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Abstract—This paper presents a hierarchical reinforcement
learning framework for efficient robotic manipulation in sequen-
tial contact tasks. We leverage this hierarchical structure to
sequentially execute behavior primitives with variable stiffness
control capabilities for contact tasks. Our proposed approach
relies on three key components: an action space enabling variable
stiffness control, an adaptive stiffness controller for dynamic
stiffness adjustments during primitive execution, and affordance
coupling for efficient exploration while encouraging compliance.
Through comprehensive training and evaluation, our framework
learns efficient stiffness control capabilities and demonstrates
improvements in learning efficiency, compositionality in primitive
selection, and success rates compared to the state-of-the-art. The
training environments include block lifting, door opening, object
pushing, and surface cleaning. Real world evaluations further
confirm the framework’s sim2real capability. This work lays the
foundation for more adaptive and versatile robotic manipulation
systems, with potential applications in more complex contact-
based tasks.

I. INTRODUCTION

FOR decades, the challenge of enabling robotic manipu-
lators to solve complex long-horizon tasks has persisted.

While existing research has made strides in addressing im-
portant aspects of long-horizon tasks, a critical gap remains
in the context of contact-rich environments, highlighting a
crucial area that requires further exploration and development.
An example can be found in a common manipulation task:
object sorting. A robot should be able to plan a series of
precise actions over time while adjusting its positioning and
applied forces to accommodate objects of varying shapes
and sizes, while also taking the interaction environment into
consideration. This paper focuses on the intersection of deep
reinforcement learning (DRL) and adaptive stiffness control
with the aim of addressing this longstanding challenge.

Prior work has extensively explored robotic manipulation
in long-horizon applications. Conventional methods often use
state machines [1][2] or symbolic reasoning [3][4] to learn
action sequences for solving a task. However, these approaches
explicitly design the decision-making sequence, which may in-
troduce constraints that limit adaptability to different tasks and
contribute to error accumulation throughout the task sequence.
In response to these limitations, learning techniques such
as hierarchical reinforcement learning (HRL) [5] have been
employed, establishing themselves as a common approach for
problems requiring sequential decision-making.

When deploying long-horizon frameworks in contact-rich
environments, the integration of stiffness control becomes
crucial for adapting to external forces and uncertainties dur-
ing task execution. This adaptability ensures precision and

Fig. 1: The agent sequentially chooses a behavior primitive
along with controller parameters to complete a task. At each
step, it initiates a control loop with the desired parameters to
execute the chosen behavior.

stability in navigating contact-rich environments. However,
despite a substantial body of research dedicated to variable
stiffness control, current approaches are primarily tailored to
short-horizon applications. These methods typically involve
designing controllers that adjust end-point force in response
to environmental forces [6], adapting impedance and damping
parameters through learning techniques [7][8], and learning
from a human demonstrator [9][10].

This paper aims to bridge the gap between sequential plan-
ning and adaptive stiffness control using a reinforcement learn-
ing framework. We design a framework that selects an action
from a pre-defined library and outputs an initial estimate for
controller parameters. During primitive execution, an adaptive
controller is initiated to optimize the robot’s stiffness, aiming
for an balance between safety and performance. This design
allows the robot to dynamically optimize stiffness parameters,
enabling it to transition between high stiffness for precision
tasks and increased compliance for enhanced adaptability. We
present experiments conducted in both simulation and the real
world, focusing on sequential tasks that deal with different
contact challenges. Our results highlight notable advantages
when compared to a state-of-the-art baseline.

The main contributions of this work include: (i) Designing
a framework that can execute variable stiffness control across
long-horizon tasks; (ii) Introducing a novel behavior affor-
dance that concurrently optimizes for position and compliance;
(iii) Evaluation of the learning efficiency, stiffness behavior,
compositionality, and sim2real capability.
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II. RELATED WORKS

A. Sequential Planning

Extensive work exists in the domain of task and motion
planning (TAMP) encompassing a wide range of robotics
applications. These methods range from the explicit design
of decision-making frameworks to learned behavior sequences
via machine learning.

