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Lay summary

Consider two companies operating in the same industry, such as Coca-Cola and Pepsi, whose stock
prices usually exhibit the same movements. If Pepsi’s price suddenly drops while Coca-Cola’s stays
the same, a financial trader might expect the gap to close again. By buying the cheaper stock and
selling the more expensive one, the trader can profit once prices revert to their original pattern.

The difficulty is that markets are noisy: prices fluctuate constantly, making it hard to tell real trading
opportunities from random signals. To address this, this thesis applies the Kalman filter, a mathematical
tool that smooths out data and filters away noise. In theory, this should generate clearer and more
accurate trading signals.

The method was tested on two related cryptocurrencies, Ethereum (ETH) and NEO, during 2018–
2019. Three trading approaches were compared: trading on the raw price difference, on Kalman-
filtered data with default settings, and on Kalman-filtered data with optimized parameters.

The results showed that trading on raw data outperformed the default filter, highlighting the need for
parameter optimization. Once implemented, the filter with optimized parameters achieved the strongest
overall performance.

Interestingly, the price gap between Ethereum and NEO did not consistently return to historical
averages, but behaved unpredictably. Still, the study demonstrates that filtering techniques combined
with optimization can improve trading performance and uncover hidden opportunities.
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Summary

This thesis explores the application of Kalman filtering techniques to enhance pairs trading strategies
in financial markets. Pairs trading is a statistical arbitrage strategy that exploits temporary price di-
vergences between historically correlated assets by taking opposite positions with the expectation of
mean reversion. The study addresses a fundamental challenge in pairs trading: accurately modeling
the underlying spread dynamics in the presence of market noise.

The research implements a state-space model framework where the observed spread between
asset prices is treated as a noisy measurement of a mean-reverting process. A default Kalman fil-
ter is applied to estimate the true underlying spread by filtering out market noise, with the goal of
generating more reliable trading signals. To optimize the Kalman filter’s performance, the Expectation-
Maximization (EM) algorithm is employed to estimate the model’s latent parameters, including process
noise and observation noise covariances.

The methodology is tested on a cryptocurrency pair (Ethereum-NEO) identified from existing litera-
ture using the distance method for pair selection, covering the period from January 2018 to December
2019. To test the performance of Kalman filtering three approaches are compared: trading on unfiltered
spreads, trading on Kalman-filtered spreads with default parameters, and trading on spreads filtered
using EM-optimized parameters.

The empirical results reveal several key findings. Surprisingly, the unfiltered spread strategy ini-
tially outperformed the default Kalman filter approach, generating $725.73 in profits across 4 trades
compared to $523.95 across 3 trades for the filtered approach. However, when EM optimization was
applied, the Kalman filter strategy achieved the highest performance with $750.83 in profits across 4
trades.

A notable discovery is that the estimated state transition coefficient consistently converged to 1,
indicating random walk behavior rather than the expected mean-reverting dynamics. This suggests
that the theoretical assumption of mean reversion may not always align with empirical data, highlighting
the importance of model validation in quantitative finance applications.

The study demonstrates that while Kalman filtering can enhance pairs trading strategies, parameter
optimization through EM is crucial for achieving superior performance. The research contributes to
the understanding of noise reduction techniques in financial time series and provides insights into the
practical challenges of implementing statistical arbitrage strategies. Future work could explore larger
asset universes, explicit mean-reversion constraints, and the incorporation of transaction costs and risk
management considerations.
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1
Introduction

Pairs trading is a well-known trading strategy used in financial markets. It is a form of statistical arbi-
trage, which entails that deviations in the price relationship between two historically correlated financial
instruments, such as stocks, bonds, or derivatives, are exploited with the aim of generating returns.

Executing a pairs trading strategy involves two key steps: first, selecting a pair of financial instru-
ments that demonstrate a historical relationship, and second, detecting moments when their prices
diverge from this equilibrium [12]. When such moments occur, the trading strategy aims to profit by
taking opposite positions while expecting that the relationship will eventually revert to its mean. These
steps will be explained shortly in this introduction by the means of an example.

The first step in pairs trading, identifying a correlated pair, is crucial as it heavily determines the
strategy’s success. It involves selecting pairs whose prices move together historically and predictably
[13]. A well-known, simple technique that is used in literature and industry is the distance method.
This method assumes that two assets whose normalized price series stay close together are good
candidates for pairs trading. A simplified example of such pair could be Pepsi (PEP) and Coca-Cola
(KO), two distinct companies that produce similar products within the soft drink industry. Historically,
their stock prices have exhibited similar patterns, rising and falling in response to broader market trends
affecting the soda market. In Figure 1.1 we can see that, in general, the prices of PEP and KO move
similarly.

The second step is to identify discrepancies in the prices of the pair chosen in the first step. Referring
back to the Pepsi and Coca-Cola example, in Figure 1.1 it can be observed that Pepsi’s asset price
experiences a sudden drop in May. A potential reason for this could be that Pepsi experiences internal
issues, leading to financial losses which does not have a direct effect on the other company, Coca Cola.
When such a moment occurs, the difference between the prices of the assets can exceed a historical
mean. This triggers trading signals for the pairs trader, as he anticipates that the prices of the securities
will revert to their typical relationship. These trading signals can be formalized using statistical methods
on historical data.

Figure 1.1: Price relationship between Coca-Cola (KO) and Pepsi (PEP).
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After performing these two steps, the trader will enter opposite positions in the assets; short (sell)
the relatively overpriced stock, expecting its value to fall back to its mean, and go long (buy) on the
under priced stock, expecting its value to rise, see Figure 1.2. When the prices of the securities revert
back to their historical pattern, the traders can make a profit by the correction of the deviation in the
prices by exiting his positions.

Figure 1.2: General idea of pairs trading.

A key advantage of this strategy is that it reduces exposure to overall market movements by focusing
on relative price changes between assets. The trader aims to keep their portfolio market neutral, which
entails that the portfolio will profit from both rising and falling prices in a market. In other words, the
trader can generate returns regardless of whether the overall market is going up or down making pairs
trading an attractive trading strategy.

A downside of the strategy is that it heavily relies on the assumption that the relationship between
the asset prices is stable, following a stationary process. In practice, however, financial time series are
often affected by noise, caused by for example market volatility or trading activity. The observed prices
on the market can therefore be seen as ’noisy’. This noise can obscure the true underlying relationship
between two assets, which can interfere with the accuracy of generating trading signals in the pairs
trading strategy.

In this thesis, the focus lies on the second step of pairs trading, where the aim is to more accurately
model the dynamics of the asset prices. This will be done by analyzing the price difference between the
two securities, referred to as the spread and using statistical methods for determining characteristics
of this spread, such as the historical mean, and minimizing noise from the noisy market observations.

There exist multiple useful mathematical tools for reducing noise in the observed prices. In order to
use these tools, the spread will be modeled as a mean reverting process. Mean reversion is a property
of a time series which entails that there is a long-term average value around which the series may
fluctuate over time but eventually will revert back to [4]. As previously mentioned, this characteristic is
fundamental to pairs trading.

The mean-reverting process described above can be reformulated as a state space model, which
is a way of representing a dynamic system where the true underlying state evolves over time but is
not directly observed. Instead, only noisy measurements related to that state are observed. In the
context of pairs trading, the ”state” refers to the true value of the spread between the asset prices,
while the ”observations” are the actual noisy spread measurements seen in the market. A state space
model captures this setup with two equations: the state equation, which governs the evolution of the
hidden spread, and the observation equation, which links the hidden spread to the measured data. This
formalism provides a way to deal with uncertainty and noise in both the dynamics of the process and
the observations.

