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ABSTRACT 
The precise mechanism which activates squeal, especially flange squeal has not been fully explained. The complex non-
Hertzian contact and the broad-band high frequency feature bring great challenges to the modelling work of flange 
squeal. In this paper, an explicit integration finite element method is presented to simulate the dynamic curving 
behavior of the outer wheel, which is believed directly related to flange squeal generation. By fully considering the 
normal, tangential force and spin moment, the non-steady-state wheel-rail interaction from one-point to two-point 
contact is reproduced. The critical time step of the explicit integration scheme is determined by the Courant stability 
condition, which, together with the detailed modelling of the structural and continuum of the wheel/track system, 
effectively guarantees that the reproduced vibration frequency can reach up to 10 kHz with desired accuracy. The aim 
of the work is to contribute to the modelling and understanding of the generation mechanism of the flange squeal from 
the viewpoint of the wheel-rail interaction. 

      

1.  INTRODUCTION 
 
Squeal noise may occur when a railway vehicle 
negotiates tight curves. Since the leading wheelset fails 
to align itself tangentially to the rail, high lateral 
creepage happens at the contact between the tread of 
the inner wheel and the top surface of the low rail, and 
the flange of the outer wheel is in contact with the 
gauge corner of the high rail. During this process, two 
types of high frequency curve squeal effects, namely 
the tonal ‘wheel squeal’ and the more broad-band 
‘flange squeal’, although sharing some features, can be 
excited by the inner and the outer wheel-rail 
interactions, respectively.  
 
Systematical study on curve squeal noise started in the 
1970s, when Rudd described the wheel-rail frictional 
characteristic (the functional dependence between 
friction force and wheel-rail relative velocity) in terms 
of ‘negative damping’ (generalized as full ‘stick-slip’) 
and attribute it to the mechanism of wheel squeal [1]. 
Since then, various increasingly sophisticated 
theoretical models adopted parts of this mechanism and 
were developed from Rudd’s seminal model [2-7].  
 
Compared to wheel squeal, much less attention has 
been paid to the study of flange squeal [8-9], 
consciously or unconsciously. On one hand, the 
complex non-Hertzian contact, which combines wheel-
rail penetration, creepage and spin motion, and the 
broad-band high frequency feature (5 kHz-10 kHz [10]) 
bring great challenges to the modelling work. On the 
other hand, many researchers believe that the 
intermittent flange squeal plays a minor role because it 
has a lower level than wheel squeal and the flange 

contact may reduce the likelihood and level of wheel 
squeal of inner wheel to some extent [2]. Nevertheless, 
this believe is challenged by measurements performed 
in Australia, which shows that no benefit is gained by 
applying friction modifier to the low rail only, but the 
noise can be reduced significantly by lubricating the 
gauge corner region of high rail [11]. 
 
Due to the fact that the acting force between the wheel 
flange and the rail gauge corner, including normal load, 
creep force and  spin moment, can be resolved into 
vertical direction and lateral direction [8], the flange 
rubbing may simultaneously excite both radial and 
axial vibration modes of wheel. As noted by Thompson 
[12], the radial modes and one-nodal-circle axial 
modes of wheel have similar resonant frequencies, 
making them easily coupled with each other. The 
‘mode coupling dynamic instability’ or so-called 
‘sprag-slip’ mechanism is thus employed 
complementarily with ‘negative damping’ theories for 
flange squeal prediction [7,13,14]. To tackle the 
arbitrary contact in wheel squeal and flange squeal 
study, Kalker’s theory of rolling contact is widely 
adopted [3,4,7,13,15]. Although these improved 
approaches take both the tangential and normal 
dynamics into account, there are still field observations 
often failed to be explained by the existing theories 
[16], indicating that the precise mechanism which 
activates squeal, especially flange squeal has not been 
fully explained. 
 
2. SCOPE AND METHOD OF THIS PAPER 
 
It is believed a combined numerical treatment of both 
the vehicle dynamics and the friction-induced squeal is 



unreasonable because of the large difference in the 
time-scales and the frequency ranges [14]. The squeal 
study can thus be broken down into a quasi-static part 
imposed by vehicle dynamics and a dynamic part 
caused by unstable wheel vibration [13]. The previous 
contact models, rigorous or simplified, basically rely 
on the wheel/rail contact position and angle of attack 
pre-calculated by the quasi-steady-state curving 
behavior model as input parameters to predict the 
occurrence of squeal [3,4,7,13-15]. 
 
