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A B S T R A C T

Real-time motion tracking of kinematic chains is a key prerequisite in the control of, e.g., robotic actuators
and autonomous vehicles and also has numerous biomechanical applications. In recent years, it has been
shown that, by placing inertial sensors on segments that are connected by rotational joints, the motion
of that kinematic chain can be tracked accurately. These methods specifically avoid using magnetometer
measurements, which are known to be unreliable since the magnetic field at the different sensor locations
is typically different. They rely on the assumption that the motion of the kinematic chain is sufficiently rich
to assure observability of the relative pose. However, a formal investigation of this crucial requirement has
not yet been presented, and no specific conditions for observability have so far been given. In this work, we
present an observability analysis and show that the relative pose of the body segments is indeed observable
under a very mild condition on the motion. We support our results by simulation studies, in which we employ
a state estimator that neither uses magnetometer measurements nor additional sensors and does not impose
assumptions on the accelerometer to measure only the direction of gravity, nor on the range of motion or
degrees of freedom of the joints. We investigate the effect of the amount of excitation and of stationary periods
in the data on the accuracy of the estimates. We then use experimental data from two mechanical joints as
well as from a human gait experiment to validate the observability criterion in practice and to show that small
excitation levels are sufficient for obtaining accurate estimates even in the presence of time periods during
which the motion is not observable.
. Introduction

In recent years, inertial measurement units (IMUs) have been used
or motion tracking and control in an increasing number of mecha-
ronic and biomechanical applications ranging from autonomous cars,
iniature aerial vehicles and offshore vessels (Bryne, Rogne, Fossen,
Johansen, 2018; Hoffmann, Goddemeier, & Bertram, 2010; Rodrigo
arco et al., 2020; Wan et al., 2018) to human motion capture and

eedback-controlled biomedical devices (Seel, Graurock, & Schauer,
015; Zihajehzadeh, Yoon, Kang, & Park, 2015). These sensors typically
ontain three-dimensional gyroscopes, accelerometers and magnetome-
ers. Accelerometers and gyroscopes, measuring the specific force and
he angular velocity, respectively, are also called inertial sensors.

Our interest lies in estimation of the motion of kinematic chains
onsisting of segments that are connected by rotational joints, where
ach of the segments is equipped with an IMU. These could for example
e human body segments, multilink aerial vehicles or robotic actuators,
s illustrated in Fig. 1. One obvious but restrictive way to do this is to
stimate the orientation of each IMU individually. A major limitation of

∗ Corresponding author.
E-mail address: m.kok-1@tudelft.nl (M. Kok).

this approach is that it relies on the assumptions that the magnetometer
approximately measures a constant local magnetic field and that the
accelerometer approximately measures the gravity (Kok, Hol, & Schön,
2017). Both assumptions are often violated in practice due to the
presence of ferromagnetic material or electronic devices (de Vries,
Veeger, Baten, & van der Helm, 2009; Shu et al., 2015) or due to
fast motion (Benallegue, Benallegue, & Chitour, 2017). In practice, this
leads to unpredictably large estimation errors and to instability and
failure of control systems that rely on these estimates. One way to
overcome these limitations is to use additional sensors, see e.g. Ro-
drigo Marco et al. (2020), Vigne, El Khoury, Masselin, Di Meglio, and
Petit (2018). On the other hand, in recent years, magnetometer-free
approaches have been developed for accurate and reliable estimation
of the complete relative pose of all segments of a kinematic chain from
only inertial measurements. Our interest lies in the latter approach.

Previous work has shown that the relative pose of the body segments
can be determined entirely from inertial measurements – without the
assumption that the accelerometer only measures the gravity – by
ttps://doi.org/10.1016/j.conengprac.2022.105206
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Fig. 1. Illustration of the main research question. Magnetometer-free inertial motion
tracking of kinematic chains is desirable in many applications, including linked aerial
vehicles, robotics, and human motion tracking. However, there are to date no sufficient
conditions for observability of the performed motion, which puts accuracy and stability
at risk.

taking the connection between the segments and the corresponding
kinematic constraints into account (Hol, 2011; Kok, Hol, & Schön,
2014; Weygers et al., 2020), however only under the assumption that
the motion is ‘‘sufficiently rich’’. Different types of state estimators have
been used, including extended Kalman filters and optimisation-based
methods. These state estimators have experimentally been shown to
result in accurate estimation results with joint angle estimation errors
in the range of a few degrees for biomechanical systems (Weygers et al.,
2020). The argument that the performed motions must be sufficiently
rich to render the relative orientation observable is found throughout
the mentioned literature, and it is often claimed that this is a mild
assumption. However, precise statements on necessary or sufficient
conditions have to date only been found for the special case of a double-
hinge joint system (Eckhoff, Kok, Lucia, & Seel, 2020). From a practical
point of view, this represents a severe limitation of magnetometer-
free inertial motion tracking, since the methods must be used without
knowing whether the results are accurate for the specific motion or not.

In the present work we derive, for the first time, sufficient con-
ditions for observability of the relative pose of the kinematic chain.
This lays the foundation for crucial performance guarantees in a large
range of applications. It can also be used to instruct users to perform
certain movements to guarantee this performance. Since we consider
arbitrary rotational joints, i.e. without restrictions on the range of
motion, the derived sufficient conditions do not only hold in 3D joints
but straightforwardly also in joints with only one or two rotation axes.

The question under which conditions the relative motion states of
a kinematic chain can be determined from magnetometer-free IMU
readings and a kinematic constraint leads to observability analysis of
a nonlinear dynamic system. It is known from systems and control
theory that this is a non-trivial problem and that no general closed-form
condition for observability of nonlinear systems exists. However, some
theoretical results exist (Besançon, 2007; Besancon, 2016; Hermann &
Krener, 1977), and we leverage them to derive a practically useful
condition for accurate results in magnetometer-free inertial motion
analysis. More specifically, we identify for which types of motion the
relative motion states of the kinematic chain are not observable. We
then show that even if observable motions are interrupted by short
and/or infrequent periods of non-observable motions, it is possible for
a state estimator to provide accurate estimation results by exploiting
the kinematic constraint. While long non-observable periods inevitably
lead to increasing errors in real-time estimation, the proposed criterion
can be used to detect such periods and to provide crucial information
about whether the estimates are reliable as well as what type of
motions should be performed to increase the estimation accuracy. The

contributions of the present work are five-fold:

2

1. We show the mathematical equivalence of the two dynamic
models that are most commonly used to take kinematic con-
straints due to the connection between body segments into
account. Moreover, we propose two reduced model representa-
tions which are also mathematically equivalent but have state
vectors of a smaller size.

