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Improving indoor localization of Android phones

Erik Roeling B.Sc.

Department of Multimedia and Signal processing
Delft University of Technology

Delft, The Netherlands
2013

ABSTRACT

In this thesis an existing method to localise phones in an indoor environment is extended.
For this a new method to synchronise the clocks in presented. When looking at the different
causes of localisation errors we conclude that the incorrect detection of the time of arrival
(TOA) gives the largest errors. This is why we focus on the detection of the correct TOA
in this thesis. We discuss the effect of different kinds of calibration signals on the estimation
of the TOA. It is found that a chirp signal can be used to estimate the TOA at a sufficient
accuracy.

The errors caused by the distance-estimation method used, occur if the microphone and loud-
speaker on a phone are not co-located. The error is only present when the different phones
have different orientations. In the best case, the microphone positions can be estimated at
accuracy less than five millimetres. A direct relation between the maximum error and the
distance between the microphone and loudspeaker on the phones is found. In a computer
simulation the error only exceeds an average of 5 centimetres when 10 or more phones are
used, placed at random locations and orientations. These results are confirmed by real-data
experiments.
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Chapter 1

Introduction

To organise a teleconference, a teleconference system is needed. These systems either use
temporal or spatial processing for enhancing the speech quality. For temporal processing,
where only one microphone is available, the recorded audio is processed in short frames of a
few milliseconds that are converted to the frequency domain. In the frequency domain a gain
function is applied to the DFT coefficients. This function suppresses frequency bands of the
recorded audio with a lower speech to noise ratio more than the bands with a higher speech to
noise ratio. Because of the processing of individual frames spectral peaks may remain, which
may be perceived as ”musical noise” [1]. Temporal enhancement systems include: spectral
subtraction and systems based on linear and non-linear minimum mean-square error estimators
[2, 3].

For spatial processing, multiple microphones are needed. With this either adaptive noise
cancellation or beamforming can be used to enhance the noisy speech. With adaptive noise
cancellation one or more of the available microphones are used to record a noise reference.
The reference signal is filtered with an adaptive filter in order to subtract it from the noisy
speech. This method is an optimal way to filter the noisy speech as long a speech free reference
is available [4]. When beamforming is used, the recordings of the different microphones are
combined constructively for the desired speech signal and destructively for all the other signals.
This way the target speech signal is enhanced while other sources are rejected. To be able
to do beamforming, the relative Time of Arrivals (TOA)s of the speech signal needs to be
available. For this to work the relative locations of the microphones are needed [5].

In this thesis we present an updated method to localise the microphones of several Android
smart-phones, with the purpose to improve the quality of captured speech. Because just
under 70% of all smart-phones run on Android (May 2013) [6] it is possible to set-up a
teleconference system on the fly, if the method works on Android phones. This would mean
that teleconferences are not fixed to certain locations, which reduces the price to organise a
teleconference. Besides the large market share, Android is an open source platform which
gives us the possibility to create our own applications.

As the title of this thesis suggests, the goal of the contribution is to preform localisation of
randomly distributed microphones. In order to explain the proposed extension, the problem
first needs to be formulated. This will be done in Section 1.1. In Section 1.2, the experimental
set-up for both computer simulated and real-data measurements will be described. For the
outline of this thesis see Section 1.3.
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1.1 Problem formulation

To be able to determine the relative locations of the microphones we need to know the distance
between them. We use audio to determine distances, because other signals would measure the
distance between other sensors and we are only interested in the location of the microphones.
The distance that can be measured is the distances between the loudspeakers and microphones.
See Fig. 1.1 for an example for a two phone case. The distance between the microphone of the
ith phone and the loudspeaker of the jthe phone is denoted by dij . So dij = ||ri−sj ||, where ri
is the microphone location ([x y z]T ), sj is the loudspeaker location ([x y z]T ) and ||.|| denotes
the Euclidean norm. In the figure the distance between the microphone and loudspeaker on
one phone is quite large; the actual distance depends on the brand of the phone. The distances
range from 2 cm up to 12 cm. The number of microphones/devices is defined as I and the
number of loudspeakers/sound sources as J so i ∈ 1, 2, 3, . . . , I and j ∈ 1, 2, 3, . . . ,J .

Fig. 1.1: Set-up with two phones with all possible distances inserted.

Once the distances between the microphones and loudspeakers are estimated, the relative
locations of the microphones can be estimated. But for this at least four phones are needed
(in 3D)[7].

1.1.1 Distance estimation

The distance is determined by the propagation time of an audio signal between a loudspeaker
and a microphone. The sound source starts emitting a signal at τ (s), this we call the Time of
Departure (TOD). The signal arrives at τ (r), this is the TOA. They are related to each other
by the distance between the microphone and the loudspeaker and the speed of sound. If only
the direct path is considered, we have

τ
(r)
ij = τ

(s)
j +

dij
c
, (1.1)

where c is the speed of sound. In this thesis we use .(r) to denote received and .(s) to denote

2



send.

In practice, there are multiple paths between the loudspeaker and the microphone, all paths to-
gether we call the channel. The multiple paths are caused by reflections. The actual recording
is affected by the reverberation and acoustical noise following

xij = hij ∗ sj + νij , (1.2)

where xij is the recorded signal, hij is the channel, sj is the send signal and νij is acoustical
and quantization noise.

The channel, and thus amount of reflections that appear at the receiver, depends on the room.
The signal can get reflected by the walls, ceiling, floor and any object in the room there by the
intensity gets less since energy is dissipated. The signal is also attenuated while propagating
trough the room.

The rate at which the intensity of the signal drops is defined by the time it takes for the
intensity to drop with 60 dB with respect to the direct-path signal intensity. This time is
called the reverberation time (RT60). The reverberation time relates to the room following
Sabine’s equation [8]

RT60 =
24 ln 10

c

V

Aα
, (1.3)

where A is the surface area of the room (m2), V is the volume of the room (m3) and α is the
average absorption coefficient of the room surfaces. The equation does not take into account
losses from the sound propagating through the air.

1.1.2 Estimation of TOD and TOA

The TOD and TOA, that are used to determine the distance between the loudspeakers and
microphones, cannot be measured directly. Next to this, they are measured/estimated on
different devices that may not use one ”common” clock. This means that they cannot be
compared to each other. We actually have three separate problems: the estimation of the
TOD and TOA and the need for one ”common” clock.

TOD estimation

At the sending side on a known moment t(s) the signal is to be sent. Then there is some
unknown delay (ε(s)) that is caused by running processes and an internal delay path. This
last one is mainly due to the conversion of the digital signal into an analogue signal. This two
together give the actual TOD. If we put this in an equation we get:

τ
(s)
j = t

(s)
j + ε

(s)
j . (1.4)

3



TOA estimation

At the receiving side the signal arrives at τ (r). Then there is an internal delay (ε(r)) mainly
due to the conversion of analogue signal to a digital signal. This conversion, that involves

sampling, also results in some uniform distributed noise q(r) over the interval:
[
− 1

2fs
, 1

2fs

)
,

where fs is the sampling frequency. After this the signal is stored at t(r). If this is put into
an equation we get:

t
(r)
ij = τ

(r)
ij + ε

(r)
i + q

(r)
ij . (1.5)

”Common” clock creation

The difference between two clocks can be described by two parameters. We define τw as an
accurate real-time standard like UTC1 and τp as the time on a phone. At some true global
time t0 there can be a difference between τp and τw. We define this difference as the offset (δ)
according to

δ = τp(t0)− τw(t0), (1.6)

where τp(t0) is the time on the phone at t0 and τw(t0) is the time according to the real-time
standard at t0

If the difference between τw and τp changes with time there also is clock skew ∆. The rate at
which this difference changes is the clock skew. We define the skew as

∆ = lim
t1→t0

τp(t1)− τp(t0)

τw(t1)− τw(t0)
. (1.7)

By combining the offset and skew in one equation we obtain the following relation between τw
and τp,

τp = τw∆ + δ. (1.8)

1.1.3 Distance estimation

By combining (1.8) with (1.4) and (1.5) we can use (1.1) to estimate the distance between the
loudspeakers and microphones. The combining of (1.8) with (1.4) and (1.5) results in

τ
(s)
j =

t
(s)
j + ε

(s)
j − δ

(s)
j

∆j
(1.9a)

τ
(r)
ij =

t
(r)
ij − ε

(r)
i − q

(r)
ij − δ

(r)
i

∆i
. (1.9b)

1Coordinated Universal Time
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By estimation the channel, the direct path can be found, i.e. the t(r) that belongs to the arrival
of the signal that was sent, for this to work a line of sight is needed. The signals that are sent
with as purpose to estimate the channel will be called calibration signals. How to estimate the
channel and which signals give the best results will be discussed in Chapter 3. The estimation
of δ, ∆ and ε will be discussed in Chapter 4. This leaves q but this one cannot be estimated;
averaging over multiple measurements can reduce the error caused by this value, a higher
sampling rate or interpolation can also reduce the error.

