving
u and u2, the time evolution approach for u′ was chosen to be the one that reflects the (uncoupled) strong
form in Equation (5.159). This was achieved by employing a simple phase shift operator over time which first
evaluates u′ at the nodes c∆t upstream of the collocation nodes (integration points for interpolation) and puts
that value as the new solution value at the collocation point. This phase shift operation is simply mimicking
the method of characteristics approach.

Bringing everything together into a discrete setting where uh is simply expressed as a 0-form yields:

∂u

∂t
= −cM(0)−1

M(0,1)E1,0u+ cM(0)−1

E1,0TM(1,P)ũ′ (5.161)

un+1 − un
∆t

= Aun+
1
2 +Bũ′n+ 1

2 (5.162)

ũ′n+ 1
2 = P 1

2 c∆t
ũ′n (5.163)

Here, M(1,P) represents the L2 inner product between the 1-form resolved basis and the higher degree Legendre
polynomials used to represent u′, and P 1

2 c∆t
is the phase shift operator. Analysing the discrete systems at this

stage already gives an a priori impression of solution behaviour. Firstly, one finds that M(1,P) is exactly zero
given that un-resolved scales are not only orthogonal to resolved space of pth order polynomials, they are also
orthogonal to p − 1 order polynomials (1-form edge basis) used to represent the derivative. This yields two
uncoupled sets of time evolution equations for the resolved and un-resolved scales much like how one would
expect for the physical continuous case. The issue, however, is that the errors in the discrete resolved scales
are not perceived nor accounted for by the un-resolved scales. Naturally, it is possible to employ the method
of characteristic approach for the resolved scales as well for this linear problem whereby the aforementioned
issues with dispersion and weak continuity constraints can be eliminated. However, that approach is specific
to this problem and cannot be generalised.

5.2.6. Numerical experiments with VMS
Having already discussed the solution behaviour of the derived system in the previous subsection, this subsec-
tion purely serves as a formality to present the obtained numerical solution and its properties. The test case
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considered in this subsection is the same as the previous one with Equation (5.111) as the initial condition and
periodic boundaries. Considering the time evolution of the solution with and without VMS in Figure 5.33,
there is no significant difference and thus no significant gain. The main difference between the two is seen in
the initial condition, and a very short time after. This observation comes as no surprise given that the derived
approach for u′ is unaware of the time evolution of the resolved scales.
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Figure 5.33: Time evolution of the solutions to the linear advection equation with and without VMS for N = 8, p = 1, and
∆t = 1× 10−3

Similarly, considering the L2 error of the solution with and without VMS in Figure 5.34 shows that there
is no significant improvement achieved through multiscale theory in the considered framework. Some cases
are marginally worse than the base Galerkin scheme and some are marginally better, but not in a significant
amount.
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Figure 5.34: h-convergence of the Galerkin and multiscale solutions to the linear advection problem computed in the L2 error
norm using the exact solution at t = 1

The advantage of this framework, however, is seen in the conservation qualities of the scheme. As shown in
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Figure 5.35 and Figure 5.36, the formulation conserves the integral of the resolved scales as well as the squared
resolved scales. Moreover, the plots in Figure 5.37 and Figure 5.38 show the conservation errors of u′. Lastly,
the conservation errors of the total solution uh + u′ are shown in Figure 5.39 and Figure 5.40 where both the
integral of the solution and the squared integral of the solution are conserved.
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Figure 5.35: Conservation of the integral of the resolved scales over time for the linear advection equation with and without
VMS using different degree polynomials where N = 8 and ∆t = 1× 10−3
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Figure 5.36: Conservation of the integral of the squared resolved scales over time for the linear advection equation with and
without VMS using different degree polynomials where N = 8 and ∆t = 1× 10−3
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Figure 5.37: Conservation of the integral of the un-resolved scales over time for the linear advection equation using different
degree polynomials where N = 8 and ∆t = 1× 10−3
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Figure 5.38: Conservation of the integral of the squared un-resolved scales over time for the linear advection equation using
different degree polynomials where N = 8 and ∆t = 1× 10−3
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Figure 5.39: Conservation of the integral of the total solution (uh + u′) over time for the linear advection equation using
different degree polynomials where N = 8 and ∆t = 1× 10−3
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Figure 5.40: Conservation of the integral of the squared total solution (uh + u′)2 over time for the linear advection equation
using different degree polynomials where N = 8 and ∆t = 1× 10−3





6
Non-Linear problems

Having considered the linear advection problems in the preceding chapter, the focus is now turned to slightly
more complex non-linear problems. The specific problems considered in this chapter are the 1D Burgers’
equation, which is treated in Section 6.1, and the 2D incompressible Navier-Stokes/Euler equations, which is
treated in Section 6.2. Note that the incorporation of multiscale theory is excluded for the non-linear problems
as the development of sub-scale models for such problems goes out of the scope of the present study. Thus,
the primary focus of this chapter is on applying the hybrid mimetic method to non-linear problems.

6.1. 1D Burgers’
The governing equation and problem set up for the 1D Burgers’ equation reads:

∂u

∂t
+ u

∂u

∂x
= 0, x ∈ Ω ∈]0, 1[ (6.1)

u(0, t) = u(1, t), ∀t ≥ 0 (6.2)
u(x, 0) = f(x). (6.3)

Similar to the linear advection case, the considered domain for this problem is a periodic domain ranging
between 0 and 1. This particular problem is characterised as a first-order hyperbolic equation where the exact
solution for smooth (shock-free) cases can be found to be the following based on the method of characteristics:

u(x, t) = u(x− u(x, 0)t, 0) = f(x− f(x)t). (6.4)

In contrast to the linear case where the advection speed is a known value that is imposed on the problem, the
advection speed for Burgers’ equation is the solution itself. As such, this particular model equation describes
the self-advection of u over time where the initial distribution of the quantity is described by f(x). This
property of the governing equation causes the solution to develop shocks in a finite amount of time even for

smooth initial conditions if
∂f

∂x
< 0. The exact time instance at which a shock will form for a given initial

condition can be computed as follows:

Tshock = − 1

min

(
∂f

∂x

) . (6.5)

The method of characteristics breaks down when shocks are formed, which forces one to seek weak solutions to
the governing PDE [45]. Since the weak solutions are not unique, the approach for selecting the most physical
weak solution is by employing the concept of entropy. This can be done by selecting a convex entropy function
η(u) and its corresponding entropy flux q(u) where the physical weak solutions satisfy:

∂η(u)

∂t
+
q(u)

x
≤ 0. (6.6)

In the shock-free case, the entropy is conserved, which gives:

∂η(u)

∂t
+
q(u)

x
= 0. (6.7)
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Despite the simplicity of Burgers’ equation, it captures the key essence of non-linear advection typically
encountered in the case of Navier-Stokes or Euler equations. Moreover, the non-linear advection term can
be expressed in various ways, much like the Navier-Stokes case, of which the two common forms are the
conservative and advective forms described below:

Conservative form : N (u) :=
1

2

∂u2

∂x
(6.8)

Advective form : N (u) := u
∂u

∂x
(6.9)

The two forms are mathematically equivalent to one another based on the product rule applied to
∂u2

∂x
.

However, it is worth noting that the two forms are not algebraically similar. To elaborate on that, consider the
Navier-Stokes equations where both the conservative

(⇀∇ · (ρu⊗ u)
)

and the advective
(
(u · ⇀∇)(ρu)

)
forms can

be algebraically equated to one another by invoking conservation of mass (density). This algebraic relation
between the two advection forms is absent in the case of Burgers’, as the governing equation is strictly an
advection model and does not represent anything physical.

This section can be viewed as the extension of the linear advection cases presented in Section 5.2, to the
non-linear case. Firstly the Galerkin weak forms are derived in Section 6.1.1 for various of formulations of
the continuous equation and k-form representations of the solution. Thereafter, their discretisation using the
mimetic SEM is presented in Section 6.1.2 where the goal is to conserve the integral of u, u2, and entropy
− ln (u). Lastly, the results of the test cases with and without shocks are discussed in Section 6.1.4 and
Section 6.1.3 respectively.

6.1.1. Continuous form
Building on the ideas from the linear advection case, the derivation of the weak form for different formulations
of the 1D Burgers’ equation is first considered. The weak form for u expressed as a generic k-form is found by
testing the governing equation with a test function v(k):

∫

Ω

(
∂u(k)

∂t
+ N (u(k))

)
∧ ⋆ v(k) = 0, ∀v ∈ Λ(k)(M). (6.10)

Following a similar procedure as for the linear case, u is first expressed as a 0-form in the primal space.
Starting with the advective form, the corresponding Galerkin weak form is given by:

∫

Ω

∂u(0)

∂t
∧ ⋆ v(0) +

∫

Ω

iu ◦ du(0) ∧ ⋆ v(0) = 0, (6.11)

where the Lie derivative is used to represent the advection term. Similarly, the weak form for the conservative
form of the advection term with u as a 0-form is given by:

∫

Ω

∂u(0)

∂t
∧ ⋆ v(0) + 1

2

∫

Ω

d
(
u(0)

)2
∧ ⋆ v(0) = 0. (6.12)

As done previously for the linear case, u can also be expressed as a 1-form in the dual space resulting in the
following weak form:

∫

Ω

∂ũ(1)

∂t
∧ ⋆ ṽ(1) + 1

2

∫

Ω

d
(
⋆ũ(1)

)2
∧ ⋆ ṽ(1) = 0. (6.13)

The advection operator can also be moved to the test function yielding the adjoint operator where, once again,
the boundary terms are neglected given the periodic boundary conditions.