2. We present an observability analysis that is valid for all four
state space models and derive a (mild) condition under which
the relative orientation can be uniquely determined from the
system outputs.

3. We analyse the estimation accuracy for both a filtering and a
smoothing approach (Weygers et al., 2020) as a function of the
type of motion and illustrate precisely in which way a motion
must be sufficiently exciting to assure convergence using Monte
Carlo simulations. This includes showing that a strong excitation
of the ‘‘wrong’’ kind can be useless, while a small excitation of
the ‘‘right’’ kind results in small estimation errors.

4. We introduce a metric that quantifies the ‘‘amount of observabil-
ity’’ – in terms of the linear independence of two vectors – at a
specific time instant and show that this metric can indeed be
used to detect periods of unobservability or poor observability
and can hence be used to identify periods during which the
estimation results should be taken with caution.

5. We practically validate the derived conditions for two experi-
ments. In the first, we estimate the motion of two mechanical
joint systems with different degrees of freedom based on mea-
surements from two attached IMUs. In the second, we estimate
the motion of a human leg using measurements from two IMUs,
placed on the thigh and the shank.

2. Related work

2.1. Magnetometer-free inertial motion tracking of kinematic chains

In previous work, magnetometer-free approaches have been pro-
posed that determine the relative orientation between segments by
taking the connection between the segments and the corresponding
kinematic constraints into account. The practical relevance of such
methods is high, since they enable accurate motion tracking in arbi-
trary magnetic environments and thus in a wide field of applications.
In the following, we briefly summarise existing magnetometer-free
approaches for relative-motion tracking of kinematic chains, and we
answer two questions: Which magnetometer-free methods have been
proposed for inertial motion capture, and what is known about the
conditions under which these methods are known to work or fail? To
estimate the motion of a kinematic chain, the most common approach is
to, as we also do in this work, use a full IMU setup, which means that
an IMU is placed on each segment of the kinematic chain. Methods
with sparse sensor setups have been proposed but require additional
assumptions on the kinematic structure and its motion (Eckhoff et al.,
2020; Huang et al., 2018; von Marcard, Rosenhahn, Black, & Pons-Moll,
2017) and are outside the scope of this work.

For joints with only one degree of freedom, i.e. hinge joints or revo-
lute joints, several methods have been proposed that exploit constraints
of the relative orientation between the adjacent segments (Cooper
et al., 2009; Laidig, Schauer, & Seel, 2017). However, the kinematic
constraints become singular when the hinge joint axis is vertical, and
the relative heading cannot be tracked if the systems remains at the
singularity. Moreover, to apply such methods, the direction of the joint
axis must be known in the sensor frames of both adjacent segments,
which requires suitable sensor-to-segment calibration routines (Olsson,
Kok, Seel, & Halvorsen, 2020; Seel, Schauer, & Raisch, 2012). For
joints with two degrees of freedom, e.g. saddle joints or the human
elbow, magnetometer-free methods have been proposed that deter-
mine the relative heading by exploiting kinematic constraints of the
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angular rates (Laidig, Lehmann, Bégin, & Seel, 2019) and the orien-
tations (Luinge, Veltink, & Baten, 2007). As in the hinge joint case,
the relative heading cannot be tracked if one of the joint axes remains
vertical, and the methods require identification of both joint axes’
coordinates in the corresponding sensor frame (Laidig, Mueller, & Seel,
2017). Finally, for joints with up to three degrees of freedom, range-
of-motion constraints can be exploited on a moving-window to track
the relative heading (Lehmann, Laidig, Deimel, & Seel, 2020). This
approach requires knowledge of the range of motion and persistent
excitation in the sense of sufficient coverage of that range.

The aforementioned methods have in common that they apply only
to joints with limited degrees of freedom or range of motion. Besides
such rotational constraints, it has also been shown that one can exploit
the mere fact that the segment ends that are connected by the joint
cannot move apart. This information is independent of the joint’s
degrees of freedom and range of motion, and it can be formalised in
two different ways. In Hol (2011), Kok et al. (2014), Miezal, Taetz,
and Bleser (2016), it is formulated in terms of the joint centre position,
while it is written in terms of the joint centre acceleration in Dorschky,
Nitschke, Seifer, van den Bogert, and Eskofier (2019), Fasel et al.
(2018), Lee and Jeon (2019), Weygers et al. (2020). The information
can for instance be included as a constraint in an optimisation-based
approach or as a measurement model in a filtering approach, e.g. an
extended Kalman filter. For both the formulations in terms of the joint
centre position and in terms of the joint centre acceleration, it was
demonstrated that exploitation of the constraint enables determining
the relative orientation between the segments at least if the performed
motion provides ‘‘sufficient excitation’’. However, as elaborated above,
there is no analysis or investigation on what this means and which
motions render the relative motion states observable. In this work, we
focus on deriving sufficient conditions for observability of the relative
orientations for these arbitrary joints, i.e. without making assumptions
on their degrees of freedom or range of motion.

2.2. Observability analysis for inertial motion tracking

For any system for which one aims to build an observer, it is
relevant to study the observability of the system because this gives
information about whether it is indeed possible to design a stable
observer for the system (Besançon, 2007). For linear systems, observ-
ability can be studied by determining the rank of the well-known
observability matrix (Rugh, 1996). The concept of uniform complete
observability is typically used to prove convergence of a Kalman fil-
ter (Batista, Petit, Silvestre, & Oliveira, 2017). Estimating motion using
IMUs is, however, an inherently nonlinear problem (Kok et al., 2017).

Nonlinear observability analysis is commonly done using Lie deriva-
tives (Besançon, 2007). This has for instance been done for vision-aided
inertial navigation system (Panahandeh, Guo, Jansson, & Roumeliotis,
2013) and for vehicle motion estimation (Rodrigo Marco, Kalkkuhl, &
Seel, 2018). For observability analysis for orientation estimation, e.g. of
kinematic chains, methods have been developed to compute these Lie
derivatives on Lie groups, e.g., SO(3) (Joukov et al., 2019). Alterna-
tively, the nonlinear system can be rewritten as a linear time-varying
system. This has been done for e.g. inertial navigation filters (Bristeau,
Petit, & Praly, 2010) and for robotics applications (Morin, Eudes,
& Scandaroli, 2017). In Bristeau et al. (2010) it has been shown
that differential observability results in uniform complete observability
for linear time-variant systems and can therefore be used to prove
convergence of a Kalman filter.

