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Abstract

A Network on Chip (NoC) is considered as the interconnect archi-
tecture for the future Multi Processor System on Chip (MPSoC). It
should provide the required quality of service in terms of predictable
guaranteed as well as best effort services to meet the application con-
straints. The application traffic patterns applied on a NoC is hard
to predict due to dynamics of the application. A characterization
framework is required for design space exploration of NoC architec-
tures. This framework should be able to evaluate NoC performance
for a set of applications.

In this thesis we propose a NoC characterization framework for de-
sign space exploration called NoCExplorer. NoCExplorer is a cycle
accurate simulator, developed using SystemC and VHDL. It sup-
ports individual blocks in the NoC to be synthesized or replaced
with register transfer level VHDL code for mixed language simula-
tions. NoCExplorer provides a rich set of performance parameters to
analyze a NoC and can generate heat maps for visual representation
of link utilization and router congestion in the NoC. It was corre-
lated with many journals and publications to prove the correctness
of the results. Results from the experiments in this thesis show that
the NoC performance is impacted by cycle interval between flit in-
jection into the network. An increase in the interval between the flit injection within the packet significantly
increases the average latency of the NoC. The ratio of increase in latency varies for different NoCs under
a set of synthetic traffic patterns. NoCExplorer provides capability to map custom application over the
NoC to evaluate its performance. A Digital Audio Broadcasting (DAB) application transaction model was
mapped on many NoCs. We are able to assess the performance of many NoCs and visualize the congestion
and link utilization. Stressing the NoC by reducing its clock frequency by a factor of 100x of core operating
frequency, one of the spidergon based NoC with across first routing algorithm showed best results for the
given application constraints.
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A NoC is considered as the interconnect architecture for the future MPSoC. It should
provide the required quality of service in terms of predictable guaranteed as well as best effort
services to meet the application constraints. The application traffic patterns applied on a NoC is
hard to predict due to dynamics of the application. A characterization framework is required for
design space exploration of NoC architectures. This framework should be able to evaluate NoC
performance for a set of applications.

In this thesis we propose a NoC characterization framework for design space exploration
called NoCExplorer. NoCExplorer is a cycle accurate simulator, developed using SystemC and
VHDL. It supports individual blocks in the NoC to be synthesized or replaced with register
transfer level VHDL code for mixed language simulations. NoCExplorer provides a rich set of
performance parameters to analyze a NoC and can generate heat maps for visual representation
of link utilization and router congestion in the NoC. It was correlated with many journals and
publications to prove the correctness of the results. Results from the experiments in this thesis
show that the NoC performance is impacted by cycle interval between flit injection into the
network. An increase in the interval between the flit injection within the packet significantly
increases the average latency of the NoC. The ratio of increase in latency varies for different
NoCs under a set of synthetic traffic patterns. NoCExplorer provides capability to map custom
application over the NoC to evaluate its performance. A DAB application transaction model was
mapped on many NoCs. We are able to assess the performance of many NoCs and visualize the
congestion and link utilization. Stressing the NoC by reducing its clock frequency by a factor
of 100x of core operating frequency, one of the spidergon based NoC with across first routing
algorithm showed best results for the given application constraints.
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Introduction

In recent years, emerging heterogeneous Multi Processor System on Chip (MPSoC) are
providing potential to execute single or several complex applications concurrently. A
MPSoC design flow as explained in [1] starts from customer requirements or marketing
requirements which would specify and describe the overall application at abstract level.
The requirements are converted into functional models in a high level language such
as C/C++. Based on the high level functional models, designers perform hardware and
software partitioning. Architecture explorations are done to select best possible hardware
and software components for the functional models. The architectural model defines
computational blocks which have to communicate with each other. The communication
model defines the interconnect architecture of a System on Chip (SoC). The model
responsibility is to ensure single or multiple co-existing data streams are correctly routed
from source components to destination components. The model should also provide
latency and bandwidth guarantees to meet the application constraints. To meet the
application constraints, various interconnect architectures for a SoC have been developed
like simple bus, segmented bus, pipelined bus and others. Due to various constraints in
the mentioned interconnect architectures, Network on Chip (NoC) is considered to be
interconnect architecture for the future MPSoC.

1.1 Thesis motivation

A NoC provides the backbone communication link between components in a MPSoC.
Hence. it should provide the required quality of service in terms of predictable guaran-
teed service and best effort services to meet the application constraints. The application
traffic patterns applied on a NoC is hard to predict due to the dynamics of the applica-
tion. A characterization framework is required for design space exploration to consider
various types of NoC architectures to evaluate their performance for a set of applica-
tions. It should be able to consider combination of various techniques and architectures
like routers, routing algorithms, topologies, network interfaces and others to generate a
NoC. The framework should be capable of generating traffic patterns for network simu-
lation. The most realistic traffic patterns are application driven, which is mapped on the
NoC. It is hard to predict the application to be mapped on the NoC, hence synthetic
traffic pattern can simulate the demands expected by the NoC. The framework should
be capable of providing performance of characteristics of various NoC architectures for
applied traffic patterns. This will help designers to choose appropriate NoC which meets
the constraints as interconnect architecture for there MPSoC.
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1.2 Thesis contributions

In the thesis we propose a NoC characterization framework for design space exploration
called NoCExplorer. The NoCExplorer is a cycle accurate simulator, developed using
SystemC and VHDL. It supports various techniques and architecture block such as rout-
ing algorithm, virtual channels, topologies and others to generate a NoC. Python based
scripting is used to retrieve, interpret and present the performance of the NoC in a
flexible, user customizable way for the designers.

A comparison with available open source simulators has been done to show the added
value of NoCExplorer. The NoCExplorer was correlated with multiple journals and
publications to prove the correctness of the results. A Digital Audio Broadcasting (DAB)
application transaction model was used to do design space exploration of NoC using
NoCExplorer. The DAB application was mapped, simulated and results were analyzed
on selected set of NoC architectures using NoCExplorer.

1.3 Thesis outline

The thesis has been organized into multiple chapters to explain the motivation, design
and results of NoCExplorer.

In Chapter 2, we explain the reason to use a NoC over bus based interconnect ar-
chitecture for a MPSoC. After that we explain the techniques and architecture used
inside the NoC which are router architecture, network interface, topology, routing algo-
rithms, flow control and others. We also provide methods and parameters to assess the
performance of a NoC. Then we present related work on NoC simulators. We explain
capabilities and limitations of each NoC simulator.

NoCExplorer design is explained in Chapter 3. We start with overall architecture of
the design and explain each block in detail.

Capabilities and evaluation of NoCExplorer is shown in Chapter 4. The results of
NoCExplorer are compared with few journals and publications to prove the correctness
of the results.

In Chapter 5, we explain the DAB application transaction model. After that we
show how application transaction model can be applied on NoCExplorer. Using NoC-
Explorer we show different design space exploration done for various NoC architectures
and provide optimal NoC to use for given constraints.

Conclusion and recommendations for future work of NoCExplorer are provided in
Chapter 6.
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Network on chip and related
work

In this chapter we explain the need for Network on Chip (NoC) by comparing NoC and
bus based interconnect architectures for a System on Chip (SoC). After that we explain
the techniques and architecture of a NoC in detail like topology, router architecture,
network interface, routing algorithm and others. We also explain performance evaluation
of NoC, usage of simulators and types of simulators available.

2.1 Bus based interconnect architecture

A bus based communication architecture as shown in Figure 2.1 is one of the communi-
cation models used in current Multi Processor System on Chip (MPSoC)s. Components
are interconnected by a bus. Major characteristics of the bus architecture are a) one
transaction at a time b) central arbiter ¢) limited bandwidth d) synchronous e) low cost

[2].

Embedded
Memory

DDR CTRL

Graphics
Accelerator

SOCKET

CPU

Figure 2.1: Example of an on chip bus

As the number of cores and IP’s integrating in the MPSoC increase, a simple bus
architecture became a bottleneck for communication. It is due to sharing of aggregate
bandwidth for all components and increases arbitration delay. Hence, a few advanced
bus architecture such as segmented bus, pipeline packetized multistage crossbar has been
mentioned in [2] and as shown in Figure 2.2. Some of the key features of the advanced bus
architecture are a) versatile compared to simple bus architecture b) pipeline capability
¢) burst transfer d) split transactions e) overlapped arbitration f) transaction preemption
and resumption g) transaction reordering.

The next generation MPSoCs keep pushing for higher operating frequency, increase in
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Embedded
Memory

DDRCTRL ‘ Embedded Memory ‘ ‘ DDR CTRL ‘

Segment A

Graphics
Accelerator

Segment B

(Network interface ) (Network interface )

( Switch 1 )

]

Switch 2

Network interface

(Network interface ) (Network interface ) (Network interface )

Graphics
|

Peripheral interconnect

(a) Segmented bus (b) Pipeline packetizied multistage crossbar

Figure 2.2: Examples of advanced bus architectures

integration of memory, cores and IP’s which we will call as nodes. Hence it would increase
bandwidth required for communication between the nodes. The mentioned bus archi-
tecture is not scalable since bandwidth is fixed at design time and shared which means
throughput decreases with increase in number of nodes. Implementation of pipelining
is complex and central arbitration per layer or bus is required. So bus architecture will
become communication bottleneck in the MPSoCs. Hence in the next section we will
explain a new communication paradigm called NoC.

y

Buffers
PE PE PE A  Crossbar
| A
PE PE| |PE| | PE| | My
s e q
- L] R E———
PE PE d E\
PE Router 1
PE PE §
v
Arbiter

Figure 2.3: An example NoC interconnect
A NoC is considered to be viable interconnect architecture for future MPSoC design

[1]. It uses packets to route data from source to destination via a network fabric as
shown in Figure 2.4. The data is converted into packets and packets are divided into
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flits such as head flit, body flit and tail flit. Head and body flit contains information
required for the packet to traverse through the network fabric like direction of packet,
buffer to used and others. Body flits carries the data. The network fabric consists of

Data
Packet
. (0]
Flits E g
Head Body Tail

Figure 2.4: Packet and flit format used in NoC

routers and interconnection links (wires) as shown in Figure 2.3. A NoC interconnection
architecture consists several nodes connected together by network interface, routers and
wires. A network interface is at boundary of node connected to a router. It converts
the data generated by the node into flits and packets. A router accepts the packets
generated by network interface or other routers connected to it. It has buffers at the
input or output based on the router architecture to store the packets received. The
packets are transported to destination link via the crossbar switch based on address
mentioned in the packets. An arbiter is used to determine priority for a packet to be
serviced if multiple packets from different source requires same output link. Thus packets
traverse multiple links and hop multiple routers in the NoC from source to destination
node. The data is extracted for received packets at destination node by network interface.

With increase in nodes in the network, NoC link speed does not get affected. And
there is aggregate growth in the bandwidth due to inherent structure and design of
the NoC. It has built-in capability to pipeline transfers of packets in network interface
and routers. The arbitration of packets is distributed across network interfaces and
routers which can be classified into various levels of abstraction layers. In Table 2.1 we
summarize main features of NoC over bus architecture. But disadvantage of NoC over
bus architecture is overhead of area, power and delay in routers.
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6 CHAPTER 2. NETWORK ON CHIP AND RELATED WORK

Table 2.1: Comparison of NoC and bus architecture [2]

NoC Bus

Aggregate growth in bandwidth Bandwidth is limited, shared

Link speed unaffected by number of nodes | Speed goes down as nodes increases
Built in pipeline Pipelining is tough

Distributed arbitration Central arbitration per layer
Separate abstraction layers No layers of abstraction

Performance guarantee is complex to assess | Fairly simple implementation

Extra delay in routers

Area and power overhead

2.2 NoC architecture

A basic NoC architecture consists of various techniques and blocks connected together
to form interconnect architecture for a SoC. Main aspects of the NoC architecture are

e routing algorithm
e flow control

e router

e topology

e network interface.