∫

Ω

∂ũ(1)

∂t
∧ ⋆ ṽ(1) − 1

2

∫

Ω

(
ũ(1)

)2
∧ ⋆ d ⋆ ṽ(1) = 0. (6.14)

Taking the linear combination of Equation (6.13) and Equation (6.14) with a factor 1
2 applied to each equation

yields the Skew-Symmetric form of the advection operator.
∫

Ω

∂ũ(1)

∂t
∧ ⋆ ṽ(1) + 1

4

(∫

Ω

d
(
⋆ũ(1)

)2
∧ ⋆ ṽ(1) −

∫

Ω

(
ũ(1)

)2
∧ ⋆ d ⋆ ṽ(1)

)
= 0. (6.15)
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Finally, defining u as a 1-form in the primal space yields the following weak form where the Lie derivative
makes its appearance:

∫

Ω

∂u(1)

∂t
∧ ⋆ v(1) + 1

2

∫

Ω

d ◦ iuu(1) ∧ ⋆ v(1) = 0, where u := ♯u(1). (6.16)

The corresponding vector field used in the interior product is the velocity vector u which is found by applying
the sharp operator to the 1-form.

6.1.2. Discrete form
With the weak forms in place, their respective discrete systems are derived in this subsection. Starting off
with Equation (6.11), substituting int the following discrete representation:

uh := ψ(0)u, ∈ Λ
(0)
h (M) (6.17)

vh := ψ(0)v, ∈ Λ
(0)
h (M), (6.18)

yields the following non-linear semi-discrete system:

vT
[∫

Ωh

ψ(0)Tψ(0) dΩh

]
∂u

∂t
+ vT

[∫

Ωh

ψ(0)Tψ(1)u dΩh

]
E1,0u = 0 (6.19)

M(0) ∂u

∂t
+M(0,1)

u E1,0u = 0 (6.20)

∂u

∂t
= −M(0)−1

M(0,1)
u E1,0u (6.21)

∂u

∂t
= A

(0)
adv(u) u. (6.22)

Contrary to the linear case where the advection speed was a constant c, the non-linear case involves the
construction of the projection matrix M(0,1) where the solution itself is a part of the integrand. Since the
integrals are computed using the Gauss-Lobatto quadrature, the construction of M(0,1)

u needs the evaluation
of u at the quadrature nodes which are the degrees of freedom u themselves. This scheme is referred to as the
"nodal-adv" scheme in the discussion that follows.

Considering the sequence of operators for this scheme, it simply comprises the topological incidence matrix
along with the metric-dependent interior product which forms the discrete Lie derivative of a 0-form. The
corresponding path along the discrete De Rham sequence is depicted in Figure 6.1.
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M(0) M(1)
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Figure 6.1: The path followed in the discrete De Rham sequence for the advection term for Burgers’ equation with nodal degrees
of freedom using the advective form

As previously noted, the interior product consists of a metric-free component M(0,1) and a metric dependent
M(0)−1

. This fact, however, can be argued to not hold for the presented non-linear case. This is attributed
to the solution itself appearing within the integral and thereby scaling the matrix and introducing metric
dependence. However, this changes when considering the conservative form of the advection term. Applying
the discrete representation from Equation (6.17) and Equation (6.18) into Equation (6.12) gives:

vT
[∫

Ωh

ψ(0)Tψ(0) dΩh

]
∂u

∂t
+

1

2
vT
[∫

Ωh

ψ(0)Tψ(1) dΩh

]
E1,0u2 = 0 (6.23)

M(0) ∂u

∂t
+

1

2
M(0,1)E1,0u2 = 0 (6.24)

∂u

∂t
= −1

2
M(0)−1

M(0,1)E1,0u2 (6.25)

∂u

∂t
= A(0)

con(u) u. (6.26)
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Once again, the discrete Lie derivative makes its appearance. However, this time it acts on u2 and the
associated vector for the interior product is just the basis vector of the tangent space (∂x). The resulting path
followed in the discrete De Rham sequence is shown in Figure 6.2.

R Λ
(0)
h (M) Λ

(1)
h (M) 0

RΛ̃
(0)
h (M)Λ̃

(1)
h (M)0

E1,0

1
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Figure 6.2: The path followed in the discrete De Rham sequence for the advection term for Burgers’ equation with nodal degrees
of freedom using the conservative form

For this formulation, the aforementioned fact of the interior product comprising a metric-free and a metric-
dependent part is again true. This scheme is henceforth referred to as the "nodal-con" scheme.

Moving on with the dual representation of the above formulation in Equation (6.13), the corresponding discrete
forms are as follows:

uh := ψ̃
(1)
ũ, ∈ Λ̃

(1)
h (M) (6.27)

vh := ψ̃
(1)
ṽ, ∈ Λ̃

(1)
h (M). (6.28)

Substituting these into Equation (6.13) yields:

ṽT
[∫

Ωh

ψ̃
(1)T

ψ̃
(1)

dΩh

]
∂ũ

∂t
+

1

2
ṽT
[∫

Ωh

ψ̃
(1)T

ψ(1) dΩh

]
E1,0 (⋆ũ)

2
= 0. (6.29)

Replacing the continuous Hodge operator with its discrete form and applying the dual polynomial concept
gives the following semi-discrete system:

ṽT
(
M(0)−1

)T [∫

Ωh

ψ(0)Tψ(0) dΩh

]
M(0)−1 ∂ũ

∂t
+

1

2
ṽT
(
M(0)−1

)T [∫

Ωh

ψ(0)Tψ(1) dΩh

]
E1,0

(
M(0)−1

ũ
)2

= 0

(6.30)

ṽT

���
��(

M(0)−1
)T

������
M(0)M(0)−1 ∂ũ

∂t
+

1

2
ṽT

�
����(
M(0)−1

)T
M(0,1)E1,0

(
M(0)−1

ũ
)2

= 0 (6.31)

∂ũ

∂t
= −1

2
M(0,1)E1,0

(
M(0)−1

ũ
)2

= 0 (6.32)

∂ũ

∂t
= Ã

(1)

con(ũ) ũ. (6.33)

Looking at the above semi-discrete system, it is evident that it contains the same terms as the one in Equa-
tion (6.25). However, now the metric-free operators (E1,0 and M(0,1)) can be thought to be separated from
the metric-dependent term (M(0)−1

) since the latter operator acts as a mapping that transforms the degrees of

freedom into a flux. If the flux were to be defined as F :=
1

2

(
M(0)−1

ũ
)2

, then the above semi-discrete system
would read:

∂ũ

∂t
= −M(0,1)E1,0F . (6.34)

In essence, this scheme is reminiscent of a Finite-Volume scheme given the flux reconstruction concept. In any
case, the corresponding sequence of applying the different operators for this scheme is depicted in Figure 6.3.
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Figure 6.3: The path followed in the discrete De Rham sequence for the advection term for Burgers’ equation with edge degrees
of freedom on the dual mesh using the conservative form
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A reformulation of the above scheme with the adjoint advection operator can be found by substituting the
discrete representations in Equation (6.27) and Equation (6.28) into Equation (6.14).