To estimate the hidden state from noisy observations, the Kalman filter provides a useful tool. It is
a recursive mathematical algorithm that can be used to filter out the market noise from the observed
spread such that the true underlying spread prices can be revealed. It combines prior knowledge about
the system with new incoming data to produce the best possible estimate of the current state, in this
case the true underlying spread prices. As a result, the Kalman filter produces smoother and more
reliable estimates of the true spread, improving trading signals.



3

Although the Kalman filter is a powerful tool for estimating hidden states from noisy data, its accuracy
depends on certain parameters that describe how much uncertainty there is in the system and in the
observations. These parameters are often difficult to choose correctly in practice, and poor choices can
lead to inaccurate results. To improve this, the Expectation-Maximization (EM) algorithm can be used
to automatically fine-tune these parameters based on the observed data, leading to more accurate
state estimates [3] [5].

Chapter 2 provides a more detailed discussion of the pairs trading strategy. The pair selection
process will be briefly explained using the distance method and a pair will be selected from existing
literature, as the process of pair selection it outside the scope of this thesis. The chapter then continues
with a formalization of the trading strategy itself, using standard techniques such as the Z-score.

In Chapter 3, the Kalman filter is introduced step by step, beginning with an explanation of state
space models and a simple illustrative example to build intuition. Once the foundational concepts
are clear, a mathematical derivation of the Kalman filter equations will be given. The final part of the
chapter demonstrates how the filter can be applied to historical data of the previously chosen asset
pair to identify trading opportunities.

Chapter 4 focuses on optimizing certain model parameters of the Kalman filter using the EM algo-
rithm. It starts by building intuition for how the EM algorithm works, followed by a compact mathematical
explanation of the method. The chapter concludes by applying the algorithm to the same historical fi-
nancial data, now using the optimized parameters to potentially improve trading performance.

Finally, Chapter 5 presents the key findings of the thesis and discusses other points for consideration
and future research.



2
Pairs Trading

The concept of pairs trading was developed at Morgan Stanley in 1985 by Gerry Bamberger and Nunzio
Tartaglia [1]. Bamberger and Tartaglia developed statistical methods to identify pairs of stocks that ex-
hibit correlated price movements of which the difference reverts to some long-term mean. Even though
the method was not yet formalized, it was widely used in practice. The strategy gained formalization
and prominence through the pioneering work of Gatev et al [6]. They introduced a statistical framework
for pair selection using a distance-based approach; stocks are coupled into pairs by matching them
based on a minimum-distance principle in terms of their normalized historical prices. This is one of the
most used and simple methods of pair selection. These pairs are then used in the pairs trading strategy,
where one shorts (sells) the overpriced assets and goes long (buys) on the under priced asset.

This chapter describes the methods of pair selection used in this thesis and provides the theoretical
foundation for the trading strategies. In Section 2.1 the distance method for pair selection will be
explained. In Section 2.2 the trading strategies used in this thesis are to be elaborated on in detail.

2.1. Pair selection
As mentioned in the introduction of this thesis, the first step of making a selection of asset pairs highly
influences the effectiveness of the strategy. By using historical data, traders can develop a better
understanding of securities within the option pool before making a selection. While the pair selection
process is an important part of the overall strategy, it lies outside the scope of this thesis as the primary
focus of this work lies on the second step of the pairs trading strategy. For the purposes of this study,
the selection of pairs has been based on results from existing literature. These pairs have been found
by using the distance method. Even though the process of pair selection is not performed in this thesis,
the distance method used in the literature the pairs have been selected from will be explained.

2.1.1. Distance Method
The distance method, introduced by Gatev et al. [6], selects pairs based on the distance between the
cumulative returns of two assets as measured over a certain period of time. More concretely, pairs that
exhibit a smaller distance during this period are assumed to be more likely to revert back to the mean
of the spread.

The distance is described as the total sum of squared differences between the standardized price
series of the two assets, see (2.1). The residual series is obtained by taking the difference between
their normalized prices [11].

D =

n∑
i=1

(ρxi − ρyi)
2. (2.1)

where ρxi and ρyi are normalized asset prices based on their mean and standard deviations. The
normalized asset price is given by

ρxi =
ρxt − E[ρxt]

σi
(2.2)

4



2.2. Trading Strategy 5

where ρxt is the price of asset x at time t, E[ρxt] is the mean or expected value of ρxt and σi is the
volatility or standard deviation of asset x. Pairs with the smallest distances are selected for trading,
under the assumption that assets with similar historical standardized behavior are more likely to exhibit
a stable, mean-reverting spread.

2.1.2. Pair Selection Based on Existing Literature
In order to maintain the focus of the thesis on the application of Kalman filtering on pairs trading, the
selection of trading pairs is based on empirical results from existing literature. More specifically, this the-
sis adopts the results of the paper Pairs Trading in Cryptocurrency Market: A Long-Short Story by Nair
(2021) [11], which explores the profitability of pairs trading in the cryptocurrency market using multiple
statistical techniques, including the distance method. The study considers four major cryptocurrencies:
Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), and Neocoin (NEO), which together represent a combi-
nation of high-cap (large total market value) and low-cap (smaller total market value) assets and offer
diversity in price behavior, liquidity, and volatility. The choice of these coins ensures a mix of estab-
lished and emerging assets and aims to study whether price co-movements and arbitrage opportunities
persist across different market capitalizations.

In the paper, the author evaluates all six unique pairs formed from these four cryptocurrencies
over four non-overlapping six-month periods between January 2018 and December 2019. For each
subperiod (A-D), the normalized prices of the assets are used to compute the distance as in (2.1)
between the pairs.

The following table summarizes the distance values for all six pairs across the first sample period
(Panel A: January 1, 2018 – June 30, 2018), as reported in the paper:

Table 2.1: Distance Between Cryptocurrency Pairs (Panel A)

Cryptocurrency Pair Distance
BTC – ETH 102.073
BTC – LTC 252.973
BTC – NEO 155.134
ETH – LTC 157.088
ETH – NEO 37.782
LTC – NEO 100.458

As the table indicates, the Ethereum – Neocoin (ETH–NEO) pair has the lowest distance in this
period, suggesting it is the most suitable pair for a trading strategy based on price convergence. Similar
patterns were observed in other periods as well. Other pairs such as BTC–NEO and BTC–ETH also
show favorable distance profiles in other subperiods considered in the study. Based on these findings,
the pair ETH–NEO is selected in this thesis to serve as inputs for testing the Kalman filter-based trading
strategy to be implemented in Section 3.3.

2.2. Trading Strategy
After selecting suitable pairs for trading in Section 2.1, recall that the second step of pairs trading
consists of generating trading signals based on the spread dynamics of these pairs with respect to its
long-term equilibrium. In this thesis, the trading framework as proposed by Gatev et al. (2006) [6] is
implemented.

The strategy is based on the mean-reversion assumption of the spread; it assumes that there exists
a long-term equilibrium to which the spread, over time, will return to. Trading signals are generated
when the spread diverges two standard deviations from the equilibrium; more specifically, a long po-
sition will be triggered when the spread exceeds the lower threshold (-2 std) and a short position will
be triggered when the spread exceeds the upper threshold (+2 std). Positions will be closed when the
spread returns back to its equilibrium. Whenever a position remains open and the spread remains to
exceed the threshold, no new position will be opened until the open position has been closed.

