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Abstract—This paper presents a hierarchical reinforcement
learning framework for efficient robotic manipulation in sequen-
tial contact tasks. We leverage this hierarchical structure to
sequentially execute behavior primitives with variable stiffness
control capabilities for contact tasks. Our proposed approach
relies on three key components: an action space enabling variable
stiffness control, an adaptive stiffness controller for dynamic
stiffness adjustments during primitive execution, and affordance
coupling for efficient exploration while encouraging compliance.
Through comprehensive training and evaluation, our framework
learns efficient stiffness control capabilities and demonstrates
improvements in learning efficiency, compositionality in primitive
selection, and success rates compared to the state-of-the-art. The
training environments include block lifting, door opening, object
pushing, and surface cleaning. Real world evaluations further
confirm the framework’s sim2real capability. This work lays the
foundation for more adaptive and versatile robotic manipulation
systems, with potential applications in more complex contact-
based tasks.

I. INTRODUCTION

FOR decades, the challenge of enabling robotic manipu-
lators to solve complex long-horizon tasks has persisted.

While existing research has made strides in addressing im-
portant aspects of long-horizon tasks, a critical gap remains
in the context of contact-rich environments, highlighting a
crucial area that requires further exploration and development.
An example can be found in a common manipulation task:
object sorting. A robot should be able to plan a series of
precise actions over time while adjusting its positioning and
applied forces to accommodate objects of varying shapes
and sizes, while also taking the interaction environment into
consideration. This paper focuses on the intersection of deep
reinforcement learning (DRL) and adaptive stiffness control
with the aim of addressing this longstanding challenge.

Prior work has extensively explored robotic manipulation
in long-horizon applications. Conventional methods often use
state machines [1][2] or symbolic reasoning [3][4] to learn
action sequences for solving a task. However, these approaches
explicitly design the decision-making sequence, which may in-
troduce constraints that limit adaptability to different tasks and
contribute to error accumulation throughout the task sequence.
In response to these limitations, learning techniques such
as hierarchical reinforcement learning (HRL) [5] have been
employed, establishing themselves as a common approach for
problems requiring sequential decision-making.

When deploying long-horizon frameworks in contact-rich
environments, the integration of stiffness control becomes
crucial for adapting to external forces and uncertainties dur-
ing task execution. This adaptability ensures precision and

Fig. 1: The agent sequentially chooses a behavior primitive
along with controller parameters to complete a task. At each
step, it initiates a control loop with the desired parameters to
execute the chosen behavior.

stability in navigating contact-rich environments. However,
despite a substantial body of research dedicated to variable
stiffness control, current approaches are primarily tailored to
short-horizon applications. These methods typically involve
designing controllers that adjust end-point force in response
to environmental forces [6], adapting impedance and damping
parameters through learning techniques [7][8], and learning
from a human demonstrator [9][10].

This paper aims to bridge the gap between sequential plan-
ning and adaptive stiffness control using a reinforcement learn-
ing framework. We design a framework that selects an action
from a pre-defined library and outputs an initial estimate for
controller parameters. During primitive execution, an adaptive
controller is initiated to optimize the robot’s stiffness, aiming
for an balance between safety and performance. This design
allows the robot to dynamically optimize stiffness parameters,
enabling it to transition between high stiffness for precision
tasks and increased compliance for enhanced adaptability. We
present experiments conducted in both simulation and the real
world, focusing on sequential tasks that deal with different
contact challenges. Our results highlight notable advantages
when compared to a state-of-the-art baseline.

The main contributions of this work include: (i) Designing
a framework that can execute variable stiffness control across
long-horizon tasks; (ii) Introducing a novel behavior affor-
dance that concurrently optimizes for position and compliance;
(iii) Evaluation of the learning efficiency, stiffness behavior,
compositionality, and sim2real capability.
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II. RELATED WORKS

A. Sequential Planning

Extensive work exists in the domain of task and motion
planning (TAMP) encompassing a wide range of robotics
applications. These methods range from the explicit design
of decision-making frameworks to learned behavior sequences
via machine learning.

Common approaches use hierarchical task planning to
create high-level planners paired with a low-level controller. In
the context of robot manipulation, this is particularly present
in the form of finite state machines [1][11][12] or behavior
trees [13][14] as high-level controllers. Similar approaches use
symbolic reasoning [15][16][17] in which symbols are used to
represent high-level tasks and constraints to guide the decision-
making process. Despite the explainability offered by these
methods, their pre-defined nature limits their ability to handle
the inherent uncertainty and variability in real-world scenarios,
which may lead to suboptimal performance. In contrast, our
proposed framework simultaneously learns the high-level plan-
ner and optimizes the low-level controller parameters, making
it better generalized and robust to uncertainty.