For nonlinear as well as for linear time-varying systems, it is known
that the observability of a system may depend on the input (Besançon,
2007). In the case of inertial motion tracking, observability depends
on the motion of the system. In this work, we study observability for
the case of magnetometer-free inertial motion tracking of a kinematic
chain. We show that for this specific case, there exists an elegant way to

analyse the observability of the system since it can be considered to be o

3

Fig. 2. Two adjacent segments 𝑖 and 𝑗 of a kinematic chain connected by a spherical
oint.

special case of Wahba’s problem (Wahba, 1965). For this, we neither
erive Lie derivatives nor require the system to be a linear time-varying
ystem, but instead directly study whether the relative orientation can
niquely be inferred from measurements and their derivatives, which
as close connections to studying differential observability (Besancon,
016; Gauthier & Kupka, 2001). This allows us to systematically anal-
se for which motions (inputs) it is indeed possible to infer the states
niquely. We then study systematically for real-life data whether the
ystem is indeed observable at a specific time instance.

. Modelling

We consider a kinematic chain with at least two rigid segments that
re connected by a rotational joint, as graphically illustrated in Fig. 2.
ur interest lies in estimating the relative pose of these connected

egments, using sensors placed on each segment. In other words, our
ocus is on determining the relative position, velocity and orientation
rom the accelerometer measurements 𝑦a,𝑖,𝑡 and the gyroscope mea-
urements 𝑦𝜔,𝑖,𝑡. Here, the subindex 𝑖 explicitly indicates that these are
he measurements from sensor S𝑖, where 𝑖 = 1,… , 𝑁𝑆 . We denote the

position and velocity of sensor 𝑖 as 𝑝n
𝑖 and 𝑣n

𝑖 , respectively, where the
superscript 𝑛 is used to indicate that these vectors are expressed in the
navigation frame 𝑛, which is a fixed, static coordinate frame. The origin
of this frame and the direction of its axes are irrelevant in our problem
formulation since we are only interested in the relative position and
orientation of the sensors. The orientation of each sensor is described
in terms of a rotation matrix 𝑅ns𝑖 , which denotes the orientation from
the sensor frame 𝑠𝑖 to the static coordinate frame 𝑛. The origin of
the frame 𝑠𝑖 lies at the centre of the accelerometer triad of sensor 𝑖
and its axes are aligned with the inertial sensor axes. We assume that
the location and the orientation of the sensors on the body segments
are known. These can for instance be obtained from pre-calibration
algorithms in Olsson and Halvorsen (2017), Seel et al. (2012). Hence,
estimating the relative position and orientation of the sensors becomes
equivalent to estimating the relative position and orientation of the
body segments.

We assume standard measurement models for the accelerometer and
gyroscope measurements

𝑦a,𝑖,𝑡 = 𝑓 s𝑖
𝑖,𝑡 + 𝑏a,𝑖 + 𝑒a,𝑖,𝑡 = 𝑅s𝑖n

𝑡

(

𝑎n
𝑖,𝑡 − 𝑔n

)

+ 𝑏a,𝑖 + 𝑒a,𝑖,𝑡, (1a)

𝜔,𝑖,𝑡 = 𝜔s𝑖
𝑖,𝑡 + 𝑏𝜔,𝑖 + 𝑒𝜔,𝑖,𝑡, (1b)

where 𝑓 s𝑖
𝑖,𝑡 and 𝜔s𝑖

𝑖,𝑡, respectively, denote the specific force and the
ngular velocity at time 𝑡 of sensor 𝑖 expressed in sensor frame 𝑠𝑖, 𝑎n

𝑖,𝑡
enotes the acceleration of sensor 𝑖 expressed in the navigation frame
and 𝑔n denotes the Earth’s gravity. Furthermore, 𝑏a,𝑖 and 𝑏𝜔,𝑖 denote

he accelerometer and gyroscope sensor biases, respectively. These are

ften assumed to be constant for the duration of the data set. Finally,
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𝑒a,𝑖,𝑡 and 𝑒𝜔,𝑖,𝑡 denote the accelerometer and gyroscope measurement
noise, respectively, which are assumed to be white and Gaussian.

In the remainder of this section, we will present four different
continuous-time state space models that can be used to determine the
relative pose of the segments. All four state space models use the
inertial sensor measurements as an input to the dynamics. Hence, we
express the continuous-time dynamics of the position, velocity and
orientation in terms of the continuous-time specific force and angular
velocity. We consider the information about the connection of the body
segments as a pseudo-measurement model. The two state space models
presented in Sections 3.1 and 3.2 are widely used in literature. We
present two novel state space models in Section 3.3. In Section 3.4 we
will show that the four models are mathematically equivalent.

3.1. Modelling each segment’s position, velocity and orientation

In the model used in Kok et al. (2014), Miezal et al. (2016), the
relative pose is estimated by parametrising the system in terms of the
absolute position 𝑝n

𝑖 , velocity 𝑣n
𝑖 and orientation 𝑅ns𝑖

𝑖 . Assuming that the
orientation is parametrised as a three-dimensional vector (Kok et al.,
2017), the state vector is of size 9𝑁𝑆 . Note that this is clearly an
overparametrisation since the inertial sensors do not provide any infor-
mation about the absolute position, velocity and heading of the body. It
is, however, a very flexible model since it can straightforwardly include
additional information such as GPS measurements. The dynamics is
modelled as

�̇�n
𝑖 = 𝑣n

𝑖 , (2a)

�̇�n
𝑖 = 𝑎n

𝑖 = 𝑅ns𝑖𝑓 s𝑖
𝑖 + 𝑔n, (2b)

�̇�ns𝑖 = 𝑅ns𝑖
[

𝜔s𝑖
𝑖 ×

]

, (2c)

for 𝑖 = 1,… , 𝑁𝑆 , where [⋅×] denotes the matrix cross product. Note
that the specific force 𝑓𝑖 and the angular velocity 𝜔𝑖 are measured by
the inertial sensors as in (1) and are used as an input to the dynamic
model, as is common in inertial sensor fusion (Kok et al., 2017). The
connection between the body segments is modelled as

0 = 𝑝n
𝑖 + 𝑅ns𝑖 𝑟s𝑖

𝑖𝑗 − 𝑝n
𝑗 − 𝑅ns𝑗 𝑟

s𝑗
𝑗𝑖 . (3)

Here, 𝑟s𝑖
𝑖𝑗 is the distance from sensor 𝑆𝑖 to the joint centre connecting

the segments 𝑖 and 𝑗, expressed in the sensor frame 𝑠𝑖. Note the
reversed subindices for 𝑟

s𝑗
𝑗𝑖 to denote the distance from sensor 𝑆𝑗 to

the joint centre connecting the segments 𝑖 and 𝑗. Hence, (3) models
the equivalence between the location of the joint centre expressed in
the coordinates of sensors 𝑖 and 𝑗 and holds for any type of rotational
joint. Assuming that 𝑟s𝑖

𝑖𝑗 and 𝑟
s𝑗
𝑗𝑖 are known, the model can both be used

as a constraint (Kok et al., 2014) in an optimisation problem or as a
measurement model (Miezal et al., 2016) in e.g. an extended Kalman
filter implementation.