Strictly speaking, when two-point contact is involved, 
the wheel curving behavior may not be fully 
considered as being in quasi-steady state. Instead, it 
can be divided into three stages, and the corresponding 
contact forms are shown schematically in Fig. 1. Stages 
1 and 3, respectively represents the period before and 
after the change of wheel-rail contact, during which the 
wheel-rail interaction with either one-point or two-
point contact can be regarded as in a quasi-steady state; 
while in stage 2, as the wheel flange approaches and 
comes in touch with the gauge corner, a transition from 
one-point contact to two-point contact takes place. 
With the transfer of the normal load from rail top to 
gauge corner, the wheel is lifted gradually and a 
subsequent transition from two-point to one-point 
(stage 3, lower figure) contact may also happen. The 
wheel-rail interaction in this transition process is non-
steady. At the end of the transition, the relative position 
of the wheel and the rail stabilizes with either two-
point or one-point (only at gauge corner) contact, so 
that steady-state curving begins. 
 

 
 
Fig. 1.  Wheel-rail contact form in 3 stages of wheel curving behavior 
 
The squeal phenomenon is characterized as ‘enigmatic’ 
[16] or ‘erratic’ [14, 17], because of the large 
fluctuations observed in the occurrence of squeal, the 
noise levels and the squeal wheel modes in practice 
even for apparently identical conditions [18]. It is 
suggested that the non-steady-state irregular motion of 
wheel (in stage 2 of Fig. 1), determining the contact 
position and orientation of wheel at the entry of the 
quasi-steady-stage curving behavior (in stage 3 of Fig. 
1), can significantly affect the occurrence and degree 
of squeal [4].  
 
In this regard, this paper is concentrated on the wheel-
rail contact during the non-steady-state transition from 
one-point to two-point. The aim is to provide a better 

understanding and preparation for the next step 
modelling of flange squeal.  
 
The approach presented in this paper, namely an 
explicit integration finite element method, has been 
proven to be effective and accurate for solving the 
frictional rolling contact between wheel tread and rail 
head [19], which corresponds to the one-point contact 
in stage 1. The method can take into account the 
normal load, the creep force as well as the moment due 
to spin for arbitrary contact geometry. Compared with 
Kalker’s algorithms, the FE method drops the half-
space assumption; Moreover, the transient dynamic 
behavior, which is directly related to squeal generation 
[20], can be fully considered with the method; Further, 
material properties more complex than linear elasticity 
can be dealt with in future study to propose new 
materials for noise reduction. The integration is 
performed in the time domain with an explicit central 
difference scheme, owing to that: The regularization 
problem caused by the no-slip condition in the 
adhesion area of contact patch can be avoided and the 
computing efficiency is considerably improved when 
the high frequency vibration has to be considered [21]. 
 
3. MODELLING AND VALIDATION OF THE 
WHEEL MODES 
 
As shown in Fig. 2 (a),  a 3D finite element (FE) 
transient wheel-track interaction model is developed, in 
which a 10 m length of half-side track and a half wheel 
set with sprung mass of the car body and the bogie are 
considered. The wheel, the rail and the sleepers are 
modelled with 8-node solid elements. In order to 
achieve a high accuracy of the solution with a 
reasonable model size, non-uniform meshing scheme is 
used. The mesh size around the initial position of the 
wheel-rail contact and the 150 mm length of solution 
zone is 1 mm. The lumped mass of the car body and 
bogie are modelled as mass elements, connected to the 
wheelset by the primary suspension of the vehicle with 
parallel linear springs and viscous dampers. Since the 
substructure has little influence on the high-frequency 
dynamic behavior studied in this paper, each sleeper 
only contains 12 solid elements and the ballast is 
simplified as vertical spring and damper elements with 
the displacements constrained in lateral and 
longitudinal directions. The parameters involved in the 
track model are mainly taken from [22]. The wheel-rail 
contact is defined with real geometry including the 
contact between wheel flange and rail gauge corner, 
seen in Fig. 2 (b), enabling the creepage and the spin 
motion caused by the flange rubbing to be fully taken 
into account. The wheel geometry corresponds to a 
passenger car wheel of the Dutch railway network with 
the standard profile of S1002; The rail is modeled as 
the UIC54E1 with an inclination of 1:40. The constant 
friction coefficient is set to 0.6. 

