
Comparative Analysis of Exploration Algorithms in Deep Reinforcement
Learning for Autonomous Driving

How does epsilon-greedy, random network distillation, bootstrapped DQN affect training and the robustness
of final policies under various testing conditions in autonomous driving?

Efe Sözen1

Supervisor(s): Matthijs Spaan1, Moritz Zanger1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Efe Sözen
Email: e.sozen@student.tudelft.nl
Final project course: CSE3000 Research Project
Thesis committee: Matthijs Spaan, Moritz Zanger, Elena Congeduti

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Autonomous driving is a rapidly evolving field
that aims to enhance road safety and reduce ac-
cidents through the use of advanced software
and hardware technologies. Reinforcement learn-
ing (RL) combined with deep neural networks
has emerged as a promising approach for train-
ing autonomous agents. This research paper in-
vestigates three exploration algorithms —Epsilon-
Greedy, Random Network Distillation (RND), and
Bootstrapped Deep Q-Network (DQN)— within
the context of autonomous driving. Performance
is assessed based on episodic returns in training
and testing environments, as well as the time re-
quired to train the networks. The results show sig-
nificant improvement in learning capability using
Bootstrapped DQN without critical differences in
training time. There also exists a potential to in-
crease episodic returns further given an increase in
the number of steps to train the models.

1 Introduction
Deep reinforcement learning (DRL) has become an intrigu-
ing area of research since deep learning has started to de-
velop. The attempts of exceeding human performance on
Atari [1][18][19] has inspired many other disciplines to uti-
lize DRL, such as finance [17], robotics [13], human move-
ment [3] and autonomous driving [14].

Autonomous driving is a complex problem with computa-
tional challenges and specialized hardware requirements [14].
Autonomous vehicles can be trained with DRL while avoid-
ing the limitations of a real-world environment by utilizing
simulators that create virtual environments [8].

DRL uses deep neural networks as well as a policy gener-
ated by the reinforcement learning algorithm, which allows
for better performance in complex environments. While re-
inforcement learning algorithms fail to improve performance
on larger state spaces, the ability of neural networks to gen-
eralize on extensive state spaces allows for the increase in
performance metrics with DRL.

A relevant question for the training of an autonomously-
driving agent with DRL, which would also apply to many
other RL agents, is how to balance the agent’s exploration
and exploitation. In the setting of this research paper, explo-
ration refers to accumulating new information about the envi-
ronment the agent is in, whereas exploitation indicates using
the already gathered information.

While Epsilon-Greedy is a common dithering algorithm
used to balance exploration and exploitation, deep explo-
ration is argued to accomplish improved performance in com-
plex environments with larger state spaces. Some algorithms
that could be used as examples for deep exploration are Ran-
dom Network Distillation (RND) [21], Bootstrapped Deep Q
Networks (DQN) [20], Noisy Networks [9] and Diversity-
Driven Exploration [11]. There are additional methods of ex-
ploration, however, this paper focuses on two of the deep ex-
ploration methods, which are RND and Bootstrapped DQN.

These exploration methods are critical in the performance
of the trained network as the efficiency of the exploration
of the agent is a direct contributor. Bootstrapped DQN is
shown to learn faster than DQN and increases the cumula-
tive rewards by orders of magnitude in the Atari environ-
ment [20]. A network trained with RND and Proximal Policy
Optimization (PPO) [24] has had significantly better results
than PPO alone on Montezuma’s Revenge [21]. These re-
sults beg the question of how much of an improvement can
these exploration algorithms provide to an agent learning to
autonomously drive in a simulated environment.

The research efforts for autonomous driving and deep ex-
ploration has been mostly separate. Of the papers published
for the aforementioned exploration algorithms, not many
have been tested specifically for autonomous driving, which
motivates the purpose of this research paper. The details of
the current state of research are discussed in Section 2.

Therefore the question that is being attempted to be an-
swered in this research paper is: ”How does Epsilon-Greedy,
Random Network Distillation, Bootstrapped DQN affect
training and the robustness of final policies under various test-
ing conditions in autonomous driving?”. As a result, this pa-
per presents a comparison of the performances for Epsilon-
Greedy, Bootstrapped DQN, and Random Network Distilla-
tion made in terms of robustness and time spent for training,
where robustness is measured by the episodic return for three
different maps. These maps are from the high-fidelity driving
simulator CARLA [8]. To have the methods of exploration as
the only independent variable in the experiments, all explo-
ration algorithms are implemented with Deep Q Networks as
the reinforcement learning method.

