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Abstract

Reconfigurable Intelligent Surfaces (RIS) are envisioned to become a pivotal transformative
technology within the realm of 6G mobile networks. In this study, we introduce three
heuristic algorithms designed to optimize radio resource management, ultimately enhancing
throughput within a RIS-enhanced mobile network. Our findings demonstrate that the
algorithm which holistically optimizes user scheduling, RIS-UE association, cell precoding
matrices, and RIS configuration matrices outperforms alternative strategies.

Moreover, our investigation delves into uncovering the most effective applications of RIS.
This involves a thorough performance comparison of the algorithms across diverse scenarios,
encompassing varying RIS deployment configurations (position and orientation), number of
users in a network, and number of RIS elements. Additionally, we model the influence of
blocker loss—characterized by blocker presence probability and strength—on throughput
performance.

In the wake of our study, it becomes evident that RIS exhibits the most promising potential
in scenarios involving MU-MIMO configurations, whether within single-cell or multi-cell
layouts, and for both indoor and outdoor user settings. However, for SU-MIMO cases,
RIS-induced throughput enhancement manifests exclusively in single-cell layouts, and par-
ticularly benefits outdoor users in environments marked by substantial blocker strength.

Keywords: Reconfigurable Intelligent Surfaces (RIS), radio resource manage-
ment, throughput enhancement, MIMO, SU-MIMO, MU-MIMO, cell-UE asso-
ciation, cell-RIS-UE association, user scheduling, beamforming, RIS optimiza-
tion, 6G.
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Chapter 1

Introduction

The continuous evolution of mobile networks from 1G to 5G has led to significant advance-
ments, consistently pushing the boundaries of connectivity and transforming our modes of
communication and interaction with the digital realm. This evolution is depicted in Figure
1.1. The first generation of wireless networks, 1G, was introduced in the 1980s using ana-
log cellular technology for basic voice communication capabilities. It had limited capacity
and voice quality. Subsequently, 2G brought digital communication, offering improved call
quality and the ability to send text messages (SMS). It introduced more efficient utilization
of the frequency spectrum compared to 1G. Within another decade, 3G networks emerged
with faster data transfer rates, enabling services such as mobile internet access and video
calling. This marked a significant shift towards data-centric services. By the late 2000s, 4G
networks were introduced, bringing substantial improvements including significantly faster
data speeds, reduced latency, and increased network capacity. This facilitated services like
HD video streaming, online gaming, and advanced mobile applications.

Currently, we are in the phase of the 5G rollout. 5G employs higher frequency radio waves
and advanced network architecture, including massive MIMO (Multiple Input, Multiple
Output) and beamforming technologies. Furthermore, new concepts such as network virtu-
alization and slicing enable faster data transfer rates, reduced signal interference, and more
efficient use of available spectrum. This has resulted in supporting applications that require
enhanced mobile broadband (eMBB), massive machine-type communications (MMTC), and
ultra-reliable low-latency communications (URLLC).

Technology has come a long way from 1G to 5G, yet there are many milestones to achieve.
Beyond 5G refers to the future generation of wireless communication technology that will
succeed 5G networks. While still in early development, it aims to address the limitations of
5G and introduce even more advanced features. Technologies beyond 5G are expected to
include higher frequencies, including terahertz (THz) communications, AI-driven networks
(for smarter network management, optimization, and resource allocation), and quantum
communications, among others. Beyond 5G is anticipated to bring forth innovative appli-
cations and enhance existing 5G applications, such as holographic communication, ultra-
high-definition VR/AR, remote robotics, smart infrastructure, advanced healthcare, and

1



Figure 1.1: Evolution of mobile networks: 1G to 6G.

environmental monitoring.

6G, a conceptual framework for the future of wireless technology, represents the next step in
achieving some of these milestones. Although still in its early stages, 6G envisions networks
that offer even faster speeds, potentially reaching the terabits per second range. It is ex-
pected to support unprecedented levels of connectivity, enabling advanced applications like
seamless human-machine interaction, advanced augmented reality, and highly sophisticated
IoT systems.

To realize the ambitious vision of 6G, a range of key technologies are considered fundamental
pillars of its infrastructure. Advanced antenna systems, leveraging innovative beamforming
techniques, may enhance signal coverage, reliability, and capacity. Terahertz (THz) commu-
nication, operating at frequencies beyond 100 GHz, can facilitate unprecedented data rates
and support the massive connectivity demands of the Internet of Things (IoT). The inte-
gration of satellite communication may extend the reach of 6G networks, ensuring seamless
connectivity in remote and underserved areas.

Among these transformative technologies, the Reconfigurable Intelligent Surface (RIS) stands
as a critical network component that could shape the future of 6G networks.
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1.1 Reconfigurable Intelligent Surface (RIS)

RIS is a programmable array of tunable meta-surface elements capable of reflecting incom-
ing signals in specific directions to create additional constructive paths alongside direct
paths between the BS and a UE. Figure 1.2 illustrates how phases can be controlled us-
ing a phase shift circuit for each RIS element. RISs can be deployed flexibly, such as on
walls or building sides, enabling received signals to be reflected towards users. RISs can
enhance network performance, offer coverage in dead zones, or conserve energy. RISs are
inherently passive, lacking active RF circuitry for signal reception or processing. By modi-
fying the phase/amplitude of the reflected signal with low energy consumption, they create
supplementary paths to receivers, improving link performance, and making RIS a promising
candidate for 6G. ”Reconfigurable” in RIS refers to the tunable elements, reconfigurable
each time slot via a backhaul link. This enables RIS to create adaptable wireless channels
that adjust to changing conditions, optimizing communication performance in real time.

Figure 1.2: reflection via RIS.