 



  
(a)  Full FE model 

 

 
(b) Wheel-rail profile/interaction 

 

 
(c) Boundary condition 

 
Fig. 2.  Wheel-rail interaction model 

 
The non-steady-state wheel curving behavior is 
achieved in the model by applying the boundary 
condition to the wheel in the way shown in Fig. 2 (c). 
The lateral displacement is constrained at the inner side 
of wheel axle and the outer end of the axle is free. In 
the transient dynamic simulation, a dynamic relaxation 
is first employed to make the system reach an 
equilibrium state under gravity. The movements of the 
wheel in both rotation and forward translation are 
applied as the initial conditions. The wheel is 
subsequently driven by a proper rotational torque 
applied on the axle, consequently exerting a 
longitudinal creep force between wheel and rail, which 
satisfies that the traction coefficient is below the 
friction coefficient. The wheel is set to roll in the 
presence of friction from the initial position toward the 
solution zone with a speed of 80 km/h along the X 
direction, forming an angle of attack (AoA) with 
respect to the rail longitudinal direction. The effects of 
transient wheel rotation can thus be included inherently.  
 
In the initial stage of the simulation, the wheel-rail 
contact occurs only between rail top and wheel tread. 
The contact patch is determined with the normal nodal 
force: A node is in contact if the absolute value of the 
normal nodal force is non-zero. The yellow area shown 

in Fig. 3 (a) is the rail surface in the solution zone. The 
origin of the coordinate is at the center of rail bottom 
surface at the initial position of the wheel-rail contact. 
Note that the coordinate already includes the rail 
inclination in the track. A trail of blue patches on it 
represents the ‘footprints’ of the contact at a series of 
time steps under one-point contact situation. Due to the 
AoA, the wheel flange moves towards the gauge corner 
as the time step goes on and the 2nd contact patch starts 
to appear. The ‘footprints’ of the contact patches in the 
case of two-point contact are shown as two trails of red 
patches, respectively, on the rail top and the gauge 
corner. The coordinates of the wheel/rail nodes in and 
around the circled two contact patches (labelled as 
‘patch 1’ and ‘patch 2’ in Fig. 3 (a)) from a same time 
step are plotted in Fig. 3 (b). The contact angle within 
the range of ‘patch 2’ is roughly between 65° and 75°. 
 

 
(a)  Contact patches on the rail       

 

 
 (b) Coordinates of nodes in/around contact patches 

 
Fig. 3.  Contact patches in the solution zone 

 
In the transient dynamic simulation, the integration is 
performed in the time domain with an explicit central 
difference scheme. Very small time step (86 ns) is 
employed for the model to meet Courant stability 
condition [23]. This, together with the detailed 
modelling of the structural and continuum of the 
wheel/track system, effectively guarantees that high 
frequency dynamic effect up to 10 kHz is reproduced.  
 



Each tone frequency of squeal is expected to be related 
to a wheel mode [17, 24]. All the physical vibration 
modes of the wheel within the frequency range of 
squeal (10 kHz) is identified by the FE wheel model in 
Fig. 2 (a) but with the inner edge of the hub clamped, 
which can adequately represent the dynamics of the 
wheel under contact with the rail [14]. The wheel 
modal frequencies in 3 dimensions of axial, radial and 
circumferential are plotted in Fig. 4. A good agreement 
is observed by comparing the calculated results with 
the experimental modal frequency of the NS-intercity 
wheel up to 5 kHz from [12], which has the same or 
similar wheel type as the one modelled here. 

 
(a) Zero-nodal-circles                              (b) Radial 

 
(c) One-nodal-circles                          (d) Two-nodal-circles   

 
(e) Three-nodal-circles                      (f) Circumferential 

 
Fig. 4.  Validation of the wheel modes calculated by FE model 

 
4.  SOLUTION OF THE CONTACT MODEL 
 
The FE solutions of the one-point contact problem 
between rail top and wheel tread in both the normal 
and the longitudinal directions have been verified in 
[19] by comparing with Hertz and CONTACT 
solutions. The work presented in this paper extends the 
solution to two-point contact with application to the 
study of flange squeal. The emphasis is on the 
character of the distribution of adhesion-slip area, shear 
stress magnitude and direction in the contact patch, 
which are believed to be closely associated to the 
frictional instability of squealing wheel. 
 