ṽT
[∫

Ωh

ψ̃
(1)T

ψ̃
(1)

dΩh

]
∂ũ

∂t
+

1

2
ṽT
(
M(0)−1

)
E1,0T

[∫

Ωh

ψ(1)Tψ(0) dΩh

] (
M(0)−1

ũ
)2

= 0 (6.35)

���
��(

M(0)−1
)T ∂ũ

∂t
=

1

2���
��(

M(0)−1
)T

E1,0TM(1,0)
(
M(0)−1

ũ
)2

= 0 (6.36)

∂ũ

∂t
=

1

2
E1,0TM(1,0)

(
M(0)−1

ũ
)2

= 0 (6.37)

∂ũ

∂t
= Ã

(1)

SBP(ũ) ũ. (6.38)

Again, the Summation by Parts ("SBP") nomenclature is used to refer to this scheme. Similarly, the discrete
Skew-Symmetric ("S-S") form is found by substituting the discrete representations in Equation (6.27) and
Equation (6.28) into Equation (6.15), which gives:

∂ũ

∂t
=

1

2

(
1

2
E1,0TM(1,0) − 1

2
M(0,1)E1,0

) (
M(0)−1

ũ
)2
. (6.39)

Lastly, taking the weak form in Equation (6.16) and substituting the following representation:

uh := ψ(1)u, ∈ Λ
(1)
h (M) (6.40)

vh := ψ(1)v, ∈ Λ
(1)
h (M), (6.41)

gives the following semi-discrete system:

vT
[∫

Ωh

ψ(1)Tψ(1) dΩh

]
∂u

∂t
+

1

2
vT
[∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0M(0)−1

M(0,1)
u u = 0 (6.42)

M(1) ∂u

∂t
+

1

2
M(1)E1,0M(0)−1

M(0,1)
u u = 0 (6.43)

∂u

∂t
= −1

2
E1,0M(0)−1

M(0,1)
u u (6.44)

∂u

∂t
= A(1)(u) u. (6.45)

This scheme utilises the Lie derivative which is applied to the discrete 1-form where the sequence of operations
is summarised by Figure 6.4. Alike the linear case, this scheme is also referred to as the "Lie" scheme in the
text that follows.
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Figure 6.4: The path followed in the discrete De Rham sequence for the advection term for Burgers’ equation with edge degrees
of freedom on the primal mesh using the advective form

For all the non-linear semi-discrete systems derived, the fully discrete system is derived by employing the
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Crank-Nicolson time march. The resulting non-linear algebraic system reads as follows:

∂u

∂t
= A(u) u (6.46)

un+1 − un
∆t

= A(un+
1
2 ) un+

1
2 (6.47)

un+1 − un
∆t

=
1

2
A(un+

1
2 ) un+1 +

1

2
A(un+

1
2 ) un (6.48)

un+1 − ∆t

2
A(un+

1
2 ) un+1 = un +

∆t

2
A(un+

1
2 ) un (6.49)

[
I − ∆t

2
A(un+

1
2 )

]
un+1 =

[
I +

∆t

2
A(un+

1
2 )

]
un (6.50)

L(un+
1
2 ) un+1 = R(un+

1
2 ) un. (6.51)

Alike the linear case, element-wise continuity of the solution as well as the boundary conditions are imposed
through the introduction of Lagrange multipliers. Thus the full system that is solved every time step reads:

[
L(un+

1
2 ) ΛT

Λ ∅

] [
un+1

λ

]
=

[
R(un+

1
2 ) un

0

]
. (6.52)

Notice that the non-linear nature of the equations results in the left and right hand side matrices (L and R) to
be a function of the unknown un+

1
2 = 1

2 (u
n+1+un). To solve this non-linear problem, the approach presented

in [46] was employed wherein the Picard iteration technique is used. For each time step, a set of iterations are
performed where the initial estimate for un+1

0 is made as:

un+1
0 = un + (un − un−1), (6.53)

using which Equation (6.52) is solved to find the solution at the next iteration level un+1
k . Using the new

found un+1
k , a new estimate for un+

1
2 is computed and Equation (6.52) is solved repeatedly until the difference

between un+1
k at two successive iteration levels is below a specified tolerance ϵ:

∥un+1
k+1 − un+1

k ∥∞ < ϵ. (6.54)

Alternatively, taking the L2 norm of the difference proved to produce near-identical solutions as in the former
case.

∥un+1
k+1 − un+1

k ∥L2 < ϵ. (6.55)

For the cases considered, ϵ = 1 × 10−14 was taken to be the tolerance value as the work in [46] showed that
choosing a large tolerance resulted in poor conservation quality of the scheme.

All the derived schemes in this section generally extend off of the schemes derived for the linear case. Moreover,
the "nodal-adv" scheme shares a likeness with the energy and entropy conserving Finite-Volume scheme for
Burgers’ equation described in [47]. Thus, this scheme acts as a high-order extension of the said Finite-Volume
scheme and is thus capable of discretely conserving energy (u2) and entropy (ln (u)) as will be shortly discussed
in the subsequent subsection.

6.1.3. Numerical experiments without shocks
This first set of numerical experiments considered for the discrete systems comprised of a shock-free case. The
initial condition used for this shock-free case reads as follows:

f(x) = u(x, 0) = 0.05 sin (2πx) + 1, (6.56)

where the time interval was taken to be [0, 1]. Considering the shock formation time for this initial condition
using Equation (6.5), one finds that a shock will form at Tshock = 1

0.314159 ≈ 3.18 which is well beyond the
considered time interval of [0, 1]. Given this fact, the exact solution may be computed using the method of
characteristics using Equation (6.4).

The first part of the numerical experiments was to assess the convergence of the derived schemes. This was
done by computing the L2 error between the numerical and the exact solution at the final time level for
different mesh refinements. The obtained convergence plots are shown in Figure 6.5.
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Figure 6.5: h-convergence of the different numerical schemes for Burgers’ equation computed in the L2 error norm against the
exact solution at t = 1

The observations made through the convergence plots are similar to the linear case where all the derived
schemes show the expected convergent behaviour apart from the "Lie" scheme for p > 2. This is again
down to the same issue relating to the incompatible boundary constraint. One remark that can be made for
Figure 6.5a is that the curves are not necessarily smooth as seen in Figure 5.13a for the linear case. To further
assess the source of the observed errors, the time evolution of the numerical solution for the different schemes
is shown Figure 6.6 and Figure 6.7 using different degree polynomials.
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Figure 6.6: Time evolution of the numerical solution to Burgers’ equation with N = 12, p = 1, and ∆t = 1× 10−3
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Figure 6.7: Time evolution of the numerical solution to Burgers’ equation with N = 12, p = 8, and ∆t = 1× 10−3

Starting with Figure 6.6, it is evident that the numerical solution is slightly lagging behind the exact solution.
This clearly indicates the presence of dispersive errors in the numerical solution. This comes as no surprise
given that the derived schemes extend off of the energy-conserving linear advection schemes which have semi-
discrete systems with purely imaginary eigenvalues. Thus when marched in time with the Crank-Nicolson
scheme, the solution disperses in time. This error is of course minimised when using higher order polynomials
as seen through Figure 6.7. Viewing the plots for p = 8 in Figure 6.7 shows that the numerical solution closely
follows the exact solution with the schemes behaving in a very similar to one another. One thing to note here
is that the "Lie" scheme still produces unusual behaviour at the element boundaries which are minimised on
fine meshes but not totally eliminated.

Regarding the conservation of the integral of the solution, the conservation errors are very similar to the linear
case as evident through the plots in Figure 6.8. This boils down to the discrete non-linear semi-discrete system
satisfying the condition in Equation (5.123) up to machine precision for all u as checked numerically. The
error values are around the order of the round-off errors and are subject to a considerable amount of noise.
The noisy behaviour of the error could be attributed to the general round-off error along with the error from
the non-linear Picard iteration for each time step. Moreover, the errors also do tend to accumulate every time
step although they appear to be ever so slightly less for certain schemes as compared to the linear case.
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Figure 6.8: Conservation of the integral of the solution over time for Burgers’ equation with different degree polynomials where
N = 12 and ∆t = 1× 10−3

The conservation errors for the integral of u2, however, behave slightly differently than the linear case as
evident through Figure 6.9. There appears to be some form of mesh dependency for this conserved quantity
as the errors are considerably larger when using low-order polynomials. Along the same lines, the "Lie"
scheme for p > 2 generates large conservation errors even for high-order polynomials which are in line with the
expectations drawn from the linear case. Similar observations for the conservation of entropy when considering
Figure 6.10 with the exception of the "nodal-adv" scheme which remains unchanged for different meshes. As
described before, this "nodal-adv" scheme satisfies the property [47] from for discrete conservation of entropy.
However, the other schemes also do tend to converge to the same conservation error as the entropy-conserving
"nodal-adv" scheme when high-degree polynomials are used.
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Figure 6.9: Conservation of the integral of the squared solution over time for Burgers’ equation with different degree
polynomials where N = 12 and ∆t = 1× 10−3
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Figure 6.10: Conservation of the integral of the entropy over time for Burgers’ equation with different degree polynomials where
N = 12 and ∆t = 1× 10−3

By numerically analysing the energy conservation property of the discrete system using Equation (5.132)
showed that the schemes all start as energy conserving. However, as the solution is evolved in time using
low-order polynomials, this conservation property is seen to deteriorate. As briefly discussed in Section 5.2.4
the Lagrange multipliers approach employed to enforce element-wise continuity has no regard for the physical
information propagation direction for the hyperbolic case. This is likely to affect the conservation property,
especially in this non-linear setting where the solution is advecting itself. Moreover, the weak C0 continuity
imposed at the element boundaries would also constitute to aforementioned effect on the conservation. The
"Lie" scheme clearly highlights this argument as it generally has issues trying to conserve u2 for both linear
and non-linear cases due to the forced boundary continuity. It is likely that the standard point-wise continuity
constraint is too weak for the non-linear case with low-order polynomials causing a large amount of conservation
error for u2.

