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Abstract

To keep the Panama Canal operational year round, the water level in the canal is main-
tained above the minimum depth. As water is passed through the locks and into the oceans
on either side, the canals main reservoir looses fresh water, and this water is then replaced by
the canals secondary reservoir which is Lake Alajuela. The Lake Alajuela reservoir is supplied
of water by two large rivers, bringing in a sediment flux and decreasing the reservoirs capacity
over time. Sedimentation sets a time limit to the use of the reservoir, and understanding this
process and predicting the future morphological changes to occur in the reservoir are key to
ensure continuation of operations in the Panama Canal.

To predict the quantities of local sedimentation in the reservoir, a machine learning model
is trained with features extracted from bathymetric models covering various years. These
features are computed values that correlate with morphological processes. As such, the adap-
tiveness of a machine learning model along with the ability to extract morphological features
from any elevation model provides the possibility to predict future sedimentation where other
methods with empirical and numerical methods do not suffice due to a lack of data and re-
strictive parameters.

Three types of machine learning algorithms and 21 features were initially tested for the
purpose of the morphological modelling, during which the SVR model was the most success-
ful. The testing was done on the Rı́o Chagres basin as well as the Rı́o Pequenı́ basin, both
located in Lake Alajuela. Extensive hyperparameter tests were done to optimize and further
test the performance of the SVR. Depending on the study area and the scale of the morpholog-
ical behavior occurring, slightly different sets of features were most effective. Nevertheless,
in both study areas tested the runoff model has proven to be a key factor for predicting the
sedimentation and achieved a 70 to 80% accuracy for predicting zones of low or high sedi-
mentation.

The same model trained with the data from 1997 to 2018 was then used to predict 6
years into the future where more dynamic morphological behavior will occur according to
the model. A downstream moving sediment front in the Rı́o Chagres basin is recognized and
predicted to have moved 500 meters between the years 2018 and 2024. Such a sediment front
travelling too far into the reservoir could have catastrophic consequences for all operations of
the Panama Canal, making the awareness and anticipation of its progression highly important.
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Chapter 1

Introduction

Figure 1.1: Satellite image in false colour of the Panama Canal, all water visualized as white

Lake Alajuela (formerly Madden Lake) provides the Panama Canal with water to maintain
a minimum water level required for operation. The Panama Canal passes through the Gatun
Lake which consists of a large man-made reservoir as well as dug out sections of the canal,
nearly stretching from coast to coast. As the Panama Canal is constantly opening and clos-
ing its locks to let ships pass from the Atlantic to the Pacific Ocean and vice versa, the fresh
water in the Gatun Lake is released into the oceans. Lake Alajuela is a man-made reservoir
separated from the Gatun Lake by the Madden Dam, and provides the Gatun Lake with water
when this is needed. Water enters Lake Alajuela through the Rı́o Pequenı́ and Rı́o Chagres,
and along with the water travels sediment which settles on the reservoir bed as it cannot be
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flushed out. All entering sediment accumulates in the reservoir and has been decreasing the
reservoirs storage capacity for nearly 100 years. An accurate prediction of the sedimentation
process provides insight to the problem, for which a timely solution can be engineered.

”We might have trouble forecasting the temperature of the coffee one minute in advance, but we
should have little difficulty in forecasting it an hour ahead.” (Lorenz, 1963)

The modelling of sedimentation is a complex task, much like predicting the temperature
of a cooling cup of coffee. The coffee eventually cools down to room temperature, when left
alone for a sufficient amount of time. While it is cooling, thermodynamic vortices occurring
in the coffee make the cooling process extremely difficult to predict. Similarly, without inter-
vention and in enough time, any reservoir will fill up with the incoming flux of sediment. To
predict the progression of sedimentation years or decades ahead is far more difficult, not due
to thermodynamic vortices, but many other factors influencing this process.

Due to the multi dimensional nature of this complex process, current solutions are often
simplified 1D or 2D models. These models utilize analytical methods based on physical pro-
cesses, empirical methods based on scale experiments, and numerical methods in the form of
complex computer programs that often require a vast amount of information and extensive
tuning. Naturally, these traditional models are not suited for all scenarios and are limited
by over-simplification. Hydrological parameters in combination with river cross sections are
used in these models to compute morphodynamic behavior Williams et al. (2016) and may
require other parameter values which are not available in all scenarios.

For the Lake Alajuela reservoir of the Panama Canal, several predictions have been made
for the number of years until the reservoir becomes dysfunctional due to sedimentation (Loewen-
berg, 1999). After creation of the Madden Dam in 1935 and with it Lake Alajuela, it was es-
timated that the reservoir would have a 26% decrease of volume capacity in a period of 3900
years. This prediction was done with limited knowledge and information, no computers, and
likely a large amount of political influence. A later study by Alvarado (1985) estimated a pe-
riod of 100 years until a reservoir capacity decrease of 26%, ending in 2035. This broad estimate
was done at a time in which deforestation was not controlled, and since this research many
measures have been taken to decrease deforestation and consequently decrease the amount
of sedimentation. Since sedimentation has decreased, no follow-up research has been done to
predict the current rate of sedimentation in Lake Alajuela.

By training a ML model with historical data of the reservoir, local sedimentation can be
predicted without requiring excessive amounts of data measurements, time and expertise. A
Machine Learning (ML) model replaces the need for formulas, empirical relations, or other
algorithms to be explicitly programmed into the model, as the model is self-learning and lays
its own correlation by learning from a historical dataset. The historical data utilized are Digital
Elevation Model (DEM)s over a range of 20 years, all having a similar resolution and area
coverage. Geomorphological parameters like terrain slope, aspect, and curvature are extracted
from the DEMs, and using hydrological data a full analysis and prediction can be made.

Machine Learning combined with DEM computations is currently being applied to many
different types of problems, however in the field of reservoir sedimentation modelling there is
still room for improvement (Alzaghoul et al., 2021; Costache and Bui, 2019; Avand et al., 2022).
As information available per reservoir varies, current researched methodologies are often ap-
plicable to a single or specific type of reservoir, greatly limiting the usability of developed
methods in other scenarios. This research is focused on combining ML and DEMs in order
to construct a pipeline for predicting morophological behavior without restrictions encoun-
tered by traditional methods such as the requiring of extensive calibration and hydrological
datasets.

2



1.1 Objective

To fill the knowledge gap existing in the junction between machine learning and morpho-
logical models, the goal of this thesis is to develop a complete pipeline for predicting sedimen-
tation with machine learning. For this purpose, the main research question is:

How to accurately predict sedimentation levels in the Lake Alajuela reservoir using a Machine Learning
method?

The main objective of this research is the creation of a pipeline, providing predicted sedi-
mentation levels of Lake Alajuela for future years including the periods around 2026, which
is when the next planned bathymetric survey will take place. This requires results from a ML
algorithm trained with features extracted from DEMs, which are analysed using hydrological
data of the watershed and the dam like yearly precipitation levels, river discharges, and water
passed through the dam. The predictions should be of sufficient accuracy to help engineers
plan potential dredging operations by indicating the location and magnitude of sedimenta-
tion. To reach these objectives, the following sub-questions will be answered:

• Which sedimentation related features can be extracted from the DEM?

• Which ML model best predicts sedimentation in a reservoir?

• What is the best set of geomorphological and hydrological features to train a ML model for pre-
diction of sedimentation?

• What accuracy can be obtained predicting sedimentation in the Lake Alajuela reservoir?

1.2 Scope

• Primary area of study is the entrance of Rı́o Chagres
The Rı́o Chagres is the largest source of water and sediment for Lake Alajuela, with
strong morphological changes occuring in the river mouth.

• Secondary area of study is the entrance of the Rı́o Pequenı́ into the main basin of Lake Alajuela
The Rı́o Pequenı́ is the second large source of water and sediment into Lake Alajuela.
The upper basin of the reservoir into which the Rı́o Pequenı́ flows will not be regarded
in the research due to the fact that it lies nearly dry for part of the training data years,
showing purely erosive morphological processes.

• No deep learning algorithm will be included in the comparison between machine learning algo-
rithms

• Data ranging from 1997 to 2018 will be used
Data ranging back further than this are of poor quality and cannot be used for similar
analysis to recent datasets.

• No hydrodynamic or morphologic equations will be included in the model
The Machine Learning Algorithm (MLA) will be used to lay connections between the
features provided, not requiring the same data required for the traditional methods, nor
necessarily using the same relations.
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1.3 Data

In the research done during this thesis, data used was provided by the Department of Car-
tography of the Panama Canal. DEMs of the bathymetry of Lake Alajuela for the years 1997,
2008, 2012, and 2018 were used. These DEMs are point clouds of which the accuracy varies
slightly between the years. Additionally historical local rainfall data as well as discharge data
of water passing through the Madden Dam and river discharges of the Rı́o Chagres and Rı́o
Pequenı́ was made available.

The image in Figure 1.2 below shows an overview of the reservoir with different distin-
guishable sections. Bathymetric data of the entire lake was available for the provided years,
with exceptions of some bays and shallow areas which are not present in all datasets.

Figure 1.2: Satellite image of the Lake Alajuela watershed in false color, all water visualized as
white

The main areas of study in this thesis are the river mouth of the Rı́o Pequenı́ in the main
reservoir and the Rı́o Chagres river mouth as highlighted in Figure 1.2. In the North of the
map in the figure the Rı́o Pequenı́ is shown which initially feeds water to the upper basin of
the Lake Alajuela reservoir, and this water eventually ends up in the main basin. From the
East of the watershed the Rı́o Chagres enters the main basin, and this is the main supplier of
water for the reservoir. The Madden Dam is located in the Southwest corner of the map and
this dam is what created Lake Alajuela in 1935.
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1.4 Thesis outline

This thesis is divided into 5 main chapters. Chapter 2 consists of the background and
related work around the thesis subject. A short description is given of the working of mor-
phological processes in rivers, and the models used to predict these processes. A background
is given on machine learning models, and related work is provided of machine learning tech-
niques being used for the purposes of predicting morphological processes.

Chapter 3 gives an overview of the data used in the research, the methodology and the
implementation thereof. The full pipeline is explained and the details of the implementation
in the use-case for Lake Alajuela are given. The results of the research are presented and
discussed in chapter 4. Lastly, in chapter 5 the conclusions of the thesis are stated, and rec-
ommendations for future work given. Additionally, more elaborate ranges of test results and
other information can be found in the Appendices.
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Chapter 2

Background and Related work

2.1 Morphology

In all rivers and creeks eroded soil enters the water and flows downstream with the cur-
rent. In places of reduced water flow velocity, this sediment then sinks to the river bed, causing
the bed level to rise. This is a problem for all man made reservoirs, and thus many studies
have been done on predicting the morphological response of lakes and rivers. Numerous vari-
ables influence the sedimentation process like the flow, relative pool height, sediment supply
from upstream, and sediment size and distribution. External factors also have large influence
on the sedimentation in watersheds, being factors such as the land use history, fires, and cli-
matic cycles (Minear and Kondolf, 2009). These variables cause the process of sedimentation
to be very complex and difficult to predict.

Figure 2.1: Copernicus satellite images of the Rı́o Chagres basin in the dry season (left) and
the rainy season (right) - (Buchhorn et al., 2020)

During the different seasons of the year, the amount of rainfall determines the flow of water
and sediment entering the reservoir, as well as the amount of water leaving the reservoir. As
a result the water level in the reservoir undergoes large changes, and the magnitude of these
changes is visible in Figure 2.1. In the figure the same river mouth between the seasons at
different water levels is practically unrecognizable, and thus the morphological behavior in
these two scenarios is equally different.

Rivers are constantly undergoing morphological processes to obtain a balance between
the supplied water discharge and the natural slope, width, depth of the river and many other
factors. This balance can be used to analyse and predict morphological processes in the river.
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Water flow is a determining factor in morphological processes, and flow velocity of the
water in a river is influenced by a large number of dependent and independent variables. One
of the main influences is the water depth which is influenced by what is called the backwater
curve. The length of a backwater curve is determined by the depth and the slope of a channel,
which in turn affects the flow velocity (Samuels, 1989). When looking at a section of a river to
analyse morphology, the upstream and downstream boundaries must be defined. The water
discharge as well as the in-flowing sediment flux are the upstream boundary parameters, and
cannot be influenced by what happens downstream. The water level is determined by the
downstream water depth, and can be predicted higher up the reach using backwater curves.
(Blom, 2021; Mendoza et al., 2017)

Figure 2.2: Common Backwater curves (Blom,
2021)

Backwater curves determine the water
level moving upstream which can be an in-
crease or decrease in water level with respect
to the water level at the downstream bound-
ary. A backwater curve is created by the
changing of a downstream boundary: the
local water level, channel width, or change
in channel depth. Such a change will then
thus induce the backwater curve, changing
the water level upstream and with that other
flow characteristics and morphological pro-
cesses that come along with it.

With an increase in depth the flow veloc-
ity tends to decreases resulting in sedimen-
tation, and similarly when flow depth decreases flow speed will increase resulting in erosion
thus increasing the water depth once again. These morphological responses bring the river
back to an equilibrium, however a complete equilibrium will rarely be present due to the
constant changing of parameters (Blom, 2021).

When a river ends in a reservoir, the backwater curve moves up from the mouth of the
river. The water level in the reservoir is thus a deciding factor on erosion and sedimentation
in the section of the river where the backwater curve stretches starting at the river mouth.
The water level in a reservoir is constantly changing by nature, and in times of little rainfall
the reservoir will be decreasing in water level as the inflow of water will be less than the
outflow and at the same time lowering the water level at the mouth of the river. In months
of high precipitation the water level in the reservoir will stay around the same point, being
the maximum water level for the dam. These boundaries are thus changing constantly year
round, and the different seasons will have a different effect on the morphological processes in
the river and the river mouth.

