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ABSTRACT

Threats posed by drones urge defence sectors worldwide to develop drone detection systems. Visible-light and
infrared cameras complement other sensors in detecting and identifying drones. Application of Convolutional
Neural Networks (CNNs), such as the You Only Look Once (YOLO) algorithm, are known to help detect drones
in video footage captured by the cameras quickly, and to robustly differentiate drones from other flying objects
such as birds, thus avoiding false positives. However, using still video frames for training the CNN may lead
to low drone-background contrast when it is flying in front of clutter, and omission of useful temporal data
such as the flight trajectory. This deteriorates the drone detection performance, especially when the distance
to the target increases. This work proposes to pre-process the video frames using a Bio-Inspired Vision (BIV)
model of insects, and to concatenate the pre-processed video frame with the still frame as input for the CNN.
The BIV model uses information from preceding frames to enhance the moving target-to-background contrast
and embody the target’s recent trajectory in the input frames. An open benchmark dataset containing infrared
videos of small drones (< 25 kg) and other flying objects is used to train and test the proposed methodology.
Results show that, at a high sensor-to-target distance, the YOLO algorithms trained on BIV-processed frames
and concatenation of the BIV-processed frames with still frames increase the Average Precision (AP) to 0.92
and 0.88, respectively, compared to 0.83 when it is trained on still frames alone.
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1. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs), also known as drones, has grown rapidly in recent years. Drones
offer new possibilities for industrial, research, recreational, and other sectors. However, they can also pose
threats. Drones are appealing for ill-intent uses due to their relatively low costs and ability to covertly carry
harmful objects into target areas.1 Besides, trespassing and disruptions of critical infrastructures can also
(un)intentionally be made.2,3

Security and defence sectors worldwide have been searching for means to prevent harmful scenarios caused
by drones. One of the first steps is to develop and implement drone detection systems for early warnings. Such
detection systems comprise of sensors such as radars,4,5 Radio Frequency (RF) sensors,6,7 acoustic sensors,8,9

and optical sensors.10 Each sensor has its advantages and limitations. For instance, drones that neither transmit
nor receive radio signals, cannot be detected by RF sensors,11 but could still be detected by other sensors such as
acoustic sensors, optical sensors, and radars. Therefore, to maximize true detections and minimize false positives,
it is desirable to have a detection system in which multiple types of sensors work collaboratively.12

Optical sensors can detect drones and can also verify detections made by other sensors. Furthermore, they
can help identify types of the drones13,14 and (harmful) objects they may carry. Optical detection is usually
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done by Convolutional Neural Networks (CNNs),15 a specialized computer model inspired by the human brain,
trained to perform a task of detecting specific objects from input images, based on their extracted visual features.
The use of the CNNs helps to identify the exact object types, and thus avoiding false alarms. In other words,
implementing the CNN helps to only detect drones and disregard other irrelevant objects, such as birds.

However, there are several downsides to using the CNNs, and optical sensors in general, for detecting drones.
First, increasing the sensor-to-target distance, i.e. smaller apparent target size, can lead to poorer detection
performance.16 Zooming in to gain more resolution for an object far away results in a reduced field of view.
Second, cluttered visual backgrounds17 or noisy video frames can lead to missed detections, or false positives,16

i.e. detecting irrelevant objects as threats. Third, most CNNs for object detection operate in a frame-by-frame
manner by default. The use of still frames disregards temporal information which could also be useful for
detection. In other words, drones could have a recognizable flight trajectory18 which discerns them from other
flying objects such as airplanes.

Attempting to overcome the aforementioned limitations, this paper proposes to add an enhancement to the
input frame of a CNN for the optical detection of drones. The enhancement model considered here is the Bio-
Inspired Vision (BIV) model19 mimicking photoreceptor cells of insects. The model contains a series of adaptive
temporal low-pass filters and other pixel-wise operations to enhance the moving target and suppress the still
background, as well as suppressing temporal noise, embodying information from the previous frames. Many
researchers have shown successful applications of the BIV processing to enhance the visibility of small targets
in video frames,20,21 yet the effects of combining the BIV processing with the CNN for object detection are
still not examined. This paper therefore investigates the effects of concatenating the BIV-enhanced frames with
still frames as input a CNN for drone detection applications. Variations of the detection performance with the
sensor-to-target distance are investigated. Moreover, the performance of the CNN trained by BIV enhanced
frames is also compared to those trained on still frames and frames trained on the more basic Frame Differencing
(FD) technique.