Building on this argument, consider the plots in Figure 6.11 where conservation errors are shown for the
solutions on two different meshes with comparable number of degrees of freedom but with different polynomial
degrees. It is apparent through these figures that the polynomial degree has a significant influence on the
conservation properties. Despite the element-wise continuity being the weak C0 continuity, its appearance
in the solution is considerably smoother when using high-degree polynomials as seen in Figure 6.7. This is
attributed to the fact the Gauss-Lobatto points used for the mesh nodes are densely spaced around the element
boundaries when using high-degree polynomials. This thereby aids the smooth transfer of information between
the elements and evidently helps improve the conservation property.
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(b) p = 12, N = 2

Figure 6.11: Conservation error of the integral of the squared solution to Burgers’ equation on two different meshes with
comparable number of degrees of freedom with different order polynomials using a time step of ∆t = 1× 10−3

It can further be noted that where sufficiently high-degree polynomials are used, the number of elements on
the mesh has little to no influence on the conservation qualities as seen through Figure 6.12.
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Figure 6.12: Conservation error of the integral of the squared solution to Burgers’ equation on two different meshes with p = 8
and different number of elements using a time step of ∆t = 1× 10−3

In summary, the energy conservation property for this Burgers’ case is affected by the inter-element continuity
constraints. When the weak C0 continuity is enforced onto the solution, one must use high-degree polynomials
in order to ensure a near-smooth transfer of information between the elements. It is, however, important
to note that the polynomial degree itself is not the responsible factor for discrete conservation, as a non-
conserving scheme will never discretely conserve a quantity regardless of how high a polynomial degree is
used. The conservation of entropy on the other hand showed some intriguing behaviour where the entropy
conserving "nodal-adv" scheme conserved entropy for all meshes, however, even the non-conserving schemes
end up having the same conservation property when sufficiently high polynomials degrees are used.

6.1.4. Numerical experiments with shocks
This subsection addresses a more general case of Burgers’ equation wherein a shock is formed in the solution.
The considered initial condition for this shock case reads as follows:

f(x) = u(x, 0) = 0.24 sin (2πx) + 1. (6.57)
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Subsequently, the time at which the shock forms is found to be Tshock = 1
1.50796 ≈ 0.66. The solution plots for

this shock case found using the different numerical schemes are shown in Figure 6.13. The exact solution for
this shock case is taken to be a highly resolved flux-limited Finite-Volume solution.
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Figure 6.13: Time evolution of the numerical solutions to Burgers’ equation with a shock for N = 12, p = 8, and ∆t = 1× 10−3

Considering the solution behaviour from the plots, one finds that the different numerical schemes correctly
predict the shock location and speed albeit with considerable oscillations. These oscillations are to be expected
as the present formulation seeks to construct continuous functions whereas the exact solution with a shock is
in fact discontinuous. The oscillatory solution, however, is the best solution that can be achieved in L2.

In the presence of shocks, the conservation properties of the equations change, where the energy u2 and the
(mathematical) entropy decrease over the shock, while the integral of u remains unchanged. This physical
behaviour is refection by the numerical schemes as seen in Figure 6.14.
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(a) Conservation of the solution
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(b) Conservation of the square of the solution
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(c) Entropy conservation

Figure 6.14: Conservation of the invariants of Burgers’ equation over time for the solution with a shock where N = 12, p = 8,
and ∆t = 1× 10−3

As seen through Figure 6.14b and Figure 6.14c the schemes start off by conserving energy and entropy prior
to the wave steepening around t = 0.5. Thereafter, the wave has steepened considerably and a shock is formed
where a clear indication of non-conservation is seen in the plots.

6.2. 2D incompressible Navier-Stokes/Euler equation
Following the initial tests with the non-linear 1D problem, a more complex case namely involving the 2D in-
compressible Navier-Stokes/Euler equations is considered in this section. The non-dimensional incompressible
Navier-Stokes equations are expressed as follows:

⇀∇ · u = 0 (6.58)
∂u

∂t
+
(
u · ⇀∇

)
u+

⇀∇p− 1

Re
⇀∇2
u = 0, (6.59)

where u is the velocity vector 1 which in R2 comprises of two components u = [u, v]T , p is the pressure
normalised by the density, and Re is the dimensionless Reynolds number. Equation (6.58) describes the
conservation of mass (density) which acts as a constraint that states that the flow field must be divergence-
free. On the other hand, Equation (6.59) describes the conservation of momentum which entails a transport
equation describing the time evolution of the velocity field. The non-linear advection term in Equation (6.59)
1not to be confused with u often used in this report to express the vector containing discrete degrees of freedom
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can be expressed in numerous ways which are all equivalent at the continuous level. The following equations
show some of the common expressions used to express the advective term (C(u)):

Conservative form : C(u) := ⇀∇ · (u⊗ u) (6.60)

Advective form : C(u) := (u · ⇀∇) u (6.61)

Skew-symmetric form : C(u) := 1

2
(u · ⇀∇) u+

1

2
⇀∇ · (u⊗ u) (6.62)

Rotational form : C(u) := ω × u+
1

2
⇀∇ (u · u). (6.63)

For the proceeding work, the advection term will be expressed using the Rotational form where the vorticity
ω is defined as the curl of the velocity, ω =

⇀∇ × u. Furthermore, the diffusion term ⇀∇2
u is also rewritten as

− ⇀∇ ×ω using the vector property ⇀∇2
u =

⇀∇ (
⇀∇ ·u)− ⇀∇ ×ω where the divergence-free constraint is invoked

to eliminate the first term. The governing equations are thus rewritten as follows:

⇀∇ · u = 0 (6.64)

ω =
⇀∇ × u (6.65)

∂u

∂t
+ ω × u+

⇀∇P +
1

Re
⇀∇ × ω = 0, (6.66)

where P := p+ 1
2
⇀∇ (u · u) is defined as the total pressure normalised by the density.

Note that the incompressible form of the Navier-Stokes does not have an explicit pressure update equation.
In order to arrive at the pressure update equation, one can take the divergence of the momentum equation as
shown below:

⇀∇ ·
[
∂u

∂t
+ ω × u+

⇀∇P +
1

Re
⇀∇ × ω

]
= 0. (6.67)

Upon simplification, it can be noted that certain terms cancel, namely, the divergence of the time derivative
given the divergence-free constraint, the divergence of the diffusion term given the vector calculus relation, the
divergence of the curl (⇀∇ · ⇀∇ ×) is zero.

�
�
��⇀∇ · ∂u
∂t

+
⇀∇ · (ω × u) + ⇀∇ · ⇀∇P +

��������1

Re
⇀∇ ·

(⇀∇ × ω
)
= 0 (6.68)

⇀∇ · ⇀∇P = − ⇀∇ · (ω × u). (6.69)

This Poisson equation can further be expressed in a mixed formulation as follows:

σ − ⇀∇P = 0 (6.70)
⇀∇ · σ = − ⇀∇ · (ω × u). (6.71)

The Navier-Stokes equation expressed in the Rotational form along with the mixed formulation of the pressure
Poisson equation is the formulation that is considered throughout the subsequent subsections. Like previous
cases, these equations are first considered in their continuous form to derive the weak form in Section 6.2.1.
These weak forms are subsequently discretised in Section 6.2.2 using the 2D hybrid mimetic SEM. The aim
here is to discretely conserve mass, vorticity, kinetic energy, and enstrophy (square of vorticity), see [4] for an
example of such a scheme. Lastly, the results for some benchmark test cases are presented in Section 6.2.3.

6.2.1. Continuous form
For the derivation of the weak form of the governing equations, the various physical quantities are first expressed
as k-forms. Given the complexity of the problem, only a single representation is considered wherein the velocity
is expressed as a 1-form in the dual space u ∈ Λ̃(1)(M), the vorticity as a 0-form ω ∈ Λ(0)(M), the total
pressure as a 0-form in the dual space P ∈ Λ̃(0)(M), and lastly the pressure gradient as a 1-form σ ∈ Λ(1)(M).

Starting with the vorticity equation in Equation (6.65), the Galerkin weak form found by testing the equation
with a function ϵ(0) reads:

∫

Ω

ω(0) ∧ ⋆ ϵ(0) =
∫

Ω

du(1) ∧ ⋆ ϵ(0), ∀ϵ(0) ∈ Λ(0)(M). (6.72)
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Moving the exterior derivative to the test function gives the following expression where the boundary terms
emerging from the adjoint operator are neglected given the periodic boundaries.