If the water level of the reservoir decreases more than that of the river, an M2 backwater
curve will occur as seen in Figure 2.2 as the equilibrium water depth de, being the depth of the
reservoir at the river mouth, is above the actual water depth d, being the depth of the upstream
boundary of the river. The M2 curve will then cause a lowered water level upstream and an
increase in flow velocity over a large stretch of the river. With the higher flow velocities, the
river bed will be eroded and this eroded sediment gets carried by the water until the flow
speed once again decreases. As the river flows into the reservoir, the flow speed eventually
comes to a full stop resulting in all sediment to be deposited.

When the reservoir water level increases more than the water level of the river, an M1
backwater curve is created, also seen in Figure 2.2 as de is below d. This curve increases the
depth along an upstream stretch in the river decreasing the flow velocity, and thus causing the
sediment carried by the water to be deposited on the river bed.
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All in all, the seasons and the changing water level trigger constant changes in the mor-
phology of the river mouths. River mouth processes are influenced by a large number of
factors both from the water supplying river and the basin the river feeds into, river mouths ex-
tremely varied coastal accumulation forms. (Wright, 1977) The constant changing of reservoir
depth thus causes the sediment to be deposited in the river mouth at different times. Extreme
weather scenarios can cause greater amounts of sediment to be transported or eroded from
the river. such event will then not only affect the sediment transported at that time, but will
also influence the sediment supplied to the reservoir in future years.

2.1.1 Sedimentation in Lake Alajuela

Figure 2.3: Old photograph of the creation of
the Madden Dam taken in 1933

Since the completion of the Madden Dam
in 1935, the Lake Alajuela reservoir provides
the Panama Canal with water to keep the wa-
ter level sufficiently high for ships to pass
through the most shallow points of the route,
being the locks. During the dry season, there
is insufficient rain to compensate for the wa-
ter used by the canals locks, and the Lake
Alajuela reservoir provides the required wa-
ter for the continuation of operations in the
canal. The amount of water passing from the
Lake Alajuela reservoir to the Panama Canal
is regulated by the Madden Dam, and the
reservoir receives water from 2 main rivers,
being the Rı́o Chagres and the Rı́o Pequenı́.

The Rı́o Chagres is the largest river providing feeding into Lake Alajuela and provides the
highest water discharge, along with the largest amount of sediment. The majority of sediment
transported to the reservoir is deposited in the mouth of the river due to the sudden change
of width of the channel. Especially during the rainy season large amounts of sediment are
deposited near the mouth of the Rı́o Chagres, and during the dry season with lower water
levels, the sediment is carried further into the reservoir.

The Rı́o Pequenı́ first flows into the upper basin of the reservoir which is separated from
the main basin of the reservoir by a narrow passing. This results in the majority of sedimenta-
tion first ending up in this upper segment, and then gradually being transported downstream
into the lower reaches of the reservoir. Besides these two main rivers, several small streams
and slopes are susceptible to landslides and other events that may also result in sediment
deposits in the reservoir.

2.1.2 Current modelling methods

In present day, with powerful Geographic Information System (GIS) software and com-
putational power, accurate and extensive predictions can be made using large numbers of
parameters and data sets. In the past, empirical models were used to predict morphologi-
cal behavior in rivers and channels, such as the sediment transport relations developed by
Engelund and Hansen (1967), Meyer-Peter and Müller (1948) and Exner (1920). Such empiri-
cal methods will generally underestimate the sedimentation due to oversimplification (Idrees
et al., 2021). Table 2.1 gives an overview of a range of parameters. commonly used in ex-
isting modelling methods along with the typical morphological response that comes with an
increase of this parameter.
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Morphological modelling parameters
Parameter Unit Effect
Channel width [m] A larger channel width will cause a de-

crease in flow velocity resulting in sedi-
mentation

Bed level height [m] An increase in bed level height may cause
a decrease in water depth resulting in ero-
sion

Chezy coefficiënt [m1/2/s] A higher Chezy coefficiënt signifies more
bed friction resulting in a decrease in flow
velocity and sedimentation

Sediment flux [kg/m3] more sediment flux results in water not
needing sediment from the bed, and too
much sediment supplied from upstream
means the river deposits to match sedi-
ment transport capacity

Sediment particle
diameter

[m] Smaller particles require less flow veloc-
ity to be carried by the river, and thus
smaller particles will travel further than
the large grains

Porosity of reser-
voir bed

- The porosity determines the amount of
fine sediment that can settle in the bed
material

Channel slope [deg] A larger slope results in higher flow ve-
locities and bed erosion

Downstream wa-
ter depth

[m] The downstream water depth is a bound-
ary condition determining the water
depth upstream in a channel as well as
the flow velocity, and thus influencing
sedimentation or erosion

Table 2.1: Overview of Morphological modelling parameters often used

These parameters always contain margins of error and are not always available for reser-
voirs as they either have to be obtained with specialised equipment, or estimated through
iterative processes. Additionally, the inaccuracy that comes with the methods of acquirement
for the necessary data these methods use affects the accuracy of tasks depending on these re-
sults (Stefanyshyn et al., 2021). Although these analytical models are easy to interpret as they
are based on physical processes, the models cannot always be applied due to lack of data or
knowledge.

2.2 Machine learning

Machine Learning (ML) models are self teaching algorithms that can be used to find cor-
relation in data without interventions necessary. Their popularity is growing as computers
become faster, algorithms improve, and information is more available than ever. ML models
can, in some cases, provide high accuracy predictions for natural processes that are otherwise
complex to model. There are two types of ML models; regression models and classification
models. When using numerical values and requiring a numerical outcome, regression models
are used. A Random Forest (RF) model consists of tree-structured predictors called regression
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trees, each of these constructed with random selection and order of features. The Random
Forest Regressor (RFR) builds a K number of regression trees averages the result (Segal, 2004;
Rodriguez-Galiano et al., 2015).

The RF regression model is a popular candidate due to its simplicity and the fact that it
required limited effort to tune the model. Mitchell et al. (2021) compared the RFR model to
linear interpolation for spatial Sediment Accumulation Rate (SAR) predictions. In spatial pre-
dictions the RF provides far more accurate predictions, however Mitchell et al. (2021) mentions
that the RF may not be the best suited regressor for spatial prediction with SAR data as the
averaging of data between trees results in predicted values converging within the range of
observed values. This study by Mitchell et al. (2021) provides an insight into the possibilities
using ML models, specifically the RFR model, with sedimentation data, although the predic-
tions made are on a spatial scale and not a temporal scale. Mitchell et al. (2021) was able to
predict the SAR to relatively high standards, however the restriction to the random forest re-
gression model and the lack of filtering and selection of features hampered the results. In this
thesis the aim is to predict sedimentation on a temporal scale, and multiple MLA’s are tested
as well as a wide range of features tested, filtered and selected to gain optimal accuracy.

Artificial Neural Networks (ANN) like Convolutional Neural Networks or Recurrent Neu-
ral Networks often provide good replacement for traditional models when used for the right
purpose with the right parameters. Compared to other ML algorithms, the Artificial Neural
Network (ANN) provides strong predictions using hydrological parameters and sediment in-
flow data (Idrees et al., 2021). EL Bilali et al. (2020) compares the ANN to a modified Universal
Soil Loss Equation coupled with a multiple linear regression (MUSLE-MLR) model for predict-
ing reservoir sedimentation trained with sediment yield data and physical characteristics of
the watershed, then validated with hydrological data. The ANN provides higher accuracy on
reservoir sedimentation predictions compared to the MUSLE-MLR. One of the main advan-
tages of the ANN in this comparison is that it does not require the extensive calibration as is
required for the MUSLE-MLR method. The comparison made by EL Bilali et al. (2020) shows
the room for improvement in this field of research, however the predictions made are on a
general scale computing for total loss of capacity, using only the water inflow and outflow as
well as the initial reservoir area as parameters for the ANN thus not taking into account the
local characteristics of the terrain. This thesis aims to predict the morphological behavior on
a far smaller scale being local predictions, and thus the comparison made by EL Bilali et al.
(2020) does not carry over entirely.

2.2.1 Machine learning and morphological parameters

By using geomorphological as well as geo-environmental parameters, Rahmati et al. (2017)
found that the RF and Support Vector Machine (SVM) models showing best performance for
predicting erosion on for small man-made reservoirs. These models were found to give the
best performance and provide robust predictions under a change of the sample data set, show-
ing the models capability of predicting the effects of morphological processes using geomor-
phological parameters. Rahmati et al. (2017) also states that the RF and SVM models provide
sufficiently accurate predictions for the assessment of gully erosion. This thesis aims to com-
plete a very similar task, however the problem will be a regression problem and the main mor-
phological process to be assessed is underwater sedimentation, where in the case researched
by Rahmati et al. (2017) this was erosion.

Asadi et al. (2021) used geomorphological and river discharge information as parameters
for six different ML algorithms to predict suspended sediment load in rivers. Principal Com-
ponent Analysis (PCA) is used to select optimal independent features. Gaussian Process (GP)
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and Evolutionary Support Vector Machine (ESVM) showed the highest accuracy for predic-
tion of suspended sediment load on a basin scale. The geomorphological parameters used
in the prediction were profile curvature, LS factor (Slope Length and Steepness factor (Pana-
gos et al., 2015)), longitudinal curvature, flow accumulation parameters, stream power index
(a measure of the erosive power of flowing water), Strahler order (mathematical system for
ordering streams (Melton, 1959)), aspect, and vertical distance to channel network. These pa-
rameters can be seen in one of the studied sub-basins in figures 2.4 and 2.5.

Figure 2.4: Parameters extracted from DEM by Asadi et al. (2021)

11



Figure 2.5: Parameters extracted from DEM by Asadi et al. (2021)

As seen in figures 2.4 and 2.5, there are features that correlate to the distance from the
valley bottom (e.g. Stream Power Index, Vertical Distance to Channel Network) while other
features (Curvature) show correlation to the local geographic properties. The geomorphologi-
cal features used by Asadi et al. (2021) will be trialed in this research along with other features,
however Asadi et al. (2021) studied the relation of these features to erosion, a morphological
process different than that taking place under the water surface in reservoirs.

Figure 2.6: Improvement of predictions by Asadi et al. (2021)
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The Figure 2.6 shows the improvement of the predictions of suspended sediment load in
various locations in a watershed. The left plot shows the predictions made by solely corre-
lating the stream discharge to the suspended sediment load, while the accuracy in the right
figure shows the prediction accuracy obtained using the geo-morphological features shown in
figures 2.4 and 2.5. This thesis aims to perform a prediction using geo-morphological param-
eters where most existing methods use mainly hydrological parameters. Asadi et al. (2021)
has succeeded in a very similar field, showing there is plenty room for improvement when
it comes to understanding and predicting morphological behavior and the use of machine
learning models for this purpose.

Jagers (2001) has stated that for the purpose of morphological predictions, the positive
and negative aspects of using neural networks are opposite of using 2D or 3D mathemati-
cal models. This is mainly regarding the easy-of-use versus the required data, and demon-
strates that ML algorithms have the potential to compensate where the mathematical models
are systematically lacking. A study on predicting sediment density with RF by Graw et al.
(2021) describes the advantage of binning observations together in grid cells of pre-defined
size. The training procedure will return inflated correlation coefficients if the observations are
not binned properly.

Additionally, Graw et al. (2021) places each selected feature on a individual predictor grid.
The median prediction error is then recorded per grid to validate the feature on that grid. The
median predictor errors per grid are shown in Figure 2.7. The figure shows the correlation of
the individual grids to the prediction error, along with the ensemble grids. As some individual
grids obtain higher error than others, the ensemble grids generally decrease in error as the
amount of predictors increases. Above a certain number of predictors however, the error does
not decrease significantly as is seen in the circled area in Figure 2.7. Random noise grids are
added to establish a maximum median error for the predictor grids.

Figure 2.7: Predictor grid median prediction error (Graw et al., 2021)

Selecting the most relevant features in this manner is especially useful when using RF Re-
gression models due to the averaging between trees (Mitchell et al., 2021), as well as Support
Vector Machine models (Sahoo et al., 2021). In the case of machine learning problems like mor-
phology models where many parameters affect the dynamics of the situation in sometimes
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unknown ways, the selection of the most effective feature set is crucial as the most important
features are unknown beforehand.

2.2.2 Support Vector Regression

.
Support Vector Regressor (SVR) is a machine learning regression methodology in which a

symmetrical loss function is used for penalizing all wrong estimations. A function is created to
match data points, and an area of margin with a minimal radius is created around the function.
When any data points fall outside this radius of margin, these points are penalized, and points
within the margin are not. The error is absolute, meaning the location of the points relative to
the function does not matter. One of the main advantages of the SVR is its ability to generalize
problems, while being able to predict with high accuracy. Additionally, the computational
complexity of the algorithm is independent of the amount of dimensions provided with the
input space.

As where the Support Vector Classifier (SVC) solves a classification problem providing
an output from a predefined set, the SVR is a generalization thereof, returning a continuous
valued output. Awad and Khanna (2015) In the Figure 2.8 below, a one dimensional SVR
example is shown.