1.1.4 Location retrieval

If all the distances between the microphones are found, classical multidimensional scaling
(CMS) could be used to determine their relative locations. But as said the distance between the
microphones and loudspeaker pairs is found. To find the relative locations of the microphones
a singular value decomposition (SVD) [7] can be used. For this last method, a minimum of
four microphones and four loudspeakers is needed in 3D, and one less of each in 2D.

1.2 Experimental environment

As mentioned before, we want to localise a set of microphones randomly distributed within a
room. Since this application is to be used in a teleconference setting, we define the room to be
a typical meeting room. With this in mind we assume the reverberation time to be between
0.15 and 0.7 seconds. The room size we used was 6 x 5 x 4 meters.

In this virtual room, a table of 1.5 m high was located in the centre. On that table, the
phones for localisation where positioned in a random way. Each phone has a microphone
and a loudspeaker. The distance between the microphone and loudspeaker on the phones is
assumed to be known. We want to estimate the relative locations of the microphones. This is
because these locations are needed to do beamforming. The error is defined as

e =
1

I

I∑
i=1

||r̂i − ri||, (1.10)

where r̂i is the estimated location of microphone i. Since we are only interested in the relative
locations the set of obtained locations can be rotated in any direction to minimize this error.
We use Procrustes alignment to minimize this error.

1.2.1 Model

For the simulations a model was made in MATLAB® of the recording and sending part of
Android phones together with a room impulse response to simulate the channel between the
microphones and loudspeakers. For the model the speed of sound of 343 m/s was used and the
same sampling rate as Android phones was used, 44.100 kHz. A distance of 3.1 centimetres
between the microphone and loudspeaker on a phone is used. This is the distance for the
Samsung phones.

5



For the room impulse response, the room impulse response generator[9, 10] was used. Sub
cardioid microphones where used since this angular response is most likely, but we are not
sure since the manufacturers do not supply the necessary information. The microphones are
orientated to the ceiling this was also done in the live experiments.

For the on- and offset a random value is used, these values are limited to a maximum that
can be chosen. The positions of the phones can be chosen, or a random configuration can be
used. The number of phones is limited to the number of different calibration signals.

Furthermore one can select the length of the calibration signals, in this thesis times between
0.05 and 0.5 seconds where used, the time between two calibration signals was 0.05 up to 1
seconds. The reverberation time can also be chosen, times between 0.15 and 1 second where
used in our experiments. The length of the impulse response was adjusted to the reverberation
time, only the response for half of the length of the reverberation time was calculated. This
means only a part of the complete room impulse response was obtained, since our interest is
to check if no errors are made the only interesting part is the beginning with the relatively
high pulses. The average pulse height drops exponentially so half way the average pulse height
is 30 dB down, this is more than enough for our purpose. The last thing one can choose is
the amount of adjective (acoustical) noise in the recordings, for this white noise was used. We
can use white noise because the correlated part of the noise is already there by using the RIR
generator. Noise is defined as everything but the direct path signal.

1.2.2 Software

For the live experiments, Android phones we used two Samsung phones (Galaxy SII) and
one HTC (Sensation), with an application of our creation where used. The application is
able to make a recording to a WAVE2 file and playback WAVE files of calibration signals
that have to be send. Once the recording is done the application sends the file to our server,
from where it can be downloaded for further processing. The sever can also send commands
to one or more phones. From MATLAB® one can send commands to the server. For the
communication between the server and the phones the pushing service from Google, Google
cloud Messaging for Android, is used. This means the Google API is used to send a message
to the Google service. For an overview of the communication see Fig. 1.2. In appendix A a
detailed description of the software can be found.

1.3 Outline

The outline of this thesis will be as follows:

• Existing methods for time synchronization, distance estimation and localisation are pre-
sented in Chapter 2.

• Methods to detect the time of arrival of a pulse are presented in Chapter 3.

2Waveform audio file format, .wav
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Fig. 1.2: The different blocks of the software with lines of communication between them.

• Methods to estimate of the different clock parameters of Android phones are presented
in Chapter 4

• An existing method is improved with experiments the two methods are compared. The
method and results are presented in Chapter 5

• Ideas for future work and the conclusions are presented in Chapter 6.
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Chapter 2

Literature review

In this chapter, we review the existing literature on the topics relevant to the work presented in
the remainder of this thesis. First the focus is on distributed time synchronisation. Secondly
on distance estimation and finally we review the literature on localisation. There will only be
a brief overview of the main contributions in the field that could be used to solve, a part of,
our problem. A few methods extra relevant to the rest of the thesis will be discussed more
in-depth.

2.1 Distributed time synchronisation

Plenty of work has been done on time synchronisation. Sundararaman [11] preformed a survey
of the work done up to 2005, but this only looks at physical clock synchronisation. When using
distributed systems, every device has its own physical clock and if time has importance for the
task at hand, these clocks need to be synchronised. There are two types of synchronisation
[11]. With the first type the device is synchronised with an accurate real-time standard like
UTC. This type of synchronisation is called physical clock synchronisation. With the second
type of synchronisation the clocks will be synchronised with respect to each other. This is
called logical clock synchronisation. Both topics are of interest for this thesis and thus, will be
explained.

For the our purposes we would like a ”common” clock that runs at an universal clock speed
(physical), but there may be some offset compared to an universal clock (logical). This is why
both topics are interesting. For skew estimation physical synchronisation is needed for offset
estimation logical synchronisation is enough.

In [12] a method from Elson et al.called Reference Broadcast Synchronisation (RBS) is used
to estimate the skew and offset. For this a reference packet was sent periodically over a
network, while the TOA is estimated. When enough TOAs are received [12] tries to find a
linear relation between them to estimate the skew. To estimate the true skew a device that
really runs on the UTC clock has to send the pulses at some known interval. Since the true
interval is known, any deviation is due to the clock skew. In practice this is accomplished by
synchronisation in multiple layers. The first layer has access to a real time server, all lower
layers synchronise with the layer above them. This is hard to accomplish on the Android
phones since it is unlikely that one of the phones belongs to one of the layers, i.e. that one
phone can, indirectly, synchronise with a real time server. The method can be used locally to
synchronise the clocks of phones, but one ends up with the skew of the sending device.

For the estimation of the offset [11] discusses nine methods. This thesis will again only look
at RBS because this is the only one that can also be used with audio signals. In general
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there is some server that knows the true time. The problem is to adjust/verify the clock of
some other device over some network that causes an unknown delay. The delay path normally
consists of some internal delays, the transfer to the other device(s) and finally post processing
also resulting in an internal delay. As we have seen in Chapter 1 this is also the case with
the audio signals we use. The RBS method for offset estimation decreases this delay path by
sending to more than one device at the same time. Because RBS looks to the time difference
of arrival the pre-processing time is not included in the error. As a result Elson was able to
improve the estimation from 11µs to 1.85µs. But to be able to do this, there is a need to have
low level access to the network, since our goal is to implement this on an Android phone this
is not a guaranteed. The principle of looking at the difference in TOA at the receiving side
can be used if we implement this with calibration signals send via the loudspeakers.

2.2 Distance estimation

On distance estimation/localisation a good starting point is the survey by Liu et al.[13] on
indoor localisation, and/or a survey by Pandey [14] for more general methods.

There are a serveral options for distance estimation. The most used are Time of Flight (TOF)
and Time of Arrival (TOA), but others use the Direction of Arrival (DOA). A less commonly
used method is based on the remaining energy in the received signal, Received Signal Strength
(RSS). In the remainder of this section a brief description of the methods will be given along
with a few references to actual implementations of the method.

2.2.1 Time of Flight

The idea behind TOF is very simple, but it requires special equipment. The idea is that a
signal is sent out. This can be light, sound or even a network package. The TOF now is the
time when this package returns to the source as a reflection. A high precision can be obtained
in this way, and in the end you do not only know the distance to someone else, but actually
the distances to obstacles / the walls of the room. In [15, 16] this is used for the localisation of
a robot in a room. Although this can be used for localisation of the telephones it restricts the
location of the microphones to the loudspeakers and this is not true in general. Furthermore
the implementation of microphones and loudspeakers on typical phones are not ideal since the
loudspeaker / microphone cannot rotate to face another direction. So is not possible to say
from which direction to echo is coming.

2.2.2 Time of Arrival

For distance estimation by means of TOA, everything depends on the time at which a signal
arrives at the destination. This is the most well know form of distance estimation. The
difference between TOA and TOF is that for TOF the sender and receiver are the same device.
this is not necessarilly the case for TOA estimation. There are a few different approaches within
TOA estimation, one of those will be discussed separately since it is a major one, called Time
Difference of Arrival (TDOA).

9



For TOA the distance is estimated from the difference between transmit time and the receive
time. This means that there is need for synchronisation between the devices. TOA based
distance estimation is used with various types of signals, in [17, 18] they use Wi-Fi while
in [19, 20] a mobile network is used to find the minimum localisation error. These four
implementations minimize the error in least squares (LS) sense

V (p) = (t− h(p))T (t− h(p)) , (2.1)

where p it the position, h the channel, t the time of arrival and V the optimization criteria.
This way a approximate estimation on the location is obtained, good enough for tracking
someone but not for our purposes.