To standardize signal generation across different pairs and time periods, the Z-score of the spread
is used. This allows for fixed thresholds of +2 and −2 to be used consistently. The Z-score of the
spread St at time t is defined as
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Zt =
St − µS

σS
(2.3)

where µS and σS represent the historical mean and standard deviation of the spread, respectively.
Trading signals are thus formally defined as:

Long Signal : Zt < −2

Short Signal : Zt > 2

Close Long/Short : Zt = 0

To better adapt the pairs trading strategy to changing market conditions, a rolling-window approach
using 6-month periods is used. The full timeline is automatically segmented into consecutive half-year
intervals. For each 6-month period, the mean and standard deviation of the spread are computed
independently. These values are used to calculate Z-scores for that specific period:

zt =
St − µperiod

σperiod

This rolling recalibration ensures that trading signals are based on more localized statistics, making the
strategy more responsive to structural changes in the spread’s charateristics.

While this Z-score-based framework is followed in this thesis, it is worth noting that the paper from
which the selected trading pairs are taken implements a slightly different version of the pairs trading
strategy. In that paper, the author adopts a daily trading strategy where the position is opened at the
beginning of the trading day and closed at the end of the same day. Rather than using fixed statistical
thresholds, the strategy relies on identifying the relatively undervalued and overvalued asset within the
selected pair, based on the hedge ratio obtained through regression during a prior formation period.
Despite these differences, the underlying principle remains the same: exploiting temporary deviations
from a stable long-term relationship between asset prices. For the purpose of this thesis, however, the
Z-score threshold-based strategy of Gatev et al. (2006) [6] is preferred for its simplicity, interpretability,
and widespread use in literature.



3
Fundamentals of the Kalman Filter for

Linear Systems

An important assumption of pairs trading is that the spread between the two asset prices follows a
mean-reverting process. However, the spread observed in financial markets is typically affected by
various sources of noise, making it a noisy rendition of the true underlying process.

The goal is to estimate this true mean-reverting spread from the noisy observations. To achieve
this, the Kalman filter can be used. It is a widely used mathematical algorithm to estimate states of
a dynamic system from indirect and uncertain measurements. The notion of the filter is to recursively
estimate the state of a system at each time step and predict future states of the system based on noisy
measurements. This makes the filter useful for a wide range of applications such as navigation and
signal processing, where uncertainty in measurements can play a large role.

In the context of pairs trading, the Kalman filter can be used to filter out market noise and obtain a
smoother, more reliable estimate of the spread, which can improve the timing and accuracy of trading
signals.

In this chapter, we aim to introduce the fundamental notions of Kalman filtering. To explain the
use-fullness of the Kalman filter, a basic understanding of state space models is needed. Therefore,
in Section 3.1 an introduction will be given about state space models, including an example. After
introducing the conceptual framework of Kalman filtering, the mathematical derivation will be discussed
in Section 3.2.2. Lastly, the filter will be applied to financial data in Section 3.3.

3.1. State space models
Before introducing the concepts of Kalman filtering, it is necessary to define state-space models, as
they provide the mathematical framework on which the filter operates. State space models are math-
ematical models that describe how an unobserved state evolves over time and how it relates to noisy
observations. More often than not, one can only partially observe the state of a system and the param-
eters of the system can adapt over time. The Kalman filter is specifically designed to optimally estimate
the state of such systems.

Definition 1. [State-space model] Let xt ∈ Rn be the unobservable state vector and let yt ∈ Rn be
the observable measurements. The following difference equations govern the dynamics between the
state vector and the measurement vector:

State Equation:
xt = Ftxt−1 + wt, wt ∼ N (0, Qt) (3.1)

where:

• Ft ∈ Rn×n is the state transition matrix,
• wt ∈ Rn is the process noise, assumed to be Gaussian with zero mean and covariance Qt ∈
Rn×n.

7



3.1. State space models 8

Observation equation:
yt = Htxt + vt, vt ∼ N (0, Rt) (3.2)

where:

• Ht ∈ Rp×n is the observation matrix,
• vt ∈ Rp is the measurement noise, assumed to be Gaussian with zero mean and covariance
Rt ∈ Rp×p.

The state equation (3.1) outlines the system’s hidden state that cannot be observed, and the obser-
vation equation (3.2) describes how the underlying state relates to the observable data. The system
consisting of (3.1) and (3.2) becomes stochastic by incorporating the process noise wt and measure-
ment noise vt. We assume vt and wt are white and mutually independent:

wt ∼ N (0, Qt), vt ∼ N (0, Rt),

with {wt} and {vt} and independent over t.
To fully specify the model, an initial state x0 is required. Suppose that there is an initial state x0 ∼

N (m0, P0) where m0 is the mean value of the multivariate normal distribution of the initial state and
P0 the variance-covariance matrix of the multivariate normal distribution of the initial state . The goal
is to further estimate the subsequent states of the system x1, x2, . . . . At the same time, data points yt
are observed which shall be used to further estimate xt. This particular scenario, where one aims to
estimate states in real time for dynamic scenarios occurs often in (financial) engineering. In the next
section an example will be given that will show the use of state space equations in an engineering
setting.

3.1.1. Example: A simple spacecraft
To further deepen the understanding of state space models a short example will be presented [10]. At
the end of the example a problem arises which will introduce the need for using Kalman filtering.

In applications related to spacecraft guidance and navigation, the objective is to determine a space-
craft’s position and velocity as it travels through space, keeping Newton’s laws of motion in mind. De-
pending on the determined position and velocity of the spacecraft, decisions about subsequent actions
must be made. In such scenarios, the aim is to to make use of all available information to generate the
most accurate estimates possible.

Consider a spacecraft that is heading towards the moon, launched into a carefully planned path by
the thrust of its engines. As it travels through space, its position relative to Earth must be continuously
estimated. To achieve this, periodic observations of surrounding stars are used to update and refine
the spacecraft’s location.

Let xt be the radial distance of the spacecraft from Earth. For any acceleration, it holds by Newton’s
law that if the spacecraft’s position at time t− 1 is pt−1 and it’s velocity is vt−1, then it’s position at t is:

pt = pt−1 + vt−1∆t+ wt (3.3)

Here ∆t is the time elapsed between time points and wt represents the noise where wt ∼ N(0, τ2).
The equation represents the idea that ’a body in motion stays in motion’. Using vector and matrix
notation we can rewrite (3.3) as: [

pt
vt

]
=

[
1 ∆t
0 1

] [
pt−1

vt−1

]
+

[
w1t

w2t

]
(3.4)

So, if there is no acceleration the velocity from time t − 1 to time t will clearly not change. Define
the following variables:

xt =

[
pt
vt

]
F =

[
pt−1

vt−1

]
wt =

[
w1t

w2t

]
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Then the state equation will simply be:

xt = Fxt−1 + wt (3.5)

This is of the form as in (3.1). So far, any observed data has not been incorporated. Without any
measurements from the system, all trust lies solely on the state equation to describe how the system
evolves. Therefore, if the initial state x0 is known, the best prediction for the future states is determined
by the following model alone:

x̂1 = Fx̂0, x̂2 = Fx̂1, . . .

It is important to note that these future states are better described as predictions rather than es-
timates, as no observational data has yet been incorporated. They are projections of the system’s
behavior based solely on its internal dynamics.

Naturally, the question that follows is what happens if there is data yt available that is observed at
time t? And what is the impact of the amount of measurements on the estimation of our state at time
at future time steps?

Assume that at discrete intervals, onboard instruments provide measurements of the system’s state.
Thus, at time t an observation of the current position yt is given by:

yt = pt + vt (3.6)

where vt N(0, σ2). Thus, yt is a noisy representation of the true position of the spacecraft. As
before, rewrite (3.6) in matrix vector form as:

yt =
[
1 0

]
xt + vt (3.7)

By defining H =
[
1 0

]
(3.7) can be simply rewritten in the standard observation equation format

as in (3.2):
yt = Hxt + vt (3.8)

Here one can wonder what the result on xt is by observing yt, the focus will revolve around three
key types of inference by using observations:

1. Prediction: Forecasting subsequent values of the state
2. Updating: Estimating the current values of the state from past and current observations

The Kalman filter can be used to carry out the different types of inference described above.

