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Spin-echo small-angle neutron scattering (SESANS) 
is a unique method to measure structures of materials in 
real space with length scales from ∼ 30 μm to ∼20 µm [1]. 
As shown in Figure 1, the accessible length scale of SES-
ANS is given by its ability to encode the momentum trans-
fer into the Larmor phase, namely Φ = δ

 

⋅Q , where Q


 is 
the momentum transfer and δ



 is the encoding vector of 
the setup and its projection along Q (δQ) is called spin-
echo length (SEL). The spin echo length, which is syn-
onymous with the spatial correlation distance probed, is 
defined as the following [2]

 δ θQ BL∝ 2λ cot  (1)

where λ is neutron wavelength, B is magnetic field, L is 
length of the parallelogram magnetic field region, and θ 
is the angle between the inclined magnetic field boundary 
and the beam direction, as shown in Figure 1. The result 
of the SESANS experiment is a Hankel transformation of 
the SANS scattering function I(Q), which yields the cor-
relation function of the sample in real space [29].

Various approaches have been deployed to implement 
SESANS around the world, including radio-frequency (RF) 
neutron spin flippers (Offspec, Larmor at the ISIS Neutron 
and Muon Source [3,4]), tilted Permalloy films (TU Delft 
Reactor Institute Delft [5]), and magnetic Wollaston prisms 
(MWPs) (SESAME of Indiana University Low Energy 

Neutron Source, LENS [6] and Oak Ridge National  
Laboratory High Flux Isotope Reactor, ORNL HFIR [7]).  
Figure 2 shows the photos of SESANS instruments at ISIS 
(Larmor), TU Delft, and ORNL. Both the Offspec and  
Larmor instruments at ISIS utilize four adiabatic fast  
passage (AFP) RF flippers, and the SEL can be scanned in 
λ using time-of-flight (TOF) for a given θ, defined as the 
angles of the static field magnets inside the RF flipper  
relative to the beam direction (the poleshoe angle). In a  
single measurement, the magnetic field strength B is fixed, 
but there are multiple configurations that allow for different 
field strengths, which can be varied when required. The 
SESANS instrument at TU Delft utilizes four magnetized 
Permalloy foils with each foil optimized as π flippers for a 
neutron wavelength of 2.10(5) Å. The tilt angle of these foils 
is 5.5° relative to the beam and the SEL is scanned by  
changing the magnetic field B. While there is no permanent 
and fully optimized SESANS instrument at ORNL, its  
capability has been demonstrated at HB-2D polarized test 
beamline of the High Flux Isotope Reactor (HFIR) [8] with 
MWPs [9] at a neutron wavelength of 4.25(2) Å. The  
superconducting MWPs offer advantages including high 
spin transport efficiency, minimal neutron attenuation, and 
reduced parasitic scattering. The SEL is scanned by chang-
ing the magnetic field. The different instruments, therefore, 
vary the SEL using different components of Equation (1): 
the magnetic field B at ORNL and TU Delft and the wave-
length λ and angle between the field and beam θ at Larmor.
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To ensure instrument reproducibility and indepen-
dence of neutron wavelength and sample thickness, the 
normalized scattering correlation function ln (P/P0)/(λ

2t)  
is used as a consistent metric across the different tech-
niques and devices, where P and P0 are the spin-echo po-

larizations of the sample and blank and t is the sample 
thickness. This normalizes for all the instrument and 
sample variables that can impact measurements (λ and t), 
giving a truly instrument-independent parameter. The no-
menclature and units for SESANS data are suggested by 
the SESANS Reproducibility Working Group [10].