This paper is structured as follows: Section 2 contains the literature review of algorithms, hardware, and
benchmark datasets for the optical detection of drones. Section 3 explains the proposed methodology including
the BIV processing in further detail. Qualitative and quantitative performance of the BIV processing and the
CNN trained on BIV enhanced frames, compared to those of the still frames and FD, are presented in Section
4. Finally, Section 5 concludes this paper and provides recommendations for future steps.

2. RELATED WORK

2.1 Algorithms for Optical Detection of Drones

There are two main groups of algorithms for the optical detection of drones, and small flying objects in general:
traditional computer vision and deep learning.15

Traditional computer vision algorithms apply a variety of filtering and segmentation techniques to incoming
video frames. The main goal is to discern the target from the background. After that, detection is done when
the processed pixel value in certain parts of the frame exceeds a detection threshold.22–24 The techniques applied
found in literature are, for instance, black-hat filtering,25 top-hat filtering,26 and morphological filtration such
as erosion and dilation.23,27 Some authors also apply corner detection18 or edge detection to find the horizon
line and limit the search area for flying targets above the horizon.26 The techniques mentioned so far operate
in a frame-by-frame manner, relying on spatial features of the frames. On the other hand, some processing
techniques utilize temporal information to discern the target and the background, i.e. employing information
from the preceding frames and assuming that the target moves relative to the background.28 These techniques
are, for instance, frame differencing23 and optical flow.18,22 Clearly, utilizing the temporal features can be
beneficial unless the object of interest, e.g. the drone, hovers. Many authors argued and proved that combining
spatial and temporal information25,29 can be beneficial for small flying target detection because one could benefit
from the fact that drones, such as quadcopters, have a recognizable manner of movement,18 i.e. trajectory, in
comparison to other flying objects such as birds or airplanes. Many of these traditional temporal algorithms are
sensitive to parameter settings. In contrast, some recent studies have introduced adaptive algorithms inspired
by neuroscience that incorporate spatio-temporal feedback to process the incoming video frames.28 One of
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such techniques is inspired photoreceptors of insects30 which enhance the small moving target and suppress the
background in an adaptive manner, based on the current environment. The main advantage of the traditional
computer vision algorithms is that they do not require training.23 Most of the traditional computer vision
techniques mentioned are generally fast and can be deployed for real-time applications. However, they do not
exploit the specific appearance of the object and may have limitations in recognizing different types of flying
objects.

On the other hand, deep learning methods, specifically Convolutional Neural Networks (CNNs), reach the
highest performance for recognizing targets of interest based on their appearance. For optical detection of drones,
CNNs can help discern drones from other flying objects,16,31 and theoretically can differentiate drone types if
trained properly.13,14 CNNs need to learn from labeled training data in order to perform detection of certain
objects. There are two sub-groups of deep learning algorithms: two-stage and one-stage.15

Two-stage CNNs31,32 such as Region-CNN (RCNN) process multiple patches in the input image in order to
propose a region of interest, where the target of interest may be present. Next, object detection is carried out.
RCNNs and their variants are regarded as more accurate, but the two-stage architecture requires longer training
and processing time.33 Therefore, RCNNs may not be suitable for real-time detection.

For this purpose, one-stage CNNs, where the entire input image is processed, are more suitable. Popular
one-stage CNN techniques applied in literature for optical detection of drones are the You Only Look Once
(YOLO) algorithm and its variants14,16,24,34 and the Single-Shot Detector (SSD).33,35 Park et al.33 compared
multiple CNN algorithms for drone detection. The authors concluded that, for drone detection applications, the
YOLOv2 algorithm gives the best compromise between the detection accuracy and the processing time.