In Section 2, the exploration algorithms as well as the use
of DRL in autonomous driving are explained further. Sec-
tion 3 discusses the methodology of this research. Section
4 demonstrates the implementation details of the aforemen-
tioned algorithms. Section 5 discusses the results obtained
from the experiments. In Section 6 critics of responsible
research are made, which is followed up by Section 7 that
discusses the limitations of the experiments. Finally, in Sec-
tion 8 final remarks are made about the experiment and future
work.

2 Related Work

This section provides an overview of the literature relevant
to the research paper. It begins by discussing Markov De-
cision Processes which are a foundational concept for RL.
Then Deep Q Networks are elaborated upon, which com-
bine deep neural networks with Q-learning to learn opti-
mal policies for sequential decision-making problems. Sub-
sequently, the section explores the use of deep reinforce-
ment learning in the field of autonomous driving. The im-
portance of exploration methods in reinforcement learning,
specifically Epsilon-Greedy and Random Network Distilla-
tion, is addressed. Finally, the extension of the DQN algo-
rithm known as Bootstrapped DQN, which aims to enhance
exploration and policy robustness, is discussed.



2.1 Markov Decision Process
A Markov Decision Process (MDP) is a widely used mathe-
matical framework for modeling sequential decision-making
problems in uncertain environments [23] [25]. In an MDP,
an agent interacts with an environment over a series of dis-
crete time steps, where it observes the current state, selects
an action, and receives a reward based on the transition to the
next state. The MDP assumes the Markov property, stating
that future states and rewards depend only on the current state
and action. The goal of an MDP is to find an optimal policy
that maximizes the cumulative expected rewards over time,
driving the development of effective reinforcement learning
algorithms [23] [25].

2.2 Deep Q Networks
Deep Q-Networks are a class of reinforcement learning al-
gorithms that combine deep neural networks with Q-learning
[26], a popular model-free reinforcement learning technique
[19]. DQNs are designed to learn optimal policies for se-
quential decision-making problems in an end-to-end manner,
directly from raw sensory inputs.

The core idea behind DQNs is to approximate the Q-
function, which represents the expected cumulative rewards
for taking a particular action in a given state. By estimating
the Q-values for different state-action pairs, DQNs can make
decisions to maximize long-term rewards.

DQNs utilize deep neural networks as function approxi-
mators to handle high-dimensional and complex input spaces
[19]. The network takes the state of the environment as input
and produces Q-values for all possible actions as output. Dur-
ing training, the network parameters are updated iteratively
by minimizing the difference between the predicted Q-values
and the target Q-values, which are computed using a variant
of the Bellman equation.

To mitigate issues related to correlation and instability in
the learning process, DQNs employ an experience replay
mechanism. This mechanism stores past experiences (state,
action, reward, next state) in a replay memory buffer, from
which batches of experiences are sampled randomly during
training [15]. This random sampling breaks the sequential
correlations and improves data efficiency.

Additionally, DQNs incorporate a target network to stabi-
lize the learning process. The target network is a separate
copy of the main network, which is periodically updated with
the current network’s parameters. This fixed target network
provides more stable targets for Q-value approximation dur-
ing training [19].

DQNs have been successfully applied to various domains,
including Atari games, controlling robotic systems, and op-
timizing complex tasks. Their ability to learn directly from
raw sensory inputs and handle high-dimensional state spaces
has made them a powerful tool in reinforcement learning re-
search.

2.3 Deep Reinforcement Learning for Autonomous
Driving

Deep reinforcement learning has emerged as a promising ap-
proach for autonomous driving, enabling vehicles to learn

complex driving policies directly from sensory inputs. Sev-
eral notable papers have demonstrated the application of deep
reinforcement learning in this domain.

In the work of Pomerleau [22], reinforcement learning was
applied to autonomous driving, demonstrating the effective-
ness of the approach. The system, known as ALVINN (Au-
tonomous Land Vehicle in a Neural Network), learned to
drive by training on a large dataset of expert demonstrations
and refining the learned policy through interactions with the
environment.

