

1

Development of a machine learning-based assessment tool for predicting daylight and visual comfort

BUILDING TECHNOLOGY MASTER TRACK Faculty of Architecture and the Built Environment

First Mentor: Dr. Michela Turrin, Design Informatics Second Mentor: Dr. Charalampos Andriotis, Structural Design & Mechanics Student: Maryam Abouie Mehrizi

Introduction

Design Process

Design Process

The process of standard support decision method

Artificial Intelligence (AI)

Artificial intelligence leverages computers and machines to mimic the problem-solving and decision -making capabilities of the human mind

Artificial Intelligence (AI)

" Productivity can be increased by 40% through artificial intelligence. This would allow people to spend their time more "Valuer" effectively"

AI in Daylight and visual comfort

Early Stage Shading Design

Accelerating the Conceptual Design Process, Time & Cost efficiency?

Research Question

Main Research Question

How can machine learning algorithms be used as an assessment tool in visual comfort prediction in early design stages based on different solar shading designs?

Sub-Research Questions

- How can a facade system be assessed in terms of visual comfort?
- What are the requirements and parameters that characterize the Shading design in terms of visual comfort?
- What design approach could be best to avoid glare while simultaneously optimizing the amount of daylight in the building?
- Which machine learning algorithm is most suitable for capturing relations and similarities of different shading design?
- Which machine learning algorithm will result in higher accuracy in the prediction of visual comfort?
- What are the differences in processing time and results from values acquired by simulations and machine learning algorithms?

Objectives

The workflow of the thesis can be used to explore application of AI as an assessment tool for predicting illuminance-based visual comfort in the conceptual design phase

To design shading parametrically

To generate a dataset from climate-based simulation software

To Train a machine learning model to predict desired output

To create a workflow for application of the Machine learning as an assessment tool during conceptual design for visual comfort prediction

Research Framework

Visual Comfort

Visual Comfort

- Glare
- Daylight distribution
- View to outside
- Internal and external lighting levels

Glare, "condition of vision in which there is discomfort or a reduction in the ability to see details or objects, caused by an unsuitable distribution or range of luminance, or by extreme contrasts" [CIE 2019]

Source: https://www.ny-engineers.com/blog/avoiding-glare-in-lighting-design

Visual Comfort

- View to outside
- Internal and external lighting levels

Glare, "condition of vision in which there is discomfort or a reduction in the ability to see details or objects, caused by an unsuitable distribution or range of luminance, or by extreme contrasts" [CIE 2019]

Source: https://www.ny-engineers.com/blog/avoiding-glare-in-lighting-design

Leadership in Energy and Environmental Design (LEED)

Offers simulation-based options for achieving its Daylight Credit by Simulating daylight availability throughout the entire year

Annual Daylight Metrics Based On LEED Daylight Credit

Spatial Daylight Autonomy(sDA) :

whether a space receives sufficient daylight on a work plane during standard operating hours on an annual basis. Target >> 300 lux for 50% of the occupied period.

	Version 4.1
sDA ≥ 40%	1 point
sDA ≥ 55%	2 points
sDA ≥ 75%	3 points

LEED Pointing system (Solemma)

Annual Daylight Metrics Based On LEED Daylight Credit

Annual Sunlight Exposure (ASE):

The percentage of the regularly occupied floor area that is "overlit."

Overlit >> locations are those receiving direct sunlight (>1000 lux directly from the solar disc) for more than 250 occupied hours

Annual Glare

Daylight Glare Probability(DGP): predicts the likelihood that an observer at a given view position and orientation will experience discomfort glare

Discomfort glare: "results in an instinctive desire to look away from a bright light source or difficulty in seeing a task. It generally does not impair visibility but causes an uncomfortable sensation. It increases when the light source is facing the observer."

Source:https://supervisor.store/blog/f/what-is-glare

Annual Glare

Spatial Disturbing Glare (sDG):

The percentage of views across the regularly occupied floor area that experience Disturbing or Intolerable Glare (DGP > 38%) for at least 5% of occupied hours.