By default, the CNNs process the video frame-by-frame. However, in this way, useful temporal information
such as the trajectory is not used or the aforementioned temporal computer vision techniques that help to
enhance target-to-background contrast are skipped. This could lead to not exploiting the full potential of the
CNNs. Besides, the detection performance of the CNN techniques such as YOLO, which rely heavily on the
target appearance, is commonly known to drop when the distance to the target increases.23 To help enhance
performance of the CNNs some authors suggest pre-processing the input frames for the CNN using computer
vision techniques.24,27 Some also suggest that incorporating spatio-temporal features, such as incorporating the
aforementioned bio-inspired vision model could help boost the detection performance.30

2.2 Hardware and Datasets

Optical cameras, operating in the visible-light spectrum, are the most frequently used hardware for the optical
detection of drones in literature.14,18,24,25,27,29,31–33,36 The optical camera types and datasets vary depending
on the application. In literature, applications for the optical detection of drones are roughly divided into two
groups. The first application is for security and surveillance, which is the focus of this paper. In this case, the
ground-based cameras are either static14,18,25,27,31,36 or mounted on a movable pan-and-tilt platform.33,37 An
example benchmark dataset for this application is the ‘Drone-vs-Bird’ detection challenge,38 containing real-
world videos of drones and birds to account for the challenge of discerning birds from drones. The second
application for optical detection of drones is for collision avoidance. For this purpose, the optical camera is
mounted on a drone to film other flying targets.29,32 There are extensive datasets for this application such as
the ‘NPS-Drones’,39 ‘FL-Drones’,40 and ‘AOT-Drones’ datasets.41

Optical cameras are known to have several limitations. Detection becomes challenging when the target
is in front of a cluttered visual background.17 Furthermore, optical cameras are heavily affected by lighting
conditions;42 too bright surroundings lead to overexposure, and the target becomes invisible in the dark.

These limitations motivated some authors to opt for alternative types of cameras. Infrared cameras,23,26,43

for instance, visualize the temperature of objects in the scenes and help to detect an object regardless of visual
clutters and lighting conditions. For drone detection, this is helpful because some parts of the drone such as
the engine or battery are warmer than the surroundings.44 Some authors also demonstrated that the detection
performance of drones using infrared cameras can surpass that of optical cameras.16,43 Another type of camera
is the event-based camera which monitors changes in pixel intensity with a high temporal resolution and output
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‘events’ when the pixel intensity change exceeds a certain threshold. An event-based camera has also shown
promising results in detecting small drones as demonstrated by Shu et al.22

Research as well as benchmarking datasets involving the alternative types of cameras are still lacking. To the
best of our knowledge, the only open benchmark dataset dedicated to drone detection in security and surveillance
applications containing both visual and infrared videos of drones is that of Svanström et al.,22 which has been
made available in 2021.

3. METHODOLOGY

3.1 The Proposed Method

We propose preprocessing the incoming video frames using a Bio-Inspired Vision (BIV) model19 for drone de-
tection with the YOLOv245 algorithm. Instead of using still frames in the YOLOv2 algorithm, the frames
preprocessed by the BIV model are expected to help preserve temporal information and adjust the contrast of
the moving target to the still background. A schematic of the processing techniques considered is shown in Fig.
1.

Detection output frame

MobileNet

v2
YOLOv2

Feature extraction 

network

Object detection 

subnetwork

CNN for object detection

(See Section 3.1.2)

= Baseline = BIV 

= FD = Concatenated

BIV

FD

Concatenated 

input

FBIV,t

FD

BIV-enhanced 

frame

FFD,t

Input frame

Fin,t

Fin,t-1

(See Section 3.1.1)

DRONE

DRONE

Figure 1: Schematic of the processing techniques considered.

Next to this, we propose concatenating the BIV-enhanced frame with the still frame as inputs for the YOLOv2
model. This case is called the ‘Concatenated’ case. As references, we also use still frames, BIV-processed frames,
and frames processed by the Frame Differencing (FD) technique as separate inputs for the YOLOv2 detection.
These cases are further denoted as the ‘Baseline’, ‘BIV’, and ‘FD’ cases, respectively. The BIV framework and
the object detection framework using YOLOv2 are further explained in the following subsections.

3.1.1 The Bio-Inspired Vision (BIV) Model

The BIV model considered in this paper is based on a model of insect photoreceptor cells introduced by van
Hateren.19 A diagram of the BIV model is shown in Fig. 2. This four-stage model processes the incoming frames
in a pixel-wise manner. It contains multiple adaptive Low-Pass Filters (LPFs) to suppress temporal noise, gain
control, and other operations to enhance the contrast between the moving target and the background. Previous
works show performance enhancement for small object detection using infrared videos when the BIV model is
applied.20,21 Furthermore, promising results have also been obtained when applying the BIV model to enhance
optical flow estimation,46 and spectrograms30 for acoustic detection of drones. Each stage of the considered BIV
model is explained in further detail in the following.