RIS finds applications in a wide range of scenarios where wireless communication is essential.
Some of these use cases are depicted in Figure 1.3. RIS can improve signal propagation in
challenging indoor settings by strategically reflecting and redirecting signals to overcome
obstacles, such as walls and furniture. In outdoor environments, RIS can enhance coverage
and signal quality by intelligently reflecting signals to reach users in remote or obstructed
areas. Researchers have observed performance gains when implementing RIS in different
applications, including millimeter-wave (mmWave) non-orthogonal multiple access (NOMA)
systems [3], vehicular systems [4], secure wireless communications [5], information and power
transfer [6], and energy efficiency [7].

While RIS offers significant benefits and transformative potential for wireless communica-
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Figure 1.3: Applications of RIS. Adapted from [1].

tion systems, it also presents several challenges that need to be addressed for its successful
deployment and realization of its full potential. These challenges include, but are not limited
to:

• Design and Deployment: Designing and deploying large-scale RIS systems can be
complex. Determining the optimal number and placement of reflecting elements, as
well as their configuration and control mechanisms, requires careful consideration. The
physical deployment of RIS in various environments, such as indoor spaces or outdoor
areas, also poses challenges in terms of installation, calibration, and maintenance.

• Channel State Information (CSI) Acquisition: RIS relies on accurate and up-to-date
information about the wireless channel for effective signal manipulation. However,
acquiring precise channel state information becomes more challenging with the intro-
duction of RIS.

• RIS Control and Management: Efficient control and management of RIS is crucial for
its successful operation. Designing intelligent algorithms and protocols for dynami-
cally configuring and adapting the behavior of RIS elements based on changing channel
conditions and user requirements is a complex task. Developing efficient and scalable
control mechanisms to handle a large number of reflecting elements and coordinate
their actions is also a challenge.

In the past four years, RIS have garnered significant attention from researchers, resulting
in extensive efforts to measure the performance gains of RIS in various applications and to
tackle the challenges posed by this technology. Of particular interest to us is the challenge
presented by RIS deployment and RIS control and management. In the following
sections, we present a literature review conducted to address these two cases, aiming to
identify the current state of the art and any existing gaps in the literature.
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1.2 Literature review

While most papers consider a fixed arbitrary RIS deployment position, [8] offers a solution
to the challenge of RIS deployment by optimizing the cell-RIS distance along with the RIS
orientation for a single-cell single-user setup, aiming to maximize cell coverage. On the other
hand, the authors of [9] compare two RIS deployment strategies: the distributed deploy-
ment of smaller RISs versus the centralized deployment of a larger RIS in the context of a
single-cell two-user setup. Their findings demonstrate that the centrally located single RIS
optimization yields better performance compared to strategically deployed multiple small
RIS units. However, both these solutions overlook the complexities of a real-world multi-
cell multi-user environment. RIS deployment considerations should encompass average cell
loads, coverage dead zones, and the deployment environment (urban vs rural), areas that
have yet to be addressed in the literature.

Moving on to address the challenge of RIS control and management, the literature presents
a range of solutions. For instance, the joint optimization of beamforming precoders at
the BS (active beamforming) and the RIS configuration matrix (passive beamforming) is
proposed to minimize BS transmit power in a single-cell setup, catering to both single-
user and multi-user scenarios. This optimization is achieved using semi-definite relaxation
(SDR) and alternating optimization (AO) algorithms [10]. In contrast, other works employ
fixed-point iteration and manifold optimization techniques to optimize active and passive
beamforming for enhancing the signal strength in a single-cell single-user setup [11].

Given the computational intensity of RIS optimization, the literature has explored machine
learning-based solutions. For instance, the authors of [12] utilize deep reinforcement learn-
ing to optimize the BS beamforming precoder and RIS configuration matrix, aiming to
maximize the sum data rate in a single-cell multi-user MISO (multiple-input single-output)
network. Similarly, Deep Neural Networks (DNN) are applied to optimize active and passive
beamforming, with a focus on maximizing users’ signal strength in scenarios where indoor
signal quality is paramount [13].

It’s important to note that the aforementioned studies primarily focus on single-cell se-
tups and often overlook additional resource management tasks such as RIS-aware schedul-
ing and BS-RIS-UE association. However, a limited body of literature explores AI-based
solutions for optimizing various radio resource management tasks within a RIS-aided net-
work. Notably, some authors leverage Graph Neural Networks (GNNs) to optimize RIS-
aware user scheduling in conjunction with active and passive beamforming in a single-cell
setup [14]. Additionally, a study considering a multi-cell MU-MIMO (multi-user multiple-
input multiple-output) network is presented in [15], where authors optimize BS-RIS-UE
associations alongside active and passive beamforming to maximize the sum data rate us-
ing deep reinforcement learning. However, this approach faces the challenge of stable BS-UE
association over limited time slots. Furthermore, this approach assumes that all users are
served at all times.

Through a comprehensive literature review, it becomes evident that while substantial con-
tributions have been made in RIS control and management research, there is relatively less
emphasis on RIS deployment strategies. Furthermore, the optimization of radio resource
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management tasks, such as BS-RIS-UE association and user scheduling, remains underex-
plored within a realistic environment, particularly within traditional multi-cell MU-MIMO
networks.

1.3 Objective

The objective of this thesis is to optimize the radio resource management of a RIS-
aided network for throughput enhancement.

This thesis serves a dual purpose. Firstly, we employ two novel heuristic radio resource
management algorithms with varying complexity to assess their impact on performance
gains, specifically in terms of throughput, within a RIS-aided network. These algorithms
are compared against a benchmark algorithm that represents radio resource management
without utilizing the deployed RIS. Algorithm 1 focuses on optimizing RIS-UE associations
and subsequently refining the RIS configuration matrix along with the BS precoding ma-
trix after the user scheduling has been done for a given time slot. Algorithm 2 involves
additionally RIS-aware scheduling, which in turn optimizes RIS-UE associations, the RIS
configuration matrix, and the BS precoding matrix.