∫

Ω

ω(0) ∧ ⋆ ϵ(0) = −
∫

Ω

u(1) ∧ ⋆ dϵ(0), ∀ϵ(0) ∈ Λ(0)(M). (6.73)

Similarly, testing the momentum equation in Equation (6.66) with ṽ(1) gives:
∫

Ω

∂u(1)

∂t
∧ ⋆ ṽ(1)+

∫

Ω

(
ω(0) ∧ u(1)

)
∧ ⋆ ṽ(1) +

∫

Ω

⋆ σ(1) ∧ ⋆ ṽ(1) + 1

Re

∫

Ω

dω(0) ∧ ⋆ ṽ(1) = 0, ∀ṽ(1) ∈ Λ̃(1)(M),

(6.74)

where the pressure gradient is replace by σ(1) based on Equation (6.70).

Finally, moving on to the weak form of the mixed formulation of the pressure Poisson equation gives the
following when testing Equation (6.70) with η(1):

∫

Ω

σ(1) ∧ ⋆ η(1) −
∫

Ω

dP (0) ∧ ⋆ η(1) = 0, ∀η(1) ∈ Λ(1)(M) (6.75)
∫

Ω

σ(1) ∧ ⋆ η(1) +

∫

Ω

P (0) ∧ ⋆ dη(1) = 0, ∀η(1) ∈ Λ(1)(M), (6.76)

where the adjoint operator is applied and once again the boundary terms are neglected. Similarly, testing
Equation (6.71) with ζ(2) gives the following weak form:

∫

Ω

dσ(1) ∧ ⋆ ζ(2) = −
∫

Ω

d ⋆
(
ω(0) ∧ u(1)

)
∧ ⋆ ζ(2), ∀ζ(2) ∈ Λ(2)(M). (6.77)

6.2.2. Discrete form
To arrive at a discrete system for each of the above-derived weak forms, the following discrete representations
of the solution and test function are used:

uh := ψ̃
(1)
ũ (6.78)

ωh := ψ(0)ω (6.79)

Ph := ψ̃
(0)
P̃ (6.80)

σh := ψ(1)σ (6.81)

ṽh := ψ̃
(1)
ṽ (6.82)

ϵh := ψ(0)ϵ (6.83)

η
h
:= ψ(1)η (6.84)

ζh := ψ(2)ζ. (6.85)

Substituting these representations into the weak form starting with the vorticity equation in Equation (6.73)
yields:

ϵT
[∫

Ωh

ψ(0)Tψ(0) dΩh

]
ω = ϵTE1,0T

[∫

Ωh

ψ(1)T ψ̃
(1)

dΩh

]
ũ (6.86)

ϵT
[∫

Ωh

ψ(0)Tψ(0) dΩh

]
ω = ϵTE1,0T

[∫

Ωh

ψ(1)Tψ(1) dΩh

]
M(1)−1

ũ (6.87)

M(0)ω = E1,0T
������
M(1)M(1)−1

ũ (6.88)

M(0)ω = E1,0T ũ. (6.89)

Concerning the mapping involved in the above expression, it is observed that the transposed incidence matrix
−E1,0T represents the dual curl operator that maps the dual 1-form velocity into a dual 2-form which is then
mapped back to a 0-form through the metric dependent mapping in the form of the inverse mass matrix
M(0)−1

. This sequence is summarised in Figure 6.15 below.
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h (M) Λ

(1)
h (M) Λ

(2)
h (M) 0

RΛ̃
(0)
h (M)Λ̃

(1)
h (M)Λ̃

(2)
h (M)0

E1,0 E2,1

Ẽ1,0Ẽ2,1

M(0)−1 M(1) M(2)

1

2

Figure 6.15: The path followed in the De Rham sequence for the vorticity operator
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Substituting the discrete representation into the momentum equation in Equation (6.74) and employing the
dual polynomial concept yields the following non-linear semi-discrete system:

ṽT
[∫

Ωh

ψ̃
(1)T

ψ̃
(1)

dΩh

]
∂ũ

∂t
+ ṽT

[∫

Ωh

ψ̃
(1)T

ψ(0) dΩh

]
CωM(1)−1

ũ+

ṽT
[∫

Ωh

ψ̃
(1)T

ψ(1) dΩh

]
σ +

1

Re
ṽT
[∫

Ωh

ψ̃
(1)T

ψ(1) dΩh

]
E1,0ω = 0

(6.90)

ṽT
(
M(1)−1

)T [∫

Ωh

ψ(1)Tψ(1) dΩh

]
M(1)−1 ∂ũ

∂t
+ ṽT

(
M(1)−1

)T [∫

Ωh

ψ(1)Tψ(0) dΩh

]
CωM(1)−1

ũ+

ṽT
(
M(1)−1

)T [∫

Ωh

ψ(1)Tψ(1) dΩh

]
σ +

1

Re
ṽT
(
M(1)−1

)T [∫

Ωh

ψ(1)Tψ(1) dΩh

]
E1,0ω = 0

(6.91)

��
���(

M(1)−1
)T

������
M(1)M(1)−1 ∂ũ

∂t
+
�
����(
M(1)−1

)T
M(1,0)CωM(1)−1

ũ+

���
��(

M(1)−1
)T

M(1)σ +
1

Re���
��(

M(1)−1
)T

M(1)E1,0ω = 0

(6.92)

∂ũ

∂t
+M(1,0)CωM(1)−1

ũ +M(1)σ +
1

Re
M(1)E1,0ω = 0. (6.93)

The pressure term in the above equation is simply a mapping of the pressure gradient σ from its primal 1-form
representation to its dual. The diffusion term involves taking the exterior derivative of the 0-form vorticity
and then mapping that to the space of dual 1-forms. However, the vorticity itself is computed using the set
of projections shown in Figure 6.15. Thus, the sequence of operations for the diffusion term in its entirety
includes the vorticity operators where the full sequence is summarised in Figure 6.16.
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Figure 6.16: Path followed in the De Rham sequence for the diffusion operator

Lastly, the most complex of the terms is the non-linear advection term. This term involves the cross-product
of the velocity and the vorticity which is practically computed by evaluating the cross-product as follows in a
pointwise sense.

(ω × u) = [0, 0, ω]T × [u, v, 0]T = [−v ω, u ω, 0]T (6.94)

With some abuse of notation, this cross-product operation is summarised by CωM(1)−1

. With this term
evaluated pointwise, it essentially lives in the space of 0-forms. Thus, it needs to be mapped back to the space
of dual 1-forms which is done through a component of the co-interior product M(0,1). Unlike the 1D case,
M(0,1) is no longer metric-free as the Jacobian term scaling the entries of the matrix does not cancel in the 2D
case. The process of computing the advection term is summarised in Figure 6.17.
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Figure 6.17: Path followed in the De Rham sequence for the advection term

Lastly, the discrete system for the Poisson equation in the mixed formulation can be found to be in the following
form [48]: [

M(1) E2,1T

E2,1 ∅

] [
σ

P̃

]
=

[
0

−E2,1M(1)−1M(1,0)CωM(1)−1

ũ

]
. (6.95)
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It must be noted that the divergence-free constraint is imposed onto the system through this pressure update
equation by ignoring the divergence of the temporal gradient of u. In practice, however, the divergence of
the solution will not be exactly zero but in the order of 1× 10−15 given the round-off errors. Neglecting this
completely will amount to some error accumulation over the simulation time. Hence the right-hand side source
term is adjusted to include the divergence of the solution at the previous time level (ε⇀∇·u) to circumvent any
divergence error accumulation.

[
M(1) E2,1T

E2,1 ∅

] [
σ

P̃

]
=

[
0

ε⇀∇·u
∆t

− E2,1M(1)−1M(1,0)CωM(1)−1

ũ

]
(6.96)

The Poisson equation can also be expressed in a single system as:

E2,1M(1)−1

E2,1T P̃ = ε⇀∇·u − E2,1M(1)−1

M(1,0)CωM(1)−1

ũ, (6.97)

where the mappings involved for the discrete Laplacian operator are summarised as shown in Figure 6.18.
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Figure 6.18: Path followed in the De Rham sequence for the Laplacian operator

All the derivations of the discrete systems up until this point have been made for individual elements. To
extend the system to the multi-element case, additional degrees of freedom in the form of Lagrange multipliers
are introduced. Unlike the simple 1D case, the 2D case requires a few extra Lagrange multipliers to enforce
continuity of the various degrees of freedom. This concept was introduced in Section 3.5 and is reiterated
here along with a schematic of the mesh in Figure 6.19 with some additional details specific to the considered
Navier-Stokes equations.
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Figure 6.19: Hybrid 2D periodic mesh

Starting with the continuity of the velocity, recall that the velocity has been chosen to be represented as a dual
1-form resulting in the degrees of freedom ũ representing the circulation over the edges. These circulations
are dual to the flux over the primal edges and continuity is imposed by using the Lagrange multipliers λ which
enforces the two neighbouring element’s fluxes to be equal. For the example 2D mesh in Figure 6.19 this
condition is achieved by taking the difference of the fluxes as follows:

u0 − u26 = 0

u3 − u29 = 0

u6 − u80 = 0

...
u102 − u68 = 0

u107 − u71 = 0.

