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A macroelement framework for shallow foundations including
changes in configuration

F. PISANÒ�, L. FLESSATI† and C. DI PRISCO†

Macroelement plasticity models are being increasingly applied to study non-linear soil–foundation
interaction (SFI) problems. Macroelement models are particularly appealing from a computational
standpoint, as they can capture the essence of SFI by means of a few degrees of freedom. However,
all the macroelement formulations available in the literature suffer from the same limitation, that is
the incapability of accounting for changes in both geometry and loading/boundary conditions.
Accordingly, macroelement models are usually calibrated to analyse a given boundary value problem,
with no chance of handling situations with significant variations in embedment, lateral surcharge
and/or phreatic level. The present work shows how standard soil modelling concepts can be exploited to
reproduce relevant ‘configurational features’ of non-linear SFI. A macroelement framework is here
proposed to simulate the drained load–settlement response of shallow footings on sand in the presence
of varying surface/body forces. As a first step, the ideal case of a weightless soil layer is exclusively
considered. The macroelement constitutive equations are conceived/calibrated on a minimal set of
finite-element results; the satisfactory predictive capabilities of the macroelement model are finally
demonstrated by retrospectively simulating selected finite-element tests.

KEYWORDS: bearing capacity; footings/foundations; numerical modelling; plasticity; settlement;
soil/structure interaction

INTRODUCTION
In the last 25 years, force-resultant plasticity models – also
termed ‘macroelements’ (ME) – have been gaining increasing
popularity within the engineering community as a suitable
tool for solving non-linear soil–foundation interaction
(SFI) problems. By definition, force-resultant approaches
stem from the idea of describing the global soil–foundation
response by wayof a single upscaled constitutive relationship,
relating in the non-linear regime (a low number of) gen-
eralised force and displacement variables. When properly
formulated, MEs can reproduce the mechanical response
of foundations under combined loading at very low compu-
tational costs, largely lower than those needed for non-linear
finite-element (FE) analyses.

Following from the earliest pioneering works (Roscoe &
Schofield, 1956; Butterfield & Ticof, 1979; Schotmann &
Stork, 1987; Schotmann, 1989), complete elastic–plastic ME
formulations for strip and circular footings were proposed
by Nova & Montrasio (1991), Montrasio & Nova (1997)
and Gottardi et al. (1999). These works brought about a
paradigm shift in the studyof non-linear SFI: it was acknowl-
edged that soil specimens and foundational systems share,
at different scales, many behavioural features, that can be
modelled similarly. Since then, a number of ME models were
developed in the plasticity framework for a very wide range
of SFI problems, including, for example, offshore jack-ups
and wind turbines (Martin & Houlsby, 2001; Houlsby &
Cassidy, 2002; Byrne & Houlsby, 2003; Nguyen-Sy, 2005;
Cassidy et al., 2006; Byrne, 2013; Foglia et al., 2014;

Zhang et al., 2014), historical towers (Marchi et al., 2011;
Pisanò et al., 2014), buried pipelines (Zhang et al., 2002;
Calvetti et al., 2004; di Prisco et al., 2004; Cocchetti et al.,
2008, 2009a, 2009b; Tian & Cassidy, 2008; Cheuk & White,
2011), rock boulders impacting granular soil layers (di Prisco
& Vecchiotti, 2006) and, lately, even piled foundations (Li
et al., 2015). ME formulations for cyclic/dynamic-seismic
SFI problems are also available in the literature, such as those
proposed by Paolucci (1997), Crémer et al. (2001, 2002),
Shirato et al. (2008), Chatzigogos et al. (2009), Grange et al.
(2009, 2011) and Figini et al. (2012) – the interested reader
is also referred to di Prisco & Pisanò (2011b) and di Prisco
et al. (2012) for quite recent overviews on this subject.
Although the ME concept is in principle well-suited

for general three-dimensional (3D) problems, most of the
above works are restricted to two-dimensional (2D) vertical–
horizontal–moment (VHM) loading on strip or circular foot-
ings. Only a few recent works consider fully 3D situations
(Bienen et al., 2006; Grange et al., 2008, 2009; Salciarini
& Tamagnini, 2009), and even fewer also deal with torsional
loading (Bienen et al., 2006; Salciarini et al., 2011;
Tamagnini et al., 2013). Apart from the scarcity of fully 3D
formulations, the practical employment of ME models is still
encumbered by some conceptual difficulties

• the calibration of certain ME parameters usually requires
specific experimental data and/or numerical
(finite-element (FE)) simulations; in this sense, MEs are
not fully ‘self-standing’

• the interaction between closely spaced foundations
(group effects) is still hardly reproducible through MEs

• only direct loads on the foundation body can be
considered in ME SFI analyses.

As for the last point, it should be noted that footing defor-
mations (and even collapse) can also be induced by vari-
ations in boundary conditions, such as changes in lateral
surcharge, footing embedment and underground phreatic
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level. In practical terms, all the available MEmodels work by
embedding site conditions into phenomenological constitu-
tive parameters, which then do not apply to different
configurations.
In the light of these premises, a novel ME framework

is here proposed to include what will be henceforth termed
‘configurational features’. Their role is truly two-fold, in that
changes in external configuration can (a) induce additional
footing displacements (configurational loading, e.g. lateral
excavations, subsidence, and so on) and (b) modify the global
response of the footing (stiffness and strength) to following
loading (‘configurational set-up’). As will be clarified in the
following, configurational ME models are meant to establish
a new kind of ‘micro-mechanical’ approach to foundation
analysis, in which the constitutive soil response plays within
the global ME model as the micro-mechanical soil grain
interaction in the formulation/calibration of phenomenolo-
gical constitutive models for geomaterials.
As a first contribution on this subject, configurational

features are here modelled only for vertically loaded strip
footings on homogeneous sand deposits. The ideal case of
weightless soil is first considered for the sake of simplicity, as
was done in the past for solving simple bearing capacity
problems in cohesionless materials (Chen, 2013). The paper
contents are thus arranged as follows

(a) the ME framework is established by defining
configuration-sensitive static/kinematic variables

(b) the results of a FE investigation are illustrated to discuss
relevant configurational effects for strip footings; FE
results are then exploited to conceive the new MEmodel

(c) the ME constitutive parameters are calibrated against a
small set of FE results

(d ) the ME model is finally validated against FE data not
previously used for calibrating the ME parameters.

Details concerning formulation, calibration and validation of
the proposed model are provided in the following sections.

A CONFIGURATION-SENSITIVE ME FRAMEWORK
Figure 1 illustrates the problem under consideration, that

is, a strip footing on a homogeneous sand layer. The main
assumptions introduced for ME modelling purposes are
listed below.

(a) The footing breadth is equal to B.
(b) Purely vertical external loading is applied on the

top surface. qsf (x) is the direct load on the foundation,
whereas the uniform lateral surcharge psf replicates
the footing embedment. It should be recalled that
modelling footing embedment as a lateral surcharge is

only accurate for small to moderate depths (Bowles,
1996).

(c) The sand layer rests on a rigid/impervious bedrock
located at depth z¼H, while the water table is at
z¼Hw.

(d ) Sand is assumed to be highly permeable, so that
drained SFI can be considered (instantaneous consoli-
dation). Also, no steady seepage flow takes place within
the soil layer.

(e) Loads are applied quasi-statically.
( f ) There are no geometrical non-linearities (i.e. small

displacement regime).