In recent years, learning approaches have been used to
overcome those limitations. Imitation learning (IL) emerges
as a prominent candidate for sequential planning by enabling
the robot to learn a demonstrated behavior sequence. Most
well-established approaches belong to behavior cloning meth-
ods, in which the robot replicates a demonstration sequence
[18][19][20]. However, this makes the model overreliant on
the demonstration sequence and significantly limits general-
izability. To tackle this problem, imitation learning methods
that can generalize learned sequences have been introduced
[21][22][23]. Nevertheless, these methods are still greatly
limited in their ability to generalize to new environments
outside of a constrained setting. On the other hand, our frame-
work tackles this problem by adapting the action sequence
depending on the environment state. Furthermore, fitting on
demonstration data leads to suboptimal performance due to
human error.

To address these limitations, Hierarchical Reinforcement
Learning (HRL) has garnered attention due to its capacity
for long-horizon planning. State-of-the-art approaches include
MAPLE [24], RAPS [25], and STAP [26]. All three methods
train a hierarchical policy to choose and execute a primitive
from a library of behavior primitives. Despite their ability to
handle complex tasks and improve sample efficiency, a notable
drawback is their reliance on static controllers. This greatly
hinders performance particularly in contact tasks and may
pose potential risks in real-world settings. Our method builds
on these concepts and address these challenges by optimizing
stiffness to maximize compliance without compromising task
success.

B. Variable Stiffness Control

Existing methods for adapting the stiffness of an impedance
controller primarily involve using task-specific impedance
profiles. Common approaches include learning from demon-
stration methods to encode a stiffness profile, such as Dynamic

Motion Primitives [27][28][29] or Gaussian Mixture Models
[9][30]. Alternatively, some works rely on scheduling variable
stiffness gains for different phases of a task [31][32][33].
Despite their ease of application, these methods suffer from a
limited ability to generalize a given stiffness profile to different
tasks while also being dependent on an expert demonstrator.

Reinforcement Learning (RL) has emerged as a promising
learning method for learning stiffness profiles. There exists an
abundance of methods that bootstrap the RL policy with initial
stiffness demonstrations [34][35][36] to accelerate learning,
which are then optimized for a given task. However, the issue
of depending on an expert demonstrator remains unsolved.

Other RL approaches shift the focus to designing an appro-
priate action space. Using this approach, the agent samples
impedance parameters as actions which are then used to
adapt controller behavior. For applications requiring adaptive
stiffness, an impedance action space has been implemented,
in which the agent learns stiffness and damping parameters in
joint space [37] and end-effector space [8]. Similar approaches
used residual reinforcement learning solutions in which a
policy outputs actions to support an existing controller in
completing a task [1][38][39]. However, these methods fail in
the context of long-horizon tasks due to their limited ability
to capture sequential dependencies.

III. PRELIMINARIES

In this section, we provide an overview of the fundamental
concepts and terminologies surrounding our research. We also
delve into the design decisions implemented in our framework.

Compliant Robot Control refers to a control strategy
that allows robots to interact with their environment in an
adaptive manner. In contrast to traditional rigid control which
exerts fixed forces, compliant control enables a robot to
adjust its force exertion in real-time based on environmental
feedback. This feedback includes disturbances, contact forces,
and uncertainties. In the context of Reinforcement Learning
(RL), an agent can leverage compliant control to learn a
policy that adapts its actions to maximize rewards, while also
accommodating variations in the environment and adjusting to
dynamic conditions.

In order to achieve variable stiffness control, a Cartesian
impedance controller in the robot end-effector frame is used.
We use a dynamical robot model defined as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τu + τext (1)

in which M(q) is a symmetric, positive definite inertia matrix,
C(q, q̇) is the Coriolis matrix, g(q) contains the gravity
torques, τu represents the joint torques, and τext is the external
torques applied on the robot. Following the impedance control
law [40], the operational space formulation becomes

τu(t) = J(q)TFu(t)

= J(q)T (−K(e(t)−Dė(t)))
(2)

where Fu(t) is the input wrench, J(q) is the Jacobian matrix,
e(t) is the pose error, and ˙e(t) is the velocity error. Addition-
ally, K and D represent the stiffness and damping matrices,
and both are positive, definite, symmetric matrices.
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Reinforcement Learning aims to learn a policy π that
maximizes the expected sum of rewards obtained from in-
teractions with an environment. It is typically modeled as a
Markov Decision Process (MDP) and is defined by the tuple
M = (S, A, P , R, ρ, γ). In this context, S is the state space,
A is the action space, P is the transition probability function
such that P : S × A → P(S), R is the reward function such
that S × A → r, ρ denotes the initial state distribution, and
γ ∈ [0, 1) is the discount factor regulating the balance between
immediate and long-term rewards.