Imperceptible glare	Perceptible glare	Disturbing glare	Intolerable glare
DGP≤34%	34% < DGP ≤ 38%	38% < DGP≤45%	45% < DGP

ASE, ClimateStudio

Methodology

Diagram Of The Main Process

Data Generation

Explanation	Notation	Orientation	Boundry	Unit
Number of vertical sahdes	x1, x5, x9, x13	North-south-east-west	[0-10]	_
Length of vertical devices	x2, x6, x10, x14	North-south-east-west	[0-1,5]	Meter
Rotation of vertical devices	x3, x7, x11, x15	North-south-east-west	[-60-60]	Degree
Width of vertical devices	x4, x8, x12, x16	North-south-east-west	[0,05 - 0,35]	Meter
Height	Н	North-south-east-west	[4-5]	Meter
GLZ	GLZN, GLZS, GLZE, GLZW	North-south-east-west	1,2,3,4	

Different Glazing Types

	Name	Layers	Tvis	Rvis.front	Rvis.back	UVal [W/($m^2 \cdot K$)]	SHGC
Glazing Type 1	Solarban 67 (2) on Pacifica - Clear	Double	25,1%	7,8%	14,7%	1,66	0,19
Glazing Type 2	Solarban 60 (2) - Solarban 60 (4) - Clear	Triple	55,3%	12,3%	14,2%	0,89	0,31
Glazing Type 3	Solexia	Single	76,8%	7,5%	7,6%	5,82	0,62
Glazing Type 4	Solarban 60 (2) on Starphire	Single	81,3%	5,6%	4,7%	3,22	0,46

Daylight and Glare Data

Result Files

Name

RAC Enhanced Brise Soleil - LEED Opt 1

1 H T 😔 🗙 🛛

Path

2021-08-22 10:51:05 AM C:\Users\Admin\Desktop\Examp

Tags Date

Explanation	Notation	Orientation	Boundry	Unit
Number of vertical sahdes	x1, x5, x9, x13	North-south-east-west	[0-10]	_
Length of vertical devices	x2, x6, x10, x14	North-south-east-west	[0-1,5]	Meter
Rotation of vertical devices	x3, x7, x11, x15	North-south-east-west	[-60-60]	Degree
Width of vertical devices	x4, x8, x12, x16	North-south-east-west	[0,05 - 0,35]	Meter
Height	Н	North-south-east-west	[4-5]	Meter
GLZ	GLZN, GLZS, GLZE, GLZW	North-south-east-west	1,2,3,4	_