Peh et al. [3], Dally et al. [4] and others have written in detail about these parts and
properties used in the NoC. In next section will briefly discuss these parts and properties
which will be relevant to this thesis.

2.2.1 Routing algorithm

The goal of a routing algorithm is to assure low latency and high throughput in the NoC.
It can be achieved by even traffic distribution, avoid hot spots and minimize contention
for packets. Major issue in implementation of routing algorithms are deadlock, livelock,
starvation and traffic distribution to achieve better Quality of Service (QoS). Deadlock
happens when two or more packets in the network are waiting each other to be routed
forward. Livelock happens when packet keep spinning around its destination without
ever reaching it. Starvation happens when different priorities are used with lower priority
packets would never reach the destination because there is always a higher priority packet.
The mentioned issues in routing algorithms can be resolved with certain techniques in
the algorithm.

Different types of routing algorithm has been highlighted in [3] which can be broadly
classified into three categories

e Deterministic
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2.2. NOC ARCHITECTURE 7

e Oblivious
e Adaptive

Deterministic routing algorithms are based on dimension order routing algorithm. Di-
mension order routing are routing algorithms which can be described by which turns
are permitted. In Figure 2.5a we illustrate all possible turns in a mesh and torus based
network. Example dimension order based XY routing algorithm allows limited set of
permissible turns in the network as shown in Figure 2.5b. In oblivious routing algo-

o »-
<4 »

\
A

(a) All turns (b) X-Y turns

Figure 2.5: Possible routing turns in mesh and torus based NoC

rithm paths are selected without the regard to network congestion. In adaptive routing
algorithm paths are selected based on network congestion. In Table 2.2 and Table 2.3
we have described different routing algorithms and its features. Each routing algorithm
listed in the table has been explained in detail by Rantala et al. [5], Coppola et al. [2]
and Peh et al. [3]. In NoCExplorer we are supporting some of the routing algorithms
mentioned in the table, which would be explained in next chapter. For future work,
NoCExplorer should support all these routing algorithms with support to recover from
deadlock, livelock and starvation.

2.2.2 Flow control

Flow control determines the allocation of resources for network buffers and links. It
controls assignment of packets to links and buffers and how these resources are shared
among many packets using the network. Flow control should aim to decrease the latency
of the packet by keeping resource allocation over head as minimum as possible. It should
improve network throughput by enabling effective sharing of buffers and links across
packets [3]. Agarwal et al. [6] have mentioned various types of buffered flow control
techniques

e Credit based flow control
e Handshake signals
e ACK or NACK flow control

e T-Error flow control

build 1.0



8 CHAPTER 2. NETWORK ON CHIP AND RELATED WORK

Table 2.2: Comparison of deterministic and oblivious routing algorithms [5][3][2]

Algorithm Outlines Deadlock | Livelock
Dimension order Routing in one dimension at a time - -
XY Routing first in X and then in Y di- - -
mension
Pseudo adaptive XY | Partly adaptive XY routing - -
Across first/last Route across the link first/last + -
Surrounding XY Partly adaptive XY routing - -
Turn model Few turns forbidden + -
Valiant’s Random Partly stochastic - -
Probabilistic flood Stochastic + +
Random walk Stochastic + +
Source Sender determines the route - -
Directed flood Stochastic + +
ALOAS Application of source routing - -
Topology adaptive Reprogrammable routing table - -
Destination tag Routers determine the route - -
+ : Possible, - : Not possible
Table 2.3: Comparison of adaptive routing algorithms [5][3]
Algorithm Outlines Deadlock | Livelock
Minimal adaptive Shortest path routing - -
Fully adaptive Congestion avoidance - -
Congestion look ahead Congestion avoidance - -
Turnaround or Turnback | Routing in butterfly and tree net- - -
works
Turn back when possible | Routing in tree networks - -
IVAL Improved turnaround routing - -
2TURN Slightly determined - -
Q Statistics based routing + +
Odd Even Turn model - +
Hot potato Routing without buffer memories + +

+ : Possible, - : Not possible

In credit based flow control an upstream router or node keeps count of data transfers.
Available free slots are called credits. When the data is transmitted to next stage or
consumed the credit is sent back to the source. In handshake signal based protocol a
valid signal is sent when flit is transmitted. The receiver sends a valid signal once data is
consumed. ACK or NACK flow control is similar to handshake signal protocol but copy
of data flit is kept in buffer till ACK signal is received. If NACK signal is received the
data is scheduled for retransmission. This flow control is used in XPIPES implementation
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2.2. NOC ARCHITECTURE 9

[7]. The T-Error flow control is a complex flow control mechanism compared to other
flow control mechanisms. It is targeted for enhancing the performance at the cost of
reliability.

2.2.3 Router

A router is considered to be the heart of NoC. The design requires to meet latency and
throughput requirements with tight area and power constraints. A router determines hop
delay and influence network latency. An example credit based virtual channel router
architecture is shown in Figure 2.6. The major components of the router are virtual
channel buffers, route compute logic, virtual channel allocator, switch allocator and
crossbar switch. Buffers holds the flit when it enters the routers. Route compute logic
would be compute the next stage router port the flit should traverse. The allocators
determines the flits to be selected and sent across the crossbar switch. The crossbar
switch is responsible for moving the flits physically from buffers to output ports.

Credits in <« VC < Credits out
Allocation
Route Switch
compute Allocation
\ 4 AA 4

ver [[[] sufer ]
vez [[[] guffer []]]

Input 1 » .
ven [ sufer ][] . > Ouputt
ver [[[_uter ][ > > Ouputn

vez [[[] sufrer [

ven [[[] Bufer [[]

Input n Crossbar switch

Figure 2.6: Credit based virtual channel router [3]

The organization of buffers has impact on network throughput and sharing of band-
width by the packets. There are multiple techniques for organization of buffers. Some
common techniques used for buffer organization are a) Single fixed length queue b) Mul-
tiple fixed length queue ¢) Multiple variable length queue [3]. Single fixed length queue
consists of single queue of fifo buffer with fixed length which can hold one packet at a
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10 CHAPTER 2. NETWORK ON CHIP AND RELATED WORK

time. A multiple fixed length queue also known as virtual channel is set of single fixed
length queue fifo buffers. A multiple variable length queue is similar to virtual channels
but can accommodate multiple packets simultaneously in single fifo buffer.

In the router we use allocators and arbiters for virtual channel selection, switch alloca-
tors. An allocator or arbiters requires to translate more packets succeeding from virtual
channel to crossbar switch which would help higher network throughput. Researchers
have proposed different types of allocators and arbiters. Some of the commonly used
allocators and arbiters are round robin arbiters, matrix arbiters, separable allocator,
wavefront allocator etc.

2.2.4 Topology

A topology in the NoC determines the physical layout and connections between nodes,
routers in the network. It determines the number of routers or hops for the message to
traverse from source to destination node. Also it determines the length of the network
which influence latency of the NoC. The throughput of the NoC is also significantly
determined by topology. Topology provides alternate paths between the nodes, so that
traffic can be spread evenly across the NoC and hence reduces network latency and
improves network link bandwidth utilization. Complexity of topology implementation
is determined by number of links at each router and ease of physical design on a chip
(wire lengths and number of metal layers required) [3]. Various topologies like mesh,
torus, ring, butterfly, octagon, spidergon and irregular interconnect networks as shown
in Figure 2.7 have been analyzed and compared by Dally et al. [4] and Pande et al. [8].

A mesh architecture is one of the commonly used topologies in the NoC. It can be
described as a k-ary-n cubes where k is the number of routers and n is the number of
dimensions. Various researchers have analyzed mesh topology and compared with other
topologies. The study done by Pande et al. [8] shows that the throughput of a mesh for
uniform traffic is lower compared to fat tree and octagon topologies. But for localized
or neighboring traffic patterns, a mesh provides better performance and throughput. A
detailed analysis done by [9], [10], [11] shows spidergon and mesh architecture perfor-
mance capability is almost similar for similar traffic conditions. But they show that the
implementation of a mesh architecture is more complex than a spidergon with increase
in area and power. The advantages of mesh as mentioned by [12] shows we can reduce
the mesh architecture like concentrated mesh where each router services more than one
IP and connecting alternate rows of mesh via express link would provide best results.

A torus topology is similar to mesh topology with edge symmetry. This property
helps the torus network to balance traffic across channels. In each router connected in
torus topology has same symmetry which is not the case with mesh topology for edge
routers. Hence single design of router is enough for complete NoC. A major benefit of
torus topology over mesh topology is reduced network diameter which would reduce the
maximum number of hops by half and it has larger bisection width.

A ring topology comes under the family of torus topology with k-ary-1 cubes. It
is a simple topology due to simplicity in routing algorithm to transport packets which
is clockwise or counter clockwise. However scalability is not good compared to other
topologies since it does not provide more than 2 paths for a router to spread the traffic
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Figure 2.7: NoC topologies

in the network.

A spidergon topology as explained in [11] has an even number of nodes are connected
by links to the neighboring nodes in clockwise and counter-clockwise directions plus
a cross connection for each pair of nodes. The key characteristics of the spidergon
topology include better network diameter and low router degree over mesh topology,
homogeneous building blocks (one router design is enough to build the entire network)
and simple routing scheme. In [9], Suboh et al. present spidergon topology outperforms
mesh topology under certain condition because of its regular and stable behaviour at the
topology link level. Analysis done by Bononi et al. [10] show with a synthetic traffic to
create certain hot spots, spidergon topology performs better compare to mesh topology.

Fat tree topology is a k-ary n-tree topology. Study done by Pande et al. [8] show
fat tree provides performance scalability (>64 cores) but cost of implementation is high
(area and power). Floorplanning and physical design in sub micron CMOS technology is
complex compared to mesh or spidergon topology. Inter switch wire length is not equal
which contributes to area overhead for adding repeaters or buffers (if link transmission
constraint is one cycle) [13]. Hence in our thesis we will not focus on fat tree topology
for design space exploration.
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2.2.5 Network interface

Network interfaces are modules which interface nodes with the routers. The key ingre-
dient for design of a network interface is to achieve the decoupling between computa-
tion and communication. This would enable the node and interconnect to be designed
independently [14]. It will also enable communication and computation to perform in-
dependently if required by the application, which results in performance improvement.
Network interface functionality can be divided into two parts: a) Core part b) Network
part Responsibility of the network interface is to receive the data from the node, con-

1 Network interface

Network -
part

9 Router 9 s H Core

,~ Core
1 /

Figure 2.8: Basic network interface

/ part

vert it to packets and dispatch into the network. It should also accept packets from the
network, retrieve the data from packets and send it to the node. The communication
protocol and flow control decision as explained in Section 2.2.2 should be compatible
with routing algorithm and topology of the network.