In a different paper [2], an end-to-end approach for au-
tonomous driving using deep reinforcement learning is pre-
sented. The authors trained a convolutional neural network to
map raw pixels from a front-facing camera directly to steer-
ing commands, effectively learning to drive in a simulated
environment.

Many other papers have been proposed to train with DRL
in CARLA [8], which is critical for the context of this pa-
per. For instance, Latent DRL was used to show end-to-end
driving capabilities in urban driving scenarios [5]. A model-
free approach has also been used [6], which performed well
in roundabouts and complex driving environments. A novel
combination of DRL, imitation learning, and prioritized ex-
perience replay was proposed [16], which compared the per-
formances of different learning algorithms on CARLA. In a
different paper [10], a DRL algorithm that utilizes Proximal
Policy Optimization has been proposed to learn complex in-
tersections.

2.4 Exploration
An exploration algorithm is a technique that enables agents
to explore their environment effectively while learning opti-
mal policies. Exploration algorithms aim to strike a balance
between exploiting the knowledge gained so far and actively
seeking out new and uncertain regions of the environment.
These algorithms play a crucial role in discovering and learn-
ing optimal strategies in RL problems.

Epsilon-Greedy
Epsilon-Greedy is a popular algorithm commonly used in re-
inforcement learning. It involves selecting the action with the
highest expected reward probabilistically while occasionally
choosing a random action with a probability determined by
the exploration parameter, epsilon.

By incorporating randomness into action selection,
Epsilon-Greedy allows the agent to explore uncharted regions
of the action space, enabling the discovery of potentially bet-
ter policies.

Random Network Distillation
Random Network Distillation is an exploration technique in
reinforcement learning that leverages the concept of curiosity
to drive agent behavior. RND utilizes two neural networks: a
target network and a predictor network. The target network
is a randomly initialized network that generates a fixed set of
random target vectors. The predictor network learns to pre-
dict these target vectors based on the observed states encoun-
tered during exploration [3]. The prediction errors serve as
intrinsic rewards, incentivizing the agent to explore novel or
less familiar states [3].



By having the predictor network learn from the target net-
work’s predictions, RND fosters curiosity-driven exploration,
allowing the agent to uncover unknown aspects of the envi-
ronment and improve its policy learning capabilities. This
approach can be particularly valuable in autonomous driving
scenarios, where exploring a wide range of driving situations
is essential for robust and adaptive decision-making.

Bootstrapped DQN
Bootstrapped DQN is an extension of the original DQN algo-
rithm that aims to enhance exploration and policy robustness.
In Bootstrapped DQN, multiple value estimation networks,
also known as value heads, are employed to approximate the
action-value function [20]. Each value head learns a different
estimate of the action values, enabling the agent to explore
multiple potential policies simultaneously.

During action selection, Bootstrapped DQN leverages
Thompson sampling, a probabilistic approach, to choose an
estimate from one of the value heads. This introduces explo-
ration by encouraging the agent to consider multiple poten-
tial policies simultaneously. By combining the bootstrapping
principle with Thompson sampling, Bootstrapped DQN pro-
motes exploration in the action space, allowing the agent to
achieve improved training stability and robustness in different
environments.

3 Methodology
This section describes the methodology employed to compare
the performance of three algorithms, namely Epsilon-Greedy,
Bootstrapped DQN, and Random Network Distillation with
DQN, in the context of autonomous driving. The experiments
were first conducted using the CarRacing 1 environment from
OpenAI’s Gym and then extended to CARLA.

CarRacing environment’s similarity in terms of input and
output to CARLA, combined with the significant computa-
tional ease at training models have led to the decision to
train models in CarRacing first. The main point of doing
this was to test the algorithms in terms of correctness and
to make sure the models learn how to drive. However, due
to the simplicity of CarRacing, it is impossible to decide
whether or not the models learn to drive in more realistic traf-
fic. Therefore the final training and robustness tests are made
in CARLA. A library for the integration of the Gym environ-
ment into CARLA is gym-carla [4], which adapts the interac-
tions with the CarRacing environment to CARLA. Example
images from the CarRacing and gym-carla environments are
shown in Figure 4 and Figure 1 respectively.

The training process took place on DelftBlue [7], which
is a high-performance computer specialized for parallel com-
puting. This was crucial for the training process in CARLA
because CARLA requires advanced hardware to be able to
train models.