Parameters

x1	x2	x3	x4	x5	x6	x7	x8	>	<9 x10	x	(11)	x12	x13	x14	x15	x16	GlzN	GlzS	GlzE	GlzW	sDA	A	SE si	G
	5	0,9	12	0,24	4	0,3	7	0,15	2	0,9	-37	0,07	5	1	1,4	21	0,19	3	3	2	3	78	35,9	20
	7	1,2	39	0,21	3	0,6	-21	0,19	3	0,5	-13	0,2	5	1	1,3	9	0,06	3	2	2	3	79,5	41,5	23
	4	0,8	2	0,09	2	1,1	-26	0,10	6	0,4	32	0,21	5		1	10	0,17	3	2	3	3	74,2	38,9	21
	7	1,2	38	0,09	1	1,2	-40	0,21	6	0,1	37	0,22	7	(),8	47	0,18	3	2	3	4	81,7	35,2	21
	2	0,4	-27	0,16	8	1	59	0,06	6	1,1	23	0,23	0	(),5	-57	0,07	2	4	3	1	62,7	35	23
	6	1,1	25	0,09	2	0,2	-34	0,21	1	0,7	-44	0,18	3	(),4	-10	0,2	3	2	1	2	69,5	35,9	2
	7	1,2	40	0,23	2	1	-34	0,14	5	1,3	17	0,18	4	1	1,3	4	0,07	3	2	3	3	81,5	41	26
	3	0,5	-19	0,07	1	1,4	-38	0,13	7	1,2	50	0,09	4	1	1,4	1	0,2	2	2	4	3	69	37,4	21
	7	1,4	51	0,06	3	1,4	-12	0,22	7	0,4	51	0,13	1	1	1,4	-39	0,22	4	2	4	2	83,2	42,5	19
	2	0,5	-24	0,08	5	1,4	13	0,17	7	0,8	52	0,07	4	1	1,3	-2	0,17	2	3	4	2	68,1	30,4	19
	6	1,1	31	0,06	7	1,2	45	0,18	7	0	40	0,11	5	(0,3	22	0,09	3	4	3	3	85,2	41,9	25
	5	1	22	0,24	5	0,9	15	0,06	5	1,5	16	0,12	7	(0,4	38	0,15	3	3	3	3	86,7	40,9	21
	0	0	-57	0,20	6	0,6	37	0,19	3	0,8	-10	0,06	8	1	1,4	58	0,16	1	3	2	4	48,6	10,3	13
	6	1,1	30	0,13	5	0,6	20	0,11	3	1,5	-11	0,24	6		1	28	0,23	3	3	2	3	79,6	42,5	21
	1	0,2	-43	0,11	8	1,4	58	0,10	8	0,6	54	0,2	0	0	0,3	-59	0,19	1	4	4	1	54	34	23
	4	0,8	7	0,16	8	1,4	60	0,21	7	0,8	52	0,05	2	0	0,7	-24	0,07	3	4	4	2	75	33,1	23
	2	0,4	-29	0,20	3	1,5	-12	0,10	8	0,6	58	0,19	7		0,1	50	0,11	2	2	4	4	69,6	32,7	19
	8	1,5	57	0,08	2	0,8	-35	0,21	4	1,2	6	0,12	0	0),2	-53	0,07	4	2	3	1	78,8	39,5	24
	8	1,5	58	0,07	3	0,4	-22	0,06	2	0,6	-25	0,22	3	(0,3	-18	0,06	4	2	2	2	82,4	45	22
	5	1	22	0,05	5	1,3	16	0,14	7	0,4	45	0,21	5	0	0,7	14	0,15	3	3	4	3	87,1	41,5	23
	4	0,7	-6	0,12	5	0	22	0,07	0	1	-58	0,19	1	0	0,9	-44	0,18	2	3	1	1	58,7	31,3	2
	5	1	19	0,18	3	0,9	-11	0,20	5	1,2	12	0,18	7	1	1,3	45	0,21	3	2	3	4	80,1	41,1	19
	8	1,5	57	0,24	3	0,5	-20	0,23	3	0,2	-21	0,15	4	(),2	6	0,21	4	2	2	3	85	45	23
	4	0,7	-2	0,21	2	0,9	-26	0,15	5	1,2	10	0,13	7	(0,3	42	0,13	2	2	3	4	72,8	37,7	21
	4	0,7	-7	0,07	2	0,1	-27	0,10	1	0,7	-51	0,13	3	(0,1	-14	0,07	2	2	1	2	59,5	31,3	19
	2	0,3	-35	0,09	3	0,7	-13	0,10	4	0,3	-4	0,1	5	(0,7	12	0,15	2	2	2	3	63,4	31,1	25
	6	1,1	31	0,11	3	0,7	-14	0,20	4	1,1	-3	0,13	5	1	1,2	9	0,22	3	2	2	3	78,4	42,5	20
	0	0	-60	0,18	0	1,1	-53	0,09	6	0,5	25	0,11	7	(0,3	42	0,12	1	1	3	4	55,9	28	18
	7	1,4	49	0,20	8	1	58	0,15	5	1,2	22	0,2	7	(),4	47	0,21	4	4	3	4	82,5	35,2 2	28 24
	3	0,6	-16	0,21	5	1,1	13	0,12	6	1,1	28	0,22	4	(0,2	-6	0,06	2	3	3	2	71,2	34,9	19
	1	0.2	42	0 1 2	4	0.0	1	0.00	E	0.4	12	0.05	2	(15	12	0.05	1	2	2	2	ECC	25 5	24

Statistical Data Analysis and Data Preprocessing

Diagram Of The Machine Learning Framework

Statistical Data Analysis

Univariate analysis on **sDG**

Univariate analysis on **ASE**

Univariate analysis on **sDA**

Why? Variables that are measured at different scales do not contribute equally to the model fitting & model learned function and might end up creating a bias.

