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the Spatiotemporal Distribution of
Climate Projections: Applying the
STRIVIng Toolbox

Vitali Diaz1,2, Gerald Corzo1, José R. Pérez3
1UNESCO-IHE INSTITUTE FOR WATER EDUCATION, DELFT, THE NETHERLANDS; 2WATER
RESOURCES SECTION, DELFT UNIVERSITY OF TECHNOLOGY, DELFT, THE NETHERLANDS;

3 INSTITUTO NACIONAL DE RECURSOS HIDRÁULICOS (INDRHI), SANTO DOMINGO,
DOMINICAN REPUBLIC

1. Introduction
Precipitation and temperature projections over the next few decades indicate that on

earth their spatiotemporal distribution will undergo changes (IPCC, 2014; Moss et al.,

2010; Najafi and Moradkhani, 2015; Taylor et al., 2012). These variations might modify

the way in which extreme hydrological events (EHEs) occur, affecting their frequency

and intensity (e.g., Coumou and Rahmstorf, 2012; Trenberth, 2012). Because EHEs, such

as droughts and floods, have a great negative impact on human activities, a better un-

derstanding of the expected spatiotemporal variability of precipitation and temperature

is necessary.

Relatively recent studies have been carried out to analyze the spatiotemporal changes

of future precipitation and temperature considering the entire planet or a number of

continents (e.g., Boer, 2009; Hawkins and Sutton, 2009; Milly et al., 2005). There are also

applications at lower scales (e.g., Wang et al., 2016). These data have been considered a

challenge for big data in many studies. This relates to the amount of information that can

be handled and the processes involved in the analysis.

In this study we present an analysis using the Spatio-TempoRal distribution and

Interannual VarIability of projections (STRIVIng) toolbox for statistical exploratory anal-

ysis of future precipitation and temperature. The toolbox provides a set of elements for

numerical and visual comparison of the baseline and projections. STRIVIng is designed to

work with monthly values and various spatial resolutions. In this document, large-scale

applications are presented following a standard step-by-step exploratory analysis.
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To illustrate the use of STRIVIng, three case studies were undertaken: Dominican

Republic, Mexico, and Amazon basin, to try to cover regions of different sizes. Following

this introductory section, concepts and the description of the toolbox are shown.

Subsequently, data, case studies, and the application are described. Finally, results and

conclusions are presented.

2. Framework (Global Climate Model Projections)
A type of model to simulate climate is the so-called General Circulation Model (GCMs),

which makes use of mathematical formulations to reproduce the general circulation of

the atmosphere. To analyze the possible implications of the human and natural in-

fluences over climate, GCMs are forced, in a systematic way, to analyze possible futures

under the scenarios approach (Moss et al., 2010). In this way, climate projections are

estimated for each scenario. The design of scenarios and GCM setups are coordinated

worldwide by the Coupled Model Intercomparison Project (CMIP), where several

modeling teams participate (Meehl et al., 2014).

Projection data are available for each GCM and each scenario. Due to the information

of these variables is usually on a coarse spatial and temporal scale, in addition to pre-

senting a deviation in value compared to ground observations, at least two steps are

necessary before use: downscaling and bias correction. Downscaling refers to the pro-

cedure of changing the coarse scale to a finer one. Bias correction is the procedure of

tuning simulated variables in the atmosphere with those gathered on the ground.

There are a couple of examples of research projects where the adjustment (i.e.,

downscaling and calibration) of P and T projections was within the scope: ENSEMBLES

(ensembles-eu.metoffice.com) and Regional Climate, Water, Energy Resources and un-

certainties (RIWER 2030 project; www.lthe.fr/RIWER 2030), where the target was Europe.

Global research projects included the Integrated Project Water and Global Change

(WATCH, www.eu-watch.org) and WorldClim (worldclim.org). From all these projects,

data of adjusted P and T are freely available for download or on request.

As Meehl et al. (2014) point out “to better understand the past, present, and future

climate, the state-of-the-art climate model simulations are compared to gain insights

into the processes, mechanisms, and consequences of climate variability.” One way to

carry out this comparative analysis is through the examination of the statistics of

adjusted climate variables, as well as the investigation of their expected spatial distri-

bution. The toolbox introduced in this document helps to carry out comparative anal-

ysis. A description of the toolbox is given next.