Epsilon-Greedy, Bootstrapped DQN, and RND were im-
plemented over a modified DQN implementation on CleanRL
[12] (implementation details on Section 4) and adapted to the
specific requirements of the CarRacing and CARLA environ-
ments. Each algorithm was trained independently to learn

1https://www.gymlibrary.dev/environments/box2d/car racing

the optimal policy for driving autonomously. A fixed train-
ing duration of 500 thousand steps was established for con-
sistency and to ensure comparability across the algorithms.
After training in the CarRacing environment, the algorithms
were evaluated based on their episodic returns per step. The
scores were compared to see if the algorithms learn better or
worse than each other.

To further investigate the robustness and generalization ca-
pabilities of the algorithms, and to understand whether or not
these algorithms cause a difference in robustness or training
time, models were trained again on CARLA. The training
and robustness tests were done on different CARLA maps2.
The training took place in Town03, where the robustness tests
were done on Town03, Town04, and Town05 for each of the
three algorithms. Town03 is an urban map with roundabouts,
Town04 is a small town embedded in mountains and Town05
is a squared grid town with cross junctions. The variability
in the driving conditions in the different maps from CARLA
tests the robustness of the models trained with different ex-
ploration algorithms.

The models were evaluated using an evaluation function
that used the trained models to drive the simulated cars in the
environments and collect rewards. The evaluation function
ran the internal function that drives and completes a circuit
10 times. The episodic returns for each run are collected and
averaged for comparison. The higher the average episodic
return for an algorithm, the more learning it could do, which
means that the exploration method used was more efficient
since all else was kept equal.

Figure 1: Example image that is used as input from gym-carla

4 Implementations
In this section, the implementations of the exploration algo-
rithms utilized in this research project are presented. These
algorithms are implemented using the CleanRL framework,
which has shown promising performance in various Atari
games and is well-suited for image-related environments like
CarRacing and CARLA. With minor changes to the CleanRL
implementation, the network architecture was made fit for
CARLA. Each algorithm incorporates specific modifications

2https://carla.readthedocs.io/en/latest/core map/



Figure 2: Example image that is used as input from CarRacing

to the default DQN implementation to enhance exploration
and improve the agent’s learning capabilities.

Additionally, since it is not possible to directly utilize
CleanRL’s implementations on CARLA, which are compat-
ible with the Gym environment, gym-carla was used.

4.1 Epsilon-Greedy and DQN
The Epsilon-Greedy implementation that is utilized in this
research paper is the default implementation of DQN in
CleanRL with an additional convolutional layer added to the
network structure. Since CleanRL performs well with many
different Atari games, it is a fitting implementation for image-
based environments like CarRacing and CARLA.

The implementation of Epsilon-Greedy is as follows, a
random value is selected in each step of the algorithm and
checked if the value is smaller than epsilon or not. If it is
smaller, a random action is taken, if it is greater than or equal
to epsilon, the action with the highest Q-value is executed.
The epsilon value is decayed over time to ensure higher rates
of exploration at first and an increase in exploration as the
algorithm progresses.

4.2 Random Network Distillation
The RND algorithm is written on the DQN implementation of
CleanRL. For the RND extension, two neural networks with 5
convolutional layers and 2 fully connected layers are utilized.
One of the neural networks is the target and the other is the
predictor. The intrinsic reward that the agent is rewarded with
for exploring lesser-known states is calculated by the mean-
squared error of the output of the prediction network and the
output of the target network. The prediction network learns
from the target network every train frequency, which was set
to 10, gradient-steps of the algorithm. As the prediction net-
work gets better at predicting the output of the target network
for some particular input, it is inferred that this input state has
been visited enough times for the network to learn the output
of the target network. Since the predictor can predict the tar-
get at this point, the intrinsic reward is lower.

There are differences between the RND implementation in
[21] and the implementation utilized for this experiment. Al-
though RND could be used with other DRL algorithms, the
original paper [21] has found an increase in exploration abil-
ity using PPO. For the sake of the experiments, DQN was
fitting to be able to compare the efficiency of the exploration
across the same algorithm.