Definition of static and kinematic variables
In the spirit of the ME theory, foundation modelling entails

an ‘upscaling process’ over a finite soil domain, whose mech-
anical response is described by way of a low number of static
and kinematic variables. This process underlies the identifi-
cation of a meaningful ‘near-field’ domain, including the soil
mass mainly affecting the global SFI. Based on standard engi-
neering idealisation, the footing response can be represented
as the sum of two overlapping components, namely reversible
(elastic) and unrecoverable (plastic): the former tend to take
place over a large soil domain, the latter tend to concentrate
over a smaller region as (shear) failure is approached.
The latter concept is illustrated in Fig. 1, where the

near-field domain Ωnf is assumed to be represented by the
following rectangular region

Ωnf ¼ ðx; zÞ [ R2 : �Bnf

2
� x � Bnf

2
; 0 � z � Hnf

� �
ð1Þ

where inequalities Bnf�B and 0,Hnf�H can be intuitively
anticipated. Hnf is actually likely to coincide with the layer
thicknessH, unless the gradual soil stiffening along the depth
is considered (deep and stiff soil layers will negligibly con-
tribute to the footing settlements).
The required static/kinematic ME variables are derived to

ensure a proper representation of the external work input to
Ωnf (Fig. 1), henceforth referred to as δWnf. Under vertical
surface loads (qsf and psf) and body forces (the soil unit weight
γ), δWnf can be computed for a virtual variation δv(x, z) in the
vertical displacement field (the term ‘virtual’means avariation
in vertical displacement compatible with the Dirichlet bound-
ary conditions, i.e. in this case δv(x, z¼H )¼ 0)

δWnf ¼ δW sf
nf þ δW bd

nf

¼ 2
ðB=2
0

qsf ðxÞδvðx; 0Þ dxþ 2
ðBnf =2

B=2
psfδvðx; 0Þ dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δW sf
nf

þ 2
ðBnf=2

0

ðHnf

0
γðzÞδvðx; zÞ dz dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δW bd

nf

ð2Þ

where the contributions of surface and body forces, W sf
nf and

W bd
nf , are distinguished. In the relevant case of (a) rigid

foundation (vðjxj � �Bnf=2; 0Þ is uniform and set to an
imposed, time-varying value v̄), (b) uniform lateral surcharge
psf and (c) uniform soil weight γ, the following pairs of
work-conjugate static and kinematic variables can reproduce
the near-field external work input

δWnf ¼ δW sf
nf þ δW bd

nf ¼ Vinδvin þ Voutδvout|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δW sf

nf

þ ΓδvΩ|ffl{zffl}
δW bd

nf

ð3Þ

z

x

B

Hnf

Bnf

H

psf

Hw

Ωnf

qsf(x)

Fig. 1. Strip footing on a homogeneous sand layer
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where

Vin¼2
Ð B=2
0 qsfðxÞ dx , vin¼ v̄

Vout¼ðBnf � BÞpsf , vout¼ 2
Bnf � B

ðBnf=2

B=2
vðx; 0Þ dx

Γ¼HnfBnf γ , vΩ¼ 2
BnfHnf

ðBnf=2

0

ðHnf

0
vðx; zÞ dzdx

ð4Þ

and γ is either the dry or the effective unit weight when
Hw¼H or Hw¼ 0, respectively. (The assumption of uniform
γ is not strictly necessary, but makes explanation easier – both
the expressions for Γ and vΩ should be modified in the case
of non-uniform soil weight.) The above pairs of variables
(vin–Vin, vout–Vout and vΩ–Γ) preserve the external work input
to Ωnf, including most of the total plastic work δWp

(δW p
nf � δW p), but only a portion of the elastic component

δWe (δW e
nf may be less than the total δWe). It will be shown

in the following that an accurate description of near-field
dissipation is normally enough to reproduce relevant SFI
configurational features in the ME framework.

A few further manipulations on the surface work input
δW sf

nf lead to the finding of two alternative pairs

δW sf
nf ¼ Vinδvin þ Voutδvout ¼ Pδvvol þQδvdev ð5Þ

based on the following definitions

P ¼ Bnf σ̄z ¼ 2
ðB=2
0

qsfðxÞ dxþ ðBnf � BÞpsf ¼ Vin þ Vout

m

vvol ¼ Bvin þ ðBnf � BÞvout
Bnf

Q ¼ 2
ðB=2
0

qsf ðxÞ dx� Bσ̄z ¼ ðBnf � BÞVin � BVout

Bnf

m
vdev ¼ vin � vout

ð6Þ
while

σ̄z ¼ 2
Bnf

ðB=2
0

qsfðxÞ dxþ
ðBnf =2

B=2
psf dx

 !
ð7Þ

is the average pressure along the upper Ωnf boundary.
Both variable pairs in equations (4) and (6) are formed by
displacements and per unit length forces, in accordance
with the plane strain assumption. The concept of the
near-field domain can be simply exploited to handle loads
outside the foundation footprint as if they were standard
direct loads.

As suggested by Fig. 2, the variable pairs in equation (6)
establish an interesting analogy between a soil specimen in a
triaxial apparatus and a vertically loaded strip footing. This
analogy can be grasped by re-interpreting the concepts of
‘isotropic’ (Fig. 2(a)) and ‘deviatoric’ (Fig. 2(b)) loading in a
global SFI sense, as follows.

(a) A soil specimen undergoes isotropic loading when equal
axial and radial stresses (σa and σr) are enforced and
the stress deviator q¼ σa� σr is constantly nil. Similarly,

a uniform surface compression with qsf¼ psf can be
regarded as a sort of isotropic compression on the
soil layer. This statement stems from the conceptual
analogy between the (σa; σr) and (Vin; Vout) pairs
and justifies the adjectives ‘isotropic’ and ‘deviatoric’
for P and Q forces, respectively. It could be checked
that, during generalised isotropic loading (generalised
isotropic loading does not induce an isotropic stress
state within the soil layer, but rather oedometric), Q¼ 0
and P is still given by a linear combination of the
generalised axial and radial stresses, Vin and Vout.
As for kinematics, generalised isotropic compression
produces a uniform settlement of the soil layer, so that
vvol¼ vin¼ vout and a nil generalised deviatoric strain
vdev results.

(b) The triaxial compression of soil specimens features
constant radial confinement (the cell pressure σc) and
increasing axial load, so that a constant ratio between
deviatoric and isotropic stress increments is imposed up
to shear failure (q̇=ṗ ¼ 3, dots represent increment).
Likewise, imposing a load increment on the foundation
(q̇sf . 0) at constant lateral surcharge resembles a
deviatoric loading stage, eventually inducing a shear-
type collapse (see ‘Bearing capacity and pre-failure
response’). It can also be proven that the loading
programme V̇ in . 0 and V̇out ¼ 0 yields a constant
loading ratio Q̇=Ṗ ¼ ðBnf � BÞ=Bnf , still in tight
analogy with triaxial soil testing.

Negative Q values denote uplifting loading conditions, in
which the lateral surcharge is significantly larger than the
direct load on the foundation. This further analogy is still
meaningful, as uplifting loading can be regarded as a gen-
eralised triaxial extension. It should be finally noted that Γ
and vΩ have no triaxial counterparts, since self-weight effects
in small-sized specimens are normally neglected.