3. STRIVIng Methodology
In general, the methodology involves two steps: processing and visualization (Fig. 3.1). In

the first part, input data are processed to calculate the statistics and average values of
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adjusted projections for a study area. The second part consists of a set of graphic ele-

ments for the visualization of spatial distribution, as well as monthly average values of

precipitation and temperature for the study area.

Regarding processing, consider that there are n GCMs (Fig. 3.1). Each kth GCM has

the information of m scenarios. Each scenario, in turn, has data of the long-term mean

precipitation and mean temperature by month from January to December (J to D). Also

for each scenario, annual precipitation and temperature are available for reference and

future periods. The long-term mean precipitation (Pm) and mean temperature (Tm) for

the ith month and the jth scenario, also called ensemble mean, are calculated with

Eqs. (3.1) and (3.2), respectively:

Pmi;j ¼ 1

n

Xn

k¼1

Pi;j;k (3.1)
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FIGURE 3.1 Schematic overview of the STRIVIng toolbox. GCM, General Circulation Model; P, precipitation;
T, temperature.
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Tmi;j ¼ 1

n

Xn

k¼1

Ti;j;k . (3.2)

The average annual P and T of the n GCMs for the jth scenario is computed with

Eqs. (3.3) and (3.4), respectively:

Panj ¼ 1

n

Xn

k¼1

Paj;k (3.3)

Tanj ¼ 1

n

Xn

k¼1

Taj;k . (3.4)

For the jth scenario, the average volume of annual P for a region is calculated with

Eq. (3.5):

Vj ¼ A� Panj (3.5)

where A is the region area.

The average values calculated with Eqs. (3.1)e(3.4), as well as the input, are examined

through three graphic elements: image, line, and box-plot. The use of these graphs is

shown in Section 5. In STRIVIng methodology, the inputs are the climate projections,

and the elements to process and analyze these data are incorporated in the STRIVIng

toolbox.

4. Data, Case Studies, and Experiment Setup
4.1 Data

To illustrate the use of STRIVIng, WorldClim data are used (Fick and Hijmans, 2017).

These data were considered because they are available for direct download and their

spatial resolution is lower than half a degree. A detailed description of data and the

adjustment procedure can be found in Fick and Hijmans (2017) and at www.worldclim.

org/downscaling.

WorldClim projections correspond to the fifth assessment of CMIP (IPCC, 2014). In

CMIP5, four Representative Concentration Pathways (RCPs) of greenhouse gas (GHG)

concentration trajectories are taken into account for climate modeling. RCPs refer to

four likely climate futures where diverse amounts of GHG are emitted at different

times. As Meinshausen et al. (2011) highlight “RCP 2.6 assumes that global annual

GHG emissions peak between 2010-20, with emissions declining substantially there-

after. Emissions in RCP 4.5 peak around 2040, then decline. In RCP 6, emissions peak

around 2080, then decline. In RCP 8.5, emissions continue to rise throughout the 21st

century.”
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Future P and T of WorldClim (Table 3.1) are available for 19 GCMs, four RCPs

(scenarios), and the aggregate periods of 2050 (2041e60) and 2070 (2061e80). Data are

arranged in four spatial resolutions: 30 s (w1 km2), 2.5 s (w20 km2), 5 s (w80 km2), and

10 min (w340 km2 at the equator). The baseline information corresponds to the period

1950e2000. In this chapter, 10-min data of both baseline and projections were used for

the large-scale applications presented hereafter.

4.2 Case Studies

For the application, two countries and one large basin were considered: Dominican

Republic, Mexico, and Amazon basin (Fig. 3.2). The Amazon basin is located in the

territories of Brazil, Bolivia, Peru, Ecuador, Colombia, Venezuela, Guyana, Suriname, and

French Guiana. The Amazon River and its tributaries drain throughout this basin into the

Atlantic Ocean. In Table 3.2, the main characteristics of the cases studies are presented.