The first stage of the model helps to suppress high-frequency temporal noise and enhance the target to
background contrast. Let Iin,t denote a generic incoming pixel value from an input frame Ft at time t. A generic
diagram of the temporal LPF function fLPF for any generic input It is shown in the lower-right corner of Fig. 2
and is expressed as follows:
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Figure 2: BIV model inspired by insect photoreceptor cells (Adapted from Fang et al.30 and Uzair et al.20,21).

yt = fLPF(It, τ, yt−1) =
1

1 + τ
It +

(
1− 1

1 + τ

)
yt−1, (1)

where yt−1 is an input from the previous timestep t− 1, τ is a generic time constant, and yt is a generic output.

For timestep t in stage 1, the introduced fLPF is first applied to calculate the adaptation level αt, αt =
fLPF(Iin,t, τa, αt−1), where τa is a user-defined adaptation level time constant. Next, an adaptive time constant
τt is calculated by a Naka-Rushton (NR) transform47 as follows:

τt =
fr

2π[(τmax − τmin)
(

αt

αt−Imid

)
+ τmin]

, (2)

where fr is the frame rate, Imid, τmax, and τmin are the user-defined mid-range pixel value, maximum and
minimum adaptation rates, respectively. The obtained τt is then used in an LPF of Iin,t yielding y1,t =
fLPF(Iin,t, τt, y1,t−1) as shown in the diagram.

Finally, an adaptive gain g1,t is applied to enhance the low pixel value, i.e. the target. The value of g1,t is
calculated based on Imid and αt (denoted by the ‘Gain mapping’ block in Fig. 2),

g1,t = (gmax − 1)
(
1− αt

αt + Imid

)
+ 1, (3)

where gmax is the user-defined maximum gain. This gives the output of stage 1 o1,t:

o1,t = g1,ty1,t. (4)

Next, stages 2 and 3 contain divisive feedback loops which provide short- and long-term adaptations of the
input, respectively. The main differentiation of stage 3 to stage 2 is the exponential scaling and the relatively
longer user-defined time constant τ3. The expected output is the preservation of the moving object edges while
suppressing still or slower objects in the frame.21 Mathematically, stages 2 and 3 operate as follows:

o2,t =
o1,t
y2,t

, where y2,t = fLPF(o2,t−1, τ2, y2,t−1), (5)
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and

o3,t =
o2,t

exp(y3,t)
, where y3,t = fLPF(o3,t−1, τ3, y3,t−1). (6)

Finally, stage 4 applies a NR non-linearity to control the output range using a user-defined positive offset c.
Low input values are scaled almost linearly while high input values are relatively more compressed. The output
pixel value at time t, Iout,t, is given by

Iout,t =
o3,t

o3,t + c
. (7)

The generic output pixels Iout,t compose the BIV-enhanced frame at timestep t, FBIV,t. Qualitative compar-
isons of Ft and FBIV,t are discussed in Section 4.1.1.

In this work, the user-defined parameters for the BIV model are selected by initially following the work of
Uzair et al.20 where the BIV model was also applied to infrared-camera videos. Some values are experimentally
adjusted to suit the video dataset considered in our paper. The parameters and their set values are summarized
in Table 1.

Table 1: User-defined parameters for the BIV model.

Symbols Definitions Set values

τa Adaptation level time constant 10
fr Frame rate 30
τmax Maximum adaptation rate 15
τmin Minimum adaptation rate 3
Imid Mid-range pixel value 20
gmax Maximum gain 50
τ2 Time constant for stage 2 10
τ3 Time constant for stage 3 100
c Positive offset 0.75

3.1.2 The MobileNet-v2 and YOLOv2 Object Detection Network

In this work, we generated an object detection network by combining two CNNs: MobileNet-v248 and YOLOv2.45

The MobileNet-v2 was pruned and used as a feature extraction backbone and YOLOv2 was used for object
detection. The motivation for such an architecture was twofold. First, such an architecture is lightweight and can
be deployed in field applications using mobile devices.49,50 Recent comparative reviews agree that YOLOv2 gives
the best compromise between the processing time and the detection accuracy for real-time drone detection.33

Successful applications of MobileNet-v2 and YOLOv2 have been presented in literature.16,51 Secondly, such
architecture has been employed in the benchmark dataset of Svanström et al.37 The present implementation can
be verified by comparing the results.

