Load cell resonance frequency analyser

Frequency analysis system for load cell based conveyor belt weighing systems

Bachelor Graduation Thesis — TUDelft Electrical Engineering
19 June 2020

Jonathan Dijkstra (4696778) & Mauries van Heteren (4712145)

Delft
e t University of
Technology

Challenge the future

Abstract

In this thesis, the design of a frequency analysis system for conveyor belt weighing systems is de-
signed. The objective of the thesis is to detect a change in resonance frequency, caused by a change
of pressure applied to a sensor. The design features a resolution of 10 000 discrete frequency levels
in a bandwidth of 0.5 MHz. Noise division of a pseudo random noise (PRN) signal is used to obtain a
clear frequency spectrum. An ADC is implemented to digitize an analog input signal. Furthermore, a
digital down converter using a CIC filter and CORDIC based controlled digital oscillator is applied. The
frequency-domain translation is achieved using an FFT. Lastly, an interpolation over the spectrum is
realized to increase the frequency resolution. Additionally, an analytical analysis of the primary noise
sources in the system is given. The entire system is simulated in MATLAB to validate the designed
blocks.

Preface

This bachelor thesis is written as part of the Bachelor Graduation Project, which is the final part of
the bachelor program Electrical Engineering at the TU Delft. This thesis is part of a project initiated
by Intralox: "A passive wireless load cell for in-situ product weight and position sensing on modular
plastic conveyor belts” [11]. Together with four other enthusiastic group members, we accepted the
challenge.

The time span of the project was two months. We delved deep into the world of digital frequency
analysis systems. The project was a great opportunity for us to learn new things and to develop skills
in structured problem solving. We could apply the knowledge obtained in the bachelor, as well as get
more in-depth insight into the used theory.

We could not have done this project without the help of our supervisor dr. ir. Chris Verhoeven.
We would like to express our gratitude to Chris for his valuable guidance and advice during the project.
Furthermore, we are very grateful for the assistance Intralox provided us with. We would like to thank
Sven-Erik Haitjema and Lazlo Kleczewski in particular. They provided us with important and relevant
knowledge about the system and delivered us tools and guidance for the project.

Also, we would like to thank dr. Jaap Hoekstra for being in the jury during our green-light assessment.
He gave us with useful feedback about our designed system.

Finally, we like to thank our fantastic colleagues Rik Bokhorst, Ruben van den Bos, Jasper Insinger
and Rogier Fischer for helping us with their skills and knowledge. Our productive collaboration and
their assistance were of great importance for the final result of the project.

Jonathan Dijkstra & Mauries van Heteren
Delft, June 2020

Contents

Abstract i
Preface ii

1 Introduction

2 Programme of requirements 4
2.1 Requirements forthe analysergroup Lo 4
3 System outline 6
3.1 Detectionmethod. 6
3.2 Components e 7
3.3 Noise division working principle 8
3.4 Signal to noise ratio and resolution of the system 8
4 Analog to digital and digital down conversion 1"
4.1 Analogto digital conversion 1"
4.2 Digital down conversion Lo 12
43 DDCtesting. e 18
5 Frequency domain computations 19
5.1 FastFourier Transform. e 19
52 FFTnoiseanalysis. e e 20
5.3 Interpolation. L 21
6 System testing and implementation 23
6.1 Testing for accuracy and precision.o 23
6.2 Hardware implementation 25
7 Discussion 26
7.1 Requirements. L. e 26
7.2 Sensorbandwidth L 26
7.3 System testing with a time-varying coupling factor 27
7.4 Linear approximation of the frequencychanges 27
8 Conclusion and Recommendations 28
8.1 Conclusion e e 28
8.2 Recommendations 29
A Reader configurations for longer reader time 30
B Equations 32
B.1 Analogtodigitalconverter 32
B.2 CORDIC algorithm e 33
C Requirements for the entire system 35
D Sensor and readout circuit 38
D.1 Circuitdiagram 38
D.2 Inductor and capacitor values used fortesting L. 38
E Matlab Code 39
Bibliography 52

Introduction

Problem definition

Product weighing for conveyor belt systems is a technology with applications in the aviation, automo-
tive, logistics and food industry. With increasing industrialisation and automation of the industries, the
demand for high throughput, accurate weighing system has emerged. Conventional weighing sys-
tems require weighing scales which require extra spacing in between products on the belt, lowering
the throughput of the conveyor system. A system using the conveyor belt to determine the weight of
a product on the belt (see Figure 1.1) has advantages over conventional weighing systems. It does
not require extra spacing between products since the belt itself is used to determine the packet weight.
Furthermore, packets can be weighted side by side on the belt, enabling higher product throughput of
the conveyor belt system. The benefits of in-situ weighing extend to the possibility of acquiring feed-
back of the relative position of the product on the conveyor belt. Furthermore, it provides the possibility
to determine physical properties other than weight such as the centre of gravity and orientation of the
product.

Top view conveyor belt Side view conveyor belt
O O O O Individual load cell
O O O O in the belt directi y-direction
00 0 O z-direction N
© 00,0 — 7 1---- Sensor
c o O 0|0 H
§e]
*g © O | - | p—— Product on belt makes '
£11© O contact with multiple sensor cells :
~| 1O O O O Receiver system beneath
R the belt reads out sensors
x-direction

Figure 1.1: An overview of the weighing system.

Such a weighing system would consist of a load cell placed in the belt, and a receiver system placed
beneath the belt. The load cell and receiver system are guidelines provided by Intralox for suitable
implementation of the weighing system into the normal Intralox conveyor belt standards. This system
has been decomposed into three parts (see Figure 1.2). Each part corresponds to a subgroup for the
project. Their tasks can be described as:

» Sensor group: Has the task to design a load cell which translates mechanical deformation into
a change in electrical properties of a sensor circuit [2].

* Reader group: Has the task to design a reader circuit which reads the change in electrical
properties of the sensor circuit and translates this change into a signal [7].

» Analysis group: Has the task to interpret the signal and detect mechanical deformation of the
load cells. This thesis focuses on the development of the analyser subsystem.

Mechanical load cell
Package applies force on 4| transfers force into an
OUt Of SCOpe conveyor belt ”1 accurate point force on a
sensor
I n SCO pe Physical propemgs of the Create‘a analog system from Sample the analog signal
sensor change, in turn N which the resonance N and determine 10.000
changing the resonance | frequency can be extracted 4 e — ht-sfe 5
frequency of the sensor from. 9 P
Sensor team Reader team Analyser team

Out Of SCOpe Further software processing:

Link weight step to packet
packt, determine packet
position and centre of gravity

Figure 1.2: An overview of the project scope

Goal of the analyser

The project objective of the analyser is to design a signal processing system that uses the output signal
of the reader group in order to detect the resonance frequency of the sensor and translate that to 1 of
10 000 levels of deformation of the sensor.

State-of-art-analysis
The analysis of signals in frequency domain is a mature field. Many techniques to manipulate signals
can be identified and explored. These techniques are discussed in this section.

The first technique is the analog to digital conversion. When a signal is digitized, it is usually
easier to manipulate. There are lots of different architectures of ADCs. From the literature, it was
found that four basic architectures are used most in practice [13]. The first is successive approximation
ADC, which is used in data acquisition systems and industrial applications. The next type is the
sigma-delta architecture, which is used in applications where a resolution from 12 to around 24 bits is
needed. They are used, for example, in signal conditioning applications [9]. Pipeline ADCs are used
in many types of instrumentation, including spectrum analyzers, and medical imaging. Finally, flash
ADC architecture is used for very high-frequency applications.

Another technique is the conversion of a signal to frequency-domain using a Fourier transform.
This is used to analyze the frequency spectrum of a signal. An example of this is a spectrum analyzer.

In order to perform frequency analysis, a fast Fourier transform can be used for translation to
frequency domain. When a greater frequency resolution is desired, spectrum interpolation can be
applied. In this method, different bin frequency amplitudes are interpolated in the range of the desired
frequency. Parabolic and Gaussian interpolation can be used [6]. Another technique is windowing.
Using windowing the discontinuities at the edges of the time window are ignored, resulting in lower
side lopes in the Fourier Transform of the sensed data [3].

Filters are used frequently in digital signal processing. A decimation filter, for instance, can be
used to lower the sampling frequency of a signal for more efficient processing.

Some of these techniques are applied in a Software Defined Radio (SDR). This is a radio-
communication system that uses hardware for the implementation of its components. The real-world

application of SDR is only possible since the fast-developing possibilities of digital electronics [1]. The
digital processing techniques that are usually used in SDR are, for example, an ADC, decimation filter
and FIR filters.

Furthermore, spectrum analysers are existing technologies for providing insight in the frequency
content of a signal. Their the resolution of such an analyser depends on the speed of the analyser.
Swept tune spectrum analysers use superheterodyne receivers and band pass filters. The centre
frequency of the receiver is swept to obtain a frequency spectrum. FFT based spectrum analysers
sample the input and perform a FFT over the input. The centre frequency is reduced to reduce the
sampling frequency of the FFT.

Frequency counters are another class of instruments used for measuring the frequency of a signal. It
counts the number of oscillations in the period of time. Accurate time bases are required to keep track
of the gate time of the frequency counter. In general, frequency counters can be very precise, but not
suitable for industrial applications.

Thesis synopsis

The outline of this thesis is structured in the following fashion. In Chapter 2, the design requirements of
the analyser are stated. Next, Chapter 3 describes the outline of the system. It introduces the system
components and the main design parameters. Chapter 4 and 5 elaborate on the proposed design as a
solution for the identified problem. In Chapter 6 the implementation and validation results are shown.
The thesis ends with a discussion of the results and a conclusion.

Programme of requirements

2.1. Requirements for the analyser group
The main goal of the analyser subsystem is to design a system that is able to read out the peak fre-
quency of an input signal. In order to come to a verifiable design, some requirements must be set.

Different categories of requirements can be identified. All requirements for the entire project are listed
in in Appendix C.

Analyser requirements

The mandatory requirements describe what the analyser chain shall do to obtain the goal of the system.
They describe the very core of the subsystem. Some trade-off requirements are given as well.

Table 2.1: Requirements for the design of the analyser.

ID Requirements for the design of the analyser.

FR-MRO1 The analyser shall be able to detect 10 000 discrete evenly spaced levels of
signal frequency.

FR-ToRO1 The input signal from one sensor shall be processed within 10 ms.

FR-ToR02 The digital analyser chain shall be modeled and tested in MATLAB.

FR-ToR03 The digital analyser chain shall be implemented in VHDL and C for verifica-
tion.

FR-ToR04 The analyser shall be able to communicate to a pc for further processing of
the data.

Analyser-Reader interface requirements
The interface requirements are stated below:

Table 2.2: Requirements for the interface between the analyser and the reader

ID Requirements for the interface between the analyser and the reader
IF1-MRO1 The voltage at the input of the analyser will be +/- 1V.

IF1-MR02 The signal frequency must be between 1kHz and 50 MHz.

IF1-MRO03 The signal bandwidth must be at least 0.4 MHz.

4

2.1. Requirements for the analyser group

Table 2.2 — Continued from previous page

ID Requirements for the interface between the analyser and the reader

System outline

3.1. Detection method

As described in Chapter 1, the system consists of three subsystems; the sensor, the reader and the
analyser. The sensor and reader groups have made design choices which can be read in the reports
about those subsystems. The team has decided to design a system consisting of a resonant sensor that
is inductively coupled to a readout circuit. Pseudo-Random-Noise (PRN) is sent into the reader circuit
and filtered by the sensor impedance. In this way, frequencies that do not resonate with the sensor
circuit are attenuated. The filtered signal is sent to the analyser to determine the resonant frequency,
which is related to the force on the sensor.

Analyser Reader Sensor
........... T { { R Re §
L — — | |

Computer :(—E FPGA : E E i/:r;alzge : E Im;;eadasn;e | |:i| Zp Cs E_ E
T e T e e =
TR L OO S S :_._.].__._' » g]

Figure 3.1: An overview of the entire weighing system

Interface with reader circuit
The interface between the analyser and the reader consists of the exchange of two signals:

1. PRN is sent to the reader as an input of the reader circuit.
2. Filtered PRN is received from the reader as an input of the analyser.