In [21] Chan uses a maximum likelihood (ML) approach to get a quadratic equation to solve
from the different TOAs, but there is no simple solution. In [22, 23, 24] they use different
methods, (Taylor’s series, cancelling out terms and Fourier Transform, respectively) to make
this quadratic problem linear, so it can be solved by means of LS. The obtained errors are
in the order of meters. This is far from accurate enough since the distances between the
microphones are in the same order of magnitude. In [25] a method that obtains an error in the
order of centimetres can be found. In this method the squared distances are first estimated
together with the clock parameters, after this a SVD based method is used to retrieve the
locations of the microphones and sources. For this method to work there is a need of 4 phones
for 2D and 5 phones for 3D. Since this method obtains an error in the order of centimetres,
which is close to the best possible 7mm = c/fs, we will explain this method.

In [25] the error is minimized by a two-step approach. Where step one is the estimation of
the squared distance and step two is the estimation of the clock parameters. These two steps
are repeated over and over until the update rate is below some threshold. This decent can be
ratter slow. The speed can be increased, by making the assumption that you perfectly know
the relative times of the events, and thus know all TODs except τ1. This can be done by
sending pulses at a given interval.

The sending of the pulses for this method also gives a problem they have to be send from more
than five different locations and thus an extra device is needed to send the pulses. This device
itself is not localized and thus its location needs to be estimated after the location of all other
devices is known. But when the relative onset times are known the method works with one
phone less, so still four phones are needed for the localization (2D, and five for 3D).

The following assumption on the measured TOA is used

||ri − sj ||
c

= t
(r)
ij + τ

(s)
j + δ

(r)
i , (2.2)

where t
(r)
ij is the measured time of arrival the event j at the microphone of phone i, ri is the

receiver location vector [x y z]T and sj is the source location vector [x y z]T . τ
(s)
j is the TOD

of event j and δ
(r)
i is the offset in the clock of node i. Note that we assume the same, but also

include the clock skew. In this case we want to obtain ri and sj , for this we need to know δ.
We chose τ and measure tij . From now on the speed of sound c is said to be one for simple
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calculations and τ
(s)
1 = 0 and δ

(r)
1 = 0. This can always be made true by knowing the distance

between where event one occurred and the location of microphone one. In practice this means
that one phone has to generate at least one event and that event is called event one.

By raising (2.2) to the power of two and subtracting i = 1 and j = 1

− 2(r̄i)
T (s̄j) = T

(r)
ij + 2τ

(s)
j (t̂

(r)
ij − t̂

(r)
1j ) + 2δ

(r)
i (t̂

(r)
ij − t̂

(r)
i1 ) + 2δ

(r)
i τ

(s)
j (2.3)

is obtained, where

T
(r)
ij = ˆt(r)

2

ij − ˆt(r)
2

1j − ˆt(r)
2

i1 + ˆt(r)
2

11

r̄i = ri − r1

s̄j = sj − s1

i = 2, 3, . . . , I
j = 2, 3, . . . ,J ,

Normally the factor 2δ
(r)
i τ

(s)
j gives a problem, since this forms a quadratic term, but if the

events occurs at some interval, τ
(s)
j is known. To obtain a solution for (2.3), [25] uses the fact

that the matrix (r̄i)
T (s̄j) is of rank 3 (In 3D). If this is not the case this error must come

from the unknown δi values. By minimizing the difference between the rank 3 approximation

of −2(r̄i)
T (s̄j) and T

(r)
ij + 2τ

(s)
j (t̂

(r)
a,ij − t̂

(r)
1j ) + 2δ

(r)
i (t̂

(r)
ij − t̂

(r)
i1 ) + 2δ

(r)
i τ

(s)
j a new estimation of

δ
(r)
i is found. With this estimation a new value for −2(r̄i)

T (s̄j) is calculated and the process
is repeated. Once the difference between (r̄i)

T (s̄j) and the rank 3 approximation of it is below
a certain threshold the iteration is stopped.

With this method the offsets δ
(r)
i are estimated as well as a squared distance matrix (r̄i)

T (s̄j).

Time Difference of Arrival

TDOA is used for tasks where there is no synchronisation possible between sender(s) and
receiver(s), but there is synchronisation between the different sender(s) or receiver(s). For
instance GPS1 works this way. When using this method there is synchronisation between the
senders. By using the location of the sources together with the TDOAs the location of the
receiver can be estimated, for a detailed description please see [26].

In [27, 28] one will find techniques that obtain errors within 2 to 10 mm, but in our case there
is no previous knowledge about the source locations. In [29, 30] one will find methods that do
not include knowledge about this locations. There best case errors where quite different, in
order: 6 cm and 1 cm. The localisation of laptops is done in [29], they use a ML estimation
and Taylors expansion from [22] to obtain a result. The main disadvantage is that they need at
least five devices. In [30] Hennecke localises Android phones. For this pairs of two phones are
used with the rotation sensor of the phones as extra information. Since Hennecke also obtains
a minimum error that is close to the best possible error his method will be explained more

1Global Positioning System
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in-depth. Like [25], this is a complete method that performs both clock parameter estimation
and distance estimation, before the estimation of the microphone locations.

Hennecke uses the known distance between the microphone and loudspeaker on Android phones
and states that the location of the loudspeaker S can be expressed as

S = R+

d11 cos(φ1) d22 cos(φ2) . . . dII cos(φI)
d11 sin(φ1) d22 sin(φ2) . . . dII sin(φI)

0 0 . . . 0

T , (2.4)

for the two dimensional case, where R is the receiver location matrix (I × 3) and S is the
source location matrix (J × 3) The TOA is defined as

t
(r)
ij = τ

(s)
j +

dij
c
− δ(r)

i . (2.5)

Note that the skew is not present. If the event j is also received by a microphone k the two
can be subtracted to obtain

t
(r)
ij − t

(r)
kj =

dij − dkj
c

− δ(r)
i + δ

(r)
k . (2.6)

Next [30] states that if this is done two times for the same pair of phones with only changing
the sending phone

t
(r)
ii − t

(r)
ij − t

(r)
ji + t

(r)
jj =

dii − dij − dji + djj
c

(2.7)

is obtained. Since dii, djj and c are known; the sum
dij+dji

c is obtained. Last they try to
obtain the relative locations of the microphones, from this distance sums. They use (2.4) to
reduce the number of free model parameters and then use an iterative trust-region-reflective
algorithm to obtain an estimate of the locations of both the microphones and the loudspeakers.
This results in an underdetermined system of equations. A underdetermined system either
has no solution or infinitely many solutions. An underdetermined system can be solved in
practice if a good initial guess can be made.

2.2.3 Direction of Arrival

The idea behind DOA, sometimes called Angle of Arrival, is that the source location can be
determined by looking at the DOA seen from multiple viewpoints. If the relative location of the
viewpoints is known the position of the source can also be determined. In general two or more
microphones on each device are needed to estimate the DOA. From that moment on algorithms
based on Multiple Signal Classification (MUSIC) [31] and Maximum Likelihood (ML) [32, 33,
34] can be used to find an estimate of the loudspeaker locations. This directly gives problem
one, we are looking for the microphone locations and not the loudspeaker locations. Another
problem is that this method needs a very good quality signal, which is recorded completely
synchronous since even small errors in the angle can lead to a big error at some distance. For
the Android phones used it is not possible to use two microphones at the same time and even
if it is possible to use to microphones it is not possible to tell how the sampling is done.
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2.2.4 Received Signal Strength

The last method on localisation that will be briefly explained uses the fact that the power
of the signal spreads in multiple directions when travelling from the source to the receiver.
Since the relation between amount of spread and the travelled distance is known localisation
is possible. If Wi-Fi is used to determine the position, the errors lay between 1 and 5 meters.
While the best error with audio is the 22 cm, here the maximum distance is only a couple of
meters, depending on the loudness of the source. The research with audio signals is done in
[35], they obtained the error of 22 cm. In [36] a study has been done on the practical side of the
method. They conclude that it can be an alternative to GPS but only in some environments
and indoors is not one of them, so not useful for our purposes.

2.3 Location estimation

After the distances are estimated, the last step is to estimate the locations from the estimated
distances. For this there are two methods that can be used to solve our problem of finding the
microphone locations. The first one, CMS, is straightforward and finds the best embedding of
distance measurements in a least squares sense into a lower-dimensional subspace [37].

The other method is used when a (squared) distance matrix is obtained like in [25]. Here a
method from [7] is used to extract the locations. This method uses the SVD to obtain the
locations. First the SVD is taken of the squared distance matrix X to obtain

RST = X = UΣV, (2.8)

where R is the receiver location matrix (I × 3) and S is the source location matrix (J × 3).