Figure 2.8: Support vector regression one dimension (Awad and Khanna, 2015)

The continuous valued output is computed by a function approximation, produced by the
SVR as an optimization problem where the model searches for the function fitting the data
points with margin on the smallest radius, and at the same time minimizing the prediction
error. The image below demonstrates the effect of under and overfitting a dataset using orders
of polynomials. Awad and Khanna (2015)
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Figure 2.9: Under and overfitting lines (Awad and Khanna, 2015)

The Figure 2.9 shows three lines of various order polynomials. The 0th order polynomial is
a function of y having only one value, and thus being a horizontal line. The 1st order polyno-
mial is a straight line with an angle, thus already being able to adapt somewhat to obtain the
lowest error relative to the data points. The 4th order polynomial produces a highly accurate
prediction while maintaining a smooth profile. The higher order polynomial passes through
all data points and thus does not contain any error. When the pattern of the dataset is contin-
ued and new points are added however, the 4th order polynomial will have a high chance of
predicting with a small error while the higher order polynomial will likely exclusively work
on the original dataset, thus overfitting the data Awad and Khanna (2015).

To compute smooth solutions and prevent overfitting, weights are added to the vectors
in the SVR which then act as regularizing terms controlling this smoothness, and essentially
the order of the solution. To minimize the prediction error, the SVR uses and e-intensive loss
function which penalizes the larger errors. The radius for the margin is determined by the
value of e. A smaller radius means more support vectors as the support vectors are those that
fall outside of the margin. The smaller value of e with the smaller margin thus also gives a
smaller tolerance for error. When working multidimensional data with nonlinear functions,
the data is mapped into kernel space. Awad and Khanna (2015) The kernel of an SVR model
is the function which transforms the space if the data the model is trained with. The new
transformed space contains cores which are then used to fit the best function to fit the model.
There are different types of kernels, each with different coefficients, and thus different kernels
will perform stronger on different datasets. (Huang et al., 2021)

To evaluate forecasting models, four types of error metrics can be distinguished: scale de-
pendent metrics, percentage-error metrics, relative error metrics, and scale-free error metrics
(Hyndman et al., 2006). Depending on the data and the model used to make the forecast, an
error metrics must be chosen to best fit the required situation. Hyndman et al. (2006) suggests
that the Mean Absolute Scaled Error (MASE) is the best accuracy metric since it is the only
accuracy measurement that can be used for all forecast methods and types of series.

Current mathematical models for predicting sedimentation are heavily dependent on flow
and sediment related hydrological parameters. To prevent the necessity of this information
and the required expertise needed to adapt and analyse such models, a ML model can be used
to find these relations from the supplied data to make these predictions. To date, the majority
of sedimentation research done using ML adopts hydrological and geological parameters such
as soil types, suspended sediment values, and flow velocities. Predictions of morphological
processes using ML techniques are currently not implementing time steps. The use of time
steps in combination with ML is something that will be trialed in this research, to attempt to
expand the range of possibilities of the ML model for morphological predictions.
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There is a lack of knowledge on the use of geomorphological parameters with ML algo-
rithms as a lot of computational effort is required for such solutions at the moment, as the
state of art is developing. This thesis is focussed on specifically that, appending to the current
knowledge available. As previous estimations of sedimentation levels in Lake Alajuela are
very global and done without the available DEMs and computational possibilities presently
available, this thesis provides new insight into the sedimentation occurring in Lake Alajuela,
as well as predictions of local morphological changes.
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Chapter 3

Methodology and Data

This section will provide an overview of the methodology required to predict morpholog-
ical changes in rivers or lakes using a machine learning algorithm and historical bathymetry
data. In Figure 3.1 the pipeline is presented, and details per step will be provided in the sec-
tions of this chapter

Input

pre-processing

Feature extraction

Feature selection

Training ML model

Validating
ML model

Predicting future sedimentation

Output

dt

Figure 3.1: Research Pipeline
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3.1 Data used

A range of years in historical bathymetric models and hydrological datasets were used for
this research. These were point clouds of various resolutions, with the time of measurement
ranging between 1928 and 2018. The decision was made to utilize the datasets of the years
1997, 2008, 2012, and 2018 since the earlier datasets were of much poorer quality than the
later pointclouds. The different datasets were also gathered with different equipment, and
processed with the use of different software and pipelines. The earliest model was made of
the terrain when there was no water yet in the lake, and thus measured by hand having a large
margin of error. The 1983 dataset was made with single beam sonar equipment, but of very
low processing quality. The 1997 and 2008 datasets were also measured with single beam echo
sounding, however these had to be backwards engineered from triangulations which have
resulted in the estimated margin of error to be between zero and 0.3 meters. The 2012 and
2018 datasets contained the bathymetric measurements made with high precision multi beam
sonar equipment, and this data could directly be implemented into the pipeline giving the
models a much smaller estimated margin of error. All datasets were shifted vertically slightly
due to realignment, however this is believed to have left a maximum error of 0.1 meters. The
table below provides an overview of the datasets that were available:

year type resolution [m] Level of Detail Margin of Error [m]
1928 TIN unknown Very Poor unknown
1983 TIN unknown Poor unknown
1997 TIN 1.0 High 0.3
2008 TIN 1.0 High 0.3
2012 Bathymetry 3.0 High 0.1
2018 Bathymetry/LiDAR 3.0 High 0.1

Table 3.1: Overview of datasets

The sediment front entering the basin is moving inward and can be clearly identified in
the images of Figure 3.2, at the top of every image. Even though the start of the sediment front
is visible in the 1983 dataset as well, the level of detail is not sufficient to distinguish the scale
of morphological features that can be seen in the later datasets. The resolution of the 1928 and
1983 datasets are unknown, however as can be seen in Figure 3.2 the difference between 1983
and the later years is substantial. As the bed of the lake is covered in humps, pits and gulleys in
the data from 1997 to 2018, the same area in the 1983 dataset contains visually distinguishable
triangles. The resolution of the datasets in 1997 and 2008 are higher than that of 2012 and 2018.
The difference in this resolution however in not of importance as the morphological are of a
larger scale and are equally distinguishable in both resolutions, thus meaning these are of the
same level of detail.

The two most recent datasets were provided with the original bathymetric readings, whereas
the 1997 and 2008 datasets had already been triangulated. The triagulated data has the advan-
tage of being pre-filtered, processed and ready to use, however it is not possible to trace back
artifacts or locations of interest in the original measurements.
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(a) 1983 (b) 1997

(c) 2008 (d) 2012

(e) 2018

Figure 3.2: Chagres river mouth in different datasets of different quality

Average yearly water discharge in the inflowing rivers as well as the water discharge pass-
ing though the dam, being the outflow of water from the lake were used for analysis and pre-
diction of sedimentation. In the boxplots below, the collected values of morphological changes
occurring in different areas of the reservoir are shown, as well as that of the total reservoir. The
data points used for these boxplots are the interpolated points from the DEMs of the various
years. The interpolated points all fit onto the same grid, and thus the differences between the
years show the morphological changes.
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Figure 3.3: Sedimentation levels of datasets

As seen in Figure 3.3, around the river mouths the majority of morphological activity is
sedimentation, as the average height is increasing. The morphological activity in the total
reservoir is centered around zero which should be expected. The lake is sufficiently large to
prevent any sedimentation from raise the average morphological activity of the lake visible in
a plot showing the condensed data on a small scale. The violin plot for the Rı́o Chagres shows
a second large peak in sedimentation values round 1.5 meters. The changes in between these
datasets have passed over 11 years, and the uneven distribution of the sedimentation in the
is likely due to several heavy erosive events occurring upstream causing waves of sediment
to flow downstream in different magnitudes. The rest of the violin plot, centered around zero
are the more mild processes occurring in all recorded years.
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Figure 3.4: Visual representation of morphological changes in Lake Alajuela in the years 1997
to 2018

As shown in Figure 3.4 the edges of the lake contain a large amount of strong morpho-
dynamic behavior. These edges are prone to mudslides and erosion, but are also the areas
more likely to contain measurement errors due to shallow and muddy water and vegetation.
The 2018 dataset additionally contains Lidar measurements along these shallow edges, which
the other datasets do not have. This may be a factor causing differences between the years of
2012 and 2018. The deepest area of the lake, being its center, has little to no changes in height,
and thus little to no morphological activity. This area is removed far from all gullies, creeks,
and other activity near the shores, and has a relatively stable height with very little water flow.

3.2 Programming details

This research was done in three different programs. All code for the Python machine learn-
ing pipeline and the C# feature extraction pipeline are available at:
github.com/LMarinusL/MorphologyPredictor. This section will give an overview of the tools
used and how the tools were utilised.

3.2.1 FME

FME was used for data preparation and interpolation. The data sets of all years were
clipped and interpolated to a grid of fixed dimensions. This pipeline in FME essentially re-
moves all small noise from the grid due to the Triangulated Irregular Network (TIN) that
is created with a certain ambiguity. All files are then sent to C# in this fixed grid and for-
mat, allowing the C# code to work for all data sets without needing altered parameters when
changing data set.

3.2.2 Unity

Unity works with C# code with which the grids from FME could be imported.

Mesh

Unity contains a Mesh class which is very useful for visualising results for the purpose of
debugging, but also analysis of intermediate results. When a mesh is initialized, the vertices
used in the mesh are automatically assigned normal vectors. These normal vectors can then
be used to compute the slope and aspect of the vertices.
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3.2.3 Python

The machine learning phase in the pipeline is all done using python, with various libraries.
For all machine learning functionalities, the scikit-learn library was used. This includes the
training, testing, and validating of various machine learning algorithms. Additionally, scikit-
learn contains functionality for analysing results, hyper-parameter tuning, pre-processing,
pipeline construction, error metrics, and feature importance computations. Pandas was used
to read the imported file and transform the original text file into a directly usable database
with column indices. The data was then organized with pandas, and with the indices spe-
cific columns are easily extracted and used in different prediction, training, and visualisation
functions in the python code. The Matplotlib library allows for custom plots and graphs for
visualising results. For on the spot computations and corrections to the data, Numpy library
was used.

3.3 Data preparation

The supplied data has already been processed thoroughly by the cartographic department
of the Panama Canal. The provided pointclouds are thus absent of noise, and could directly
be used for further steps in the data preparation process. The TIN datasets came in the form
of dense pointclouds, which needed to be thinned and interplolated to TINs again, backwards
engineering the data to the FME TIN structure. The further preparation of data was done in
FME. All datasets undergo the same process of calibration, thinning, triangulation, clipping
and interpolating to a grid. This way all datasets contain points on the same locations, allow-
ing for direct comparison. These steps will now be explained in further detail.

3.3.1 Calibration

Using data sets that date back more than 20 years in time, there are misalignment issues
can cause issues especially when analysing the morphological changes that have taken place.
On the horizontal plane, all datasets are accurately alligned, however there is a large difference
in vertical allignment between the individual datasets as well to the actual height in the area.
To calibrate the datasets, different methods were trialed and compared.

Points of reference

First, multiple points were chosen in the lake of which the suspected difference in elevation
over time was estimated to be minimal. Such points were located near docks, where boats
must always be able to pass with a minimal draft, and also these points need to be far away
from the river mouths feeding water and sediment into the lake.

Center of lake

The methodology used by the Cartography Department of the Panama Canal suggests that
the least amount of sedimentation occurs at the center of the lake. Here the depth is greatest,
and the change of sediment sinking and settling here is the lowest due to the distance from
the mouths of the rivers.

Satelite Lidar reference

An attempt was made to calibrate the datasets using Lidar measurements from the open
source ICESat database. This dataset contained relatively little points along the lake however,
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and since solely the 2018 dataset contains Lidar points of the surrounding area, the other years
could not be properly calibrated using the ICESat reference points.

Method used

To obtain the morphologcal changes being the change in height between the datasets, the
calibration of the datasets to the real world is not relevant. The datasets were ultimately cal-
ibrated using areas in the center of the lake, however solely areas that were seen to undergo
very little change in morphology. That means that humps, pits, and ridges have not changed
in these areas in 20 years. All cells within these areas were then compared between the years,
and the datasets were calibrated to result in minimal change of height. This means different
points were chosen where little morphological change is expected, and all cells in a radius
of those points are compared between the years and then calibrated to result in the smallest
possible difference.

To validate the changed calibration, the morphological changes in the terrain along with
the hydrological data were analysed, and the conclusion was made that the new calibration
provided far more realistic results in both the areas of study as the other distinct areas of the
reservoir such as the basin in front of the dam and the Salamanca area containing a harbour.

3.3.2 Thinning and triangulation

Depending on the dataset, a certain amount of thinning was done to make the dataset
workable while staying as true as possible to the original values. The datasets that came in the
form of TIN’s were extremely dense point clouds with faces of points representing the faces
of the triangulation. These datasets underwent a thinning process, after which a TIN was
made using FME, of which the result contained the same shape as the original pointcloud,
but with a far more usable size and format. The datasets containing the bathymetric single-
beam measurements did not undergo the thinning process, since these point clouds did not
contain added points like the TIN pointclouds. These bathymetric measurements were then
trianglulated as well.

3.3.3 Clipping

All datasets are clipped to the same area. This ensures that between every year of data
available, the same point in another year can be compared. The final clipped area is the inter-
section of all horizontal planes of the different DEMs.

3.3.4 Grid projection

To be able to compare points between years, and the properties that will be assigned to
them in feature extraction, all datasets were projected on the same grid. This ensures the same
amount of data points in the same locations for all data sets, and providing clear visualization
of the computed features. The even spread of cells prevents lack of data points where the
original triangulation may have larger triangles.

3.4 Feature computation

Features are added to the cells of the grid per year. These features are all normalized
before training the MLA. This section will give an overview off the different types of features
extracted from the models and added to the grid cells.
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3.4.1 Hydrological features

The first type of features explained are the features extracted from the DEM’s that are
connected to the hydrological characteristics of the lake.