4.1.  Transition from One-point to Two-point 
Contact 
 
Before flanging takes place, it is one point contact 
between the wheel and rail (stage 1 in Fig. 1). Fig. 5 
gives the calculated distribution of adhesion-slip area 
and the normal/shear stress along the longitudinal axis 

of a typical contact patch (with AoA = 20 mrad). 
Whether a node is in adhesion or not is determined by 
comparing the value Fnn × f - Fnt with a tolerance εT, 
where Fnn, Fnt and f refers to the nodal force in the 
direction normal to the local surface, in the tangential 
direction and friction coefficient respectively, and εT is 
set as a percentage of the largest tangential nodal force 
in the contact area as in [19]. The values in Fig. 5 (a) 
equal to Fnn × f - Fnt, and the unit of the legend on the 
right side is ‘newton’. The upper bound is assigned to 
the values greater than it (the red region) and its 
inverse is set as the lower bound to manifest the nodes 
out of the contact patch (the blue region). The 
predicted range of the adhesion area is indicated with 
the oval in Fig. 5 (a), which is located at the leading 
part of the contact patch. The distribution of adhesion-
slip area along longitudinal axis can also be obtained 
from the stress distribution graph in Fig. 5 (b). The 
normal and shear stresses, hereinafter plotted in the 
stress distribution graphs and referred as Fn and Ft in 
the legend, are extracted from the center line of contact 
patches along the longitudinal direction. The adhesion-
slip areas indicated in Fig. 5 (a) and (b) agree with each 
other and are proven reasonable by comparing them 
with the corresponding results in [19], qualifying the 
model for the following two-point contact study. 
 

 
(a) Adhesion-slip area distribution 

 

 
(b) Stress distribution along longitudinal axis 

 
Fig. 5.  One-point contact condition 

 
When the wheel proceeds along the rail with the given 
AoA, two-point contact occurs (stage 2 in Fig. 1).  Fig. 
6 shows the calculated adhesion-slip area distribution 
during the transition from one-point to two-point 
contact. The abscissa of the figures indicates that the 
contact patch shown in Fig.6 (a), (b) and (c) comes out 
successively. In Fig. 6 (a),  the 2nd contact patch 
(between wheel flange and rail gauge corner, shown in 
the lower graph) has just come into being and its size is 



small, compared to the ones in (b) and (c). The 1st 
contact patch (between wheel tread and rail top, shown 
in the upper graph) looks similar to that of one-point 
contact in Fig. 5. From (a) to (b) and to (c), with the 
progress of transition, the size of the adhesion area in 
patch 1, indicated with the ovals in the figures, 
decreases and it moves gradually from the leading part 
of contact patch to the center. This change of the 
contact patch can also be seen from the stress 
distribution shown in Fig. 7.  
 
The graphs in the lower row in Fig. 6 and Fig. 7 show 
that the majority of nodes in the patch 2 are in slip, 
namely Fnn × f = Fnt according to the Coulomb’s law 
employed in the model. A few nodes in adhesion, 
indicated with the ovals, appear on the upper edge of  

patch 2 and their amount gradually increases with the 
flange climbing. 
 
In the non-steady-state transition of wheel-rail 
interaction, the adhesion-slip area distribution of the 
contact patches are changing continuously in Fig. 6 and 
Fig. 7. In reality, the non-steady state may last for 
certain time and then tend to become steady to enter 
stage 3 when the inertial effect of the wheel curving 
motion is compensated. A more realistic boundary 
condition is required for the model in the next step to 
investigate at which moment the steady state will be 
achieved and how the contact may affect the 
subsequent frictional instability of wheel. 