Common approaches usehierarchical task planningto
create high-level planners paired with a low-level controller. In
the context of robot manipulation, this is particularly present
in the form of �nite state machines [1][11][12] or behavior
trees [13][14] as high-level controllers. Similar approaches use
symbolic reasoning [15][16][17] in which symbols are used to
represent high-level tasks and constraints to guide the decision-
making process. Despite the explainability offered by these
methods, their pre-de�ned nature limits their ability to handle
the inherent uncertainty and variability in real-world scenarios,
which may lead to suboptimal performance. In contrast, our
proposed framework simultaneously learns the high-level plan-
ner and optimizes the low-level controller parameters, making
it better generalized and robust to uncertainty.

In recent years, learning approaches have been used to
overcome those limitations.Imitation learning (IL) emerges
as a prominent candidate for sequential planning by enabling
the robot to learn a demonstrated behavior sequence. Most
well-established approaches belong to behavior cloning meth-
ods, in which the robot replicates a demonstration sequence
[18][19][20]. However, this makes the model overreliant on
the demonstration sequence and signi�cantly limits general-
izability. To tackle this problem, imitation learning methods
that can generalize learned sequences have been introduced
[21][22][23]. Nevertheless, these methods are still greatly
limited in their ability to generalize to new environments
outside of a constrained setting. On the other hand, our frame-
work tackles this problem by adapting the action sequence
depending on the environment state. Furthermore, �tting on
demonstration data leads to suboptimal performance due to
human error.

To address these limitations,Hierarchical Reinforcement
Learning (HRL) has garnered attention due to its capacity
for long-horizon planning. State-of-the-art approaches include
MAPLE [24], RAPS [25], and STAP [26]. All three methods
train a hierarchical policy to choose and execute a primitive
from a library of behavior primitives. Despite their ability to
handle complex tasks and improve sample ef�ciency, a notable
drawback is their reliance on static controllers. This greatly
hinders performance particularly in contact tasks and may
pose potential risks in real-world settings. Our method builds
on these concepts and address these challenges by optimizing
stiffness to maximize compliance without compromising task
success.

B. Variable Stiffness Control

Existing methods for adapting the stiffness of an impedance
controller primarily involve using task-speci�c impedance
pro�les. Common approaches include learning from demon-
stration methods to encode a stiffness pro�le, such as Dynamic

Motion Primitives [27][28][29] or Gaussian Mixture Models
[9][30]. Alternatively, some works rely on scheduling variable
stiffness gains for different phases of a task [31][32][33].
Despite their ease of application, these methods suffer from a
limited ability to generalize a given stiffness pro�le to different
tasks while also being dependent on an expert demonstrator.

Reinforcement Learning (RL)has emerged as a promising
learning method for learning stiffness pro�les. There exists an
abundance of methods that bootstrap the RL policy with initial
stiffness demonstrations [34][35][36] to accelerate learning,
which are then optimized for a given task. However, the issue
of depending on an expert demonstrator remains unsolved.

Other RL approaches shift the focus to designing an appro-
priate action space. Using this approach, the agent samples
impedance parameters as actions which are then used to
adapt controller behavior. For applications requiring adaptive
stiffness, an impedance action space has been implemented,
in which the agent learns stiffness and damping parameters in
joint space [37] and end-effector space [8]. Similar approaches
used residual reinforcement learning solutions in which a
policy outputs actions to support an existing controller in
completing a task [1][38][39]. However, these methods fail in
the context of long-horizon tasks due to their limited ability
to capture sequential dependencies.

III. PRELIMINARIES

In this section, we provide an overview of the fundamental
concepts and terminologies surrounding our research. We also
delve into the design decisions implemented in our framework.

Compliant Robot Control refers to a control strategy
that allows robots to interact with their environment in an
adaptive manner. In contrast to traditional rigid control which
exerts �xed forces, compliant control enables a robot to
adjust its force exertion in real-time based on environmental
feedback. This feedback includes disturbances, contact forces,
and uncertainties. In the context of Reinforcement Learning
(RL), an agent can leverage compliant control to learn a
policy that adapts its actions to maximize rewards, while also
accommodating variations in the environment and adjusting to
dynamic conditions.

In order to achieve variable stiffness control, a Cartesian
impedance controller in the robot end-effector frame is used.
We use a dynamical robot model de�ned as

M (q)•q + C(q; _q) _q + g(q) = � u + � ext (1)

in which M (q) is a symmetric, positive de�nite inertia matrix,
C(q; _q) is the Coriolis matrix, g(q) contains the gravity
torques,� u represents the joint torques, and� ext is the external
torques applied on the robot. Following the impedance control
law [40], the operational space formulation becomes

� u (t) = J (q)T Fu (t)

= J (q)T (� K (e(t) � D _e(t)))
(2)

whereFu (t) is the input wrench,J (q) is the Jacobian matrix,
e(t) is the pose error, and_e(t) is the velocity error. Addition-
ally, K and D represent the stiffness and damping matrices,
and both are positive, de�nite, symmetric matrices.