Runoff score

The runoff score per cell is a hydrological property that is computed using the model,
but is regarded as a hydrological feature. The runoff score is an important feature in erosion
models, as it shows where water will flow on a terrain. Gravity leads water down the path of
the largest slope, and in more complex or smaller slope situations the path of least resistance.
To mimic this in the DEM, water drops are simulated at every cell of the grid, which then flow
a specified number of times to the cell that is positioned lowest of its neighbours relative to
the distance between the two cells, thus following the steepest slope.

This model represents an underwater terrain, thus the runoff score will not have the same
effects on erosion on the terrain as on dry land since water will not flow in the same directions.
Loose sediment moves up and down the water column by forces of downward gravity and
upward forces due to eddies in the water. Assuming the sediment will eventually move down
the slopes of the underwater terrain, the runoff model can still provide strong correlation to
the morphological processes. The runoff is modelled per pixel, resulting in narrow one pixel
flow lines. The runoff score in the terrain is computed with single directional flow using the
cells 8 neighbors. The result of this are runoff patterns that are concentrated strongly along
certain pixel lines of cells. To compute the runoff feature layer for the grid, a runoff drop is
initiated from every cell of the grid to get a complete runoff layer for the terrain. In addition
to this, runoff drops are initiated at the locations of the different river mouths, the amount of
drops dependent on the discharge that flows from this river.

Average runoff score

The runoff scores at every cell is averaged amongst the neighbouring cells in order to com-
pensate for the single cell lines that builds up the original runoff model. The sum of the runoff
scores of neighbouring cells within a distance r is divided by the amount of neighbouring cells.
The Average runoff score within the distance r is then added as a feature to the cells of the grid
for various values of r. In Figure 3.5 below, the averaged runoff scores are demonstrated on
different scales of averaging.
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Figure 3.5: Averaged runoff scores

Flow path related features

Using the same principle as is done with the runoff score, the flow path of the rivers is
simulated as if it was above water surface of the reservoir. This provides us with a likely flow
direction under water, since water flow will encounter the least resistance in the deepest part
of the river bed where the runoff score will be highest. Using this river flow channel, several
features are computed including the the distance from a cell to the river channel, the river
length at that point on the river channel, a feature that combines the river length and distance
to the channel which is the weighted Manhattan distance to the river mouth, and the aspect of
the slope of that cell relative to the direction of the river channel.

• Channel length - When the channel is constructed following the runoff pattern, the dis-
tance between every newly added cell and the previous cell is added to the total length
of the channel. this provides every vertex of the channel the cumulative length it has
up until that point. For all cells in the grid, the channel vertices are iterated to compute
which vertex is closest to that cell, and then the channel length at this vertex is added
to this grid cell as a feature. The visual representation of the feature values for the Rı́o
Chagres site is shown is Figure 3.6.

Figure 3.6: Length of flow path for dataset years

• Distance to channel - Similarly, for every grid cell the channel vertices are iterated for the
closest vertex to that cell, and the distance to the channel (the closest vertex) is added as
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a feature for that cell. The result is shown in Figure 3.7.

Figure 3.7: Distance to flow path for dataset years

• Weighted Manhattan distance to river mouth - Combining these two features, the length
of the river is added to distance to the river channel to the power of 1.5. This power
is added to magnify the effect of the cells being further away from the flow channel,
therefore amplifying the importance of the cells being closer to the channel. The values
of the Weighted Manhattan distance to the river mouth for the Rı́o Chagres are visualized
in the image 3.8.

Figure 3.8: Weighted Manhattan distance to river mouth for dataset years

• Aspect relative to channel - The aspect of slopes in the terrain is relevant to the direction
in which water flows past it. This is why a feature added to the cells is the cells own
aspect minus the aspect of the closest segment of the channel, which is the segment
connected to the vertex of the channel closest to the current cell. The feature values for
the relative aspect are visualized in Figure 3.9.

Figure 3.9: Relative aspect angle to flow path for dataset years

Depth

The local depth is an important feature, with a strong effect on the hydrological and mor-
phological processes occurring in the river mouth. The flow velocity is directly correlated
to the sedimentation process, as flow determines the amount of sediment that the water can
transport. No exact water depth is used here, since this fluctuates strongly during the year
depending on the amount of rainfall, as well as the operations of the canal and the amount
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of water passed through the dam. The rule of thumb maintained is that all height values in
the grid should fall below the vertical depth value, in order to prevent positive and negative
depth values.

3.4.2 Geometric features

Geometric features are extracted from the models, being more standard properties which
can influence morphological processes.

Slope and aspect

The slope and aspect of the cells in the terrain mesh are extracted from the mesh class
in Unity. These are then extracted a second time from the same terrain after smoothing the
terrain on several degrees. This allows small and large features to be recognized in the terrain.
Additionally, the relative aspect is computed, being the local aspect value relative to that of
the surrounding cells. when in a stream, there is an area with an entirely different aspect of
slope compared to the rest of the area, morphological changes are likely to occur.

Curvature

To compute the curvature of the terrain, the second derivative value of the surface using
the 8 neighbouring cells. The formula shown in 3.3 is used, being the same formula used for
the curvature tool in ArcGIS (Esri).

α = [(A2.z + C2.z)/2 − I.z]/L2 (3.1)

β = [(B1.z + B3.z)/2 − I.z]/L2 (3.2)

Curvature = −2 ∗ (α + β) ∗ 100 (3.3)

The curvature is then computed on several scales, larger scales meaning the curvature is com-
puted using height values from cells spaced further away from one another. The different
scales of the curvature are demonstrated in the Figure 3.10 below. The border of the terrain
contains a constant value, due to the curvature taking the values outside of the DEM’s borders
as zero.

27



(a) Curvature on small scale

(b) Curvature on large scale

Figure 3.10: Curvature on scales

Relative height

To allow the algorithm to recognize local humps, pits, and other small morphological fea-
tures in the terrain, the relative height is computed at each cell. This is done by taking the
height of the current cell and dividing it by the weighted average height of the 8 neighbouring
cells. The weight used to average the neighbouring cell height is the distance to the current
cell. This results in the formula 3.4 where I.z is the height of the current cell, Cn.zn = 1..8 are
the height of the surrounding cells, and the dist(A, B) function is used to compute the distance
between two cells.

RelativeHeight =
I.z

∑8
n=1 Cn.z/dist(Cn, I)

(3.4)

3.4.3 Temporal features

When the data available provides coverage over a large variety in a range of years, tempo-
ral features can be added to the data. Such features can include rainfall, river discharge, dam
discharge, and sediment flux data. In the case of this thesis, and the data available for Lake
Alajuela, there is an insufficient variety of temporal data available, and these features were
thus not used for training the model.
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3.5 Model and feature selection

To select the combination of model and feature selection, several methods were used. In
this section these methods will be explained.

3.5.1 Feature selection criteria

Feature importance based on mean decrease in impurity

The random forest regression method can be used to rank the features based on the amount
of times these appear in the nodes of the random forest regression trees. This then not only
allows for defining the most important features for the RFR, but also provides a benchmark
which can be used to set as a minimum level of performance. This minimal level of perfor-
mance is determined by introducing a random feature, being a feature with a purely random
value at every cell. Any feature showing a lower importance than the feature with these ran-
domized values is thus clearly not correlated strongly enough to the morphological changes
occurring, and can be disregarded.

With the features that show high importance for the Random Forest Regression model,
different tests can then be performed with this baseline of features to use for the different
models, to see the effect of the absence and presence of these features. The effect of the features
is tested on all models starting with all features, computing the impurity, and removing the
least important feature. With this new set of features the predictions is then made once again
and impurity computed. This process is iterated until only one feature is left.

Analysing feature selections

To analyse the effect of certain types of features; curvature, river path, or runoff score re-
lated features, one or more of these groups of features was removed. The resulting prediction
can then be analysed with other feature selections to see the type of inaccuracies are caused
by the lack of a specific feature type.

Besides excluding specific clusters of features, individual features are also incrementally
excluded, with an analysis of the result at every step. Performing this process several times,
allows for a view of what the best performing feature selection may be, for the different models
tested. In the figures below, an overview is presented of the SVR, Multi-Layer Perceptron
Regression (MLPR), and RFR models performing with different numbers of features, where
only the features with the highest importance are kept.
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(a) Predictions with 5 features

(b) Predictions with 9 features

(c) Predictions with 11 features

(d) Predictions with 13 features

Figure 3.11: Predictions for range of features at Rı́o Chagres
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(a) Predictions with 5 features

(b) Predictions with 9 features

(c) Predictions with 11 features

(d) Predictions with 13 features

Figure 3.12: Predictions for range of features at Rı́o Pequenı́

From the visual comparison over ranges of different sizes of feature collections, and using
different ML models, strong and weak points can be found for the different predictions. For
a smaller number of features, the predictions remain relatively simple and the effects of the
individual features can often be recognized. Using 11 features, a distinct advantage of the
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SVR can be recognized in the Rı́o Chagres basin, as the SVR predicts a large sediment hump
around the correct area and does not predict any activity in the rest of the basin, where the
MLPR predicts erosion and the RFR predicts more sedimentation in other locations.

In the Rı́o Pequenı́ basin tests, all models predict the general area of sedimentation cor-
rectly when using more than 7 features, and the mayor difference in performance here is
determined by the amount of errors made in the prediction. Adding features can cause the
models to predict dynamic morphological behavior incorrectly, and this is what occurs for the
MLPR model where the shape of the sediment location is no longer predicted due to too many
features affecting the prediction. To add to this visual analysis of the predictions made, the
RMSE values of the predictions are shown in the Figure 3.13.

(a) RMSE values in meters of the predictions for the Rı́o Chagres Mouth

(b) RMSE values in meters of the predictions for the Rı́o Pequenı́ Mouth

Figure 3.13: RMSE values [m ]

Although the two areas of study and the morphological processes taking place in these
individual locations are very different in nature, the RMSE range of the predictions show
similar patterns. In both cases the MLPR with 5 to 8 features seems to be presenting a relatively
accurate prediction. The SVR gets the relatively low RMSE for a wider range of the amount of
features used, while the RFR performs best with a much larger amount of features. Depending
on the model chosen, the number of features used in the final prediction varies. The flow
parameters are the most insignificant features in both cases, and thus these parameters are
disregarded. To take the river and dam discharge into consideration, these parameters are
added to the prediction analysis in a later stage. The remaining features are not as equally
ranked in the two cases.

Some of the features are however very similar such as the curvature and the average runoff,
and these features are present on various scales. To reduce the total number of features, only
the most important scales of these features are kept in the prediction. All features that are
associated with the river path are deemed as crucial to the mobility and adaptability of the
prediction, and are thus kept in both predictions.

3.5.2 Model selection

Three different machine learning algorithms were tested in the course of this research.
Before testing the models however, the type of problem had to be defined as either a classifi-
cation or a regression problem. Due to the numeric nature of predictor and prediction values,
the morphological prediction is a regression problem, and thus regression algorithms were
tested. The methods tested were the Support Vector Regression (SVR), Multi-layer Perceptron
Regressor (MLPR), and the Random Forrest Regression (RFR). The Gaussian Process Regres-
sion (GPR) was also initially trialed, however this model performed far worse than the other
models and was excluded from the further research.
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Criteria

Comparing the different regression algorithms was done using various criteria.

• Numeric accuracy
To compare the accuracy between predictions, the RMSE computed between the pre-
dicted height difference and the actual height difference of the 2012 and 2018 DEM’s,
while training the models with the data between 1997, 2008, and 2012. This way the
testing of the models is essentially mimicking the future sedimentation predictions the
pipeline is designed to do. This is done for the two river mouths of the reservoir, which
have the most significant morphological changes. The RSME for the river mouths is
computed using all grid cells allocated within a specified area that is considered part of
the river mouth.

• Probability accuracy
To test the algorithms capability of predicting the location of high sedimentation lev-
els, a probabilistic approach was taken. The model is trained several times over, each
time predicting the sedimentation for the same region. The areas of highest probability
can then be compared to the actual sedimentation that occurred, and whether this coin-
cides with the real locations at which the sedimentation of more than a specified amount
occurred. The amount of cells for which the algorithm either correctly predicts a high
or low sedimentation value, divided by the total number of cells is the accuracy. The
formula for the accuracy in this analysis is given in the equation 3.5 below.

Accuracy =
∑ CorrectHigh + ∑ CorrectLow

∑ AllCells
∗ 100 (3.5)

CorrectHigh = Predicted cell value AND actual cell value are above threshold
for at least an x amount out of all iterations
CorrectLow = Predicted cell value AND actual cell value are below threshold
for at least an x amount out of all iterations

The likeliness of the model to predict relatively high levels of sedimentation or erosion in
a specific region regardless of the magnitude thereof is an valuable aspect of a prediction
as this highlights the areas of interest. Natural events have a strong influence on the
magnitude of sedimentation levels, but the location and the total amount of sediment
likely to end up in a location can be predicted and shown in the figures 3.15 and 3.14
below.
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(a) Actual changes on 2 meter threshold (b) Probability with SVR

(c) Probability with MLPR (d) Probability with RFR

Figure 3.14: Prediction probabilities for Rı́o Pequenı́
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(a) Actual changes on 2 meter threshold (b) Probability with SVR

(c) Probability with MLPR (d) Probability with RFR

Figure 3.15: Prediction probabilities for Rı́o Chagres

As seen in the figures, the SVR obtains the highest accuracy for both study areas, and
tends to refrain from under or overpredicting as done by the RFR and MLPR. The ac-
tual percentage obtained is influenced by the benchmark set for the high sedimentation
classification as well as the bounds of the area of study. As can be seen in the actual rep-
resentation of the sedimentation in both figures, the benchmark chosen contains a clear
area of interest, with the benchmark sufficiently high to focus the performance trial on
the area where the new sediment enters the reservoir from the inflowing river.