 

 
(a)                                                                              (b)                                                                                  (c) 

Fig. 6.  Adhesion-slip area distribution of two-point contact condition (upper graphs: patch 1; bottom graphs: patch 2) 
 

 
(a)                                                                              (b)                                                                                  (c) 

Fig. 7.  Stress distribution along longitudinal axis of two-point contact condition (upper graphs: patch 1; bottom graphs: patch 2) 
 

4.2.  Shear Stress Direction 
 
The stress distributions along the longitudinal axis 
shown in Fig. 5 and Fig. 7 only indicate the magnitudes 
of the normal and shear stresses. In order to present the 
direction of the shear stress, their distributions in the 
contact patches corresponding to Fig. 6 are plotted in 
the vector diagrams of Fig. 8. The arrows inside the 
patches point in the direction of the shear stress and 
their length is proportional to the magnitude. The 

orientation angle between the vector of shear stress and 
the negative direction of longitudinal axis in patch 1 
and patch 2 are noted as θ1 and θ2, respectively, 
labelled in Fig. 8 (b), to characterize the shear stress 
direction in the contact patch. From Fig. 8, the overall 
trend can be observed that θ1 increases during the 
transition process; while θ2 generally remains stable. 
The change of the orientation of shear stress 
substantially results from the magnitude changes of 
shear stress in lateral and longitudinal directions.  

 



 
(a)                                                               (b)                                                                             (c) 

Fig. 8.  Shear stress distribution change during contact point transition (upper graphs: patch 1; bottom graphs: patch 2) 
 
AoA is generally thought as one of the key factors in 
the occurrence of squeal [16]. To investigate the 
influence of AoA on the shear stress change during the 
contact transition, the specific changes of the shear 
stress magnitude in the lateral and longitudinal 
directions, as well as angles θ1 and θ2 with different 
AoA are shown in Fig. 9. The value in Fig. 9 is the 
average of all elements within the contact patch. The 
abscissas of the figures is the contact patch number, 
corresponding to the sequence of the output time step 
(0.3 ms for each). It can be seen that for all the 3 
simulation cases, the calculated lateral shear stress 
(upper row in Fig. 9) dramatically grows with the 
presence of patch 2 and that of patch 2 is larger than 
patch 1. In the middle row, the longitudinal shear stress 
of patch 1 declines to certain extent because of the 

participation of patch 2. The bottom row presents that 
the absolute value of θ1 keeps in the range of less than 
20° in the stage of one-point contact. It jumps to 
approximate 70° in 2-3 output time steps once patch 2 
appears. The orientation angle θ2 maintains at a high 
value between 60° and 70° as soon as it appears.  
 
By comparing the shear stresses under the 3 AoA 
conditions in Fig. 9, it can be seen, as for the patch 2, 
the lateral shear stress increases but the longitudinal 
one decreases with the increase of AoA, consequently 
causing the rise of θ2; No pronounced influence of 
AoA on shear stress of patch 1 is observed from the 
simulation, except that the longitudinal shear stress is 
slightly raised by applying a larger AoA. 

 

  
(a) AoA=15 mrad                                        (b) AoA=20 mrad                                           (c) AoA=25 mrad       

Fig. 9.  The change of shear stress and orientation with different AoA  
(upper graphs: lateral stress; middle graphs: longitudinal stress; bottom graphs: orientation angle) 

 
5.  CONCLUSIONS AND FUTURE WORK 
 
The non-steady-state rolling contact with the transition 
from one-point to two-point is simulated in this paper 
by an explicit integration finite element method. The 
adhesion-slip area distribution, surface stress 
magnitudes and shear stress direction under one-point 
and two-point contact conditions, as well as the 
influences of AoA are studied. The wheel modes and 
contact-related results predicted by the FE model are 
proven reasonable when comparing to the 
measurement and calculation results in the literature, 

laying a solid foundation for the next step flange squeal 
simulation. 
 
The remaining work is concerned mainly with the 
reproduction of the flange squeal by extending the 
simulation from the non-steady-state contact point 
transition to the steady-state two-point or one-point 
(flange/gauge corner) contact condition. The boundary 
condition needs to be adjusted in order to create a 
quasi-steady-state wheel curving motion after the 
occurrence of two-point contact. With the modified 
model, the influence of the wheel-rail contact form, 



position and orientation of wheel motion on flange 
squeal and the relation between wheel modal frequency 
and squeal tone frequency are going to be investigated. 
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