3.2. The Kalman filter
The Kalman filter is a mathematical algorithm that was first developed by Rudolf Kalman in the late
1950s [8]. The Kalman filter was originally designed for the guidance and navigation of spacecrafts (an
example of which we have seen in the previous section), but its applications have since expanded to
many other fields such as economics, control systems, and signal processing due to it’s adeptness in
extracting useful information from noisy data. It supports estimations of past, present and even future
states when the underlying nature of the modeled system is unknown. The filter is able to propagate
state estimations through time with minimal variance.

In this section, the mathematical foundations of the Kalman filter will be explained.

3.2.1. Methods of derivation
To derive the Kalman filter, we first consider a fundamental problem in estimation theory: given an
observed noisy signal, how can we best estimate the underlying true state? Consider a state space
model as defined in Definition 1. The key challenge is that we do not observe xt directly, but rather only
its noisy measurement yt. Our goal is to find an estimator x̂t that best approximates xt, which will be
obtained by minimising the mean squared error.

Eventually in Subsection 3.2.2 the filter is constructed as a mean squared error minimiser and some
Bayesian techniques will be used. In this section an introduction of theMSEwill be given. In addition, an
alternative derivations of the filter is briefly provided showing how the filter relates to Bayesian methods.

Consider a cost function which if often used in optimization problems. A cost function quantifies
the error or loss associated with a particular choice of parameters or estimates. The goal is typically
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to minimize this function to achieve the best possible estimate. In the context of the Kalman filter, we
define a cost function to measure the discrepancy between the estimated state x̂t and the true state xt.
One way to measure the accuracy of our estimate is through the error:

et = xt − x̂t. (3.9)

A cost function should ideally satisfy the following properties:

• It should be positive, ensuring that larger errors result in higher penalties.
• It should increase as the error magnitude grows, reinforcing the idea that larger deviations are
worse.

A common choice for the cost function is the squared error as it is positive and monotonically increasing:

f(et) = ||et||2. (3.10)

Since we deal with multiple measurements over time, we take the expectation of the squared error,
leading to the definition of the mean squared error (MSE):

Φ(t) = E[e2t ]. (3.11)

Minimizing this function provides the optimal estimate of xt in the least-squares sense if all the noise
is Gaussian. From this minimization process, the Kalman equations can be derived.

Apart from minimizing the mean squared error, the Kalman filter can also be derived using Bayesian
inference. These will be discussed briefly and some Bayesian techniques will be used in deriving the
filter equations in Subsection 3.2.2.

The Kalman filter can be derived as the optimal Bayesian estimator under linear-Gaussian assump-
tions by updating the estimated state xt based on new observations y1:t. Using Bayes’ theorem:

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1), (3.12)

the term p(xt|y1:t−1) represents the predicted state distribution based on the system dynamics, while
p(yt|xt) describes how likely the observation is given the state. Under Gaussian assumptions, this
results in a normal distribution update, leading to the Kalman filter equations. Under Gaussian as-
sumptions, both distributions are normal, and their product (via Bayes’ rule) results in another normal
distribution. This Bayesian update naturally leads to the Kalman filter equations, where the prediction
step computes p(xt|y1:t−1) and the update step computes p(xt|y1:t).

This approach reinforces that the Kalman filter is optimal under linear-Gaussian assumptions, pro-
viding the minimum mean square error estimator that coincides with the Bayesian posterior mean.

3.2.2. Kalman Filter Derivation
Define the state equation of a system as in Definition (1):

xt = Ftxt−1 + wt (3.13)
yt = Htxt + vt (3.14)

Recall that the random variables wt and vt are assumed to be Gaussian, i.e. wt ∼ N (0, Qt) and
vt ∼ N (0, Rt) . Furthermore, we assume that wt and vt are independent of each other. This provides
us with the following property which is needed in deriving the filtering equations:

Lemma 1. If the random variables wt and vt are independent of each other, then E[wtvt] = E[wt]E[vt]

The goal of the Kalman filter is to estimate the state xt given the measurements yt. As mentioned
in the Section 3.1.1, the Kalman filter consists of a prediction step and an update step. In the prediction
step, we predict the value of the state at the next time step. In the update step, we adjust our prediction
obtained in the prediction step using obtained measurements. We define these estimates of the state
xt as follows:
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Definition 2. Let x̂′

t denote the a priori state estimate at time step t, defined as the conditional expec-
tation of the state given all observations up to time t− 1:

x̂
′

t = E[xt | y1:t−1].

Similarly, let x̂t denote the a posteriori state estimate at time step t, defined as the conditional expecta-
tion of the state after incorporating the new observation yt:

x̂t = E[xt | y1:t].

To measure the accuracy of the estimates defined in Definition 2 , we need to keep track of the
error between predicted values and true values. This is done by using the same error function as (3.9)
applied to the a priori and posteriori estimates:

Definition 3. Define the a priori estimate error (3.15) and a posteriori estimate error (3.16) as

e′t = xt − x̂′
t (3.15)

et = xt − x̂t (3.16)

As discussed in Section 3.2.1 the Kalman filter minimizes the mean squared error (MSE) between
the true state and the estimated states. The MSE is given by the estimates error covariances that are
defined as below:

Definition 4. The a priori estimate error covariance and the a posteriori estimate covariance are given
by

P ′
t = E[e′te

T ′

t ] (3.17)
P−
t = E[ete

T
t ] (3.18)

, respectively.

We now derive the five equations which form the Kalman filter. To this end, suppose that we are at
time t ∈ {1, . . . , T}. This means that we know what our a priori and a posteriori hidden state estimates,
x̂′
t and x̂t are up to t. Furthermore, we have obtained measurements y1, . . . yt. With this knowledge,
the first Kalman filter equation can be obtained by taking the expectation of the state equation 3.27,
this results in the state extrapolation equation. Note that this is a Bayesian approach.

Definition 5. Suppose F, xt and x̂ are known. Then the state extrapolation equation is known as

x̂t+1 = Fx̂t (3.19)

Proof: Let Yt be all observations up to and including t, so Yt−1 = {y1, y2, . . . , yt−1}. Taking the
conditional expectation of the state equation given Yt:

x̂t+1 = E[Fxt + wt+1 | Yt]

= FE[xt | Yt] + E[wt+1 | Yt]

= Fx̂t + 0

= Fx̂t,

since E[wt+1 | Yt] = 0 and wt is independent of Yt−1. Thus, the state extrapolation equation is:
x̂t+1 = Fx̂t

The state extrapolation equation is used to predict the state at the next time step, assuming the
system is fully deterministic (i.e. the process noise wt is ignored). Apart from keeping track of the state
extrapolations, we aim to keep track of the uncertainty of these extrapolations as well. To do so, also
assume that up to time t, we know what both estimates for the error covariance matrices, P ′

t and Pt

are. We compute



3.2. The Kalman filter 12

P ′
t+1 = E

(
e−t+1e

−T
t+1

)
= E

(
(x−

t+1 − xt+1)(x
−
t+1 − xt+1)

T
)

= E
(
(Fx̂t − (Fxt + wt))(Fx̂t − (Fxt + wt))

T
)

Plugging in (3.15) and (3.19)
= E

(
(F (x̂t − xt)− wt)(F (x̂t − xt)− wt)

T
)

= E
(
(F (x̂t − xt)− wt)((x̂t − xt)

TFT − wT
t )

)
= E

(
F (x̂t − xt)(x̂t − xt)

TFT − F (x̂t − xt)w
T
t − wt(x̂t − xt)

TFT + wtw
T
t

)
= FE

(
(xt − x̂−

t )(xt − x̂−
t )

T
)
FT

− FE((xt − x̂−
t )w

T
t )− E(wt(xt − x̂−

t )
T )FT + E(wtw

T
t )

Since e′t and wt are independent, and E(wt) = 0,

= FPtF
T − 0n×n − 0n×n +Q

= FPtF
T +Q.