For the feature extraction backbone, we use the first 12 convolutional layers of the MobileNet-v2 network.
After this stage, the input image with the size of 256 × 256 becomes 16 × 16, corresponding to the number of
grid cells in the subsequent YOLOv2 object detection subnetwork. The extracted features are then fed into the
YOLOv2 object detection neck, comprising of 3 convolutional layers with anchor boxes. For each grid cell, the
bounding box locations, objectness score, and class confidence score based on a predefined number and locations
of anchor boxes are determined, composing an output tensor for object detection. In this paper, the number of
anchor boxes per grid cell is taken as 3, in agreement with Svanström et al.37 This selected number of anchor
boxes gives the best compromise between maximizing the mean Intersection over Union (IoU) of the anchor
boxes and the ground-truth bounding boxes, and minimizing the complexity of the YOLOv2 algorithms, i.e. the
dimension of the output tensor. The aspect ratios of the anchor boxes are chosen according to k-mean clustering
of the ground-truth bounding boxes in the training dataset.
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3.2 Training and Testing Using a Benchmark Dataset

3.2.1 The Benchmark Dataset

For training and testing the algorithms, we employ a multi-sensor dataset for drone detection of Svanström et
al.,37 which is an open-access online dataset containing, among others, videos of drones, airplanes, birds, and
helicopters filmed by visible-light and infrared cameras. In our work, we utilize the infrared camera videos. The
dataset contains 365 videos filmed by a FLIR Breach PTQ-136 infrared camera. Each video is approximately 10
seconds long and has a frame rate of 30 frames per second. Therefore, there are approximately 300 frames per
video. The pixel resolution of the videos is 320×256 and the field of view is 24◦×19◦ (horizontal×vertical).

Every video is accompanied by a ground-truth labeling file containing locations of the ground truth bounding
boxes and object classes, namely, ‘AIRPLANE’, ‘BIRD’, ‘DRONE’, and ‘HELICOPTER’, for every frame. It is
important to note that the ‘DRONE’ in this considered dataset concerns only three types of quadcopters. Thus,
other variations of drones such as fixed-wing drones are not considered. Each video contains only one of the
object classes, but some frames may contain multiple objects belonging to that class. Moreover, every video file
is categorized according to three different distance bins: ‘CLOSE’, ‘MEDIUM’, and ‘DISTANT’, depending on
the apparent size of the target object in pixels according to the Detection, Recognition, and Identification (DRI)
requirement specifications.52,53

3.2.2 Training and Testing the CNN

We trained the CNN to recognize 2 classes of flying objects. We considered ‘DRONE’ and Non-Drone Flying
Objects, or ‘NDFO’. To achieve the intended class division, we subdivided the benchmark video dataset as shown
in Table 2. We selected the number of videos for each distance bin such that the different object classes are
represented uniformly. For all the videos selected in one training and testing cycle, about 80% were used for
training and the remaining (and not overlapping) 20% were used for testing. Note that the ‘NDFO’ class does
not officially exist in the benchmark dataset. Therefore, we created the ‘NDFO’ class by combining the videos
from the ‘AIRPLANE’, ‘BIRD’, and ‘HELICOPTER’ classes equally. Due to an insufficient number of videos
and the irrelevance of the ‘CLOSE’ distance bin, we do not consider this distance bin for the ‘NDFO’ class.

Table 2: Number of videos from the original dataset per class and distance bins used for training and testing the CNNs
(‘C’=‘CLOSE’, ‘M’=‘MEDIUM’, and ‘D’=‘DISTANT’).

Training/
testing

Number of videos from the original dataset per class and distance bins
‘AIRPLANE’ ‘BIRD’ ‘DRONE’ ‘HELICOPTER’
‘C’ ‘M’ ‘D’ ‘C’ ‘M’ ‘D’ ‘C’ ‘M’ ‘D’ ‘C’ ‘M’ ‘D’

Training – 16 10 – 8 10 12 32 30 – 8 10
Testing – 4 2 – 2 2 3 8 6 – 2 2

The considered CNNs were created in MATLAB. After that, the created CNNs were trained and tested using
the videos mentioned earlier. The training parameter settings are specified in Table 3.

Table 3: Training parameter settings for the CNN.