The SESANS instruments at ISIS, TU Delft and ORNL 
have previously demonstrated the ability to perform SES-
ANS measurements. Each instrument calibrates the SEL 
independently, using a variety of standard samples such as 
optical gratings [11, 12], aluminum wires [13], or quartz 
wedges [7, 14] with respect to various techniques, includ-
ing SAXS [15], USANS [16], and SEMSANS [7]. In a 
recent example, the SESANS instruments at ISIS and 
ORNL were employed to measure the same colloidal sam-
ple [17], which gave a preliminary indication that the same 
samples, measured on different instruments, could give 
comparable data. To compare and benchmark the perfor-
mance of the world’s currently operational instruments, we 
have designed a cross- calibration study, choosing two 
solid inorganic samples that are stable and consistent with 
time to ensure reproducibility and reliability across these 
SESANS instruments. In the following discussion, we will 
present the results obtained using the SESANS instru-
ments from ISIS, TU Delft, and ORNL representing differ-
ent types of approaches.

Round-robin measurements were conducted on two 
samples: a nanoporous alumina membrane [18] and a 
flexible graphite sheet [19]. The exact same samples 
were measured at these three facilities. The alumina 
membrane comprises round cylindrical pores with a 
mean pore radius of 50 nm and a pore length of 60 µm, 
which corresponds to the thickness of the film. Due to the 
regular distribution of the cylindrical pores, a strong cor-
relation signal is expected. With a well-defined micro-
structure and stability, it is ideal for cross calibration of 
all these SESANS instruments. Additionally, the graphite 
sheet with a thickness of 0.45 mm was measured. It is 
composed entirely of solid graphite and void spaces and 
exhibits power-law scattering in the SANS region [20]. 

Figure 1. The schematic of a conventional SESANS setup composed of two parallelogram shaped regions of magnetic field of equal strength (B) 
in opposite directions. The momentum transfer (Q



) is encoded into the Larmor phase of neutron spin.

Figure 2. Photos of the SESANS instruments at (a) ISIS (Larmor)  
© STFC, (b) TU Delft, and (c) ORNL.



Neutron News Volume 36 • Number 1 • 2025 11

Technical Report

Owing to its high scattering intensity and the ability to 
adjust thickness by stacking sheets, the graphite sheet is 
ideal for successfully obtaining SESANS data, indepen-
dent of the neutron flux available at each instrument.

Figures 3 and 4 show the results of this round-robin 
study. Figure 3 displays SESANS data of the same nano-
porous alumina membrane taken among at these three 
facilities. For the ISIS data, several poleshoe angles θ 
were measured to vary the measurable SEL range in ad-
dition to the TOF method. They are also corrected for the 
amount of scattering lost between the transmission moni-
tor and the main detector [21]. The Larmor data were 
measured with 21 poleshoe angles in total, and only se-
lected results are shown [22]. The complete results can be 

found in Figure S1. The oscillation of the correction 
function denotes the inter-correlations of the pores. The 
first dip and peak positions of In (P/P0)/(λ

2t) are observed 
at ∼ 200 and 400 nm in SELs for all results. The three 
experimental results agree well, which indicates that 
SELs of the three SESANS instruments are well cali-
brated. Figure 4 shows the normalized scattering correla-
tion function obtained with the flexible graphite sheet. 
The Larmor data were measured with 7 poleshoe angles 
in total, and only selected results are shown [23]. The 
complete results can be found in Figure S2. A monotonic 
decay of the normalized scattering correlation function as 
SEL increases were observed, which is expected from the 
power-law scattering from the voids [24]. There is very 
good agreement between the experimental results, which 
demonstrates that all three SESANS instruments are well 
calibrated in their ability to accurately measure the  
absolute value of the normalized scattering correlation 
functions.

By measuring multiple samples that contain features 
at different length scales and with different degrees of 
total scattering, we have been able to investigate the re-
producibility of multiple SESANS instruments. The 
agreement among all the instruments confirms the reli-
ability the SESANS technique, the ability of each opera-
tional SESANS instrument to obtain the accurate SEL 
and normalized scattering correlation function, and con-
firms the data reproducibility between different SESANS 
instruments. Whatever SESANS instrument and ap-
proach to encoding polarization is chosen, we show that 
it is possible to obtain reproducible and reliable data.
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and TU Delft. The listed angles are the poleshoe angles of RF flippers 
at Larmor. The RF flippers were operated at a frequency of 2 MHz.
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