This prediction equation is known as the covariance extrapolation equation where P ′
t captures the

uncertainty in our prediction. It is the second equation of the Kalman filter.

Proposition 1. Suppose Pt is known. Then the Covariance extrapolation equation is given by

P ′
t+1 = FPtF

T +Q (3.20)

Proof: See derivation above.

Now that we have predicted our next state x̂′
t+1 and it’s covariance matrix P ′

t+1, we update the
subscripts such that we move forward in time in time t −→ t + 1, so x̂′

t+1 −→ xt and P ′
t+1 −→ Pt. Right

after this forward move, we collect our measurement yt about the true state xt.
The matrix P ′

t has the property that it is symmetric, since from linear algebra we have the fact that
a matrix ABAT is symmetric if B is symmetric (given that A and B are of fitting dimensions). Also Q is
symmetric, so the Covariance extrapolation equation (3.20) ensures that P ′

t is symmetric. Then, the
total variance of the a priori state estimate x′

t equals the trace of P ′
t , since the off-diagonal elements

denote covariances and are not of interest in the minimization problem. To recall, the definition of a
trace of a matrix is given below.

Definition 6. Let A ∈ Rn×n be a square matrix. The trace of A, denoted Tr(A), is defined as the sum
of its diagonal elements:

Tr(A) =

n∑
i=1

Aii.

As previously mentioned, the goal of the filter is to minimize the state’s estimator variance. Each
diagonal entry of P ′

t is the variance of the error in estimating a single component of the state. Using
the trace of P ′

t we can obtain the total mean squared error of the state prediction, i.e. the total variance
of the a priori state estimate x′

t.
If Tr(Pt)

′ is small, more faith is put into the predicted states. However, it could be the case that the
total variance of the measurement noise R is smaller than Tr(Pt)

′ This implies that the measurements
tend to be more accurate than our the a priori hidden state estimates. Hence, whenever updating our
prediction x̂t

′ we tend to move ’towards’ our measurement value if Tr(R) is smaller than Tr(Pt)
′ and

vice versa. To put the concept of putting ’trust’ in estimates versus the measurements into concrete
formulas, we propose the following definition:

Proposition 2. Let yt−Hx̂t be the innovation, which is the difference between the measurement value
and the prediction of our measurement value based on x̂t.

Note that if the a priori estimates are precise, the innovation should be small and vice versa. Con-
sider a linear combination of the a priori estimate and the innovation. This is the updated estimate of
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the hidden state. By assigning a weight to the innovation, one is able to quantify how much ’trust’ is
put into the estimate. The assigned weight is known as the Kalman gain Kt, which will be derived later
on in the third Kalman filter equation. For now, assume Kt is known. This enables us to describe the
fourth filter equation, the state update equation, in the following manner.

Proposition 3. Suppose x̂t,H, zt are known. Then, the state update equation is

x̂t = x̂′
t +Kt(yt −Hx̂′

t) (3.21)

where Kt is the Kalman gain.

This equation plays a large role in determining the last Kalman equation, the covariance update
equation. This equation is part of the correction step, where we refine the certainty of our state estimate
after incorporating the latest observation. First, rewrite the state update equation (3.21) using the
observation equation (3.28):

x̂t = x̂′
t +Kt(yt −Hx̂′

t)

= x̂′
t +Kt(Hxt + vt −Hx̂′

t),

which we substitute into the a posteriori error expression (3.16) by

et = x̂t − xt

= x̂′
t +Kt(Hxt + vt −Hx̂′

t)− xt

= (In −KtH)x̂′
t + (KtH − In)xt +Ktvt

= (In −KtH)(x̂′
t − xt) +Ktvt

= (In −KtH)e′t +Ktvt.

Now compute the a posteriori error covariance Pt, defined as:

Pt = E[ete⊤t ].

Substitute the expression for et:

Pt = E
[
((I −KtH)(xt − x̂′

t)−Ktvt) ((I −KtH)(xt − x̂′
t)−Ktvt)

⊤
]

= (I −KtH)E[(xt − x̂′
t)(xt − x̂′

t)
⊤](I −KtH)⊤ +KtE[vtv⊤t ]K⊤

t

− (I −KtH)E[(xt − x̂′
t)v

⊤
t ]K

⊤
t −KtE[vt(xt − x̂′

t)
⊤](I −KtH)⊤.

By assumption, the process noise xt− x̂′
t is independent of the measurement noise vt, so the cross

terms vanish:
E[(xt − x̂′

t)v
⊤
t ] = E[vt(xt − x̂′

t)
⊤] = 0.

Furthermore, recall:
P ′
t = E[(xt − x̂′

t)(xt − x̂′
t)

⊤], E[vtv⊤t ] = R.

So the updated covariance becomes:

Proposition 4. Suppose that P ′
t , H and R are known. Then, the covariance update equation is given

by
Pt = (In −KtH)P ′

t (In −KtH)T +KtRKT
t (3.22)

where Kt is the Kalman gain.

This is the general form of the covariance updatey. In practice, a simplified version is often used
which can be derived by plugging in the (upcoming) definition of the Kalman gain:

Pt = (I −KtH)P ′
t ,

Finally, we shall give the proper derivation of the Kalman gain Kt. Recall that it determines how
much we trust the new measurement versus our current prediction. A high gain means we trust the
measurement a lot; a low gain means we trust our prediction more. For example, consider the state
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update equation (3.21). For Kt = 0, we have that x̂t = x̂′
t which means that Kt = 0 corresponds to full

trust into our prediction.
We want the a posteriori estimate x̂t to be as accurate as possible. This means minimizing the total

variance of the error x̂t, which as we recall equals Tr(Pt). The objective is then to chooseKt such that
Tr(Pt) is minimized. We now derive the corresponding formula for Kt, using the covariance update
equation (3.22). Rewrite as follows:

Pt = (In −KtH)P ′
t (In −KtH)⊤ +KtRK⊤

t

= (In −KtH)P ′
t (In −H⊤K⊤

t ) +KtRK⊤
t

= (P ′
t −KtHP ′

t )(In −H⊤K⊤
t ) +KtRK⊤

t

= P ′
t − P ′

tH
⊤K⊤

t −KtHP ′
t +KtHP ′

tH
⊤K⊤

t +KtRK⊤
t

= P ′
t − P ′

tH
⊤K⊤

t −KtHP ′
t +Kt(HP ′

tH
⊤ +R)K⊤

t ,

The trace operator has a linearity and cyclic property which we can use in the following way:

Tr(Pt) = Tr
(
P ′
t − P ′

tH
⊤K⊤

t −KtHP ′
t +Kt(HP ′

tH
⊤ +R)K⊤

t

)
= Tr(P ′

t )− Tr(P ′
tH

⊤K⊤
t )− Tr(KtHP ′

t ) + Tr
(
Kt(HP ′

tH
⊤ +R)K⊤

t

)
= Tr(P ′

t )− 2Tr(KtHP ′
t ) + Tr

(
Kt(HP ′

tH
⊤ +R)K⊤

t

)
,

We minimize this expression with respect to Kt. For that, we differentiate Tr(Pt) w.r.t. Kt and set the
derivative to zero. This is a matrix calculus problem. Using matrix derivative rules, we find:

∂

∂Kt
Tr(Pt) = −2P ′

tH
⊤ + 2Kt(HP ′

tH
⊤ +R).

