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Design Process
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Design Process
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Design Process
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The process of standard 
support decision method



Artificial Intelligence (AI)
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Artificial intelligence leverages computers and machines to mimic the 
problem-solving and decision -making capabilities of the human mind



Artificial Intelligence (AI)
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“ Productivity can be increased by 40% through artificial 
intelligence. This would allow people to spend their time more 
effectively”

“Valuer”

https://techjury.net/blog/ai-statistics


AI in Daylight and visual 
comfort 
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Early Stage Shading Design 

Accelerating the 
Conceptual Design 
Process, Time & Cost 
efficiency?



Research Question
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Main Research Question
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How can machine learning algorithms be used as an assessment 
tool in visual comfort prediction in early design stages based on 
different solar shading designs?



Sub-Research Questions
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● How can a facade system be assessed in terms of visual comfort?
● What are the requirements and parameters that characterize the 

Shading design in terms of visual comfort?
● What design approach could be best to avoid glare while 

simultaneously optimizing the amount of daylight in the building?
● Which machine learning algorithm is most suitable for capturing 

relations and similarities of different shading design?
● Which machine learning algorithm will result in higher accuracy in the 

prediction of visual comfort?
● What are the differences in processing time and results from values 

acquired by simulations and machine learning algorithms?



Objectives

The workflow of the thesis can be used to explore application of AI as an assessment tool 
for predicting illuminance-based visual comfort in the conceptual design phase
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To generate a dataset 
from climate-based 
simulation software

To design shading 
parametrically 

To Train a machine 
learning model to 
predict desired output

To create a workflow for 
application of the Machine 
learning as an assessment tool 
during conceptual design for 
visual comfort prediction



Research Framework
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Visual Comfort
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Visual Comfort

Source: https://www.ny-engineers.com/blog/avoiding-glare-in-lighting-design
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● Glare
● Daylight distribution
● View to outside
● Internal and external lighting 

levels

Glare, “condition of vision in which there is discomfort or a reduction in 
the ability to see details or objects, caused by an unsuitable 
distribution or range of luminance, or by extreme contrasts” [CIE 2019]



Visual Comfort

Source: https://www.ny-engineers.com/blog/avoiding-glare-in-lighting-design
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● Glare
● Daylighting
● View to outside
● Internal and external lighting 

levels

Glare, “condition of vision in which there is discomfort or a reduction in 
the ability to see details or objects, caused by an unsuitable 
distribution or range of luminance, or by extreme contrasts” [CIE 2019]

Objective Criteria



Leadership in Energy and 
Environmental Design (LEED)

17

Offers simulation-based options for 
achieving its Daylight Credit by 
Simulating daylight availability 
throughout the entire year



Annual Daylight Metrics Based On LEED Daylight Credit

Spatial Daylight Autonomy(sDA) :

whether a space receives sufficient daylight on a work plane during standard operating hours on an annual basis. 
Target >> 300 lux for 50% of the occupied period.

LEED Pointing system
(Solemma)

sDA, ClimateStudio 18



Annual Daylight Metrics Based On LEED Daylight Credit

Annual Sunlight Exposure (ASE):

The percentage of the regularly occupied floor area that is “overlit.”

Overlit >> locations are those receiving direct sunlight (>1000 lux directly from the solar disc) for more than 250 
occupied hours

19ASE, ClimateStudio



Annual Glare

Daylight Glare Probability(DGP): 
predicts the likelihood that an 
observer at a given view position and 
orientation will experience 
discomfort glare
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Source:https://supervisor.store/blog/f/what-is-glare

Discomfort glare: “results in an instinctive desire to look away from a 
bright light source or difficulty in seeing a task. It generally does not 
impair visibility but causes an uncomfortable sensation. It increases 
when the light source is facing the observer.”

Source of Glare



Annual Glare

ASE, ClimateStudio

Spatial Disturbing Glare 
(sDG):

The percentage of views across the 
regularly occupied floor area that 
experience Disturbing or Intolerable 
Glare (DGP > 38%) for at least 5% of 
occupied hours.
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Methodology
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Diagram Of The Main Process
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Data Generation
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Parameters
x1, x5, x9, x13

H

x2, x6, x10, x14

x3, x7, x11, x15

x3, x7, x11, x15
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Different Glazing Types

Glazing Type 1

Glazing Type 2

Glazing Type 3

Glazing Type 4

26



Daylight and Glare Data
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Parameters
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Statistical Data 
Analysis and Data 
Preprocessing
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Diagram Of The Machine Learning Framework
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Statistical Data Analysis

Univariate analysis on sDAUnivariate analysis on ASEUnivariate analysis on sDG

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

sDG ASE sDA
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Data Scaling

Why? Variables that are measured at different scales do not contribute 
equally to the model fitting & model learned function and might end up 
creating a bias.

The values of the features are within the range 
[0,1] or [-1,1] following the Min-Max scaling.
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Feature Generation-Visual Comfort
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Machine Learning 
Models
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Diagram Of The Machine Learning Framework
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Random Forest

● It takes less training time as 
compared to other algorithms.