• Sensitivity/robustness
To test the sensitivity and robustness of the different models, 2 tests were performed.
First off, the predictions were made using the data to which an increasing amount of
noise was added. Secondly, besides studying the Rı́o Chagres, the models were tested to
perform in mouth of the Rı́o Pequenı́. This river is much smaller than the Rı́o Chagres,
carries less sediment, and the morphological characteristics of the lake section the river
flows into is very different to that of the Rı́o Chagres.

Selected model and features

Analysing both the local and the global numeric predictions, the model is first chosen.
Even though the lowest RMSE value is obtained by the MLPR as seen in Figure 3.13, a vi-
sual analysis of the local predictions in figures 3.11 and 3.12 shows that the SVR provides a
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more stable prediction. The SVR gets a low RMSE for a wide range of amount of features,
and the local predictions show the extreme sedimentation values in the correct locations while
the MLPR brings high levels of erosion and sedimentation where there should be no morpho-
logical changes. The RFR does not obtain a sufficiently low RMSE, and the local predictions
along with the probabilities of the predictions are not as accurate as the SVR or the MLPR.
The probabilistic accuracy of the predictions as shown in the figures 3.15 and 3.14 all show
the SVR to provide the highest percentage of accuracy for predicting the high classification of
sedimentation under a benchmark of 2 meters.

The SVR model is thus chosen as the model to perform the further predictions with for
both the Rı́o Chagres and the Rı́o Pequenı́. For the SVR, a very similar RMSE is obtained with
5 to 14 features, and thus the local and probabilistic accuracy is used to select the amount of
features used as well as the final set of features used. This will combine the visual analysis of
the tests with a concrete numeric percentile accuracy value

For the Rı́o Pequenı́ and the Rı́o Chagres cases, different sets of features are used. This is
due to the fact that the magnitude of the these two rivers is different, as well as the geological
characteristics. All factors of these two rivers are on different scales, including the water flow,
sediment flux, width and depth. These influence the hydro dynamics of the water flowing
through the terrain, as well as the morphodynamics changing the terrain. Per river, the opti-
mal set of features is thus defined. The final set of features for the mouth of the Rı́o Chagres is
the following list of 14 features:

• depth

• flow path length

• Manhattan distance to river mouth

• distance to flow path

• runoff score - smoothed on 10 cells

• runoff score - smoothed on 5 cells

• aspect

• smoothed slope

• Angle respective to flow path

• runoff score - smoothed on 2 cells

• relative height - radius 4 cells

• relative height - radius 2 cells

• curvature - radius 4 cells

• slope

These features are chosen as they provide the best probabilistic local prediction, as well as a
relatively low RMSE.
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The final set of features for the mouth of the Rı́o Pequenı́ is the following list of 12 features:

• slope

• Manhattan distance to river mouth

• depth

• flow path length

• runoff score - smoothed on 10 cells

• smoothed slope

• relative height - radius 1 cells

• runoff score - smoothed on 5 cells

• distance to flow path

• curvature - radius 4 cells

• relative height - radius 2 cells

• relative height - radius 4 cells

This set of features is chosen based on the low RMSE value obtained, as well as the probablistic
accuracy of the local prediction. The local predictions vary only slightly for the Rı́o Pequenı́
prediction. The prediction contains the best local probablistic accuracy for 12 features, as
more features in the training of the model provide for a more stable prediction in this case.
An overview of the features per study area with the related Gini importance in percentage is
shown in the Figure 3.16 below.

Figure 3.16: Radar graph of feature importances in percentage for both river basins
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As seen in the Figure 3.16, the Rı́o Chagres case leans far more on certain features than the
Rı́o Pequeı́ case. This can be due to the fact that the morphological behavior in the Rı́o Chagres
basin is more dynamic, and thus the parameters that change with the computed flow path are
of much higher importance in this study case. The Rı́o Pequenı́ case has a more spread out use
of the parameters, and does not make use of certain parameters that the Rı́o Chagres model
does. In both cases most of the features related to the runoff model and flow path seem to be
of relatively high importance, magnifying the importance of a correct flow path computation
for the iterations of the predictions.
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3.6 Hyper-parameter tuning

In order to improve the SVR model performance, the models predictions were compared
for ranges of values for these parameters. The parameters tested are:

• kernel: The kernel selected is the methodology by which the algorithm fits the data.

• C: C is a regularization parameter used to penalize in the fitting process.

• epsilon: Epsilon determines the radius of the area in which no penalty is given to wrongly
predicted points.

• degree: This parameter is only used in combination with the poly kernel. The parame-
ter determines the degree of polynomials used when fitting the data. As mentioned in
Section 2.2.2, the degree can result in under or over-fitting when not chosen correctly.

First, a broad orientation was done testing all kernels for a selection of commonly used param-
eter values for the C and epsilon parameter values. A visual comparison of the predictions
made by the different kernels is shown in Figure 3.17.

(a) kernel: linear (b) kernel: rbf

(c) kernel: poly (d) kernel: sigmoid

Figure 3.17: Prediction probabilities for Rı́o Chagres using various kernels

The poly and rbf kernels are the only two kernels showing results within an acceptable
accuracy, and thus these kernels are then further tested to find the strongest parameter values.
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The largest influence on the results using the rbf kernel come from the C parameter. The
range of epsilon values show very little variety in the predictions, apart from extreme values
resulting in lower accuracy but the difference is practically negligible. The highest average
accuracy of the predictions made with the rbf kernel is obtained with parameters: C = 1 and
epsilon = 0.3.

(a) C: 10, epsilon: 0.1 (b) C: 1, epsilon: 0.1

(c) C: 1, epsilon: 10−7 (d) C: 5, epsilon: 10−4

Figure 3.18: Prediction probabilities for Rı́o Chagres with rbf kernel and range of different
parameters

Using the poly kernel, the best accuracy is obtained with a degree of 3. This is the default
value used, and in this case also the best fitting type of polynomials for the algorithm. The
highest accuracy obtained with the poly kernel is around 65%, lower than the accuracy ob-
tained with the rbf kernel. The results of the tests done with the poly kernel are shown in the
Figure 3.19 below.
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(a) degree: 2 (b) degree: 3

(c) degree: 4 (d) degree: 5

Figure 3.19: Prediction probabilities for Rı́o Chagres with poly kernel and range of different
degrees

The highest average accuracy for the Rı́o Chagres predictions is thus obtained with the rbf
kernel, a C of 1 and the epsilon value of 0.3. To validate the hyperparameters that were chosen
as the best set for the Rı́o Chagres study area, a hyperparameter grid search is also done for
the Rı́o Pequenı́ study area. The results for the different kernels are shown in the Figure 3.20
below.
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(a) kernel: rbf (b) kernel: poly

(c) kernel: linear (d) kernel: sigmoid

Figure 3.20: Prediction probabilities for Rı́o Pequenı́ with different kernels

Due to the more stable nature of the morphology in the mouth of the Rı́o Pequenı́, the
kernels in turn behave differently to the data. The linear and sigmoid kernels predict poorly
once again, although the linear kernel appears to obtain a high accuracy in the prediction.
This is not the case, as the large low value sedimentation area in this study area rewards the
low sedimentation prediction biased. The rbf kernel predicts significantly better than the poly
kernel in this case, whereas in the Rı́o Chagres prediction the two kernels initially obtained
more equal results. The sigmoid kernel does not achieve a high accuracy, but seems to predict
following a very different end strong pattern compared to the other kernels.

Although the prediction is too high, this results shows the sigmoid kernel has the potential
to be the best candidate in a slightly different type of prediction. Due to the critically bad
prediction made with the sigmoid kernel for the Rı́o Chagres however, the kernel is not a
candidate for this research. All kernels follow the general flow of the river in the Rı́o Pequenı́
basin, however the rbf kernel gets the highest accuracy. For the rbf and poly kernels a grid of
hyperparameters was tested to determine the best hyperparameter value set. A selection of
the results from these tests are shown in figures 3.21 and 3.22.
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(a) C: 1, epsilon: 0.5 (b) C: 1, epsilon: 0.1

(c) C: 5, epsilon: 0.1 (d) C: 10, epsilon: 0.1

Figure 3.21: Prediction probabilities for Rı́o Pequenı́ with rbf kernel and range of different
parameters

The model with the rbf kernel obtains a relatively high accuracy in all cases. The insen-
sitivity to the changing of the hyperparameters is likely due to the more simplistic approach
necessary to predict the sedimentation in the Rı́o Pequenı́ river mouth as the morphological
processes are less dynamic.
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(a) degree: 2 (b) degree: 3

(c) degree: 4 (d) degree: 5

Figure 3.22: Prediction probabilities for Rı́o Pequenı́ with poly kernel and range of different
degrees

As seen in Figure 3.22, the model using the poly kernel is largely dependent on the degree
as also found in the case of the Rı́o Chagres. A 4th degree polynomial obtains the highest
prediction accuracy for the Rı́o Pequenı́ mouth, however the overall result is lower than that of
the predictions made with the rbf. In the case of the Rı́o Pequeı́, the highest accuracy prediction
is thus obtained with hyperparameters very close to those used for the Rı́o Chagres, and thus
the hyperparameters chosen are:

• kernel: rbf

• C: 1

• epsilon: 0.3

3.7 Future prediction in time steps

Morphological processes do not occur in linear patterns. In rivers, an erosion or sedi-
mentation front will move up or down stream to adapt the slope of the river to the sediment
discharge, the sediment carrying capacity of the flow, and other parameters that may have
changed, altering this sediment carrying capacity. The location of the highest sediment depo-
sition rate is thus constantly changing, and the location depending on the terrain influencing
the flow.
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Since the variety in temporal range of the training data is rather small, we resort specifying
the water discharge per time step instead of the years. This eventually results in the same
format, since a prediction period of 10 years will require a specification for this period being
a large or small amount of rainfall. By analysing the training data, the amount of discharge
assumed by the model in each time step can be estimated, and thus the amount of steps needed
to be taken for an approximation for a period with a certain amount of total discharge can be
computed. To predict these time steps using terrain features of the previous years, the data
flow was designed as shown in Figure 3.23.

Input

Feature extraction Features per year

output data featuresPrediction features

Output file

1997-2008 diff - 1997 features

2008-2012 diff - 2008 features

2012-2018 diff - 2012 features

Prediction year features

2018 features

MLAxyz of prediction

1997-2008 diff - 1997 features

2008-2012 diff - 2008 features

2012-2018 diff - 2012 features

2018-2024 diff - 2018 features

2024 features

training datapred data

Figure 3.23: Data flow
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At the start of the pipeline, the original input datasets go though the feature extraction
process. Three data years can be used to train the machine learning algorithm. The features
of the year 1997 are used to predict the difference in terrain elevation between 1997 and 2008.
The same applies for 2008 and 2012, leaving the 2018 data with solely features, and no value
for the difference in elevation. The 2018 features are used for the prediction to be made for the
changes in elevation between 2018 and the next predicted year, in this case 2024. The predicted
terrain for 2024 is then sent as an .xyz file to the feature extraction, from which the new layer
of features can be used to make the next prediction and with that completing the first time
step in the prediction.

This process can then be iterated, basing every consecutive prediction on the morphologi-
cal characteristics of the terrain affected by the previous prediction. This enables the algorithm
to predict the moving sedimentation and erosion fronts. In situations with large amounts of
moving sediment containing extreme values in the training data, predictions can be done in
intermittent steps by scaling the predictions. Scaling predictions and splitting the prediction
into smaller steps prevents extreme values from blocking parts of the channel and creating un-
realistic humps or artifacts in the terrain. In this matter the quantities of predicted sediment
are not only determined by the prediction of the machine learning model in one iteration, but
multiple iterations in which the model will recognize the point at which a certain location
should not receive any more sedimentation. This methodology is essentially requiring the
model to re-evaluate the situation in various time steps, and at every step a decision is made
for the amount of sediment that will arrive in that location.

Figure 3.24: Rı́o Chagres prediction for 2018 using time steps

To test this mechanism in a short time frame, the prediction for the Rı́o Chagres basin
was predicted over three time steps, all three intermittent predictions scaled and summed to-
gether. The result of this prediction is shown in the Figure 3.24, where the accuracy is slightly
lower than the single step predictions made for this period as the predicted sediment layer is
more spread out over the basin. The magnitude is around the same value as the single step
prediction, as the predictions are scaled down and summed to the same factor. Due to the
flow path computation getting stuck for this prediction, the amount of steps is limited when
starting from the 2012 dataset due to a large sediment hump blocking the flow path right at
the river mouth. As the 2018 prediction with multiple steps predicted the large growing sedi-
ment hump, this methodology is shown to work once again in diverging conditions modelling
morphological movement over time.
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Chapter 4

Results and Analysis

4.1 Accuracy analysis

Testing the predictions with the sedimentation values between 2012 and 2018 limits the
training of the model since it can only be trained with 3 years of data instead of 4. Nevertheless
the model can successfully make predictions, and these predictions are tested and analysed
below.

4.1.1 Numeric

Although the predictions made are on a temporal scale, the Mean Absolute Scaled Error
(MASE) metric for forecasting models as advised by Hyndman et al. (2006) is not suitable in
this scenaRı́o due to the short variety in years of data. The Root Mean Squared Error (RMSE)
is thus used for accuracy analyses in the testing of the model.

Cumulative error

To analyse the errors made by the models, the errors and absolute errors made in the
predictions are first demonstrated in cumulative histograms as seen in Figure 4.1.