(6.98)

The corresponding constraint expressed in a matrix form reads:

Eλ,1u = Eλ,1M(1)−1

ũ = 0, (6.99)
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where Eλ,1 is a topological differencing matrix containing ±1 which encapsulates the differencing operation
in Equation (6.98). In an identical manner, the continuity of the pressure gradient σ in Equation (6.96) is
imposed using Eλ,1 where the condition reads:

Eλ,1σ = 0. (6.100)

As previously established, the Lagrange multipliers physically represent the boundary terms appearing in the
weak form. Given that σ in Equation (6.93) is the pressure gradient that does not include the boundary terms
for the adjoint gradient operator Ẽ1,0, the boundary terms are accounted by the Lagrange multipliers λ. This
results in λ physically representing the pressure values at the element interfaces.

While the velocity fluxes are constrained to be continuous between the elements, it alone is not sufficient as
the tangential velocity or vorticity also needs to be constrained. For this purpose, the Lagrange multipliers γ
are used. To impose vorticity continuity constraint, the following condition is applied:

ω0 − ω60 = 0

−ω0 + ω20 = 0

ω1 − ω61 = 0

...
ω68 − ω75 = 0

ω71 − ω78 = 0.

(6.101)

Expressing this in a matrix form gives:
Eγ,0ω = 0. (6.102)

Considering the boundary term of the adjoint curl operator, the Lagrange multipliers γ physically represent
the tangential velocities at the element boundaries. However, using these tangential velocities on their own is
insufficient when trying to enforce vorticity continuity at the junction points of the elements where more than
two pointwise values have to be equated to each other. For instance consider the junction consisting of points
8, 15, 29, and 36 in Figure 6.19. The constraint imposed by γ11, γ21, γ24, and γ25 reads as follows:

ω8 − ω15 = 0

−ω8 + ω29 = 0

−ω15 + ω36 = 0

ω29 − ω36 = 0.

(6.103)

This system is clearly ill-posed as a unique solution to the problem does not exist. In order to ensure a unique
solution, the Lagrange multipliers θ are used to enforce a constraint on γ. The constraint that θ imposes
on γ is that the inflow and outflow of the tangential velocities is balanced at the junction point in question.
Expressing this condition mathematically for the aforementioned junction point where θ4 is the additional
Lagrange multiplier gives:

− γ11 − γ21 + γ24 + γ25 = 0. (6.104)

Expressing this in a generalised matrix form for all the junctions yields:

Eθ,γγ = 0, (6.105)

where Eθ,γ is a topological differencing matrix. Adding this additional constraint on γ to each of the junctions
on the mesh yields a well-posed system that returns a unique system. For this Lagrange multipliers θ, the
physical interpretation is not obtained through the weak form. Nonetheless, its interpretation may be obtained
by considering the operation that it is mimicking. If the surface created by connecting the four points in a
junction is considered to be a ghost surface, then the tangential velocities act as fluxes through the ghost
edges enclosing the ghost surface. As such, the inflow-outflow balance of the tangential velocities enforced via
θ acts like the divergence operation much like E2,1. Inspecting the values of θ found during post-processing
showed that the values were all in the order of machine precision alike the divergence of the solution. This
result is in line with the results presented in [12]. Another thing to note is that θ need not impose this specific
inflow-outflow constraint. It was found that the following constraint on γ:

− γ11 + γ21 + γ24 + γ25 = 0, (6.106)

also produces a unique solution with θ again being in the order of machine precision2. Given this fact, the
actual physical interpretation of θ is yet unknown.
2Both sets of constraints produce the exact same numerical solution
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Moving forward with the time discretisation, the Crank-Nicolson scheme is used which gives the following
discrete systems to be iteratively solved every time step:




M(0) −Eγ,0T ∅
−Eγ,0 ∅ Eθ,γT

∅ Eθ,γ ∅





ωn+

1
2

γ
θ


 =




E1,0T ũn+
1
2

0
0


 (6.107)




M(1) E2,1T Eλ,1T

E2,1 ∅ ∅
Eλ,1 ∅ ∅






σn+

1
2

P̃
n+ 1

2

λP


 =




0
ε⇀∇·u
∆t

− E2,1M(1)−1M(1,0)Cn+
1
2

ω M(1)−1

ũn+
1
2

0


 (6.108)

[ 1

∆t
I Eλ,1T

Eλ,1 ∅

] [
ũn+1

λ

]
=

[
un

∆t
−M(1,0)Cn+

1
2

ω M(1)−1

ũn+
1
2 −M(1)σn+

1
2 − 1

Re
M(1)E1,0ωn+

1
2

0

]
(6.109)

6.2.3. Numerical experiments
As the first part of the numerical experiments, the convergence of the derived method was tested. For this,
the well-known 2D Taylor-Green Vortex test case was used of which the exact solution is given by:

uexact(x, y, t) = − sin (πx) cos (πy)e−2π2νt

vexact(x, y, t) = cos (πx) sin (πy)e−2π2νt,
(6.110)

on a periodic domain Ω =]0, 2[2. The viscosity was set to ν = 0.01 and the solution was evolved to t = 1 at
which point the L2 error with respect to the exact solution was computed. The quantity used for this error
calculation was the velocity magnitude

√
u2 + v2. The L2 errors plots are shown in Figure 6.20 where the

following time step sizes were used ∆t = 2.5× 10−2, ∆t = 1× 10−3, and ∆t = 1× 10−4 for p = 1, p = 2, and
p = 4 respectively. Concerning the error curves in Figure 6.20a, the curse of dimensionality shows that the
rate of convergence is slower when measured in terms of the number of degrees of freedom. When computing
the slopes for the error variation with average mesh height, the rate of convergence can be found to be pth

order when using polynomials of degree p which is in line with the expected rate.
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Figure 6.20: h-convergence of the numerical scheme for the incompressible Navier-Stokes equations computed in the L2 error
norm against the exact solution at t = 1

Once the scheme was verified, a simple stationary inviscid (ν = 0) vortex test case was considered. The initial
condition for this problem is defined as follows:

u(x, y, 0) = −β
a
exp

(
0.5

(
1.0− (x− 0.5)2 + (y − 0.5)2

a2

))
(y − 0.5)

v(x, y, 0) =
β

a
exp

(
0.5

(
1.0− (x− 0.5)2 + (y − 0.5)2

a2

))
(x− 0.5),

(6.111)
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with the domain being double periodic Ω ∈]0, 1[2, β = 1 and a = 0.05. This initial condition was interpolated
into the dual 1-form space from which the corresponding initial vorticity was computed and is shown in
Figure 6.21 for two different meshes using different degree polynomials.
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Figure 6.21: Initial vorticity distribution for the stationary vortex test case interpolated using different order polynomials with
12× 12 elements

The interpolation and mapped initial condition for the vorticity introduces evenly distributed oscillations
throughout the domain. It is apparent that these oscillations are naturally reduced with higher degree poly-
nomials. Nonetheless, when evolved over time, the oscillations further disperse throughout the domain given
that there is no physical diffusion damping them. This is seen through the solution plot at t = 1 in Figure 6.22.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

−12

0

12

24

36

48

60

72

84

96

(a) p = 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

−10

0

10

20

30

40

50

60

(b) p = 8

Figure 6.22: Vorticity solution of the stationary vortex test case at t = 1 using different order polynomials with 12× 12 elements
wit ∆t = 1× 10−3

Considering the conservation qualities of the solution shown in Figure 6.23, it can be found that the scheme
exactly conserves mass (the divergence of u) and the total vorticity for both meshes with no sign of error
accumulation over time. This is due to the fact that the divergence of the velocity is forced to be equal to zero
at every time step through the pressure update equation. For the vorticity, the conservation is purely related
to the exactness of the discrete curl operator satisfied through the incidence matrix and is in fact conserved
irrespective of the choice of time march scheme.

The conservation of the quadratic invariants, namely the kinetic energy and enstrophy, is found to be poor on
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coarse meshes as seen in Figure 6.23c and Figure 6.23d. When the mesh is refined, however, this conservation
quality is improved where the error drops to more nominal values. Nonetheless, steady growth is observed for
these conservation errors which is again attributed to the concept of error accumulation over each time step
discussed for the 1D problems.
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Figure 6.23: Conservation errors for the stationary vortex test case with 12× 12 elements wit ∆t = 1× 10−3

The large conservation errors for p = 4 could possibly be explained by considering the observed oscillations in
the solution. Extending off of the ideas from the 1D problems, the weak C0 continuity imposed on the solution
(velocity flux and vorticity) leads to poor information transfer over elements and even introduces quite some
oscillations in the solution for low-order polynomials. This, therefore, contribute to a larger conservation error
of the squared invariants for low-order polynomials.