Bearing capacity and pre-failure response
The bearing capacity of a strip footing on a homogeneous

soil layer is usually evaluated by using the well-known
Terzaghi formula, related to a Prandtl-type shear failure
mechanism (Chen, 2013)

σr = σc + σc

σr = σc + σc

σa = σc + σc

σr = σc

σr = σc

σa = σc + σa

B

zv(x,z = 0)
x

qsf(x) = psf

B

z
v(x,z = 0)

x

psf = cost

qsf(x) + qsf(x)

(a)

(b)

Fig. 2. Static analogy between triaxial tests and strip footing
problems: comparison between (a) isotropic and (b) deviatoric loading
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2
ðB=2
0

qsfðxÞ dx
 !

lim

¼ Vin;lim

¼ B psf Nq þ cNc þ 1
2
B γNγ

� �
ð8Þ

where Nq, Nc and Nγ are bearing capacity factors depending
on the soil friction angle (Bowles, 1996) and c is the
soil cohesion. After substituting definitions (4) and (6),
equation (8) can be rewritten as

Qlim ¼ Ñq Pþ c BÑc þ 1
2
ΓÑγ ð9Þ

where the following redefined capacity factors

Ñq ¼ ðB=Bnf ÞðNq � 1Þ
½B=ðBnf � BÞ�Nq þ 1

Ñc ¼ 1
1þ ½B=ðBnf � BÞ�Nq

Nc

Ñγ ¼ B2

BnfHnf

1
1þ ½B=ðBnf � BÞ�Nq

Nγ

ð10Þ

depend not only on the soil strength (through Nq, Nc and Nγ)
but also on the footing breadth and the Ωnf domain size.
Equation (9) defines a planar failure locus in the PQΓ space,
bounding all the admissible vertical loading combinations.
From a mechanical standpoint, a sort of Mohr–Coulomb
criterion for the whole foundation arises, in which the limit
deviatoric load is still given by a pressure-dependent com-
ponent (Ñq P) and a generalised cohesive term – including
here both cohesive (cBÑc) and gravitational (ð1=2ÞΓÑγ)
resisting mechanisms.
The above derivations inspire the conception of a new ME

framework for modelling the response of shallow foun-
dations to both direct and configurational loading, from the
onset to failure. The enlightening analogy between strip foot-
ings and triaxial soil specimens suggests that well-established
concepts should be borrowed from strain-hardening plas-
ticity and applied to the present SFI problem as well.
Accordingly, this requires the formulation of appropriate
ME equations in the PQΓ space, enabling the simulation
of mixed direct/configurational loading programmes. In this
context, variations in Γ could be, for instance, produced by
fluctuations in the phreatic level and should in principle
enable the ME modelling of subsidence effects.
Provided suitable static/kinematic variables and the failure

criterion, the formulation of an elastic–plastic configuration-
sensitive ME model will also require: (a) an elastic (pre-
yielding) relationship; (b) a yield locus f¼ 0; (c) a plastic
potential g; and (d ) hardening rule(s) governing the evolution
of the elastic domain during plastic straining (until the
current stress point approaches the failure line F¼ 0). These
well-known concepts are qualitatively illustrated in Fig. 3 for
a footing on a cohesionless/weightless soil, that is, for the
Γ¼ 0 cross-section in the PQΓ space.
In Fig. 3, the slope M of the failure PQ locus is related

to the Ñq factor in equation (9), whereas the generalised co-
hesive term vanishes when the soil cohesion c and unit weight
γ are nil (Fig. 3). Importantly, the concept of elastic domain
is to be meant in a wider sense, as the footing response can
never be fully elastic (plastifications under the footing
corners will always occur since the very onset of loading).
Nevertheless, the concept of yield locus can still be exploited
to identify the inception of markedly plastic responses, while
unloading/reloading processes will be regarded as nearly
elastic/reversible (although plastic strains may still be

produced at certain soil points). The definition of a yield
locus will also rule how loading, unloading and, possibly,
neutral loading should be interpreted in the present ME
framework.
Figure 3 also shows that even the concept of dilatancy

can be properly generalised. Based on the volumetric and
deviatoric attribute of the kinematic variables vvol and vdev, a
global dilatancy can be defined, with its plastic component
d being associated with the gradient of the plastic potential
function

v̇plvol
v̇pldev

( )
¼ λ̇

@g=@P

@g=@Q

� �
) d ¼ v̇plvol

v̇pldev
¼ @g=@P

@g=@Q
ð11Þ

Identification of the near-field domain
The determination of Ωnf is extremely problem-specific, as

it is influenced by the loading combination and soil con-
ditions (e.g. in-site layering, water table depth and soil
properties). Here, Ωnf is identified for the situation depicted
in Fig. 1 and relates to the formation of a Prandtl-type shear
mechanism (Fig. 4) – as is the case of (ideal) soils obeying an
associated plastic flow rule (Chen, 2013).
Based on the observations in the ‘Introduction’, it seems

reasonable to set Bnf equal to the width of a typical Prandtl
mechanism (Fig. 4). However, as limit analysis solutions do
not hold for non-associated materials, it can be shown that
the kinematics of the failure mechanism can be quite
accurately captured through a redefined soil friction angle
ϕ* (Drescher & Detournay, 1993):

tan ϕ* ¼ cos ψsin ϕ

1� sin ψsin ϕ
ð12Þ

where ψ denotes the soil dilatancy angle at failure (the same
redefinition has been also exploited for other problems
involving plane-strain shear banding (Davis, 1968; Vermeer,
1990; di Prisco & Pisanò, 2011a)). Although the soil con-
stitutive behaviour is not perfectly elastic–plastic, the follow-
ing Bnf definition will be shown to perform well under all the
previous assumptions

Bnf ¼ B 1þ 2
eðπ=2Þ tan ϕ*

tanðπ=4� ϕ*=2Þ
� �

ð13Þ

The suitability of equation (13) will be further supported in
the following section. Conversely, no discussion about the

f = 0
g = 0
F = 0

Pc Pg

1

(P0, Q0)

1
d

M

Q
, v

p de
v

P, vp
vol

Fig. 3. Qualitative PQ cross-sections of relevant ME loci
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vertical size of Ωnf, Hnf will be reported, as it is irrelevant to
the present case of weightless soil.

MODEL FORMULATION AND CALIBRATION
In this section the new configuration-sensitive ME model

is formulated and calibrated against FE results. A numerical
investigation of configurational effects has been preferred
because (a) FE results provide detailed input to ME
modelling, and (b) no foundation on an ideal weightless
soil could be tested in reality.

Strip footing FE modelling
The whole FE study has been carried out by using

the commercial code TNO Diana (Manie, 2014). The soil
domain has been discretised by using quadratic six-node
triangular elements (Zienkiewicz & Taylor, 2000), avoiding
the locking effects often produced by low-order elements
(Nagtegaal et al., 1974; Marti & Cundall, 1982; Sloan &
Randolph, 1982).

Since the problem in Fig. 1 is symmetric with respect to the
vertical axis x¼ 0, only a half-domain has been numerically
analysed under the following boundary conditions: (a) no
lateral displacement along vertical edges; (b) fixed nodes
along the horizontal bottom boundary; (c) vertical surface
pressure psf for x.B/2; (d ) prescribed vertical settlement
with no horizontal displacement for x�B/2 (this reproduces
a rigid rough foundation).

Although most bearing capacity theories for soils have
been developed in the framework of perfect elastic–plasticity
(Chen, 2013), a strain-hardening constitutive relationship
was preferred herein, namely the so-called modified Mohr–
Coulomb (MMC) model (Groen, 1997). The MMC model
available in TNO Diana (Manie, 2014) features

(a) pressure-dependent elastic bulk modulus
(b) non-linear strain hardening, with mobilised friction

angle depending on the equivalent deviatoric plastic
strain

(c) two distinct yielding mechanisms for shear and radial
(e.g. oedometric) loading paths

(d ) smooth deviatoric section of the failure locus in the
π-plane, matching the Mohr–Columb limits under
triaxial compression and extension

(e) non-associated plastic flow rule, allowing for both
compactive and dilative volumetric behaviour
according to the Rowe’s law (Rowe, 1962).