3.2. Modelling each segment’s orientation

In the model used in Fasel et al. (2018), Lee and Jeon (2019),
Weygers et al. (2020), the relative pose is modelled only in terms of the
orientation. Hence, assuming again that the orientation is parametrised
as a three-dimensional vector (Kok et al., 2017), the state vector is
of size 3𝑁𝑆 . If the body is assumed to be rigid and the location of
the sensors is known, it is possible to compute the full relative pose
from the relative orientations. The dynamics is modelled by (2c) for
𝑖 = 1,… , 𝑁𝑆 . The connection between the body segments can again
be considered to be a constraint or a measurement function and is
modelled as

0 = 𝑅ns𝑖
(

𝑓 s𝑖
𝑖 +

(

[𝜔s𝑖
𝑖 ×]

2 + [�̇�s𝑖
𝑖 ×]

)

𝑟s𝑖
𝑖𝑗

)

−

𝑅ns𝑗
(

𝑓
s𝑗
𝑗 +

(

[𝜔
s𝑗
𝑗 ×]

2 + [�̇�
s𝑗
𝑗 ×]

)

𝑟
s𝑗
𝑗𝑖

)

, (4)
4

where �̇� denotes the angular acceleration. This models the equivalence
between the specific force or equivalently the acceleration of the joint
centre expressed in the coordinates of body segments 𝑖 and 𝑗 and hence,
s the model (3), holds for any type of rotational joint. In the remainder
f this paper, we will also make use of the shorthand notation 𝑓 s𝑖

c𝑖𝑗 ,𝑖
to

enote the acceleration at the joint centre 𝑐𝑖𝑗 , measured by sensor 𝑖,
xpressed in sensor frame 𝑠𝑖, defined as
s𝑖
c𝑖𝑗 ,𝑖

= 𝑓 s𝑖
𝑖 +

(

[𝜔s𝑖
𝑖 ×]

2 + [�̇�s𝑖
𝑖 ×]

)

𝑟s𝑖
𝑖𝑗 . (5)

Using that notation, (4) can equivalently be written as

0 = 𝑅ns𝑖𝑓 s𝑖
c𝑖𝑗 ,𝑖

− 𝑅ns𝑗𝑓
s𝑗
c𝑖𝑗 ,𝑗

. (6)

3.3. Modelling the relative pose

The models from Sections 3.1 and 3.2 are clearly overparametrisa-
tions of the problem. Although this is not widely used in literature,
it is also possible to use a minimal representation. The benefit of
overparametrisation is the flexibility of adding more information to the
system. The benefit of parametrising the system with less states is that
it is computationally more efficient. We define the relative position,
velocity and orientation as

𝑝s𝑖
r,𝑖𝑗 = 𝑅s𝑖n

(

𝑝n
𝑖 − 𝑝n

𝑗

)

, (7a)

𝑣s𝑖
r,𝑖𝑗 = 𝑅s𝑖n

(

𝑣n
𝑖 − 𝑣n

𝑗

)

, (7b)
s𝑖s𝑗 = 𝑅s𝑖n𝑅ns𝑗 , (7c)

here 𝑝s𝑖
r,𝑖𝑗 and 𝑣s𝑖

r,𝑖𝑗 are the relative position and velocity, respectively,
f segment 𝑖 with respect to segment 𝑗, expressed in segment 𝑖. It is
ow possible to write the dynamics of these relative states as

�̇�s𝑖
r,𝑖𝑗 = −

[

𝜔s𝑖
𝑖 ×

]

𝑝s𝑖
r,𝑖𝑗 + 𝑣s𝑖

r,𝑖𝑗 , (8a)

�̇�s𝑖
r,𝑖𝑗 = −

[

𝜔s𝑖
𝑖 ×

]

𝑣s𝑖
r,𝑖𝑗 + 𝑓 s𝑖

𝑖 − 𝑅s𝑖s𝑗𝑓
s𝑗
𝑗 , (8b)

�̇�s𝑖s𝑗 = −
[

𝜔s𝑖
𝑖 ×

]

𝑅s𝑖s𝑗 + 𝑅s𝑖s𝑗
[

𝜔
s𝑗
𝑗 ×

]

. (8c)

where we made use of (2) and (1a).
The model (3) can be expressed in these states as

0 = 𝑝s𝑖
r,𝑖𝑗 + 𝑟s𝑖

𝑖𝑗 − 𝑅s𝑖s𝑗 𝑟
s𝑗
𝑗𝑖 . (9)

When estimating the relative pose, the size of the state vector reduces
from 9𝑁𝑆 in Section 3.1 to 9(𝑁𝑆 −1). It is also possible to only estimate
the relative orientation using (8c) and straightforwardly expressing the
model (4) in terms of the relative orientation 𝑅s𝑖s𝑗 . This reduces the
size of the state vector to 3(𝑁𝑆 − 1).

3.4. Mathematical equivalence of the four models

Making use of the dynamic models (2), the first and second deriva-
tives of the model (3) can be written as
d
d𝑡

(

𝑝n
𝑖 + 𝑅ns𝑖 𝑟s𝑖

𝑖𝑗 − 𝑝n
𝑗 − 𝑅ns𝑗 𝑟

s𝑗
𝑗𝑖

)

=

𝑣n
𝑖 + 𝑅ns𝑖

[

𝜔𝑖×
]

𝑟s𝑖
𝑖𝑗 − 𝑣n

𝑗 − 𝑅ns𝑗
[

𝜔𝑗×
]

𝑟
s𝑗
𝑗𝑖 , (10a)

d2

d𝑡2
(

𝑝n
𝑖 + 𝑅ns𝑖 𝑟s𝑖

𝑖𝑗 − 𝑝n
𝑗 − 𝑅ns𝑗 𝑟

s𝑗
𝑗𝑖

)

=

𝑎n
𝑖 + 𝑅ns𝑖

[

𝜔𝑖×
]2 𝑟s𝑖

𝑖𝑗 + 𝑅ns𝑖
[

�̇�𝑖×
]

𝑟s𝑖
𝑖𝑗−

𝑎n
𝑗 − 𝑅ns𝑗

[

𝜔𝑗×
]2 𝑟

s𝑗
𝑗𝑖 − 𝑅ns𝑗

[

�̇�𝑗×
]

𝑟
s𝑗
𝑗𝑖 . (10b)

It can therefore be concluded that the double derivative of the model
for the joint position (3) is equal to the model for the joint accelera-
tion (4). In other words, these models are mathematically equivalent
in the sense that an observability analysis of one of these models will
straightforwardly hold for the other. Note that in practice this does not
imply that the models are equivalent in every aspect. They can, for
instance, behave differently in the presence of noise and, contrary to the
reduced model from Section 3.2, the extended model from Section 3.1
straightforwardly opens up for including additional information such
as absolute position measurements.
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4. Observability analysis

In this section we will study the observability of the relative pose
of the body segments using the models presented in Section 3. Without
loss of generality we focus on a two-segment system and will use the
model from Section 3.2. Hence, we address the question under which
motions it is possible to uniquely determine the relative orientation
of the two body segments using perfect (bias- and noise-free) inertial
measurements and the models (4) and (2c).