5

Reinforcement Learning aims to learn a policy� that
maximizes the expected sum of rewards obtained from in-
teractions with an environment. It is typically modeled as a
Markov Decision Process (MDP) and is de�ned by the tuple
M = ( S, A , P, R, � , 
 ). In this context,S is the state space,
A is the action space,P is the transition probability function
such thatP : S � A ! P (S), R is the reward function such
that S � A ! r , � denotes the initial state distribution, and

 2 [0; 1) is the discount factor regulating the balance between
immediate and long-term rewards.

The agent's objective is to �nd an optimal policy� � that
maximizes the expected return, de�ned by the sum of rewards
R discounted by
 :

R� =
1X

t =0


 t R(st ; at )

To estimate the value of state-action pairs (Q-values), the agent
uses the Bellman equation:

Q� (s; a) = E� [R� jst ; at ]

Accordingly, the optimal policy (� � ) can be found by selecting
actions that maximize the expected cumulative reward:

� � (ajs) = arg max
a

Q� (s; a)

Sequential Manipulation Frameworks that use reinforce-
ment learning generally follow a standardized structure. The
current state-of-the-art framework is Manipulation Primitive-
Augmented Reinforcement Learning (MAPLE), which lever-
ages a hierarchical policy with a library of behavior primitives
[25]. Drawing inspiration from this approach, our framework
similarly employs hierarchical reinforcement learning with
pre-de�ned behavior primitives. Additionally, we adopt a Soft
Actor-Critic (SAC) architecture [41] due to its ability to output
continuous values.

The policy structure consists of a high-level task policy
� primitive and a low-level parameter policy� param . Both
policies receive an observation containing information regard-
ing the state of the environment and the robot, with� param

additionally taking in the output of� primitive . The high-level
policy, implemented as a neural network, selects a primitive
based on the observation. In contrast, the low-level policy has a
separate neural network for each primitive and aims to predict
the parameters for the chosen primitive. The framework is
depicted in Figure 2.

We frame the sequential decision-making problem as a
Parameterized Action MDP (PAMDP) [42]. At each time
step,� primitive selects and executes a parameterized behavior
primitive pn from a library of primitivesL = f p1; p2; :::; pn g.
Each primitive is characterized by a functionf n (s; x) in which
s represents the current state of the robot whilex represents
the parameters outputted by� param . This function initiates a
closed-loop control sequence over a �nite time horizon, whose
length is determined by the number ofatomic actionsneeded
to execute the selected primitive. These atomic actions are
essentially short motions that cannot be further subdivided.

Fig. 2: An overview of the our framework highlighting the ex-
tended parameter space and an adaptive impedance controller

During primitive execution, the control loop aims to min-
imize the error between the current state, de�ned bys, and
the target state, de�ned by the parametersx. For instance,
the agent receives an observation and accordingly selects
a grasping primitive. Subsequently, this primitive initiates a
closed-loop control sequence to guide the end-effector toward
speci�c coordinates (determined byx), then closes the gripper.

During learning, MAPLE incorporatesaffordancesto im-
prove exploration and incentivize desired behaviors, which is
a common practice in the existing literature [43][44][45]. A
typical affordance is position-based where executing a prim-
itive around an object of interest leads to higher affordance
rewards, promoting exploration in the proximity of relevant
objects. While existing approaches have predominantly relied
on position affordances, our work extends this to maximize
compliance whenever possible (discussed in Section IV-B).

IV. M ETHODOLOGY

In the pursuit of enhancing the capabilities of robotic
manipulation, we draw inspiration from the state-of-the-art
frameworks and build upon components established in Sec-
tion III. Our proposed framework is represented in Figure 2.
We introduce three elements that allow us to achieve variable
stiffness control for sequential contact:

� Extending the action space to allow for stiffness param-
eter selection (Section IV-A)

� Using an affordance that encourages compliance (Sec-
tion IV-B)

� Introducing an adaptive stiffness controller during prim-
itive execution (Section IV-C).