Details about the MMC constitutive formulation and the
calibration of soil parameters are provided in Appendix 1.
Calibration has been here performed against experimental
data concerning Toyoura sand medium-dense specimens.

Footing ‘triaxial response’. The footing response to vertical
(direct) loading is here visualised by adopting the above
static/kinematic variables, at three different levels of lateral
surcharge (psf = 25, 50, 100 kPa). As an example, Fig. 5
illustrates the FE results for a 2 m-wide footing resting on a
medium-dense sand layer. The size of the (half) soil domain
is 40� 17 m (H/B¼ 8·5), that is enough to prevent any
boundary effect on the computed bearing capacity.
Figure 5 points out the similarities between the triaxial

response of a medium-dense sand specimen and the settle-
ment response of a strip footing, when the newly defined
static/kinematic variables are employed.

(a) The deviatoric load–settlement curve (Q–vdev) exhibits a
hardening behaviour up to failure.

(b) This is the same as for triaxial compression tests, the
Q–P loading path has a constant inclination
(Q̇=Ṗ ¼ ðBnf � BÞ=Bnf ) and the limit load is pressure
dependent, while the failure loading ratio depends on
both the soil properties and the footing size.

(c) The final distribution of the surface settlement confirms
that equation (13) is suitable to detect the transition
from the plastic to the elastic zone as shear failure
is attained. Such a transition can be associated
with the inflection point in the settlement distribution,
whose location is markedly affected by the soil
non-associativeness (setting ϕ*¼ ϕ – i.e. ψ¼ ϕ – in
equation (13) would result in a much larger near-field
domain size).

(d ) The generalised volumetric response of the foundation
resembles what is normally found for medium-dense
to dense sand specimens; that is, an initial compaction
followed by dilation. The three curves in Fig. 5(d)
approach the same final inclination, providing the
failure value of the generalised dilatancy defined in
equation (11).

The inclination M of the PQ failure locus in Fig. 5(b) does
not exactly coincide with Ñq in equation (10), because (a) the
MMC model is non-associated (De Borst & Vermeer, 1984;
Manoharan & Dasgupta, 1995; Frydman & Burd, 1997;
Yin et al., 2001; Loukidis & Salgado, 2009) and (b) the
deviatoric π-section of the MMC failure locus circumscribes
the Mohr–Coulomb locus considered in the Terzaghi
formula (8). The interplay between these two factors pro-
duces plane-strain bearing capacities larger than standard
predictions based on associative Mohr–Coulomb plasticity
(deviations in the order of 13%). Nonetheless, the expected
occurrence of a Prandtl-type failure mechanism has still been
observed.
It is also worth observing that ‘oscillating’ FE curves

as in Fig. 5 have been widely documented by several
previous studies (De Borst & Vermeer, 1984; Manoharan

v1

v1 v0

Bnf

B

π /4 + φ /2

π /4 − φ /2 π /4 − φ /2

Fig. 4. Horizontal size of Ωnf for a Prandtl-type mechanism
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& Dasgupta, 1995; Yin et al., 2001; Erickson & Drescher,
2002; Loukidis & Salgado, 2009) and attributed to the soil
non-associativeness (Loukidis & Salgado, 2009; di Prisco &
Pisanò, 2011a; di Prisco et al., 2012).

Formulation of ME constitutive equations
Based on the conceptual analogy between soil element

testing and footing response, new configuration-sensitive ME
equations have been straightforwardly formulated in the
framework of ‘displacement’-hardening plasticity (Muir
Wood, 2004; Nova, 2013).
Elastic law. Since the MMC soil model features a non-

linear elastic behaviour (see Appendix 1), the ME elastic law
has to be non-linear as well. In particular, the following
incremental matrix form has been selected

v̇evol
v̇edev

� �
¼ Ce

PP 0

0 Ce
QQ

" #
Ṗ

Q̇

( )
ð14Þ

where the elastic compliances Ce
PP and Ce

QQ need to depend
explicitly on the loading level and relevant geometrical
factors (B, H, Bnf). Ce

PP represents the oedometric elastic
compressibility of the stratum, providing the settlement
induced by a uniform surface compression (Q̇ ¼ 0). The
diagonal form of the elastic compliance matrix has been
assumed as the most convenient, energetically proper
option: in fact, while the bottom left entry Ce

QP needs to
be nil by definition, that would not be the case for the
top right term Ce

PQ. This aspect is a direct consequence of the
specific static/kinematic variables employed, although the

simplified elastic law (14) will still prove accurate in the
following.
Yield and failure loci. The yield locus f¼ 0 has been

formulated as

f ¼ Q2 �Q2
0 1� P

Pc

����
����2β P

Pc

����
����2γsgn 1� P

Pc

� �
P
Pc

� �� �
¼ 0

ð15Þ
where the ‘absolute value’ and ‘sign’ functions have been
introduced to ensure f is real and negative inside the elastic
domain, real and positive outside (Dattola, 2011; Pisanò
et al., 2014). Pc is a hardening variable governing the locus
size, whereas exponents β and γ are shape parameters to be
calibrated under the restrictions 0, β, 1 and 0, γ, 1
(convexity would be lost out of the 0–1 range). To guarantee
a homothetic expansion of the yield locus, Q0 needs to be
proportional to Pc

Q0 ¼ m
γ

β þ γ

β þ γ

β

� �β β þ γ

γ

� �γ

Pc ð16Þ

where m is an additional ME parameter setting the obliquity
Q/P at the vertex of the yield locus (Fig. 6).
According to standard concepts in strain-hardening plas-

ticity, the expansion of the yield locus ends when the current
stress point attains the failure locus F¼ 0. In this case, the
failure locus encompasses all the Q–P couples associated
with a Prandtl-like footing collapse. Such a locus directly
stems from equation (9) for shallow foundations on weigh-
tless/cohesionless soils

F ¼ Q�MP ¼ 0 ð17Þ
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Fig. 5. Footing response at different psf: (a) deviatoric load–settlement curves; (b) PQ loading paths; (c) final distribution of surface settlement
(psf = 50 kPa); (d) generalised volumetric response
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where M does not exactly coincide with Ñq (see the previous
discussion on this point).

Hardening rule. In accordance with what is shown in
Fig. 5(d), the hardening rule for Pc has been selected by
assuming that both volumetric and deviatoric plastic dis-
placements contribute to hardening (Nova, 1977)

Ṗc ¼ Pc

HCp
v̇pvol þDv̇pdev
	 
 ð18Þ

in which Cp governs the plastic compliance of the sand layer
under isotropic compression, while D sets the generalised
dilatancy at failure (d¼�D when Ṗc ¼ 0). For Prandtl-type
failure, D is not affected by the footing breadth B, but it does
depend on the kind of soil considered. The presence of the
stratum thickness H in equation (18) is motivated in
Appendix 2.

It could also be observed that, according to the hardening
rule equation (18), the elastic domain would shrink (Ṗc , 0)
when dilatancy is higher than D (d,�D). This may only
occur for significantly low P/Pc ratios (high ‘overconsolida-
tion ratio’), that is, when the plastic potential is locally very
steep in the Q–P plane (Fig. 3). Strictly speaking, this
conceptual finding would also imply a more complex failure
locus definition, where the term ‘failure’ is associated with
the locus of all maximum Q values ever attainable: such
a locus would in fact be formed by two distinct portions,
namely, (a) a curved branch from the yield surface at very low
P/Pc ratios (corresponding with d,�D and softening
response), followed by (b) the above straight line F¼ 0.