Secondly, our aim is to determine the most suitable use-case scenario for the RIS. We
achieve this by evaluating the performance gains across various scenarios, such as single-cell
versus multi-cell setups, single-user scheduling versus multi-user scheduling, indoor versus
outdoor user placements, and in the presence of temporary blockers characterized by blocker
strength and probability.

Ultimately, this thesis seeks to identify the optimal utilization scenario for RIS technology
and to determine the algorithm that can extract the maximum benefit from the RIS in
terms of throughput enhancement.

1.4 Thesis overview

With this objective in mind, we have structured the thesis into five distinct chapters.

In this introductory chapter, we provided the background and motivation behind the uti-
lization RIS, highlighted the associated challenges, and outlined the central objective of the
thesis.

Chapter 2 presents the overview of the traditional radio resource management tasks that
accompany in a mobile network.

Chapter 3 offers an overview of the network modeling, including its components and the
channel representation employed throughout the thesis.

Following the modeling discussion, Chapter 4 moves on to develop the research question,
provided in this chapter, into a well-defined problem statement. Additionally, within this
chapter, we delve into the intricacies of the three heuristic algorithms that we intend to
utilize in solving the identified problem.
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Subsequently, Chapter 5 introduces the metrics used to assess performance improvement
and introduces various simulation scenarios. It then presents a comprehensive comparison
of the outcomes yielded by the three algorithms across different scenarios.

The final chapter, Chapter 6, serves as the conclusion of this thesis. Here, we provide the
core insights drawn from the study. We also outline the limitations of this research and
suggest potential directions for future investigations.

For readers with a keen interest, Appendix A provides an exhaustive compilation of all
results obtained across diverse scenarios during the course of the thesis.

The notations used in this paper are listed as follows. For any general matrix H, H[i, j]
denotes the entry at the ith row and the jth column, and H[:, j] denotes the column vector
at the jth column. HT , H∗, H−1, H+ represent the transpose, conjugate transpose, inverse,
and moore-penrose pseudo-inverse of matrix H , respectively. H(t) is the value of H at time
t . hk is the kth column vector of H. For any column vector h (all vectors in this paper
are column vectors), h(i) is the ith element. |x| denotes the absolute value of the complex
number x and ||h||2 denotes L-2 norm of the vector h.
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Chapter 2

Overview of existing radio resource
management

This chapter guides the reader in understanding the existing mechanisms of traditional
radio resource management tasks typically present in a mobile network. In this thesis, we
use the same mechanisms with a slight modification.

2.1 Cell-user association

Cell-user association refers to the process of determining which cellular base station (cell)
a specific user equipment (UE) or mobile device should be connected to. In a cellular
network, multiple cells are deployed to provide coverage over a geographical area. The
cell-user association mechanism ensures efficient utilization of network resources, optimal
signal quality, and fair distribution of communication services among users. Factors influ-
encing cell-user association include signal strength, interference, Quality-of-Service (QoS)
requirements, handover, and user mobility.

In a 5G mobile network, all cells transmit beams in a periodic manner, namely SSBs (syn-
chronization signal blocks). A given UE u listens to these SSBs from all the cells and
attempts a handshake with the cell with which it receives the best power. If it doesn’t re-
ceive sufficient power from any cell then the user is considered out of coverage area. Thus,
given user u is associated to a given cell c if:

cu = argmax
c∈C

PSSB
c,u (2.1)

and,

PSSB
cu,u > PSSB

th (2.2)

where C is a set of all cells, PSSB
c,u is the maximum received SSB power from cell c to user

u, and PSSB
th is the threshold power needed for a UE receiver.

9



2.2 Scheduling

Given multiple calls at a given time, there is a need for a time-frequency scheduler at the
cell end. We assume all calls operate at full wideband. In that case, there is an option for
time-based multiplexing and/or spatial multiplexing.

The goal of a scheduler is to optimize the utilization of the network resources while consid-
ering various factors like fairness, data rates, and Quality of Service (QoS) requirements.

2.2.1 Schedulers

There are several scheduling algorithms used in wireless networks, each with its own ap-
proach and objectives. Three common scheduling algorithms are Round Robin, Maximum
Ratio Scheduling, and Proportional Fair Scheduling.

Round robin scheduler

Round Robin is a simple and straightforward scheduling algorithm. It allocates resources
in a cyclic manner to users in a predefined order. Each user takes turns receiving resources
in a sequential fashion, ensuring that all users get an equal share of resources over time.
While Round Robin is fair in the sense that no user is consistently prioritized, it may
not be efficient for scenarios where users have different channel conditions or data rate
requirements. Round Robin can lead to under-utilization of resources for users with good
channel conditions and over-utilization for users with poor conditions.

Maximal ratio scheduler

Maximum Ratio Scheduling is an algorithm that prioritizes users based on their channel
conditions, specifically the signal-to-noise ratio (SNR). It allocates resources to users with
the highest SNRs, as they have the best potential for achieving higher data rates and better
communication quality. It is particularly effective when channel conditions vary widely
among users, as it ensures efficient use of the available resources by prioritizing those with
the best links.

Proportional fair scheduler

Proportional fair scheduling strikes a balance between maximizing system throughput and
ensuring fairness among users. It allocates resources to users in a way that takes into
account both their channel conditions and their historical resource allocations. Users with
better channel conditions receive more resources, but the algorithm also considers the needs
of users with poorer channel conditions to maintain fairness. Proportional fair scheduling
aims to provide each user with a proportional share of resources relative to their channel
quality, avoiding extreme disparities in data rates among users.

For a given user u, with estimated data rates R̃u(t) at time t, proportional fairness index,
PFu, can be calculated as:

PFu =
R̃u(t)

Rav
u (t− 1)

(2.3)
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where, Rav
u (t − 1) is the average user rate till time t. A user with a maximum PF is then

scheduled in the given TTI.