A. Extending the Action Space

As explained in Section III, primitives consist of closed-loop
controllers that execute pre-de�ned behaviors. When a high-
level policy selects a primitive to execute, the low-level policy
determines the primitive parameters which specify a target
state (or sequence of target states). To accommodate contact-
rich environments, the target states need to be extended from
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TABLE I: Description of primitives and their parameters

Primitive Description Parameters

Reach Moves the end-effector to a
target location

(x; y; z;
K x ; K y ; K z )

Grasp Moves end-effector to grasp
location then activates gripper

(x; y; z;  ;
K x ; K y ; K z ; K  )

Push
Moves end-effector to a target

location, then applies a
displacement�

(x; y; z;
� x ; � y ; � z ;

K x ; K y ; K z )

Atomic Apply atomic action
(� x ; � y ; � z ;

K x ; K y ; K z )

Gripper Open/Close binary gripper g

exclusively position-based parameters to also include variable
stiffness.

We propose augmenting the primitive parameter action
space with the Variable Impedance Control in End-Effector
Space (VICES) action space [8]. VICES is an action space that
gives the agent control over the impedance controller parame-
ters by allowing it to sample impedance parameters as actions.
Following the formulation in Equation (2), the parameter
action space is now extended to contain(K x ; K y ; K x ) to allow
for variable stiffness control along different coordinate axes, as
well asK  for handling orientation or angular variations. It is
important to note that we set the damping matrixD to have a
critical damping condition, with the goal of reducing the total
number of controllable parameters and guarantee behavior
stability. The available primitives and their parameters in the
extended action space are documented in Table I.

Nevertheless, a limitation of this approach arises from the
sequential nature of decision-making: once the policy triggers
a behavior primitive, it is required to wait for the primitive to
complete its execution before modifying the stiffness value
again. On the other hand, using an action space with dy-
namically adapting stiffness parameters introduces a learning
challenge. Therefore, the stiffness parameters predicted by the
parameter policy will act as an initial stiffness prediction which

Fig. 3: Heatmap visualization of affordance coupling

will be further adjusted using an adaptive stiffness controller.
This is explained in greater detail in Section IV-C.

B. Affordance Coupling - Combining Position and Stiffness
Affordances

Despite the accelerated exploration offered by behavior
primitives, our approach still encounters an exploration chal-
lenge. Accordingly, we incorporateaffordancesto incentivize
the correct usage of these primitives and accelerate conver-
gence. This means that when selecting primitivep with param-
etersx in a given states, an affordance valuea(s; x; p) 2 [0; 1]
is added to the reward function. For example, executing a
grasping primitive yields a higher affordance score when
executed around graspable objects. This position affordance
is modeled as

apos(s; x; p) = max
� 2K

(1 � tanh (max( jjxprimitive � � jj � �; 0)))

(3)
where K represents the set of object keypoints andxprimitive

is the chosen parameters for a primitive. An example can be
pushing an object in which executing a pushing primitive with
parameters near a pushable object's position would lead to a
higher affordance score.

In the context of tasks that can bene�t from variable stiffness
control, these position-based affordances are insuf�cient since
they focus exclusively on spatial information. To address this
limitation, we proposestiffness affordancesthat seek to maxi-
mize compliance whenever possible. Accordingly, stiffness is
only increased when it is necessary to meet task requirements.
This stiffness affordance is modeled as

astiff(s; x; p) = 1 �
K (s; x; p) � K min

K max � K min
(4)

where K (s; x; p) is the selected stiffness and(K min; K max)
represent a pre-de�ned stiffness range in the action space. In
practice,astiff increases linearly as stiffness decreases.

To effectively leverage both position and stiffness affor-
dances, a geometric mean of both affordances is used to
balance the two objectives. This approach leads toaffordance
coupling, which makes increments in one affordance have a
more pronounced impact when the other affordance is also
high. This affordance is visualized in Figure 3 and modeled
as

acombined(s; x; p) =
q

apos(s; x; p) � astiff(s; x; p) (5)

All in all, this coupling improves exploration ef�ciency
and encourages the agent to select low stiffness parameters
during the early stages of training. Furthermore, this method
eliminates the necessity for careful reward weight tuning that
is typically required when directly penalizing high stiffness
values. Such tuning would otherwise need to be conducted
for each new environment, potentially having a detrimental
effect on learning performance [46].

It is also worth noting that the atomic and gripper release
primitives always have an affordance score of 1 since they
possess an inherent utility across different tasks.
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