Let us write the model from Section 3 as a general nonlinear state
space model

̇ = 𝑓 (𝑥, 𝑢), 𝑦 = ℎ(𝑥, 𝑢), (11)

where 𝑥 ∈  = SO3 × SO3 with 𝑥 =
(

𝑥𝖳𝑖 𝑥𝖳𝑗
)𝖳

and 𝑥𝑖, 𝑥𝑗 denote
he time-varying state vector representing the orientation of the two
ody segments. The (pseudo-)measurement vector 𝑦 ∈ R3 is represented
y (4) and models the connection between the body segments in terms
f the acceleration of the joint centre. The dynamics of both segments is
odelled by (2c). Furthermore, 𝑢 ∈ R18 denotes the specific force, the

ngular velocity and the angular acceleration of each of the sensors.
ote that under the assumption of bias- and noise-free measurements,

he specific force and the angular velocity are directly measured by
he inertial sensors. The angular acceleration can be obtained from the
yroscope measurements by numerical differentiation.

The purpose of observability analysis is to answer the question
hether the states of the model (11) can uniquely be determined using
nowledge about the measurements 𝑦 and the inputs 𝑢 (Besançon,
007). Assuming that the functions 𝑓 and ℎ in (11) are smooth func-
ions of their arguments and that the input 𝑢 is smooth, we will study
he observability of our system by considering 𝑁 ≥ 0 time derivatives
f 𝑦 denoted by 𝑦(𝑁). For some known input 𝑢, we define the mapping
𝑢,𝑁 ∶  → R3(𝑁+1) by

𝑢,𝑁 (𝑥(𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑦(𝑡)
�̇�(𝑡)
⋮

𝑦(𝑁)(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

. (12)

system is differentially observable if, for any input 𝑢, there exists
n 𝑁 ≥ 0 such that the mapping 𝛷𝑢,𝑁 (𝑥(𝑡)) is injective, i.e. there are
o two points in the state space that yield the same vector of output
erivatives (Besancon, 2016; Gauthier & Kupka, 2001).

Before analysing the observability of our model (11) in detail, let
s start with noticing two important properties of our model. Firstly,
he observability of (11) depends on the performed motion, i.e. on the
nputs to the system. This can most clearly be seen by writing down the
odel constraint (4) and its 𝑁 ’th derivative as

𝑦(𝑡) = 0 = 𝑅ns𝑖𝑓 s𝑖
c𝑖𝑗 ,𝑖

− 𝑅ns𝑗𝑓
s𝑗
c𝑖𝑗 ,𝑗

, (13a)

(𝑁)(𝑡) = 0 = d𝑁

d𝑡𝑁
𝑅ns𝑖𝑓 s𝑖

c𝑖𝑗 ,𝑖
− d𝑁

d𝑡𝑁
𝑅ns𝑗𝑓

s𝑗
c𝑖𝑗 ,𝑗

, (13b)

where we make use of the shorthand notation from (5) and (6). In the
case of no movement, for instance, the time derivatives are zero and
the mapping 𝛷𝑢,𝑁 is obviously not injective, hence the system is not
observable. Because the observability depends on the inputs, we will
study the observability at time 𝑡.

A second important property of the system (11) is that (4) depends
on both the orientation of the first and that of the second segment. The
system, however, does not include any information about the absolute
orientation of the sensors. It is therefore clearly not observable. Our
interest, however, lies in determining the relative orientation of the sen-
sors. Hence, we focus only on observability of the relative orientation.
In other words, we study the observability of the system (11) under the
condition that one of the orientations is known or arbitrarily set to a
certain value. Inspired by the concept differential observability (Besan-
con, 2016; Gauthier & Kupka, 2001), we now introduce the following
definition:
5

Definition 1. The relative orientation 𝑅s𝑖s𝑗 (𝑡) is observable at time
𝑡 if, under the assumption that the orientation 𝑅ns𝑖 (𝑡) of one of the
segments is known, the orientation 𝑅ns𝑗 (𝑡) of the other segment, and
thus the entire state 𝑥(𝑡) ∈  of the system (11), can be uniquely
determined from the current input 𝑢(𝑡), the current output 𝑦(𝑡), and their
ime derivatives.

Note that Definition 1 implies that it is possible to instantaneously
nd uniquely determine the relative orientation from the inertial mea-
urements, the modelled connection between the body segments, and
heir derivatives.

Inputs for which it is not possible to uniquely determine a state 𝑥
rom the measurements are called singular inputs (Besançon, 2007).

e can now analyse for which inputs the relative orientation of the
ystem (11) is observable at time 𝑡 according to Definition 1, i.e. which
nputs are non-singular. Note that in Bristeau et al. (2010), it has been
hown that differential observability is a sufficient condition for the
onvergence of an observer for linear time-varying systems. However,
ne input being non-singular is not sufficient to reconstruct the state
in the state space model (11). A necessary condition for this is that

he input is regularly persistent in the sense that there exists a 𝑇 > 0
such that, for any given time 𝑡, the mapping 𝛷𝑢,𝑁 (𝑥(𝑡)) is injective for
t least one moment within the interval [𝑡, 𝑡+𝑇 ] (Besancon, 2016). For
he given system (11), it can therefore be concluded that a necessary
ondition for a stable (nonlinear) observer design is that the relative
rientation is observable in a regularly persistent manner.

We specifically focus our analysis of which inputs are non-singular
nly on the first order derivative in (13b) since we consider the
ractical relevance of extending the analysis to higher orders close to
ero. This brings us to the main result of our observability analysis:

heorem 1. The relative orientation 𝑅s𝑖s𝑗 of the system (11) is observable
according to Definition 1 for any time instant for which the specific force
𝑎nc𝑖𝑗 − 𝑔n of the joint centre is linearly independent of �̇�nc𝑖𝑗 .