In order to further test the limits of the applied discretisation, a more complex example was considered. This
was in the form of a test case involving two co-rotating Taylor Vortices taken from [13] where it was analysed
using isogeometric analysis. The domain for this problem is a double period domain Ω ∈]0, 1[2 The initial
condition for this problem reads as follows:

u(x, y, 0) = −
2∑

i=1

β

a
exp

(
0.5

(
1.0− (x− xi)

2 + (y − 0.5)2

a2

))
(y − 0.5)

v(x, y, 0) =

2∑

i=1

β

a
exp

(
0.5

(
1.0− (x− xi)

2 + (y − 0.5)2

a2

))
(x− xi),

(6.112)

with xi = {0.4, 0.6}, β = 1, and a = 0.075.
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The time evolution of the numerically computed vorticity up to t = 1 is shown in Figure 6.24 for the finest
mesh with p = 8 and 12× 12 elements with ∆t = 1× 10−3.
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Figure 6.24: Time evolution of the co-rotating vortex test case for p = 8, 12× 12 elements, and ∆t = 1× 10−3
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When viewing the solution evolution, significant oscillations can be seen to considerably pollute the solution.
The severity of these oscillations is to the point where the element boundaries are clearly visible in the solution
as seen in Figure 6.24e. On a more concerning note, the behaviour of the conservation errors for the quadratic
invariants is even more severe. The conservation of mass and vorticity are nicely satisfied as seen through
Figure 6.25a and Figure 6.25b, however, the conservation of kinetic energy and enstrophy are notably poor
for both meshes considered in this example, as evident in Figure 6.25c and Figure 6.25d. Following the
line of reasoning from the steady vortex case, a much finer mesh is required to prevent the oscillations from
occurring which will then allow the conservation errors for kinetic energy and enstrophy to be reduced to a
more favourable level.
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Figure 6.25: Conservation errors for the co-rotating vortex test case with 12× 12 elements with ∆t = 1× 10−3





7
Conclusion

The focus of this thesis has been on the hybrid mimetic method along with multiscale theory for advection-
dominated problems where the latter aspect was only covered for linear problems. With the aim to extend the
hybrid SEM for advection problems and further equip it with multiscale theory, the opening chapters of this
report addressed the relevant background theory on mimetic methods and the VMS theory. Thereafter, Chap-
ter 5 included the discussion on the implementation and results of the mimetic discretisation and multiscale
theory for 1D linear advection problems. Subsequently, Chapter 6 presented discussions on the implementation
and results of the mimetic discretisation on more complex non-linear problems, namely, 1D Burgers’ equation
and 2D incompressible Euler/Navier-Stokes equations. Taking a step back from these problem-specific discus-
sions, the focus is now set to answering the more general research questions that were posed for the present
thesis, which are repeated below for convenience.

1. What do the discrete equations look like for advection-dominated PDEs discretised using the hybrid
mimetic method?

a. What are the terms in the discrete equations and are they metric-free?
b. What do the Lagrange multipliers physically represent for advection-dominated problems in 1D and

2D?
c. Does the hybrid formulation conserve continuous-level invariants?

2. What does the multiscale formulation integrated within the hybrid mimetic method for linear PDEs look
like?

a. What is the additional term introduced into the equations with VMS theory?
b. What is the effect of the multiscale formulation on the discrete solution?
c. Does the multiscale formulation preserve structures of the continuous equations?

Starting with question 1. a; a generic discrete advection term naturally involves an incidence matrix along with
projection matrices which combine to trace out a triangular path in the De Rham sequence. In the 1D cases,
the matrices involved for the advection term are the incidence matrix E1,0 and the projection matrix M(0,1),
both of which are found to be metric-free. However, there is also a metric-dependent term, M(0)−1

, involved
whose operation may be viewed as a constituent relation linking the solution to the advective flux. This
relation is best seen when viewing the discrete system for Burgers’ equation in Equation (6.34). This general
concept also extends to the 2D case to some degree, however, the metric-free nature of the projection matrix
M(0,1) is lost in the 2D case. For the rotational form considered here, the advection term (ω × u) involves
the incidence matrix E1,0T (for computing ω), followed by metric-dependent operations for computing the
point-wise cross product and projecting the degrees of freedom back to the original space in the De Rham
sequence. This general property in 2D will hold for different formulations of the advection term, however, it
will include different incidence matrices and projection matrices. On the other hand, the diffusion term has a
general structure of completing a loop in the De Rham sequence where two incidence matrices along with the
respective mass matrices (Hodges) are involved.

Moving on to question 1. b; the Lagrange multipliers correspond to the boundary terms that appear in the
weak form when using adjoint operators. For the steady advection-diffusion problem, the Lagrange multipliers
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physically represent the diffusive flux at the element interfaces. For the unsteady advection-diffusion, the
Lagrange multipliers correspond to some scaled version of the diffusive flux plus a scaled version of the solution
itself if the adjoint advection term is used. In the case of the 2D Navier-Stokes, the λs represent the pressure
and the γs represent the tangential velocity. The physical analogue for θ, however, is yet unknown as it always
equates to zero leaving no possibility to be compared to other quantities. Moreover, the physical analogue of
the Lagrange multipliers for the generic hyperbolic case is also not easily derived due to the absence of any
boundary terms in the weak form. Inspecting the results for the considered hyperbolic cases showed signs
that the Lagrange multipliers are associated with the second derivation of the solution for p = 1. However, its
generalisation to higher-order polynomials was not found.

Concerning the answer to question 1. c; the invariants for the 1D advection case, namely, the integral of u
(analogous to momentum) and the integral of u2 (analogous to kinetic energy) are both preserved with the
error being in the order of machine round-off errors for all the consistent schemes. However, there is small but
steady growth in the conservation error due to some form of error bias that causes the error to accumulate
over the time march. Analysing the conservation conditions for the discrete system did confirm that the
schemes do have the desired conservation properties, which indicated that there was an external factor causing
this error bias leading to an accumulation of conservation errors. Based on the poor behaviour observed for
the inconsistent "Lie" scheme due to its incompatible element-wise continuity enforcement, it was deduced
that the approach for enforcing element-wise continuity has an effect on the conservation properties. As the
Lagrange multiplier approach for ensuring element-wise continuity has no regard for the characteristic direction
of information propagating in hyperbolic cases, it could be speculated that this causes the conservation error
to grow each time step. Moreover, the fact that the continuity constraint only ensures C0 at the boundaries
showed to have issues in the conservation of certain invariants for non-linear problems. The weak C0 continuity
generally resulted in a poor transfer of information through the element interfaces when low-order polynomials
were used, leading to significant conservation errors for invariants such as kinetic energy and enstrophy.

Considering question 2. a; the additional term introduced by the VMS in the steady case is a weighted integral
of the scaled version of the solution residual. The residual itself includes the same incidence and projection
matrices as the Galerkin weak form. For the unsteady case where the concept of orthogonal sub-scales was
used, the additional term is also a weighted integral but this time it is of the discrete representation of the
un-resolved scales. Given that the un-resolved scale space was orthogonal to the test space, this additional
term vanished which yielded a resolved scale equation that was decoupled with the un-resolved scale equation.
While this outcome had consequences on the effectiveness of the VMS incorporation, it resulted in a physically
sound formulation describing the independent advection of the different wave numbers of the solution like in
the continuous case.

Regarding question 2. b; the inclusion of multiscale theory effectively brings the Galerkin solution closer to
the chosen desired projection of the exact solution. For the steady advection-diffusion case, the choice of the
projector was the H1 projection and the results of the VMS showed that the solution gets closer to the optimal
H1

0 Projection. While the exact H1
0 Projection is achieved for the p = 1 case, the more general p > 1 cases

produced a solution that is similar to the optimal H1
0 Projection but not exact. This is attributed to the fact

that the considered definition of τ is not capable of returning the exact integral effect of the un-resolved scales
for p > 1. For the unsteady advection case, the additional VMS terms are inactive due to the non-existence
of the physical energy exchange between the scales. Note that this energy exchange analogy is through to be
in an integral sense, that is conservation of the integral of u2.

Finally, considering question 2. c; the multiscale formulation for the unsteady linear advection case does
preserve the structures of the continuous equations when formulated using the orthogonal sub-scales model.
As noted before, the choice of orthogonal sub-scales yields a physically correct formulation of the resolved and
un-resolved scales equations, although it does result in the VMS addition having little to no improvement on
the solution as the time evolution is decoupled.



8
Recommendation

Over the course of this thesis project, a wide range of aspects pertaining to mimetic methods, multiscale
theory, and advection were explored. Undoubtedly, there are still numerous things yet to be explored and
improvements that could be applied to the presented work. These future recommendations for this project are
discussed below.

• The algebraic multiscale approach considered in this thesis employed the standard Greens’ function
approach. The issue with this formulation is that the Dirac Delta function cannot be represented in the
mesh. Thus, an alternative approach could be to solve a new Greens’ problem in the following form:

L̃ ĝi(x, s) = ei(x), (8.1)

where ei(x) is the edge basis function. These functions are well defined in the mesh and they also
integrate exactly to 1 over the domain.