● It predicts output with high accuracy
● It can also maintain accuracy when a 

large proportion of data is missing.
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K Nearest Neighbor

● The Algorithm is simple and 
accurate

● Few hyperparameters

KNN Algorithm. From:https://www.javatpoint.com/k-nearest-neighbor-algorithm-
for-machine-learning
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SVM

● Performs well with small data 
set

● It works well with a clear margin 
of separation

SVM Algorithm. From:https://www.javatpoint.com/svm-algorithm-for-machine-
learning
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Ridge (L2) Regression
● Better predictions in comparison 

to linear regression.

● Is useful in solving problems 
where we have less Data

https://machinelearningjourney.com/index.php/2020/02/13/ridge-regression/
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Machine Learning 
Implementation
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Diagram Of The Machine Learning Framework



sDA(Spatial Daylight Autonomy) 
Prediction-Regression
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sDA Prediction-Regression

43Hyperparameter Optimization l2 Regression Based on alpha values

Evaluation metrics



sDA/Scatter Plot
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sDA/Error Distribution
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sDA/Coefficient

H: Height of the Room

X8: Width of the Vertical Device on the South Side

X11: Rotation of Vertical Device on the South Side

X2 Length of Vertical Device on the North Side

X4: Width of the Vertical Device on the North Side

X2: Length of the Vertical Device on the North Side

GLN: Glazing type on the North Side

GLE: Glazing type on the East Side

GLS: Glazing type on the South Side
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ASE(Annual Sunlight Exposure) 
Prediction-Regression
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ASE Prediction-Regression
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Hyperparameter optimization Random Forest/ Max Depth



ASE/Variable importance
X3: Rotation of Vertical Devices on the North Side
X15: Rotation of Vertical devices on the West Side
X11: Rotation of Vertical Device on the South Side

X2 Length of Vertical Device on the North Side
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ASE/Scatter Plot
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ASE/Error Distribution
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sDG(Spatial Disturbing Glare) 
Prediction-Regression
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sDG Prediction-Regression
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Hyperparameter optimization Random Forest/ Max Depth



sDG/Scatter Plot
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sDG/Error Distribution
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sDG/Variable importance 
X3: Rotation of Vertical Devices on the North Side
X15: Rotation of Vertical devices on the West Side
X11: Rotation of Vertical Device on the South Side

X2 Length of Vertical Device on the North Side
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Improvements sDG Prediction-Regression

57

● A data set with 380 new rows were added
● Considering linear and non-linear combinations of 

input features (eg., x1+x2, x1*x4 …)

R2=0.25 R2=0.47



Variable importance sDG considering the linear and non-
linear combination of features
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Visual Comfort Prediction-
Regression
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Visual Comfort / Variable importance 
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Visual Comfort / Variable importance 
X3: Rotation of Vertical Devices on the North Side
X4: Width of Vertical devices on the North Side
X14: Length of Vertical Device on the East side

X14: Length of Vertical Device on the East side
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Visual Comfort Prediction-Classification/Confusion Matrix

● The data set is 
imbalanced
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Post Processing
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Design Process
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What-if Scenarios for ASE Prediction
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What-if Scenarios for ASE Prediction
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Which value of input feature result in the min value of ASE



What-if Scenarios for Minimum ASE Prediction
Based on x2 Values
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The x2 values that result in min ASE value



What-if Scenarios for sDA Prediction
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What-if Scenarios for Maximum sDA Prediction
Based on x3 Values
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What-if Scenarios for sDG Prediction
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What-if Scenarios for Maximum sDG Prediction
Based on x15 Values
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Partial Dependency of X3 for sDG prediction

x3



Partial Dependency of X2 for sDG prediction
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Conclusion
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● Machine learning results indicated that sDA (Spatial Daylight Autonomy) and ASE (Annual 
Sunlight Exposure) could be predicted with high accuracy and speed by the optimal estimation 
model. For the Annual Glare more investigation is needed.

● Although the predicted result of the Machine Learning Models might not be accurate, but in the 
conceptual phase of design, the speed and low cost simulation can be prioritised over the 
accuracy.

● The Visual comfort results as a classification label in the interfaces like climate studio or 
grasshopper can be used by designers.

Conclusion
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Limitation and Future Development

● The current study considered daylight performance in a shoe-box model with limited space, 
which is not necessarily a general representation of many built working spaces. Future studies 
should attempt to establish a prototype model that can be used for daylight studies on the 
scale of the whole building.

● Automating the transfer of Machine learning results to existing interfaces for visualization and 
feedback can facilitate design exploration and user interaction with the results.

● The dataset lacks sufficient interior and exterior parameters. This lack of capabilities prevents 
the framework from supporting diverse design scenarios

● The sDG and its correlation to other features have not been studied thoroughly in the literature. 
More understanding regarding this would enhance the better prediction results.

● What Error distribution is acceptable in the field of Daylight study?
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Thank you!
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