By introducing a new (3 x 3) matrix C, R and S can be extracted into

R =UC (2.9a)

ST =C−1ΣV. (2.9b)

To obtain the matrix C a minimization problem has to be solved. To be able to solve this the
position of the first microphone has to be fixed, next to this the position of the first source has
to be defined as a point on the x-axis. From this point on a gradient decent can be used to find
a minimum. In total there are eight minima, one true solution and seven spectral reflections
of this solution. The complexity of this optimization is fixed to O(9) since only nine values
have to be found. This value does not change if extra devices are added.

2.4 Conclusion

From the literature survey pressented in this chapter we can concluded that there are a lot of
existing localisation methods of which a few can be used for the estimation of the distances.
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The distances can be used to find the locations of the microphones. The methods that can
be used have two problems: The algorithms are relatively slow because of the time needed to
do send the necessary signals and/or due to the slow convergence to the localisation solution.
The other problem is that some of the methods also need a minimum of five devices to be able
to localisation (3D). In this thesis we want to find a method that is fast and works even when
one only wants to localise two devices. We also have seen that most methods do not mention
the clock skew, we will try to find out if clock skew may be disregarded or not.
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Chapter 3

Time of arrival estimation

In Chapter 1 we have introduced the problems that have to be solved to localize a set of
distributed microphones. In order to localize the microphones we first need to obtain accurate
TOA estimates In this chapter we will see how the TOA can be estimated.

For localisation algorithms to work property, an accurate TOA measurement is needed. The
correct TOA is determined by the direct path between the loudspeaker and microphone, i.e.
the distance between them. This property is used for localisation. If there is an error in the
TOA, there will also be an error in localisation. It can happen that errors cancel out. For
instance, this occurs when TDOA is used and all the errors in TOA estimation are the same.
If the estimated TOA is 1/1,000s off, the error can already be 34 cm. In this chapter we
will go in depth into the detection of the TOA. First, two different calibration signals will
be compared. Second, simulation examples will be provided to show what can be expected.
Finally, we draw conclusions about TOA estimation.

3.1 Types of calibration signals

The first problem that is encountered is to find out from which device the signal originates. A
straightforward solution is to emit one signal at the time. This is very time consuming since
there has to be enough time between the signals to be able to separate them. The better
option is to use a different signal for each device. For this to work we need to be able to
distinguish the different signals even if there is overlap.

Which signals can be best distinguished depends on the method of detection. Since the original
signal is known a matched filter can be used for the detection. A matched filter is the optimal
linear filter which correlates the known signal with the recording to detect the presence of
the signal [38]. Because correlation is used, signals with a high auto-correlation and a low
cross-correlation are best distinguished. Next to the high auto-correlation it is also desirable
that it only has one peak at full correlation and is relatively low everywhere else. If this is
not the case problems will occur when multiple paths arrive close together. Since time and
bandwidth are limited the signals need to be localised in both time and frequency.

3.1.1 Gaussian

The first synchronisation pulse we will discuss is the Gaussian shaped pulse. For this a shape
of a Gaussian distribution is modulated with a sinusoidal. The maximum of the pulse in
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normalized to one, so the envelope is given by

G = e−a
2
. (3.1)

The support of the pulse ranges from a = −2.5 to a = 2.5 to make sure that values at the
edge are close to zero. The length of the pulse is determined by taking N =

tpulse
fs

samples in
the range of a, where N is rounded to the nearest integer. By modulating this Gaussian shape
with sinusoids of different frequencies, different signals can be obtained for the different phones.
This means that it is possible to see from which phone the signal originated. Furthermore, the
modulated Gaussian pulse is localized in both time and frequency as required. There is only
one catch, the auto-correlation of the Gaussian signal is also a sine modulated version of the
original Gaussian shape, this means there is not one clear peak that has to be chosen. As can
be seen in Fig. 3.1. The secondary peaks are 11 samples of, the third highest are 84 samples
of, this gives, in distance, an error of 8.6 cm and 65 cm.
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Fig. 3.1: Auto- (blue) and cross-correlation (red) of two sine modulated Gaussian shapes. The
auto-correlation is obtained by from a Gaussian shape modulated with a sine of 10 kHz. For
the cross-correlation the Gaussian shape modulated a sine of 10 kHz was correlated with a
Gaussian shape modulated with a sine of 20 kHz. The length of the pulse is 0.2 seconds. (a)
Whole correlation, (b) Correlation around a shift of 0 seconds

Because of this auto-correlation, it is not possible to accurately distinguish between the main
lobe and secondary lobes, especially when there is a channel with more than one path. In
other words when there is reverbereation. This can be reduced by choosing a shorter pulse,
but then loudness get less, meaning a smaller distance at which the signal still gets detected.
Since the path length of the reflections can almost be as long as the path of the direct pulse,
the signal has to be very short, less than 0.05 seconds. This to avoid that the signals start to
add up resulting in a maximum peak at a different location. If this happens it is impossible
to say which peak should be used.

3.1.2 Chirp

The other calibration signal we looked at is the chirp. With a chirp, or sweep, the signal starts
at one frequency and stops at another. The transition can be done linearly, but also by other
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smooth functions as, a second order function. The rate of the transition can be chosen, and
thus the length of the signal. So it is a time and frequency localised function as was required.
The linear case can be described as

x(t) = sin (2πt (f0 + fδt)) , (3.2)

where x(t) is the output at time t and f0 is the starting frequency and fδ is the transition
rate.

If the auto-correlation of the chirp is compared to the auto-correlation of the Gaussian shaped
pulse there is a big difference. The chirp gives one small main lobe and very small (only 20%)
secondary lobes. The frequency response on the other hand is not smooth at all and due
to the sudden onset and offset in playback distortions appear in the signal. This causes the
auto-correlation to be far worse than what is possible in theory. See Fig. 3.2a for the frequency
response of the chirp.
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Fig. 3.2: (a) The original frequency response of a chirp. (b) Frequency response after applying
different windows

To remove the distortions caused by the sudden onset and offset in playback a window can be
used. Unfortunately most windows like the Hamming cause the secondary lobe to rise. The
rise of the secondary lobes is because now only a small range of frequencies are fully present
and the rest are suppressed, see Fig. 3.2b. To solve this a window is needed that is more or less
flat on top and has a steep sudden unset, unlike most commonly used windows. In accordance
with [39] a fourth root sine function is used as window. This window has very steep sides and
good suppression of the high and low frequencies, see Fig. 3.3.

One also has to be careful when choosing the frequency ranges. If they lie close together or even
overlap the cross-correlation is not as low as it can be, especially when the signals are short.
This gives problems at relatively long distances. In that case the cross-correlation with the
unwanted signal originating from the recording phone is as strong as the auto-correlation with
the wanted signal originating from another phone. This especially happens when there is a
little to no reverberation. In practice this means that the frequencies have to be chosen further
apart, or a longer signal should be used in order to make sure that there always is an auto-
correlation peak that is higher than the cross-correlation peak. That choosing frequencies that
lay further apart works is easy to see, but also longer signals do the trick. This is because this
increases the auto-correlation more than the cross-correlation. The only parts that correlate
are the parts that lay close together in the frequency space, since this is only a small part of
the whole signal the increase in in cross-correlation is less than the increase in auto-correlation.

In Sections 3.3 there will be a couple of experiments to see how good the estimation of the
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Fig. 3.3: Fourth root sine window

time of arrival is for the different signals, but first we have a look at an example.

3.2 Example

We now have two calibration signals that can be used to find the correct TOA, but as said in
Section 1.1.1 we actually estimate a specific channel. By applying a matched filter with one
of the calibrations signals as reference one of the channels to the recording phone is obtained.
From the channel that is obtained it is possible to retrieve the position of the first peak, if
there is a line of sight. This is very easy if there is no noise, then one can really see one clear
peak. Recall that noise is defined as all but the signal originating from the direct path. In
practice this is not that simple, due to reflections and noise also other peaks appear. Some
peaks do not originate from reflections or noise but from the other phones that did send out a
signal and in particular the receiving phone that sends out a signal. Although the signal used
makes sure this signal is suppressed as much as possible, it is still a signal with a lot of energy
since it is close, while the wanted signal can be a signal of low energy.
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Fig. 3.4: The true channel to be estimated by a chirp and a Gaussian signal

In Fig. 3.4 one sees an example of a channel. Here a red dotted line is added for the signal
arriving from the phone itself and a blue one from a phone some distance away. Of course the
red line has a peak that is much higher than the other, the task is to estimate both, and for
this the calibration signals are used. One can see that the peaks can be close to each other.
This can give problems when the auto-correlation has high values over a longer range as is the
case whit the Gaussian shaped signal.
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Fig. 3.5: The channel estimated by a chirp and a Gaussian modulated signal. The signal
length was 0.025 seconds for both signals.