Plastic potential. The analytical expression for the plastic
potential is similar to equation (15)

g ¼ Q2 �Q2
0g 1� P

Pg

� �2βg P
Pg

� �2γg
ð19Þ

where βg and γg are additional ME parameters, while Pg is a
dummy variable to be evaluated by imposing the equality g
(P0, Q0, Pg)¼ 0 at the current (generalised) stress point (P0,
Q0) (Fig. 6). Since the plastic potential has a vertical tangent
at Q¼ 0 (Fig. 6), no deviatoric plastic displacement is
produced during isotropic compression.

In the same way as for Q0 in equation (15), Q0g/Pg
guarantees a homothetic expansion of the plastic potential

Q0g ¼ αgPg ) αg ¼ ρ
1�γg
f

ð1� ρf Þβg
M; ð20Þ

where ρf ¼
1

βg=ðγg �D=MÞ þ 1

The coefficient αg can be a priori set as in equation (20) to
obtain a generalised dilatancy equal to d¼�D at collapse;

that is, when the loading ratio Q/P attains the limit value M.
As a consequence, only βg and γg are free parameters, mostly
depending on the soil type and the B/H ratio between the
footing width and the soil layer thickness (the latter
dependence is further discussed in the following).

Calibration of ME parameters
The main details about the calibration of ME parameters

are hereafter reported.
Elastic parameters. The elastic compliances Ce

PP Ce
QQ

in equation (14) are consistent with the non-linear elastic
law embedded into the MMC model (see also Appendices 1
and 2).

Volumetric compliance Ce
PP. The compliance Ce

PP governs
the elastic settlement of the soil layer under uniform com-
pression. In the case of weightless soil, Ce

PP can be analytic-
ally determined (Appendix 2)

Ce
PP ¼ 1

Ed;ref

H
ðBnf Þn

1þ 2ke0
3pref

P
� �n�1

ð21Þ

where ke0 denotes the incremental elastic at-rest earth pressure
coefficient, and Ed,ref and pref are two elastic soil parameters
(defined in Appendix 1).

Deviatoric compliance Ce
QQ. The deviatoric compliance

Ce
QQ is not trivial to determine, as it relates to non-uniform

stress states within the soil layer and, based on the assumed
MMC-elasticity, has to depend on both P andQ all along the
loading path. In this respect, the following simplifying
assumptions have been introduced

(a) Ce
QQ only depends on the initial surface pressure

psf¼ qsf, the footing breadth B and the aspect ratio
H/B of the soil layer

(b) Ce
QQ does not vary significantly during loading, so that

its initial tangent value can be maintained for the whole
SFI analysis.

In the lack of analytical solutions, Ce
QQ has been numerically

determined by simulating the initial load–settlement curve for
a footing resting on a non-linearly elastic soil. Preliminarily,
the investigation of the elastic ME compliance has been kept
somewhat on the side, postponing this effort towhen a realistic
non-weightless soil is considered.
Strength and dilatancy. The M parameter in equation (17)

would be equal to Ñq in equation (9) for an associative
perfectly elastic–plastic Mohr–Coulomb soil. The non-
associative MMC model does not fulfil this requirement, so
that M has been numerically derived. The three FE tests in
Fig. 5 have been used to infer the failure loading ratio Q/P
at different psf (Fig. 5(b)).
The dilatancy coefficient D in equation (18) has been

readily derived as the final steady slope of vdev–vvol curves
(Fig. 5(d)). D could be quite accurately estimated by ana-
lysing the kinematics of the Prandtl failure mechanism,
equation (4), as long as the role of non-associativeness is
properly accounted for.
Yielding parameters. The shape of the yield locus,

equation (27), has been identified according to its definition.
As depicted in Fig. 7, a small set of FE tests has been
performed in which

(a) the soil layer is first subjected to a given uniform
compression (three different psf considered)

P/Pc

0 0·5 1·0

Q
/P

c

β = 0·5, γ = 0·25

β = 0·5, γ = 0·5

β = 0·5, γ = 1

Fig. 6. Influence of parameters β (βg) and γ (γg) on the shape of the
ME yield locus (plastic potential)
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(b) the soil surface is then unloaded up to a desired
‘overconsolidation ratio’ (P/Pc)

(c) the foundation is vertically reloaded twice, for both
cases of MMC elastic–plastic and non-linear elastic
soil (MMC elastic law adopted). The reloading
load–displacement curves are nearly coincident while
no substantial plasticity is mobilised in the soil domain.
Then, the following divergence between the elastic and
elastic–plasticQ–vdev curves can be inspected to identify
suitable yielding points in the PQ plane.

Figure 7 shows that the shape of the failure locus is
practically the same for each confinement considered, so
that a single (β; γ) pair has been calibrated. The parameter m
has been selected to best-fit the FE-predicted yield locus in
the Q–P plane, as well as to avoid any locking branch in the
load–settlement Vin–vin footing response.
Hardening parameter. The Cp parameter in equation (18)

governs the plastic compliance of the soil layer under gen-
eralised isotropic compression (i.e. oedometric loading), that
is such that v̇pdev ¼ 0. For this simple loading condition, the
MMC equations can be analytically integrated over the soil
domain and Cp estimated as follows

Cp ¼ δ

1þ e0
ð22Þ

where δ is a MMC soil parameter (Appendix 1) and e0 is
the initial void ratio of the soil layer. Details about

the analytical derivation of equation (22) are given in
Appendix 2.
Plastic potential parameters. The shape of the plastic

potential function (Fig. 6) contributes to the (evolving) foun-
dational stiffness. Accordingly, the parameters βg and γg in
equation (19) can be calibrated to obtain the best FE–ME
match for a vertically loaded footing at constant lateral
surcharge (q̇sf . 0, ṗsf ¼ 0).
Considering only one foundation width will be enough for

calibration purposes, but it should be noted that the plastic
potential parameters still depend on the H/B ratio of the
soil layer. In this respect, the FE results in Fig. 8(a) show how
the Vin–vin load–settlement response is affected in stiffness
(not in bearing capacity) by the H/B ratio, with a higher
vertical compliance at increasing layer thickness. Thus,
in addition to the H-dependence in the hardening rule,
equation (18), H/B-dependent βg and γg values are antici-
pated. Fig. 8(b) shows the (βg; γg) couples identified for a
2 m-wide footing and psf¼ 50 kPa, that is, trying to obtain
the best FE–ME match. Satisfactory ME simulations have
been indeed obtained by keeping βg constant and setting γg
as a nearly linear function of H/B. The meaningfulness of
this finding will be further commented on shortly.
The difference in ME plastic potential produced by thin

and thick soil layers resembles the well-known distinction
between dense and loose sands: in the same way as for loose
soil samples, thicker soil layers underneath the foundation
will result in increasing volumetric deformation, which is the
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Fig. 7. Calibration of ME yielding parameters
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ME outcome of a γg increasingly larger than βg (see Fig. 6).
The dependence of βg and γg on the H/B ratio will deserve
further investigation for the case including soil gravity.

The calibration phase for B¼ 2 m, psf¼ 50 kPa
and H/B¼ 5, 7, 8·5, 10, 15, 20 produced results like
those shown in Figs 9(a) and 9(b) in terms of Q� vdev and
vvol� vdev responses (H/B¼ 8·5). The model accurately cap-
tures the deviatoric load–displacement response, while the
generalised volumetric curve is well reproduced in terms of
general trend and final dilatancy. It is practically relevant to
show that, after trivial analytical manipulations, the load–
settlement response can be re-plotted in terms of standard
variables Vin–vin (see ‘Introduction’). Fig. 9(c) presents a still
satisfactory FE–ME agreement in the Vin–vin plane. The
ME plastic parameters are all collected in Table 1, except the
H/B-dependent γg (check Fig. 8(b)). The elastic compliances
Ce

PP and Ce
QQ have been purposely excluded from the list as

they are size-dependent (and the Ce
QQ size-dependence has

not yet been systematically investigated).
A further FE–ME comparison is plotted in Fig. 10 for

the same 2 m-wide foundation and two different lateral
surcharges, psf equal to 25 kPa (Fig. 10(a)) and 100 kPa
(Fig. 10(b)). These results can be referred to as ‘semi-blind’
predictions because they have been only partially used
for calibration, namely to explore the yield locus shape
(Fig. 7). All the other plastic parameters calibrated for the
psf = 50 kPa case are still suitable for different lateral
surcharges.