Next, the paper suggests that a non-episodic approach,
where the end-game does not lose the agent as many points,
results in better exploration. This was not possible due to a
similar reason as to why PPO was not used. To be able to keep
the exploration method as the only independent variable, it
was compared to Bootstrapped DQN and Epsilon-Greedy in
the same way these algorithms have obtained their episodic
returns.

The paper also mentioned the importance of observation
normalization [21]. For the implementation used in this ex-
periment, the calculation has caused a significant decrease in
steps per second. This resulted in a sharp increase in training
time, therefore observation normalization was not used.

4.3 Bootstrapped DQN
The DQN algorithm from CleanRL is also utilized to imple-
ment Bootstrapped DQN. Contrary to DQN, now five heads
with separate Q-networks are used, and the weights for the
networks are randomly initialized. This is crucial as the ran-
dom initialization of weights has shown to be adequate to
drive more exploration [20]. For train frequency, which was
also set to 10, one of the heads is chosen randomly and is used
to pick the action that presents the highest Q-value possible
at the moment within that head. The previous experiences are
recorded in a replay buffer, where it is bootstrap sampled for
each head and the samples are used to be trained during the
training phase.

In the original paper [20], a bootstrap head is shown to be
selected every episode, instead of every train frequency steps.
The use of train frequency instead of episodes to choose a
bootstrap head is an intentional choice for this paper as the
episodic returns obtained from choosing a bootstrap head ev-
ery train frequency steps, were higher.

Another difference from the original paper is that the origi-
nal paper suggests the use of a masking distribution, while the
current implementation does not apply masking to decrease
complexity.

5 Results
The results section presents an analysis of the training out-
comes for three algorithms: Epsilon-Greedy, RND, and Boot-
strapped DQN. The evaluation encompasses episodic returns
and training times to provide insights into the performance
and efficiency of each algorithm. Furthermore, a comparative
examination is conducted to assess the robustness of these al-
gorithms across different maps in the CARLA environment.

5.1 Training
After each algorithm is trained on CARLA Town03 with
500 thousand steps to learn, the episodic returns and train-
ing times are compared. The training times did not differ
significantly, and all of the algorithms have approximately
needed twenty and a half hours to train on DelftBlue, which
is demonstrated in Figure 3.

The expectation for the episodic returns was that the
episodic returns of Bootstrapped DQN and RND would out-
run the Epsilon-Greedy implementation because, during the
training on the CarRacing environment, Bootstrapped DQN



and RND have returned significantly better episodic returns
than Epsilon-Greedy. The comparison of RND and Epsilon-
Greedy alone is displayed in Figure 4.

Although Bootstrapped DQN has satisfied the expecta-
tions, RND did not have better episodic returns for the
Town03 environment of CARLA, shown in Figure 3.

This could be caused by several factors such as the train-
ing environment, specific implementation details of RND, the
hyperparameters of the model, and training time. The differ-
ences in implementation details of the original paper [21] and
the implementation of this experiment have been detailed in
Section 4. A single one or a combination of these differences
could explain the inferior ability to learn for the implementa-
tion that used RND.

Secondly, the learning environment in CARLA could have
considerably more novel states than CarRacing due to a more
complicated map with other car entities simulating traffic.
Since there are many more novel states, RND might have in-
centivized the agent to explore these states, instead of exploit-
ing the already explored paths that bring rewards.

One other reason for the poor performance of RND could
be the fact that hyperparameters could not be optimized
for CARLA. Since it requires significant computational re-
sources to train on CARLA, it was not possible to try and
utilize many different combinations of hyperparameters such
as rnd-weight or learning-rate-rnd. More optimized hyper-
parameters could lead to more efficient exploration which
would cause better returns.

Increasing training time could also help the model learn.
With more steps given to the model to learn, the model might
gain further capability by exploring novel states and collect-
ing intrinsic rewards.

Bootstrapped DQN, contrary to RND, has produced con-
siderably higher returns in CARLA than Epsilon-Greedy,
showing improved ability in learning. This was aligned with
the performance previously recorded on CarRacing, where
Bootstrapped DQN reached the highest levels of returns
around 50k steps earlier than RND and around 600k steps
earlier than Epsilon-Greedy.