• As noted in Section 5.2.6 the current multiscale approach for the unsteady case with orthogonal sub-
scales yields negligible improvement over the Galerkin solution. It can be argued that is attributed to the
choice of time march and the boundary continuity constraint. As such, it would be beneficial to consider
a Galerkin space-time approach wherein a higher-order basis can be applied in the time direction as well,
whereby dispersive errors can be minimised. Moreover, stronger element-wise continuity can also be
imposed to improve the transfer of information. These additions are expected to improve the scheme’s
ability to preserve the initial shape of the solution in time whereby the inclusion of the multiscale will
be more significant and meaningful.

• Building on the previous point, the next step for the unsteady orthogonal sub-scale approach would be
the extension to non-linear problems. While the linear case has the elegance of having an explicit residual
operator independent of the solution (un-resolved scales), this is no longer true for the non-linear case.
As such, the residual calculation and the estimation of the un-resolved scales must be done iteratively
along with the resolved scales.

• The hybridised framework used in this thesis could be further improved by imposing stronger continuity
constraints where derivatives of the solution are also continuous over the element boundary. Additionally,
an alternative approach could be considered for the "Lie" scheme by employing extended edge basis
functions shown in Figure 8.1b. These edge bases have the same properties as the standard ones but are
all zero at the element boundaries apart from the first and last ones which are 1 on either boundary.
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Figure 8.1: Standard and extended 1D edge basis functions for p = 4

In addition to this, the continuity constraint can be adjusted to account for the preferential (character-
istic) direction of information propagation.

• Building on the mimetic hyperbolic framework, the second-order hyperbolic wave equation is an intriguing
problem to consider. Take the 1D wave equation in 1D as follows:

∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
= 0, (8.2)

and reformulate it as two first-order hyperbolic equations with u :=
∂ϕ

∂t
and v :=

∂ϕ

∂x
gives:

∂u

∂t
− c2

∂v

∂x
= 0 (8.3)

∂v

∂t
− ∂u

∂x
= 0. (8.4)

By selecting u to be a 0-form and v to be a 1-form on the primal, one can derive the corresponding weak
forms and arrive at the following semi-discrete system:

∫

Ω

∂u(0)

∂t
∧ ⋆ ε(0) + c2

∫

Ω

v(1) ∧ ⋆ dε(0) = 0, ∀ε(0) ∈ Λ(0)(M) (8.5)
∫

Ω

∂v(1)

∂t
∧ ⋆ η(1) −

∫

Ω

du(0) ∧ ⋆ η(1) = 0, ∀η(1) ∈ Λ(1)(M) (8.6)

∂u

∂t
= −c2M(0)−1

E1,0TM(1)v (8.7)

∂v

∂t
= E1,0u. (8.8)

Viewing the semi-discrete systems above shows a very elegant property where Equation (8.8) is purely
topological and Equation (8.7) may be seen as a constituent relation involving the material parameter c2
and the metric-dependent Hodges. Thus, this formulation gives a demonstration for further extending
the mimetic method for hyperbolic problems.
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.1. 2D basis functions
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Figure 2: 0-form basis functions of polynomial degree 2
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Figure 3: 1-form basis functions of polynomial degree 2
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Figure 4: 2-form basis functions of polynomial degree 2

.2. H1
0 Projection of Steady Advection-Diffusion

To find the H1
0 projection of the exact solution (Puexact), one must consider the following minimisation

problem:

Puexact = min
uh∈H1

0

FH1(uh − uexact), (9)

where FH1 is a functional that computes the H1 norm:

FH1(u) :=
1

2
∥u∥ |2L2 +

1

2

∥∥∥∥
∂u

∂x

∥∥∥∥ |2L2 . (10)

Thus, the minimisation problem reads:

min
uh∈H1

0

{
1

2
∥uh − uexact∥2L2 +

1

2

∥∥∥∥
∂uh
∂x

− ∂uexact
∂x

∥∥∥∥
2

L2

}
. (11)

Considering a second set of the function vh that live in the same space as uh then taking the variations of the
above equation gives

⟨vh, uh − uexact⟩L2 +

〈
∂vh
∂x

,
∂uh
∂x

− ∂uexact
∂x

〉

L2

= 0, ∀vh ∈ H1
0 (12)

⟨vh, uh⟩L2 +

〈
∂vh
∂x

,
∂uh
∂x

〉

L2

= ⟨vh, uexact⟩L2 +

〈
∂vh
∂x

,
∂uexact
∂x

〉

L2

(13)

If uh and vh are both expanded in terms of nodal Lagrange polynomials,

uh := ψ(0)u (14)

vh := ψ(0)v (15)
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then the following system is obtained:

vT
〈
ψ(0),ψ(0)

〉
L2
u+ vTE1,0T

〈
ψ(1),ψ(1)

〉
L2

E1,0u = vT
〈
ψ(0), uexact

〉
L2

+ vTE1,0T
〈
ψ(1),

∂uexact
∂x

〉

L2

(16)

M(0)u+ E1,0TM(1)E1,0u =
〈
ψ(0), uexact

〉
L2

+ E1,0T
〈
ψ(1),

∂uexact
∂x

〉

L2

(17)

In order to strongly impose the Dirichlet boundary condition and the element-wise continuity, Lagrange mul-
tipliers are introduced:

M(0)u+ E1,0TM(1)E1,0u+ Eλ,0
T

λ =
〈
ψ(0), uexact

〉
L2

+ E1,0T
〈
ψ(1),

∂uexact
∂x

〉

L2

(18)

Eλ,0u = 0. (19)

.3. Verification of Crank-Nicolson time march
Consider the following semi-discrete system:

[
u̇
v̇

]
=

[
0 − k

m
1 0

] [
u
v

]
(20)

which represents the dynamics of a mass spring system with mass m and spring stiffness k. The exact solution
of the system is given by:

uexact(t) = cos

(√
k

m
t

)
. (21)

Solving the system over time with the Crank-Nicolson scheme with m = 1, k = 4π2, and [0, 1]T as the initial
condition for various different time steps and plotting the L2 error with the exact solution gives the following:
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Figure 5: Convergence of Crank-Nicolson scheme

.4. Constrained time march with dynamic Lagrange multipliers
Apply the constraint to the semi-discrete system:

∂u

∂t
= Au+ΛTλ (22)

Λu+ ελ = 0 (23)
(24)
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where ε is a small number in the order of 1×10−10 or below. Taking the time derivative of the second equation
gives the time evolution equation for λ.




∂u

∂t

∂λ

∂t







A ΛT

− 1
εΛA − 1

εΛΛT







u

λ


 (25)

.5. Link between 1D SEM and central FDM/FVM
The 1D central Finite Difference/Volume scheme on a uniform mesh with spacing ∆x is given by:

∂u

∂x
=
ui+1 − ui−1

2∆x
+O(∆x2). (26)

Consider the hybrid SEM mesh with p = 1 below.

λ0

p0 p1l0

λ1

p2 p3l1

λ2

p4 p5l2

λ3

The 0-form mass matrix for this mesh constructed using the standard Gauss-Lobatto quadrature is a diagonal
matrix with the quadrature weights wi scaled by the element Jacobian Jk:

M(0) =




w0J
0

w1J
0

w0J
1

w1J
1

w0J
2

w1J
2



. (27)

The quadrature weights are both equal to 1 for the p = 1 case and thus the diagonal simply include the Jacobian
of the transformation between the reference element and the physical element. Moreover, the Jacobian is just
the ratio between the physical element width hk and the reference element width 2, Jk = hk

2 . Given the
staggered nature of the SEM mesh, the physical element width corresponds to twice the mesh spacing ∆x for
the Finite Difference/Volume method, hk = 2∆x. Thus, the 0-form mass matrix for p = 1 is given by:

M(0) =




∆x
∆x

∆x
∆x

∆x
∆x



. (28)

Next the projection matrix M(0,1) for p = 1 reads as follows:

M(0,1) =




1
2
1
2

1
2
1
2

1
2
1
2




(29)

where the entries of 1
2 comes from the fact that the 1-form edge basis for p = 1 is a constant function with a

value of 1 over the reference element width. Consequently, applying the sequence M(0)−1M(0,1) gives:

M(0)−1

M(0,1) =




1
2∆x
1

2∆x
1

2∆x
1

2∆x
1

2∆x
1

2∆x



. (30)
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Now including the incidence matrix gives:

E1,0 =




−1 1
−1 1

−1 1


 (31)

M(0)−1

M(0,1)E1,0 =




− 1
2∆x

1
2∆x

− 1
2∆x

1
2∆x

− 1
2∆x

1
2∆x

− 1
2∆x

1
2∆x

− 1
2∆x

1
2∆x

− 1
2∆x

1
2∆x



, (32)

which can be seen as the operator applying the central difference formula on an element-wise basis. Note that
this is in the hybrid setting, thus, continuity must be imposed to either via a gathering matrix or Lagrange
multipliers.
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