In this thesis, we use the proportional fair scheduler to ensure fairness among user through-
puts.

2.2.2 Multi-user scheduling

Scheduling in MU-MIMO communication systems involves the allocation of communication
resources to multiple users simultaneously, taking advantage of the spatial diversity provided
by multiple antennas at both the transmitter and the receiver. MU-MIMO scheduling aims
to improve system throughput, enhance spectral efficiency, and provide fairness among
users.

SUS algorithm

Semi-orthogonal user selection (SUS) algorithm is a way to implement multi-user scheduling
[16]. After ranking the users in terms of priority index (for us it is proportional fairness
index (PF)), it first schedules the first user. It then co-schedules the user with the next
best PF index, if it satisfies the condition of orthogonality between channels. Satisfying
this condition means that any new user is co-scheduled if and only if the correlation of the
channel (of this new user) with the span of the channel matrix of the already scheduled
users is less than a threshold value.

2.3 Beamforming

Precoding refers to a signal processing technique used to improve the efficiency and quality
of data transmission in multi-antenna communication systems. It involves applying specific
transformations to the data before transmission from the transmitting antennas to enhance
the signal’s reception at the receiving antennas. Precoding aims to exploit the spatial
diversity offered by multiple antennas to mitigate interference, enhance signal strength, and
improve overall system performance.

There are two primary types of precoding techniques: Maximum Ratio Transmission (MRT)
and Zero Forcing (ZF).

2.3.1 Maximum ratio transmission

MRT is a precoding technique that aims to maximize the SNR at the receiving end. It
scales the signal transmitted from each antenna by the ratio of the channel gains (including
fading) at the receiver to the corresponding transmitting antennas. For a given user u,
precoder wu(t) at time t is given by:

wu(t) =
hu(t)

∗

||hu(t)||2
(2.4)

where, hu(t) represents the wideband channel for a single-antenna user u from its associated
cell at time t.
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MRT is particularly useful in SU-MIMO communication when the receiver has perfect chan-
nel state information (CSI) and there is no interference. MRT can effectively improve the
received signal strength, resulting in enhanced data rates and reduced error rates. However,
it does not consider interference or noise in its design, which can limit its performance in
scenarios with interference.

2.3.2 Zero forcing

ZF is another precoding technique that aims to eliminate interference at the receiving anten-
nas by designing the precoding matrix to ensure that the transmitted signal is orthogonal to
interfering signals. In ZF, the precoding matrix is computed in such a way that the interfer-
ence introduced by transmitting antennas is nullified at the receiving end. ZF is particularly
effective in scenarios with interference, as it can suppress interference and improve signal
quality. However, ZF can amplify noise, especially when the number of receiving antennas
is greater than the number of transmitting antennas. A ZF precoder at cell c for all its
scheduled users, denoted here as Wc(t) at time t is calculated as:

Wc(t) = (HT
c )

+ (2.5)

where HT
c denotes the wideband channel matrix comprising of channel vectors from the cell

c to all the scheduled single-antenna users. ZF is especially useful in an MU-MIMO that
may suffer from high intra-cell interference [17].

2.4 Combiner

A combiner is a crucial component used in the receiver system of a multi-antenna com-
munication system. Its primary purpose is to combine the signals received from different
antennas, effectively combining their strengths and exploiting the diversity provided by
multiple antennas to improve the overall quality of the received signal.

MRC is the most common combiner technique that maximizes the SINR by adjusting the
weighting of the received signals based on their channel gains. It assigns greater weight to
signals with stronger channel gains and lower weight to signals with weaker channel gains.
This technique is particularly effective in combating fading and improving signal quality.

In a SU-MIMO, MRC combiner, vu(t) at time t is calculated as:

vu(t) = (wu(t)Hu(t))
+ (2.6)

where, wu(t) represents the precoder for user u and Hu(t) represents the wideband channel
between the cell to the user u at time t.
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Chapter 3

Modeling

This chapter covers the modeling of the network, key components such as antenna and RIS,
and the radio propagation channel considered in this thesis.

3.1 Network modeling

We consider a network comprising NC cells and the set of cells is denoted as C. Considering
a dense urban deployment, an inter-site distance of 500m is considered in this work [18]; this
results in a cell range of 333m. Each cell is assigned a 20 MHz TDD carrier in the 3.5 GHz
band configured with a numerology 1 (i.e. 30 kHz sub-carrier spacing). This results in a TTI
(transmission time interval) of 0.5ms, where a TTI denotes the duration of transmission on
the radio link. Since twelve sub-carriers make up a physical resource block, each cell has
NPRB = 50 PRBs. The set of all PRBs is denoted as F . The carrier is configured with
a five-slot TDD frame duration, comprising four downlink slots and one uplink slot. The
total transmit power per cell is PT = 120W , which is divided evenly among all PRBs.

We consider two network layouts: a single-cell layout and a multi-cell layout, as shown in
Figures 3.1 (a) and (b), respectively. Height of each BS HBS is fixed at 25m. The single-cell
layout consists of one particular cell (i.e. NC = 1) of a three-sectorized BS site with its
azimuth as shown by the array in Figure 3.1 a). For the multi-cell layout, we consider
NC = 19 cells of three-sectorized BS sites, as depicted in Figure 3.1 (b). The innermost
cell, highlighted in dark green, is our cell of interest, i.e., the performance is evaluated for
all the users of this cell and the outermost twelve cells, highlighted in red, serve the sole
purpose of creating realistic interference for the inner (light green and dark green) cells.