If the channel is estimated with a Gaussian signal and a chirp the response will be as depicted
in Fig. 3.5. For the chirp a signal of 0.025s long starting a 0 Hz to 5 kHz and from 5 kHz
to 10 kHz was used. For the Gaussian shaped signals, a Gaussian shape was modulated with
sinusoids with a frequency of 1 kHz and 21 kHz, this signal length also was 0.025s. For the
Gaussian an ideal case scenario was used, normally the signal would be of chosen to be longer,
since this signal now only has a little bit of energy. One can see right away that the chirp has
much clearer peaks. The task at hand is to find the first peak, because this is the direct path,
and the length of this path is what gives the distance. This is why a good distance between the
peaks and the noise floor is needed. One also sees some noise in front of the chirp, this is due
to the cross-correlation that does not suppresses all of the unwanted signal, especially since
the signal is so short in this example. In both cases one sees that the first peak is somewhere
just around 0.01 seconds, if one zooms in into this region Fig. 3.6 will be obtained.

In this figure the difference between the two methods is really visible. With the Gaussian
signal one can really see that the secondary lobes are as high as the primary lobe. Due to
correlation, that has large values over a long range, the signals originating from the different
paths start to add up. In this case the peak form the second path disappears into the first,
causing the first maximum to shift. This means that the incorrect peak is picked if the largest
peak is chosen, and thus an error in localisation.

If we compare the Gaussian shaped signal and the chirp we see that the major differences are
in the auto- and cross-correlation. The Gaussian shaped signal has a lower cross-correlation,
while the chirp has a narrower auto-correlation. Because the chirp is less prone to errors we
decide to use the chirp in the rest of this thesis.
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Fig. 3.6: The channel estimated by two types of signals, zoomed in on the first lobe

3.3 Simulations

To see where any errors occur in the estimation of the TOA three set-ups where used. In
all set-ups we looked at the error at different distances between two phones. With the first
experiment the amount of noise was varied, for the second the length of the pulses and for the
last one we varied the reverberation time. Each experiment was repeated 20 times and the
mean error was taken for the figures. This resulted in Figs. 3.7, 3.8 and 3.9.

The error in the figures is calculated as follows: first the difference with the true TOA was
calculated for both sides, only for the signal originating from the other phone (the weaker
signal). The absolute value was taken of these two values and after this they were added to
each other, which is defined as the error. From this the mean was calculated for the figures.
Since the values could be large, 1000 samples or more, the values where truncated to 50
samples. This means an error of more than 39 cm.

Fig. 3.7 shows the effects of noise on the estimation of the TOA. It is clear that as long as the
noise is below a threshold it is good and after this it is not detectable. This means that noise
does not shift the pulses but makes detection impossible. This is a good thing because now
we only need to be below some threshold and not in an environment with the least amount of
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Fig. 3.7: The effects of noise on the estimation of the TOA, with a reverberation time of
0.4 seconds and a signal length of 0.2 seconds. Mean error in samples over 20 experiments,
truncated at 50.

noise possible.

In Fig. 3.8 the effects of the signal length on the TOA estimation can be found. Here it is clear
that there is a minimum length for the calibration signal. A length of more than 0.15 seconds
seems to be good choose. Although the error decreases if longer pulses are used, it may not
way up against the costs. Since the improvement is neglect-able compared to the increase in
signal length. We decide to use a signal length of 0.2 seconds for all other experiments.

In the last figure of this experiment, Fig. 3.9 the effects of the reverberation time on the TOA
estimation are made clear. The interesting thing is that a low amount of reverberation gives
the same error as a large amount of reverberation.

Note that there is an error up to 2 m in all the results. What causes this error is still unknown.
Manual peak picking results in the same answer so detection itself is not the problem and since
the maximum error is only 5 samples it was left this way for now. The error that occurs at
7 meters is because the signal falls below our detection threshold. This threshold can be
adjusted with as consequence that it will be more vulnerable to noise when trying to find the
peak originating from the direct path.
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Fig. 3.8: The effects of the signal length on the estimation of the TOA, with a reverberation
time of 0.4 seconds and a noise level of 65 dB SWL. Mean error in samples over 20 experiments,
truncated at 50.
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Fig. 3.9: The effects of reverberation on the estimation of the TOA, with a noise level of 65 dB
SWL and a signal length of 0.2 seconds. Mean error in samples over 20 experiments, truncated
at 50.
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3.4 Conclusion

We have looked at two kinds of calibration signals. Both the Gaussian shaped signal and the
chirp can work. The Gaussian needs to be really short to be able to distinguish the different
paths of the channel. If we want to use the chirp we have to apply a window to remove the
onset effects. The fourth root sine window works good, while more commonly known windows
lose the sharp clear peak. Because the cross-correlation of the chirp is not as low as that of the
Gaussian, one has to take care of not picking the cross-correlation peak at larger distances.
We decided to use the chirp signal with a signal length of 0.2 seconds for the rest of this thesis.
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Chapter 4

Time synchronization and internal delays

In Chapter 3 we have seen how to estimate the TOA that is needed to solve the localisation
problem that was introduced in Chapter 1. Next to the TOA we also need to estimate the
clock parameters. In this chapter we will see how these parameters can be estimated and thus
create one ”common” clock.

4.1 Skew estimation (∆)

To gain insight in the dissipation of time according to the devices, i.e. insight in the skew
parameter, we need to look at time differences between measurements. The crystal oscillators
in the phones that determine to clock speed are different for different phones and even more
so for different brands of phones. They also depend on temperature so in a sense also on the
amount of processes running on the phone. Since temperature is a slowly varying process the
clock speed can be assumed constant over a small amount of time, for at least a few minutes.

One way to estimate the skew is to send two calibration signals after each other. If the second
pulse is sent an exact amount Tint = τw(t1) − τw(t0) later, the signal should also arrive this
amount later, any differences are due to the skew. With (1.7) we can calculate the skew by
dividing the measured time difference by Tint. But this only works if there is a method to send
a pulse an exact amount of time later. Since this is in general not possible, another solution
has to be found.

As we have seen in Chapter 2 one of the options is not to compute the actual skew but the
relative skew. If the assumption is made that the skew is only due to the difference in clock
speeds, the relative skew can be computed. Since the recording and playback are buffered
processes, they do not (directly) depend on the amount of other running processes. This is
true as long as the buffer does not run out of space, the assumption now is made that this
does not happen. This is a reasonable assumption since the buffer size is normally chosen to
prevent this from happening.

Say that skew directly influences the sampling rates, thus that there is one speed for the AD1

and DA2 converter. This would imply that a skew higher than one results is a higher frequency
signal at the sending side. This is because more samples are send in the same amount of time.
At the recording side sampling is also done at this higher rate, so it looks like the frequency
is lower than it actually was, because more samples are received in the same amount of time.
As long as the two skews are the same the skews cannot be calculated, because the two effects

1Analogue to Digital
2Digital to Analogue
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counter each other. But as they differ it is possible to say how they relate to each other. This
is done in exactly the same way, but since the exact time difference is not known the relative
skew is obtained. In practice this can achieved by sending two or more calibration signals in
one audio file, so two signals are sent at the following moments:

τ
(s)
1 =

t
(s)
j + ε

(s)
i

∆i
(4.1a)

τ
(s)
2 =

t
(s)
j + ε

(s)
i

∆i
+
Tint
∆i

, (4.1b)

where τ
(s)
x is the actual time pulse number x left the loudspeaker, t

(s)
j is the time the send

command is given, ε(s) is noise due to internal delays and Tint is the pulse interval.

If (4.1) is combined with (1.1) and (1.9b) to
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+
dij
c
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∆i + δ

(r)
i + q

(r)
ij,2, (4.2b)

the moment the calibration signals are registered is obtained. t
(r)
ij,x is the time event x send

from phone j is registered on phone i and q
(r)
ij,x is the sampling noise of event x. Because the

sampling noise is only a very small quantity we will neglected it from this point on.

On all the phones the difference between the calibration signals can be calculated to obtain

t̄ij = Tint
∆i

∆j
, (4.3)

where t̄ij = t
(r)
ij,2 − t

(r)
ij,1. By dividing t̄ij by Tint an estimate of ∆i

∆j
is obtained.

If the crystal oscillator of the phones would be very accurate and known, it would not be
necessary to calculate the clock skew, but this is not the case as can be seen in Fig. 4.1. To
make this figure a measurement of 60 seconds was done, whereby a Samsung phone sent out
a chirp of 0.2s every 0.25s. The sampling rate of the phones was set to 44100 Hz. The error
was measured in number of samples difference.