Figure 3: Graph showing episodic returns vs steps during training as
well as time spent for training per algorithm on CARLA

Figure 4: Graph showing episodic returns vs steps during training
on CarRacing for DQN (uses Epsilon-Greedy) and RND-DQN

5.2 Robustness
The robustness tests were done on three different maps,
Town03, Town04, and Town05 on CARLA. The models were
evaluated using an evaluation function that drove the simu-
lated cars in the environments and collected rewards. The
mean rewards accumulated by each exploration method for
each of the maps are displayed in Figure 5. Bootstrapped
DQN has outperformed Epsilon-Greedy and RND by a large
margin.

RND, as shown in Figure 5 performed the poorest among
the three, consistent with the episodic returns obtained from
the training phases. Although the obtained mean episodic re-
turns are low, the standard deviation of episodic returns for
RND was significantly high on each of the maps, demon-
strated in Figure 6. This leads to the conclusion that the
episodic returns of the model that was trained with RND were
differing significantly, showing insufficient learning.

Another intriguing result is the serious increase in perfor-
mance on map Town04 for all algorithms. This might be due
to the shape of Town04, in which most of the road length
is covered in a figure-8-shaped highway, displayed in Figure
7. While Town03 and Town05 are both urbanized with high-
ways around the maps, there are also many opportunities for
the agent to engage in inner-city driving with intersections
and lights, which could slow learning.

Town04 also contributed to the most standard deviation in
episodic returns on evaluation. The fact that the agent was ob-
taining very high and very low results might also be caused
by the terrain in which the agent was driving at. The model
might have had significant ease at driving on the highway
while struggling in a complex intersection scenario.

6 Responsible Research
The field of autonomous driving holds tremendous poten-
tial for enhancing road safety and transportation efficiency.
However, it also raises ethical concerns regarding the well-
being and security of the individuals involved 3. In this paper,

3https://www.moralmachine.net/



Figure 5: Graph showing mean episodic returns of the three explo-
ration methods in three different CARLA maps

Figure 6: Graph showing standard deviations of episodic returns of
the three exploration methods in the different CARLA maps

the examination of reinforcement learning techniques within
simulated environments is concentrated on, without involve-
ment in real-world testing or the deployment of autonomous
vehicles. Therefore, ethical considerations associated with
real-world deployments, such as potential harm to human
lives, do not directly apply.

Furthermore, reproducibility constitutes a fundamental
principle of scientific research, enabling the validation and
verification of findings. In the domain of deep reinforce-
ment learning, achieving exact reproducibility poses chal-
lenges due to the stochastic nature of neural networks. Al-
though this is an inherent limitation, providing comprehen-
sive details of the experimental setup, methodologies, and hy-
perparameters to facilitate reproducibility. While exact repli-
cation of results may prove challenging due to the stochastic-
ity inherent in neural networks, it is the expectation that other
researchers employing similar methods, models, and hyper-
parameters should obtain similar trends and outcomes.

It is important to acknowledge that the implementation of
the algorithms mentioned in this paper might vary when at-
tempting reproduction, potentially leading to slight differ-
ences in the obtained results. The complex nature of deep
reinforcement learning algorithms often involves numerous
design choices and parameter settings that can influence the
outcome. Factors such as hardware configurations or soft-
ware versions affect the overall behavior and performance of

Figure 7: Town04 aerial view from CARLA

the models. Therefore, while striving for reproducibility, it is
crucial to consider the inherent variability in results that may
arise due to implementation discrepancies.

7 Limitations
There are several limitations associated with this research that
should be considered. Firstly, the difficulty in tuning hyper-
parameters is a notable constraint, primarily due to the ex-
tensive time required to train models in the CarRacing and
CARLA environments, with CARLA being particularly time-
consuming. This limitation is specifically displayed in the
under-performance of RND in a more complex environment
like CARLA, as the setup for the network and the hyperpa-
rameters could have been optimized. The lack of time and
computational resources restrict the thorough exploration and
optimization of hyperparameter settings, affecting the overall
performance and generalizability of the models.

Secondly, the limited time available for training the models
in different environments in CARLA poses a constraint on
the robustness of the models. Due to time constraints, it was
not possible to cover a wide spectrum of available maps and
environments. Consequently, the trained models may lack
exposure to certain scenarios, which could limit their ability
to generalize effectively to unseen environments.