4.3 Experiment Setup

P and T projections of the study areas were processed taking into account the 19 GCMs

and four RCPs of WorldClim data, as well as the information of the baseline period of

1970e2000. In Section 6, some relevant findings are presented. To extract and process

Table 3.1 WorldClim Data (Fick and Hijmans, 2017)

GCM RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
þACCESS1-0 * *
BCC-CSM1-1 * * * *
CCSM4 * * * *
CESM1-CAM5-1-FV2 *
þCNRM-CM5 * * *
GFDL-ESM2G * * *
GFDL-CM3 * * *
GISS-E2-R * * * *
HadGEM2-AO * * * *
HadGEM2-ES * * * *
HadGEM2-CC * *
INMCM4 * *
IPSL-CM5A-LR * * * *
þMIROC5 * * * *
MRI-CGCM3 * * * *
þMIROC-ESM-CHEM * * * *
MPI-ESM-LR * * *
þMIROC-ESM * * * *
NorESM1-M * * * *

*, indicates the availability of data. þ, for noncommercial use. GCM and RCP stand for General Circulation Model and

Representative Concentration Pathway, respectively.
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the data, three masks were built with the same spatial resolution as the data, i.e., 10 min.

Long-term mean P and T from January to December (J to D) were computed with Eqs.

(3.1) and (3.2). The mean annual P and T were calculated by using Eqs. (3.3) and (3.4),

respectively. To estimate the annual water volume with Eq. (3.5), the next areas where

considered: Dominican Republic (48,670 km2), Mexico (1,972,550 km2), and Amazon

 
FIGURE 3.2 Mexico, Dominican Republic, and Amazon basin location.

Table 3.2 Characteristics of Case study Areas

Case Study Area (km2)
Mean Annual
Precipitation (mm)

Mean Annual
Temperature (�C)

Dominican Republic1 48,315 1500 25
Mexico2 1,972,550 780 21
Amazon basin3 6,150,000 2500 24e26

Sources: (1) US Library of Congress; (2) National Meteorological Service (SMN, Abbreviation in Spanish), Mexico; (3) Food and Agriculture

Organization of the United Nations (FAO).
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basin (6,171,148.7 km2). These areas are slightly different from those reported in the

sources (Table 3.2), but correspond to the shape files used for the construction of the

masks. Water volumes are shown in billions of cubic meters (109 m3).

5. Results and Discussion
5.1 Dominican Republic

For both periods 2050 (2041e60) and 2070 (2061e80), most GCMs agree that the greatest

changes in the spatial distribution of P will occur on the north coast. While on the border

with Haiti, the condition practically remains stable, Figs. 3.3 and 3.4, respectively. For the

2050 period, the northern coast will experience an increase in annual rainfall, while a

decrease is expected on the southern coast. On the other hand, for the period of 2070, it

is expected that on the north coast the magnitude of the annual rains will be of the same

order as the historical ones. The south coast will experience a decrease with respect to

those of the baseline period.

Fig. 3.5 shows that the long-term mean P for the 12 months, in general, will show a

decrease in the coming decades, mainly in the months of May to October. June and July

are the months that present the greatest fall. The May rainfall projection shows the

greatest disagreement among GCMs.

FIGURE 3.3 Spatial distribution of mean annual P (mm) over Dominican Republic for the period 2041e60 (2050):
baseline and 19 GCMs, and RCP 4.5. GCM, General Circulation Model; P, precipitation; RCP, Representative
Concentration Pathway.
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FIGURE 3.4 Spatial distribution of mean annual P (mm) over Dominican Republic for the period 2061e80 (2070):
baseline and 19 GCMs, and RCP 4.5. GCM, General Circulation Model; P, precipitation; RCP, Representative
Concentration Pathway.

FIGURE 3.5 Dominican Republic. (Left) Long-term mean P of the baseline period (solid blue line) and 19 RCP 4.5
projections (solid red line). Long-term mean P of each projection is also displayed for the period 2041e60 (solid
cyan line) and 2061e80 (solid yellow line). (Right) Box-plot with P projections of the two periods. P, Precipitation;
RCP, Representative Concentration Pathway.

66 SPATIOTEMPORAL ANALYSIS OF EXTREME HYDROLOGICAL EVENTS



Regarding temperatures, Figs. 3.6 and 3.7 indicate that the country will suffer an

increase in the mean annual values in practically the whole territory for the periods

2041e60 and 2061e80, respectively. Only in the central part will the condition remain

more stable in both cases. Fig. 3.8 shows that the long-term mean T will increase to

around 2 degrees in all 12 months.