Fig. 4.1 gives us some valuable insight. The first thing one might notice is that there is a lot
of fluctuation in the offset in the beginning of the measurement. Here one sees only one figure,
but if you look at all 12 measurements, the beginning always contains this fluctuation. (see
appendix B) After about 30 calibration signals, so after 7-8 seconds, it clears up. Since all the
recordings of all the phones show the same fluctuation this is error is likely to come from the
playback side, although we cannot be sure about this. We can see that the difference in offset
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Fig. 4.1: Progression of the offset between phones. Two Samsung’s (Galaxy SII) and one HTC
(Sensation). To make this figure a measurement of 60 seconds was done, whereby a Samsung
phone sent out a chirp of 0.2s every 0.25s. The sampling rate of the phones was set to 44100
Hz. The error was measured in number of samples difference.

is compensated on the next sample, with the exception of some samples that are really of.
Those are due to the selection of the incorrect TOA. Looking at the rest of the recoding we see
periodic spikes with a different period for the different phones. These spikes are introduced by
the sampling of the signal. If it would be possible to record a continuous signal there would not
be any spikes but the actual differences between the clocks. This also happens by averaging
over an infinite long recording, this is essence the same as what is done with RBS [12].

In Table 4.1 we find the results of all the measurements. What can be learned from this table
is that the skew is not completely stable, although the average skew is always the same the
spike interval changes from measured to measurement and thus there is a small change in the
skew. The interval in the table is the average interval of the recording. This is why slight
changes are certainly possible but changes up to 12.5s are not to be appointed on doing an
averaging over a relatively short measurement. But the estimated skew can be used for some
time. When this measurement was repeated one month later the average skew was again
exactly the same for the different pairs. The spike interval had an average offset of 2.5s with
respect to a measurement one month earlier. This means that if a rough estimation is good
enough, this estimation can be done once and then use it for longer period of time, say a
couple of months. But for accurate measurements it is better to do it each time.

Another interesting thing about the skew estimation is that it matters which phone is sending.
One would only expect a sign change in both the average and the interval if the sending and
receiving phone change, but this is not the case. In some cases it is as expected with the
Samsung 2 and HTC for instance. With the HTC sending we have an average of minus one
every 8.5s, and the other way around the average is plus one every 8.9s. But if we look to
Samsung 1 and the HTC it is a completely different story. With the HTC sending the average
is plus one every 12.75s and the other way around its minus one every 18s.

Let us take the average difference of three samples between each calibration signal that is
obtained if the HTC is involved. This means that the offset grows with three samples every
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Table 4.1: Table with clock skew estimation. In the column skew you find the skew w.r.t. the
sending phone. In the last three columns you will find the interval at which an extra difference
in TOA is added (or subtracted).

Skew HTC Samsung 1 Samsung 2

# HTC Samsung 1 Samsung 2 Action Interval (s) Action Interval (s) Action Interval (s)

1 0 3 3 - +1 13.5 -1 8.1
2 0 3 3 - +1 12.9 -1 8.5
3 0 3 3 - +1 12.8 -1 8.6
4 0 3 3 - +1 12.3 -1 8.8

5 -3 0 0 -1 17.3 - -1 4.9
6 -3 0 0 -1 17.8 - -1 5.0
7 -3 0 0 -1 18.3 - -1 5.1
8 -3 0 0 -1 18.8 - -1 5.0

9 -3 0 0 +1 10.5 +1 0.0 -
10 -3 0 0 +1 9.8 +1 0.0 -
11 -3 0 0 +1 8.0 +1 12.5 -
12 -3 0 0 +1 7.4 +1 9.8 -

0.25 seconds. If the different calibration signals are sent one second after each other the relative
skew results in an error of 12 samples which equals an error of 10 centimetres. This means that
the skew cannot be neglected for longer measurements. Because of this we will incorporate
the skew.

4.2 Offset estimation (δ)

In Chapter 1 we defined the offset with (1.6). This offset is defined with respect to a real-time
standard. We can also define the relative offset, this would give

δ = τp1(t0)− τp2(t0), (4.4)

where τp1(t0) is the time according phone 1 at t0 and τp2(t0) the time according to phone 2 at
t0. We also need to define a t0. We define it as the beginning of the recording. This can be
completely different moments if it is defined in a real-time standard. But by doing this we do
not need to save the start time of the recording, the recording itself is all that is needed.

To be able to calculate the relative offset between phones, one has to know the distances
between one loudspeaker and the microphones of two or more devices. The relative offset will
be calculated of the recording devices. It is best if the distances are equal else compensation is
needed but at least the distances must be small, later on one can see why this is. The relative
offset now is defined as the difference between the estimated TOAs. If the distances are not
equal the extra travel time has to be subtracted from the one with the extra distance, but this
will give an error due to the skews that are not known (t = d1∆1−d2∆2

c ).

Equations (1.1) and (1.9b) can be combined to
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where q is again neglected.

If we rewrite the different skews into one skew k and put all the knowns to one side, we get
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Note, although the relation between the skews is known the actual values are unknown.

A skew of one would mean a perfect clock. The clock of an Android phone can run of its
own without synchronisation for more than a few hours being seconds of. This means that
the skew of an Android phone is close to one. Since it can be assumed that the skew always
has a value that is very close to one, and since the distances between the phones are small,
(1−∆k)

dij
c can be neglected. This will give a small error but it will be far smaller than one

sample, so not noticeable.

Let us define a new variable zx that is equal to δ
(r)
x + ε

(r)
x . When (4.6) is put into a matrix,

A =


τ

(s)
1 ∆k + z1

∆k
∆1

τ
(s)
2 ∆k + z1

∆k
∆1

. . . τ
(s)
I ∆k + z1

∆k
∆1

τ
(s)
1 ∆k + z2

∆k
∆2

τ
(s)
2 ∆k + z2

∆k
∆2

. . . τ
(s)
I ∆k + z2

∆k
∆2

...
...

. . .
...

τ
(s)
1 ∆k + zI

∆k
∆I

τ
(s)
2 ∆k + zI

∆k
∆I

. . . τ
(s)
I ∆k + zI

∆k
∆I

 (4.7)

is obtained.

Next subtract the first row from every other row, to
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Here we end up with the relative offsets that depend on the relative skew. The actual offsets
can only be obtained when one offset, z1, is known. If this is not known we end up with an
error depending on the magnitude of the relative skew and zx. Besides this the neglecting of
the sampling noise gives an additional error.

4.3 Conclusion

In this chapter we have seen that the relative clock skew can be estimated. The relative offset
cannot be estimated because of the clock skew. Next to this we have not jet obtained a method
to estimate εsj . This parameter can be avoided if a TDOA method is used.
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In the end we want a fast method to localize Android phones. First estimating the clock
parameters and then do localisation will not result in a fast method. Because the following
needs to be done:

1. Position the Android phones with care.

2. Determine the exact distances between the microphones.

3. Estimate the relative offset and skew of the phones.

4. Reposition the phones to their wanted locations.

5. Do a TDOA based measurement.

6. Calculate the relative locations of the phones.

This is a lot of work and takes time so not a fast method. The relative clock skew can be
calculated this way since only one phone has to send a second calibration signal just after
the first, which takes not even halve a second. Since [30] has found a way to overcome the
estimation of the offset we will extend there method with the estimating of the skew and see
if this improves there estimation.
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Chapter 5

TOA based localisation and Results

In the previous chapters we have defined the localisation problem. This problem we have
partly solved. In Chapter 3 we have found that a chirp can be used to estimate the correct
TOA and in Chapter 4 we defined a method to estimate the relative clock skew and the offset.
We have also seen that (direct) estimation the offset is time consuming and should be avoided
for a fast localisation algorithm.

In this chapter a method to estimate the distance between two phones will be updated so that
it uses the relative clock skew. Once all distances are known it is relatively easy to determine
the relative locations. The method that is used is based upon [30], the difference is in the
estimation of the skew and the use of different calibration signals for the different phones.
First this updated method will be explained. Then we confirm that this improves the existing
method by using both simulated and real-data experiments.

5.1 Method

Since the method is based on [30], which already is explained in Chapter 2, only the differences
will be discussed here. The fundamentals of this method for estimating the distance between
two phones is shown in the example of Fig. 1.1.

We start with (4.5) which is reproduced here for the convenience of the reader.

t
(r)
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(
τ

(s)
j +

dij
c

)
∆i + δ

(r)
i + ε

(r)
i .

Note that this relation only looks at the recording side. The actual time the pulse left the
speakers is used in the equation, not the time the command to send was given. As discussed
before it is not possible to estimate the time between the moment the command was given
and the moment signal starts to propagate. This is why one can just use this time as the send
time.

Of this moment the skew is unknown, to solve this, another pulse has to be send. This is done
as is described in Section 4.1, this way the relative skew, ∆i

∆j
, is obtained.

The relative skew can now be combined with (4.5) to
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, (5.1)
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where k is denoting one of the phones.

For easy notation a new variable is introduced, t̂
(r,k)
ij that equals

t̂
(r,k)
ij = t

(r)
ij

∆k

∆i
. (5.2)

From here on we can continue with Hennecke et al.[30]. They apply (2.5), (2.6) and (2.7). The
measured value in all these equations was t we apply the same equation with our counterpart
of t, t̂, this results in

t̂
(r,k)
ii + t̂

(r,k)
jj − t̂(r,k)

ij − t̂(r,k)
ji = ∆k

(
dii + djj

c
− dij + dji

c

)
. (5.3)

From this point on only one phone with a known skew is needed to obtain the
dii+djj

c − dij+dji
c

that [30] uses. Since dii and djj are known
dij+dji

c is obtained. The distance between the

microphone of phones i and j is now defined as
dij+dji

2 , this distance is used to determine
the relative location of the microphones using MDS. If there is no phone of which the skew is
known an error is obtained when ∆k is neglected. The size of this error will only depend on
the ∆k. As we have seen in Chapter 4 this is not the case if the skew is neglected and not all
TODs are the same.