2.3 NoC performance evaluation

The performance evaluation of the NoC can be done by three main parameters as ex-
plained in [4]

e Cost (area and power)
e Latency
e Throughput

Latency is the time taken for a packet or flit to traverse the network from source to
destination. Throughput defines how much data the network can transport from input
to output in a fixed amount of time. A high saturation throughput indicates that the
network can accept a large amount of traffic before all packets experience high latencies,
sustaining higher bandwidth as shown in Figure 2.9. Area required for implementing the
circuits on silicon and power consumption translates to cost for the NoC architecture. In
this thesis we would not focus on cost function of the NoC since it tightly correlated with
circuit level design and technology library used in the SoC. For future work NoCExplorer
can be improved to use technology library to estimate cost function of implementing the
NoC.

In Figure 2.9 Kumar et al. [15] present simulated data for a NoC architecture based
on dimension order routing, a large number of virtual channels (8 VC, 24 buffer ports),
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mesh topology (7-ary-2 cube) targetting 65nm, 3GHz and 1.1V. The on-chip network
curve shows the gap between ideal latency and throughput. Pande et al. [8] show similar
trends as shown in Figure 2.9 for torus, butterfly and other topologies under application
of synthetic traffic. They show, after the network saturates throughput remains constant
even with increase in virtual channels in the router. Even with various combination of
NoC architectures as we discussed in previous section, network latency would be higher
compared to ideal latency of wire transmission latency. We will use this setup as reference
to evaluate NoCExplorer.

2.4 NoC simulators

There are several different evaluation tools and methodologies to facilitate research on
NoC. Each tool developed tries to cover one or more aspects of NoC design space
exploration like

e Configuration of nodes

e Configuration of the NoC like topology, routing algorithms, virtual channels and
others.

e Data communication requirements.
e Benchmarking and analysis of results.

Various NoC simulators have been built for evaluation and design space exploration of
the NoC. Cristinel Ababei etc [16] and Achballah etc [17] provides a list NoC simulators
and tools available to simulate and analyze different types of NoC. In this section we
would analyze and study some of the open source NoC simulators. Each simulator has
various capabilities but also have few limitations. In NoCExplorer we have included the
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14 CHAPTER 2. NETWORK ON CHIP AND RELATED WORK

capabilities offered by the simulators and addressed a set of limitations, which would be
explained in detail in Chapter 3.

Booksim

Booksim [18] is a open source simulator developed using C++. It is a simulator for net-
work interconnect which supports virtual channel (VC) routers. It supports 10 topologies
like mesh, torus, cmesh, fat tree and others. Twenty routing algorithms can be config-
ured to direct packets for the supported topologies. Links between the routers and nodes
is set to one, hence multiple links cannot be configured. Packet injection into the net-
work can be configured. Allocators and virtual channels configuration are parametrized
based on configuration file. The router design is based on event driven hence it is not
cycle accurate. Area, power, hot spot analysis cannot be performed in Booksim. It
support various synthetic traffic generator but we cannot apply custom traffic over the
NoC. Support for mixed language simulation is not available.

Noxim

Noxim [19] is a NoC simulator developed using SystemC. It has command line interface
to parametrize various components of NoC. In Noxim we can customize network size,
buffer size, packet size, routing algorithm, injection rate and traffic pattern. Noxim only
supports mesh topology with wormhole routers over synthetic traffic patterns. Support
for mapping custom application on the NoC is not available. Evaluation of NoC is done
by producing results in terms of throughput, delay and power consumption. Detailed
evaluation metrics can be analyzed like total number packets or flits sent or received,
global average throughput, maximum and minimum global delay, total energy consump-
tion etc. Similar to Booksim it does not support area, power, hot spot analysis and
mixed language simulation.

NoCTweak

NoCTweak [20] is similar to Noxim simulator developed for cycle accuracy simulation
of NoC. The simulator has been developed using SystemC. It supports only 2D mesh
topology with each node consisting of core and network interface. For traffic generation is
has support for synthetic traffic and embedded application traces with capability to map
the application on each node. Router settings are parametrized with various options on
virtual channel, buffer depth, routing algorithm, switch arbitration etc. It has support to
read power models for early assessment of power consumption in the NoC. It generates
statistic outputs like network latency, network throughput, power consumption etc for
evaluation of NoC.

NoCBench and NoCSim

NoCBench [21] is a benchmarking platform to evaluate NoC. The core engine of the
simulator is based on NoCSim NoC simulator. It provides an integrated simulation
environment with set of standard NoC components and cores. Its main feature is to
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able integrated different embedded cores and network components. NoCSim simulator
is developed using SystemC. The NoC has to be modeled using manual and XML based
configuration. The simulator would connect components from set of core library, simulate
and generate reports.

Atlas

Atlas [22] is a framework which automates various process related to design flow of
NoC. The NoC components are described in VHDL and testbench has been developed
using SystemC. The tool can be configured to parametrize network dimension, commu-
nication channel width, buffer depth, flow control, virtual channel selection and routing
algorithms. It supports only synthetic traffic application and mapping on NoC. It has
predefined power models for each component and can provide early power estimation of
the NoC.
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NoCExplorer design

Execution of single or multiple applications on a Multi Processor System on Chip
(MPSoC) is hard to predict due to dynamics of the applications and complexity of
hardware. Software designers would need an early predictable communication model of
the MPSoC. Hardware designers would need an early estimation of latency, throughput
and cost of implementing a Network on Chip (NoC). NoCExplorer is a set of tools in the
framework, which can be used by the designers to do design space exploration of NoCs.
Based on an input configuration file it can configure and simulate the NoC using Sys-
temC modules. Python based modules provide utility to retrieve, interpret and present
the performance of the NoC in a flexible, user customizable way for the designers. In
this chapter we describe the complete framework of NoCExplorer. We explain in de-
tail about the SystemC and python based modules and its interaction in NoCExplorer.
Usage of NoCExplorer is shown with an example NoC architecture. Value addition of
NoCExplorer over other open source simulators is explained at end of the chapter.

3.1 NoCExplorer specification

In the previous chapters we have discussed about the NoC components and performance
evaluation of the NoC. Based on literature survey of the existing simulators and design
space exploration of the NoC architectures, the NoCExplorer specification is derived.
The main specifications of NoCExplorer are

Configuration and simulation: NoCExplorer is able to configure and simulate be-
havior of a NoC. To achieve that it should be able to support multiple configura-
tions like

Topology: Support for mesh, torus, folded torus and spidergon topology based on
literature survey as discussed in Chapter 2. NoCExplorer is able to simulate
other topologies as well if designers add required modules.

Routing algorithm: Similar to topologies NoCExplorer supports multiple rout-
ing algorithms like XY routing, turn based model for mesh topology. Torus
XY routing algorithm is enabled for tours topology. Routing across first or
last is supported for spidergon topology.

Network size: For mesh based topologies (mesh, torus and folded torus), the
number of routers in the NoC can be configured in both X and Y direction.
Number of node can be configured for spidergon topology.

Physical links: Links between routers can be configured which we call it as router
physical links. Network interface links to routers is called master network
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interface link and slave network interface link, which is also configurable to
have one or more number of links.

Virtual channels: Virtual channels can be modeled based on number of channels,
buffer depth, virtual channel allocator and virtual channel arbiter.

Clock: NoC and node can be configured for different operating frequency.

Mixed language simulation: NoC configuration, generation and mapping of
application is based on SystemC implementation. SystemC is more suitable
for higher level modeling like transaction level modeling with capability to
do system level modeling and software development. Also simulators like
Questasim from Mentor Graphics support mixed language simulation with
SystemC and VHDL.

Traffic generator: NoCExplorer is able to generate traffic for the NoC like

Synthetic / Custom traffic: Traffic modeling supports configuration of maxi-
mum and average bandwidth, burst parameters, destination, number of pack-
ets for simulation. Packet injection rate is derived by NoCExplorer based on
bandwidth and burst parameters, which is explained in this chapter.

Flit interval selection: Detail configuration support to model flit interval rate
into the network.

Simulation time parameters: Each node start and stop time can be configured.
Results: NoCExplorer can generate min, max and average packet latency, flit latency
of the network and others. Link utilization and router congestion can be visually

represented using heat maps. Each flit is tracked and captured in the results, hence
missing flits can be highlighted.

3.2 NoCExplorer framework

Framework of NoCExplorer is shown in Figure 3.1 consists of
e Traffic modeling
e NoC configuration
e NoCExplorer
e Simulation and analysis of results

Designers can apply application transaction model onto the NoC. They can also use in
built-in synthetic traffic generator for design space exploration when actual application
traffic is not available. Based on traffic parameters, designers can choose and combine
various parameter of NoC like topology, routing algorithm, virtual channel buffer depth
and others to derive desired NoC architecture. NoCExplorer as shown in Figure 3.2
would read the configuration parameters set by the designers. It would connect the NoC
architecture from NoC building blocks present in the framework and configure nodes to
generate traffic based on application requirements.
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Figure 3.1: NoCExplorer framework

NoCExplorer modules are divided into SystemC and Python based implementation
as shown in Figure 3.2. SystemC modules are compiled and it simulates the network for
given constraints. Results generated from SystemC modules are retrieved and interpreted
and presented using python based modules. Designers can use these results to see if
application requirements are satisfied. If it is not satisfied, designers can redo the process
with a different NoC configuration.

SystemC modules of NoCExplorer is divided into various blocks in terms of hardware
functionality and to handle the traffic. Each block interface ports are modeled in terms
of register transfer level signals. This provides capability to swap the module with
VHDL or Verilog RTL blocks for mixed language simulation and enable more accurate
assessment of the NoC. NoCExplorer SystemC modules as shown in Figure 3.3 is divided
into main three modules a) NoC library b) Traffic generator ¢) Traffic manager. NoC
library module contains the main hardware blocks to configure NoC architecture like
router and network interface. Topology module connects the router, network interfaces
and nodes to create NoC entity. Network interfaces consists of master and slave network
interface. Router module has various sub modules like crossbar, virtual channel, route
compute and others which can be considered as heart of the NoC. Each sub block under
these blocks is explained in detail in following sections of the chapter. Traffic generator
module consists of multiple node modules which is responsible to generate traffic based
on user configuration. It can be custom traffic or synthetic traffic. Traffic manager is
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Figure 3.2: NoCExplorer block diagram

like an observer which keeps track of communication requests between routers, network
interfaces and nodes. It monitors entry and exits of flits in the network. This information
is used to write output files which will be used later for interpretation and analysis by

Python based modules.
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Figure 3.3: Hierarchy of SystemC modules in NoCExplorer

Integrating of modules in NoCExplorer is required to make the data flow and control
signal exchange possible as shown in Figure 3.4. The data is generated from the nodes
which are interfaced with network interfaces. The master network interface assembles the
flits and packets. It is stored in buffers, ready to be injected into the network. Routers
accept the flits and compute the next direction of the flits. It is once again stored in
buffers till next stage router or slave network interface is ready to accept the flit. The
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flits traverse through crossbar to reach next stage router or slave network interface. Once
flit reaches slave network interface it is stored in buffer and when node is ready to accept
the flits it is transferred. Node consumes the flit data if required and the data is also
sent to traffic manager. Traffic manager process the flit to extract information required
for profiling and output files are written for post simulation analysis.
exchanged for arbitration and allocation of resources in the block.

Traffic generator
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Figure 3.4: Data and control signal flow in NoCExplorer
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Python modules of NoCExplorer as shown in Figure 3.5 main function is to retrieve,
interpret and present the performance of the NoC in a flexible, user customizable way
for the designers. The inputs for the utility scripts are generated by SystemC modules of
NoCExplorer. These modules can be executed after the simulation of SystemC modules
is completed. It is based on csv file format with flit, packet, router congestion, link
utilization and others information encoded in it. Various utility scripts use these inputs
files to check missing flits in the NoC, analyze latency and throughput of the NoC,
generating heat map and to find network saturation point.