Figure 4.1: Histogram of errors made in prediction for Rı́o Pequenı́

47



Figure 4.2: Histogram of errors made in prediction for Rı́o Chagres

The majority of errors occurring are between the magnitudes of 0 and 0.5 meters. From
the figure we see that for the Rı́o Pequenı́ the amount of over and under-predictions are ap-
proximately the same. This does not refer to the amount of sedimentation and erosion falsely
predicted, but the locations at which sedimentation was either under- of over-predicted, as
there is relatively no erosion occurring.

In the figures 4.3 and 4.4 the distribution of the errors is visualized over the range of val-
ues of sedimentation both given by the prediction, and the range of actual values. In an ideal
prediction, the values in the plot would form a horizontal line on the zero axis. In the left plot
a line can be seen at the bottom the graph, which is due to all values below -2 meters being
due to all outliers cut out of the dataset. These outliers are around the borders of the DEM and
the upper part of the river and are considered artifacts disturbing the model.

Figure 4.3: 2D Histogram of errors made in prediction for Rı́o Pequenı́
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Figure 4.4: 2D Histogram of errors made in prediction for Rı́o Chagres

From the plots above, the difference in spread of values is clear as the Rı́o Chagres basin
contains one area of high sediment values, and the rest of the area is relatively stable. The Rı́o
Pequenı́ basin’s morphological changes are more spread out, as well as the errors made on
the range of the prediction. Where in the Rı́o Pequenı́ prediction the most errors are made at
much smaller values, the Rı́o Chagres with larger sedimentation values also contains a larger
range of higher errors.

Gross error

The gross errors occurring in the prediction will be analysed in this section. Errors that are
greater than the maximum predicted value of sedimentation are considered gross errors, the
value of which depends on the area of study. For both the Rı́o Pequenı́ and the Rı́o Chagres,
any error greater than 1.8 meters is considered a gross error. There are three types of gross
errors occurring in the predictions which are highlighted in the Figure 4.5.

Figure 4.5: Indications of different gross errors

The first error we can identify are errors occurring due misreadings, strong morphological
changes on small scale, and artifacts in the DEM around the borders of the lake. These errors
are largely filtered out but will still occur and are easily recognizable, however these do not
compromise the analysis of the prediction.

The second type of error are underestimations of the morphological processes occurring.
This is especially evident in the year used for testing the data, in the period between 2012 and
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2018 the amount of sedimentation occurring in the river mouths has been much larger than
the years prior.

The final error type is the error that occurs when the location of the sedimentation is
wrongly predicted, and the actual sedimentation levels are extremely high as mentioned be-
fore. These errors are generally the largest errors, as in the case of the period 2012 to 2018 these
errors can be up to 6 meters. For this reason the gross errors can greatly increase the RMSE of
a prediction, and the local prediction probabilistic accuracy should always be analyzed. The
errors occurring due to the location of sedimentation wrongly predicted are not considered
gross errors as these are within the range of the average error values. The predicted sedimen-
tation values do not get as high as the extreme actual sedimentation values, and are thus of a
smaller magnitude.

4.1.2 Probabilistic

Besides the numeric accuracy, the accuracy of the probability of local predicted sedimen-
tation is an important factor to be analysed. For each time the model is trained and sedi-
mentation predicted, the amount of runs the sedimentation is predicted to be above a certain
threshold in cells of the study area divided by the number of total predicted cells is the accu-
racy of the model. There is a threshold here for the minimum height to be predicted, and the
minimum amount of times a high or low value is predicted out of the runs made. Naturally,
testing this with a large amount of total runs will provide the most representative result.

In Figure 4.6 the probabilistic accuracy of the prediction for the Rı́o Pequenı́ mouth is
shown. The average probabilistic prediction accuracy is between 70 and 80%, depending on
the threshold and the boundaries defining the training and testing area.

(a) Actual changes on 2 meter threshold (b) Probability with SVR

Figure 4.6: Prediction probabilities for Rı́o Pequenı́

In the Figure 4.7 the probabilistic accuracy of the prediction for the Rı́o Chagres is given.
The average accuracy for the Rı́o Chagres is also between the 70 and 80%, which is again de-
pendent on the area of the river mouth selected and the chosen threshold. If a larger area
is selected of which less is susceptible to strong morphological changes, the accuracy of the
prediction will increase strongly due to the relative amount of morphology needing to be pre-
dicted being much smaller. For this analyses, in both the case of the Rı́o Pequenı́ and the Rı́o
Chagres the bounding box is chosen to contain as much morphologically dynamic area as pos-
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sible.

(a) Actual changes on 2 meter threshold (b) Probability with SVR

Figure 4.7: Prediction probabilities for Rı́o Chagres

The capability to accurately predict the location of future sedimentation is thus strong, and
adaptable to different areas as shown above.

4.1.3 Robustness to noise

To test the performance of the prediction to noise, several tests were performed. First off,
to check the effectiveness of the features used, a feature was included with a random value per
cell. Any feature then showing a lower importance than this random feature in the impurity
score can be deemed as invalid.

Secondly, noise was added to the starting data, thus allowing the noise to carry through
into the features used in the prediction and/or training of the model. The noise is added in
the form of random added values in random intervals. This allows for the testing of the effect
of noise in the data at various steps in the program.

Noise is added at random intervals adding an extra height value in points of the DEM
before extracting features. In the Figure 4.8a the control prediction is shown, made with the
SVR model with the original data and standard settings. In Figure 4.8b a height of 1.5 meters
is added at random intervals of approximately 1 in 50 cells in the training data only to see the
effect of this noise in the predictions of the test. In Figure 4.8c a height of 1.5 meters is added
at random intervals of approximately 1 in 20 cells in the training data. In Figure 4.8d a height
of 1.5 meters is added at random intervals of approximately 1 in 20 cells in the test dataset,
showing the effect of the algorithm trained with regular data and the prediction done with a
dataset containing noise. The final noise test shown in 4.8e is done with noise in both the test
and training datasets.
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(a) No Added noise
(b) Test 1: 1/50 frequency of noise in training
data

(c) Test 2: 1/20 frequency of noise in training
data

(d) Test 3: 1/20 frequency of noise in testing
data

(e) Test 4: 1/20 frequency of noise in all data

Figure 4.8: Overview of tests done with added noise

In table below, the accuracy scores of the probabilities for the models predictions and the
RMSE for the predictions with the different noise tests performed are given.

Prediction Accuracy RMSE [m]
Control 72% 1.57
Test 1 74% 1.58
Test 2 72% 1.77
Test 3 69% 1.64
Test 4 63% 1.66

Table 4.1: Noise test results

The small differences in accuracy between tests can be due to the individual test run having
a stronger prediction than others. More clear however is that the RMSE of all tests is higher
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than the control run, which is as would be expected. The increase in RMSE is however far from
substantial considering on average 1 in 20 cells was given a strong vertical shift. The accuracy
is most strongly affected in the final two tests, with the accuracy of probabilistic prediction
falling below the 70%, and in test 4 even reaching 63%. Taking into consideration the amount
of noise added to the datasets for test 4, the model seems to keep the predictions relatively
stable and shows strong robustness to the noise that was added.

4.1.4 Adaptability

The actual performance of the model highly depends on the type of morphological changes
occurring in that area. Sediment moves all throughout the reservoir, however the most sys-
tematic and largest changes occur near the mouth of the two entering rivers, the largest being
Rı́o Chagres. To compare the accuracy in a different area of the lake, the mouth of the Rı́o
Pequenı́ is analysed. The largest predictive challenge was the Rı́o Chagres 2012 to 2018 sedi-
mentation, as a scenaRı́o occurred for which the model was not trained, and still managed to
predict the change in the location of sedimentation.

The model is applicable and able to predict morphological changes in the different areas
of the lake by going through the pipeline individually for each use case. This is due to the fact
that the two river mouths are of different scales, and thus require the features for the model to
be of a slightly different scale and have a different distribution in the feature types.

To predict morphological behavior in a different area, the location of the river’s entrance
into the reservoir needs to be added in order to let the program compute the flow paths per
year of data available. The flow path then needs to be checked per year, since any error in this
initial flow path computation will cause the training data features to be invalid.

4.2 Limitations of data availability

4.2.1 Years of data

For a MLA to be successfully trained with a feature, there needs to be a correlation between
the feature and the result, and a wide range of values for this feature in the data should be
available. Features dependent on morphological characteristics of the terrain are naturally
provided in a large range. Features connected to specific years however, are solely provided in
the amount of years of data provided. For DEM’s the number of available years is the limiting
factor, and thus features connected to a specific year are less likely to work. In the case of Lake
Alajuela datasets, there were 4 different years of datasets. The rainfall and discharge data were
available per year, however to train these with the model effectively would require a larger
range of different years. To effectively include the rainfall and discharge data in the analysis,
another method is required since these cannot be included in the features for the algorithm
due to the lack of range.

4.2.2 Accuracy of DEM’s

Certain morphological features extracted from the models are more sensitive to details in
the terrain than other features. To provide an equivalent and realistic coverage of the features
over all years of available data, the level of detail between the years should be as close as
possible.
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4.3 Comparison to common methods

4.3.1 Numerical models

Modelling river morphodynamics is an extremely complex challenge with too many fac-
tors of influence to simulate with 100% accuracy. To get an understanding of the processes and
create stronger predictions, simplifications have to be made. At the core of river morphody-
namics are the so called ’Open Channel models’ in which an open, straight, uniform channel
is assumed. By splitting any river into segments of straight channels, analysis can be made
and predictions formed on more complex systems.

When bends and bifurcations are introduced, a layer of complexity is added to the system
as the behavior of the water in such locations is highly dynamic, complex, and difficult to pre-
dict. A number of theories stand however, explaining the transportation of sediment within
bends and bifurcations. No matter the complexity of the model, upstream and downstream
boundary conditions must be set. These conditions are not influenced by what occurs within
the area included in the models prediction, but will influence the outcome.

The model used in this thesis does not regard any of the formulas or principles used in tra-
ditional models. Instead of these formulas the MLA computed its own correlations between
features and the resulting morphological response. The same boundary conditions are valid
as in any model however, and in order to define a prediction the discharge must be predeter-
mined in order to properly analyse the prediction result. In most traditional models however,
one of the upstream boundary conditions set is the sediment flux. This is not a boundary
condition set in the model of this thesis, as the value for this is not known and the MLA com-
pensated for this by basing the prediction on historical data, assuming a similar sediment flux.

A major difference is the area of study. Traditional models will consider river sections,
while in this thesis the focus is laid on the mouths of the rivers flowing into the reservoir. Since
the width of the river essentially multiplies by a factor 10 or more as the river mouth opens
up, the direction of flow and sediment deposition can no longer be predicted with traditional
methods. The ML model uses the terrain as its input, and therefore does not work with a
bounding area the way traditional models do.

The more complex computer models available nowadays for predicting morphology are
using grids that follow an axis along the center line of a river. Such a grid will not work effec-
tively in a river mouth, as with the extreme widening of the river the grid cells are stretched
completely out of proportion.

4.3.2 Morphology ML prediction models

The existing models are often one of the two types; erosion prediction models or spatial
prediction models.
Many of the Morphological predictors using MLA’s are used to predict erosion on a terrain
outside of large bodies of water such as lakes and reservoirs. As in such terrain, water flows
with shape the terrain, the water flow patterns and velocities are much easier to predict than
flow under the surface of the water. The velocity along with other characteristics of the flow
are determining of its erosive capacity, and thus features such as the curvature of the terrain
provide strong correlation with the erosion that can occur in an area. This is a main difference
with the prediction of morphological changes below the surface, since the underwater flow
is far more difficult, if not impossible to predict. Similar features were trialed and used in
this thesis, and not all features proven successful for above water level erosion helped the
morphological changed below surface.

More extensive research has been done towards spatial predictions of sedimentation us-
ing MLA’s. Even though these predictions are not on a temporal scale, many of the features
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generally used in spatial predictions can be relevant in temporal predictions as well, since
the temporal prediction in this thesis includes a spatial prediction. The difference between the
spatial prediction done in research by (Mitchell et al., 2021) for example and the research in this
thesis, is that (Mitchell et al., 2021) predicts the total level of sediment at the same time-frame
as the data measurements were taken, while in this research the prediction is the additional
sediment that will accumulate in a location after a specified interval, starting from a specific
year. In this thesis, underwater reservoir sedimentation is predicted on a temporal scale, and
is thus of a different category than the types of models explained above.

4.4 Model application

The sedimentation in Lake Alajuela is concentrated in two regions where the inflowing
rivers enter the reservoir. These are the regions in which the large majority of morphological
activity occurs, and thus these area are of interest for the analysis of sediment entering the
reservoir. The upper basin of the lake is disregarded due to the morphological behavior oc-
curring there at low water level, which is not relatable to the behavior in the other sections
of study. The two areas of study are distinctively different, containing different behavior in
different magnitudes. Nevertheless, the same pipeline is used for both use cases to predict
the morphological changes that will occur in these regions. An analysis of the hydrology and
morphology is done in Section 4.4.1 in order to validate and argue the predictions produced
by the model.

4.4.1 Hydrological analysis

There are three main external factors determining the morphological behavior in any reser-
voir: the incoming water discharge, outgoing discharge, and the incoming sediment flux. The
incoming and outgoing water discharges determine the water level of the reservoir. The sed-
iment flux enters the reservoir, but does not flow out of the reservoir (with the exception of
smaller reservoirs containing a flushing mechanism). In Lake Alajuela, water discharge and
sediment flux enters the reservoir through the Rı́o Chagres and the Rı́o Pequenı́.