MODELVALIDATION
This section is devoted to test the predictive capability of

the above ME model. For this purpose, additional FE results
have been produced for different foundation sizes, H/B ratios
and loading paths, while the same ME parameters in Table 1
have still been used. The following results aim to show that

the ME model calibrated against a few data (numerical here,
but could also be experimental) can be actually applied to
numerous SFI problems.
For the sake of brevity, the ME predictive performance is

only illustrated in terms of load–settlement Vin–vin response,
that is the main information needed in practice.

Size-adaptivity
The term size-adaptivity is here used to denote the ability

of the ME model – calibrated for a specific foundation
breadth B – to predict the response of arbitrarily sized
footings on a given soil and possibly varying H/B ratio. This
feature is extremely relevant to design, as it can be exploited
to decide which foundation size results in some desired
performance.
Figure 11 illustrates the ME predictions obtained for two

different footing widths, H/B¼ 8·5 and lateral surcharge
psf¼ 50 kPa. The comparison between ME and FE curves in
Fig. 11 is completely satisfactory, that is the ME model can
be termed size-adaptive.
Figure 12 further confirms the suitable size-adaptivity

of the ME model for two 10 m-wide footings resting on
two sand layers with H/B equal to 8·5 (left) and 20 (right).
It is worth remarking that not accounting for the H/B-
dependence of γg (Fig. 8(b)) results in very poor prediction
of the foundational compliance: γg¼ 0·41 is the value used
for H/B¼8·5, apparently not appropriate for H/B¼ 20.
Fig. 12 also leads to the belief that the γg�H/B relationship
is unique for any foundation breadth.

Table 1. ME plastic parameters

M m β γ Cp D βg γg
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behaviour; (c) load–settlement Vin–vin curve
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Response to different loading paths
Not only geometrical factors, but also different loading

conditions need to be investigated, as this relates to the
chance of actually using the ME model in lieu of FE
computations. In this subsection further ME–FE results
are presented, relating to more complex loading conditions,
not considered for calibration purposes. All the results

given below refer again to the previous case with B¼ 2 m
and H/B¼ 8·5.

Vertical loading paths. Obtaining inspiration from tra-
ditional soil testing, compressive vertical loading paths
in the QP plane have been considered. As is shown in
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Fig. 10. ME semi-prediction of the FE load–settlement response for a vertically loaded 2 m-wide footing at (a) psf = 25 kPa and (b) psf = 100 kPa

vin: m
0 0·5 1·0 1·5 2·0 2·5 3·0

V
in

: k
N

/m

0

2000

4000

6000

8000

10 000

12 000

B = 3 m, H/B = 8·5

FE
ME

vin: m
0 1 2 3 4

V
in

: k
N

/m

0

2000

4000

6000

8000

10 000

12 000

14 000

16 000

B = 4 m, H/B = 8·5

FE
ME

Fig. 11. ME–FE comparison at different footing widths and H/B=8·5 (psf = 50 kPa) – B=3 m (left), B=4 m (right)

vin: m
10

V
in

: ×
 1

04  
kN

/m

0

0·5

1·0

1·5

2·0

2·5

3·0

3·5

4·0

0

0·5

1·0

1·5

2·0

2·5

3·0

3·5

4·0

B = 10 m, H/B = 8·5

FE
ME

vin: m
0 2 4 6 8 0 2 4 6 8 10

V
in

: ×
 1

04  
kN

/m

B = 10 m, H/B = 20

FE
ME γg = 0·41

ME γg = 0·6

Fig. 12. ME–FE comparison at varying H/B ratio and H=10 m (psf = 50 kPa) – H/B=8·5 (left), H/B=20 (right)

A MACROELEMENT FRAMEWORK FOR SHALLOW FOUNDATIONS 919

Downloaded by [ TU Delft Library] on [20/02/17]. Copyright © ICE Publishing, all rights reserved.



Fig. 13(a), vertical QP loading is enforced after an initial
‘isotropic compression’; according to equation (6), a loading
path characterised by Ṗ ¼ 0 can be obtained by imposing
V̇ in ¼ �V̇out ) q̇sf=ṗsf ¼ �ðBnf � BÞ=B, that is, loading
the footing while proportionally unloading the lateral soil
surface. Although this loading path is not common in prac-
tice, it still leads the system to a Prandtl-type failure in the
presence of configurational loading – this is suggested by
Fig. 13(a) and confirmed by the FE results. Fig. 13(b) reveals
an excellent ME performance for a vertical PQ path initiated
from Q¼ 0 (qsf¼ psf = 50 kPa).

Radial loading paths. Unlike in standard soil testing, radial
loading paths do not look particularly important in the
present SFI context, but have been used to test the ME per-
formance along loading paths not strictly producing shear
failure under the footing.

Starting from a small uniform pressure qsf¼ psf = 10 kPa
(point A in Fig. 14(a)), vertical QP loading has been applied
up to a loading ratio Q/P¼ η1¼ 0·2 (point B); then,
η-constant loading has been applied by proportionally
increasing both qsf and psf. In order to obtain a constant
loading ratio in the QP plane, the incremental surface loads
qsf and psf need to fulfil the following relationship

q̇sf
ṗsf

¼ Bþ Bnfη

BnfB

� �
Bnf ðBnf � BÞ

ðBnf � BÞ � ηBnf

� �
ð23Þ

where η is the target obliquity (η¼ η1 along segment
BB′). Although a radial path does not bring the system to

failure, Fig. 14(b) still supports the suitability of the proposed
ME model.

Multi-stage loading paths. The above examples helped
when discussing possibilities and limitations of the ME
model in dealing with loading paths including variations in
boundary conditions (lateral surcharge) – previously referred
to as configurational loading. In this subsection, two
further applications are reported, concerning realistic multi-
stage paths and the need for modelling the aforementioned
configurational set-up. The latter has to do with capturing
the effect of previous configurational loading on the SFI
response (especially on the stiffness). Fig. 15(a) illustrates the
following loading programme in the QP plane.

0A – uniform layer compression up to qsf¼ psf = 15 kPa
AA′ – vertical loading on the foundation up to
qsf = 270 kPa, ṗsf ¼ 0; the QP inclination of the AA′
branch is (Bnf�B)/Bnf as above
A′B – the lateral surcharge is increased up to
psf¼ 60 kPa
BB′ – the foundation is reloaded and brought to failure.

The QP representation of the loading path highlights that
lateral reloading actually brings the foundation further from
shear failure (Q decreases along A′B), while the following
reloading BB′ is exactly parallel to the first deviatoric branch
AA′. As is shown in Fig. 15(b), reloading from point B comes
along with a stiffer load–settlement response, following the
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increase in confinement caused by lateral surcharging
(Ṗ . 0 along A′B).
A different loading scenario is depicted in Fig. 16(a)

0A – uniform layer compression up to qsf¼ psf = 25 kPa
AA′ – vertical loading on the foundation up to
qsf = 1600 kPa, ṗsf ¼ 0
A′B – lateral unloading (ṗsf , 0) up to failure.