3.3 NoCExplorer library

3.3.1 Packet and flit assembly

In a NoC data transmission from source to destination is based on encoding information
in forms of packets. Packets are set of flits combined together which was explained in
previous chapter. Flits are classified as head flit, body flit and tail flit. In NoCExplorer
we have modeled flits to carry data and control signals required for routers and network
interface. We have used combination of C++ and SystemC data types to model a flit as
shown in Appendix B to reduce simulation run time. If the data width is configured as
32 bits, to transport 24 bytes of data a packet size of 6 flits is required. It will contain
4 body flits (each carrying 8 bytes of data), 1 head flit and 1 tail flit.
Each flit consists of following information relevant for communication

Output port direction: Contains direction for the packet to proceed in the network.
Flit type: To represent head, body or tail flit.

Flit number: Unique number is assigned to each flit, so that when packet is disassem-
bled data sequence can be restored.

Flit data: Data being transported in the network.
Virtual channel number: Virtual channel to use in the router.

We also include more information in each flit which is used for profiling the perfor-
mance of the NoC post simulation. This information is not included in actual imple-
mentation of the NoC. They are

Source and destination node: Source and destination node numbers.

Packet ID: Unique packet ID which helps in monitoring packet movement in the net-
work.

Timestamp of flits: It is used to measure latency of the flits.
Hop count: Used to measure the performance of routing algorithms.

Physical link numbers: Used to measure link utilization in the network.
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3.3.2 Network interface

The network interface design for a node and a router is split into two functional blocks.
The master network interface accepts requests from the node, generates and pushes flits
into the network. The slave network interface receives flits from the router and sends
data to the node. Our network interface design has support for multiple physical links
which can be parametrized in the user configuration file. Network interface consists of
virtual channels to store flits similar to the operation explained in Section 3.3.3.
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| channel channel |
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! Packet 3
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Figure 3.6: Master network interface block diagram

The master network interface as shown in Figure 3.6 has been designed to accept
the request from the node to transfer data. The node provides following information
to the master network interface a) Size of the data b) Unique packet id ¢) Source node
d) Destination node €) Allotted time for packet f) Flit rate selection mode. When master
network interface receives a request from the node, it assembles the packets and flits as
explained in Section 3.3.1. Once flit is assembled it is stored in the buffer of a virtual
channel. Designers can configure allocation scheme for virtual channels. We support
priority and round robin allocation to fill up virtual channels. Master network interface
signals the node if its busy in operation or free to accept next packet request. We do
not send credits to the nodes since it does not use the information. The flow control
with router is based on credit based handshake between nodes and routers as explained
in Section 2.2.2. Credit is decreased as flits fill up the buffers in the virtual channels.
After flits enter the virtual channel the master network interface checks if full credits
in a buffer is available in next stage router. It is because in our router design we do
not allow two packets to be stored in a buffer, to avoid extra control signals in virtual
channel allocator. Flits are transmitted via physical links if required credits are available
in next stage router. If physical link resources is not available or zero credits in next
stage router due to buffer backpressure the flits waits in the virtual channel.

Based on flit interval selection mode, flits are written in virtual channel buffers at
certain time intervals. Interval between flits has impacts the performance of the network
which will be explained in Chapter 4. In our design we support different flit interval
selection method as shown in Figure 3.7. Fixed flit interval has equal delay between flits
when packet is written into virtual channel. One cycle flit interval generates and writes
one flit per cycle. This is possible when complete data is available for transmission
through the NoC. Random flit interval is modeled to provide random delay between
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Figure 3.7: Flit interval selection method

flits. Worst case flit interval will equally divide intervals between flits and finish sending
complete packet data for the time interval requested by the node. If there is buffer
backpressure, flits injection is forwarded by one cycle till resources are available in next
stage. If this exceeds packet interval time, flits are injected with one cycle interval.

Virtual Virtual
channel channel
arbiter arbiter

Flow control

signal Node

status

[|[ Buter ][]
[[[]_Bufter ][]

Router Node

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.8: Slave network interface block diagram
The slave network interface as shown in Figure 3.8 has been designed to accept the

flit data from routers. It is stored in virtual channel buffers and sent to the node if it is
free. Current design does not include disassembling of packets into bare data, since flit
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level analysis is done in detail at traffic manager. Before sending the flits to the node,
it is timestamped to mark exit of flits from the network. This information is used in
profiling to measure latency of the flits and packet.

3.3.3 Router

Router block is an integration of route compute, virtual channels, physical link and
virtual channel allocator, crossbar and registers as shown in Figure 3.9. Based on number
of router input or output ports which is determined by topology selection, each block
is required to be instantiated multiple times. For example in mesh topology number of
ports required for router would be 5 (1 network interface + 4 router interface). Hence
route compute and virtual channel has to be instantiated five times. Physical link and
virtual channel allocator and crossbar is instantiated once to handle parametrized router
ports.
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Virtual channel +———p»i Virtual Channel +——p» | Crossbar§ —P. Output

\ 4

allocator 1 [

Input .—N Route compute
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Figure 3.9: Block diagram of router block

In the router each block delay parameter can be modeled to mimic pipeline require-
ments. For our experiments we have considered 2 cycle delay in routers. In one clock
cycle, flit is entered, route compute and write operation in virtual channel is completed.
In next clock cycle flit can be read from virtual channel and written to output registers
via crossbar datapath. User can configure the cycle delay in routers based on hardware
requirements. Designers can use this feature to create a new NoC architecture and to
assess the latency impact of a router.

The flow control signals connected to the router is based on credit based handshake
between network interfaces and routers as explained in Section 2.2.2. Credits are sent to
previous stage when flits enter the router. Credits are received when flits exit the router.
So when tail flits exits the router the credits are not sent to previous stage till next stage
acknowledges it has received the tail flit. It is to make sure flits are not dropped in the
data path if next stage does not accept the flit due to buffer backpressure. Registers are
placed at the output of crossbar to pipeline the data path.

Route compute

Route compute block determines to which of the neighboring routers or network interface
the packets needs to be sent. In NoCExplorer we propose route compute block to be the
first stage in the router. It reads the incoming flits from neighboring routers or network
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interface. Since router architecture is based on wormhole routing, route computation is
done only for head flits. Rest of the flits will follow the same direction as computed for
head flit.

When head flit enters the router it is time stamped and saved in flit to capture arrival
time of the flit. It is used later for analysis and computation of router congestion and
link utilization. Based on the user defined parameter corresponding routing algorithm
routine is executed to find the output port direction. Each routing algorithm is defined
as a separate routine since it is modular and easier to add new routing algorithms. We
have implemented following routing algorithm to support various topologies

e XY routing

Routing west first

Routing south last

XY routing torus

Routing across first
e Routing across last

Pseudo code for each algorithm is mentioned in Appendix A.

Virtual channel

Virtual channel is a set of FIFO buffers which is parametrized for number of buffers
and buffer depth. FIFO buffers are modeled to store flits. In our design we accept one
input and multiple output ports based on number of buffers. The first flit to exit the
buffer can be read by allocators and arbiters. Write select signal is used to select the
buffer number for flit write operation. Since our design is based on wormhole router
architecture, virtual channel has a logical block to provide acknowledgement when tail
flit is received. This is used for previous stage router or network interface to free the
resources allocated for the packet.

Crossbar

Crossbar design is the heart of datapath in router design. The crossbar module is
responsible for moving the flits physically from buffers to output ports. In our design
we support parametrized switch input and output ports. Each input port would have
select signal to write flits on output port, which is controlled physical link allocator. It
supports reset signal to write empty flits on output port.

Physical link and virtual channel allocation

Physical and virtual channel allocation block is designed to handle various operations.
It reads flit from the output ports of virtual channel. Sequence of flit read operation
is based on arbitration scheme selected by the user configuration. The current design
supports round robin arbitration and priority based arbitration. If the flit is head flit,
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route computation data is read from flit. Next stage virtual channel selection is based
on user configuration. The current design supports network interface based selection
and dynamic selection. In network interface based selection virtual channel number is
kept constant from source to destination. In dynamic selection each next stage virtual
channel status is read till empty buffer is found.

Body and tail flit follow the head flit (based on wormhole router architecture), hence
arbitration for virtual channel is avoided for these flits. Once tail flit is written at output
port it waits for acknowledgement from next stage router or network interface before the
resources are freed to be used for other packets.

3.3.4 Topology

Topology is created by linking routers, network interface and nodes based on user con-
figuration. In our design we support mesh, torus, folded torus and spidergon topology.
Based number of nodes to be connected, size of the network is determined for the topolo-
gies. Each node is interfaced via master network interface and slave network interface
to the router. Each router, master network interface and slave network interface control
and data signals are connected form the topology. In this process each block is given
unique node ID to identify source and destination node for traffic generators and route
computation.

3.4 Node

NoCExplorer provides rich set of controls to model a node to inject and accept a packet
into the network. A node can be designed and connected to the network by the designers.
Currently each network interfaces can be connected to a node. Designers can model detail
operation of the node but it is not mandatory.

NoCExplorer supports modeling of a node based on synthetic traffic or custom traffic.
To achieve it we support a set of parameters for each physical link in the node. This
allows multiple applications can be modeled for each physical link in a node. The traffic
in the node can be modeled as follows

Destination node selection: NoCExplorer support automatic selection of destination
nodes which is used in application of synthetic traffic or user provided destination
node. There is support for random, fixed, neighboring and others destination node
selection.

Data size: Designers can specify amount of data to be sent in each packet. For example
if data width in NoCExplorer configuration is set to 32 bits, then each body flit
can send 4 bytes of data. Hence packet size is directly proportional to size of the
data.

Operation period: Each node start and end of its operation can be modeled. Start
time can be set for a node to mimic warm up time of a system. A node operation
can be stopped by specifying end time. It can also be stopped after sending certain
amount of data or certain number of packets into the network.
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Bandwidth: Bandwidth of the node determines the rate of data transfer into the net-
work. NoCExplorer translates the bandwidth to determine the injection of flits
and packet into the network in terms of flits/cycle.

Internal memory: Memory or buffer modeling in the node determines amount of data
it can accept before it can start traffic operation. Once required amount of data
is received by a node it can trigger the process to start data transfer. This is used
extensively for modeling of custom applications.

Node
[
v v
Send Rev
thread thread

v v

Receive data from the
network

v v

. Trigger the
—————»
Start node operation <Yies traffic?

Configure the traffic

Data available to be sent
to the network?

No i Yes

create request for
network interface
- destination node

- packet size
- packetid ...
< Wait for NoC <«
clock cycle l
i master network interface wait for one NoC
busy? clock cycle
Yes
— Restart? i
i No L——— Send request
Stop

Figure 3.10: Node modeling flow chart

To generate the traffic, NoCExplorer divides the operation to send and receive the
data into the network in two separate threads as shown in Figure 3.10. Receive thread
receives the data from the network and it can be modeled to trigger operation in send
thread. Send thread configures the traffic with parameters as explained in this chapter.
When data is available, request for data transfer is sent to master network interface.
Based on operation period set by designers the send thread is stopped or restarted.
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3.4.1 Synthetic traffic

Synthetic traffic are mathematical based traffic patterns mimicking spatial and temporal
distribution of data transfers while abstracting the program functionality. In NoCEx-
plorer synthetic traffic can be applied using node modeling configuration parameters.
Destination node selection be set to random, fixed, neighboring and others mode. For
example a synthetic traffic can be applied on a node as shown in Figure 3.11. In the
example various parameters can be set on a node, which are

Time: The node starts operation after warmup time of 1sec and ends after 5.5 secs.
Bandwidth: Node requires average bandwidth of 100MB/sec.