The Rı́o Chagres is the main source of water entering Lake Alajuela, and carries the largest
amount of sediment into the reservoir. As this river enters the reservoir, the water depth of
the flow channel increases and the channel naturally gets wider. This results in a decrease
in flow velocity resulting in sedimentation. As sedimentation is constantly occurring in the
river mouth, the flow depth and width of the path is constantly changing. As the incoming
discharge of water is determined by upstream boundaries, this does not change by a change
in the channel geometry, and thus the flow of water will either increase in depth, or in this
case flow through a path of less resistance, being a deeper channel. The flow in the mouth
of the Rı́o Chagres is thus constantly adapting and changing, resulting in the location of the
sediment deposition changing with it. Figure 4.9 shows the location of sedimentation visibly
changing to the other side of the river mouth which is a kilometer away.
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Figure 4.9: Sedimentation in Rı́o Chagres Mouth in periods 1997-2008, 2008-2012, 2012-2018

The Rı́o Pequenı́ is the second river entering Lake Alajuela and is smaller carrying less wa-
ter and sediment. This river enters a secluded upper basin of the reservoir located on the north
side of the lake. This section of the lake shows a strong effect of the different morphological
processes occurring in times of high and low water level and rainfall. Sediment is deposited
in almost the entire width of the basin when water level is high, raising the bed slightly. Then
when the water level is low, the river cuts a path through the bed of the basin, eroding a
narrow channel through the lake bed. This is clearly visible in the image 4.10.

Figure 4.10: Heights of Rı́o Pequenı́ Mouth in different years

From 2012 to 2018, there was much less rainfall than years before, showing very clearly
in the morphological changes in upper part basin of the reservoir. The water level during
this period was drastically low, resulting in no sedimentation and solely a channel being cut
through the lake bed. In the area of the lake at the mouth of the Rı́o Chagres this is less
evident, as the water is deep enough not to be affected as much by the lower water level.
The differences in height between the years are shown in Figure 4.11 which also show the
substantial difference in morphological changes from 2012 to 2018 compared to the rest of
the years. The morphological changes occurring in this latest period have little correlation to
the changes in the years prior. Lowering of the water level of the main section of the lake
result in the upper part of the lake to be partially dry, or close to dry to the point where large
parts of the lake do not allow flowing water. In the sections without flowing water, there is no
morphological changes, as is seen in the yellow regions in Figure 4.11. The only morphological
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changes occurring in these low water level periods will be the erosion of the river carving a
route through the land. No sufficient data is available to model this process, as DEMs and
water levels of this region would need to be available at monthly intervals since the water
level can change at different times during the year.

Figure 4.11: Differences in height of Rı́o Pequenı́ Mouth between different years

The connection to the main basin of the lake is then considered the mouth of the Rı́o Pe-
quenı́ to Lake Alajuela. Looking to the entrance of this upper section of the lake to the rest of
the lake, a clear sediment discharge is seen which then increases when water level is low as
sediment erodes from the northern section as seen in Figure 4.11. The differences between the
years are shown in Figure 4.12.

Figure 4.12: Differences in height of Rı́o Pequenı́ extended into main reservoir between differ-
ent years

As seen in the Figure 4.12 the flow of the channel here largely determines the locations
at which the sediment is deposited, and do not seem to differ in extreme amounts. The last
year contains a much stronger amount of sediment deposited, which is difficult for the MLA
to predict as this does not occur in the training data. The variance of the location of sediment
deposition is low in this area, as the flow has not changed path in great extents like it has in
the mouth of the Rı́o Charges. The algorithm can thus predict the location of the sediment rel-
atively accurately as was shown in Section 4.1.2, however the large fluctuation in the amount
of sediment deposited in the most recent years was not predicted.

4.4.2 Rı́o Chagres

To successfully compute future predictions for the Rı́o Chagres, multiple attempts had
to be made due to the flow path created with the runoff pattern getting stuck in the start
of the river mouth. These faulty flow path computations lead to strange predictions with
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extreme values and thus the model must be tuned and iterations be done to prevent this from
happening. Additionally, the morphological events in the mouth of the Rı́o Chagres are quite
severe, as large amounts of water and sediment pass through the region, more so than the
Rı́o Pequenı́. The model is trained based on the data with such large events and thus predicts
more extreme values as well.

The prediction was finally made in several steps, leading up to a future prediction for the
year 2024, assuming regular rainfall patterns. The final result of the prediction is shown in the
Figure 4.13.

Figure 4.13: The morphological changes that have occurred in the Rı́o Chagres mouth and the
predicted changes for 6 years after the last measured data

In the Figure 4.13 the dark green areas are the predicted zones of high sedimentation lev-
els which clearly shift location throughout the years, and again throughout the prediction. We
see that after 2018, the model predicts the sedimentation front to move slightly towards the
center and across the river mouth basin, whereas between 2012 and 2018 the sedimentation
was almost exclusively on the left side of the basin. To analyse the movement of the predicted
sedimentation in further detail, the intermediate steps are visualised in Figure 4.14.

Figure 4.14: The scaled steps of that make up the Rı́o Chagres prediction

In the steps made to predict the sedimentation that will occur over the next 6 years shown
in Figure 4.14, 3 phases can be distinguished. In the first phase, a large part of the sediment
arriving in the river mouth still ends up in the left side of the river mouth relative to the
entering flow, as it has done in the years from 2012 to 2018. The second phase, starting in step
3, shows the sediment front to have moved to the center of the river mouth, depositing little
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sediment on the left side of the river mouth. The last phase starts in step 6 of the prediction,
and this step shows the sediment front to have moved downwards in the river mouth. The
accumulating sediment in previous years then raised bed level in the river mouth sufficiently
to increase the flow speed of the channel to carry the sediment further downstream. In 2026,
the sedimentation front is thus 500 meters further downstream than it was in 2018, according
to the prediction. The steps following the 6th step could not be utilized as the flow path
computation got stuck at the top of the river mouth, a limitation of the methodology.

Figure 4.15: Heights of Rı́o Chagres predicted into future years

Looking at the differences in height between the predicted years and the historical years as
shown in Figure 4.15, we first analyse the differences occurring between the historical datasets.
between 1997 and 2012 we see a clear gradual increase in height around the same region, be-
ing the right side of the river mouth. Between 2012 and 2018, the large shift in sedimentation
location occurred, and this is visible in the height map as there is a sudden large increase of
height on the left side of the delta. The results of the consecutive time steps following the his-
torical height map of 2018 is a gradual increase of height along the fronts of the sedimentation
areas, and a large increase at the left side of the delta.

The Table 4.2 below shows the volumes of sediment that have entered the Rı́o Chagres
basin between the years of collected data, as well as the predicted volume of sediment to have
entered the basin between 2018 and 2024. In the Rı́o Chagres basin large fluctuations of sedi-
mentation are seen, the amount of sedimentation between 2012 and 2018 is more than 3 times
the amount it was in the period prior. This is due to the landslide sediment moving down
river into the basin, which was previously washed into the river in the rainy season between
2008 and 2012. This shows that natural events can be used to predict these extreme amounts
of sediment entering the reservoir, as the sediment requires several months or years to move
downstream. The predicted period shows a lower amount of sedimentation, more along the
magnitude of the years between 1997 and 2012, which is a realistic result as the years before
2018 have not brought any extreme rainfall or landslides and thus large amounts of sedimen-
tation are not expected.

Period Volume of sedimentation
97-08 4464 ∗ 103 [m3]
08-12 3074 ∗ 103 [m3]
12-18 9755 ∗ 103 [m3]
18-24 3011 ∗ 103 [m3]

Table 4.2: Volumes of sedimentation in Rı́o Chagres basin

A key aspect which can be observed in the height maps is the sediment front which gets
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”pushed forwards” every year. Each time the river takes a new flow path, the location of
deposition of the sediment is moved. The downstream movement of this front is clearly visi-
ble between the years 1997, 2008 and 2012, while between 2012 and 2018 the movement was
mainly a sideways movement. The prediction has thus shown an initial sideways movement
of the front followed by a downstream movement. In the height map a general increase of
bed level height is visible, but more importantly there is a strong increase in height between
the two fronts. The 6 years in the prediction show the gradual movement of the front, raising
the bed level over a broad area until the 6th step. The step 6 of the prediction then shows the
location of what will likely be the next large deposition front.

The use of time steps restricts extreme values in the prediction as the flow path is able to
move during the intermittent steps of the prediction along with the changes occurring to other
features. This then allows for the sediment front to move during the prediction as it would
naturally, for as long as the model allows it and features are able to be computed.

4.4.3 Rı́o Pequenı́

To compute the future predictions for the Rı́o Pequenı́, very little work had to be done
regarding the setting and shifting of bounds and parameters. In the figures 4.16 and 4.17
the results of the sedimentation prediction for the mouth the Rı́o Pequenı́ are shown. This
prediction is done using a SVR model with a set of 12 features.

Figure 4.16: Differences in height of Rı́o Pequenı́ predicted for periods into future years

As seen in the Figure 4.16, the location of sedimentation has historically been in one curve
of the river entering the reservoir, and remains in this curve for the prediction.
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Figure 4.17: Heights of Rı́o Pequenı́ predicted into future years

Note that the location of the sedimentation in the end of the curve slightly shifts, as the
runoff pattern moves with the deepest part of the channel. Besides this, the geological char-
acteristics of this area ensure that the sedimentation locations vary relatively little. The shift
of the sedimentation location is due to the channel shape moving throughout the years as
erosion and sedimentation change the terrain. Whereas historically the largest amount of sed-
imentation has been occurring in the outer reach of the river bend, the model predicts future
sedimentation to be centered around the inside of the river bend as the flow path adjusts to
the morphological responses. As the sedimentation is stacked up around the center and outer
area of the bend, the flow path is pushed toward the inside of the channel and thus placing
future sedimentation in this region.

In the Table 4.3 below the volume changes over the different periods are presented. As
the Rı́o Pequenı́ predictions are much more stable, these predictions go much further into fu-
ture years, and the volume of the predictions as well as the location of the sediment remains
around the bounds of the training data. The model thus predicts a stable and consistent con-
tinuation of the sediment deposition in the same areas it has been deposited in the previous
20+ years.

Period Volume of sedimentation
97-08 753 ∗ 103 [m3]
08-12 1752 ∗ 103 [m3]
12-18 1534 ∗ 103 [m3]
18-22 1053 ∗ 103 [m3]
22-26 920 ∗ 103 [m3]
26-30 1346 ∗ 103 [m3]
30-34 2096 ∗ 103 [m3]
34-38 1083 ∗ 103 [m3]

Table 4.3: Volumes of sedimentation in Rı́o Pequenı́ basin
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4.5 Reproducibility

The methodology used in this thesis is highly reproducible, granted that there is sufficient
historical data available with small enough resolution. The complete code used in the research
is available on Github, and the individual functions and algorithms can be used to reconstruct
a similar pipeline on a different platform. With basic knowledge of Unity, code can be imple-
mented and improved in its current architecture. As this code and project in itself is highly
specialized for reservoir, and even one reservoir in particular, the code cannot out of the box
for any scenario.

To apply the code to a reservoir, some time will have to be invested into setting up the code
in Unity to the point where the project will successfully compile, and the settings will need
to be tuned to ensure correct flow path computations. As reservoir sedimentation is such a
large scale problem though, the actual time necessary to invest in order to apply the code of
this research is relatively very little compared to the insight it provides. All libraries used are
open, and the pre-processing done in FME is a simple interpolation and projection on a grid
which can be done in any GIS tool and is not a sensitive or complicated step in the pipeline.
Although the data used it not public, any DEM dataset covering multiple years of bathymetry
will be able to produce results with the use of this pipeline and provide insightful predictions.
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Chapter 5

Conclusion and Discussion

The disciplines of machine learning and river morphology have been connected in this
thesis using various aspects within the field of Geomatics. This has produced a visually com-
prehensible prediction of future sedimentation in Lake Alajuela with far more detail than ear-
lier made predictions, and one that can be verified in next planned bathymetric survey. The
issue of sedimentation in Lake Alajuela and the prediction thereof is now more than a rough
number of years, but a visible front of sedimentation entering the reservoir from the water
supplying river. With this visualized prediction, the future priorities within the organisation
of the Panama Canal can be shifted towards finding a solution for this problem. The conclu-
sions of this research are discussed in the sections of this chapter.

5.1 Research overview

The aim of this thesis was to develop a pipeline for predicting sedimentation in the Lake
Alajuela reservoir using machine learning techniques. To fill the gap of knowledge on the sedi-
mentation process occurring in the lake, and the exact amount of aggregated sediment present
there, this thesis provides insight into this process and the continuation thereof. No accurate
prediction on sedimentation occurring in the lake has been made, while this information is
required for developments in establishing a future for the Panama Canal. Morphological pre-
dictions with the help of ML techniques is an area that is being researched more and more in
recent years, however the majority is concentrated in above water surface erosion processes
and river channel morphology. These morphological processes are distinctly different than
the processes occurring in Lake Alajuela, and thus required a tailored approach. To fulfill the
aim of the research, a main research question was defined with four sub-questions, which are
reviewed below.

How to accurately predict sedimentation levels in the Lake Alajuela reservoir using a Machine
Learning method?

The research in this thesis has provided several factors that have shown to be of high im-
portance. First off, the areas of importance have shown to be exclusively the mouths of the
two rivers entering the lake. The large majority of new sediment settles in these regions, and
thus these are the areas of interest when researching the sediment entering the reservoir. The
behavior between the two river mouths differs due to the magnitude of water and sediment
entering the rivers, the geological positions, and properties of the terrain. Due to this dif-
ference the machine learning models are best trained individually per region of study to be
able to predict this behavior in the future. A range of features are used for the prediction,
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and depending on the characteristics of the river mouth, different characteristics are of higher
importance.