The agent’s objective is to find an optimal policy π∗ that
maximizes the expected return, defined by the sum of rewards
R discounted by γ:

Rπ =

∞∑
t=0

γtR(st, at)

To estimate the value of state-action pairs (Q-values), the agent
uses the Bellman equation:

Qπ(s, a) = Eπ[Rπ|st, at]

Accordingly, the optimal policy (π∗) can be found by selecting
actions that maximize the expected cumulative reward:

π∗(a|s) = argmax
a

Q∗(s, a)

Sequential Manipulation Frameworks that use reinforce-
ment learning generally follow a standardized structure. The
current state-of-the-art framework is Manipulation Primitive-
Augmented Reinforcement Learning (MAPLE), which lever-
ages a hierarchical policy with a library of behavior primitives
[25]. Drawing inspiration from this approach, our framework
similarly employs hierarchical reinforcement learning with
pre-defined behavior primitives. Additionally, we adopt a Soft
Actor-Critic (SAC) architecture [41] due to its ability to output
continuous values.

The policy structure consists of a high-level task policy
πprimitive and a low-level parameter policy πparam. Both
policies receive an observation containing information regard-
ing the state of the environment and the robot, with πparam
additionally taking in the output of πprimitive. The high-level
policy, implemented as a neural network, selects a primitive
based on the observation. In contrast, the low-level policy has a
separate neural network for each primitive and aims to predict
the parameters for the chosen primitive. The framework is
depicted in Figure 2.

We frame the sequential decision-making problem as a
Parameterized Action MDP (PAMDP) [42]. At each time
step, πprimitive selects and executes a parameterized behavior
primitive pn from a library of primitives L = {p1, p2, ..., pn}.
Each primitive is characterized by a function fn(s, x) in which
s represents the current state of the robot while x represents
the parameters outputted by πparam. This function initiates a
closed-loop control sequence over a finite time horizon, whose
length is determined by the number of atomic actions needed
to execute the selected primitive. These atomic actions are
essentially short motions that cannot be further subdivided.

Fig. 2: An overview of the our framework highlighting the ex-
tended parameter space and an adaptive impedance controller

During primitive execution, the control loop aims to min-
imize the error between the current state, defined by s, and
the target state, defined by the parameters x. For instance,
the agent receives an observation and accordingly selects
a grasping primitive. Subsequently, this primitive initiates a
closed-loop control sequence to guide the end-effector toward
specific coordinates (determined by x), then closes the gripper.

During learning, MAPLE incorporates affordances to im-
prove exploration and incentivize desired behaviors, which is
a common practice in the existing literature [43][44][45]. A
typical affordance is position-based where executing a prim-
itive around an object of interest leads to higher affordance
rewards, promoting exploration in the proximity of relevant
objects. While existing approaches have predominantly relied
on position affordances, our work extends this to maximize
compliance whenever possible (discussed in Section IV-B).

IV. METHODOLOGY

In the pursuit of enhancing the capabilities of robotic
manipulation, we draw inspiration from the state-of-the-art
frameworks and build upon components established in Sec-
tion III. Our proposed framework is represented in Figure 2.
We introduce three elements that allow us to achieve variable
stiffness control for sequential contact:

• Extending the action space to allow for stiffness param-
eter selection (Section IV-A)

• Using an affordance that encourages compliance (Sec-
tion IV-B)

• Introducing an adaptive stiffness controller during prim-
itive execution (Section IV-C).

A. Extending the Action Space

As explained in Section III, primitives consist of closed-loop
controllers that execute pre-defined behaviors. When a high-
level policy selects a primitive to execute, the low-level policy
determines the primitive parameters which specify a target
state (or sequence of target states). To accommodate contact-
rich environments, the target states need to be extended from
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TABLE I: Description of primitives and their parameters

Primitive Description Parameters

Reach Moves the end-effector to a
target location

(x, y, z,

Kx,Ky ,Kz)

Grasp Moves end-effector to grasp
location then activates gripper

(x, y, z, ψ,

Kx,Ky ,Kz ,Kψ)

Push
Moves end-effector to a target

location, then applies a
displacement δ

(x, y, z,

δx, δy , δz ,

Kx,Ky ,Kz)

Atomic Apply atomic action
(δx, δy , δz ,

Kx,Ky ,Kz)

Gripper Open/Close binary gripper g

exclusively position-based parameters to also include variable
stiffness.