Burst size: Data size sent into the network can be between values max and min burst
size parameter. In this example min burst size is 4KB and max burst size is 200MB.
Burst size value is always bounded by average and max bandwidth allowed by the
designer.

Packet interval: NoCExplorer derives the max and min packet interval time from
bandwidth parameter set by the designer.
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Figure 3.11: Data transfer request from a node
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3.4.2 Custom traffic

By using parameterizable knobs in node modeling custom application based traffic can
be applied on NoC. Researchers have proposed various methods in modeling of an
application. In NoCExplorer we will use Synchronous Data Flow (SDF) [23] based
application model to apply custom traffic on NoC. For more details on SDF, Schaumont
et al [24] can be referred with examples on embedded video applications.

Node 0 768 128
(13220)

Node 1
(4446)

Node 3
(5420)

Node 2
(20950)

Figure 3.12: Example SDF graph

An example SDF graph is shown in Figure 3.12 which can be mapped onto a NoC
using NoCExplorer. In this example, we have assumed each task is mapped a node.
Designers can also model multiple tasks in a node. Each node takes certain amount
of cycles before output data are generated. For few nodes certain amount of data is
required to trigger the process. Using these parameters bandwidth, burst size and other

parameters required to model a node can be calculated as shown in Equation 3.1 and
Table 3.1.

Clock period = 2ns (assumption)
Data per operation fornodeO = 768 Bytes (assuming 1 token = 1 Byte)
Cycle count per operation for node 0 = 13220 cycles(assuming unit of time is cycles)
Total cycles for one operation 768 tokens (from Node 0 to Node 3)
= Node 0+ Node 1+ (Node 2 % 6) + Node 3 = 148786 cycles
Max bandwidth = Data/(Cycle x Clock period)
= 768/(13220 * 2ns) = 29.1M Bytes/sec
Average bandwidth = 768/(148786 * 2ns) = 5.16 M Bytes/Sec
(3.1)
NoCExplorer also has capabilities for designers to send actual data/content from

source to destination. Designers can implement a real application that does actual com-
putation on actual data and delivers actual output to the network. In our experiments
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Table 3.1: Node modeling for a SDF graph

Option Node 0 Node 1 Node 2

dst node 1 2 3

dst node selection Fixed dst node | Fixed dst node | Fixed dst node
data size 768 bytes 64 bytes 64 bytes
start time 100ps Ops Ops

average bw 2.90E+7 7.20E4+6 1.53E+-6
max burst size 768 bytes 64 bytes 64 bytes
min burst size 28 bytes 28 bytes 28 bytes

flit interval selection | One cycle One cycle One cycle
input method Source Intermediate Intermediate
int mem 1024 bytes 1024 bytes 1024 bytes
req data 0 128 bytes 64 bytes

we have disabled this feature since we did not require real data and high simulation run
time. In Chapter 4 we have explained in detail about simulation run time.

3.5 Traffic manager

Traffic manager main operation in NoCExplorer is to monitor the flow of flits and write
output files for post simulation analysis. Single block of traffic manager is connected
to multiple slave network interfaces to read the flits from the network. As explained
in Section 3.3.1 each flit contains required information which is processed by the block.
The operations of the block are

Time stamp: Each flit is time stamped after it exits the network to measure latency.

Flit sequence: Traffic manager keeps track of flit order in a packet when it is sent
from the slave network. When out of sequence flit is detected, immediate SystemC
error is reported and simulation is stopped. This error indicates the given NoC
architecture has flaw in its design. To resolve the issue NoCExplorer provides
debug flags (constant.h) for advanced users to print flit information when it travels
through the NoC.

Output files: Multiple output files are written with flit and packet information for post
simulation analysis.

All the output files generated by traffic manager is based on csv file format. Details
of each output files as follows

outputFlit.csv: This file contains detailed information of each flit processed in the
NoC. It contains packet id, flit sequence number, in and out time of the flit, source
and destination node, hop count and others.

trafficPattern.csv: Traffic pattern of each node is captured in this file. Each packet
request information which includes packet id, source and destination node, allo-
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cated time for the packet, start time of the packet and others. This is used as
reference by python based modules to locate missing packets in the NoC.

nocConfig.csv: NoC configuration parameters set by the designer like topology, routing
algorithm, buffer depth, clock frequency and others is written in nocConfig.csv file.
It is a reference file for back trace the settings used in NoCExplorer.

bufferUtil.csv: This file captures buffer utilization in each router and network inter-
faces for complete simulation time. In our experiments we found file size was more
than 10GB since cycle level information was being written. Hence for default set-
tings this feature is disabled in NoCExplorer. For future work the data written in
the file can be optimized for low file size.

routerCongestion.csv: Traffic manager calculates performance of each router and net-
work interfaces to perform operations per flit. When resources are available for
routers and network interfaces, it should be able to process one flit per cycle. If
there is congestion in the NoC, routers and network interfaces can take more than
1 cycle / flit. The output file captures average, min and max number of cycles /
flit operation in each router and network interface.

linkUtilization.csv: Similar to router congestion, link utilization output file captures
utilization of links in the NoC for complete simulation time. From this data we can
fine unused links in the NoC. The data is represented in the form of percentage.
For example, 100% utilization in a link conveys that a flit is transported in each
cycle.

3.6 Python based utility tools

NoCExplorer provides multiple utility tools based on python for post simulation analysis
to evaluate the performance of the NoC. They used output files generated by SystemC
modules as explained in Section 3.5. Details of each utility tool as follows

Missing flits: Using output flit and traffic pattern data we can check if there is any
flit or packet still in NoC even after simulation window is closed. If active flits are
still in the network, it could be because simulation window time is not enough or
due to NoC architecture issues. Deadlocks in the network due to certain routing
algorithms can be easily debugged using this utility tool. It generates a output file
with missing packet information like packet id, source and destination node, start
time of each flit and others.

Latency and throughput analysis: This utility tools consumes output flit and traf-
fic pattern data generated by simulation and generate NoC performance results. It
calculates average/min/max accepted and ejected load (flits/cycle), virtual chan-
nel buffer utilization, average/min/max packet and flit latency. It also combines
packets based on hop count and report its average/min/max packet and flit la-
tency. An example output file is shown in Appendix C. It also has capability to
merge multiple simulation run for varying injection load to plot network saturation
point. We have used this tool extensively and results are shown in Section 4.1.
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Heat map: Heat map utility scripts generate visual representation of router congestion
and links utilization in the topology. Router port congestion as shown in Fig-
ure 3.13a shows for each port how many cycles are required to transfer one flit
(cycle/flit). Link utilization as shown in Figure 3.13b shows load factor in each
physical link. In the Figure 3.13 numbers shown with ’[]’ represent master network
interface. Numbers represented next to the router output ports connected to the
network. Average value of router congestion or link utilization is shown inside the
router block.
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(a) Router port congestion map (b) Link utilization map

Figure 3.13: Example heat map of NoC

3.7 NoC simulator comparison

We studied various simulators in terms of parameterizable library components, analysis
methods, simulation platforms and hardware integration as explained in Section 2.4.
Observation from the analysis of other simulators helped us to do better implementation
of NoCExplorer. In Table 3.2 we have captured and compared our framework with other
simulators.

Major advantages of NoCExplorer is capability to parametrize network size, physical
links and others. Detailed buffer modeling can be done to set buffer depth and number
of buffers in virtual channel. With parameters to control injection of packets into the
network, NoCExplorer has advantage over other simulators to control even flit injection
rate into the network. This can used by the designers to model a node when the ap-
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Table 3.2: NoC simulator characteristics

Parameters Booksim | Noxim | NoCTweak | NoCBench | Atlas | NoCExplorer
Topology 10 1 1
Network Size
Physical Links

Buffer modeling
Routing algorithm
Area analysis

Power analysis
Throughput analysis
Latency analysis
Heat map analysis
Synthetic traffic
Custom traffic
Packet injection ratio
Flit injection ratio
Mixed language
Cycle accurate

o+ v+
w+ + +
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o+ + + &
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e

+ + +
+ : Supported, - : Not supported

plication does not have complete data available before packet is assembled. It supports
rich set of utilities to evaluate NoC which includes latency, throughput, heat map and
others. All the simulators studied in this thesis has capability to apply synthetic traffic
over the NoC. Few simulators including NoCExplorer has advantage of applying custom
traffic over the NoC. Support for more topologies and routing algorithms should be
considered for future work. Area estimation and analysis is not possible in simulators
we have studied in this thesis. With support for mixed language simulation it is possible
to do early estimation of area and power as future work. Since NoCExplorer is cycle
accurate simulator, there is a penalty of increased simulation run time.
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NoCExplorer simulation and
results

In this chapter we show and analyze the results of simulations that have been per-
formed using NoCExplorer. First we explain qualification of NoCExplorer by correlating
with published journals and papers for selected Network on Chip (NoC) architectures.
Researchers have proposed various techniques and published results to compare NoC
architectures. In our thesis we focus on evaluating NoCExplorer by comparing topology,
routing algorithms and buffer sizing in routers and network interface. Then we show the
impact of flit interval rate on the NoC performance in terms of latency and throughput.
In the final section of the chapter we analyze execution time of NoCExplorer by profiling
the code.

4.1 NoCExplorer evaluation

In Section 2.3 we explained in detail about the work done by Kumar et al. [15] and
latency analysis results published as shown in Figure 4.1a based on 65nm CMOS tech-
nology library. To evaluate the correctness of NoCExplorer we mimic the setup of NoC
architecture in our experiment. In the publication all the details required to configure a
NoC in NoCExplorer is not available. So, we made certain assumption in our experiments
like data size, simulation time and others. Hence while comparing results, we focus on
latency trend in the network. A 7x7 mesh topology, xy routing and eight virtual channels
based NoC was created using NoCExplorer with application of random synthetic traffic.
Injection load which represents amount of flits entering into the network per cycle for
each node (flits/cycle/node). Multiple simulation runs and measurements were done for
varying injection load.

By analyzing the results we found NoCExplorer results correlated and similar trends
were observed with increasing injection load into the NoC as shown in Figure 4.1. Till
the network saturates there is a steady increase in packet latency. Once the network
saturates there is an exponential increase in packet latency due to congestion in the
network. Since we made certain assumptions in our NoC configuration due to non-
availability of information, we do not compare latency numbers with published work.