Subsequently, the models have not been trained on the dif-
ferent sensory options gym-carla offered. Since the bird-eye
view allowed for the simplest representation of the environ-
ment, a front camera that had a high-resolution representa-
tion of the environment, as well as the Lidar sensor data, was
not used in training. Using these different environments in
training would also contribute to the robustness of the models
created.

Lastly, it is important to acknowledge that the trained mod-
els have not been tested on many different environments.
Although the models showed promising performance in the
tested scenarios, which are Town03, Town04, and Town05,
CARLA’s large offering of maps and environments could be
utilized further. Evaluating the models on a larger set of di-
verse environments, encompassing various road conditions,
weather conditions, and traffic patterns, would provide a more
comprehensive understanding of their capabilities and limita-



tions.
Despite these limitations, this research offers valuable in-

sights into the application of deep reinforcement learning in
complex driving scenarios. Future research endeavors should
aim to address these limitations by dedicating more time
and resources to hyperparameter tuning, training models on
a broader range of environments, and thoroughly testing the
models on diverse and challenging scenarios.

8 Conclusions and Future Work
This research paper has aimed to answer ”How does epsilon-
greedy, random network distillation, bootstrapped DQN af-
fect training and the robustness of final policies under various
testing conditions in autonomous driving?” To achieve this,
implementations of Epsilon-Greedy, RND, and Bootstrapped
DQN have been trained on CARLA and evaluated for ro-
bustness. Bootstrapped DQN has produced marginally bet-
ter episodic returns compared to the other two, while RND’s
implementation struggled to learn.

This incapability might have been caused by many differ-
ent factors such as differences between the original paper that
proposed RND [21], training environment, under-optimized
hyperparameters, and lack of necessary time to train.

Future improvements should include further hyperparam-
eter optimization not only for RND but also for the DQN
implementation that uses Epsilon-Greedy as well as Boot-
strapped DQN. The agents should also be trained in more
maps on CARLA to be accounted for the differences in learn-
ing environments. CARLA environment parameters could
also be changed during training to increase robustness. The
changed parameters could include the number of vehicles, the
number of walkers, and the observation range.

Due to the fact that Bootstrapped DQN was still showing
an upwards trend in learning, it could be assumed that the
learning has not peaked yet. This leads to the conclusion that
the models could be trained with more than 500k steps.

Finally, more algorithms could be trained on CARLA us-
ing different exploration methods besides Epsilon-Greedy,
Bootstrapped DQN, and RND. NoisyNets [9] and Diversity-
Driven Exploration [11] could be candidates for further re-
search.

References
[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowl-

ing. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelli-
gence Research, 47:253–279, jun 2013.

[2] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol
Zieba. End to end learning for self-driving cars, 2016.

[3] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg
Klimov. Exploration by random network distillation,
2018.

[4] Jianyu Chen. gym-carla. https://github.com/cjy1992/
gym-carla, 2020.

[5] Jianyu Chen, Shengbo Eben Li, and Masayoshi
Tomizuka. Interpretable end-to-end urban autonomous
driving with latent deep reinforcement learning, 2020.

[6] Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka.
Model-free deep reinforcement learning for urban au-
tonomous driving, 2019.

[7] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 1). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[8] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, An-
tonio M. López, and Vladlen Koltun. CARLA: an open
urban driving simulator. 2017.

[9] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal
Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad
Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin,
Charles Blundell, and Shane Legg. Noisy networks for
exploration, 2019.

[10] Rodrigo Gutiérrez-Moreno, Rafael Barea, Elena López-
Guillén, Javier Araluce, and Luis M. Bergasa. Rein-
forcement learning-based autonomous driving at inter-
sections in carla simulator. Sensors, 22(21):8373, 2022.

[11] Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-
Hsiang Chang, and Chun-Yi Lee. Diversity-driven
exploration strategy for deep reinforcement learning,
2018.

[12] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang
Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta, and
João G.M. Araújo. Cleanrl: High-quality single-file
implementations of deep reinforcement learning al-
gorithms. Journal of Machine Learning Research,
23(274):1–18, 2022.

[13] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrish-
nan, Peter Pastor, and Sergey Levine. How to train
your robot with deep reinforcement learning: lessons
we have learned. The International Journal of Robotics
Research, 40(4-5):698–721, jan 2021.

[14] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick
Mannion, Ahmad A. Al Sallab, Senthil Yogamani, and
Patrick Pérez. Deep reinforcement learning for au-
tonomous driving: A survey, 2021.