The sensor will be designed to resonate between 26.9 MHz and 27.4 MHz ' The filtered PRN will,
therefore, be limited to frequencies within this bandwidth.

In the analyser, the frequency-domain representation of the filtered PRN is divided by the frequency-
domain representation PRN sent to the reader to obtain the filter characteristic of the sensor. Noise
components within the analyser such as the quantization of a signal and filter components can be
modelled as noise sources.

Digital signal processing

The signal will be analysed digitally. A design using digital signal processing techniques is easy to
implement on a processor or an FPGA. Digital implementation also allows for quick adaptation of the
design, which is specifically useful when prototyping. Furthermore, the precision of digital signal pro-
cessing techniques is comparable to that of analog signal processing techniques. Since it is prohibited
to compose a real-life prototype for the project, using digital techniques raises opportunities for simu-
lating and prototyping with the help of MATLAB and VHDL.

"Dutch government provides constraints in frequency usage in the Netherlands. Between 26.9 MHz and 27.4 MHz is a frequency
band for amateur radio usage in the Netherlands [5].

3.2. Components 7

3.2. Components

Since now the main challenge for the system has been identified, and the choice of using digital signal
processing techniques has been made, the necessary components for the system can be classified.
In order to do this, the requirements and functional analysis of the analyser are used.

Analog to digital conversion

The first obvious step in the chain is the analog to digital conversion. The signal is sampled and
quantized in this step. The reason behind the use of an ADC lies in the design choice of digital signal
processing.

Digital down conversion

As stated before, the used frequency range for the system is between 26.9 MHz and 27.4 MHz.
This means the frequency range from 0 Hz to 26.9 MHz does not contain interesting frequencies
for the system. Down conversion in the frequency domain reduces the data rate which results
in faster processing. Doing this, no signal information will be lost, but the computational costs
in hardware will be reduced. Furthermore, it will result in a much higher frequency resolution
of the Fourier Transform, as can be seen from Equation 3.1 discussed in the next block. The
fourier transform is only computed over the frequencies containing information. The DDC has two
main functionalities. First of all, it places the frequency band of interest, 26.9 MHz to 27.4 MHz, to
baseband (0 to 0.5 MHz). Secondly, it reduces the sampling rate of the input with a decimation factor R.

Frequency analysis

As stated in Requirement FR-MRO01, the analyser shall be able to detect 10 000 frequency levels of
the input signal. In order to do this, the input signal first needs to be translated to frequency-domain.
A commonly used method is frequency counting. However, this method requires stability in frequency
over the gate time to be accurate. Given the short measurement time and frequency content changing
due to changes in the coupling of the sensor and the reader circuit, the frequency counter is not a
viable design option.

Another method for analysing the frequency content is using spectral analysis. This can be
done using a Fourier Transform, more specifically an FFT, which allows fast computation. Using
the FFT, a peak in the frequency spectrum can be used to detect the resonance frequency of the signal.

Frequency resolution

In order to determine 10 000 levels of deformation, 10 000 levels of resonance frequency from the
impedance response of the reader circuit have to be detected. Given the bandwidth of the input signal,
the required frequency resolution R;.cqyireq iS:

Rrequired = E = m =50Hz (3.1)
As can be seen from the requirements for the overall system, the belt will move with a speed of 2 m/s.
Furthermore, the sensor will have a length of 2 cm. This means the maximum time of data accumulation
is 10 ms. Given this measurement time, the maximum obtainable resolution R,cqsurement iS (See
Appendix B.1 for the derivation of this formula).

1 1
Ryeasurement = t = S = 100Hz (3.2)

measurement 10

The resonance frequency peak can be located between the FFT bins. Therefore, it is required to
perform an additional operation over the spectrum to obtain a higher resolution in resonance frequency.

Methods for increasing the frequency resolution

The frequency resolution can be increased by performing a weighted average over the FFT bins, or by
interpolating in between the FFT bins. The first method is most appropriate if a few bins are available.
However, the frequency response of the reader and sensor circuit will have a smooth curve rather than
a sharp spike at a single frequency [7]. Therefore, polynomial interpolation in between FFT bins is a
more appropriate method for increasing the frequency resolution.

3.3. Noise division working principle 8

Block diagram

Now that each block of the system is identified and elucidated, the total block diagram can be con-
structed. Each block represents a necessary step in the analysing chain. The block diagram of the
analyser can be seen in Figure 3.2.

Detected Frequency

L 5

Signal from reader circuit

— ADC DDC FFT Polynomial

Interpolation

Figure 3.2: The top level block diagram of the Analyser

Interfaces within the block diagram

The input of the ADC block is also the input of the analyser as a whole. This interface is the same as
between the reader and analyser, as discussed before and specified in the requirements. The signal
between the ADC and DDC will be a sampled signal. The frequency peak is in the range of 26.9 and
27.4 MHz. After the DDC, the signal will have a sampling frequency of 1 MHz, and the frequency peak
is in the range of 0 to 0.5 MHz. After the FFT, the frequency domain representation of the signal will be
fed into the interpolation block. This block outputs the final detected frequency.

3.3. Noise division working principle

As explained before, the analyser subsystem utilises a division of Pseudo-Random-Noise to obtain a
frequency spectrum with a peak on the resonance frequency. The filtered PRN is divided by the non-
filtered PRN in frequency-domain, resulting in a smooth spectrum. This division will take place after
the FFT block in the block diagram. More details about the noise signal can be read in the readout
circuit report [7]. An example of this principle can be seen in Figure 3.3. In this example, a sampling
frequency of 125 MHz is used.

Input noise, filtered input noise and divided inputs in frequency domain
x10*

45 1500
4
3.5
3 1000 -
)))
2 225 2
e 'c e
) >)
I T 2 I
= = =
15 500
1
05 L
0 M 0 [E—| J\/

Hz x107 Hz x107 Hz x107

Figure 3.3: Division of the filtered PRN by the non-filtered PRN.

3.4. Signal to noise ratio and resolution of the system

Resolution

Equation 3.1 translates the design requirement of the weighing system to an output resolution of the
analyser. With the detection method mentioned above, 10 000 levels of resonance frequency of the
sensor within a frequency band of 0.5 MHz have to be measured. This results in an output resolution of
50 Hz in the discrete frequencies of the analyser (see Figure 3.4). With a bin size of 50 Hz, frequencies
that are within 25 Hz of the mean of the segment will be placed within that frequency level.

3.4. Signal to noise ratio and resolution of the system 9

Measurement errors
Two types of measurement errors can be distinguished in the system:

» Offset: Long term errors in the system due to temperature, sensor deviation, and mechanical
mounting of the system. In the reader, offsets in signal power may occur due to an offset in the
input voltage of the operational amplifier. It will be assumed that this offset is negligible. In the
analyser, analog circuitry around the ADC will contribute to the system offset.

» Measurement variance: Short term deviations due to quantization and filtering in the analyser.
Thermal noise of analog circuitry components is a contribution to variance in measurement out-
come. Quantization errors are uniformly distributed with a zero mean value.

The system offset greatly influences the system accuracy (see Figure 3.4). However, this accuracy
can be improved by calibrating the sensor and the adjustment screws of the mechanical mounting.
Statistical data of the sensor should be used to calibrate the system. However, it is impossible to
perfectly calibrate the weighing system with zero offset. An important constraint for the system offset
is given by Equation 3.3. It is stated that the sum of the static deviation from the midpoint and the
variance of measurements in the frequency bin should be smaller than the measurement rounding, or
half the system resolution. With a system resolution of 50 Hz, the offset should be smaller than 25 Hz.

foffset +30 < R/Z (33)
50 Hz system resolution Sensor/Mechanical offset
: ; . Measurement precision
3 3 | ——>)
‘ | l | 1 | ‘ P ' | ‘ ‘ ‘ ‘ ‘ Discrete Frequency[Hz]
‘ \ ‘ ! 1 \ ‘ \ ‘ \ ‘ \ ‘
| |

Variance in detection
25 Hz measurement rounding

Actual resonance frequency of sensor

Ideal resonance frequency of sensor

Figure 3.4: An overview of factor that should be taken into account when designing the analyser

Quantization introduces variance in the system output and therefore reduces the precision of the anal-
yser. Moreover, the analyser will contribute most dominantly to the variance in the detection outcome.
Variances due to thermal noise in analog circuitry are orders of magnitude smaller than the noise intro-
duced by quantization [7]. These variances will not be discussed in this thesis.

Quantization noise in the analyser

With a standard deviation in the measured frequency, the detected frequencies may end up in the
wrong frequency bin. Therefore, it is essential to obtain the minimal Signal to Noise Ratio (SNR) of
the system needed to achieve 50 Hz resolution. Noise is added to the system by many sources. The
readout circuit components, ADC circuit components and ADC quantization are examples of these
sources. The equations for the noise sources will be given later in this document.

In order to find the minimum allowed SNR, a MATLAB simulation can be performed. Extra noise is
added to the ideal filtered input (as in Figure 3.3) until the requirements are not satisfied any more.
When computing the standard deviation o over a sample size of N frequency peaks (after division),
information about the quality of the signal is obtained. Table 3.1 shows simulation results for simulating
standard deviations for different signal to noise ratios. With three standard deviations, 30, 99,72% of
the sample size will be within the deviation.

When the MATLAB simulation is used with a sampling frequency of 125 MHz and a resonance
frequency of 27098245 Hz, the result can be seen in Table 3.1. In this case, the sample size N = 15

3.4. Signal to noise ratio and resolution of the system 10

and 10 values for the SNR are used. Furthermore, for this test, it is assumed that the noise sources
are mainly uniformly distributed.

Table 3.1: Result of MATLAB simulation for different SNR of the input at a resonance frequency of 27098245 Hz.

SNR [dB] | Mean frequency peak [Hz] | 30 [HZ]
91.18 27098245 0.01848
84.60 27098245 0.02741
77.85 27098245 0.07374
71.25 27098245 0.1238
64.63 27098245 0.2592
57.98 27098243 13.38
51.25 27098240 16.46
44.60 27098241 25.90
37.94 27098239 68.41
31.28 27098222 84.84

Minimum signal to noise ratio of the analyser

What signal to noise ratio is acceptable for the analyser depends on the size of the offset in other parts
of the weighing system, as shown in Equation 3.3. With a resolution R, a centre frequency f;,,;4 of a
discrete frequency bin, and a deviation of 35, and an offset frequency of f ..., the critical frequencies
feriticar @re given by Equation 3.4. These frequencies have a risk of a wrong bin detection. A good
design would reduce the bandwidth of the critical frequencies as much as possible.

fcritical = [fmid - R/Z’ fmid - R/2 + 30 + foffset]; [fmid + R/Z — 30— foffsetrfmid + R/Z] (34)

Table 3.1 provides meaningful insights in what SNR to design for. The best SNR to aim for in the design
process has a high marginal decrease deviation, as well a low enough value of that deviation that will
allow calibration offset. Using these design principles, it is chosen to design a signal to noise ratio of 60
dB. The value of 30 at 60 dB is 1.062 Hz. To design for a higher ratio would give an insignificant gain in
deviation, while making hardware implementation much more costly. Lower signal to noise ratios have
possible higher marginal gain, but the order of magnitude of deviation is in Hz which would require
extremely precise calibration.

To derive the maximum allowed noise power, first, the signal power of the input has to be known. From
the reader subsystem, it is known that the implementation of the system will pass a signal to the analyser

with a value of 1 Vpp. Itis a normally distributed signal with a standard deviation of 0.33. This translates

. V2 . . . 0332 V2
to a signal power of 0.332-—. Therefore, the maximum allowed noise power is —7 = 0.115—.
Hz Hz

10 10

Analog to digital and digital down
conversion

4.1. Analog to digital conversion

Sampling
Sampling Period
The analog to digital converter (ADC) is the first component in the analyser signal processor. The func-
tionality of the ADC is to digitise the output signal from the reader circuit, maintaining all the information
while adding as less noise as possible. A more mathematical description of the ADC can be found in
Appendix B.1.
The Nyquist criterion states that the minimum sampling rate to sampling a signal without loss of infor-
mation or aliasing is twice the bandwidth of that signal:
As described in the interface, the highest frequency is 27.4 MHz. This translates to the minimum
required sampling rate of:

fs = 2fmax = 54.8MHz (4.1)

Noise

The analog to digital conversion will add noise to the input signal. Noise sources in an ADC are
thermal and quantization noise. Thermal noise is modelled as white noise with a normal distribution.
Quantization noise is modelled as uniformly distributed. For an ADC, usually, only the quantization
noise is considered [16]. The Signal to Quantization Noise Ratio (SQNR) of an ADC can be defined
as in Equation 4.2 [16]. This equation yields the ratio between the RMS value of the full-scale input
Vs and the RMS value of the noise.