We propose augmenting the primitive parameter action
space with the Variable Impedance Control in End-Effector
Space (VICES) action space [8]. VICES is an action space that
gives the agent control over the impedance controller parame-
ters by allowing it to sample impedance parameters as actions.
Following the formulation in Equation (2), the parameter
action space is now extended to contain (Kx,Ky,Kx) to allow
for variable stiffness control along different coordinate axes, as
well as Kψ for handling orientation or angular variations. It is
important to note that we set the damping matrix D to have a
critical damping condition, with the goal of reducing the total
number of controllable parameters and guarantee behavior
stability. The available primitives and their parameters in the
extended action space are documented in Table I.

Nevertheless, a limitation of this approach arises from the
sequential nature of decision-making: once the policy triggers
a behavior primitive, it is required to wait for the primitive to
complete its execution before modifying the stiffness value
again. On the other hand, using an action space with dy-
namically adapting stiffness parameters introduces a learning
challenge. Therefore, the stiffness parameters predicted by the
parameter policy will act as an initial stiffness prediction which

Fig. 3: Heatmap visualization of affordance coupling

will be further adjusted using an adaptive stiffness controller.
This is explained in greater detail in Section IV-C.

B. Affordance Coupling - Combining Position and Stiffness
Affordances

Despite the accelerated exploration offered by behavior
primitives, our approach still encounters an exploration chal-
lenge. Accordingly, we incorporate affordances to incentivize
the correct usage of these primitives and accelerate conver-
gence. This means that when selecting primitive p with param-
eters x in a given state s, an affordance value a(s, x; p) ∈ [0, 1]
is added to the reward function. For example, executing a
grasping primitive yields a higher affordance score when
executed around graspable objects. This position affordance
is modeled as

apos(s, x; p) = max
κ∈K

(1− tanh (max(||xprimitive − κ|| − τ, 0)))

(3)
where K represents the set of object keypoints and xprimitive
is the chosen parameters for a primitive. An example can be
pushing an object in which executing a pushing primitive with
parameters near a pushable object’s position would lead to a
higher affordance score.

In the context of tasks that can benefit from variable stiffness
control, these position-based affordances are insufficient since
they focus exclusively on spatial information. To address this
limitation, we propose stiffness affordances that seek to maxi-
mize compliance whenever possible. Accordingly, stiffness is
only increased when it is necessary to meet task requirements.
This stiffness affordance is modeled as

astiff(s, x; p) = 1− K(s, x; p)−Kmin

Kmax −Kmin
(4)

where K(s, x; p) is the selected stiffness and (Kmin,Kmax)
represent a pre-defined stiffness range in the action space. In
practice, astiff increases linearly as stiffness decreases.

To effectively leverage both position and stiffness affor-
dances, a geometric mean of both affordances is used to
balance the two objectives. This approach leads to affordance
coupling, which makes increments in one affordance have a
more pronounced impact when the other affordance is also
high. This affordance is visualized in Figure 3 and modeled
as

acombined(s, x; p) =
√

apos(s, x; p) · astiff(s, x; p) (5)

All in all, this coupling improves exploration efficiency
and encourages the agent to select low stiffness parameters
during the early stages of training. Furthermore, this method
eliminates the necessity for careful reward weight tuning that
is typically required when directly penalizing high stiffness
values. Such tuning would otherwise need to be conducted
for each new environment, potentially having a detrimental
effect on learning performance [46].

It is also worth noting that the atomic and gripper release
primitives always have an affordance score of 1 since they
possess an inherent utility across different tasks.
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Fig. 4: Comparison of learning behavior and convergence time. A rolling mean with a window size of 50 is used to make the
visualization clearer.

C. Adaptive Controller

After the policy selects a primitive and its parameters, the
behavior is executed through a closed loop control scheme. Us-
ing the stiffness parameters outputted by the parameter policy
as an initial estimate of the required stiffness to complete a
given stage of the task, this stiffness is adapted in real-time
using an adaptive stiffness controller.

1) Adaptive Controller: The adaptive controller used in this
work draws inspiration from the Cartesian-Adaptive Force-
Impedance Control (AFORCE) controller [47]. The controller
aims to mimic the way humans adapt muscle stiffness when
executing motions. This is done by adapting the stiffness in
Equation (2) based on the output of

K̇(t) = β|ϵ(t)| − γE (6)

where ϵ(t) is the feedback error and E is the energy consumed
by the robot joints. Tunable parameters β and γ scale these val-
ues to influence the stiffness behavior. Once the new stiffness
matrix is calculated, the corresponding damping matrix satis-
fies a critical damping condition such that D(t) = 2

√
K(t).