Training parameters/ options Set values/ selected options

Optimization algorithm Stochastic Gradient Descent
for network learnable parameters with Momentum (SGDM)
Initial learn rate 0.001
Number of epochs 5
Validation ratio 0.1
Validation frequency Every 5000 iteration
Training data shuffling frequency Every epoch
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4. RESULTS AND DISCUSSION

The results are discussed in two parts. First, the visual impacts of the BIV processing and object detection
in a test video sequence are discussed qualitatively in Section 4.1. Next, quantitative evaluations of the object
detection performance metrics are presented in Section 4.2.

4.1 Qualitative Performance Evaluation

4.1.1 Visual Impacts of the BIV Processing

Figure 3 presents baseline (left column) and BIV-processed (right column) infrared video frames containing
various object classes from the benchmark dataset of Svanström et al.37 The object classes as inherently defined
in the dataset as well as the ground-truth bounding boxes are also shown.

In general, it can be seen that the BIV processing helps to enhance the target-to-background contrast by
suppressing the still background such as trees. This is beneficial in reducing the clutter in the scene. Moreover,
an irrelevant object that the detector could confuse with the relevant target, such as the cloud in Fig. 3a becomes
almost invisible in Fig. 3b. The BIV processing also shows the ability to suppress noise in the video. This can
be seen, for instance, from Fig. 3c which is inherently noisy. The airplane becomes more distinct after the
BIV-processing as shown in Fig. 3d. It is also noteworthy from Figs. 3c and 3d that the provided ground-truth
bounding box is too large and is not perfectly centered at the target. This could be due to the noisiness in
this video in combination with the semi-automated ground-truth labeling.37 The visual impacts of the BIV
processing are also seen in the bird and helicopter videos from Fig. 3e to Fig. 3h. Notably, the trajectory history
of these objects is also visible as light-colored trails in the BIV-processed frames in Figs. 3f and 3h.

4.1.2 Detection Timeline

Detection timelines in Fig. 4 help to qualitatively examine the object detection behavior of the considered
algorithms. In this figure, the detection timelines of the considered algorithms for a portion of the test videos are
shown, with a focus on the test videos containing drones. The detection timelines by the considered algorithms
are shown and color-coded in terms of the confusion matrix, namely True Positives (TPs), False Positives (FPs),
False Negatives (FNs), and True Negatives (TNs), for the object class ‘DRONE’. The ground-truth class and
distance bin of each video are also annotated above. Here, and where applicable in this paper, the detection
confidence score threshold is taken as 0.5, while the Intersection-over-Union (IoU) threshold which quantifies the
overlap of the ground-truth bounding boxes and the detection bounding boxes for the correct detection is taken
at 0.35. The latter is a rather relaxed criterion chosen based on observations that the ground-truth bounding
boxes in the dataset are sometimes too large.

Generally, the detection performance of most of the algorithms is satisfactory and comparable. There are
continuous stripes of TPs for the ground-truth class ‘DRONE’ and TNs for the ground-truth class ‘NDFO’.
However, there are some videos with particularly more concentrated FPs. The FPs may also occur even for
the ground-truth class ‘DRONE’. This occurs when a detection lies elsewhere in the frame, i.e. when the IoU
of the detection bounding box and the ground-truth bounding box is below the set IoU threshold. Notably,
the CNN trained on the FD frames has the highest number of FNs, i.e. missed detections, especially when the
sensor-to-target distance is large. This is likely because the FD algorithm relies on the visual difference between
two adjacent frames, and thus the target’s apparent motion. In some instances, such as when the drone hovers,
the FD frames are completely dark (see, for instance, Fig. 1) and it is almost impossible to detect any object.

Two detection snapshots from two test videos with a high concentration of FPs (indicated by ‘1’ and ‘2’
in Fig. 4) are examined further in Fig. 5. In this analysis, the CNNs trained on Baseline and BIV-processed
frames are considered in the left and right columns, respectively. The ground-truth bounding boxes are shown
and, when an object is detected, the detection bounding boxes and the detected object class annotation with
the confidence score are shown.

In snapshot 1, a bird appears as a small dot. Although the bird is correctly detected as ‘NDFO’, a tree is
detected as ‘DRONE’ by the CNN trained on Baseline frames as shown in Fig. 5a. The BIV processing helps to
keep the bird visible while suppressing the tree visibility in the frame as shown in Fig. 5b. The CNN trained on
BIV-processed frames suppresses this false positive. In snapshot 2, the helicopter and another irrelevant object
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(a) Baseline, ‘DRONE’. (b) BIV, ‘DRONE’.