Vs
SONRypc = 2010810(V2.L) (4.2)
Nnolserms
The SQNR in decibels is expressed as [10]:
2N —-1)-q/V2
SQNRgy = 20log, (N N2y _ ¢ 0an + 17645 (4.3)

q/V12

Where N is the number of bits in the ADC output and q the size of a quantization step. From Equation
4.2 it can easily be derived that the RMS value of the noise can be written as in Equation 4.4.

Vrs
N
Vaoisepus = % (4.4)
20
Since the noise sources are spread over the Nyquist bandwidth of the controller, the noise spectral
density (in [\/%]) can be written as in Equation 4.5.
Yes

enapc = #Zcf (4.5)
10 =20 \/g

11

4.2. Digital down conversion 12

The minimum number of bits required for the ADC depends on the required SNR of the ADC (See
Equation 4.3). Because the implementation of the analyser in hardware is not covered in this thesis
(See Chapter 7), it is not possible to determine what the minimum SNR of the ADC must be.
Implementation

For implementation, the Red Pitaya has an ADC which has the proper characteristics. It has 14 bits
resolution, and a sampling frequency of 125 MHz. The value of SNR,,. can be found the datasheet
of the Red Pitaya. It usually depends on the frequency of the input signal and the full-scale input.
Usually, some circuitry is implemented before the input signal enters the ADC. The total equivalent
noise of this circuit needs to be calculated and added to the ADC noise.

4.2. Digital down conversion

The ADC module described above will have a high sampling rate to operate under the requirement of
a frequency up to 27.4 MHz. However, the frequency band of interest occupies only a small part of the
whole frequency range. This is were the Digital Down Converter (DDC) appears. The DDC has two
main functionalities. First of all, it places the frequency band of interest, 26.9 MHz to 27.4 MHz, to base
band (0 to 0.5 MHz). Secondly, it reduces the sampling rate of the input with a decimation factor R.
This block is essential in the analysing chain since it decreases the needed hardware requirements to
do further steps in the chain. No useful signal information will be lost, but the total analyser algorithm
execution time will be lowered. The block diagram of the digital down converter can be seen in Figure
4.1. This structure is commonly used in practise for digital applications [16] [18].

T dec (M0 v; (n
der i); —> yi(m)
z(n) cIC FIR 1 FIR 2
NCO filter filter filter
> > —> y,(m
Tmiz, (TL Ldec, (n’j vq(n) yq()

Figure 4.1: Block diagram of the DDC

Frequency mixing

The first step in the chain is the down-conversion of the frequency range of interest to base band. In
order to do this, the input signal is multiplied with a complex sinusoid with a certain frequency. This
oscillator frequency depends on the desired frequency shift. This can be seen in Figure 4.2. In the
figure, the mixing frequency is fi,w, = fmix- 1he operation results in down-converted signal. The
sampled signal will be mixed with in-phase and quadrature-phase components to shift the frequency
range of the signal to base band. These mixing sine and cosine functions will be provided by the digital
local oscillator. The mixing operation can easily be understood using a sinusoidal input with frequency
f1, as illustrated in Equation 4.6 and 4.7. In the case of this project, f,;4n = 27.4 MHZ, fi,1, = finix =
26.9 MHz and the width of the band after mixing is 0.5 MHz.

sinfysinf, =

[cos (f1 = f2) —cos (fi + f2)] (4.6)

sinf;cosf, =

[sin (fi + f2) — sin (f; - f2)] (4.7)

N R NI

4.2. Digital down conversion 13

Frequency range of interest Frequency range of interest

A A

-f_high -f_low f_low f_high fs/2

-f_high+f_mix f_high-f_mix fs/2

Figure 4.2: The input spectrum and output spectrum of the mixer.

NCO

The local oscillator or Numerically Controlled Oscillator (NCO) can be implemented using multiple
architectures. Roughly, two types are used a lot in practice, the look-up table (LUT) or ROM archi-
tecture and the CORDIC algorithm architecture [8]. Both implementations have their advantages.
The CORDIC can offer high precision results, and it uses less hardware than the LUT NCO. Also, it
requires a smaller LUT than the ROM implementation. Both techniques require an additional clock,
however, the CORDIC clock can be synchronized easier. Therefore, the CORDIC algorithm is chosen
as the NCO implementation for this project.

CORDIC NCO

The mathematical description of the CORDIC algorithm can be found in Appendix B.2. The CORDIC
algorithm can rotate a complex vector p by an angle ¢ to get vector p’. This is done using only add,
subtract and shift operations. The coordinates of the vectors can be written as seen in Equation 4.8.

x'| _|cos¢ -—sing| |x
[y’] - [sinda cos ¢] [y] (4.8)
The question remains how the CORDIC theory can be applied in order to realize an NCO. From the
theory in Appendix B.2, it becomes clear that the algorithm can transform a complex number p to
another complex number p’ without the use of multipliers. More specifically, when the input [;] = [(1)] is
sin ¢
sinusoids without having to use any multipliers. Also, only a small LUT is required. The values that
need to be stored into the LUT are the values for ¢, for different iterations, as can be seen in Equation

B.19. The first 5 iterations of the CORDIC algorithm with their angle values which need to be stored in
the LUT can be seen in Table 4.1.

used in Equation 4.8, the output of the algorithm is [;,] = [COS ¢]. This means it is possible to create

4.2. Digital down conversion 14

Table 4.1: First 5 iterations of the CORDIC algorithm with their angle values for the LUT.

Iteration i | Angle [radians] | Angle [degrees] | tan ¢;

0 tan~1(29) 45.0000 1

1 tan 1 (271 26.5651 1/2

2 tan~1(272%) 14.0362 1/4

3 tan~1(273) 7.12507 1/8

4 tan~ (274 3.57633 1/16
)

The last step needed before implementing the CORDIC based NCO is to define the input angle ¢ of
the CORDIC processor, which is the phase of the desired sinusoid. The definition of the phase can be
seen in Equation 4.9. If the phase is written in this way, only an addition is needed.

n=¢[n-1]+ fsﬂ (4.9)
fs

Actually, the units of ¢p[n] are rotations around the unit circle. This number can be represented with an
integer part and a fraction. Since the integer number of rotations is not important, only the fraction part
is considered. If the fraction is written in bits, the quadrant can be derived from the two Most Significant
Bits (MSB). This is needed for the pre-rotation explained in the theory. The final block diagram for the
CORDIC NCO can be seen in Figure 4.3. The mixing of the signal will also take place in this block.
The phase input ¢ of the CORDIC block can be represented as in Figure 4.4.

z' —> I[n] = z[n] cos(2m et n)

0 } CORDIC fs
f Processor , Qi] sin Fsig)
sig Yy —>»Q|n| = —zn|sin(27 n
¢ln] = 2m L ¢ fo
S
Figure 4.3: The block diagram of the CORDIC NCO.
£
S A
© fsig
I 2
c fs
S «—>
g
27 2’7r¢[n]
Figure 4.4: The phase input of the CORDIC NCO.
CIC filter

The CIC filter is used for the decimation of the base band signal. This implementation for the decimation
of the signal offers many advantages. For example, high decimation rates can be achieved within the
filter. Furthermore, it has a steep cut off, even if only a few stages are used. Lastly, it is well suited
for hardware implementations, since it only uses adders and delays. An Nth order CIC filter uses N
integration stages and N comb stages. The transfer function of these stages combined can be seen in
Equation 4.10. In this equation, R is the decimation factor and M is the differential delay of the comb
stages, which is usually limited to 1 or 2. For this project, unity will be selected as the differential delay.

4.2. Digital down conversion 15

(RM)N RM-1

H(z) = HY (DHY @) =~ =y —(Z 7y (4.10)

The magnitude response of the filter for large R can be written as seen in Equation 4.11. An example of
the magnitude response of a 4th order CIC filter with a decimation factor R of 10 can be seen in Figure
4.5,

sin (tMf)

|Heic(F)| = |IRM —Ti N (4.11)

50 Magnitude response of a 4-stage CIC filter

-50

-100

Magnitude [dB]

-150

-200

_250 Il Il Il Il Il Il
0 0.5 1 1.5 2 25 3

Normalized frequency [rad/sample]

Figure 4.5: Magnitude response in dB of a 4-stage CIC filter with a decimation factor R of 10.

FIR filters

The CIC decimation filter usually lacks a wide, flat band-pass. Therefore, it is wise to construct a solution
to overcome the magnitude droop. Many solutions can be implemented to overcome this problem. For
example, an FIR filter with a magnitude response inverse of that of the CIC filter can be implemented.
However, since the design will have a hardware implementation, it is wise to choose a solution which
needs minimal hardware requirements. Therefore, a cosine based CIC filter compensator is used [4].
This filter uses only three coefficients and does not need any multipliers. The FIR magnitude response
can be written as in Equation 4.12.

—4r,—R __ 4 —2R —=3R1\N
274z (2% 4 2)z72R + z73RDN, for1<NS3} (4.12)

My —
Hppi(27) = { (2—4[Z—R _ (24 + Z)Z—ZR + Z—3RDN—1’ for N >3

4.2. Digital down conversion 16

M2agnitude response of a 4-stage CIC filter with decimation factor 125

CIC filter
151 CIC compensation | |
Total response

Magnitude [dB]
o

-0.5 g

-2
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Normalized frequency [rad/sample]

Figure 4.6: Magnitude response in dB of a compensated 4-stage CIC filter with a decimation factor R of 125.

The second FIR filter can be used as a shaping filter. This filter is used to improve the passband and
stopband characteristics, like ripples and transition width. By changing the coefficients of the filter, the
desired filter characteristic of the given application can be obtained.

4.2.1. DDC noise

The first computation that is done is the mixing of sine and cosine signals with the input signal to
downconvert the frequency to the desired frequency band. After this mixing operation, the result is
rounded. Next, the signal is decimated with the desired factor and filtered.

Because of this decimation, the final Nyquist bandwidth at the output of the converter can be written as
in Equation 4.13 [16]. In this equation, D is the decimation factor and f; the sampling frequency.

f;
NBWfL'nal = % (4.13)

Because of this downsampling and filtering, the white noise power will reduce and the SNR at the output
of the system will improve. This is referred to as processing gain in literature, which can be seen in
Equation 4.14.

fs
P, =10log —2— (4.14)
NBWfinal

NCO noise

Next, the noise spectral density of the Numerically Controlled Oscillator (NCO), which produces the
sine and cosine waves at the desired frequency, can be computed. This is done in a similarly as with
the ADC and can be seen in Equation 4.15.

VFSnco
_ 2V2
énNco = SNRyco+Pg (415)

10 20 /Npwfinal

If the signal from the ADC is N bits wide, and the signal from the NCO is P bits wide, the signal at
the output of the mixer will be N + P bits wide. In practice, this signal will be rounded such that M
bits remain, in order to do further operations efficiently. This rounding will introduce an error. If it is
assumed that the error has a rectangular, or uniform distribution [16], the noise voltage can be written
as in Equation 4.16.

4.2. Digital down conversion 17

2—M

Viouna1 = E (4.16)
The voltage noise spectral density of the rounding can be seen in Equation 4.17.
%
enroundl = T (417)

fs
2

Filtering noise

The DDC consists of three filters, a CIC decimation filter and two FIR filters. The main source of noise
in the CIC filter stages comes from the rounding of the output of the CIC filter. This is done for similar
reasons and in a similar way as with the mixing. The noise voltage V,,,n42 is Written similarly. The noise
spectral density due to this rounding can be written as in Equation 4.18, where N, is the decimation
factor of the CIC filter.