In practice, the controller calculates the stiffness at the next
step by using β to scale the increase in stiffness proportional
to the feedback error. Simultaneously, it reduces stiffness by
scaling the current energy consumption E with γ. This process
yields a net increase or decrease in the controller’s stiffness,
subsequently applied to to the controller in the next step. This

Fig. 5: An example of the adaptive stiffness behavior generated
by the adaptive controller. This scenario is the robot following
an elliptical wiping trajectory in simulation.

behavior is visualized in Figure 5 in which an elliptical wiping
motion is taking place.

2) Acquiring Controller Parameters: The primitives in this
work are simple linear motions from the current state to a
target state. We perform a kinesthetic demonstration in which
the end-effector is naturally move along a linear path from a
random starting position towards a target state.

Following the method by Dou et al. [48], the impedance of
a human arm is modeled as

Fh = Kh∆x (7)

where Fh is the interaction force and Kh is the human arm
stiffness. This force is then mapped to normalized stiffness
using

K = K + (K −K) · (Fh − Fh)

(Fh − Fh)
(8)

where K and K represent the upper and lower thresholds of
the calculated stiffness while Fh and Fh represent the upper
and lower thresholds of the interaction force.

Lastly, we find the values of β and γ by minimizing the
Mean Squared Error (MSE) between the demonstration K̇(t)
values and the values predicted by the Equation (6):

min
β,γ

∑
t

(K̇(t)− (β|ϵ(t)| − γE))2 (9)

where the summation is over all the time points considered in
the demonstration.

V. EXPERIMENTS

In the experiments, our goal was to investigate the frame-
work’s learning efficiency, analyze its stiffness and force
behavior, highlight patterns in primitive selection, and evaluate
its performance in a real-world setting. This section is divided
into four parts: Experimental Setup (V-A), Experimental Eval-
uation in Simulation (V-B), Experimental Evaluation in Real-
World Scenarios (V-C), and Ablation Studies (V-D).

Fig. 6: Simulation Environments: Lift, Door, Cleanup, Wipe
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Fig. 7: Variable stiffness behavior demonstrating an emphasis on compliance and stiffness reduction

A. Experimental Setup

We evaluated our framework in four contact-rich environ-
ments: Lift, Door, Wipe, and Cleanup. These interactions
include basic object manipulation in the Lift environment,
continuous contact in the Door and Wipe environments, and a
mix of contact and manipulation interactions in the Cleanup
environment. The robot utilized for these experiments was a
Franka Emika Panda, and the employed simulation framework
was Robosuite [49].

We apply domain randomization to randomize table friction,
table height, object positions, and initial end-effector position.
This approach introduces variability into key parameters of the
simulation environment to enhance the model’s robustness and
allows it to better generalize for real world experiments.

B. Experimental Evaluation - Simulation

We compare our proposed framework with the MAPLE
baseline, both utilizing a Soft Actor-Critic architecture as
detailed in Section III. As for the hyperparameters employed
during training, they are documented in Appendix A. The
chosen evaluation metrics are Learning Performance, Variable
Stiffness Control, Compositionality, and Success Rate.

Evaluation Metrics. In Learning Performance, we examine
learning convergence time to get an insight into the learning
efficiency of the proposed framework. In Variable Stiffness
Control, we assess our framework’s ability to adapt its stiffness

across diferent contexts, and the subsequent effect on the
applied forces when interacting with the different environ-
ments. In Compositionality, we compare the compositional
structure of the learned policies and quantify recurring patterns
in primitive selection using a ’compositionality metric’ [24].
Lastly, in Success Rate, we analyze the framework’s ability
to consistently achieve the desired task objectives across the
different environments.

Evaluation Results - Learning Performance. We analyze
the convergence times by referring to the learning curves found
in Figure 4. Given that our approach and MAPLE use different
affordances, then direct comparisons with MAPLE may not be
appropriate since the reward functions are different. However,
we can still assess convergence times, defined here as the time
taken to learn a near-optimal policy for a given task.

Firstly, the number of epochs till convergence in the Door
environment is approximately equal for both our approach and
MAPLE’s. Regarding the Lift and Cleanup tasks, it can be
noted that the convergence time for MAPLE is slightly better
than the one achieved our method. We hypothesize that the
task’s dependence on manipulation rather than contact led to
this slower convergence time. More specifically, it is easier
for MAPLE to learn the task since it has to deal with fewer
primitive parameters as a result of extending the action space,
as well as less constraints due to affordance coupling. In the
Wiping task, it is evident that our approach converges much
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Fig. 8: Compositionality comparison showcasing the learned sequential behavior

faster than MAPLE. This can be attributed to our method’s
ability to leverage variable stiffness, allowing it to adapt its
force behavior to match the wiping task requirements.