(c) Baseline, ‘AIRPLANE’. (d) BIV, ‘AIRPLANE’.

(e) Baseline, ‘BIRD’. (f) BIV, ‘BIRD’.

(g) Baseline, ‘HELICOPTER’. (h) BIV, ‘HELICOPTER’.

Figure 3: Baseline (left column) and BIV-processed frames (right column) for various object classes annotated together
with the ground-truth bounding boxes.
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1

Ground-truth

class

2

Fold 1 DnD LSTM, IoU =0,35

Figure 4: Detection timelines of the considered algorithms for a sequence of test videos, with a zoom-in on a part containing
drones. The detection timelines are color-coded in terms of the confusion matrix for the object class ‘DRONE’. The ground-
truth class and distance bin of each video are also annotated (‘C’=‘CLOSE’, ‘M’=‘MEDIUM’, and ‘D’=‘DISTANT’).

are detected as ‘DRONE’ by the CNN trained on Baseline frames as shown in Fig. 5c, while the CNN trained
on BIV-processed frames detects this helicopter correctly as ‘NDFO’. Based on these observations, it is expected
that incorporating the BIV processing will help to suppress false positives and thereby improve the detection
precision by the CNN.

Fold 1, Bird 040 Frame 174 

(a) Baseline, snapshot 1.

Fold 1, Bird 040 Frame 174 

(b) BIV, snapshot 1.

Fold 1, Helicopter 024 Frame 104 

(c) Baseline, snapshot 2.

Fold 1, Helicopter 024 Frame 104 

(d) BIV, snapshot 2.

Figure 5: Detection snapshots by the Baseline and BIV CNN object detectors. The snapshot numbers correspond to that
indicated by ‘1’ and ‘2’ in Fig. 4. The ground-truth bounding boxes are shown and, when an object is detected, the
detection bounding boxes and the detected object class annotation with the confidence score are shown.
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4.2 Quantitative Performance Evaluation

Performance metrics based on the confusion matrix, namely the precision, recall, and False-Positive Rate (FPR),
are used to quantitatively evaluate and compare the performance of the considered algorithms. For an object
class k, the precision, recall, and FPR are defined as follows:

Precisionk =
n(TPk)

n(TPk) + n(FPk)
(8) Recallk =

n(TPk)

n(TPk) + n(FNk)
(9) FPRk =

n(FPk)

n(FPk) + n(TNk)
(10)

where n(. . . ) means ‘the number of . . . ’.

The precision and recall vary inversely with each other, depending on the detection threshold. Therefore, it
is more holistic to consider the precision and recall together using, for example, Precision-Recall (PR) curves or
F1 score (the geometric mean of the precision and recall).

Fold 1 DnD LSTM, IoU =0,35

(a) ‘CLOSE’.

Fold 1 DnD LSTM, IoU =0,35

(b) ‘MEDIUM’.

Fold 1 DnD LSTM, IoU =0,35

(c) ‘DISTANT’.

Fold 1 DnD LSTM, IoU =0,35

(d) ‘All’.

Figure 6: PR curves for the considered algorithms for the object class ‘DRONE’ subdivided according to the labeled
distance bins of the test data. The markers indicate the precision and recall values for the detection confidence score
threshold of 0.5.

The PR curves for the considered algorithms for the object class ‘DRONE’ subdivided according to the
labeled distance bins of the test data are shown in Fig. 6. Correspondingly, the so-called Receiver’s Operating
Characteristics (ROC) curves, showing the recall and the FPR for the considered algorithms are also shown in
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Fig. 7. For both of the figures, the markers indicate the values of the precision, recall, and FPR when the
detection confidence threshold is taken as 0.5.

Ideal performance is achieved when the precision and recall are both 1, i.e. the PR curve reaches the top
right corner at (1, 1), and when the ROC curve is far above the random detector (indicated by the dashed lines
in Fig. 7), i.e. close to (0, 1).

From the ‘CLOSE’ and ‘MEDIUM’ distance bins, the Baseline case, the BIV case, and the Concatenated case
have comparable performances. They all have excellent precision and recall as well as low FPRs. Distinctively,
the FD case has the lowest precision and recall as well as the least ideal performance according to the ROC
curves. This is already expected based on the observation made in the detection timeline in Fig. 4.