— Vroundz (4.18)

enraundz 2
2Ncic
The quantization of the FIR filter coefficients introduces new noise in the system. For N symmetrical
coefficients, (N + 1) /2 coefficients need to be quantized. The same number of multipliers are needed.

The multiplication introduces rounding error. It is assumed that the multipliers are uncorrelated and the
noise has a uniform distribution. The RMS FIR noise voltage is given in Equation 4.19

N+1
Veir = TVround,multiplier (419)

The noise spectral densities of FIR 1 and FIR 2 are given in Equations 4.20 and 4.21, where Ngg, is
the decimation factor of the first FIR filter.

Vrir1
enprs = = (4.20)
2Ncic
Veir2
enpp, = T— (4.21)
fs
2NcicNFIR1

Total DDC noise
The total noise of the DDC can be found by adding the spectral densities. This total noise is uniformly
distributed. The noise expression can be seen in the block diagram in Figure 4.7.

N 4R P \2 VAL VA AN 2 VAL N 2 2
N > Nere) '* '* > Grm '* » Grige [>Cnone
2 2 2 2 2

enNCO en"‘mmﬂ enroundZ enFIRl enFIRZ

Figure 4.7: Block diagram of the DDC noise sources.

From this figure, the total noise spectral density of the DDC can be derived as given in Equation 4.22.

_ 2 2 2 2 2 P 20,2 1,
€nppc = 2 |GFipz(€npp, + GFir1(enipiry + €rounaz T (Neic® (@hpoynar + EenNCO)))) (4.22)

Where P is the order of the CIC filter and Gz, and Ggjg, are the gain factors of the FIR filters.

4.3. DDC testing 18

4.3. DDC testing

For testing the DDC, an input signal with a peak frequency at 27.1 MHz is used. The mixing operation
is performed with a frequency of 26.9 MHz. The means that the original band of 26.9 to 27.4 MHz is
transformed to 0 to 0.5 MHz. Therefore, the frequency peak after the DDC is expected to be at 0.2 MHz.
From Figure 4.8, it becomes clear that the frequency downconverting and downsampling operations
work as expected.

Frequency spectrum before DDC Frequency spectrum after DDC

4 35
351 3l
sl
25
T 25t T
S S
D oot
%])
5 515
S 15f s
1l
l
05 05
0 0 : :
0 10 20 30 40 50 60 0 0.1 0.2 0.3 04 05

frequency [MHz] frequency [MHz]

Figure 4.8: Frequency spectrum before the DDC (left) and spectrum after DDC (right).

Frequency domain computations

This chapter describes the design steps of the frequency domain computations for finding the peak
resonance frequency of the reader circuit. These include performing a Fourier transform and spectrum
polynomial interpolation.

5.1. Fast Fourier Transform

The fast Fourier transform (FFT) is a mathematical tool used to determine the frequency content of a
signal. The FFT of a signal with length N is calculated according to Equation 5.1.

N-1 N/2-1 N/2-1
X[kl =) x[nwin = Z x[2n]WEn W + z x[2n + 1w, (5.1)
n=0 n=0 n=0

With each Wi representing a frequency bin.

W]\r]lk — e—jZﬂ:(kn)/N (52)

Thus ah FFT of length N produces N different frequency bins. Therefore, the longer signal length, the
smaller the size of the frequency bins of the FFT, and the higher the resolution. However, the speed of
the weighing belt sets a constraint in the maximum length of the Fourier transform. Given that the belt
moves a speed of vy, =2 m/s and a sensor length lg.,s., Of 2 cm, the maximum time slot in which a
detection must be made is:

lsensor 2 cm

tmeasurement = m = 2m/s = 10ms (5.3)

The number of measurements within the time slot depends on the conditions in which the measurement
is performed. Mechanical vibrations of the conveyor belt are in the order of Hz. These vibrations can,
therefore, be assumed constant throughout a 10 ms period. It is therefore chosen to perform a single
measurement in a single passing of the load cell. The equates to an FFT length of:

L = tmeasurement * fs = 10ms - IMHz = 10000samples (5.4)

An important constraint for the FFT to operate properly is that the time calculate the FFT of signal
must be less than a sampling period of the down sampled system. If this is the case and no time
buffer for calculating Fourier transforms is needed, a real-time system can be implemented. Thus the
computation time must be less than 1 us.

Windowing

Discontinuities might occur at the boundaries of the framed inputs. However, due to the self-windowing
properties of noise burst [7], no spectral leakages will occur.

19

5.2. FFT noise analysis 20

5.2. FFT noise analysis

FFT bin noise power

The FFT block receives an input vector ¥ that contains N samples. The FFT block outputs X, the
frequency domain representation of .

T
—> FFT X 5

Figure 5.1: FFT input and output diagram

The input vector ¥ can be split up into two parts, the signal part j and the noise part Z. The noise part
7 is equal to the additive noise V;, from Figure 5.1, so it is a random variable with a uniform distribution,
variance (noise power) Vn2 and a zero mean. The FFT of ¥ is given in Formula 5.5.

N-1 y
jem
= Z xne_Tkn (5.5)
n=0

Sincqthe FFT is a linear operation the output vector may also be split up in a signal part Y and a noise
part Z.

All entries of Z are uniformly distributed and independent variables. The sum of uniform dis-
tributed variables has an Irwin-Hall distribution. For large sums, the distribution approximates a normal
distribution, for which holds that variances of individual independent elements can be added up. The
summation over the random variables in Z can be split up into a real and an imaginary part, as shown
in Equation 5.6.

N-1 N-1
Zy = z Zn cos - —kn +] zp sin(— —kn) (5.6)
n=0 n=0

The variance of a scaled random variable holds Var[aX] = a?Var[X] so the total noise expression for
Zk2 is given by Equation 5.7.

N-1 N-1
2m 2
2 _ 2 2(_ 2° . 2 .2 e
Zy" = Zp© cos (N kn) +j Z Zp” sin (N kn) (5.7)
n=0 n=0
When N is large the cos (...) and sin (...) expression will be sampled throughout in the domain [0, 27].
The average value of this sampled value can be found by integrating cos(6) from 0 to 2 and dividing

by 27, which is equal to 0.5. For large N the sum for Zkz (the FFT bin noise power) converges to
Equation 5.5.

Scaling the FFT
When the FFT input and output length is increased from N, to N; the output noise power will only

increase by a factor of . This means that the total signal to noise ratio is increased by a factor of

So for every doubling of the FFT length 3db of signal to noise ratio is added, assuming that the S|gnal
and noise stay constant in the added measurement time.

5.3. Interpolation 21

5.3. Interpolation

Limitations in the bandwidth

Due to law restrictions in the frequency usage, the bandwidth might be a constraint in the design of
the analyser. The bandwidth itself cannot create enough frequency resolution for the required number
of steps. Interpolation between frequency bins will increase the frequency resolution of the analyser
(see Chapter 3).

Polynomial interpolation
Polynomial interpolation will fit a polynomial given in Equation 5.8 between the set of data points with
a minimum mean square error.

X = Bo + Brwy + Prw + -+ B ™ + € (5.8)
XO 1 (1)0 (l)é (J)(’)n Bo Eo
Xl 1 (,L)]_ (l)l a){n Bl 61
X2 = 1 (,()2 (1)% (D;n BZ + 62 (59)
Xn-1 1 wyoy @f—g - o llfm EN-1

The shorter matrix representation is given by X = QE + €. The solution for E that minimizes the mean
squared error is given in Equation 5.10.

f=@0)a'x (5.10)

From Equation 5.10 it clear that the estimates for g are linearly dependent on X, so B can be written
as a combination of A, the actual coefficients for the fitted polynomial and Z a vector of normally
distributed random variables that represent the estimation error.

Parameters of interpolation

Furthermore, there is a trade-off in the order of interpolation. High orders of interpolation coincide
with a large computational complexity. On the other hand, low orders of interpolation will result in
inaccurate interpolation.

The region to interpolate over should not be the entire spectrum. Rather, only samples in the neigh-
bourhood of the peak should be taken into account with the interpolation. By accurately observing the
impedance response of the reader circuit [7], a peak width of 2.5 kHz was found, which translates to
500 samples for a measurement time of 10 ms.

Determining the resonance frequency
When Equation 5.8 is applied to the Fast Fourier transform of Equation 5.1, the resonance frequency
can be found by computing the maximum of the interpolated function.

F = max(P(x)) (5.11)

Next, the resonance frequency is rounded off the nearest frequency bin with resolution R. Figure 5.2
shows a simulation of interpolating in between the frequency bins. Numerical results are shown in
Table 5.1. The consistency of the interpolation will be tested in Chapter 6.

Table 5.1: Results of a test of the interpolating algorithm.

Input frequency [MHz] | Estimated frequency [MHz] | Error [Hz]
27.100012 27.099999 13

5.3. Interpolation 22

x10* frequency response

it points
interpolated polynomial

Amplitude
S
T

0.8 —

06—

- >

04 3 1 1 1 1 1 1 1
2.706 2.707 2708 2709 27 2711 2712 2713 2714

frequency [Hz] x107

Figure 5.2: An overview of frequency interpolation at a frequency of 200 000 Hz. (This is a downconverted frequency which
corresponds to a frequency of 27.1 MHz in the frequency domain of 26.9-27.4 MHz.)

Low pass filtering

With testing the interpolation function in MATLAB, the signal over which was interpolated contained
noisy spikes in the frequency spectrum, which caused false detections of the resonance frequencies
(see Figure 5.3). This problem can be solved by using a low pass filter before interpolating the data.
Before filtering, spikes with relative height higher than 5% of the signal maximum are removed from
the data.

The low pass filter has such a characteristic that it filters with a normalised passband frequency of w, s
and attenuates with 60dB in the stopband. There is a trade-off in the choice of w,s,: the frequency
must not be too high or the filter will not remove the noise significant enough. On the other hand,
choosing a too low w,4ss Will result in unnecessary loss of information. With an w4 of 0.1, the filter
operates optimally. The result is a more smooth frequency spectrum (see Figure 5.3).

Frequency spectrum after DDC Frequency spectrum after filtering

0.18 0.18
0.16 0.16
0.14 | 0.14

o
—
N
o
-
N

E) E)
E 0.1 E 0.1
2 008 2 008
o0 a0
~ 0.06f = 0.06 |

0.04 0.04

0.02 0.02

0 . . . ! 0 . . . ,
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
frequency [MHz] frequency [MHZ]

Figure 5.3: Frequency spectrum with noisy spikes (left) and filtered spectrum after (right). This is a downconverted frequency
which corresponds to a frequency of 27.1 MHz in the frequency domain of 26.9-27.4 MHz.

System testing and implementation

In order to validate if the designed system is able to satisfy the requirements, an implementation needs
to be made. This is also stated in the requirements, as can be seen in Requirement FR-ToR02 and
FR-ToRO3. First of all, a MATLAB simulation of the system is made.

6.1. Testing for accuracy and precision
In the test case, 40 detections of a 27.1MHz resonance frequency in the reader circuit are performed.
The result is shown in Figure 6.1.

271003 &1 o’ Analyser frequency detections with input 27100100 Hz

2.710025 —

271002 —

2.710015 —

Frequency [Hz]

271001 ==~ === === —— & —————O-—————-©

2.710005 — ©

| | c | | | S PN | |
5 10 15 20 25 30 35 40
Detection sample

2.709995
0

Figure 6.1: Detection samples of the analyser at input 27100100 Hz

Table 6.1: Analyser statistics of 40 detections of 27.1MHz resonance frequency at 50 Hz resolution

. . Sample standard . .

2
Sample size | Sample mean | Accuracy [Hz] | Sample variance [Hz] (¢) deviation (o) Hit ratio
40 27100078 22 6147 78.4 —480 =20%

Table 6.1 shows the variance, and the average of the results, from this, the accuracy and precision of
the analyser have been calculated. From these results, it can be observed that the accuracy of the
analyser is smaller than half the desired resolution, which is sufficient. The variance, however, is too
large to have 50 Hz output resolution. Moreover, the hit ratio is only 20%, meaning that the probability
of a correct outcome is 0.2. The constraint given by Equation 3.3 in Chapter 3 states is not met:

foffset +30 =2572<«R/2 (61)

23

6.1. Testing for accuracy and precision 24

Table 6.2 shows the test results with a resolution of 100 Hz, which will result in 5000 discrete levels of
resonance frequencies. With a hit ratio of 45%, the analyser will still not be precise enough.