Evaluation Results - Variable Stiffness Control. We
demonstrate samples of the variable stiffness behavior across
the different environments in Figure 7. We also include a graph
showing the average applied end-effector forces over a sample
of 500 evaluation runs in Figure 9. These forces were acquired
directly from the simulation environment.

In the Lift and Cleanup environments, both of which are
tabletop settings, Kz is consistently maintained at a low level
when interacting close to the table. These environments require
relatively higher stiffness in the Kx and Ky values to ensure
precise positioning of the end-effector for tasks like grasping
objects and pushing them in the right direction.

In the Door environment, the stiffness value Kx is notably
higher than Ky and Kz to provide stability during initial
contact with the door. As the door handle is pushed downward,
Ky gradually increases to maintain stable contact, and all
stiffness values decrease when pulling the door open, as high
accuracy and force control are not required.

In the Wipe environment, Kx and Ky are kept at relatively
low values since the primary action involves contact with the
table along the z-axis. Meanwhile, Kz maintains a relatively
higher value while still exhibiting compliant behavior to exert
enough force for effective stain removal without excessive

Fig. 9: Comparison of maximum interaction forces highlight-
ing our framework’s ability to finish the task while exerting
less force

interaction forces with the table.

This decrease in stiffness also translates to less interaction
forces across the different environments, which is demon-
strated in Figure 9. It shows that our approach consistently
exerts less force to accomplish the same tasks. Moreover,
the standard deviation of applied force across these tasks is
consistently lower than MAPLE, implying that our method is
less sensitive to the randomization across task environments.

Evaluation Results - Compositionality. In order to quan-
tify recurring patterns of primitive choices for solving a
given task, a compositionality metric has been introduced
by Nasiriany et al. [24]. This reflects the policy’s ability to
generate a well-defined and repeatable behavior sequences to
complete a given task. In other words, a Lift task should con-
sistently execute a grasping primitive followed by a reaching
primitive to complete all randomized variations of this task. A
detailed mathematical explanation regarding compositionality
calculations can be found in the Appendix B.

The compositionality across the different environments is
visualized in Figure 8. The Lift environment was excluded
from this analysis as it shared the same compositionality
score (fcomp = 1), consisting of a grasp and reach primitive
sequence. In the Door environment, MAPLE appears to be
more consistent in terms of primitive type selection, but our
approach shares the same number of executed primitives.
With regards to the change in primitive type, our approach
successfully opens the door even without grasping the handle.
This suggests that our method’s variable stiffness may enable
it to bypass the need to grasp the handle to establish stability
while opening.

In the Cleanup environment, there is a notable reduction in
the number of primitive executions to complete the task. This
is attributed to a more robust ability to push on a tabletop
environment, as well as higher precision when approaching
an object for grasping. In the Wipe environment, our method
executes primitives in a significantly more consistent manner
as compared to MAPLE, implying a better understanding of
the primitives needed to complete the task.

Evaluation Results - Success Rate. A comparison of the
success rates between MAPLE and our method is shown in
Table II. The results indicate that our approach achieves a
comparable success rate across the Lift, Door, and Cleanup
tasks. Notably, our method achieves double the success rate
of MAPLE in the Wipe task, which can be attributed to the
introduction of variable stiffness control.
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TABLE II: Success Rates (%)

Lift Door Wipe Cleanup
MAPLE 100.0 ± 0.0 100.0 ± 0.0 42.0 ± 11.7 91.0 ± 5.8
Ours 100.0 ± 0.0 100.0 ± 0.0 86.0 ± 6.2 87.0 ± 6.1

C. Experimental Evaluation - Real World

This section discusses the experimental setup and evaluation
of the Real World experiments.

Hardware Setup. An Intel RealSense D435i1 was used to
generate an RGB-D stream of the environment. These streams
are later used to identify object poses. For the Lift and Cleanup
experiments, we placed the camera on a tripod such that it is
aligned with the tabletop. As for the Wipe environment, the
camera was mounted on the robot end-effector to provide it
with an accurate view of the stains.

Software Setup. ROS Noetic was used to interface between
the cameras, trained model, and the robot. A RealSense ROS
Wrapper2 was used to extract the RGB-D stream from the
camera. In turn, we used Deep Object Pose [50] to estimate
the 6D pose of the objects in the environment. Further details
regarding observation acquisition are provided in Appendix C.