5.2 Results

This section is divided in two parts. The first part will focus on the results of the computer sim-
ulations that where preformed. The second part will consist of results gained while preforming
real-data experiments with actual phones. From the real-data experiments it is not possible
to verify all parameters, but any differences between the computer simulations and real-data
experiments will be made clear. It was also possible to see if there was any improvement in
error with our extension on the work of [30].

5.2.1 Computer simulated results

Two computer simulations where preformed: distance estimation and actual localisation. For
the distance-estimation only two phones where used. Here the goal was to see on what range
this method would work under various conditions. For the localisation part two or more phones
where used. Here the goal was to see what would happen if the localisation was preformed
with multiple phones at once under various conditions.

Distance estimation

For the first experiment we looked at what noise would do to the localization error. The
amount noise that was added to the signal is defined in dB SPL. To get some idea of the
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values, 65 dB compares to a conversation at one meter, 80 dB to the sound in a bus, 95 dB
to the sound of a passing metro and 110 dB to a loud car horn at one meter. The same
experiment was preformed to look at the error in the estimation of the TOA. The error is
expected to follow the shame shape. The experiment was repeated 20 times the mean error is
used. The measurement was preformed with a reverberation time of 0.4 seconds. The length
of the calibration signal was 0.2 seconds. In Fig. 5.1 one sees the results of this experiment.
As expected there is noise threshold. Below this threshold localisation works. If we compare
this figure with Fig. 3.7 we see that this error indeed originates in the TOA estimation.
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Fig. 5.1: The effects of noise to the maximum distance. The mean error over 20 experiments
in meters, measured with a pulse length of 0.2 seconds and a reverberation of 0.4 seconds.
The error is truncated at 10 centimetres.

The following simultion investigated the effects of reverberation on the maximum distance.
For this a pulse of length 0.5 seconds was used and a noise level of 55 dB SPL. This length
and noise level where used to make sure the error was due to the reverberation and not some
other effect. The best result would be very stable and always give the same numbers. This
would mean that reverberation has no effect on our algorithm. In Fig. 5.2 one sees the results
of this experiment. The effect due to the reverberation makes that the maximum distance
decreases. If we compare this figure with Fig. 3.9 we see that this error, as the error due to
the noise, originates in the TOA estimation as is expected.

The final computer simulation only involving distances was to see what happens if we rotate
the phones around there axes. Since there is some distance between the loudspeaker and
microphone, this angle will influence the error. The expectation is that the error will have a
maximum of

dii+djj
4 . This will happen when both the microphones and both the loudspeakers

lay on one line, but one phone is rotated 180 degrees with respect to the other. The expectation
is that the minimum error will be less than 3.5 mm, since this is half a sample offset. This is
the very best we can do with this sampling frequency (44.100 Hz). The angle of the phones
is given with respect to the line through both microphones. The position of the microphones
is not changed during the experiment, but the positions of the loudspeakers are changed. For
the experiment the distance between the phones was 2 meters, with a reverberation of 0.4
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Fig. 5.2: The effects of reverberation to the maximum distance. The mean error over 20
experiments in meters, measured with a pulse length of 0.5 seconds and a noise level of 55 dB
SPL.The error is truncated at 10 centimetres.

seconds, a pulse length of 0.2 seconds and a noise level of 55 dB SPL.

Fig. 5.3 clearly shows two maximum errors. The errors occur when the angle of one phone
is 0 degrees and the other angle is 180 degrees. The clear minimum error occurs when the
angles are equal, as expected. This also happens if the two angles add up to 360 degrees. The
maximum error is also as we expected,

dii+djj
4 . If we look to the distance that is obtained by

looking to the points ri−si
2 and

rj−sj
2 , Fig. 5.4 is obtained. Here the error is always close to

zero, this means that the distance between those points is actually measured with the proposed
method.
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Fig. 5.3: The effects of rotation on the error when looking to the microphone location. For the
experiments we used: a microphone distance of 2 meters, a reverberation time of 0.4 seconds, a
pulse length of 0.2 seconds and a noise level of 55 dB SPL. Mean error over 20 measurements.
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Fig. 5.4: The effects of rotation on the error when looking to the points ri−si
2 and

rj−sj
2 . For

the experiments we used: a microphones distance of 2 meters, a reverberation of 0.4 seconds, a
pulse length of 0.2 seconds and a noise level of 55 dB SPL. Mean error over 20 measurements.
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Localization

For the localisation part of the computer simulations the number of phones was increased from
2 to 10 in order to investigate the effects on localization accuracy for increasing number of
devices. Because the calibration signals where sent out within some interval some the pulses
arrive at the same instance and thus cause interference. The available bandwidth was split
amongst the phones BW = 22

I kHz. We wanted to see if errors would reduce or increase
with more phones. Since one only needs to know the location of four phones to position all
other phones, it could be that the error starts to reduce with more than four phones. But on
the other hand, less bandwidth and more interference would make the TOA estimation more
difficult, and thus cause more errors.

In Fig. 5.5 the obtained error is visualized. For up to five phones there is only a very small
error after this a jump in the error occurs and then it stabilizes again. It is clear that adding
extra phones results in a rising error and not in a better estimate.
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Fig. 5.5: The effect on the error when adding extra phones, 0.4 seconds reverberation, 65 dB
SPL, pulse length 0.2s and 100 random realizations within an area of 4 by 5 meters for each
number of phones.

5.2.2 Real-data experimental results

For the real-data experiments two Samsung’s (Galaxy SII) and one HTC (Sensation) where
used. Two types of experiments where preformed: distance estimation and localisation. The
first experiment was preformed with only the two Samsung phones. The second was preformed
with all three phones.
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Distance estimation

For the distance estimation two phones were put on a table (0.75 x 1.50) and the distance
between the microphones was increased from 10 cm to 1.25 m. At each location the experiment
was repeated six times. The phones where put side by side. This means that the loudspeaker
and microphone where under a small angle (2 to 5 degrees), the angle was the same for both
of the phones. The results can be found in Fig. 5.6
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Fig. 5.6: Error in the estimated distance between two Samsung phones for eight distances
repeated six times each.

The error that is found is a little bit higher than the error obtained in the computer simulations.
This can be explained by a small positioning error in the real-data experiments. This is because
we do not exactly know the location of the microphones. Given the set-up used an measurement
inaccuracy of two millimetres can be assumed in the location of each of the phones. With this
assumption the error is in the same range and thus for this measurement simulations can be
used.

The distance-estimation experiment is also preformed in [30], they obtained the average error
over 5 experiments. There errors are: 2 mm at 10 cm, 10 mm at 20 cm, 35 mm at 30 cm and
60 mm at 40 cm. Thus there error at 10 cm is a bit smaller and the rest of the errors is bigger.
Furthermore they obtain an error that increases with the distance, while the error we obtained
remains stable, this is probably due to the skew that is considered in our case. As said this
occurs when there is a time difference between the TODs. Since only one synchronisation
pulse is used by Hennecke et al.the time between the pulses has to be big enough to visually
separate them. This can result in errors of this magnitude.
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Localization

The last experiment preformed was the localisation of the three phones. For this 7 different
constellations of the phones where used, see Fig. 5.7. For each constellation the experiment
was repeated 10 times. From the result a box plot was made, which is shown in Fig. 5.8.
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Fig. 5.7: The 7 different layouts. The x’s denote the microphone location the o’s denote the
loudspeaker location. The green phone is the HTC this one has a microphone loudspeaker
distance of 10 cm.

As can be seen in this figure the error is quite large for some orientations and quite small for
others. This is because of the large distance between the microphone and loudspeaker on the
HTC phone. Two of the three distances can be off by as far as 6.5 centimetres (10+3

2 ). This
is what is the case with layout number 2. As the HTC phone is turned in a more favourable
position, layout number 5, this error is greatly reduced.

One can really see what the effect of the different angles is (Between the HTC and the Sam-
sungs). Recall that the angle is always defined with respect to the line through the two
microphones. Only two angles can be compared at the same time unless more than two
microphones lay on one line as is the case in layout 7.

If the sum of the different angles is big the error is big. If the sum is small the error is small.
This effect is bigger when the HTC phone is involved because of the larger distance between
the microphone and loudspeaker.
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Fig. 5.8: The error in the localisation of three phones for different layouts.