We created another set of experiments based on study done by Hu et al. [25]. We
setup a mesh topology (5x5) with XY, west first and south last routing algorithms for
uniform random traffic similar to NoC proposed by Hu et al. [25]. Simulation results of
the NoC using NoCExplorer is shown in Figure 4.4. XY routing performs better than
partially adaptive based routing algorithms for uniform random traffic. Similar results
were published by Hu et al. [25], Glass et al. [26], Mello et al. [27] and Chiu et al.
[28]. Partially adaptive routing algorithms can potentially speed up the time to deliver
individual packets but globally its performance is poorer than XY routing algorithm. In

35



36 CHAPTER 4. NOCEXPLORER SIMULATION AND RESULTS

Packet latency vs Injection rate
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Figure 4.1: Comparison of latency analysis in NoC

XY routing algorithm based NoC, routers at center of the network takes ~ 20 cycles per
packet. Partially adaptive based routers at center of the NoC took ~ 42 cycles per packet.
Hence we know partially adaptive routing algorithms tends to concentrate traffic in the
center of the network, increasing the number of blocked paths. Glass et al. [26] suggest
that by reducing the number of turns in the routing algorithm may reduce blocking and
improve performance. We also simulated the NoC for various network sizes and buffer
sizes. All the results reflects similar characteristics as shown in Figure 4.2. Hence these
experiment improved the confidence on correctness of the results using NoCExplorer.

Average packet latency vs Injection rate
160

Xy routing —+—
west first ——se—
140 south last —#—

120

100

80

60

Packet latency (cycles)

40

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Accepted traffic average injection load (flits/cycle/node)

Figure 4.2: Average packet latency analysis for multiple routing algorithms

In previous experiment we were able to evaluate three routing algorithm and compare
its characteristics using NoCExplorer. We updated the NoC architecture to have torus
topology with torus XY routing algorithm. As mentioned in Section 2.2.1 we know that
torus XY routing algorithm can cause deadlock in the NoC. In our NoCExplorer we have
not implemented deadlock recovery techniques in the NoC, which could be considered
for future updates. When we analyze the results generated by NoCExplorer, the results
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for torus xy routing is not correct after the network saturates. This is because in NoC-
Explorer we only evaluate results for received packets in slave network interface. We do
not evaluate missing packets in the NoC which would have stalled due to deadlock be-
cause of routing algorithms. Hence, we could not evaluate complete NoC characteristics
for routing algorithms which might cause deadlock in the NoC after network saturates.
Individual packets which has completed data transmission can still be analyzed which is
not impacted by deadlock issues.

Design of buffer depth in router design has impact on area and power consumption.
We used same NoC architecture proposed in previous evaluation of NoCExplorer to
analyze the impact of buffer depth in NoC. We applied one cycle flit interval with packet
size of 24 bytes which would translated to 8 flits (including head and tail flit). Multiple
simulation run were done with three buffer depth values (4, 8 and 12) using NoCExplorer.
This is done to emulate three scenarios when packet is transmitted through a router which
are a) Buffer depth > packet size b) Buffer depth == packet size ¢) Buffer depth < packet
size. In Figure 4.3 we show the results generated and analyzed from NoCExplorer. We
can observe that the latency and throughput remains same for three buffer depth values
until the network saturates. And when buffer depth is equal or more than packet size
the performance of the NoC is same. When buffer depth is less than packet size the
network saturates faster and there is gap of 40% in throughput compared to other two
scenarios as shown in Figure 4.3b. Hence for given set of NoC architecture we can
apply a thumb rule to restrict packets size equal or less than buffer depth to achieve
optimal performance in the NoC. Hu et al. [29] and Mello et al. [30] have proposed
and shown similar characteristics on the impact of buffers and virtual channels in router
architecture.
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Figure 4.3: Latency and load analysis for multiple buffer depths

4.2 Flit interval selection

In Section 3.3.2 we explained modeling of flit interval rate when packet is transmitted
from master network interface to the connected router. In related work discussion done
in this thesis, none of them have highlight the impact of flit interval rate. Majority of the
work assume complete data is available before packet is generated. Flit interval rate have

build 1.0



38 CHAPTER 4. NOCEXPLORER SIMULATION AND RESULTS

an impact on the NoC latency and throughput performance based on injection load into
the network. We configured multiple NoC architectures using NoCExplorer to evaluate
the impact of flit interval rate. In this section we will analyze one NoC architecture in
detail since all the results obtained have similar correlation in latency and throughput.
A 5x5 mesh topology with xy routing, single physical link, four virtual channels has been
created as a base setup. Random, random neighbor and round robin neighbor synthetic
traffic was applied on the NoC. Four flit interval rate one cycle, fixed flit, random flit,
worst case flit interval supported in NoCExplorer was applied on the NoC.

In Figure 4.4 and Figure 4.5 shows the NoC latency and load analysis for random
flit interval and one cycle flit interval generated using NoCExplorer as explained in
Section 3.3.2. From the Figure 4.4b we know random application of traffic saturates the
network at 0.4 injection load. The other two traffic application saturates the network
~ 0.6 injection load. With application of random flit interval we can observe packet
latency at 0.1 accepted traffic injection load is highest till network saturates as shown
in Figure 4.4a. By comparing it with application of one cycle flit intervals as shown in
Figure 4.5a, packet latency reduces by more than 60% in all synthetic traffic scenario
at lower injection load before network saturates. This shows even for localized synthetic
traffic has an impact based on flit interval rate. The reduction in packet latency at
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Figure 4.4: Latency and load analysis for random flit interval

lower injection load when one cycle flit interval is applied is due to less buffer back
pressure and blocked routers in the NoC. Assuming packet injection rate is tcycles
as shown in Figure 4.6, for one cycle flit interval mode will have routers and network
interface resources allotted for 4 cycles. The routers and network interface resources will
be available for other packets to be serviced for tcycles-4 cycles. In random flit interval,
routers and network interface resources will be available for other packets to be serviced
for only tr4 cycles (shown in Figure 4.6). If two or more packets try to access the same
resources as shown in Figure 4.6, one of the packet would be blocked till the tail flit of
other packet passes through the shared resources. Hence, at lower injection load packet
latency increases as flit interval increases in a packet.
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Average packet latency vs Injection rate Accepted load analysis
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Figure 4.5: Latency and load analysis for one cycle flit interval

tcycles
One cycle flit |
interval | 3
| 4cycles tcycles — 4 cycles d
- - ] e
Random flit
interval

Figure 4.6: Flit blocking effect

4.3 Code profiling and run time improvements

Run time and utilization of compute resources is an important factor for usage of No-
CExplorer. NoCExplorer should have low run time and maximum usage of compute
resources provided to it. To evaluate the execution performance of NoCExplorer we
reused the setup mentioned in Section 4.1. Gprof was used as profiling tool to profile the
NoCExplorer. Figure 4.7 shows list of modules with run time > 0.1% of total run time.
We can observe ~ 50% of run time is due to read and write of flit for every clock cycle.
This is due to flit model as mentioned in Section 3.3.1 has to carry lot of information
for working of the NoC and analysis purpose. Hence, it influence ~ 50% of run time in
NoCExplorer. There is scope to optimize the modules and flit operations to improve the
simulation run time. As an example, flit copy operation can be skipped if we optimize
NoCExplorer to work only at packet level. But this would have impact on accuracy of
the results.
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‘Time % seconds seconds calls name

29.78 34.96 34.96 891855050 flit::operator=(flit
i 11.61 48.59 13.63 0pl_vc_alloc::process() Flit read and write
| 10.96 61.46 12.87 0 virtualchannel::rd_thread() | »  operation at each
7.92 70.76 9.3 315652724 common::emptyFlit(flit&) | clock cycle
| 6.53 78.43 7.67 0sc_core::sc_signal<flit 3
| 4.87 84.15 5.72 0 virtualchannel::status_thread()
4.46 89.39 5.24 Oroute_compute::rc_thread() |
38 9385  4.46 390661440sc_core:sc_signal<flit
3.02 97.4 3.55 408581479 sc_core::sc_signal<int
24  100.22 2.82 0 reg<flit>::write()
1.37 101.83 1.61 0sc_core::sc_signal<sc_dt::sc_logic
1.33  103.39 1.56 0 slave_ni::receiveFlit()
1.08 104.66 1.27 311041784 Fifo<flit>::isEmpty()
1.01 105.85 1.19 1325 sc_core::sc_out<int>::~sc_out()
1.01 107.03 1.18 426966500 sc_core::sc_signal<flit
0.98 108.18 1.15 0 crossbar::process()
0.97 109.32 1.14 258584483 sc_core::sc_signal<flit
0.93 110.41 1.09 0 master_ni::injectFlit()
0.78 111.32 0.91 0 non-virtual
0.72 112.17 0.85 0sc_core::sc_port<sc_core::sc_signal_inout_if<int>
0.68 11297 0.8 0sc_core::sc_port<sc_core::sc_signal_in_if<pkRegq>
0.55 113.61 0.65 0sc_core::sc_spawn_options::~sc_spawn_options()
0.53 114.23 0.62 0 non-virtual
047 114.78 0.55 63168414 sc_core::sc_signal<sc_dt::sc_logic
0.41 115.26 0.48 0tf_manager::tf_stats()
0.21 115.51 0.25 0 non-virtual
0.18 115.72 0.21 300499900 Fifo<flit>::getFree()
0.18 11593 0.21 0 virtualchannel::wr_thread()
0.15 116.11 0.18 0sc_core::sc_signal<int
0.14 116.28 0.17 0 non-virtual
0.14 11644 0.16 0 frame_dummy
0.12  116.58 0.14 0 non-virtual

0.11 116.71 0.13 156384083 sc_core::sc_signal<sc_dt::sc_logic

Figure 4.7: Code profile

SystemC used for implementation in NoCExplorer has the adaptability for cycle and
transaction level simulation and ability to model concurrent process. However SystemC
libraries used in NoCExplorer supports only single thread simulation kernel which pre-
vents it from utilizing multicore machines to speed up hardware simulations. Ezudheen
et al. [31] present method to parallelize SystemC simulation kernel for fast hardware
simulation on multicore machines. Kai et al. [32] show speed up in hardware simulation
can be done by distribution of SystemC simulations without changing simulation ker-
nel. We recommend these improvements should be integrated in NoCExplorer as future
work.
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Application mapping on
NoCExplorer

NoCExplorer has various capabilities to model a node to generate traffic for the Network
on Chip (NoC). This can be effectively used to map applications, custom traffic scenarios
to find performance characteristics of a NoC. In this chapter we explain Digital Audio
Broadcasting (DAB) application transaction modeling and mapping onto many NoCs.
Results from the experiments are shown and discussed in this chapter. We also show
importance of application mapping over NoC is critical to achieve best performance
results.

5.1 Digital Audio Broadcasting

DAB is a digital radio technology for broadcasting radio stations. DAB system was devel-
oped by eureka-147 project in UK in 1992. Compared to AM and FM analog broadcasts
which has problems of interference and frequency selective fading the DAB system can
offer CD quality sound without these issues [33]. The DAB broadcast signal is arranged
into a transmission frame as shown in Figure 5.1. The DAB system provides a couple
of transmission modes with varying parameters based on user requirements as shown in
Table 5.1. For our experiments we would use mode I with transmission frame generated
for every 96ms once. For NoCExplorer we used the DAB application transaction mod-

- Transmission fi >

Synchronization channel | Fast information channel Main service channel

3 symbols 72 symbols
(Mode ) (Mode 1)

Reference symbol

Null symbol Symbol i

tymbol
Guard interval

Figure 5.1: DAB transmission frame

eling based on a Synchronous Data Flow (SDF) graph [23] as an input. The input SDF
as shown in Figure 5.2 represents transaction modeling of the application with defined
tasks and communication between the tasks. The src task (which is connected to an
ADC) outputs a frame at the rate of 96ms (as per Mode I shown in Table 5.1). The
requirement of the application is that sum of computation and communication time for
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42 CHAPTER 5. APPLICATION MAPPING ON NOCEXPLORER

Table 5.1: Transmission parameters of DAB system for different transmission modes [33]

Mode I 11 111 v
Carrier number/ | 1536/ | 384/ | 192/ | 768/
spacing 1kHz 4kHz | 8kHz | 2kHz
Tframe 96ms 24ms | 24ms | 48ms
Tnull 1.297ms | 324us | 168us | 648us
Tsymbol 1.246ms | 312us | 156us | 623us
tsymbol 1ms 250us | 125us | 500us
tguard 246us 62us | 3lus | 123us

each task should not exceed 96ms so that src is not blocked. Blocking would cause buffer
overflow and therefore distorted sound or a complete inability to decode. This would
also ensure each frame of data is received from the ADC into the network.

