Short term predictions in public transport

Applying Dutch smartcard data

dr. ir. N. van Oort

Assistant professor public transport *Transport and Planning*

Public Transport Consultant Goudappel Coffeng

1st Smart card data workshop July 2-3, 2014, Gifu, Japan

Introduction

- Assistant professor at TU Delft
- Consultant Public Transport at Goudappel Coffeng
- Practice < > Science
- Research agenda
 - Optimizing public transport level of service
 - Network, timetables and operations
 - Data driven research
 - Special interest in reliability and robustness
- Today: pragmatic approach to PT forecasts, usable for operators and authorities
- Modeling as a tool, not as an objective

Challenges in PT industry

Main challenges:

- Increasing cost efficiency
- Increasing customer experience
- Motivating new strategic investments

Data and models enable achieving objectives

Applied examples

Monitoring and predicting passenger numbers: Whatif

- Quantifying benefits of enhanced service reliability in public transport Van Oort, N. (2012)., Proceedings of the 12th International Conference on Advanced Systems for Public

Transport (CASPT12), Santiago, Chile.

- Optimizing planning and real time control

Van Oort, N. and R. van Nes (2009), Control of public transport operations to improve reliability: theory and practice, Transportation research record, No. 2112, pp. 70-76.

- Optimizing synchronization multimodal transfers

Lee, A. N. van Oort, R. van Nes (2014), Service reliability in a network context: impacts of synchronizing schedules in long headway services, TRB

- Improved scheduling

Van Oort, N. et al. (2012). The impact of scheduling on service reliability: trip time determination and

holding points in long-headway services. Public Transport, 4(1), 39-56.

Smartcard data (1/2)

The Netherlands

- OV Chipkaart
- Nationwide
- All modes: train, metro, tram, bus
- Tap in and tap out
- Bus and tram: devices are in the vehicle

Issues

- Privacy
- Data accessibility via operators

Data

- 19 million smartcards
- 42 million transactions every week

Smartcard data (2/2)

• Several applications of smartcard data (Pelletier et. al (2011). Transportation Research Part C)

Our research focus:

Connecting to transport model

- Evaluating historyPredicting the future
- Elasticity approach (quick and low cost)
- Whatif scenario's
 - Stops: removing or adding
 - Faster and higher frequencies
 - Route changes
- Quick insights intoExpected cost coverageExpected ridership

Transport Planning Software

Connecting data to transport model

- Importing PT networks (GTFS) (Open data)
- Importing smartcard data (Closed data)
- Matching
- Visualization options of transport model

OD-patterns

OD-patterns

What if?

PT modelling

Traditional (4-step) model

Multimodal (~PT)

Network

Complex

Long calculation time

Visualisation

Much data

Detailed results

Simple calculation

PT only

Lilie

Transparent

Short calculation time

Only numbers

Little data

Assessments

Short term predictions

- Impact of construction works (rerouting, ridership decrease)
- Simple efficiency improvements (schedule, fares)
- Dealing with budget savings (least damage)

Elasticity method based on smartcard data

What if: elasticity approach

$C_{ij} = \alpha_1 T_{ij} + \alpha_2 W T_{ij} + \alpha_2 N T_{ij} + \alpha_4 F_{ij}$ (1) With: C_{ii} Generalized costs on OD pair i, j Weight coefficients in generalized costs calculation α_1 , α_2 , α_3 , α_4 T_{ij} In-vehicle travel time on OD pair *i,j* $WT_{\epsilon,i}$ Waiting time on OD pair *i,j* NT_{ij} Number of transfers on OD pair i,j F_{ij} Fare to be paid by the traveler on OD pair *i,j*

NOTE:

- Simple changes
- Short term
- Only LOS changes
- Accuracy

Elasticities

- Literature (e.g. Balcombe)
- "Proven" rules of thumb

Whatif scenarios

Adjusting

- Speed
- Fares
- Routes
- Frequency

Illustrating impacts on (indicators):

- Cost coverage
- Occupancy
- Ridership
- Revenues

Whatif results: Flows rerouting

Whatif results: Flows increased frequencies

Summary

- Major challenges in public transport
- Data supports optimization
- Evaluating and controlling -> predicting and optimizing
- Connecting data to transport models enables short term predictions
- Combining strenths of two approaches (complex <-> simple)
- First cases show promising results
- Valuable for quick scan or first selection of project alternatives

Next steps

- Updating elasticities (using smartcard data)
- Additional factors in cost function (reliability, crowding, etc)

Pitfall

Combining weaknesses of two approaches

Questions / Contact

Niels van Oort

N.vanOort@TUDelft.nl

Publications

https://nielsvanoort.weblog.tudelft.nl/