5.3 Conclusions

We tried to improve the existing algorithm by including a skew estimation, here we have proven
a theoretical maximum error that directly depends on the distance between the microphone
and loudspeaker on the phones. From the computer simulations we can conclude that the
error rises when more phones are added. We also have seen that the results from the real-data
experiments are comparable to the computer simulations. If we compare our real-data results
with the real-data results of [30] we find that our method gives an error that, to some extent,
does not depend on the distance between the phones. Where the error in [30] rapidly raises to
6 cm at a distance between the phones of 40 cm while the error from our extention remains
at less than 1 cm even at distances of more than 1 m. Unfortunately the angle of the phones
he used is not defined, nor the brand and type of phones so it is hard to compare the actual
results.

If more than 7-8 phones are used the method from [25] would be preferable. This is because
this method gives better results with an increasing amount of phones. However this method
might also be improved by adding the skew.

The error in localisation highly depends on the orientation of the phones together with the
distance between the microphone and loudspeaker on the phones. If this distance is small
enough good localisation is possible with our extension. On the other hand as this distance
becomes quite large, as is the case with the HTC phone, the error highly depends on the angle
of this phone compared to the angle of the other phones. The size of the error can be predicted
if the difference between the angles is known, but it is not possible to say if the estimated
distance is too small or too large.
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Chapter 6

Recommendations and Conclusions

In this chapter we first focus on an outlook for future work. This will be topics that showed
up too late to really look into, and topics that where too large to do a real in depth study.
After this the conclusions of this thesis can be found.

6.1 Recommendations

In this section the focus will be on topics within this thesis that might need some additional
attention to improve it future. The topics are ordered according there appearance in the thesis.
So we start with improvements that can be made on the software used.

6.1.1 Software

In the current implementation of the localization software we first initiate the recording and
tha calibrations signals are emitted some time later. This is done to make sure that all phones
have started recording. The time between the start of the recording and the first signal leaving
the loudspeaker can be long in some cases and (too) short in others. An improvement would
be to implement a feedback machanism which assures that all phones aree recording before
the calibrations signal is transmitted. This in itself is not that difficult. The problem here
is that one somehow needs to send a command back to the phones, which is faster to arrive
then messages via the Google servers. This can be done because from the moment the phones
respond to say they started recording, one can use other methods than the Google servers to
contact the phones. This is since the phones can also send back other information, for instance
its IP-address so further messages can be directly send over the Wi-Fi network.

6.1.2 Pulse shape

For the pulses two kinds of pulses have been discussed, both have advantages and disadvan-
tages. In the end we chose the chirp because of its autocorrelation properties, but there might
be different kinds of pluses with good auto- and cross-correlation properties. Since any type
of pulse that has a low cross-correlation and a high auto-correlation with an output that looks
like a delta pulse could be used one might look into this further and see if there are better
signals.
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6.1.3 Localization

The actual localisation is now done on a portable computer, this is fine but it would be far
better if this could be done on the phones itself. Since the main part of the localisation is the
application of a matched filter and finding the direct path of the channel it might be perfectly
fine to do this on the phones itself. This way everybody can set-up the system at all times,
without the need of some additional hardware.

It might also be a good idea to look if localisation can be improved by means of the obtained
channel. Since a good estimate of the channel is obtained for at least the first, and a part of
the second order reflections. This is extra information on the locations of the microphones and
loudspeakers, but also includes extra unknowns. Assuming a rectangular room, the locations
of the walls, ceiling and floor can be given by six distances. This means that in theory it is
possible to retrieve the actual locations of the microphones and loudspeakers of two phones
with 4 extra TOAs:

3 (I + J ) + 6 ≤ nIJ => n ≥ 5 for I = J = 2

The biggest problem here probably is what pulse came from which reflection. If this question
can be somehow solved, there can be a serious improvement on the current error.

It might also be possible to do some kind of validation of the obtained distance with RSS
based estimation of the distance. Since RSS does not depend on the estimation of the TOA it
is a method that can be used to validate the estimated TOA. Now it sometimes occurs that an
error of a few meters is obtained because of a wrongly picked TOA. RSS is not very accurate,
but the error of 22 cm [35] that can be obtained is small enough to validate the TOA.

6.2 Conclusions

We have seen that estimating the TOA is actually the estimation of the channel if this can
be done the TOA can also be estimated. With the Gaussian shaped calibration signal the
channel cannot be estimated when multiple paths are received close together. We have seen
that the channel can be estimated when a chip signal is used. The problem of the chirp is that
its cross-correlation is not as well suppressed as the cross-correlation of the Gaussian shaped
signal. This gives problems at larger distances, in other words when the wanted signal is very
weak. To solve this more bandwidth or a longer signal should be used but this means that the
localisation takes longer.

By sending out two pulses in one audio file we can estimate the relative skew. By implementing
this into the existing algorithm of [30], we have seen the localisation error can be decreased.
From the computer simulations we can conclude that this method not excites an average error
of 5 cm until 10 phones are used. We have also seen that the correct distance can be estimated
up to a distance of 6 meters between two phones.

The error in localisation highly depends on the orientation of the phones and the distance
between the microphone and loudspeaker on the phones. If this distance is small enough good
localisation is possible with our extension.
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When the proposed method is implemented in a real-world scenario, the main improvement
is in the stability of the error at increasing distances. At a distance of 40 cm our extension
causes the error to drop by 6 cm compared to [30]. Since the improvement we have booked on
this algorithm, by including the skew, our expectation is that the including of the skew will
also improve other methods that use Android phones and TOA based localisation.
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Appendix A

Software

The software used to make the recordings for localisation consists of two parts. The first part
is an Android program on the phones. The second part is a PHP script on an Apache web
server. Both will be explained.

A.1 Android application

If the Android application is installed it should just work, there is no real configuration for
normal use. The calibration signals should be stored in the folder ”/pulses/”. With the menu
button on the phone you can register the phone at the preconfigured server or unregister it.
If the phone is registered it can receive commands from the Apache server. The code itself
consists of five classes: one class controls the sending of pulses, one class controls the recording,
one class controls the uploading of files, one class listens for new commands, and one class to
combine all others.

For the communication the Google cloud Messaging is used. To be able to use this a Google
API account is needed. In the settings of this account one can specify which servers can send
messages to the registered phones. The phones need some ID that belongs to the account, this
can also be found on the web page with the settings. On this moment this service is free and
an unlimited amount of messages can be sent.

A.2 Web server

For the web server Apache was used together with PHP, because we have experience in this
language. There are three main scripts: one to register and unregister the phones from the
server, one the send settings to the phones and one to receive files from the phones. Since this
is a normal web server MATLAB® can communicate with the server by using the commands
urlread() and urlwrite(), urlread() returns a string with the contends of the requested
page, while urlwrite() writes the contends of the page to a specified file on your computer.

A.2.1 (Un)Registering

When registering the server gets two identifier strings, one random string that is used by
the Google servers to send a message to the phone and one to identify the phone. This last
one is used make sure the same phone can only register once. When unregistering the same
information is supplied to remove the phone from the list of known phones.
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A.2.2 Configuring phones

For the configuration of the phones 6 commands can be send to the phones, namely: setting
settings, start recording, stop recording, start sending, stop sending and upload.

Set Settings This is the largest command, here the individual phone settings can be set. The
following settings are available:

foldername The name of the folder where the file should be stored
filename The name of the file where the recording should be stored
pulsename The name of the file that contains the calibration signal,

this file is played whole a can consists of more than one signal
startime The amount of time to wait before sending starts
repeattime The interval at widths sending should repeat
number of pulses The number of times to send a calibration signal

The filename, pulsename and starttime can be set individually for each phone while the other
settings will be the same for all the phones. All setting are always send to all phones at the
same time to keep it simple.

Start recording This command starts the recording on the phones. It first makes the folder
and the file to sore it in. After this the real recording starts. This command is always send to
all phones at once and it does not influences the playback status.

Stop recording This command stops the recording on the phones. It first stops the recording
and then waits until the buffer is empty, once this is the case it sends the file to the server.
The phones receive the server location once they receive the settings. It does not influences
the playback status.

Start sending This command starts the sending of the calibration signals by playing a WAVE
file at some interval until stopped or it runs out of pulses to send.

Stop sending This command stops the sending of the calibration signals and resets the
number of pulses left to send.

Upload This command requests a particularly file from the server, normally the files are
already send when the recording stops, but sometimes this fails, with this command the file
can be requested again.

A.2.3 Receiving files

When a file is send to the server it is stored in the same folder as it was on the phone, the file
name is also the same. Since the file name is different for each phones multiple files end up in
the same folder on the server. This files can later be downloaded by MATLAB® for this the
urlwrite() command is needed, since this command writes the requested contend to a file
on your computer.
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Appendix B

Skew images

Here one finds an overview of all the measurements done for the skew estimation. This
measurements where done width two Samsung’s (Galaxy SII) and one HTC (Sensation). For
each figure a measurement of 60 seconds done, whereby one of the phones did send out a chirp
of 0.2s every 0.25s. The sampling rate of the phones was set to 44100 Hz. The error was
measured in number of samples.
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