For the ‘DISTANT’ distance bin, the precision and recall of most of the considered cases drop as shown in
Fig. 6c. This is reasonable because the apparent object size, i.e. the number of pixels it occupies, is smaller when
it is at this distance. Therefore, it is more challenging to be recognized and detected. Interestingly, the BIV
and the Concatenated cases have higher precision than the Baseline case, especially if the detection confidence
score threshold is set above 0.5. This confirms the added value of concatenating the BIV-processed frame in
the object detection CNN in visually challenging cases, such as when the object of interest is far away, which is
crucial for providing early warnings. The PR curve in Fig. 6c also indicates that the BIV-processed frame may
help improve the recall if the detection confidence score threshold is set slightly under 0.5.

Fold 1 DnD LSTM, IoU =0,35

(a) ‘MEDIUM’.

Fold 1 DnD LSTM, IoU =0,35

(b) ‘DISTANT’.

Fold 1 DnD LSTM, IoU =0,35

(c) ‘All’.

Figure 7: ROC curves for the considered algorithms for the object class ‘DRONE’ subdivided according to the labeled
distance bins of the test data. The markers indicate the recall and the FPR values for the detection confidence score
threshold of 0.5.

Finally, the Average Precisions (APs) which quantify the area under the PR curves are summarized in Table
4 for the considered algorithms, distance bins, and object classes. The APs when all of the distance bins are
considered together are presented in the ‘All’ column and the mean APs (mAPs) for all of the object classes are
presented in the rightmost column.

Despite the excellent performance at closer distances, the Baseline algorithm APs worsen at large sensor-
to-target distances. Concatenation of the BIV-processed frames help to retain the relatively high AP. For the
‘DISTANT’ distance bin, the APs of the CNN trained on BIV-processed frames and BIV-processed frames
concatenated with baseline frames are 0.92 and 0.88, respectively, compared to 0.83 for the CNN trained on
baseline frames alone. In general, the highest APs are achieved by either the BIV case or the Concatenated
case. For all of the distance bins combined, the Concatenated case has the highest AP. Considering the added
value when the object of interest is at a distance, it is recommended to concatenate the BIV-processed frames
to detect drones using a CNN.
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Table 4: APs for the considered algorithms for the object classes ‘NDFO’ and ‘DRONE’ subdivided according to the
labeled distance bins, with the mean APs (mAPs), i.e. for all classes and distance bins in the rightmost column. The
values in bold indicate the highest AP of each distance bin.

Algorithms
AP class ‘NDFO’ AP class ‘DRONE’

mAP
CLOSE MEDIUM DISTANT All CLOSE MEDIUM DISTANT All

Baseline – 0.80 0.56 0.70 0.89 0.90 0.83 0.88 0.79
FD – 0.25 0.20 0.22 0.87 0.80 0.55 0.73 0.48
BIV – 0.64 0.48 0.57 0.89 0.91 0.92 0.91 0.74
Concatenated – 0.81 0.62 0.74 0.89 0.91 0.88 0.89 0.81

5. CONCLUSIONS AND FUTURE WORK

This work proposes to employ a Bio-Inspired Vision (BIV) model of small insects to pre-process video frames for
drone detection using a Convolutional Neural Network (CNN). The BIV model uses information from precedent
frames to enhance the drone-to-background contrast and embody the drone’s recent trajectory in the input
frames. The performance of a CNN trained on the concatenation of BIV-enhanced and still frames is compared
to that of CNNs trained on still frames and frame difference alone. Results show that, at close to medium
sensor-to-target distances, the CNN trained on the concatenation of the BIV-enhanced frames and still frames
has comparable performance to that trained on still frames only. The added benefit of concatenating the BIV-
enhanced frame becomes clear at high sensor-to-target distance which is critical for providing early warnings,
i.e. the apparent target size is small. In this case, the APs of the CNN trained on BIV-processed frames and
BIV-processed frames concatenated with baseline frames are 0.92 and 0.88, respectively, compared to 0.83 for
the CNN trained on baseline frames alone. On average, the AP of the proposed algorithm is higher than that of
the baseline one. It is therefore recommended to concatenate the BIV-processed frames to detect drones using
a CNN.

The next steps include an addition of Long Short-Term Memory (LSTM) to further exploit temporal data
and optimization of the BIV operating parameters. The additional steps will be done carefully to preserve a low
processing time. This is done to ensure the applicability of the proposed method in real-time applications.
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