[15] Long-Ji Lin. Reinforcement learning for robots using
neural networks. Carnegie Mellon University, 1992.

[16] Haochen Liu, Zhiyu Huang, Jingda Wu, and Chen
Lv. Improved deep reinforcement learning with expert
demonstrations for urban autonomous driving, 2022.

[17] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia
Zhang, Liuqing Yang, Bowen Xiao, and Christina Dan
Wang. Finrl: A deep reinforcement learning library for
automated stock trading in quantitative finance, 2022.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforce-
ment learning. December 2013.

https://github.com/cjy1992/gym-carla
https://github.com/cjy1992/gym-carla
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1


[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidje-
land, Georg Ostrovski, and et al. Human-level con-
trol through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[20] Ian Osband, Charles Blundell, Alexander Pritzel, and
Benjamin Van Roy. Deep exploration via bootstrapped
DQN. February 2016.

[21] Ian Osband, Benjamin Van Roy, Daniel Russo, and
Zheng Wen. Deep exploration via randomized value
functions. March 2017.

[22] Dean A. Pomerleau. ALVINN: an autonomous land ve-
hicle in a neural network. In David S. Touretzky, editor,
Advances in Neural Information Processing Systems 1,
pages 305–313. San Francisco, CA: Morgan Kaufmann,
1989.

[23] Martin L Puterman. Markov decision processes: dis-
crete stochastic dynamic programming. John Wiley &
Sons, 2014.

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms, 2017.

[25] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, second edi-
tion, 2018.

[26] Christopher J. Watkins and Peter Dayan. Q-learning.
Machine Learning, 8(3–4):279–292, 1992.

9 Appendix
9.1 Hyperparameters
The hyperparameters used in the experiments are shown be-
low in 1.

total-timesteps: This specifies the total number of
timesteps or steps the agent will take during training.

train-frequency: This hyperparameter controls how fre-
quently the agent performs a training update.

buffer-size: This determines the size of the replay buffer,
which is a storage mechanism used to store and sample past
experiences for training.

gamma: This is the discount factor used in the computa-
tion of the cumulative discounted rewards. It determines the
importance of future rewards relative to immediate rewards.
A value of 0.99 means that future rewards are weighted more
heavily than immediate rewards.

tau: This hyperparameter controls the rate at which the
target network parameters are updated.

learning-starts: This specifies the number of timesteps the
agent will take before starting the training process.

start-e and end-e: These specify the starting and ending
values of the exploration rate (epsilon) used in epsilon-greedy
action selection.

target-network-frequency: This determines how often
the target network is updated with the primary network’s pa-
rameters.

learning-rate-rnd: This is the learning rate used for up-
dating the parameters of the RND network during training. It
controls the step size taken during each parameter update of
the RND network.

rnd-weight: This specifies the weight or scaling factor ap-
plied to the RND intrinsic reward. It determines the relative
importance of the RND intrinsic reward compared to the ex-
trinsic reward. A higher rnd-weight assigns more importance
to the RND intrinsic reward, encouraging exploration.

exploration-fraction: This determines the fraction of to-
tal timesteps during which the exploration rate (epsilon) de-
creases.

batch-size: This is the number of experiences sampled
from the replay buffer for each training update.

num-heads-bdqn: This hyperparameter specifies the
number of the bootstrap heads used in the Bootstrapped
DQN.

Hyperparameter Value
total-timesteps 500k
train-frequency 10

buffer-size 50k
gamma 0.99

tau 1
learning-starts 10k

start-e 1
end-e 0.05

target-network-frequency 1000
learning-rate-rnd 0.001

rnd-weight 0.2
exploration-fraction 0.5

batch-size 128
num-heads-bdqn 5

Table 1: Hyperparameters and Values


	Introduction
	Related Work
	Markov Decision Process
	Deep Q Networks
	Deep Reinforcement Learning for Autonomous Driving
	Exploration
	Epsilon-Greedy
	Random Network Distillation
	Bootstrapped DQN


	Methodology
	Implementations
	Epsilon-Greedy and DQN
	Random Network Distillation
	Bootstrapped DQN

	Results
	Training
	Robustness

	Responsible Research
	Limitations
	Conclusions and Future Work
	Appendix
	Hyperparameters