5.2 Mexico

The spatial distribution of the mean annual P agrees with most of the GCMs for the

period 2041e60 (Fig. 3.9). The maximum magnitudes of rainfall are observed on the

south coast with the Gulf of Mexico and on the southwest coast with the Pacific Ocean.

The lowest values are observed in the north and northwest of the country, on the border

with the United States. The area with most disagreement is the southwest coast with the

Pacific Ocean.

According to the four RCPs (Fig. 3.10), the long-term mean P of projections of

the 12 months will remain with similar magnitude throughout the year, except for the

months of June to September (J to S), where the models show mainly a drop in the

values. July is the month that shows the greatest fall; this drop increases from RCP 2.6 to

FIGURE 3.6 Spatial distribution of mean annual T (�C) over Dominican Republic for the period 2041e60 (2050):
baseline and 19 GCMs, and RCP 4.5. GCM, General Circulation Model; RCP, Representative Concentration Pathway;
T, temperature.
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FIGURE 3.8 Dominican Republic: long-term mean T of the baseline period (solid blue line) and 19 RCP 4.5 pro-
jections (solid red line). Long-term mean T of each projection is also displayed for the period 2041e60 (solid cyan
lines) and 2061e80 (solid yellow lines). RCP, Representative Concentration Pathway; T, temperature.

FIGURE 3.7 Spatial distribution of mean annual T (�C) over Dominican Republic for the period 2061e80 (2070):
baseline and 19 GCMs, and RCP 4.5. GCM, General Circulation Model; RCP, Representative Concentration Pathway;
T, temperature.
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8.5. On the other hand, September shows an increase, whose value seems to be lower

from route 2.6 to 8.5. July and September are the months with the poorest agreement

between GCMs.

Concerning mean annual T, Fig. 3.11 shows that most GCMs indicate a rise in the

temperatures throughout the country for the period 1941e2060. On the coasts and in

the north, the greatest values are observed. Fig. 3.12 also points out an increment in the

temporal distribution; values of long-term mean T of projections from January to

December are larger than those of the baseline period. From June to September, the

main increases are observed.

5.3 Amazon Basin

According to the baseline period, the spatial distribution of mean annual P shows

different values along the basin. The largest appear to be in the northwest and center,

followed by the rains in the northwest. The lowest are in the southwest part. According to

RCP 4.5, most GCMs indicate a change in the spatial distribution of annual rainfall for

FIGURE 3.9 Spatial distribution of mean annual P (mm) over Mexico for the period 2041e60 (2050): baseline
and 19 GCMs, and RCP 4.5. GCM, General Circulation Model; P, precipitation; RCP, Representative Concentration
Pathway.
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FIGURE 3.10 Mexico: long-term mean P of the baseline period (solid blue line) and the 19 RCP 2.6, 4.5, 6, and 8.5
projections (solid red line). Long-term mean P of each projection is also displayed for the period 2041e60 (solid
gray lines). P, Precipitation; RCP, Representative Concentration Pathway.
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FIGURE 3.11 Spatial distribution of mean annual T (�C) over Mexico for the period 2041e60 (2050): baseline
and 19 GCMs, and RCP 4.5. GCM, General Circulation Model; RCP, Representative Concentration Pathway; T,
temperature.

FIGURE 3.12 Mexico: long-term mean T of the baseline period (solid blue line) and the 19 RCP 4.5 projections
(solid red line). Long-term mean P of each projection is also displayed for the period 2041e60 (solid gray lines).
P, Precipitation; RCP, Representative Concentration Pathway; T, temperature.



the period 2041e60, mainly in the northwest of the basin, where the values seem to

increase (Fig. 3.13).

The long-term mean P of projections shows that the values from January to July in

general remain, but not the values from August to December, where a drop in the

magnitude of rainfall is expected (Fig. 3.15 left). The worst agreement between models is

observed in October. This is for the period 2041e60.

Most GCMs indicate an increase in temperature throughout the territory of the basin

(Fig. 3.14). The northern, eastern, and central parts seem to be the most affected. There is

also a rise in the southwest part, where the expected average minimum value is 4 de-

grees. The long-term mean T of projections shows a greater disagreement in every

month with respect to rainfall projections. In general, projections indicate an increase in

T in all months. The poorest agreement is observed in October (Fig. 3.15 right).