Table 6.2: Analyser statistics of 40 detections of 27.1MHz resonance frequency at 100 Hz resolution

Sample standard

Sample size | Sample mean | Accuracy [Hz] | Sample variance [Hz] (¢?) deviation (o)

Hit ratio

40 27100223 23 12405 109

B _ 9
w0 45%

Finally, the analyser is tested with a resolution of 500 Hz, which is required to achieve the minimum
number of 1000 discrete levels in the weighing industry for a viable product. Fortunately, the hit ratio
of this test was 100 %, thus the analyser is 100% accurate with 0 variance at this resolution.

Signal to noise ratio

The SNR of the system test was around 20 dB. When comparing the obtained value for 30 with the
SNR table in Chapter 3, this result is expected. The reason for choosing this SNR is due to an error in
the MATLAB code. This resulted in the generation of excess noise by the DDC, which will further be
discussed in Chapter 7.

At this signal to noise ratio, the maximum achievable resolution with 100% hit rate is 250 Hz.

Testing changes in resonance frequency

In order to validate the functionality of the analyser, the following test case has been set up: To test
a single passing of a load cell over the reader circuit. In the test case, the input of the analyser are
consists of signals with 50 Hz difference in resonance frequency, starting from 27.1MHz. The test is
successful if the analyser is able to detect the changes in the signal. The following is assumed:

» The over passing time of the load cell is 10 ms.
« The average coupling factor of the sensor to the reader circuit is 0.3.

Figure 6.2 shows the frequency response resonance response for the reader circuit at 27.1MHz. From
Equation 6.2, it is derived that a 50Hz change in resonance frequency may be approximated by chang-
ing the capacitance in the sensor by 0.2 fF (See Appendix D.1 for exact values of the sensor). This is
done by linear approximation.

1500 Frequency response of the reader circuit at a coupling factor of 0.3
I I I T

1500

1000

500

255 26 265 27 275 28 285 29
1000 x1024

Impedance [Ohm]

500 — —

I |
. N}\\r\ \ /TJ\\/,\

frequency [Hz] x107

Figure 6.2: Frequency response of the reader circuit at 27.1MHz

"In practice, the coupling factor will variate during the 10 ms passing of the load cell. For the first test case, this phenomena has
been ignored, and an average coupling factor has been chosen.

6.2. Hardware implementation 25

The values for the inductors and capacitor in the reader and sensor circuit to simulate the resonance
frequency are found in Appendix D.1

1

2nLC (6.2)

fres =

Results

Table 6.3 shows the simulation results of the test case. The data indicates that the analyser is capable
of estimating the resonance frequency with an accurately of 50Hz. However, errors occur frequently in
the data. The error at most one frequency bin. Therefore, the desired 50 Hz output resolution is not
met.

Table 6.3: Simulation results for the total system testing.

Input frequency [Hz] | Frequency bin [Hz] | Est. frequency bin [Hz] | Error [bins] | Error [Hz]
27100013 27100000 27100000 0 0
27100065 27100050 27100050 0 0
27100117 27100100 27100100 0 0
27100170 27100150 27100150 0 0
27100222 27100200 27100150 1 50
27100274 27100250 27100200 1 50

6.2. Hardware implementation

After validating the results with MATLAB, a hardware implementation can be made. The first block in
the system is the ADC. Therefore, an ADC with the right parameters should be picked for the system.
The minimum sampling frequency should be 54.8 MHz, as explained before. To come to a right ADC
choice, order parameters, like the number of bits and the SNR of the ADC should be taken into account.
With the minimum required SNR specified, these parameters can be filled in into the noise equations
to check if the chosen ADC is acceptable. Noise sources added by circuitry around the ADC should be
taken into account as well.

The DDC block can be realized using an FPGA board [18]. In this case, the noise equations can be
filled in too. It is possible to implement the DDC using VHDL code. VHDL code is easily generated
using the MATLAB tool; HDL Coder. This tool converts MATLAB code and Simulink diagrams into HDL
code.

The last two blocks, the FFT and spectrum interpolation can be done on a processor, using C for
instance.

When combining the needed hardware, handheld FPGA boards with additional hardware appear to be
a reasonable choice for prototyping. A good example of this is the Red Pitaya STEMLab 125-14 board
[14]. Some relevant parameters and features of this board are summarized in Table 6.4. The SNR of
the ADC on this board 73 dB, which is well above 60 dB [15].

Table 6.4: Red Pitaya STEMLab 125-14 features [14].

FPGA FPGA Xilinx Zyng 7010 SOC

Processor Processor DUAL CORE ARM CORTEX A9
Sampling rate 125 MS/s

ADC bits 14

Communication protocols | 12C, SPI, UART

Discussion

7.1. Requirements

The requirements provided by Intralox were set up, aiming to deliver a physical prototype. However,
due to the COVID-19 pandemic, building and performing tests on physical prototypes was prohibited
throughout the BAP period. This affected the progress of the project. Most of the requirements have
not been passed completely as no physical testing has been performed.

* Requirement FR-MRO01: The requirement to be able to detect 10 000 discrete evenly spaced
levels of signal frequency has not been completed. As stated in the results of system testing 6,
the output resolution of 50 Hz is not met consequently. However, this was due to an SNR that is
too low for proper frequency estimation. When the SNR is enlarged, this requirement will be met,
as can be read in Chapter 3.

* Requirement FR-ToR01: The processing time of 10 ms could not be tested. This was due to a
combination of factors. First of all, due to the COVID-19 situation, producing a real-life prototype
was not allowed. Furthermore, the Red Pitaya test-board arrived too late, such that not enough
time for writing testing VHDL code was left. This requirement can easily be verified when the
hardware application is made.

* Requirement FR-ToR02: The system is simulated in MATLAB. Therefore, this requirement is
satisfied. However, extra work is needed for some parts of the code, as the DDC generated
excess noise in the code.

* Requirement FR-ToR03: The system is not implemented and simulated in VHDL or other HDL
for the same reasons as for Requirement FR-ToR01. However, as stated before, when using
MATLAB HDL coder, the VHDL code can be generated.

* Requirement FR-ToR04: The system can communicate with a PC when the Red Pitaya imple-
mentation is made.

7.2. Sensor bandwidth

The analyser team has designed the analyser according to the design requirements of Intralox, see
Chapter 2. This implies that the resonance frequency of the sensor circuit will change between 26.9
MHz and 27.4MHz by 0.2mm deformation. However, in practice, the sensor will only resonate between
27.1 MHz and 27.405MHz. This can also be seen from Requirement IF1-MRO03. Thus for the practical
implementation of the system, the analyser must be tuned to this bandwidth. A consequence of the
smaller bandwidth is that a higher resolution and therefore a higher SNR in the analyser is required.

26

7.3. System testing with a time-varying coupling factor 27

7.3. System testing with a time-varying coupling factor

The system test in Chapter 6 assumed a constant coupling factor. However, in practice, the coupling
factor will change throughout a measurement cycle. Although the average coupling factor of the
actual movement might approximately be 0.3 as used in the test case, the effective measurement time
will not be 10 ms. With little to no coupling, the signal contains insufficient information to contribute
to a This will have a significant effect possible resolution in the FFT bins (See Equation 3.2 in Chapter 3).

Attempts have been made to create a test signal in MATLAB, which has a time-varying cou-
pling factor. However, due to the complexity of the problem and short project time, no successful
simulation has been performed. Thus in practice, test data must be collected by physically moving the
load over the reader circuit with a speed of 2 m/s.

7.4. Linear approximation of the frequency changes

The capacitive change in the sensor has only been simulated for the maximal deformation of 0.2 mm [7].
Thus, no information about the linearity between levels of deformation and changes in resonance fre-
quency is known. Therefore, it is questionable whether the linear resolution scale used in the analyser
is compatible with the sensor.

Conclusion and Recommendations

8.1. Conclusion

To conclude, an analyser system has been designed in an attempt to improve the previous efforts by
Intralox in designing an in-situ conveyor belt weighing system.

A block diagram has been constructed as a result of a functional analysis of the analyser. The block
diagram for the analyser consists of an analog to digital converter, digital down converter and a
polynomial interpolation unit.

Next, an analysis of the required precision of the analyser is developed from which a minimum signal
to noise ratio is calculated. In addition, the analysis provided insight in limits of the variance and
offset in the detections of the analyser, such that an accurate and precise design could be made.
Moreover, quantization noise due to finite precision in digital signal processing is the most significant
noise source of the analyser. Quantization noise increases the variance of the detection output of the
analyser and reduces the analyser precision. Other parts of the weighing system, such as the sensor,
require calibration with test weights to minimise the offset as much as possible.

Subsequently, the components of the block diagram were elaborated. Models for determining
the signal to noise ratio of the ADC have been created, as well as constraints in the sampling
frequency. The design of the DDC was finalised by subdividing the DDC into smaller components.
The DDC places the frequency band of interest to base-band, and it reduces the sampling rate. The
numerical oscillator (NCO) of the DDC has been implemented using a CORDIC algorithm. With this,
the input signal could be mixed with a digital sine/cosine function. The frequency mixer is followed by
a CIC filter. This filter decimates the input by a factor D.

A compensation filter together with an FIR filter has been realised to create a flat band-pass response.
The noise contribution of the DDC is mainly related to rounding of filter coefficients and the finite
precision of digital filtering. The quantization errors have a uniform distribution.

After the conversions, the signal is transformed to frequency-domain using an FFT. Polynomial
interpolation has been used to increase the frequency resolution. Low pass filtering over the frequency
data removes unwanted spikes that may affect the interpolation and the search algorithm for the
resonance frequency. The search algorithm rounds the detected frequency nearest discrete frequency
depending on the resolution.

In the last part of the thesis, system testing has been applied to the analyser. Tests were per-

formed by simulating the analyser in MATLAB. The desired frequency resolution of 50 Hz was not
always obtained in the test cases because off a too low signal to noise ratio.

28

8.2. Recommendations 29

8.2. Recommendations

Sensor bandwidth

A major show stopper in obtaining a proper resolution of the weighing system is the limited bandwidth.
A high-frequency resolution, and therefore a high SNR, is required to be able to detect 10 000 levels
within a bandwidth of 0.5MHz. In an interview of an RF engineer at Philips [7], it became clear that the
bandwidth constraint by Dutch law did not apply to the weighing belt system, because of the low power
spectral densities in reader sensor coupling. This would enable the use of larger bandwidths, making
it possible to detect 10 000 levels with a lower frequency resolution and a lower SNR.

Data aggregation on the PC

Once a stable analyser system has been engineered, it is highly recommended to aggregate the load
cell data on a PC for further processing of the data. A dynamic real-time image of the weighing belt
can be constructed by periodically updating the load cell weight information. With this information,
applications such as providing positional feedback of packets to the belt controller, determining the
centre of gravity on packets on the belt, and parallel packet weighing can be implemented in software
in the Intralox weighing belt.

Reader configuration for longer measurement time
In Appendix A, a mechanical solution in which reader circuit move along sensors is proposed to increase
the measurement time.

Reader configurations for longer reader
time

Available measurement time to read out the sensor is a show stopper variable of the resolution of
an FFT. Therefore, the analyser team has come up with a belt configuration that allows for longer
coupling time between the sensor and the reader to increase the measurement time.

Operating mechanism

Instead of using a single row of reader circuits, multiple reader rows can be installed to read out
multiple rows of load cells. To do so, the rows of reader circuits will be placed on a rail and follow the
sensor for a length of time that allows for a precise measurement of the load cell weight. During this
period, the relative velocity between the sensors and the readers is zero.