Next in this network, we consider NU users uniformly distributed over the (dark or light)
green cells and the set of users is denoted as U . We do not model the explicit presence of
any users in the outermost red cells but, for ease of simulations, assume that these cells
transmit at a configured fixed transmit power with an antenna diagram specified in Section
3.2. We assume that all users are at a fixed height of HUE = 1.5m, and are locally mobile
at pedestrian speed. Users are active with persistent full-buffer data flows in the downlink
for the entire simulation duration. We vary the value of NU to see the impact of the number
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Figure 3.1: Network layouts for simulation consisting of a) a single-cell layout and b) a
multi-cell layout, where each cell is part of a three-sectorized BS site. Users are uniformly
distributed over the (dark or light) green cells. A single RIS is deployed at positions A, B,
or C with their respectively indicated orientations.

of users in different scenarios and layouts. We consider two different cases, one having all
users indoors and the other having all of the users outdoors to compare the performance of
a RIS-aided network in both cases.

We are interested in recognizing the impact of RIS on radio resource management and the
performance experienced by the users of the innermost cell. To investigate this, we consider
one RIS in the network mounted on a building so that its center is at an assumed height of
HRIS = 20m. Three candidate RIS deployment positions are considered for both network
layouts, represented by A, B, and C. These positions are selected as the three corners of
the edge of the center cell. Each RIS deployment is characterized by its position and its
azimuth direction.

3.2 Antenna modeling

Each cell is equipped with a 64T64R antenna array, comprising eight rows and four columns
of cross-polarized antenna element, as depicted in Figure 3.2(a), and thus, making number
of transmit elements, NTX = 64. There are no sub-arrays and thus, the precoder for
beamforming is optimized for all 64 antenna elements. The antenna gain of an antenna
element is configured according to the 3GPP model as indicated in Table 7.3-1 of [18],
with a maximum antenna gain per element of 8 dBi. The horizontal and vertical cut of
the antenna radiation pattern of a single antenna element is also shown in Figure 3.3. We
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assume that all users and the RIS are in the far-field of a cell (i.e. all antenna elements of
the cell have the same gain to all the elements of the RIS and to all the antenna elements
of a given user). The spacing between adjacent antenna elements is equal to λ/2. The
antenna element gain of a cell c towards a user u is denoted as AD,cu, and towards the RIS
is denoted as AI,c. (The use of D and I in the subscript denotes the two different types of
links, a direct link between cell and user and an indirect path from cell to RIS, respectively
as they are explained in better detail in Section 3.4).

Figure 3.2: a) Antenna array deployed at a site with half-wavelength horizontal and vertical
spacing between adjacent antenna elements b) Antenna placement at a user terminal

Figure 3.3: Horizontal and vertical cuts at elevation = 0°and azimuth = 0°respectively, are
shown for a single antenna element of a BS
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Each UE (user equipment) is assumed to have two pairs of cross-polarised antenna elements,
placed in opposite corners of their terminal, as shown in Figure 3.2(b). Thus, the number of
receiver antennas as denoted by NRX , is equal to four. The antenna gain of all UE antenna
elements is assumed to be 0 dBi.

Given the UE antenna height, the BS antenna height, and the ISD, the mechanical down-
ward tilt is derived for the cells to be 5°. An appropriately configured downward tilt ensures
the coverage of cell edge users in case of no shadowing and multipath fading, and reduces
interference for users of outer cells.

Antenna pattern for the outermost 12 cells

As mentioned above, to simplify the interference model and to reduce the simulation time in
a multi-cell layout scenario we do not model any explicit users (and hence, no user-oriented
beamforming) in the outermost twelve cells. Instead we assume those cells are transmitting
at a fixed maximum transmit power PT , and assume an antenna diagram as depicted in [19].
We use the same with a downward mechanical tilt of 5°as other cells. Horizontal and vertical
gains of this model are described in Figure 3.4, which are summed together to get the total
antenna gain in a given direction.

Figure 3.4: Horizontal and vertical antenna gains for an outer cell.

3.3 RIS modeling

This section describes the modeling of the RIS as used in this thesis.

The RIS is an array of M meta-surface elements with sub-wavelength size and spacing. The
size of each element is defined as λ/2 × λ/2, where λ denotes the carrier wavelength and
the spacing between adjacent elements is also λ/2. The surface of the RIS is depicted in
Figure 3.5.
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Figure 3.5: RIS Surface withM RIS elements where each green square represents an element

We assume the dimensions of the surface on which the RIS is deployed to be fixed of size
40×40 RIS elements. Each RIS element reflects the signal with a controllable phase shift and
no amplitude attenuation. These phase shifts are represented through a RIS configuration
matrix ΦΦΦ which is a diagonal matrix with elements of the vector {ejθ0 , ejθ1 , ..., ejθM−1},
where θn represents the phase shift of the nth RIS element. One of the ways to control the
phase shifts of the RIS is using diodes, which allow each element to reflect only with a fixed
phase resolution. However, for simplicity, we deal with continuous variables for phase shifts
in our simulations. While this may not accurately reflect real-world scenarios, research
has shown that discretizing phases to quantize into three or more bits does not result in a
significant performance loss [20].

As a default setting, when the RIS is not optimized, we choose ΦΦΦ = IMIMIM , an identity matrix
of size M . We consider this as a default RIS configuration noting that when all elements are
configured to a common phase shift, the RIS acts as a mirror, meaning that the RIS reflects
with maximum power in the direction where the incident angle is equal to the reflected
angle [21]. This default RIS configuration is denoted as ΦΦΦd.