Proof. The system of equations (13) with 𝑁 = 1 can be rewritten as

𝑓n
c𝑖𝑗 ,𝑖

= 𝑅ns𝑗𝑓
s𝑗
c𝑖𝑗 ,𝑗

, �̇�n
c𝑖𝑗 ,𝑖

= 𝑅ns𝑗
(

[𝜔
s𝑗
𝑗 ×]𝑓

𝑠𝑗
𝑐𝑖𝑗 ,𝑗

+ ̇𝑓
𝑠𝑗
𝑐𝑖𝑗 ,𝑗

)

, (14)

where we made use of the definition of the specific force from (1a),
the time derivative of the rotation matrix according to (2c), the fact
that the gravity vector in navigation frame is constant, and assume
that the orientation 𝑅ns𝑖 is known, following Definition 1. In (14) we
can now recognise Wahba’s problem (Wahba, 1965), also known as
the orthogonal Procrustes problem. Based on this, it follows that the
orientation 𝑅ns𝑗 can uniquely be determined from (14) if and only if
𝑓n

c𝑖𝑗 ,𝑖
and �̇�n

c𝑖𝑗 ,𝑖
are linearly independent. □

Remark 1. In theory, it is possible that the relative orientation is not
observable at time 𝑡 according to Theorem 1 but that the mapping 𝛷𝑢,𝑁
becomes injective when including higher-order derivatives of the model
constraint. This consideration leads to a series of Wahba’s problems that
need to be checked and to the conclusion that the system is observable
if any of these Wahba’s problems can be solved.

In Sections 5 and 6 we will present the estimation accuracy of two
state estimators for different types of motion for which the relative
orientation is (un)observable according to Theorem 1. We will show
that accurate orientation estimates can be obtained in case the motion
is observable according to Definition 1 for almost all time instants and
that relatively little motion is required for observability. In case the
system is not observable at any time instant according to Definition 1,
integration of the inertial measurements in (2) results in a drift of
the relative pose of the body segments. However, as soon as the user
performs non-singular input motions, the system becomes observable
and the drift can be removed.
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Fig. 3. Relative angular velocity 𝜔rel (left column) and acceleration of the joint centre (middle column) for the observable motion (top) and the unobservable motion (bottom)
described in Section 5.1 with the 𝑥-, 𝑦- and 𝑧-directions depicted in blue, green and red, respectively. Right column: Mean angular error 𝜃 and the one-standard-deviation intervals
for the filtering algorithm (blue), the smoothing algorithm (green) and the integration of the gyroscope signal (red) for the observable motion (top) and the unobservable motion
(bottom) described in Section 5.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Simulation study

We illustrate the observability results from Section 4 using Monte
Carlo simulations in which we simulate different types of motion.
Without loss of generality we again focus on two connected segments
and use the model from Section 3.2. To estimate the orientation of the
two sensors, we use the methods presented in Weygers et al. (2020).
That work presents both a filtering and a smoothing algorithm for the
models (4) and (2c) and was extensively validated on experimental
data. The filtering algorithm is an extended Kalman filter, while the
smoothing algorithm uses a Gauss–Newton optimisation. For more
details we refer the interested reader to Weygers et al. (2020) and Kok
et al. (2017).

We simulate inertial measurements at 100 Hz with noise and bias
properties that have a similar order of magnitude as found in standard
inertial sensors. The accelerometer noise is simulated to be zero-mean,
white and Gaussian with a standard deviation of 0.05 m

s2 . The gyroscope
noise is simulated to be zero-mean, white and Gaussian with a standard
deviation of 1

◦

s . Furthermore, for each Monte Carlo simulation, we
raw constant accelerometer and gyroscope biases from the uniform
istributions 

(

−0.05 m
s2 , 0.05

m
s2

)

and 
(

−0.2
◦

s , 0.2
◦

s

)

, respectively.
Likewise, the distances from the sensors 𝑖 and 𝑗 to the joint are
et to constant values drawn from uniform distributions, i.e. 𝑟s𝑖

𝑖𝑗 =
[

 (0.01 m, 0.5 m) 0 0
]𝖳, 𝑟

s𝑗
𝑗𝑖 = −

[

 (0.01 m, 0.5 m) 0 0
]𝖳. We

quantify the estimation error in terms of the smallest angle 𝜃 by which
the estimated relative orientation �̂�s𝑖s𝑗 must be rotated to become
dentical to the true relative orientation 𝑅s𝑖s𝑗 (Hartley, Trumpf, Dai,

& Li, 2013). We initialise each simulation such that the initial relative
orientation error is 10◦.

In Section 5.1 we first exemplify the results from Theorem 1 for
both an observable and for an unobservable type of motion. Secondly,
in Section 5.2 we study the effect on the accuracy of the relative
orientation for different amounts of excitation. Finally, we illustrate
observable and unobservable motions in a specific application scenario.
The results are also illustrated in the supplementary video available on
https://tinyurl.com/y4b2esjm.

5.1. Observable and unobservable motions

In this section we will illustrate the results from Theorem 1 by
simulating specific motions that are (not) observable according to
the theorem and studying the estimated relative orientation using the
algorithm from Weygers et al. (2020).

First, we consider a motion that provides very little excitation of
the joint system but is nevertheless non-singular in the aforementioned
6

sense. Precisely, we assume that the specific force of the joint centre
𝑎n

c𝑖𝑗
− 𝑔n has a non-zero horizontal component and that there is a non-

zero change in joint centre acceleration �̇�n
c𝑖𝑗

which is not exactly in the
direction of the vector 𝑎n

c𝑖𝑗
− 𝑔n. We simulate a specific case of this

motion where the joint centre moves with non-constant acceleration for
45 s along an axis that is perpendicular to the gravity direction and the
two segments do not rotate around the joint centre. This motion is illus-
trated in terms of the relative angular velocity 𝜔rel and the acceleration
of the joint centre 𝑎n

c𝑖𝑗
in Fig. 3. Note that, based on some non-specific

demand for ‘‘sufficient excitation’’, one may intuitively suspect that this
movement is unobservable since there is no relative motion between
the two segments. However, for almost all time instants the change of
acceleration is non-zero in a direction orthogonal to the acceleration
due to gravity, i.e. the vectors 𝑎n

c𝑖𝑗
− 𝑔n and �̇�n

c𝑖𝑗
are non-parallel to

ach other. Hence, according to Theorem 1, the relative orientation
s observable according to Definition 1 for almost all time instants.
he mean and standard deviation of the relative orientation estimates
or the 100 Monte Carlo simulations are depicted in Fig. 3. As can
e seen, the error in the relative orientation converges quickly and
emains small for both the filtering and the smoothing algorithm. More
pecifically, after the first five seconds that are needed for the initial
onvergence, the mean errors of the filtering and smoothing algorithms
re 1.31◦ and 0.66◦, respectively. The maximum errors are 4.36◦ and
.09◦, respectively. For completeness, we also include the error from
ntegration of the gyroscope only, which can be seen to grow over time
p to a maximum of 26.94◦.