Figure 5.2: DAB SDF model

5.2 Application mapping on NoC

The mapping of application onto a NoC is one of the major challenges for design space ex-
ploration of NoCs. Application constraints provide bandwidth and latency requirements
which needs to be satisfied in the NoC architecture. Many researchers have proposed
various algorithms and techniques for efficient mapping of applications onto a NoC. Hu
et al. [34] propose branch and bound algorithms to map nodes on mesh based NoC
architectures to meet bandwidth constraints with minimum total energy consumption.
They also propose a energy aware scheduling algorithm to map applications onto a NoC
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5.2. APPLICATION MAPPING ON NOC 43

in [35]. Murali et al. [36] show methods to split the traffic among various links in the
network to meet bandwidth requirements of the task. They propose an algorithm for
mapping with minimum path routing between communicating nodes in the network.
The goal of the algorithm is to have least number of routers in the path between two
communicating nodes. In our experiments we use this approach to map the application
on different topologies using NoCExplorer.

As shown in Figure 5.2 the application has 10 tasks to be executed in the network.
We make an assumption to map each task to a node in the network for our experiments.
Only src and output tasks are combined to one node in our experiments. Designers has
flexibility to merge multiple tasks into single node in NoCExplorer. Therefore with the
assumptions we have, total number of nodes required for the application is nine nodes.
These nodes should be efficiently mapped onto the network to achieve best Quality of
Service (QoS).

In our experiments we created three different mappings based on minimum path
routing between communicating nodes in the network [36]. They are

Mesh: Application was mapped on mesh topology as shown in Figure 5.3a. Tasks were
assigned to nodes based on minimum path routing. All the communicating nodes
have minimum hops possible as shown in Table 5.2.

Torus: In torus topology application was mapped as shown in Figure 5.3b. Similar to
mesh topology mapping we have considered minimum hops possible for communi-
cating nodes as shown in Table 5.2.

Spidergon: For spidergon topology we considered ’across first’ and ’across last’ routing
algorithms to find minimum path routing for communicating nodes. Tasks were
mapped on spidergon topology as shown in Figure 5.3c. Numbers mentioned as
’() in the Figure 5.3 are reference numbers used by NoCExplorer.

From mapping of applications onto the NoC we can derive the source and destination
node when traffic is initiated. Using an SDF graph as input we need to calculate data
size, bandwidth for sending the data and other parameters to model each node. In
Table 5.2 we have shown hop count between communicating nodes. This is useful to
determine minimum communication and computation time which in turn can be used to
calculate lowest clock frequency possible for operation of the tasks assuming that there
will be no congestion. For calculation purpose we assume following input parameters as
mentioned in Listing 1. As explained in Section 3.4.2, we can calculate token/execution
(amount of tokens being produced per execution of the task), required input tokens,
cycle count required per task, data generated and received and bandwidth required for
each task as shown in Table 5.3.

Bandwidth values was calculated, since it is required to model the node. With the
information of required bandwidth and hop count from application mapping we can
calculate communication time and computation time required for each communication
tasks. Computation time is used to model wait time in the node before it can start its
task of sending data into the network. When node is waiting to mimic computation time,
it can still accept packets. This is to make sure computation and communication can
be executed in parallel. Communication time represents required time to transmit the
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V_fic V_sub De_int
6) (7 (8)
demux proc reed
®) 4) (5)
mode Src/op sync
(0) M (2)

(a) Mesh topology

ﬁ ﬁ ﬁ mode Src/op sync
(0) (1) (2
V_fic proc V_sub
E (6) (7) (8) j
V_sub
9) (3)
demux reed De-int
r (3) (4) (5) j
De-int V_fun
(8) (4)
mode Srclop sync
r (0) (1 (2) j
o ‘ ‘ N reed proc demux
L L L %) ®) ®)
(b) Torus topology (c) Spidergon topology

Figure 5.3: DAB application modelling on topologies

Listing 1 Input parameters for DAB modeling
1 frame = 29491.20 Bytes

Clock period of task = 10 ns

1 CIF = 7372.80 Bytes

1 codeword = 1134.28 Bytes

Burst size = 24 Bytes

NoC clock = 1000 ns

Packet size = 8 flits
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Table 5.2: Minimum hop count for different mapping

Source | Destination | Mesh | Torus | Spidergon
src/op | mode 3 3 3
src/op | sync 3 3 3
src/op | proc 3 3 3
mode | sync 4 3 4
mode | proc 4 4 4
mode | demux 3 3 3
sync proc 4 4 4
proc demux 3 4 3
demux | v_fic 3 3 3
demux | v_sub 4 4 4
v_fic v_sub 3 3 3
v_sub | De-int 3 3 3
De-int | reed 3 3 3
reed output 4 3 4

Table 5.3: Bandwidth calculation for DAB application

Tokens/ Required Cycle Sent Required | Bandwidth
Task oxocution input count Data data (KBytes/
token (cycles) | (Bytes) | (Bytes) sec)
src/op 3 frame 0 frame 96ms 88473.6 0 921.6
mode 3 frame 1 frame 2008715 | 88473.6 29491.2 4404.48
sync 1 frame 2 frame 15089 29491.2 58982.4 195448.33
proc 1 frame 3 frame 2058063 | 29491.2 88473.6 1432.95
demux 8 CIF 2 frame 1107799 | 58982.4 29491.2 5324.28
v_fic 1 CIF 1 CIF 34474 7372.8 7372.8 21386.55
v_sub 1 CIF 2 CIF 447304 7372.8 7372.8 1648.27
De-in |6.5 Codeword 1 CIF 40570 7372.8 7372.8 18173.03
reed | 1 Codeword | 1 Codeword | 11269 1134.28 1134.28 10065.46

data for calculated bandwidth in an ideal point to point link. These calculations were
done to find approximate value of NoC clock period, where application requirement of
96ms are satisfied. In our simulation runs NoC clock period was set based on calculated
threshold value. In the Table 5.4 we shown latency and time required for operation of
each task when it is applied on mesh topology. Also similar exercise was done for other
topologies.

To measure the performance of the application over NoCs we would analyze the
results in terms of frames. Sum of computation and communication time as shown
in Figure 5.4 by each task should not be more than 96ms (input source rate). If the
time taken is more than the input rate then we have deadline miss. For the analysis
we consider deadline miss as an important parameter to assess the performance of the
network.
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Table 5.4: Latency calculation for DAB application mapped on mesh topology

Min Communication | Computation Total time
Src Dst Hop | latency . .
time (ms) time (ms) (ms)
(cycles)
src/op | mode 3 12 44.24 0.00 44.24
src/op | sync 3 12 44.24 0.00 44.24
src/op | proc 3 12 44.24 0.00 44.24
mode |sync 4 14 51.62 20.09 71.71
mode |proc 4 14 51.62 20.09 71.71
mode |demux| 3 12 44.24 20.09 64.33
sync | proc 4 14 17.21 0.15 17.36
proc |demux| 3 12 14.75 20.58 35.33
demux | v_fic 3 12 29.50 11.08 40.57
demux | v_sub 4 14 34.41 11.08 45.49
vfic |vsub 3 12 14.78 1.38 16.16
vsub |De-int | 3 12 14.78 17.89 32.68
De-int |reed 3 12 14.78 1.62 16.41
reed |output| 4 14 17.47 2.93 20.40
Wait time Wait time Wait time
> . e > .
<) @y < () @ () HEp< () @)y < (1) > Communication time
Frame rate Dﬂjiimm'ss < (2) > Computation time
- «
| | | | |
0oms 96ms 192ms 288ms 384ms

Figure 5.4: Timing diagram of deadline miss for DAB application

5.3 Results

In Section 5.2 we explained about different mappings we applied onto NoC for DAB
application. Based on the four mappings, we made a list of NoC configuration with
different routing algorithms to evaluate its performance as shown in Table 5.5. Rest of
the configuration parameters such as buffer depth of 8 words, 4 virtual channels, round
robin arbitration and others are not changed.

Table 5.5: NoC configurations to evaluate DAB application

Topology | Routing algorithm
Spidergon Across first
Across last
XY
Mesh West first
South last
Torus Torus XY
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We simulated each NoC mentioned in Table 5.5 by injecting 20 frames of data from
src/op node at the rate of 96ms. Each frame was divided into multiple packets, with
each packet containing 24 bytes. It was done to keep the packet size less than or equal
to buffer depth for optimal performance (based on results shown in Section 4.1). Python
utility tools were used to measure communication time and computation time for each
communicating tasks. To meet the application requirement, we measured frame latency
of src/op node to observe if it takes more than 96ms to inject data into the network.
If the node took more than 96ms to inject data into the network, extra time taken is
referred as deadline miss.

Average frame deadline miss (minimum path routing based mapping)

B Spidergon + Routing across first M Spidergon + Routing across last  Mesh + XY Routing
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0.600
—~ 0.500
12}
E
& 0.400
£
£ 0.300
o
g
o 0.200
g
2  0.100
<
0.000 U
800 900 1000 1100 1200 1300 1400 1500
Cycle per(ns)
Figure 5.5: Average frame deadline miss
Max frame deadline miss (minimum path routing based mapping)
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Figure 5.6: Max frame deadline miss

In Figure 5.5 we show average deadline miss for various NoC configurations. We can
observe, upto clock cycle period of 900ns all the NoC configuration meet the application
requirements. By further increasing the clock cycle period we found all the NoC con-
figuration have approximately similar average deadline miss except spidergon topology
with routing across first routing algorithm. It has least deadline miss value for given

build 1.0



48 CHAPTER 5. APPLICATION MAPPING ON NOCEXPLORER

constraints. The max deadline miss for each NoC configuration is shown in Figure 5.6.
We could also observe that for given constraints mesh topology with various routing
algorithms have similar results.

We analyzed the results in detail to find the reason for spidergon topology with across
first routing to have best performance for given constraints. In Figure 5.7 we compared
the average flit latency for all NoC configurations. We can observe spidergon topology
with across first routing has the least average flit latency after clock cycle period of 900ns
and above.