3.4 Channel modeling

Now given NTX antennas at each BS, M RIS elements, and NRX antennas at each UE,
a channel exists at a TTI t and at PRB f , represented by the channel response matrix
H(t, f), between each of the following three links (see Figure 3.6):

1. direct link D between cell c and user u:
HD,cu(t, f) ∈ CNTX×NRX ∀ u ∈ U , c ∈ C , f ∈ F

2. link between cell c and the RIS, denoted by I (incident signal on RIS):
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HI,c(t, f) ∈ CNTX×M ∀ c ∈ C , f ∈ F

3. link between the RIS and user u, denoted by R (reflected signal from RIS):
HR,u(t, f) ∈ CM×NRX ∀ u ∈ U , f ∈ F

The link between a cell and a user via the RIS is mentioned henceforth as the indirect link
(or path). We now use a cascaded channel model to describe the complete channel where
the indirect link is affected by phase-controlled RIS elements [11]. The complete channel
between a cell c to user u via the RIS is described in the following equation:

Hc,u(t, f) = HD,cu(t, f) +HI,c(t, f)ΦΦΦ(t)HR,u(t, f) ∀ c ∈ C, u ∈ U (3.1)

where, ΦΦΦ is the phase configuration matrix of RIS r at time t as described in Section 2.2.

Figure 3.6: The channel is described for each link, including the cell-UE, cell-RIS, and
RIS-UE links. The RIS configuration matrix for the RIS is denoted as ΦΦΦ.

In our model, we chose to do wideband precoding and combining which means that the
precoding and combining is done over a wideband-equivalent channel. This wide-band
channel is represented as H̄c,r,u(t) and can be calculated by:

H̄c,u(t) =

∑
f∈F Hc,u(t, f)

(|
∑

f∈F Hc,u(t, f)|)
∗
∑

f∈F |Hc,u(t, f)|
F

(3.2)

In Equation 3.2, average of the absolute channel gains over all PRBs is multiplied with the
normalized sum of the channel over all PRBs.

Each channel comprises of an average channel gain Hav ∈ R and a time and frequency-
varying multi-path fading channel Hsmall−scale(t, f) ∈ C. This is described for a general
link l between x and y entities by:

Hl,xy(t, f) =
√
Hav

l,xy ∗H
small−scale
l,xy (t, f) (3.3)

Section 3.4.1 provides a detailed description of the average channel gain, while Section 3.4.2
focuses on the multi-path fading channel.
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3.4.1 Average channel gain

We model the average channel gain for the three given links (i.e. cell to user, cell to RIS,
and RIS to user) considering various factors such as path loss (PL), shadowing (S), antenna
gains (A), building penetration loss (BPL) for indoor users, RIS orientation loss (ROL),
human body loss (HBL), and blocking loss (X). A minimum coupling loss (Lcoupling) of 70
dB is assumed to avoid unrealistically small losses over short distances. The channel gain
for the three links can be described as follows:

1. direct link between cell c and user u:
Hav

D,cu(dB) = AD,cu −max(PLD,cu + SD,cu, Lcoupling)−BPLu −HBL−XD,cu

∀ u ∈ U , c ∈ C

2. between cell c and the RIS:
Hav

I,c(dB) = AI,c −max(PLI,c + SI,c, Lcoupling)−ROLI,c

∀ c ∈ C

3. between the RIS and user u:
Hav

R,u(dB) = −max(PLR,u + SR,u, , Lcoupling)−BPLu −HBL−XR,u −ROLR,u

∀ u ∈ U

Each of these losses is described in detail below.

Path loss

A log-distance path loss model is used to describe the distance-based path loss between all
links, given by the equation:

PL = PL0 + 10γ log10(d/d0) (3.4)

where PL and PL0 are in dB, and PL0 is calculated using the Friis free space path loss
model at a reference distance of d0 = 1m [22].

Shadowing

The shadow fading, or slow fading, is represented by a zero-mean Gaussian random variable
S with standard deviation σsh. σsh is taken to be 7 dB for all links in an indoor users scenario
and 6 dB in outdoor users scenario [18].

To model the spatial and inter-site correlation, shadowing maps are derived for each cell
using the method provided in [23] considering a pixel size of 5m. These maps are derived
to model spatial correlation, defined by a decorrelation distance of 50m, and an inter-site
correlation of 0.5 [23]. Thus, shadowing for a user u from cell c can be derived using the
shadowing map for cell c at the location of user u. Shadowing experienced on a cell-RIS
link is found using the shadowing map of cell c at the location of RIS r. Similar to those
of cells, shadowing maps are created for all the RISs where shadowing can be found for the
position of each user u from RIS r using the shadowing map of RIS r at the location of user
u. An example of a shadowing map is depicted in the Figure 3.7.
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Figure 3.7: One of the generated shadowing maps is shown for an area of 500m × 500m for
outdoor users.

Blocking loss

In this thesis, we have considered a dense urban environment which is unpredictable by
nature. For example, temporary blocking conditions may be created, such as those caused
by large trucks. This temporary blocking effect is represented by a random variable X. The
blocker can be present between the cell and the user and/or between the RIS and the user
with a certain blocker probability, denoted as, PBL. When blocker is not present, then X
takes the value to be 0 dB, otherwise it selects the pre-configured value BL.

Since both the cell antennas and the RIS are deployed at a height of more than 15m, and
we assume the RIS to be strategically deployed, we make a fair assumption that such a
blocker will never be present between them.

For a given scenario, values of BL and PBL are fixed. We simulate different scenarios by
varying the blocker loss or blocker probability to understand their impact on the perfor-
mance of a RIS-aided network.

Other losses

Human body loss refers to the attenuation caused by the presence of a human body between
the cell and UE terminal, and we assume a constant loss of HBL = 6 dB [24].

Building penetration loss (BPLu) for the scenario with indoor users is calculated using the
building penetration model described in Table 7.4.3-3 of [18]. For the scenario with outdoor
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users, we consider it to be 0 dB.

Since the RIS is deployed at a building, there won’t be any indirect path when a cell or
user is behind the building. In such scenarios, we model a RIS orientation loss (ROL) of
infinite dB, which is otherwise 0 dB.