 $x - \min(x)$ x_{scaled} $\max(x) - \min(x)$

The values of the features are within the range **[0,1]** or **[-1,1]** following the Min-Max scaling.

Feature Generation-Visual Comfort

Unacceptable	90%	452
Acceptable	7%	34
Neutral	3%	13
Preferred	0%	1

Machine Learning Models

Diagram Of The Machine Learning Framework

Random Forest

- It takes less training time as compared to other algorithms.
- It predicts output with high accuracy
- It can also maintain accuracy when a large proportion of data is missing.

K Nearest Neighbor

- The Algorithm is simple and accurate
- Few hyperparameters

KNN Algorithm. From:https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

SVM

- Performs well with small data set
- It works well with a clear margin of separation

SVM Algorithm. From:https://www.javatpoint.com/svm-algorithm-for-machine-learning

Ridge (L2) Regression

- Better predictions in comparison to linear regression.
- Is useful in solving problems where we have less Data

https://machinelearningjourney.com/index.php/2020/02/13/ridge-regression/

Machine Learning Implementation

Diagram Of The Machine Learning Framework

sDA(Spatial Daylight Autonomy) Prediction-Regression

sDA Prediction-Regression

Name	MSE	RMSE	MAE	R2
Random forest	17.93	4.23	3.33	0.85
Ridge (L2) Regression	17.19	4.15	3.33	0.86
K Nearest Neighbors	23.36	4.83	3.91	0.81

Hyperparameter Optimization I2 Regression Based on alpha values

sDA/Scatter Plot

44

sDA/Error Distribution

sDA/Coefficient

X11: Rotation of Vertical Device on the South Side X2 Length of Vertical Device on the North Side

Variable	Coefficient		
Н	7.1659	H: Height of the Room	
x8	5.3196	X8: Width of the Vertical Device on the South Side	
x4	-4.0638	X4: Width of the Vertical Device on the North Side	//
x2	2.9230	X2: Length of the Vertical Device on the North Side	
Glz_N	2.2764	GLN: Glazing type on the North Side	
Glz_E	2.0453	GLE: Glazing type on the East Side	
Glz_S	1.7553	GLS: Glazing type on the South Side	

Explanation	Notation	Orientation	Boundry	Unit
Number of vertical sahdes	x1, x5, x9, x13	North-south-east-west	[0-10]	Meter
Length of vertical devices	x2, x6, x10, x14	North-south-east-west	[0-1,5]	Meter
Rotation of vertical devices	x3, x7, x11, x15	North-south-east-west	[-60-60]	Degree
Width of vertical devices	x4, x8, x12, x16	North-south-east-west	[0,05 - 0,35]	Maβeter
Height	Н	North-south-east-west	[4-5]	Meter
GLZ	GLZN, GLZS, GLZE, GLZW	North-south-east-west	1.2.3.4	

ASE(Annual Sunlight Exposure) Prediction-Regression

ASE Prediction-Regression

Name	MSE	RMSE	MAE	R2
Random forest	11,7	3,42	2,5	<u>0,6</u> 7
Ridge (L2) Regression	14,16	3,76	2,94	0,61
K Nearest Neighbors	15,86	3,98	3,14	0,56

X3: Rotation of Vertical Devices on the North Side

X15: Rotation of Vertical devices on the West Side

X11: Rotation of Vertical Device on the South Side

X2 Length of Vertical Device on the North Side

ASE/Variable importance

Explanation	Notation	Orientation	Boundry	Unit
Number of vertical sahdes	x1, x5, x9, x13	North-south-east-west	[0-10]	Meter
Length of vertical devices	x2, x6, x10, x14	North-south-east-west	[0-1,5]	Meter
Rotation of vertical devices	x3, x7, x11, x15	North-south-east-west	[-60-60]	Degree
Width of vertical devices	x4, x8, x12, x16	North-south-east-west	[0,05 - 0,35]	⊠ µ@ter
Height	Н	North-south-east-west	[4-5]	Meter
GLZ	GLZN, GLZS, GLZE, GLZW	North-south-east-west	1,2,3,4	