Now, for our minimization problem set the gradient to zero:

−2P ′
tH

⊤ + 2Kt(HP ′
tH

⊤ +R) = 0 (3.23)
Kt(HP ′

tH
⊤ +R) = P ′

tH
⊤. (3.24)

And finally solve for Kt by using the fact that HP ′
tH

⊤ +R > 0 is invertible, we obtain the Kalman gain.
Proposition 5. Assume P ′

t ,H,R are known. Then the Kalman gain is given by

Kt = P ′
tH

⊤(HP ′
tH

⊤ +R)−1. (3.25)

This is the optimal Kalman gain that minimizes the trace of the posterior covariance Pt, i.e., mini-
mizes the total mean-squared estimation error.

3.2.3. Summary
Now that we have derived the equations which form the Kalman filter, let us consider a brief summary.
The Kalman filter algorithm can be summarized as follows:

1. Start with initial estimates x̂′
0 and P ′

0.
2. Compute the Kalman gain Kt using the prior error covariance matrix P ′

k and the measurement
noise covariance R.

3. Update the state estimate x̂t using the measurement yt.
4. Update the error covariance matrix Pt.
5. Project the state and error covariance matrix to the next time step.
6. Repeat the process for each new measurement.

The Kalman filter propagates the state estimate by the following five equations.

State extrapolation equation (3.19) x̂′
t = Ftx̂t−1

Covariance extrapolation equation (3.20) P ′
t = FtPt−1F

⊤
t +Qt

Kalman gain (3.25) Kt = P ′
tH

⊤
t (HtP

′
tH

⊤
t +Rt)

−1

State update equation (3.21) x̂t = x̂′
t +Kt(yt −Htx̂

′
t)

Covariance update equation (3.22) Pt = (I −KtHt)P
′
t (I −KtHt)

⊤ +KtRtK
⊤
t

Table 3.1: The five equations which form the Kalman filter
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3.3. The Kalman Filter applied to financial data
This section presents the empirical results obtained from implementing the Kalman filter-based pairs
trading strategy on the ETH-USD and NEO-USD cryptocurrency pair over the period from January 2018
to December 2019, as discussed in Section 2.2. The analysis is structured to evaluate both the filtering
performance and the trading strategy effectiveness on the raw and filtered spread.

3.3.1. Mean-reverting process
The theoretical foundation for applying the Kalman filter to pairs trading assumes that the spread be-
tween two asset prices follows a mean-reverting process, capturing the idea that deviations from a
long-run equilibrium tend to decay over time. In [5] a standard way to model mean-reverting behavior
is done using the Ornstein–Uhlenbeck (OU) process, which is a stochastic process that captures both
the tendency to revert to a mean and the presence of random fluctuations. The spread is modeled as
follows:

xt = µ+ ρ(xt−1 − µ) + ηt, |ρ| < 1, (3.26)

where xt denotes the latent spread at time t, µ is the long-term mean, ρ is the mean reversion
coefficient, and ηt is white noise with zero mean and variance σ2

η.
To ensure linearity in the state-space formulation, we define the state as the deviation from the

mean: x̃t = xt − µ. The deviation follows:

x̃t = ρx̃t−1 + ηt, |ρ| < 1

In this setting, we assume that the observed spread yt is a noisy measurement of the true spread:

yt = x̃t + µ+ εt

where εt is measurement noise, assumed to be Gaussian and independent of ηt, with variance
σ2
ε . This way, the spread is mainly driven by the mean-reverting process and slightly by the effect of a
Gaussian noise term. Due to this noise term, we end up with the familiar state space model.

x̃t = Ftx̃t−1 + wt (3.27)
yt = Htx̃t + µ+ vt (3.28)

Here:

• x̃t is the latent state (deviation from mean) at time t;
• yt is the observed spread;
• Ft = ρ is the state transition coefficient;
• Ht = 1 is the observation matrix;
• wt = ηt is the process noise;
• vt = εt is the observation noise;
• µ appears as a known constant in the observation equation.

3.3.2. Kalman Filter Performance Analysis
We begin the empirical analysis by examining the historical price development of the selected cryp-
tocurrency pair, Ethereum (ETH) and NEO, over the sample period from January 2018 until December
2019. Figure 3.1 displays the adjusted daily closing prices of both assets showing the high volatility
characteristic of cryptocurrency markets during this period.
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Figure 3.1: Adjusted daily closing prices of ETH and NEO

The Kalman filter can be applied to estimate the latent spread from the observed historical data. In
practice, Python libraries such as PyKalman provide a convenient interface for implementing the filter.
When initializing the Kalman filter, the library requires values for several parameters, including the state
transition coefficient Ft, the observation matrixHt, and the covariances of the process and observation
noises wt and vt.

By default, PyKalman uses generic starting values for these parameters. It assumes Ft = 1, Ht = 1,
and assigns initial variances of 1 to the noise terms. While these defaults allow the filter to operate,
they do not reflect the theoretical properties of a mean-reverting spread. In our model, the spread
is assumed to follow a mean-reverting proces, where the latent deviation from the long-term mean
x̃t = xt − µ evolves as

x̃t = ρx̃t−1 + ηt, |ρ| < 1.

Consequently, the state transition coefficient should be set to ρ rather than 1, capturing the tendency of
the spread to revert toward its long-term mean. Similarly, the variances of the process and observation
noise, σ2

η and σ2
ε , should reflect the characteristics of the spread and the measurement noise.

When first implementing the Kalman filter on historical spread data the default parameters provided
by PyKalman will be used for practicality, only the long-term mean µ of the spread is determined from
historical averages. These defaults allow the filter to run without requiring extensive preliminary analysis
of the data. While this approach does not guarantee optimal parameter values, it provides a simple
and functional baseline implementation for the Kalman filter.

Figure 3.2 demonstrates the comparison between the original spread and the Kalman filtered ver-
sion. The filtered spread shows significantly reduced volatility while preserving the main price move-
ment patterns.



3.3. The Kalman Filter applied to financial data 17

Figure 3.2: Kalman filter applied to the spread between ETH and NEO

3.3.3. Trading Strategy Performance
The filtered spread was subjected to the same Z-score-based trading strategy described in Section
2.2, using ±2 standard deviations as entry thresholds and a rolling 6-month window for parameter
recalibration. To compare the effect of using Kalman filtering on the spread, the trading strategy will be
applied to both the unfiltered spread and the filtered spread.

In Figure 3.3 the trading strategy is applied to the unfiltered spread. It illustrates the trade entry and
exit points overlaid on the filtered spread, showing the timing and magnitude of each trading opportunity
identified by the algorithm.

It can be seen that 4 completed trades were performed during the sample period achieving the
following performance metrics:

• Total profits and losses: $ 725.73
• All trades were profitable
• Average profits and losses $ 181.43 per trade
• Individual trade results: $396.17, $234.83, $6.9, $87.83

Figure 3.3: Trade entry and exit points over time, overlaid on the unfiltered spread.



3.3. The Kalman Filter applied to financial data 18

In Figure 3.4 it can be seen that 3 completed trades were performed during the sample period
achieving the following performance metrics:

• Total profits and losses: $ 523.95
• All trades were profitable
• Average profits and losses $ 174.65 per trade
• Individual trade results: $427.62, $5.34, $90.99

Figure 3.4: Trade entry and exit points over time, overlaid on the filtered spread.

Interestingly, the highest profits are obtained when trading on the original spread, while trading on
the Kalman-filtered spread produced lower profits.