• Which sedimentation related features can be extracted from the DEM?
Using a runoff algorithm to locate the deepest part of the lake, several features can be
extracted. The runoff algorithm follows the natural flow direction, from which per step
the length of the flow path is computed. Every cell in the grid is then given the closest
flow path segment as a feature, with the length of the path at that segment, distance to
the path, and the relative angle of the slope of the cell to the angle the flow path.
The runoff score is also added to grid cells, providing the amount of flows passing
through that cell when a full grid runoff simulation is performed. Additionally, the rela-
tive height parameter aids to recognize bumps and pits in the terrain on various scales.
The curvature is extracted on multiple scales, these scales being the curvature computed
using cells at a certain radius. Lastly, the more standard geometric features such as slope,
aspect, height and depth are added.

• Which ML model best predicts sedimentation in a reservoir?
To assess the results of the predictions made by the ML models, two metrics were used:
RMSE and a probablistic accuracy assessment. The lowest RMSE scores were obtained
by the MLPR for both the Rı́o Chagres and Rı́o Pequenı́ cases, however these were ob-
tained with a small selection of features, and the visual representation of the prediction
was not realistic. The RFR has an overall higher RMSE, and the local probablistic accu-
racy is much lower than the SVR and the MLPR. The SVR on the other hand had only a
slightly higher RMSE than the lowest RMSE obtained by the MLPR, but maintained the
low RMSE value for a larger range of feature selection numbers, making it more robust
to changes in feature selections. Additionally, the SVR has a higher local probabilistic ac-
curacy, meaning it is more likely to predict the correct locations for future sedimentation
to occur. The robustness and accuracy of the SVR thus make it the best model suited to
predict sedimentation in the tested scenarios.

• What is the best set of geomorphological and hydrological features to train a ML model for pre-
diction of sedimentation?
It is crucial for the model to know the flow path of the river, since this is a deciding factor
for the deposition location of sediment. The features connected to this path are thus cru-
cial in any prediction since it marks the areas that are most susceptible to sedimentation.
The relative height will mark features in the terrain that will cause an instant increase or
decrease in flow resulting in morphological response. Curvature indicates an accelera-
tion or deceleration of flow, resulting in direct morphological changes above the surface
of any body of water. In a reservoir, this effect is dependent on the flow in that particular
region, and is thus not as strong of an indicator by itself as for erosion above the surface.
These features on different scales can provide the full coverage for both river mouths of
the Lake Alajuela reservoir, however each responds more strongly to a different combi-
nation of these scaled features due to the difference in terrain size and properties. The
two rivers supplying Lake Alajuela of water and sediment are of very different magni-
tudes, and exist along different geological characteristics. As a result, the sedimentation
in these areas is predicted with different sets of features, however both making use of
the general features mentioned above but on different scales.

• What accuracy can be obtained predicting sedimentation in the Lake Alajuela reservoir?
To assess the accuracy of the predictions made, the probabilistic accuracy and the nu-
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meric accuracy are considered. The probabilistic accuracy can be assessed visually, and
from the tests done can be seen that the regions at which the sediment will be deposited
is accurately provided for purposes such as dredging and local solutions. The accuracy
of the probabilistic prediction for locations to have high amounts of sedimentation is
up to 80 percent, depending on the location and the curb set for the high sedimentation
level classification.
To assess the numeric accuracy, the RMSE metric is used to compare the overal accu-
racy of the different predictions. In both river mouths, the RMSE score ends relatively
high. For the Rı́o Chagres, the average obtained RMSE is around 1.5 meters, while for
the Rı́o Pequenı́ this is 0.8 meters. The difference in the RMSE for these rivers is due to
the fluctuation in the sediment flux, and thus the sedimentation, occurring between the
years of the training and testing data set. The Rı́o Chagres had a much larger amount
of sedimentation occurring in the years of the testing data than the training data years.
The lack in variety of years in the datasets therefore hindered the numeric accuracy ob-
tainable.

5.2 Contributions

This thesis builds upon previous researches done in the field of morphological process
modelling with machine learning methods, and provides insight into the sedimentation oc-
curring in Lake Alajuela with a prediction towards future sedimentation. The main areas in
which this thesis contributes to the current state of art and knowledge base are listed below.

• Time steps in prediction using ML model
An important contribution of this thesis is the pipeline through which a machine learn-
ing model is used to predict morphological changes over time in multiple time steps, or
iterations, instead of just a single prediction. This new methodology is also gateway to
predicting local quantities with high accuracy, as this approach allows the modelling to
depend on entirely different parameters than traditional methods.
The step wise methodology of the prediction limits the predicted values from becoming
too large, as larger values will affect the features for the consecutive time steps. This
means that the quantities and locations can be predicted to a certain extent, leaving the
only unknown the time variable, as the amount of rainfall and sediment discharge in
future years is not known. Due to the model re-evaluating the situation at intermediate
steps, large errors are prevented as all errors are essentially scaled down and are less
likely to affect the entire prediction.

• Local sedimentation prediction in reservoirs
The majority of research done on local morphological predictions has been in rivers and
channels, where the width and depth parameters are relatively steady. Reservoir sed-
imentation predictions have for the most part been focused on total added sediment
in the reservoir. Local sedimentation in reservoir cannot be predicted with traditional
methods as the width and depth parameters present in channels are no longer valid.
In the research of this thesis a pipeline is developed to predict the local sedimentation
levels in a reservoir, providing a tested accuracy between the 70 and 80% depending on
the location and the individual trained model.

• Morphological processes in Lake Alajuela
The state of knowledge of the morphological processes occurring in the Lake Alajuela
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was relatively limited as the sedimentation and erosion occurring are often seen as re-
sults of extreme natural events. Hurricanes and draughts cause morphological processes
to be relatively unpredictable, however this thesis uses a a range of data over 20+ years
to oversee these events and predict future morphological events.
The research done in this thesis thus provides insight into possible consequence of years
of morphological processes occurring in the entire watershed, the result of which ending
in the Lake Alajuela reservoir.

• Morphological predictions using runoff model features
Morphological predictions with machine learning techniques have been done with a
range of different features. In this thesis however, new features have been developed us-
ing a runoff model created with the historical DEMs available, and the predicted DEMs
consecutively when a prediction is made with time steps.
These features that use the runoff model are developed to help the MLA recognize the
possible discharge of river flow that remains in a specific location as the river enters the
reservoir. The runoff models are inherently used for predicting erosion above the sur-
face of large bodies of water, however in the case of predicting sedimentation under the
surface of the reservoir, the runoff model has proven valuable.

5.3 Limitations

The methodology developed in this thesis contains a number of limitations, listed and
elaborated below.

• Available Data
The lack of variety in the temporal range of the training data does not allow the model
to take a time measure as input. In order to predict a specific amount of time, the dis-
charge between the training data years needs to be used in the analysis and thus the
result computed indirectly. A dataset with a more elaborate timeline would provide the
opportunity to use the time interval or the actual date as a feature with the training data,
and allowing the interval and date to be provided for prediction inputs as well.

• Runoff model failure
One of the limitations of the current methodology is that it is highly dependent on the
runoff model. This runoff model is initiated at the mouth of the river, and should flow
into the center of the lake. When several predictions in time steps have been made and
the sedimentation stacks up around the river mouth as a result, the runoff model can
essentially get ”stuck”. This means the runoff model no longer flows into the lake but
stays close to the initial position of the river mouth.

• Data cleaning
In order to ensure that the datasets could be compared to one another at all points and
flawlessly pass through the pipeline, the data was extensively cleaned beforehand. This
meant clipping the DEMs on one another and projecting these all on the same grid. In
this process, data is lost by clipping, interpolating and rounding. If more of the original
data could be kept, better input data could be provided at the start of the pipeline pro-
viding perhaps more accurate results.

• Border of DEM
For certain features, specifically those using surrounding cells to compute smoothed or
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averaged values, the cells around the borders of the DEM will have errors in feature
computations. This border around the DEM affects the training of the model as well as
the predictions made with the model. This is predominantly visible in the large scale
curvature feature where a large margin is available due to this feature not averaging the
values but using the cells at further distances. The curvatures of cells within a certain
distance of the border have the same value with one the the values used being the value
given outside the DEM which is zero.

5.4 Recommendations and future work

For any future work involving the modelling of morphological changes on terrain using
machine learning algorithms, several recommendations can be made and proposals for future
work have emerged. These will be explained in further detail below.

• Larger variety in data on temporal range
A similar methodology can be utilized in an area where there is a data set available with
a larger variety of data over time. Where the small amount of different years of data
has been a limiting factor in the this research, it would be highly interesting to see the
improvement more time steps in the training data will have on the MLA. For a data set
containing a larger amount of years available, it would then also be interesting to see the
effect of the hydrological data since the correlation could then be better recognized by
the MLA.

• Above-surface erosion application
Research can be done on the effectiveness of the methodology used in this research on
above water surface erosion processes. Since the methodology is using the runoff and
curvature parameters to train the MLA, the application for erosion modelling could be
of interest.

• Improved flow path computation
An improvement can be researched for the creating of the flow path. As the pattern now
works with 8 neighbours, the angle range is limited and thus the flow is not taking a
natural form. Due to the fact that this parameter plays such an important role in the
methodology, an improvement in this area could benefit the algorithm greatly.

• More elaborate depth measurement data
The effect of the depth on the morphological processes can be researched. For a dataset
with more coverage over the temporal range, and depth measurements per time period,
the effect of depth can be much better utilized. In the results from this research, and the
analysis of the case of the upper Lake Alajuela basin, it is clear that the depth of the water
level plays a deciding role. By expanding the research with the broader range of depth
measurements not only can it improve the training of the algorithm, but predictions can
be made for the morphological responses in the lake for different levels of water depth
over a period of time.

• Step-wise morphology predictions with machine learning model
As this research was a start to an experiment in the complex field of morphological
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modelling with machine learning, many stones have been left un-turned. Very inter-
esting results have been obtained by combining the ability of machine learning models
to interpret and utilise parameters in unique ways with time steps and iterations for pre-
diction morphological landscape evolution. Even though the predictions with machine
learning models are often sufficient without time step implementations, an integration
of time steps and the automation thereof could bring the best of both worlds, being ma-
chine learning and numerical morphological modelling. This thesis has touched on this,
however I expect a lot of innovations and improvements can be made in this area.
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Appendix A

What did not work

A.1 Planform and profile curvature features

To model erosion processes above water, profile and planform curvature are important
factors. The acceleration of flow is determined by the profile curvature, and acceleration of
flow is an event that triggers erosive processes. On the contrary, deceleration of flow is likely
to result in sedimentation. The convergence and divergence of flow which is represented by
planform curvature will indirectly influence the water depth, as well as flow speed, which
then influences geomorphological processes. (Panagos et al., 2015; Esri)

A.2 MAT

Initially, it was anticipated that the MAT would be a main component that would be uti-
lized to extract features from the data. The reasoning behind this is that in landscapes with
prominent features like rivers and mountains, the MAT will construct faces through the centre
of the terrain, following the lowest points in the terrain being the rivers. When applying this
to the Lake Alajuela bathymetry model however, it became apparent that the faces of the MAT
had their origin along the edges of the lake, not representing the direction of flow. This is due
to two factors. First off the bed of the lake is relatively planar, not providing enough variation
in height for MAT faces to be constructed along the details of this flat lake bed. Secondly, the
accuracy of the data was not high enough for the MAT to have enough points for faces along
the detailed features that are of interest in this project.

A.3 Temporal features

Features containing values that are constants per year for the data, such as the date, rainfall
data, or river discharge were applied when testing the model. These featured however do not
contain sufficient variety within the dataset to be used in the training of the model. Instead
of using this for the training the model, this data was used to analyse both the data and the
prediction, to obtain a better understanding of the use case.
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Appendix B

Feature importances

In the figures below, the computed Gini importance for both study areas is shown for
the full collection of features when computing with the Random Forrest Regression model.
Although this model is not used in the final methodology, these figures give a good overview
of the impact certain features may have in the predictions, and which features are important
in all cases versus only a selected few.

Figure B.1: Features ranked on importance for Rı́o Chagres RFR prediction
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Figure B.2: Features ranked on importance for Rı́o Pequenı́ RFR prediction
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Appendix C

Model testing results

The figures below show a full range of model testing results performed which was used to
analyse and decide on the model and parameter selection made. More ranges like this were
performed, with slightly different sets of parameters.

C.1 Rı́o Chagres

First, the Rı́o Chagres model tests with a range of features ranked on importance is given
in the following figures:
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C.2 Rı́o Pequenı́

The next figures are models tests for a range of parameters in the Rı́o Pequenı́ basin.
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Appendix D

Hyperparameter tuning results

Performing the hyperparameter tests, a large number of tests with different combinations
of parameters were performed. The following sections show extended ranges of the tests
performed.

D.1 Poly kernel degree tests

First the poly kernel was tested on a range of degrees. The results for the Rı́o Chagres basin
and the Rı́o Pequeni Basin are shown in the figures below.

D.1.1 Rı́o Chagres
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D.1.2 Rı́o Pequenı́
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D.2 Rbf kernel C and epsilon tests

To provide coverage for the possible parameter optimization for the rbf kernel, a grid of
possible parameters was tested, a range of which is showed in the figures in the following
sections. This was done for both the Rı́o Chagres basin and the Rı́o Pequenı́ basin.

D.2.1 Rı́o Chagres
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D.2.2 Rı́o Pequenı́
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