ASE/Scatter Plot

ASE/Error Distribution

sDG(Spatial Disturbing Glare) Prediction-Regression

sDG Prediction-Regression

Name	MSE	RMSE	MAE	R2
Random forest	7,62	2,76	2,16	0,25
Ridge (L2) Regression	8,47	2,91	2,39	0,16
K Nearest Neighbors	8,45	2,91	2,32	0,16

Hyperparameter optimization Random Forest/ Max Depth

sDG/Scatter Plot

sDG/Error Distribution

X3: Rotation of Vertical Devices on the North Side

X15: Rotation of Vertical devices on the West Side

X11: Rotation of Vertical Device on the South Side

X2 Length of Vertical Device on the North Side

sDG/Variable importance

Explanation Notation		Orientation	Boundry	Unit
Number of vertical sahdes	x1, x5, x9, x13	North-south-east-west	[0-10]	Meter
Length of vertical devices	x2, x6, x10, x14	North-south-east-west	[0-1,5]	Meter
Rotation of vertical devices	x3, x7, x11, x15	North-south-east-west	[-60-60]	Degree
Width of vertical devices	x4, x8, x12, x16	North-south-east-west	[0,05 - 0,35]	lØ⊜ter
Height	Н	North-south-east-west	[4-5]	Meter
GLZ	GLZN, GLZS, GLZE, GLZW	North-south-east-west	1.2.3.4	

Improvements sDG Prediction-Regression

Variable importance sDG considering the linear and nonlinear combination of features

Visual Comfort Prediction-Regression

Visual Comfort / Variable importance

Name	Accuracy	ROC AUC
Random forest	0,93	0,87
SVM	0,91	0,85
K Nearest Neighbors	0,92	0,7

Visual Comfort / Variable importance

Explanation	Notation	Orientation	Боилагу	Unit
Number of vertical sahdes	x1, x5, x9, x13	North-south-east-west	[0-10]	Meter
Length of vertical devices	x2, x6, x10, x14	North-south-east-west	[0-1,5]	Meter
Rotation of vertical devices	x3, x7, x11, x15	North-south-east-west	[-60-60]	Degree
Width of vertical devices	x4, x8, x12, x16	North-south-east-west	[0,05 - 0,35]	lآter
Height	Н	North-south-east-west	[4-5]	Meter
GLZ	GLZN, GLZS, GLZE, GLZW	North-south-east-west	1,2,3,4	

Visual Comfort Prediction-Classification/Confusion Matrix

• The data set is imbalanced

	Predicted								
Actual	Unacceptable	Acceptable	Neutral	Preferred					
Unacceptable	99 %	1%	0 %	0 %	100 %				
Acceptable	43 %	57 %	0 %	0 %	100 %				
Neutral	67 %	33 %	0 %	0 %	100 %				
Preferred	-	-	-	-	100 %				