Next, we consider motions that provide a lot of excitation but
re nevertheless singular in the aforementioned sense. Specifically, we
imulate data where for all time instants the joint centre acceleration
hanges only in the direction of the acceleration due to gravity, i.e. the
ectors 𝑎n

c𝑖𝑗
− 𝑔n and �̇�n

c𝑖𝑗
are parallel to each other. Hence, according

o Theorem 1, the relative orientation is not observable according to
efinition 1. We simulate a specific case of this motion where the

oint centre moves for 150 s along the direction of the gravity vector
ith non-constant acceleration and the two segments rotate arbitrarily
round the joint centre. This motion is again illustrated in Fig. 3. As can
e seen, the excitation in the relative angular velocity as well as in the
cceleration of the joint centre is significantly higher than in the previ-
us example that we studied. Nevertheless, due to the unobservability
f the motion, the estimation error in the relative orientation increases
ver time for both the filtering and the smoothing algorithm up to a
aximum of 61.06◦ and 45.40◦, respectively, compared to a maximum

error of 73.74◦ for pure integration of the gyroscope signal.

https://tinyurl.com/y4b2esjm
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Fig. 4. Acceleration of the joint centre (left column), metric 𝑜𝑡 as defined in (15) (middle column) and mean angular error 𝜃 with one-standard-deviation intervals for the motion
with varying amounts of excitation (top) and the temporarily stationary motion (bottom) described in Section 5.2. Left column: the 𝑥-, 𝑦- and 𝑧-directions are depicted in blue,
green and red, respectively. Right column: The results for the filtering algorithm are depicted in blue, the results for the smoothing algorithm in green and the integration of the
gyroscope signal in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.2. Amount of excitation

We now study the effect of the amount of excitation on the quality
of the estimates. To this end, we simulate the same motion as the
observable motion in Section 5.1 but vary the level of excitation. Hence,
the relative movement of the sensors looks similar to that in the top row
of Fig. 3, but with the joint centre acceleration varying in excitation
level as shown in Fig. 4. The angular error in the estimates of the
filtering algorithm can be seen to increase up to a mean error of 3.02◦
and a maximum error of 10.06◦ during the time of low excitation.
The angular errors in the estimates of the smoothing algorithm can be
seen to barely be affected by this period of low excitation. To further
visualise the amount of excitation and its effect on the observability of
the relative pose, we compute for each time instant 𝑡 a metric 𝑜𝑡 that
quals the norm of the cross product of 𝑎n

c𝑖𝑗 ,𝑡 − 𝑔n and �̇�n
c𝑖𝑗 ,𝑡, averaged

ver the last 100 samples as

𝑡 =
1
100

99
∑

𝜏=0
‖(𝑎n

c𝑖𝑗 ,𝑡−𝜏
− 𝑔n) × �̇�n

c𝑖𝑗 ,𝑡−𝜏
‖2, (15)

here �̇�n
c𝑖𝑗 ,𝑡 is computed from the noise-free simulated inertial sensor

ata. Note that according to Theorem 1, the vectors 𝑎n
c𝑖𝑗 ,𝑡 − 𝑔n and

�̇�n
c𝑖𝑗 ,𝑡 need to be linearly independent for the relative orientation to be
bservable at time instant 𝑡.

We also study the effect on the estimation accuracy of extended
eriods during which the metric 𝑜𝑡 is zero. To this end, we simulate
10 s of data for which the joint centre arbitrarily changes its position
n the reference frame with a non-constant acceleration for the first
0 s and the last 20 s of the simulation. During 60 s in the middle
f the data set, the segments are both assumed to be at rest. During
hese times, the relative orientation is not observable according to
efinition 1. This motion is illustrated in Fig. 4. The error in the relative
rientation estimated by the filtering algorithm can be seen to grow
uring the 60 s of stationarity to a mean error of 5.47◦ and a maximum
rror of 28.33◦. In the smoothing algorithm, all measurements are
sed to compute the estimates. Hence, this algorithm is able to keep
he errors low with a mean error of 1.44◦ and a maximum error of
0.74◦. This example illustrates that the filter is able to recover after
emporary unobservability while estimation errors from the smoother
re barely affected. Hence, for applications where longer time periods
f unobservability can be expected, the use of a smoother or the use of
detector for these unobservable motions can be beneficial.

.3. Application to multilink aerial vehicles

We now illustrate the role of observable and unobservable motions

n the specific application of kinematically connected aerial vehicles,

7

ee Zhao et al. (2018) for a literature example of such a multilink
obotic system. In our case, two drones perform flight manoeuvres
hile being rigidly connected by a ball-and-socket joint, which admits

elative rotation, as illustrated in Fig. 5 and the supplementary video.1
We simulate the measurement noises and biases from the same distri-
butions as in the rest of this section, assume that the distances from the
joint centres are 𝑟s𝑖

𝑖𝑗 =
[

0.5 0 0
]𝖳, 𝑟s𝑗

𝑗𝑖 =
[

−0.5 0 0
]𝖳, and estimate

the relative sensor orientations using the filtering and the smoothing
method presented in Weygers et al. (2020).

The quadcopters first take off by moving up vertically. During this
motion, their relative orientation is unobservable, even when they
move with respect to each other, rotate or vary their accelerations.
Hence, the metric 𝑜𝑡 is zero, and the initial error of the filtering imple-
mentation does not converge. However, as soon as the joint centre starts
moving horizontally, the relative orientation becomes observable, even
in the absence of relative motion. We subsequently simulate a minute
of data during which the quadcopters hover stationary. Hence, 𝑜𝑡 is
zero and the estimation errors increase again, even for the smoothing
implementation. Afterwards, when the quadcopters perform a sequence
of observable motions, including horizontal displacements without any
(relative) rotation, the estimation errors can be seen to converge again.
Finally, during the vertical landing, the relative orientation is again
unobservable. This simulation example illustrates that, in practice, long
periods of unobservability or a lack of observability at the beginning
of the data set can result in unreliable (real-time) estimates. However,
observability can be assured by performing the motions that fulfil the
proposed condition almost always. For instance, taking off or landing
while simultaneously moving horizontally would yield the desired
observability in the given application scenario.