Next, a servo motor reverses direction of travel to place the reader at the initial position for a
new measurement. Because the weighing belt moves continuously, a second reader block is required
to operate in opposite phase of movement with the first reader block. The second reader block reads
out the sensor rows missed by the first block as the first block is brought back to the starting position.
The cycle repeats. As the second reader block movement to the starting position, the first reader block
reads out a rows of sensors.

Risks and challenges
To implement this configuration, several aspects have to be taken in to account:

» Timing of the system: The configuration requires a high precision in the timing of the movement
in the reader blocks, since the reader blocks must be placed exactly below the sensors and must
operate exactly in opposite phase of movement. Also, a constant belt speed is required.

* Mechanical noise sources: The configuration increases the number of moving parts in the
weighing system, therefore increasing the number of sources of vibration. Therefore, mechan-
ical engineers must design a system with as little vibration as possible. Furthermore, a longer
measurement time may cause the mechanical vibrations not to be constant throught out the mea-
surement period.

30

31

Side view conveyor belt

A

-y
1-A
\ 4

Two pairs of shifting reader circuits read out
in opposite movement cycle

Figure A.1: A reader configuration which allows for longer measurement time

Equations

B.1. Analog to digital converter
The analog to digital converter operates at a sampling frequency f;. The sampling period T is:

T, = ! (B.1)
S f‘s -
Sampling function
Sampling is done via a pulse train &7, .
5y, = Z 8(t — nT,) (B.2)
n
Sampled signal
x5(t) = x ()67, (1) (B.3)
Quantization
Number of Quantization levels
Given a quantizer with M bits, the number of quantization levels N is:
N =2M (B.4)
Quantization step
The quantization step A is the difference between two quantization levels.
_ 2max|x(t)|
= N (B.5)
Quantization error
The quantization error is the difference between the sampled and the quantized signal.
e(nTy) = x(nTy) — x(nTy) (B.6)
The magnitude of this value is bounded by the quantization step.
0<e(nT;) <A (B.7)

From Equation 4.2 it can easily be derived that the RMS value of the noise can be written as in Equation
B.8.

Ves
VnoiseRMs = SZA\/READC (B.8)
107 20
Since the noise sources are spread over the Nyquist bandwidth of the controller, the noise spectral

density (in [\/%]) can be written as in Equation B.9.

32

B.2. CORDIC algorithm 33

Yrs
€napc = #ch (B.9)
10 =20 \/;

Frequency resolution for time harmonic signals
The frequency resolution of the signal is sampling frequency divided by the length of the FFT:

Fs
Af = — (B.10)
L
The required sampling time for a FFT is:
L 1
TFFTZTSLZFS:E (B.11)

Let n the number of distinguishable steps required in the frequency spectrum. The required bandwidth

for the input signal is given by:
n
B=n-Af = — (B.12)
Trrr

The Nyquist criterion set limits to the minimal sampling frequency after down conversion:

ks
B<— (B.13)
2
Thus the minimal length of the FFT is:
Fs

Af

B.2. CORDIC algorithm

The COordinate Rotational Digital Computer (CORDIC) algotihm was first developed by Volder in 1959
[17]. It is used to iteratively compute trigonometric functions using only add, subtract and shift opera-
tions. The CORDIC algorithm can rotate a complex vector p by an angle ¢. This results in a new vector
p’, which can be written as

p' =p-e/® =p(cos¢ +jsin¢) (B.15)
Equating the definitions of p and p’ in Equation B.15 gives the coordinate components of vector p’, as
can be seen in Equation B.16.
x'| _|cos¢p —sing| [x| _ ., [x
pl-[me] Bl bl e
The rotational matrix R can be rewritten using cos ¢ = S —
[1+tan ()?

cos¢ —sing|

[cosd)-[1 —tanqb]_ 1 [1
" |sing cos¢ | tan ¢ 1 _\/72 tan ¢
1+ tan (¢)

Now, the total rotation 8 between two vectors can be performed with the help of a series of angular rota-
tion steps. This process of performing small rotations to obtain the total rotation is called the sequence
of CORDIC micro rotations. The angular steps can be expressed as

~tan 4"] Pict (B.18)

pi= S [tan o 1
/1 + tan (¢;)

This means that ideally, it holds that Z:-X;O 6; - ¢; = 0, with §; = +1. However, since an infinite sum is
not feasible, an approximation has to be made. This can be represented as Z?’z_ol 6; - ¢p; = 6. Afurther

—tan¢
1] (B.17)

B.2. CORDIC algorithm 34

reduction of the complexity of the calculations can be reached by restricting tan ¢; in Equation B.18 to
values of +27*. This means ¢; can be written as in Equation B.19. The result can be seen in Equation
B.20.

1
¢ =tan”" () (B.19)
B 1 1 =27t B 1 =§;-27
pi = W s, 2 1] ‘D1 = K; - [&' i 1 “Di-1 (B.20)

Replacing the tangent multiplication with a division by a power of 2 is an efficient method to reduce
computation complexity. This due to the fact that the division can easily be implemented using a bit
shift operation.

The only multiplication left in the algorithm is the multiplication with the scale factor K;. This factor can
be ignored during the process itself, and implemented afterwards. The multiplication of the K; approach
a constant value, which can be seen in Equation B.21 (for larger values of n) [12].

lim K(n) =

n—-oo

K; ~ 0.60725294104140 (B.21)

n
=0

Intermediate micro rotations are represented with a new variable Z.

N-1
Zia=0-) (8.22)
i=0

4

In this equation, the total or given rotational angle is represented as 6. For every small rotation of angle
¢;, both Z and §;,, need to be calculated. Variable §;,; can be computed as

| -1, forZiy; <0
Oi1 = { +1, forZ,, =0 (B.23)

It is important to notice that the inverse tangent function which defines ¢; (Equation B.19) has a
convergence region between _7” and % Therefore, order to be able to use the CORDIC algorithm for
all angles some pre-rotations or quadrant corrections need to be set for the regions % < 6 < mand
1< < —%.

For the first region, the relations cos 6 + g = —sin# and sin 8 + % = cos @ is used [12]. This results
in the substitution of variables x - y, -y - x,0 - 0 — g

For the second region, the relations cos 6 — g = sin# and sin 6 — % = —cos@ is used [12]. This
results in the substitution of variables —x -y, y - x,0 - 6 + g

Requirements for the entire system

Project requirements
System requirements

Table C.1: Requirements for the complete system

ID Requirements for the design of the sensor.

SYS-MRO1 The sensor shall be able to pass over information to the receiver moving with
2m/s’.

SYS-MR02 The sensor shall be read out using a wireless method.

SYS-ToR01 The sensor should preferably be invariant for temperature differences in the

range of 0°C and 50 °C.

Sensor requirements

Table C.2: Requirements for the design of the sensor.

ID Requirements for the design of the sensor.

SEN-MRO01 Deformation of the loadcell diapraghm (maximum 0.2 mm) shall result in
changed electrical parameters of the sensor.

SEN-MRO02 The sensor shall be invariant to positional errors of the coupling +3 mm in
the x-direction.

SEN-MRO03 The sensor should be coupled to the reader for distances of 1-4 mm in the
z-direction.
SEN-MRO04 The receiver shall be able to read sensor with rotational errors of:

» +/- 10 degrees in the width (X) dimension of the belt, due to mechanical
placement and belt module tilt.

» +/- 5 degrees in the length (Y) dimension of the belt, due to mechanical
placement.

» +/- 5 degrees in the height (Z) dimension due to mechanical placement

SEN-MRO05 The sensor shall be passive, in the sense that it shall operate without the
need to be connected to a power supply.

35

36

Table C.2 — Continued from previous page

ID Requirements for the design of the sensor.

SEN-ToRO01 The sensor shall have at most a diameter of 2 cm.

SEN-ToR02 The sensor should preferably cost less than €1,-.

SEN-ToR03 The sensor should preferably have an oscillating frequency between 26.965
and 27.405 MHz.

SEN-ToR04 The sensor should preferably consist of one single piece of PCB material.

Analyser requirements

Table C.3: Requirements for the design of the analyser.

ID Requirements for the design of the analyser.

FR-MRO1 The analyser shall be able to detect 10 000 discrete evenly spaced levels of
signal frequency.

FR-ToRO1 The input signal from one sensor shall be processed within 10 ms.

FR-ToR02 The digital analyser chain shall be modeled and tested in MATLAB.

FR-ToR03 The digital analyser chain shall be implemented in VHDL and C for verifica-
tion.

FR-ToR04 The analyser shall be able to communicate to a pc for further processing of

the data.

Reader requirements

Table C.4: Requirements for the design of the analog reader.

ID Requirements for the design of the analog reader.

RED-MRO01 The reader shall be able to read a sensor without interference of other sen-
sors.

RED-MRO02 The reader shall be able to perform at least 10 measurements on a cell av-
eraging the result of mechanical vibrations.

RED-MRO03 The reader will generate an analog signal that enables the analyser to accu-

rately determine the sensor change.

37

Interface requirements
Analyser-Reader Interface

Table C.5: Requirements for the interface between the analyser and the reader

ID Requirements for the interface between the analyser and the reader
IF1-MRO01 The voltage at the input of the analyser will be +/- 1V.

IF1-MRO02 The signal frequency must be between 1kHz and 50 MHz.

IF1-MRO03 The signal bandwidth must be at least 0.4 MHz.

Reader-Sensor Interface

Table C.6: Requirements for the interface between the reader and the sensor.

ID Requirements for the interface between the reader and the sensor.
IF2-MRO1 The sensor will use coupled coils to transfer energy from and to the reader.
IF2-MR02 The sensor value can be read by the reader independent of the coupling
coefficient k.
IF2-ToRO1 The resistor R, should not exceed 0.25Q.
IF2-ToR02 The capacitor C; should be larger than 1pF.
IF2-ToR03 The capacitor L, should be so that the quality factor is » 100.
IF2-ToR04 The capacitor C,, should not exceed G
10000
IF2-Tor05 The sensor will have a changing resonance frequency in a bandwidth of at

least 0.4 Mhz.

Sensor and readout circuit

D.1. Circuit diagram

Figure D.1: Sensor and readout circuit

D.2. Inductor and capacitor values used for testing

fres[Hz] | L2 [x H] | Cs [pF]

27100000 | 0.6665 | 51.17489
27100050 | 0.6665 | 51.17487
27100100 | 0.6665 | 51.17485
27100150 | 0.6665 | 51.17483
27100200 | 0.6665 | 51.17481
27100250 | 0.6665 | 51.17479

38

o A W N -

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Matlab Code

Listing E.1: Matlab script used to simulate the input signal for the analyser system.