In this case, lateral unloading (A′B branch) results in a
QP path characterised by a decrease in confinement and
increasingQ, so that shear failure is achieved at point B – that
is when the critical obliquity Q/P¼M is reached. Fig. 16(b)
shows how good the ME model is at capturing the final
vertical displacement at failure.
The results in Fig. 15 and Fig. 16 are further visualised

in Fig. 17, in terms of loading ratio η against the footing
settlement, vin. It can be readily observed that the same failure
condition (η¼M, generalised triaxial compression) is ap-
proached along two quite different loading paths. Interestingly,
the shear failure produced by laterally unloading the soil
surface is in fact associated with a continual loading of the
foundation system, where loading is to be meant in the present
generalised sense. The kind of failure illustrated in Fig. 16
could be, for instance, induced by a close excavation.

NOVELTYAND ENGINEERING RELEVANCE
This section collects some relevant remarks on why the

proposed formulation goes beyond the existing approaches to
MEmodelling. This can be readily grasped by comparing the
predictive capability of the new model and, for instance, of

the well-known Nova & Montrasio (NM) model (Nova &
Montrasio, 1991).
It should be noted first that, in the case of purely

vertical loading, the NM model behaves somewhat ‘one-
dimensionally’, since it only allows the analysis of linear
loading paths in the Q–P plane with an inclination
(Bnf�B)/Bnf (see Fig. 18(a) and ‘Definition of static and
kinematic variables’). Conversely, any Q–P path can be in
principle simulated within the configurational framework
proposed here, as is exemplified in Fig. 18(a)

(a) AB: vertical loading on the footing with constant
lateral surcharge (also possible with the NM model)

(b) AC: failure induced by a reduction in lateral
surcharge (excavation or nearby demolition of an
existing building)

(c) AD and AE: mobilisation of reverse bearing capacity
by reducing the direct load on the foundation (AE)
or by severely increasing the lateral surcharge (AD)
(the actual reverse failure behaviour – i.e. extension
in the Q, 0 half-plane – has not been investigated in
this study)

(d ) more complex combinations of the above loading
programmes, such as those illustrated in Fig. 15 and
Fig. 16.

Even though the NM model could somehow account for
changes in lateral surcharge by adapting the bearing capacity
(and other related parameters), there would still be no way to
calculate the foundation settlement associated with lateral
loading and/or unloading (see again Fig. 15 and Fig. 16 for
comparison). As a future perspective, the new model will be
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rendered ‘three/four-dimensional’ when the soil weight and
possible asymmetry in the lateral surcharge are considered
as well.

Another relevant aspect concerns the stiffness perform-
ance for service limit state analysis. As explained by Nova
& Montrasio (1991), the NM response to vertical com-
pression reduces to the following Butterfield’s relationship
(Butterfield, 1980)

Vin ¼ V lim
in 1� e R0=V lim

inð Þvinh i
ð24Þ

where, according to the terminology used throughout
this paper, V lim

in is the vertical bearing capacity and R0 is
the initial tangent stiffness of the load–settlement curve
(R0 ¼ limvin!0 dVin=dvin).

In the NM framework, R0 – which is in fact a plastic
stiffness since the very onset of loading – plays as a merely

phenomenological input parameter, to be set at the beginning
of the settlement analysis. Subsequently, Montrasio &
Nova (1997) found experimentally that the ratio R0B=V lim

in
depends in general on the sand relative density, Dr. In
the same respect, the results presented in this work clearly
show that configurational ME models can produce appro-
priate R0 values as a spontaneous model output. Further,
Fig. 18(b) illustrates the FE load–settlement curves for a strip
footing (B¼ 2 m) under vertical loading and different lateral
surcharges psf (net Vin values are plotted, Vnet

in ¼ Vin � Bpsf ).
Along with the FE curves, the solid black lines represent for
each case the initial tangent stiffness predicted by the ME
model, to be compared with the elastic ME predictions
at inhibited plasticity (marked lines). The quantitative
difference between elastic and elastic–plastic predictions is
self-apparent and has never been reconciled by the endless
discussion on how to select suitable secant soil moduli
for settlement predictions. The proposed ME approach can
describe non-linear SFI since the onset of loading, as well as
the influence of an evolving configuration.

CONCLUSIONS
A new ME framework has been proposed to model the

response of vertically loaded footings in the presence of
configurational loading and set-up (with this terminology
meant as previously defined). As a first work on the subject,
some simplifying assumptions have been introduced for the
sake of simplicity, including: (a) plane-strain drained con-
ditions; (b) fully dry or saturated soil deposit; and (c) weight-
less soil. Under these assumptions, the ME model has
been formulated, calibrated and validated against FE results,
revealing excellent accuracy in reproducing the effect of
changes in lateral confinement, even under rather complex
loading paths. The use of new static/kinematic foundation
variables has brought up interesting analogies with well-
known modelling concepts in soil mechanics, then exploited
for ME modelling purposes.
In the future, configuration-sensitive MEs may be em-

ployed in design to cope with different situations (varying
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footing breadth, lateral surcharge and so on) with a single set
of ME parameters.
It is finally worth noting that translating configurational

factors (lateral surcharge and soil self-weight) into averaged
force variables allows in principle the model to be combined
with existingME formulations for VHM loading. Additional
work will be needed to understand how to deal with different,
non-symmetric failure mechanisms, that possibly vary during
the loading history.

APPENDIX 1. CALIBRATION OF THE MMC MODEL
This appendix summarises the main features of the MMC model

(see Groen (1997) and Manie (2014) for details), as well as the
calibration of MMC parameters for a Toyoura medium-dense sand
(Zambelli, 2006). The cohesionless model formulation is expressed
in terms of the usual isotropic and deviatoric stress invariants, p′ and
q (Nova, 2013).

TheMMCmodel features a non-linear elastic law, with a constant
Poisson ratio ν and a pressure-dependent bulk modulus

Kt ¼ Kref p′=p′refð Þ1�n ð25Þ
where n and Kref are constitutive parameters and the reference
pressure pref is such that Kt(p′¼ p′ref)¼Kref. Apparently, the same
pressure dependence characterises the other elastic moduli derived
from Kt, such as the oedometric Young’s modulus in equation (21)

Ed ¼ Ed;ref
p′
p′ref

� �1�n

where Ed;ref ¼ 3ð1� νÞ
1þ ν

Kref ð26Þ

The double-mechanism yielding is ruled by two distinct loci,
f1¼ 0 (shear yielding) and f2¼ 0 (yielding cap for radial loading
paths)

f1 ¼ q
R1ðθÞ �

6sin ϕ

3� sin ϕ
p′ ¼ 0

f2 ¼p′2 þ α
q

R2ðθÞ
� �2

�p2c ¼ 0

ð27Þ

where α is a cap shape parameter (with no data on radial loading
paths at different obliquities, the default value α¼ 2/9 has been
set), and functions R1 and R2 determine the deviatoric π-section
(i.e. dependence on the Lode angle θ) of f1¼ 0 and f2¼ 0

R1ðθÞ ¼ 1� β1sin 3θ
1� β1

� �b

R2ðθÞ ¼ 1 ð28Þ

β1 and b in R1 are constitutive parameters, while R2 is assumed not
to depend on θ. The mobilised (yielding) friction angle ϕ in equation
(27) evolves during monotonic loading as a function of the
deviatoric equivalent plastic strain γpeff (this hardening relationship
can be user-defined in TNO Diana)

sin ϕ ¼ sin ϕf � ðsin ϕ0 � sin ϕf Þe�aγpeff ð29Þ
where ϕ0 and ϕf are the mobilised friction angle at first yielding and
failure, respectively, while a is a material hardening parameter. The
cap locus f2¼ 0 hardens through the hardening variable pc, in turn
depending on the incremental volumetric plastic strain ε̇pvol, the
current void ratio e and the hardening parameter δ