Robot Control. The impedance controller used was the
human-friendly controller3 developed by Franzese et al. [51].
Since our model only outputs stiffness parameters and target
positions, we used these parameters as input to the impedance
controller. In turn, the controller acts as an interface with the
robot to actuate its joints and reach the target position.

Success Rate. Each experiment was run 20 times with ran-
domized object placements and end-effector starting positions.
The model achieved a success rate of 90% on the Lift task,
80% on the Cleanup task, and 70% on the Wipe task.

D. Ablation Studies

We conduct ablation studies to measure the impact of
the added components on the performance of our system.
Specifically, we trained a model on the Wipe environment
due to the extensive contact nature of the task. Accordingly,
we investigate 3 cases, each of which omits components of
the proposed framework. The results are visualized in Figure
10 and are representative of the overall performance across
all environments.

• Case 1: Extended action space with Adaptive Controller
• Case 2: Extended action space with Affordance Coupling
• Case 3: Extended action space

Evaluation Results - Convergence Time. The convergence
time results in Figure 10 clearly reflect that the extension
of the action space with stiffness parameters is the greatest
contributor to the accelerated learning. On the other hand, the
exclusive use of an adaptive controller (Case 1) or affordance
coupling (Case 2) leads to a notable deterioration in learning
performance, as compared to the use of both (Ours).

1https://www.intelrealsense.com/depth-camera-d435i/
2https://github.com/IntelRealSense/realsense-ros
3https://github.com/franzesegiovanni/franka human friendly controllers

Fig. 10: Comparison of convergence time and maximum
interaction forces across 3 ablation cases

Evaluation Results - Maximum Interaction Forces. Fig-
ure 10 presents the maximum interaction forces achieved
through variable stiffness in different frameworks. Our pro-
posed approach consistently minimizes these forces during
environmental interactions. This is followed by the framework
using only an adaptive controller (Case 1), where stiffness
reduction takes place in a relatively narrower range. In turn,
this leads to a relatively higher force exertion. Lastly, exclusive
reliance on an extended action space yields the worst perfor-
mance due to a lack of incentive to reduce stiffness, so the
agent opts for high stiffnesses to ensure stain removal.

Evaluation Results - Stiffness Behavior. Upon removing
affordance coupling from the framework (Case 1), the agent
exhibits a dependence on high stiffness values, which are
subsequently reduced using the adaptive controller. As for the
case that employs affordance coupling but omits the adaptive
controller (Case 2), the agent tends to select relatively low
stiffness values, but the profile remains static. Additionally,
the absence of corrective behavior leads the agent to attempt
corrections during the execution of the next primitive rather
than concurrently with the current one. Upon removing both
affordance coupling and the adaptive controller (Case 3), the
stiffness profile becomes static, and the agent tends to select
high stiffness values due to a lack of incentive for reduction.

VI. CONCLUSION

This paper presents a hierarchical reinforcement learning
framework aimed at enabling adaptive stiffness control in

https://www.intelrealsense.com/depth-camera-d435i/
https://github.com/IntelRealSense/realsense-ros
https://github.com/franzesegiovanni/franka_human_friendly_controllers
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sequential contact tasks. It utilizes a pre-defined library of
behavior primitives and equips them with variable stiffness
capabilities. This was done by incorporating two important
elements in the framework: an expanded action space to allow
the agent to modify its stiffness and an adaptive controller
for dynamic stiffness modifications during primitive execution.
During training, we introduce affordance coupling to combine
position and stiffness affordances, which promotes efficient
exploration while incentivizing compliance. The framework
showcases notable results in learning efficiency, variable
stiffness control, compositionality in primitive selection, and
success rates when compared to MAPLE, a state-of-the-art
framework in sequential planning. Furthermore, real-world
evaluations validate the proposed approach’s sim2real capabil-
ity. Interesting directions for future research involve extending
the framework with contact-specific primitives tailored for
challenging tasks, such as screwing and flipping. Another
area for exploration involves learning behavior primitives and
impedance profiles through demonstrations rather than relying
on pre-defined primitives.
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APPENDIX A
TRAINING & SIMULATION

A. Training Setup
The training codebase used is based on RLkit4, which in turn

is based on rllab5. We document all the hyperparameters used
in the training procedure in Table III and IV. An important
thing to add is that a target entropy is set for the first 200
epochs primarily to promote exploration for both the primitives
and the stiffness parameters.