FIGURE 3.13 Spatial distribution of mean annual P (mm) over Amazon basin for the period 2041e60 (2050):
baseline and 19 GCMs, and RCP 4.5. GCM, General Circulation Model; P, precipitation; RCP, Representative
Concentration Pathway.
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FIGURE 3.14 Spatial distribution of mean annual T (�C) over Amazon basin for the period 2041e60 (2050):
baseline and 19 GCMs, and RCP 4.5. GCM, General Circulation Model; RCP, Representative Concentration Pathway;
T, temperature.

FIGURE 3.15 Amazon basin: long-term mean P (left) and T (right) of the baseline period (solid blue line) and
the 19 RCP 4.5 projections (solid red line). Long-term mean P of each projection is also displayed for the period
2041e60 (solid gray lines). P, Precipitation; RCP, Representative Concentration Pathway; T, temperature.



6. Conclusions
In this chapter the STRIVIng toolbox was introduced. It was shown that STRIVIng is used

for the assessment of monthly values in three large-scale applications: Dominican

Republic, Mexico, and Amazon basin. STRIVIng was used to:

� Extract and visualize the spatial distribution of annual precipitation and tempera-

ture of both baseline and projections.

� Calculate and visualize the long-term mean P and T for months from January to

December through line plots.

� Visualize the long-term mean P and T for months from January to December

through box-plot charts.

From the application of the toolbox in the case studies, some findings can be drawn.

6.1 Dominican Republic

� For both periods 2050 (2041e60) and 2070 (2061e80), most GCMs agree that the

greatest changes in the spatial distribution of P occur on the north coast. While on

the border with Haiti, the condition practically remains stable. For the 2050 period,

the northern coast will experience an increase in annual rainfall, while a decrease

is expected on the southern coast.

� Long-term mean of monthly P will show a decrease in the coming decades, mainly

in the months of May to October. June and July are the months that present the

greatest fall. The May rainfall projection shows the greatest disagreement among

GCMs.

� The country will suffer an increase in the mean annual values of temperature in

practically the whole territory for the periods 2041e60 and 2061e80. Only in the

central part will the condition remain more stable in both cases.

� An increase of around 2 degrees in the long-term mean of monthly T is observed.

6.2 Mexico

� For the period 2041e60, the spatial distribution of the mean annual P agrees with

most of the GCMs. The maximum magnitudes of rainfall are observed on the south

coast with the Gulf of Mexico and on the southwest coast with the Pacific Ocean.

The lowest values are observed in the north and northwest of the country, on the

border with the United States. The area with most disagreement is the southwest

coast with the Pacific Ocean.

� According to the four RCPs, the long-term mean of monthly P projections will be

of similar magnitude to the baseline period throughout the year, except for the

months of June to September, where the models show mainly a drop in values.

July is the month that shows the greatest fall; this drop increases from RCP 2.6 to

8.5. On the other hand, September shows an increase, whose value seems to be
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lower from route 2.6 to 8.5. July and September are the months with the poorest

agreement between GCMs.

� Regarding T, results show that most GCMs indicate a rise in temperatures

throughout the country for the period 1941e2060. On the coasts and in the north,

the greatest values are observed. It is observed that increases in temporal distribu-

tion and values of long-term mean T projections from January to December are

larger than those of the baseline period. The main increases are observed from

June to September.

6.3 Amazon Basin

� The spatial distribution of mean annual P shows different values along the basin in

the baseline period. The largest appear to be in the northwest and center, followed

by the rains in the northwest. The lowest are in the southwest part. According to

RCP 4.5, most GCMs indicate a change in the spatial distribution of annual rainfall

for the period 2041e60, mainly in the northwest of the basin, where the values

seem to increase.

� The long-term mean of monthly P projections shows that the values from January

to July in general remain, but not the values from August to December, where a

drop in the magnitude of rainfall is expected. The worst agreement between

models is observed in October. This is for the period 2041e60.

� Most GCMs indicate an increase in temperature throughout the territory of the ba-

sin. The northern, eastern, and central parts seem to be the most affected. There is

also a rise in the southwest part, where the expected average minimum value is 4

degrees. The long-term mean of monthly T projections shows a greater disagree-

ment in every month with respect to rainfall projections. In general, projections

indicate an increase in T in all months. The poorest agreement is observed in

October.

The toolbox can be retrieved at https://github.com/hydroinfo4x/STRIVIng.
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