ṗc
pc

¼ 1þ e
δ

ε̇pvol ð30Þ

In the same way as for yielding, two plastic flow mechanisms
are introduced through two different expressions for the plastic
potential, g1 and g2

g1 ¼ q� 6 sinψ
3� sinψ

p′ g2 ¼ p′2 þ αq2 � pgc
	 
2 ð31Þ

having a circular deviatoric π-section (no θ-dependence) and with
g2¼ f2. The dilatancy angle ψ in g1 evolves along with ϕ according to
the well-known Rowe’s relationship (Rowe, 1962)

sin ψ ¼ sin ϕ� sin ϕcv
1� sin ϕsin ϕcv

ð32Þ

where the constant volume friction angle ϕcv is associated with the
maximum dilatancy ψmax¼arcsin sinϕf�sin ϕcvð Þ= 1�sin ϕf sin ϕcvð Þ½ �
(Fig. 19(b)).

The MMC parameters calibrated for the Toyoura sand tested by
Zambelli (2006) are listed in Table 2, while an initial void ratio
e0¼ 0·67 has been determined from the initial relative density in the
experimental tests. The satisfactory performance of the MMC
model is illustrated in Fig. 19 with respect to triaxial compression/
extension tests at initial confinement p′0 = 100 kPa, as well as under
isotropic compression. For the sake of brevity, only triaxial tests at
p′0 = 100 kPa are shown, but the model has been verified to perform
well also for p′0 = 200 and 300 kPa.

APPENDIX 2. ISOTROPIC COMPLIANCE
This appendix briefly recalls how the foundational isotropic

complianceCPP¼ dεvol/dP can be analytically derived. Both cases of
non-linear elastic (equation (26)) and MMC elastic–plastic soil are
considered.

Under generalised isotropic loading, the soil layer undergoes an
oedometric compression. Accordingly, vvol¼ vin and the following
CPP expression results

vvol ¼ vin ¼
ðH
0

ðP
0

dεz
dP′

dP′
� �

dz

) CPP ¼ dvvol
dP

¼
ðH
0

dεz
dP

dz ¼ H
dεz
dP

ð33Þ

where σ̄z ¼ P=Bnf (equation (7)) and the geometrical factor H
spontaneously arises.

Non-linear elastic case
The (non-linear) elastic isotropic compliance can be easily

obtained from the incremental oedometric relationship between
vertical stress and strain (see equation (26))

dεz ¼ 1

Ed;ref p′=prefð Þ1�n dσ̄z ð34Þ

where p0 ¼ ð1þ 2ke0=3Þσ̄z and ke0 ¼ ν=ð1� νÞ. The elastic isotropic
compliance is finally obtained by combining equations (33) and (34)
and the definition σ̄z ¼ P=Bnf

Ce
PP ¼ H

dεz
dP

¼H
1

Ed;ref p′=prefð Þ1�n

dσ̄z
dP

¼ 1
Ed;ref

H
ðBnf Þn

1þ 2ke0
3pref

P
� �n�1

ð35Þ

Elastic–plastic case
The isotropic term in the hardening rule, equation (18), stands for

the plastic contribution to the global (elastic–plastic) isotropic
compliance

CPP ¼ Ce
PP þ Cp

PP ¼H
dεz
dP

¼ H
dεvol
dP

¼ H
dεevol
dP

þH
dεpvol
dP

¼H
dεevol
dP

þH
d
dP

δ

1þ e0

dσ̄z
σ̄z

� �
ð36Þ

where the plastic term has been derived from the MMC hardening
rule, equation (30), under the (quite accurate) assumption
dεz

p¼ dεvol
p , while dσ̄z=σ̄z ¼ dp′=p′ as long as horizontal soil stresses

vary proportionally to the vertical component (radial loading
assumption). Finally, since dσ̄z=σ̄z ¼ dP=P, the following good
estimations for Cp

PP and the hardening ME parameter Cp result

Cp
PP � H

P
δ

1þ e0
¼ HCp

P
) Cp � δ

1þ e0
ð37Þ

where the approximation e¼ e0 is kept.
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NOTATION
a plastic soil parameter in MMC constitutive

model
B foundation breadth

Bnf horizontal size of near-field domain
b plastic soil parameter in MMC constitutive

model
Cp constitutive parameter inME hardening rule
CPP isotropic compliance in ME model

Ce
PP, C

e
QQ, C

e
PQ, C

e
QP elastic compliances in ME model

Cp
PP isotropic plastic compliance in ME model
c soil cohesion
D ME dilatancy at failure
d ME dilatancy

Ed,ref elastic soil parameter in MMC constitutive
model

e0 initial soil void ratio
F failure function of ME model
f yield locus of ME model

f1, f2 yield functions in MMC constitutive model
g plastic potential of ME model

g1, g2 plastic potential functions in MMC consti-
tutive model

H thickness of soil stratum
Hnf vertical size of near-field domain
Hw depth of water table
Kref elastic soil parameter in MMC constitutive

model
Kt soil pressure-dependent bulk modulus
ke0 incremental elastic at-rest earth pressure

coefficient
M slope of failure locus
m constitutive parameter in ME yield function

Nc, Nq, Nγ bearing capacity factors
Ñc, Ñq, Ñγ generalised bearing capacity factors

n plastic soil parameter in MMC constitutive
model

P generalised isotropic load
Pc ME hardening variable
Pg dummy variable in ME plastic potential
p′ effective mean stress

pref elastic soil parameter
psf lateral surcharge
Q generalised deviatoric load
Q0 ME variable in yield function
Q0g ME variable in plastic potential function
qsf vertical pressure on foundation

R1, R2 plastic parameters in MMC constitutive
model

Table 2. MMC soil parameters

Kref: MPa p′ref: kPa n ν ϕ0: deg ϕf: deg α β1 b a δ ψmax: deg

65 100 0·75 0·2 25 40 0·222 0·75 �0·229 160 0·002 12
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Vin vertical load on foundation
Vout lateral vertical load
vdev generalised deviatoric displacement
vin foundation settlement
vout vertical displacement in near-field domain

outside the foundation
vvol generalised volumetric displacement
vΩ MEkinematic variable generated by soil unit

weight
x horizontal coordinate
z vertical coordinate
α plastic soil parameter in MMC constitutive

model
αg ME variable depending on M, βg, γg and ρf

β, γ ME parameters in yield function
β1 plastic soil parameter in MMC constitutive

model
βg, γg ME shape parameters in plastic potential

function
δ soil hardening parameter

δWe total elastic work input
δW e

nf total elastic work input in near-field domain
δWnf external work input in near-field domain
δW sf

nf external work input generated by body
forces in near-field domain

δW sf
nf external work input generated by surface

loads in near-field domain
δWp total plastic work
δWp

nf total plastic work in near-field domain
δv virtual variation of vertical displacement

field
epvol volumetric plastic strain
Γ ME static variable associated with soil unit

weight
γ soil unit weight

γpeff equivalent plastic strain
η generalised loading ratio
θ Lode angle
ν soil Poisson ratio
ρf ME variable depending on βg, γg, D and M
σa axial stress
σc confining pressure
σr radial stress
ϕ soil friction angle
ϕ* plane strain soil friction angle
ϕf soil friction at failure
ϕ0 soil friction angle at first yielding
ψ soil dilatancy angle

ψmax maximum dilatancy angle
Ωnf near-field domain
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