3.4.2 Time-and-frequency-varying channel modeling

After discussing the average channel gains, we now address the scale-scale fading in this
section.

Let’s first consider the cell-RIS channel. We assume this channel to always be LoS (line
of sight) since both are deployed at a height of 25m and 20m, respectively. Given the line
of sight nature and the fixed locations of the cell and the RIS, we assume that there is no
multipath fading on the cell-RIS link. We model the small-scale fading between the cell c
and RIS r using the following equation:

Hsmall−scale
I,cr [i, j] = ej2πdij/λ ∀ i ∈ {0, 1, .., NTX − 1}, j ∈ {0, 1, ..,M − 1} (3.5)

where dij is the distance between the ith antenna element of cell c and the jth RIS element,
and λ is the carrier wavelength.

Between the cell and the user, as well as between the RIS and the user, there lies a more
complicated time-varying model due to users moving locally at a pedestrian speed. We
use QuaDRiGa to implement the 3GPP modeled channel for this [25]. We model the local
character of the user mobility by creating a circular track of radius 0.5m where the user
moves at a speed of 0.8m/s. We specify the scenario for the model as the UMa LoS model,
as described in [18].

Ideally, we would use this model for each sampled user, but that would lead to a complex
slot-level implementation. So we create a randomized set of generic traces at arbitrary user
positions and then for each specific cell-RIS and RIS-user link, we randomly select one of
the generic traces and convert the trace to the specifics of the involved cell/UE orientations.
In order to do this, first, we remove the phases from the channel traces generated for the
arbitrary user positions, thus making them phaseless using the following equation:

Hsmall−scale
trace,phaseless[i, j] = ej2πdij/λ ∗Hsmall−scale

trace,original[i, j]

∀ i = 0, 1, .., NTX − 1, j = 0, 1, .., NRX − 1 (3.6)

where dij is the distance between ith antenna element of the cell, and jth antenna element
of user with the trace-specific arbitrarily-defined user location.

Next, for each cell-user and RIS-user link, we randomly select one of these processed generic
traces, along with a random starting point. Finally, a distance-based phase (distance for
the actual user location) is added back to the trace using:

Hsmall−scale
c,u [i, j](t, f) = e−j2πdij/λ ∗Hsmall−scale

trace,phaseless[i, j]

∀ i = 0, 1, .., NTX − 1, j = 0, 1, .., NRX − 1 (3.7)
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To further save on the memory use of these traces, we store channel responses only for every
fourth TTI, using interpolation within the simulator to calculate the small-scale fading
channel to calculate for the rest of the TTIs.

Now that we have modeled the network and the channel, we move forward in formulating
the problem, scoping it, and establishing different algorithms to solve it.
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Chapter 4

Problem statement and heuristic
solution

We defined the research problem addressed in this thesis in Chapter 1 as the optimiza-
tion of radio resource management in a RIS-aided 6G network to improve the
throughput performance .

As a part of this, we have the following resource management tasks in the proposed setup,
as also visualized in Figure 4.1:

1. Cell-UE association: The set of users associated with a given cell c is denoted by
Uc ⊂ U . For example, in Figure 4.1, all blue users are associated with the cell on the
right.

2. User scheduling: The set of users for cell c that are scheduled in TTI t is denoted
by US

c (t) ⊂ Uc. The set of all scheduled users of all cells is denoted by US(t) =⋃
c∈C US

c (t). We use the proportional fairness-based scheduler to schedule users to
achieve fairness in user throughput. In Figure 4.1, two of the blue users are scheduled
in the given TTI.

3. Cell-RIS association: By cell-RIS association, we mean that the associated cell can
utilize and configure the RIS for the benefit of its users. The set of cells associated
with the RIS in the TTI t is denoted by CRIS(t) ∈ C. In Figure 4.1, we see that
for the RIS, two cells are associated at this time. When a RIS is unable to improve
performance for any user scheduled, then this will be an empty set.

4. RIS-UE association: By RIS-UE association, we mean that the RIS configuration in
the given TTI is optimized to best support the users it is associated with. In Figure
4.1, we observe the RIS to be configured to support three users. The set of users
associated to the RIS in TTI t is denoted by

URIS(t) ⊂
⋃

c∈CRIS(t)

US
c (t)

.
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5. Beamforming:

(a) The transmit precoding matrix for cell c at TTI t is denoted by Wc(t), where
Wc(t) is composed of precoding vectors wc,u(t) ∈ CNTX for all users u ∈ US

c (t)
and c ∈ C, recalling that NTX is the number of antenna elements of a transmit
antenna at the BS. The precoder is optimized for all the scheduled users at time
t, as depicted by the beams in Figure 4.1.

(b) The phase configuration matrix of the RIS at time t is a diagonal matrix denoted
by ΦΦΦ ∈ CM×M . The RIS is configured to reflect the beam in the optimal direction
towards the scheduled users it is associated with, as shown in Figure 4.1.

(c) The receiver combiner at user u at time t, that combines the signals received
at all UE antenna elements, is denoted by vu(t) ∈ CNRX for all scheduled users
u ∈ US(t), where NRX is the number of receive antenna elements at the UE.

Figure 4.1: Setup illustrating the radio resource management decisions at a given time t
when multiple base stations and multiple RISs are deployed.

4.1 Scoping the problem

Given the complexity of the problem, and to solve it using heuristic algorithms, we make
the following assumptions:

1. Users’ association with a cell is fixed for the duration of the call. Users select the
cell towards which they receive the maximum average channel gain. This decision is
represented by the following formula:

cu = argmax
c∈C

|Hav
D,cu +Hav

I,c ∗Hav
R,u|2 ∀ u ∈ U (4.1)

where, cu denotes the cell with which a user u is associated with.
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Note that a user is not associated with any cell if the maximum of the average channel
gains it receives from all cells is 0, i.e., no channel exists from all cells. This also implies
that we do not have a coverage check based on RSRP (reference signal received power)
exceeding some threshold and that the user has no coverage if and only if its (direct
or indirect) paths to all cells are blocked.