Average flit latency (minimum path routing based mapping)
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Figure 5.7: Average flit latency for minimum path routing based mapping

Mode 10 Srclop 13 Sync
(1.0) 10 (1.1) 10 (13.9)

[06] 396 [38.9]

V_sub
0)

i 1.0

(1.0) (15.8)

(0.5 [25.2]

15.2

Reed 303 Proc Demux
(13.8) (8.0) o (5.7)

[0.5) [0.6] [15.8]
1.0 15.0 1.0

Figure 5.8: Router congestion for spidergon topology with across first routing
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Router congestion visualization shows where bottlenecks are located and provides
insights on hot spot location in the NoC. In Figure 5.8 we show router congestion in
spidergon topology with across first routing algorithm. We can observe for src/op node
overall router congestion is ~ 1.1 cycles/flit and link connected to router has congestion
less than one cycle. By comparing with other NoC configuration as shown in Figure 5.9,
the src/op node has router congestion more than 10 cycles/flit. Spidergon topology
with across first routing algorithm has best performance due to least deadline miss, flit
latency and low router congestion. Hence this NoC architecture is best suited for given
application constraints.
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Figure 5.9: Router congestion comparsion for src/op node

Routing algorithms determines the route for packets to traverse in the network. De-
terministic routing algorithms have set of fixed paths unlike adaptive routing algorithms
which can by dynamic based on network congestion. Hence in deterministic algorithms
like XY, turn based algorithms and others, 100% usage of links in the network might
not be possible for mapped application. For the DAB application mapped on the mul-
tiple NoC configuration we found only 40% to 60% of links being utilized as shown in
Figure 5.10. Torus topology with torus XY routing has least link used and mesh topol-
ogy with routing south last has highest link used for given application. Hence in torus
topology few links have utilization > 40% due to uneven traffic distribution as shown
in Figure 5.11. To achieve 100% links being used in the network designers can change
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NoC links utilization (minimum path routing based mapping)
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Figure 5.10: Link utilization in NoCs for DAB application

routing algorithm for even traffic distribution or remove unused links in the topology.
By optimizing link usage and removing unused links, area can be saved in the silicon.
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Figure 5.11: Link utilization in NoC

As mentioned in Section 5.2, mapping of application onto NoC is a one of the major
challenges for design space exploration of NoCs. We explained usage of minimum path
routing algorithm for mapping DAB application transaction model and its performance
results. We observed spidergon topology with routing across first algorithm had best
performance for given constraints. To highlight the importance of application mapping
we used spidergon topology node configuration and changed topology connection to
mesh and torus. Simulation and analysis of results as shown in Figure 5.12. Impact of
routing algorithm on NoC performance is visible on mesh topology. NoCExplorer allows
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Average frame deadline analysis
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Figure 5.12: Average frame deadline miss for sub-optimal mapping

a designer to see the impact of sub-optimal application mapping over NoC architectures.
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Conclusion and
recommendations

6.1 Conclusion

In this thesis we proposed a Network on Chip (NoC) characterization framework for
design space exploration called NoCExplorer. The NoCExplorer is a cycle accurate
simulator, developed using SystemC. It supports various techniques and architecture
block combinations to generate a NoC. The framework also supports utility scripts based
on python to analyze the results generated by NoCExplorer to assess the performance
of the NoC.

Contribution of the thesis is as follows

e A framework to analyze the performance of a NoC.

e Evaluation of NoCExplorer with seven published journals and papers to build
confidence on correctness of the simulator.

e A detailed comparison of the developed NoCExplorer with available open source
simulators.

e An application specific design space exploration of different NoC architectures to
identify communication bottlenecks of the application.

e A generic framework to enable automatic generation of parametrized NoCs with
designer specific characteristics and the ability to easily include custom modules
(SystemC or VHDL).

In the following we will discuss these contributions in more detail.

NoCExplorer: NoCExplorer is a set of tools which is part of a framework to perform
design space exploration of NoC. It has capability to configure network size, physical
links and others. Detailed buffer modeling can be done to set the buffer depth and
number of buffers in a virtual channel. With parameters to control injection of packets
into the network, NoCExplorer has advantage over other simulators to control even flit
injection rate into the network. NoCExplorer supports individual blocks in the NoC
to be synthesized or replaced with register transfer level VHDL code for mixed lan-
guage simulations. Each node in the NoCExplorer supports detailed configuration to
apply synthetic, Synchronous Data Flow (SDF) based traffic and custom traffic. It can
transport real data at bit level via the network. It provides a rich set of performance
parameters to analyze a NoC like packet or flit latency, throughput, injection load, link
utilization and others. It has capability to generate heat maps for visual representation
of link utilization and router congestion in the NoC.

NoCExplorer evaluation: A comparison with available open source simulators has
been done to show how NoCExplorer provides larger selection of simulator parameters
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and capabilities. NoCExplorer was correlated with seven journals and publications to
prove the correctness of the results. A number of synthetic traffic patterns were mapped
onto a set of NoC architectures and simulated. Results from the experiments showed
cycle interval between flit injection into the network impacts the NoC performance. An
increase in interval between flit injection within the packet significantly increases the
latency of the NoC. The ratio of increase in latency varies for different NoCs under each
set of synthetic traffic. Using NoCExplorer we also found routing algorithms which are
prone to deadlocks which are difficult to evaluate. This is because measurements were
incomplete due to stalled packets in the network due to deadlocks, and also eventually
network stops accepting packets due to buffer backpressure. Performance of such routing
algorithms can still be evaluated if we introduce deadlock recovery mechanisms into
NoCExplorer as discussed in the recommendations.

Application mapping on NoCExplorer: The Digital Audio Broadcasting (DAB)
application transaction model was used to show the capability of NoCExplorer to do early
design space exploration of NoCs based on SDF graph. Selected set of NoC architectures
were used to map the DAB application, which were simulated and results were analyzed
using NoCExplorer. Stressing the NoC by reducing its clock frequency by a factor of 100x
of core operating frequency, one of the spidergon based NoC with across first routing
algorithm showed best results for the given application constraints.

NoCExplorer synthesis: A generic framework has been proposed to enable auto-
matic generation of parametrized NoC with designer specific characteristics. SystemC
based modular blocks in NoCExplorer supports easy addition and replacement to con-
figure a NoC. It has been designed to be compatible with hardware modules so that it
can be replaced with register transfer level VHDL.

6.2 Recommendations

NoCExplorer code profiling and detailed run time analysis was presented in Section 4.3.
There is scope to optimize the modules and flit operations to improve the simulation run
time. As an example, flit copy operation can be skipped if we optimize NoCExplorer to
work only at packet level. But this would have impact on accuracy of the results. Also
simulation run only on single thread simulation kernel which prevents it from utilizing
multicore machines to speed up hardware simulations. For future work we should look
at improving simulation run times by utilizing the potential of multicore machines by
distribution of simulation work or by using multi threading support in simulation kernel
and others.

Current work cannot evaluate routing algorithms which prone to deadlocks after net-
work saturates. It is because in NoCExplorer there is no support for deadlock recovery
mechanisms in routers and network interfaces. For future work if we include recovery
mechanisms, routing algorithms options can be expanded and it can be used for evalua-
tion even after network saturates.

Area and power estimation is possible by including the support for technology li-
braries and models in the framework. SystemC modular blocks can by synthesized using
high language synthesis tools to get an estimate of gate count. Technology libraries have
area and power information for individual gates. This information can be processed to
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help designers for early estimation of area and power required to implement the NoC
architecture.

Hardware architects or application developers can use this framework to integrate in
platform simulation framework. It would combine computational blocks and interconnect
architecture of a Multi Processor System on Chip (MPSoC) to do early design space
exploration.
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Routing Algorithm

A.1 XY routing

Algorithm 1 XY routing

if dest I1D[z dir] > router ID[z dir] then
DIRECTION EAST

else if dest ID|[x dir] < router ID[x dir] then
DIRECTION WEST

else if dest ID[y dir] > router ID[y dir] then
DIRECTION NORTH

else if dest ID|y dir] < router ID[y dir] then
DIRECTION SOUTH

end if

A.2 Routing west first

Algorithm 2 Routing west first

if dst ID[zx dir] <= router ID]x dir]||dstI D[y dir] == router 1D[y dir] then
Apply XY routing

else if dest ID]y dir] < router ID[y dir] then
DIRECTION SOUTH || EAST

else
DIRECTION NORTH || EAST

end if
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A.3 Routing south last

Algorithm 3 Routing south last

if dst ID[y dir] <= router 1D[y dir]||dst] D[z dir] == router ID[x dir] then
Apply XY routing

else if dest ID|[x dir] < router ID[x dir] then
DIRECTION WEST || NORTH

else
DIRECTION EAST || NORTH

end if

A.4 Torus XY routing

Algorithm 4 Torus XY routing
mizdir] = (dest] D[zdir] — routerI D|xdir])%max(x)
m;|ydir] = (destl D[ydir] — routerI D]ydir])%maz(y)
if m;[zdir] <= maz(x)/2 then
deltalzdir] = m;[zdir]
else
delta[zdir] = m;[xdir] — max(z)
end if
if m;[ydir] <= maz(y)/2 then
deltalydir] = m;[ydir]
else
deltalydir] = m;[ydir] — max(y)
end if
if delta[zdir] > 0 then
DIRECTIONEAST
else if delta[zdir| < Oanddelta|xdir]! = maz(z) then
DIRECTIONWEST
else if delta[ydir] > 0 then
DIRECTIONNORTH
else if delta[ydir] < Oanddeltalydir]! = maz(y) then
DIRECTIONSOUTH
end if
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Flit model

Listing 2 Modelling of flit

// Source ID and Destination ID:

// [0] = X direction, [1] = Y direction for mesh based topology
// [0] = node number for non-mesh based topology

int src_id[ROUTER_ID_DIMENSION] ;

int dst_id[ROUTER_ID_DIMENSION];

// The flit type (FLIT_TYPE_HEAD, FLIT_TYPE_BODY, FLIT TYPE_TAIL)
flitType flit_type;

// The sequence number of the flit inside the packet

int sequence_no;

// ID of the packet in the network

int packet_id;

// timestamp at when packet is sent from master network interface
sc_time in_timestamp;

// timestamp at when packet ts received at slave network tinterface
sc_time out_timestamp;

// timestamp at when head flit enters router or network interface
sc_time head_timestamp;

// Data to be sent

sc_1v<DATA_WIDTH> flitData;

// Virtual channel number

int vcNum;

// Nezxt stage router direction

int opPortDirection[ROUTING_ALGO_DIR];

// Current number of hops from source to destination

int hopNum;

// Physical link in master network interface flit was gemerated
int mni_phylink;

// Physical link in slave network interface flit was received

int sni_phylink;
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Latency and throughput
analysis file

An example file shows results generated by NoCExplorer SystemC modules. It shows
virtual channel utilization, latency and throughput of the network.

Listing 3 Sample result of latency and throughput analysis

// Clock period

Clock period,800 ns

// Injected load configured

Injection load,0.1

// Virtual channel utilization (flits/fifo)

VCNUM-0,114897

VCNUM-1,114893

VCNUM-2,114890

// Latency

Average packet latency(cycles),22.9747040225

Min packet latency(cycles),11

Max packet latency(cycles),261

Average flit latency(cycles),15.9522288012

Min flit latency(cycles),4

Max flit latency(cycles),254.5125

Average f1it(3 hop) latency(cycles),15.2345474594

Min f1it(3 hop) latency(cycles),4

Max f1lit(3 hop) latency(cycles),197.875

Average flit(4 hop) latency(cycles),17.241121152

Min flit(4 hop) latency(cycles),6

Max flit(4 hop) latency(cycles),254.5125

// Injection load

accepted traffic average injection load (flits/cycle),0.132815221806
accepted traffic min injection load (flits/cycle),0.0854352638906
accepted traffic max injection load (flits/cycle),0.254993691292
ejected traffic average injection load (flits/cycle),0.130923837403
ejected traffic min injection load (flits/cycle),0.0849955457735
ejected traffic max injection load (flits/cycle),0.247574490158
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