Post Processing

Design Process

What-if Scenarios for ASE Prediction

What if? 🌼

What-if Scenarios for ASE Prediction

CLOSE EXPORT EDIT CONSTRAINTS														
Reference prediction for ASE: 37												— Ref	erence — Results	Distribution
x8 Giz,£	A9 H 0 1 4 4 4 4 4 4 4 4 4 4 4 4 4	10 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s11 x14 50 0 0 50 0	41 0 1- 2 3 4 8 6 7 8	x16 0.2 0.1	x15 0/L 5	Gr. N 1- 2- 4-	81 0- 1- 2- 3- 5- 6- 7- 8-		30 50 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.5	27 State Line Line Line Line Line Line Line Lin	GL N
Different from reference												Filter columns: 21/21	shown	• 0
O Plausibility Prediction	x8 Giz_E Between 0.050 and 0.24 Between 1 and 4	x9 H Between 0 and 8 Between 4 and 5	x10 x12 Between 0 and 1.50 Between 0.050 and 0	x11 1 24 Between 40 and 60 Between	x14 x13 m 0 and 1.50 Between 0 and 1	x16 8 Between 0.050 and 0.24 Be	x15 Glz_S	Glz_W nd 4 Between 1 and 4	x1 and Between	x2 x3 0 and 1.50 Between -60	x4 and 60 Between 0.050 and 0.24	x5 x6 Between 0 and 8 Between 0 and	x7 1.50 Between -60 and 60	Glz_N Between 1 and 4
55% 19.77	0.15 2	3 4.197	0.921 0.1328	48 0	0.824 2	0.1894	51. 3	2	4 0	.549 -56	0.1701	6 1.179	55	3
 35% 20.70 	0.2074 2	2 4.077	0.484 0.1195	-30 0	0.721 5	0.068	52. 3	3	2 0	.481 -51	0.1231	7 0.339	39	4
45% 20.71	0.1219 2	2 4.566	0.267 0.1094	-13 0	0.917 7	0.1862	54 3	3	6 0	0.63 -52	0.1353	7 0.301	39	1
30% 20.95	0.182 2	7 4.222	0.51 0.1103	32 0	0.197 3	0.1757	5 3	2	0 0.	.081 -56	0.084	1 0.602	55	2
30% 21.59	0.2307 4	2 4.452	1.245 0.1822	-27 0	0.917 5	0.151	54 2	3	6 0.	.635 -51	0.1085	1 0.752	48	2

Which value of input feature result in the min value of ASE

What-if Scenarios for Minimum ASE Prediction Based on x2 Values

What-if Scenarios for sDA Prediction

What if? 🏾 🏠 **OPTIMIZE OUTCOME** Prediction for sDA: 69 ADD TO COMPARATOR COMPARE (0) ... ↓ Importance - Q Filter... 0 : 69 0 x3 Prediction density 0 Ø -60 -2 60 0 x2 0 Ø 0.7 1.5 0 0 н 0 55 65 70 47 50 60 75 80 85 87 # 🕑 Ø 4.5 Prediction 5 4 Glz_N Most influential features for sDA (ICE) Ø # 1 2 4 x11 # 🗷 Ø Glz_N 60 -60 3 Glz_E x1 Glz_S Ø 0 Glz_W x7 Н

What-if Scenarios for Maximum sDA Prediction Based on x3 Values

What-if Scenarios for sDG Prediction

What if? 🔅

OPTIMIZE OUTCOME

What-if Scenarios for Maximum sDG Prediction Based on x15 Values

Partial Dependency of X3 for sDG prediction

x3

72
Partial Dependency of X2 for sDG prediction

Conclusion

Conclusion

- Machine learning results indicated that sDA (Spatial Daylight Autonomy) and ASE (Annual Sunlight Exposure) could be predicted with high accuracy and speed by the optimal estimation model. For the Annual Glare more investigation is needed.
- Although the predicted result of the Machine Learning Models might not be accurate, but in the conceptual phase of design, the speed and low cost simulation can be prioritised over the accuracy.
- The Visual comfort results as a classification label in the interfaces like climate studio or grasshopper can be used by designers.

Limitation and Future Development

- The current study considered daylight performance in a shoe-box model with limited space, which is not necessarily a general representation of many built working spaces. Future studies should attempt to establish a prototype model that can be used for daylight studies on the scale of the whole building.
- Automating the transfer of Machine learning results to existing interfaces for visualization and feedback can facilitate design exploration and user interaction with the results.
- The dataset lacks sufficient interior and exterior parameters. This lack of capabilities prevents the framework from supporting diverse design scenarios
- The sDG and its correlation to other features have not been studied thoroughly in the literature. More understanding regarding this would enhance the better prediction results.
- What Error distribution is acceptable in the field of Daylight study?

Thank you!