Fig. 11: Simulation Environments: Lift, Door, Wipe, Cleanup

With regards to the observations used to train the model,
the same observation is shared across all environments except
Wipe. In those environments, the observations consist of:

• Cartesian Pose
• Object Poses
• Distance from End-Effector to Object(s)
• Gripper State (either 0 or 1)

As for the Wipe environment, the observation becomes:
• Cartesian Pose
• Percentage Wiped
• Stain Centroid and Radius
• Distance from End-Effector to Centroid

B. Simulation Setup
Here, we specify the description of each task setup and

specify their success conditions:
• Lift:

– Description: There is a single cube on a tabletop
– Success Condition: The cube is lifted above a height

threshold (20 cm)
• Door:

– Description: There is a hinged door with an L-
handle

– Success Condition: The handle exceeds a certain
position (15 cm) and angle (30°)

• Cleanup:
– Description: There is a jello box, a spam can, and

a wooden box on a tabletop
– Success Condition: The jello box is at a threshold

distance from the table corner (10 cm) and the spam
can is in a wooden box

• Wipe:
– Description: There are stains on a tabletop, which

are defined by their table coverage percentage (40%)
and stain line width (4 cm)

– Success Condition: There are no stains on the table
4https://github.com/rail-berkeley/rlkit
5https://github.com/rll/rllab

Fig. 12: Real World Experimental Setup: Lift, Cleanup, Wipe

APPENDIX B
COMPOSITIONALITY CALCULATION

Compositionality is an important metric used to evaluate the
consistency of primitive selection to solve a given task. This
highlights that the policy has learned a repeatable behavior
and understands the underlying semantics of the task.

Next, the Levenshtein distance is calculated, which repre-
sents the minimum number of edits needed to make the two
token sequences equal. In other words, longer distances signify
less compositional behavior, and vice versa. Consequently, the
compositionality of each task is calculated as

fcomp =
1

n(n− 1)

∑
i ̸=j

1− L(Ki,Kj)

max(|Ki|, |Kj |)
(10)

where n is the combined length of the primitive sequence,
max(|K i|, |K j|) is the length of the longer primitive se-
quence, and L(K i,K j) is the Levenshtein distance between
two sequences.

APPENDIX C
REAL WORLD EXPERIMENTS - OBSERVATIONS

As mentioned in Appendix A, the model uses object poses
as part of the observation. In order to track the 6D pose
of the environment objects in the real world, we use Deep
Object Pose6 with the corresponding YCB objects7 used in
simulation. It is important to note that the wiping task naturally
does not involve interactions with solid objects, so we used
a simple k-means clustering algorithm to identify the wiping
stains based on color.

6https://github.com/NVlabs/Deep Object Pose
7https://ycbbenchmarks.com/object-set/

Fig. 13: 6D pose estimation of YCB object set [50]

https://github.com/rail-berkeley/rlkit
https://github.com/rll/rllab
https://github.com/NVlabs/Deep_Object_Pose
https://ycbbenchmarks.com/object-set/
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TABLE III: Network and Optimization Parameters

Hyperparameter Value
Network Structure (All Networks) 512, 512
Q network and policy activation ReLU

Q network output activation None
Policy network output activation tanh

Optimizer Adam
Batch Size 1024

Learning rate (all networks) 3× 10−5

Target network update rate τ 1× 10−3

TABLE IV: Training, Exploration, and Reward Factors

Hyperparameter Value
Discount Factor 0.99

Replay Buffer Size 1× 106

Reward Scale 5.0
Affordance Score Scale λ 10.0

Number of Training Steps per Epoch 1000
Number of Exploration Actions per Epoch 3000

Horizon Length per Episode 150 actions (except wipe, 300)

In the real-world experiments, the observations for the
trained model were obtained using the Franka ROS Interface
and the Intel RealSense D435i camera. More specifically, the
process entails the following:

• Cartesian Pose was extracted directly from the Franka
ROS Interface. This information includes the position and
orientation of the end-effector in the robot’s workspace.

• Gripper State was extracted directly from the Franka
ROS Interface. The gripper width was used to identify
whether it was open or closed.

• Object Pose was estimated using Deep Object Pose with
the Intel RealSense D435i camera. Using the RGB-D
stream, Deep Object Pose analyzes the data and returns
6D object poses at a rate of 15 frames per second.

• Distance from End-Effector to Object was calculated
directly given that we have both poses

As for the Wipe environment, there are two unique observa-
tion elements. First, K-Means clustering was used on the RGB
stream, which was followed by color thresholding. This allows
us to separate the black stains from the white background. Ac-
cordingly, the observations were acquired using the following
methods:

• Percentage Wiped was calculated using the initial stain
as a template. By counting the number of black pixels,
we can identify how many have been removed, which
corresponds to the percentage wiped.

• Stain Centroid and Radius were acquired by pairing
the RGB and Depth stream, which allows us to identify
the location of the centroid and the radius of the stain.
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