%Matlab simulation for analyser part of BAP
%Mauries van Heteren (4712145) and Jonathan Dijkstra (4696778)
%Test input signal simulation code

function [filtered _white noise ,whitenoise ,f_in] = simulate_reader(

S signal_number)

%time for sensor movement

fs = 125e6;

t_ max = 10e-3;

%number of coupling factors for simulation
N k = 1e2;

%create a white noise vector of 10 ms
[t,whitenoise] = create_white_noise (t_max);

%f axis

f _axis = linspace(—fs/2,fs/2,length(whitenoise));

%create the filtered output signal

[filtered_white_noise ,f_in] = create_output_signal (whitenoise ,t,N_k,
S signal_number);

function [filtered_white_noise ,fres] = create_output_signal(whitenoise ,t,

S N_k, signal_number)

% create the filtered white noise vector

bin_size = length(whitenoise)/N_k;

[L1,L2,C,R1,R2, freqs ,omegas,k, fres] = initiate_reader_parameters (N _k,
S bin_size ,signal_number);

k_temporal = 0.3;
frequency_response = calc_frequency_response (omegas, k_temporal ,C,L1,L2
- ,R1,R2);

fft_whitenoise = fftshift (fft(whitenoise));
fft_filtered_white_noise = fftshift (fft_whitenoise.xabs(
o frequency_response));

filtered _white_noise = ifft (fft_filtered_white_noise);
fs = 125e6;

f = linspace(—fs/2,fs/2,length (filtered_white_noise));
f _small = linspace(25e6,29e6,10"4);

39

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

40

end

frequency_small = calc_frequency_response(2xpi*f_small ,k_temporal ,C, L1
s ,L2,R1,R2);

function [t,whitenoise_trim] = create_white_noise (t_max)

%specifications of the test signal

fs = 125€6;

t = linspace (0, t max, fs=*t _max);

%create white noise

whitenoise_vect = (randn(size(t)))*0.01;

whitenoise_vect_long = [whitenoise_vect whitenoise_vect
S whitenoise_vect];

%trim the noise
offset = t maxxfs*0.4;
whitenoise_trim = whitenoise_vect long(1 + offset:t max*fs + offset);

end

function [L1,L2,C,R1,R2,freqs ,omegas,k,fres] = initiate_reader_parameters(
S N_k, bin_size ,signal_number)
fs = 125e€6;
t = 10e-3;

%

end

%inductor values
L1 = 0.6665e—6;
L2 0.6665e—6;

%capacitor value at 27.1MHz
Cs = 51.7489e—-12;

%Change in 50Hz in this region can be approximated by
Delta_C = 0.2e-15;
C = Cs — (signal_number —1)*5*Delta_C;

fres = 1/(2+pi*sqrt(C+L1));

%DC bias

R1 = 2;

%internal resistance of the inductor
R2 = 0.07;

%frequency axis

freqs = linspace(—fs/2,fs/2, fsxt);
freqs = linspace(—fs/2,fs/2, bin_size);

omegas = freqs*2xpi;

k = [linspace (0, 0.5, (N_k/2)) linspace(0.5, 0, (N_k/2))1;

function Z = calculate_impulse (w,k,C,L1,L2,R1,R2)

end

% calculate the impulse
Z =R1 + 1iswxL1 + wA2+xk 2% 1%L 2% (1/(R2+1i*wxL2 + 1/(1i*w*C)));

function Zs = calc_frequency_response(omegas,k,C,L1,L2,R1,R2)

% calculate the frequency response
Zs = [1;

920

91

92

41

end

for p = 1:length (omegas)

end

Zs

[Zs calculate_impulse (omegas(p), k, C, L1, L2, R1, R2)];

© ® N o o @~ w N =

49

50

Listing E.2: Matlab script used for testing the entire system.

%Matlab simulation for analyser part of BAP

%Mauries van Heteren (4712145) and Jonathan Dijkstra

%Main code for testing system
resolution = 250;

%Simulate the system multiple times

[f_axis1,x_in_divided_1 ,f _estimated1 ,f_in1]
[f_axis2 ,x_in_divided_2 ,f _estimated2 ,f_in2]
[f_axis3 ,x_in_divided 3 ,f estimated3,f_in3]
[f_axis4 ,x_in_divided 4 ,f estimated4 ,f_in4]
[f_axis5,x_in_divided 5 ,f estimated5,f_in5]
[f_axis6 ,x_in_divided 6 ,f estimated6 ,f _in6]
[f_axis7 ,x_in_divided_7 ,f_estimated7 ,f_in7]
[f_axis8 ,x_in_divided_8 ,f estimated8 ,f_in8]
[f_axis9 ,x_in_divided 9 ,f estimated9 ,f_in9]
[f_axis10,x_in_divided 10 ,f_estimated10,f_in10]
[f_axis11,x_in_divided_11 ,f_estimated11 ,f_in11]
[f_axis12 ,x_in_divided_12 ,f_estimated12 ,f_in12]
[f_axis13 ,x_in_divided_13 ,f_estimated13,f_in13]
[f_axis14 ,x_in_divided 14 ,f estimated14 ,f_in14]
[f_axis15,x_in_divided_15,f estimated15,f_in15]
[f_axis16 ,x_in_divided 16 ,f _estimated16 ,f_in16]
[f_axis17 ,x_in_divided_17 ,f_estimated17 ,f_in17]
[f_axis18 ,x_in_divided_18 ,f_estimated18 ,f_in18]
[f_axis19 ,x_in_divided 19 ,f estimated19,f _in19]
[f_axis20 ,x_in_divided 20 ,f estimated20,f _in20]
[f_axis21 ,x_in_divided 21 ,f estimated21 ,f_in21]
[f_axis22 ,x_in_divided_22 ,f_estimated22 ,f_in22]
[f_axis23 ,x_in_divided_23 ,f_estimated23 ,f_in23]
[f_axis24 ,x_in_divided_24 ,f_estimated24 ,f_in24]
[f_axis25,x_in_divided 25 ,f estimated25,f_in25]
[f_axis26 ,x_in_divided 26 ,f estimated26 ,f _in26]
[f_axis27 ,x_in_divided_27 ,f_estimated27 ,f_in27]
[f_axis28 ,x_in_divided_28 ,f_estimated28 ,f_in28]
[f_axis29 ,x_in_divided_29 ,f estimated29,f_in29]
[f_axis30,x_in_divided 30 ,f estimated30,f _in30]
[f_axis31 ,x_in_divided 31 ,f estimated31,f_in31]
[f_axis32 ,x_in_divided 32 ,f estimated32,f _in32]
[f_axis33 ,x_in_divided_33,f_estimated33 ,f_in33]
[f axis34 ,x_in_divided 34 ,f estimated34 ,f in34]
[f_axis35,x_in_divided_35,f_estimated35,f_in35]
[f_axis36 ,x_in_divided 36 ,f estimated36 ,f in36]
[f_axis37 ,x_in_divided_37 ,f_estimated37 ,f_in37]
[f_axis38 ,x_in_divided_38 ,f_estimated38 ,f_in38]
[f_axis39,x_in_divided_39 ,f _estimated39,f_in39]
[f _axis40,x_in_divided 40 ,f estimated40,f in40]

f1_rounded = scale f(f_in1 ,resolution);

f _measured1 =

estimate_frequency (1
estimate frequency(3
estimate_frequency (3);
estimate_frequency (3);
estimate_frequency (3);
estimate_frequency (3);
estimate_frequency (3);
estimate_frequency (3);
estimate_frequency (3);

(4696778)

estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency (3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency (3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency (3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency (3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency(3);
estimate_frequency (3);
estimate_frequency(3);

[f_estimated1 f_estimated2 f_estimated3 f_estimated4

o f_estimated5 f_estimated6 f_estimated7 f_estimated8 f_estimated9
o f _estimated10 f_estimated11 f_estimated12 f_estimated13
& f_estimated14 f_estimated15 f_estimated16 f_estimated17
o f _estimated18 f_estimated19 f_estimated20];

f _measured2 =

[f_estimated21 f_estimated22 f_estimated23 f_estimated24

43

& f_estimated25 f_estimated26 f_estimated27 f_estimated28
o f_estimated29 f_estimated30 f_estimated31 f_estimated32
& f _estimated33 f_estimated34 f _estimated35 f_estimated36
o f _estimated37 f_estimated38 f_estimated39 f estimated40];

ss f_measured = [f_measured1 f _measured2];

ss function scaled_f = scale_f(f_in,resolution)

56 n_steps = 0.5e6/resolution;

57 frequency_scale = 26.9e6 : resolution : 27.4e6 — resolution;
58 for i = 1:n_steps

59 diff = abs(frequency_scale(i) — f_in);

60 if(diff < resolution/2)

o1 scaled_f = frequency_scale(i);

62 end

63 end

e end

e function [f_axis, x_in_divided, f_estimated,f_in] = estimate_frequency(
& signal_number)

o7 t_max = 10e—-3; %maximum time for the load cell over the reader
68 t_fft = 10e—3; %maximum allowed time per measurement

69

70 Y%sample rate of the adc

7 fs = 125€6;

72

73 %sample rate after downconversion

74 fs2 = 1e6;

75 Y%bandwidth of the signal

7 f min = 26.9€6;

7 f max = 27.4€6;

78 Y%parameter for the amount of noise in the signal

79 noise_level = 0.05;

80

81 Y%bandwidth constraint by government law

82 B max = f_max—f_min;

83 Yamaximum achievable levels per measurement by the given bandwidth
84 n_max = 2*B_max * t_fft;

85 %fft length at Nyquist given the bandwidth constraint

86 L = n_max;

87

88 %Define input signal from reader to analyser (test signal from Jasper)
89 [x_in,x_n,f_in] = simulate_reader(signal_number);

90

91 Y%ADC for input signal from reader

92 adc_output = real(adc_block(x_in));

93 Y%ADC for noise input

9 adc_output_noise = adc_block(x_n);

95

96 9DDC for input signal from reader

o7 ddc_output = ddc_block(adc_output, fs, f_min, f_max);

98 9DDC for noise input

99 ddc_output_noise = ddc_block(adc_output noise, fs, f min, f max);
100

101 fs new = fs/125;

102 N = length(ddc_output) ;

103

104

105

106

107

108

109

110

m

112

113

114

115

116

44

end

dF = fs_new/N;
f _axis = —fs_new/2:dF:fs_new/2—-dF;

Y%FFT for input signal from reader

fft_output = fft_block (ddc_output);

%FFT for noise input

fft_output_noise = fft_block (ddc_output_noise);

%Divide to eliminate noise:
x_in_divided = fft_output./fft output _noise;
%interpolation

f_estimated = spectrum_interpolation_block (x_in_divided ,f_axis);

© ® N o o 9~ w N =

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

45

Listing E.3: Matlab script used to simulate the quantization of the ADC.

%Matlab simulation for analyser part of BAP

%Mauries van Heteren (4712145) and Jonathan Dijkstra (4696778)
%Quantization simulation code
function adc_output = adc_block(x)
N_bits = 14; %ADC bits
A = max(real(x));
A = round(A*100)/100;
Range = [-A A]l;
x_digitised = adc_quantize (x, N_bits ,Range);
adc_output = x_digitised;
end
function adc_out = adc_quantize (x, N_bits ,Range)
%This function quantizes the input signal
%specifications analog to digital converter
%transpose if necessary
sz = size(x);
if sz(1) > sz(2)
X = X.';
end
q_lev = 2AN_bits;
Y%midPnt = q_lev/2; % center point
R_max = Range(2);
R_min = Range(1);
step = (R_max — R_min)/q_lev;
offset = 0.5xstep;
if (length(step) > 1 || step <= 0)
error(’Quantization range = [min_value, max_value], max_value >

end

S min_value’)
end
% min_max clamping
x(find (x>=Range(2)))
x(find (x<=Range(1)))
% quantization
adc_out = (round ((x—R_min) ./step))=*step;
adc_out = adc_out + R_min;

R_max;
R_min;

adc_out(find (adc_out > R max—offset)) = R max—step;

deltaR = diff (Range);
if deltaR > 0
Xx_min = Range(1) — deltaR/10;
x_max = Range(2) + deltaR/10;
else

error(’The upper limit must greater than the lower

end

[imit\n’)

46

Listing E.4: Matlab script used to simulate the DDC.