This result can be explained by the interaction between noise, smoothing, and trading signals. The
Kalman filter with default parameters appears to over-smooth the data, removing not only noise but
also legitimate price movements that could generate profitable trading signals. While this produces
more statistically reliable estimates and reduces false signals [7, 5], it also eliminates some short-term
movements that may have been profitable in the historical data. As a result, fewer trades are triggered
or trades occur with smaller deviations, leading to lower realized profits.

The underperformance of the default Kalman filter suggests that the assumed noise structure does
not match the actual characteristics of the spread data. The equal weighting of process and observation
noise (Q = R = 1) may not reflect the true volatility patterns in cryptocurrency markets, leading to
inappropriate smoothing behavior.

Furthermore, the assumption of a random walk (F = 1) rather than mean reversion may fundamen-
tally misrepresent the spread dynamics, causing the filter to track long-term trends rather than identify
mean-reverting opportunities.

To address this, the Expectation-Maximization (EM) algorithm can be employed. The EM algorithm
iteratively updates the initial parameters to maximize the likelihood of the observed data under the
Kalman filter model. By using EM, we can obtain parameter estimates that more faithfully reflect the
true dynamics of the spread, improving the filter’s performance and the reliability of trading signals.



4
Expectation Maximization

In the Chapter 3, we introduced the Kalman filter as a recursive method for estimating the hidden state
of a linear dynamical system from noisy observations. While the Kalman filter is powerful, its perfor-
mance heavily relies on the specification of certain model parameters. Most notably, the covariance
matrices of the process noise and measurement noise. In practice, however, these covariances are
often unknown and difficult to estimate manually. Moreover, the state transition matrix and observa-
tion matrix may not be fixed or known a priori, especially in real-world applications like pairs trading
where the system dynamics can evolve over time. To overcome these limitations, one can apply the
Expectation-Maximization (EM) algorithm, an iterative method for maximum likelihood estimation in
models with hidden variables. By alternating between estimating the hidden states (given current pa-
rameter estimates) and updating the parameters (based on these estimated states), the EM algorithm
can estimate the parameters of a state-space model from data, without requiring prior knowledge of
the noise structure.

In Section 4.1 an intuitive explanation of the EM algorithm will be given. Then, in Section 4.2
we move on to a short mathematical derivation of the algorithm, with a focus on its application to
linear Gaussian state-space models like the Kalman filter. Finally, we revisit the financial setting of the
previous chapter and demonstrate how incorporating EM-based parameter estimation into the Kalman
filter framework can improve performance when applied to real pairs trading data in Section 4.3.

4.1. Intuition Behind the EM Algorithm
The EM algorithm provides a systematic approach to maximum likelihood estimation in models contain-
ing latent variables. In the context of Kalman filtering, the algorithm addresses a fundamental limitation:
the requirement to specify system parameters that are often unknown in practice.

Consider the challenge faced in Section 3.3, where default parameter values were used for the
Kalman filter implementation. The process noise covariance Q and observation noise covariance R
were arbitrarily set to 1, while the state transition matrix F was assumed to equal 1 (random walk).
These choices, while allowing the filter to operate, do not necessarily reflect the true underlying dynam-
ics of the financial data.

The EM algorithm resolves this issue by treating the model parameters θ = F,H,Q,R as unknown
quantities to be estimated from the observed data. The latent state sequence {x1, x2, ..., xt} plays the
role of missing data, creating an incomplete data problem where direct maximum likelihood estimation
becomes intractable.

The algorithm operates through two alternating steps:

• E-Step (Expectation): Given current parameter estimates θt, compute the expected value of the
complete-data log-likelihood with respect to the posterior distribution of the latent states. This
step effectively ”fills in” the missing state information using the current parameter estimates and
all available observations

• M-Step (Maximization): Maximize the expected log-likelihood computed in the E-step to obtain
updated parameter estimates θt+1.

19
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This process is repeated until convergence, and each iteration is guaranteed to increase the likelihood
(or leave it unchanged).

In the context of the Kalman filter, the hidden state sequence plays the role of the latent variables,
and the EM algorithm helps estimate the unknown parameters of the state-space model, such as the
state transition matrix F , the observation matrixH, and the noise covariance matricesQ andR. Instead
of fixing these matrices in advance, the EM algorithm allows us to learn them directly from observed
data by leveraging the structure of the Kalman smoother in the E-step and closed-form updates in the
M-step. This makes EM an essential tool for improving the robustness of the Kalman filter in practical
financial applications like pairs trading, where the system dynamics are not static and parameters must
be inferred from historical price data.

4.2. Mathematical Derivation of the EM Algorithm
While a complete mathematical derivation is beyond the scope of this thesis, the essential concepts
needed to understand its application to Kalman filtering are provided. For a comprehensive treatment
of the EM algorithm’s theoretical foundations, see Dempster et al. [2] and McLachlan and Krishnan [9].

Let Y be the observed data, X be the latent (unobserved) variables, and θ be the parameters of
the model. The goal is to maximize the log-likelihood of the observed data:

log p(Y | θ)

However, this is often difficult to compute directly because it involves integrating over the latent variables
X:

log p(Y | θ) = log
∫

p(Y,X | θ) dX

TheEMalgorithm circumvents this difficulty by iterativelymaximizing a lower bound on the log-likelihood.
In the E-step, we compute the expected value of the complete-data log-likelihood, conditioned on

the observed data X and the current estimate of the parameters θ(t). This expectation is denoted by:

Q(θ | θ(t)) = EX|Y,θ(t) [log p(Y,X | θ)]

Here, Q(θ | θ(t)) is a function of θ, and θ(t) is the current estimate of the parameters at iteration t.
In the M-step, we maximize the function Q(θ | θ(t)) with respect to θ to obtain a new estimate of the

parameters:
θ(t+1) = argmaxθQ(θ|θ(t))

This new estimate θ(t+1) is used in the next iteration of the E-step.
The EM algorithm guarantees that the log-likelihood of the observed data log p(X | θ) increases

(or remains constant) with each iteration. This is because the E-step constructs a lower bound on the
log-likelihood, and the M-step maximizes this lower bound. The algorithm converges when the change
in the log-likelihood between iterations becomes negligible.

4.2.1. EM Algorithm for the Kalman Filter
The EM algorithm can be used to estimate the parameters of the Kalman filter, such as the process
noise covariance Q and the measurement noise covariance R. The states xt are treated as latent
variables, and the observed data are the measurements yt.

In the E-step, we compute the expected value of the complete-data log-likelihood, which depends
on the latent states xt. This involves computing the following quantities:

• The state estimates x̂t and their covariances Pt.
• The cross-covariance between consecutive states Pt,t−1.

These quantities are computed using the current estimates of the parameters Q(t) and R(t).
In the M-step, we update the parameters Q and R by maximizing the expected complete-data log-

likelihood. The updates are given by:

Q(t+1) =
1

N

N∑
k=1

(x̂k − Fx̂k−1) (x̂k − Fx̂k−1)
T
+ FPk−1F

T − Pk,k−1F
T − FPT

k,k−1
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R(t+1) =
1

N

N∑
k=1

(yk −Hx̂k) (yk −Hx̂k)
T
+HPkH

T

Here, N is the number of time steps, F is the state transition matrix, and H is the measurement matrix.
The convergence of the log-likelihood is important for several reasons:

• Optimality: When the log-likelihood converges, it indicates that the algorithm has found a (local)
maximum of the likelihood function. This ensures that the estimated parameters are optimal given
the observed data.

• Stopping Criterion: The convergence of the log-likelihood provides a natural stopping criterion
for the EM algorithm. Once the change in the log-likelihood between iterations falls below a
predefined threshold, the algorithm can be terminated.