6. Experiments

6.1. Mechanical joints

We experimentally validate our results with the 3D-printed mechan-
ical joints shown in Fig. 6. Accelerometer and gyroscope measurements
are collected using two attached IMUs (MTw Awinda, Xsens) sampled
at 50 Hz. As a ground truth, marker trajectories from optical markers
were simultaneously captured at 120 Hz. For different motions of the
two joint types, we estimated the relative sensor orientations using
the filtering and the smoothing method presented in Weygers et al.
(2020). Estimated and reference relative orientations were aligned us-
ing Theorem 4.2 from Hol (2011). The measurement noise covariances
of the filtering and smoothing algorithms were chosen based on the

1 https://tinyurl.com/y4b2esjm

https://tinyurl.com/y4b2esjm
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Fig. 5. Left: Illustration of the simulated multilink aerial vehicle. The linked quadcopters first take off vertically and then move horizontally. Subsequently, the quadcopters remain
stationary for 60 s, then move to different locations and finally land. Right: Metric 𝑜𝑡 and mean angular error 𝜃 with one-standard-deviation intervals. The results for the filtering
algorithm are depicted in blue, the results for the smoothing algorithm in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 6. Left: Experimental setup with 2D and 3D mechanical joints with inertial sensors attached to each segment. Right: Metric 𝑜𝑡 and the angular error 𝜃 for (top) a motion
f the 3D joint where the system is first lying stationary on a table and subsequently moving around freely and for (bottom) a motion of the 2D joint where the system is held
tationary but rotated twice into a different orientation, after which the system is moved around freely. The angular errors for four different initialisations are shown in blue for
he filtering algorithm are depicted and in green for the smoothing algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the
eb version of this article.)
tandard deviation of the accelerometer measurements and assuming
hat the accelerometer measurement noise is the dominant source of
rror in (4).

Firstly, we study the estimates for the 3D joint where, for the first
.6 s, the system is lying stationary on a table, after which it is moved
round freely, see also the supplementary video.2 Hence, according
o Theorem 1, the motion is initially unobservable, and the estimates
rom the filtering method from Weygers et al. (2020) for four different
nitialisations indeed do not converge until the start of the observable
otion, as shown in Fig. 6. The metric 𝑜𝑡 from (15) indeed shows

hat the motion is not observable for the first 9.6 s. The estimates of
he smoothing algorithm can be seen to remain small for the entire
ata set for each of the four initialisations. To compute 𝑜𝑡, the time
erivatives of the specific force �̇�n

c𝑖𝑗 ,𝑡 were approximated numerically
ased on inertial measurements of one of the two sensors and using a
ive-point stencil.

Secondly, we consider motion estimation for the 2D joint system,
hich is held mostly stationary for almost 14 s, but two different short

2 https://tinyurl.com/y4b2esjm
8

rotations are performed at two distinct time instants within these 14 s.
As can be seen in Fig. 6, the motion becomes observable only during
these brief periods of rotation, during which the metric 𝑜𝑡 increases
and the estimation error of the filtering method decreases. However,
the period with observable motion is too brief for the estimation errors
to decrease completely. After 14 s, the system is moved around freely
and the estimation error can be seen to decrease further. Again, the
estimates of the smoothing algorithm can be seen to remain small for
the entire data set for each of the four initialisations.

6.2. Biomechanical application

Finally, we validate our results in a biomechanical application,
where a subject consecutively walks for 198 s in a comfortable self-
selected pace and direction, sits down for 47 s and walks again for
185 s.

During the experiment, accelerometer and gyroscope measurements
from thigh- and shank-worn IMUs (MTw Awinda, Xsens) and marker
trajectories from optical cluster markers (VICON, Vero, Vicon Motion
Systems Ltd) were simultaneously captured (100 Hz sampling rate) via

https://tinyurl.com/y4b2esjm
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Fig. 7. Experimental set-up with inertial sensors (and surrounding optical cluster
markers) attached lateral and mid-distance on the thigh and shank segments. The
subject executed a walk activity of 198 s, followed by a sitting activity of 47 s and
another walk activity of 185 s.

Fig. 8. Top: Angular error 𝜃 of the filtering algorithm (blue) and the smoothing
algorithm (green) for the experimental data described in Section 6. Bottom: The metric
𝑜𝑡, visualising the amount of excitation and its effect on the observability of the relative
pose. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

a hardware time synchronisation. A picture of the experimental setup
can be found in Fig. 7. The study has been approved by the institutional
research committee of KU Leuven (Clinical trial center UZ Leuven, Nr.
S58936). All tests were done in accordance with the 1964 Helsinki
declaration and its later amendments.

Relative sensor orientations were again estimated in a filtering and
smoothing implementation following Weygers et al. (2020). Estimated
and reference relative orientations were aligned using Theorem 4.2
from Hol (2011). The resulting angular distance errors for both filtering
and smoothing implementations can be found in Fig. 8. We also show
the metric 𝑜𝑡 as defined in (15), computed similarly as in Section 6.1.
The metric clearly shows that the relative orientation is not observable
when the subject is sitting still.

With respect to the knee joint, the results show that a walking move-
ment at a self-selected comfortable pace yields sufficient excitation of
the joint centre to make the relative orientation observable according
to Definition 1. The mean angular distance that the filter and smoother
achieve are 5.60◦ and 3.83◦, respectively, for the part of the data

here the person was walking. During the stationary part, the error
or the smoothing implementation remained small with a maximum
ngular distance of 4.56◦. The error of the filtering implementation
rew to 19.59◦ after 47 s, but quickly recovered at walking onset after
he temporarily unobservable static time period. These observations
onfirm the theoretical results and are in line with the simulation
esults from Section 5.2.
9

7. Conclusion

In this work we have derived conditions on the observability of
the relative pose of a kinematic chain, estimated using inertial sensors
placed on adjacent segments. Any restrictive assumptions on the local
magnetic field, the dynamics of the motions, or additional sensors
were avoided to account for a large range of potential application
scenarios. We have shown that the relative orientation is observable
from purely inertial measurements whenever the specific force of the
joint centre and its derivative are linearly independent. Simulations and
experimental results confirmed the theoretical finding that excitation
alone does not suffice to assure convergence but that accurate esti-
mates are obtained in motions that fulfil the derived criterion. These
results overcome the need to blindly hope for sufficient excitation in
magnetometer-free inertial motion tracking, and they exemplify the
value of systems and control theory for the design of safe and reliable
sensor systems. They are expected to have an impact on a range of
control applications that rely on nonrestrictive motion tracking of kine-
matic systems. In such applications, the derived observability condition
can be used to provide crucial performance guarantees as well as to in-
struct users to perform motions that ensure observability. Future work
could include exploiting these results in feedback-controlled systems as
well as a more extensive study on the accuracy of the pose estimates
as a function of the sensor noise levels and the cross product of the
specific force of the joint centre and its derivative to provide bounds
on the error of the estimated pose.
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