%Matlab simulation for analyser part of BAP
%Mauries van Heteren (4712145) and Jonathan Dijkstra (4696778)
9DDC simulation code

function ddc_output = ddc_block(input, fs, f min, f _max)

© ® N o o 9~ w N =

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

bandwidth = f_max — f_min; %peak frequency range of signal
f nco = f_min; %frequency of the oscillator

[mix_out_i,mix_out_q] = mixer_block(input, f_nco, fs); %mix the signal
& with local oscillator

decimation_factor = 125; %down sampling rate of the DDC
cic_filter_order = 15; %CIC filter order

cic_output_i = cic_block(mix_out_i, decimation_factor,
o cic_filter_order); %CIC filter the input i comp (choose
& cic_block2 for matlab cic function)

cic_output_q = cic_block(mix_out_q, decimation_factor,
S cic_filter_order); %CIC filter the input g comp (choose
& cic_block2 for matlab cic function)

cic_output_comp1_i = cic_comp1_block(cic_output_i, decimation_factor,
o cic_filter_order, fs); %compensation filters

cic_output_comp1_q = cic_comp1_block(cic_output_q, decimation_factor,
o cic_filter_order , fs); %compensation filters

ddc_output = complex(cic_output_q,cic_output_i); %make a complex
S number from i and q comp

function [mix_out_i,mix_out _q] = mixer_block(mix_input, f _nco, fs)
bits_angle_vector = 14;
iterations = 15;
step_size = 2xpi*f_nco/fs;

%Calculate the angle input of the cordic algorithm phi[n]
for i=1:1250
theta(i) = i*step_size;

if theta(i) >= (2=pi)
multiple floor (theta(i)/(2*pi));
theta (i) theta(i)—(multiple*2*pi);

end

theta(i) = fi(theta(i),1,bits_angle_vector);
end

%calculate the cordic output
[y, x] = cordicsincos(theta,iterations);

%Make the cordic output the proper length
needed_length = length(mix_input)/length(x);
X = repmat(x,1,needed_length);

y = repmat(y,1,needed_length);

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

4l

72

73

74

75

76

77

78

79

80

81

82

83

85

86

87

88

89

90

91

92

93

94

95

47

9Do the mixing operations

mix_out_i = mix_input.*x;

mix_out_q = mix_input.*y;
end

function cic_output = cic_block2(CIC_in, decimation_factor,
S cic_filter_order)
CIC_in = [zeros(1,11000) CIC_in(11001:1239000) zeros(1,11000)1];
R = decimation_factor; %decimation factor
K = cic_filter_order; %Order of filter / number of filter stages
cicDecim = dsp.ClCDecimator(R,1,K);
cic_output = cicDecim(CIC_in"’);

end

function cic_output = cic_block(CIC_in, decimation_factor,
S cic_filter_order)

R = decimation_factor; %decimation factor
K = cic_filter_order; %Order of filter / number of filter stages
B = [1,zeros(1,R—1),—1]; %the numerator coefficients of the filter
A = [R,—R]; %the denominator coefficients of the filter
[h, t] = impz(B, A); % Impulse response of one stage
impulse_response = h;
if K> 1 % calculate impulse response for K stages
for p=2:K
impulse_response = conv(impulse_response, h);
end
end
B = impulse_response; %put final coefficients in B
A=1;
cic_output = filter (B,A,CIC_in); %filter the input with the

& impulse response
end

function cic_comp1_output = cic_comp1_block (CIC_comp1_in,
& decimation_factor, cic_filter_order, Fs)
R = decimation_factor; %decimation factor
K = cic_filter_order; %Order of filter / number of filter stages

%Compensation filter according to https://ieeexplore.ieee.org/
& stamp/stamp.jsp?tp=&arnumber=5349314

A _comp = 1; %the numerator coefficients of the filter

B_comp = [0 , zeros(1,R—-1) , (—1/16), zeros(1,(2*R-1)—(R+1)),
S (9/8), zeros(1,(3*R—-1)—(2*R+1)), (—1/16)]; %the denominator
& coefficients of the filter

[h_comp, t comp] = impz(B_comp, A comp); % Impulse response of
S one stage

impulse_response_comp = h_comp;

if K>3
K=K- 1;

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

m

112

113

114

115

116

"7

118

119

120

121

122

123

124

125

126

48

end

end

end
if K>1 % calculate impulse response for K stages
& (see paper)
for p=2:K
impulse_response_comp = conv(impulse_response_comp, h_comp
<)
end

impulse_response_comp; %put final coefficients in B
15

>
o

cic_comp1_output = filter (B,A,CIC_comp1_in); %filter the input
& with the impulse response

%Low pass filter parameters

Fp = 0.63e6; % passband—edge frequency

Rp = 0.00057565; % Corresponds to 0.01 dB peak—to—peak ripple
Rst = 1e-9; % Corresponds to 180 dB stopband attenuation
Fst = 1.65e6; % Transition Width

h_Ip = firgr('minorder’ ,[0,Fp/(Fs/2),Fst/(Fs/2),1],[1 1 0 0],...
[Rp Rst]) ’;%make the low pass filter with minimum order

z = zeros(length (impulse_response_comp)—length(h_Ip),1) ; % zeros
h_lp = [h_lp ; z] ;

h_Ip = impz(h_Ip,1); % make impulse response of filter

cic_comp1_output = filter (h_Ip,1,cic_comp1_output); %filter
& the input with the impulse response

cic_comp1_output = downsample(cic_comp1_output, R); %downsample
& the filtered signal

© ® N o o 9~ w N =

49

Listing E.5: Matlab script used for testing the polynomial interpolation algorithm.

%Matlab simulation for analyser part of BAP
%Mauries van Heteren (4712145) and Jonathan Dijkstra (4696778)
%Spectrum interpolation algorithm

function [f_estimated] = spectrum_interpolation_block(x, f)

%

%specification of the interpolation
[m,n] = size(x);

percentage = 0.08;

search_size = 320;
resolution_polynomial = 10e7;
resolution = 250;

cutoff = 0.10;

%Filter unwanted high freq comp.
x = abs(x);

A = filter(x,cutoff);

%find the frequency peak

[B,C]= find_peak (A, search_size,percentage);

%frequency domain of interest
f4 = f(B(1):B(end));

%frequency domain of interpolation
f_precision = double(linspace(f4(1),f4(end),resolution_polynomial));

%apply polynomial interpolation on the data points
[p,~,mu] = polyfit(f4, C, 12);
polynomial = polyval(p,f_precision ,[],mu);

%estimate the frequency of the interpolated polynomial
f _interpolated = estimate_frequency(polynomial ,f_precision);

%scale the frequency
f_estimated = scale_f(f_interpolated ,resolution);

%calculate weighted average

f weighted_average = calc_weighted _average (C, f);
for i = 1:length(f4)

f4(i) = f4(i) + 26.9€6;

end
for i = 1:length(f_precision)
f precision(i) = f_precision(i) + 26.9€6;
end
%plot of the frequency
plot(f4, C);
hold on;
plot(f_precision ,polynomial);
hold off;
title ('frequency response’);
legend(’ fft points’, interpolated polynomial’);

xlabel (' frequency [Hz]’);
ylabel ("Amplitude ") ;

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

9

95

96

97

98

929

100

101

102

103

104

105

106

107

108

50

end
function scaled_f = scale_f(f_in,resolution)
%scale frequency range for interpolation
n_steps = 0.5e6/resolution;
frequency_scale = 26.9e6 : resolution : 27.4e6 — resolution;
for i = 1:n_steps
diff = abs(frequency_scale(i) — f_in);
if(diff < resolution/2)
scaled_f = frequency_scale(i);
end
end
end
function weighted _average = calc_weighted average (input, f)
% Weighted average code for peak detection for sine input of
& system
Average = 0;
S = sum(input);
for i = 1:length(input)
Average = Average + (C(i)/S) = B(i);
end
fixed_part = fix (Average);
fractional_part = Average — fix (Average);
weighted _average = f(fixed_part) + fractional _part*(f(fixed_part +
o 1) —f(fixed_part));
end
function f_estimated = estimate_frequency(polynomial,f_axis)
%frequency estimation by finding max value
f_max = max(polynomial);
f_estimated_location = find(polynomial == f_max);
f_estimated = f_axis(f_estimated_location) + 26.9¢€6;
end
function [B,C]= find_peak(A,search_size, percentage)
M = max(A);
%Search only in the neighbourhood of the peak
D = find(A == M);
A(1:D-search_size) = 0;
A(D+search_size:end) = 0;
%Search only take values into account which are above the noise
o floor
B = find(A > 0);
C = A(B(1):B(end));
end
function output = filter (A, cutoff)

% Unwanted peaks filter

B =

A.

dA = diff(A);
spike_level = 0.4%x10"3;

for

i = 1:(length(dA) — 10)
dA = diff(B);

109

110

m

112

113

114

115

51

end

if (abs(dA(i)) > spike_level)

end
end
output

B(i+1) = (B(i) + B(i+2))/2;

lowpass (B, cutoff);

Bibliography

[1] Asad A Abidi. The path to the software-defined radio receiver. IEEE Journal of solid-state circuits,
42(5):954-966, 2007.

[2] Rik Bokhorst and Ruben van den Bos. Wireless passive weight sensor. Bachelor’s thesis, TU
Delft, Delft, The Netherlands, June 2020.

[3] Cagatay Candan. Fine resolution frequency estimation from three DFT samples: Case of win-
dowed data. Signal Processing, 114(14):245-250, 2015.

[4] G Jovanovic Dolecek. Simple wideband CIC compensator. Electronics Letters, 45(24):1270-1272,
2009.

[5] Regeling gebruik van frequentieruimte zonder vergunning en zonder meldingsplicht 2015, Decem-
ber 2016. URL http://wetten.overheid.nl/id/BWBR0036378/2016-12-28/0.

[6] M Gasior and JL Gonzalez. Improving FFT frequency measurement resolution by parabolic and
Gaussian spectrum interpolation. In AIP Conference Proceedings, volume 732, pages 276-285.
American Institute of Physics, 2004.

[7] Jasper Insinger and Rogier Fischer. Weight sensor readout system. Bachelor’s thesis, TU Delft,
Delft, The Netherlands, June 2020.

[8] Sameer Kadam, Dhinesh Sasidaran, Amjad Awawdeh, Louis Johnson, and Michael Soderstrand.
Comparison of various numerically controlled oscillators. In The 2002 45th Midwest Symposium
on Circuits and Systems, 2002. MWSCAS-2002., volume 3, pages llI-lll. IEEE, 2002.

[9] Walt Kester. Which ADC architecture is right for your application. In EDA Tech Forum, volume 2,
pages 22-25, 2005.

[10] Walt Kester. Take the Mystery out of the infamous formula "SNR = 6.02N + 1.76dB,”and why you
should care. MT-001 Tutorial Devices, 2009.

[11] L. Kleczewski and S.E. Haitjema. "A passive wireless load cell for in-situ productweight and posi-
tion sensing on modular plastic conveyor belts”. Bachelor project proposal for Eletrical Engineer-
ing, March 2020.

[12] Nagarjun Marappa. Design of Digital Down Converter Chain for Software Defined Radio Systems
on FPGA. Master’s Theses. 664., December 2015.

[13] David A Rauth and Vincent T Randal. Analog-to-digital conversion. part 5. IEEE instrumentation
& measurement magazine, 8(4):44-54, 2005.

[14] RED PITAYA STEMLAB BOARD, 2020. URL https://www.redpitaya.com/£f130/
STEMlab-board.

[15] Alex Tourigny-Plante, Vincent Michaud-Belleau, Nicolas Bourbeau Hébert, Hugo Bergeron,
Jérdbme Genest, and Jean-Daniel Deschénes. An open and flexible digital phase-locked loop
for optical metrology. Review of Scientific Instruments, 89(9):093103, 2018.

[16] Papa-Silly Traore, Aktham Asfour, Jean-Paul Yonnet, and Christophe P Dolabdjian. Noise per-
formance of SDR-based off-diagonal GMI sensors. IEEE Sensors Journal, 17(19):6175-6184,
2017.

[17] Jack Volder. The CORDIC computing technique. In Papers presented at the the March 3-5, 1959,
western joint computer conference, pages 257—-261, 1959.

52

http://wetten.overheid.nl/id/BWBR0036378/2016-12-28/0
https://www.redpitaya.com/f130/STEMlab-board
https://www.redpitaya.com/f130/STEMlab-board

Bibliography 53

[18] Qingxiang Zhang and Xiaoxiao Su. The design of digital down converter based on FPGA. In 2012
8th International Conference on Wireless Communications, Networking and Mobile Computing,
pages 1-4. |IEEE, 2012.

	Abstract
	Preface
	Introduction
	Programme of requirements
	Requirements for the analyser group

	System outline
	Detection method
	Components
	Noise division working principle
	Signal to noise ratio and resolution of the system

	Analog to digital and digital down conversion
	Analog to digital conversion
	Digital down conversion
	DDC testing

	Frequency domain computations
	Fast Fourier Transform
	FFT noise analysis
	Interpolation

	System testing and implementation
	Testing for accuracy and precision
	Hardware implementation

	Discussion
	Requirements
	Sensor bandwidth
	System testing with a time-varying coupling factor
	Linear approximation of the frequency changes

	Conclusion and Recommendations
	Conclusion
	Recommendations

	Reader configurations for longer reader time
	Equations
	Analog to digital converter
	CORDIC algorithm

	Requirements for the entire system
	Sensor and readout circuit
	Circuit diagram
	Inductor and capacitor values used for testing

	Matlab Code
	Bibliography