• Model Evaluation: The value of the log-likelihood at convergence can be used to compare dif-
ferent models or parameterizations. A higher log-likelihood indicates a better fit to the data.

The EM algorithm is a powerful tool for parameter estimation in the Kalman filter. It iteratively im-
proves the estimates of the parametersQ andR by alternating between the E-step (computing expected
values) and the M-step (maximizing the expected log-likelihood). The convergence of the log-likelihood
ensures that the algorithm has found an optimal set of parameters, making it a reliable method for pa-
rameter estimation in systems with latent variables.

4.3. The EM algorithm applied to financial data
In Section 3.3, we applied a Kalman filter with the default parameters provided by pykalman, which
essentially assumes a random walk for the state variable.

To further improve the estimation of the spread’s long-term equilibrium (and therefore trading sig-
nals), a Kalman filter combined with the Expectation-Maximization (EM) algorithm is applied. The algo-
rithm converged after several iterations, yielding the following optimized parameter estimates:

• F = 1 (transition matrix)
• H = 1 (observation matrix)
• Q = 467.28 (process noise covariance)
• R = 66.11 (observation noise covariance)

The convergence of F to exactly 1 is mathematically significant, as it indicates that the spread does
not seem to follow the mean-reverting dynamics typically assumed in pairs trading models. This result
was consistent across multiple initializations of the EM algorithm.

The substantial increase in the estimated noise parameters compared to the default values (Q =
1, R = 1) reflects the high volatility present in cryptocurrency markets. The ratio Q/R≈7.07 indicates
that the process noise dominates the observation noise, meaning that most of the uncertainty in the
system stems from the underlying dynamics rather than measurement errors.

Figure 4.1 compares the original spread with the EM-optimized Kalman filtered version.The filtered
spread exhibits reduced short-term volatility while preserving the major price movements, demonstrat-
ing effectiveness in noise reduction.
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Figure 4.1: ETH-NEO Spread: Original vs Kalman-EM Filtered

When applied to the same rolling 6-month trading strategy used previously, the EM-optimized
Kalman filter generated improved performance metrics:

• Total profits and losses: $750.83
• All trades were profitable
• Average profits and losses $187.71 per trade

Figure 4.2 illustrates the trading signals generated by the EM-optimized filter overlaid on the filtered
spread. The improved parameter estimates resulted in more responsive signal generation, producing
an additional profitable trade while maintaining the perfect win rate.

Figure 4.2: Trade entry and exit points over time, overlaid on the Kalman-EM filtered spread.

Table 4.1 provides a comprehensive comparison between the default and EM-optimized approaches.
The EM optimization achieved a 43.3% improvement in total profits.

The superior performance of the EM-optimized filter can be explained to its more accurate modeling
of the noise characteristics in the data. By estimating Q and R from the data rather than using arbitrary
default values, the filter achieved a better balance between smoothing noise and preserving genuine
price movements.
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Metric Default Kalman (No EM) EM-Optimized Kalman
Number of trades 3 4
Total P&L ($) 523.95 750.83
Average P&L per trade ($) 174.65 187.71
Win rate (%) 100 100
Transition matrix F 1 1
Process noise Q 1 467.2
Observation noise R 1 66.11

Table 4.1: Comparison of trading performance using Kalman filter with default parameters versus EM-optimized parameters.

This allowed the trading algorithm to identify profitable opportunities that were obscured by the
over-smoothing effect of the poorly calibrated default parameters. However, it should be noted that the
absence of mean reversion (F = 1) raises questions about the theoretical foundation of the observed
profits. The trading strategy’s success may reflect the filter’s superior noise reduction capabilities rather
than exploitation of mean-reverting dynamics.
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Discussion and conclusion

This thesis investigated the use of Kalman filtering techniques in the context of statistical arbitrage,
with a focus on pairs trading. Building on the framework of Gatev et al. [6] and using a suitable pair for
trading from Saji, T G [11], the trading strategy was implemented on the raw spread and on the filtered
spread using a Kalman filter with default parameters. The study was further extended by applying the
Expectation-Maximization (EM) algorithm to estimate the latent parameters of the Kalman filter.

First, the default Kalman filter performed worse than trading on raw spreads, generating $523.95
compared to $725.73 in profits. This demonstrates that poorly specified filtering parameters can actually
harm performance by over-smoothing potentially profitable signals. However, when parameters were
optimized using the EM algorithm, the Kalman filter achieved the best performance with $750.83 in
total profits and higher average returns per trade.

A particularly surprising finding was that the state transition coefficient F consistently converged
to 1, indicating that the spread behaved as a random walk rather than exhibiting the mean-reverting
properties assumed in pairs trading theory. This challenges the fundamental assumption that the asset
spread will revert to their historical mean, suggesting that shocks to the spread are permanent rather
than temporary, violating the stationarity assumption underlying the pairs trading model. The high
volatility observed in the cryptocurrency market during this period may have contributed to this non-
stationary behavior, as the estimated noise parameters (Q = 467.28, R = 66.11) were substantially
high.

The superior performance of the EM-optimized filter, despite the absence of mean reversion, indi-
cates that the Kalman filter’s value lies primarily in noise reduction rather than capturing mean-reverting
dynamics. The dramatically higher estimated noise parameters (Q = 467.28, R = 66.11) compared to
defaults highlight the importance of proper parameter calibration in noisy financial markets.

From a practical perspective, this study demonstrates that parameter optimization is crucial when
implementing filtering-based trading strategies. The 43% improvement in returns achieved through EM
optimization represents a substantial enhancement that could significantly impact real trading perfor-
mance. However, the absence of mean reversion raises questions about the sustainability of such
strategies and emphasizes the need for careful model validation.

The study has several limitations that should be acknowledged. The analysis focused on a single
cryptocurrency pair over a limited time period, which may not generalize to other assets or market
conditions. Additionally, the backtesting did not account for realistic trading costs, bid-ask spreads, or
market impact, which could reduce actual returns. The perfect win rate achieved across all strategies
suggests the analysis may not fully capture real-world trading challenges.

For further research, other methods for parameter optimization for Kalman filtering could be con-
sidered. In the literature, a common approach is to fit an autoregressive model of order one (AR(1))
to the historical spread. An AR(1) process assumes that the current value of a time series depends
linearly on its immediately preceding value, plus a random noise term. This makes it a simple tool to
capture mean-reverting behavior in financial time series. Fitting such a model provides estimates for
the state transition coefficient and the process noise variance. For example, Elliott et al. [5] and Gatev
et al. [6] demonstrate that fitting a simple autoregressive model allows for more accurate initialization
of the mean-reversion coefficient ρ and the process noise variance σ2

η.
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Moreover, regarding the trading strategy could be expanded by testing multiple asset pairs across
different markets and time periods, incorporating realistic trading constraints, and exploring alternative
filtering techniques or signal generation methods. Additionally, investigating methods to explicitly en-
force mean reversion in state-space models or examining the relationship between market conditions
and filtering effectiveness could provide valuable insights.

In conclusion, this study demonstrates that Kalman filtering can be a valuable tool for pairs trading
when parameters are properly estimated through techniques like the EM algorithm. While the observed
spread did not exhibit the mean-reverting behavior typically assumed in pairs trading literature, the fil-
tering approach still provided improved performance through effective noise reduction. The findings
suggest that careful parameter estimation is essential for implementing filtering-based trading strate-
gies, and highlight the importance of validating model assumptions against empirical data. This work
provides a practical example of how state-space models can be applied to financial time series, con-
tributing to the broader understanding of filtering techniques in quantitative finance applications.
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