2. RIS has fixed association to the innermost cell 0 (our cell of interest). This is a
fair assumption since considering the RIS deployment, the path loss in the indirect
link is too high for any other cells to gain from associating with the RIS. Thus,
CRIS(t) = {0} ∀ t and URIS(t) ⊂ US

0 (t).

3. At a given TTI t, the RIS can only be associated with one user of the network. Thus,
|URIS(t)| ∈ {0, 1}.

4. At a given TTI t and PRB f , the combiner at all users u, associated with cell cu, is
optimized independently using the MRC combiner described in Section 2.4 and given
by equation:

vu(t, f) = (
√
P u
Twcu,u(t)Hcu,u(t, f))

+ ∀ u ∈ U (4.2)

where P u
T is the transmit power per PRB provided for user u

These assumptions limit our problem to solving only for beamforming (active and passive),
user scheduling, and RIS-UE association. This problem is illustrated in Figure 4.2, where
we see that each user gets associated with a cell, then a subset of the users are scheduled
at the given TTI, RIS is associated to a fixed cell (red cell) and is optimized for one of the
scheduled users of that cell, and finally, BS precoding is optimized for each scheduled user.

Figure 4.2: This figure represents the limited scope of the problem that will be discussed
in the remainder of the thesis.

Before diving deeply into the solution, let us look at the interference and noise modeling
that helps us evaluate SINR and throughputs.

25



4.2 SINR and throughputs calculation

As the backbone of our algorithms relies on throughput estimation, which is intricately
linked to the calculation of SINRs, we explain the modeling interference and noise, as well
as the methods employed for SINR computation and throughput assessment.

It is important to note that communication occurs solely on a single layer for all users. In
other words, at any given moment, a user receives data on just one channel, without exploit-
ing the advantages of SU-MIMO-based spatial multiplexing. Additionally, we assume that
perfect Channel State Information (CSI) is available to the cells for their respective users.
Uplink Sounding Reference Signal (SRS) signals transmitted by users can be harnessed to
obtain CSI for the direct channel. Meanwhile, a pilot-based channel retrieval scheme can
be employed for indirect links.

4.2.1 SINR calculation

We calculate the SINRu0(t, f) for the user u0, associated to cell c0 = cu0 , at the TTI t and
PRB f as:

SINRu0(t, f) =
1

(
∑

|vu0(t, f)|2)N0 + Iu0,intra(t, f) + Iu0,inter(t, f)
(4.3)

where, vu0(t, f) is the combiner of this user u0. N0 is the noise power and Iu+0,intra(t, f),
Iu+0,inter(t, f) denotes the intra-cell and inter-cell interference, respectively. These are de-
scribed in detail in the next part.

Noise modeling

Noise Power N0 is calculated using the formula:

N0 = KTB × 10NF/10 (4.4)

where K is the Boltzmann constant, i.e., 1.38 × 10−23 Joules-per-Kelvin, T is the thermal
noise temperature taken as 290 Kelvin, NF is the receiver noise figure of 8 dB, and B is
the bandwidth over which we calculate the SINRs, which in our case is the bandwidth of a
PRB.

Interference modeling

1. Intra-cell interference: This term refers to the interference received by a user u0 from
the users of its own cell c0 using the same resource block of TTI t and PRB f . This
interference can be calculated as:

Iu0,intra(t, f) =
∑

uj∈US
c0

(t)\{u0}

P
uj

T (t)|vu0(t, f)Hc0,u0(t, f)wc0,uj (t)|2 (4.5)

where, P
uj

T (t) = P c0
T,PRB(t) is the transmit power per PRB to user j, which is equal

to the total transmit power of cell, divided by the number of PRBs, divided by the
number of scheduled users.
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2. Inter-cell Interference: This term refers to the interference encountered by a user u0
from users in neighboring cells utilizing the same resource block in TTI t and PRB
f . In a single-cell layout, detailed in Section 3.1, this value is effectively zero. In
contrast, within a multi-cell arrangement, we differentiate between the inner seven
cells and the outer twelve cells, as outlined in Sections 3.1 and 3.2. The computation
of inter-cell interference involves the following components:

Iu0,inter(t, f) = Iu0,inter,inner(t, f) + Iu0,inter,outer(t, f) (4.6)

where,

Iu0,inter,inner(t, f) =
∑

ci∈{0..6}\{c0}

∑
uj∈US

ci
(t)

P ci
T,PRB|vu0(t)Hci,u0(t, f)wci,uj (t)|2 (4.7)

and,

Iu0,inter,outer(t, f) =
∑

ci∈{7..18}

PT,PRB|vu0(t)Hci,u0(t, f)wuniform|2 (4.8)

It should be noted that the outer twelve cells are assumed to transmit at maximum
power with antenna gain, as detailed in Section 3.2. Since no users are accounted for
in these cells, we utilize a uniformly normalized precoding matrix denoted as wuniform,
which simply divides the transmit power equally to all the antenna elements.

We model CQI (channel quality indicator) reporting such that the user-experienced
inter-cell interference is available at the serving cell, which it can then use to estimate
the SINR and thus estimate the data rate. We measure the inter-cell interference,
averaged over all PRBs, during the last DL slot preceding the UL slot in which we
feed back the CQI. Subsequently, the cell employs this information to estimate the
SINR for users over the subsequent four downlink slots. To illustrate, if the downlink
starts at TTI 0, the subsequent uplink takes place at TTI 4. Consequently, the inter-
cell interference is measured at TTI 3 and is utilized for user u from TTI 5 to 8. This
is shown in the equation below:

Îu,inter(5) = ... = Îu,inter(8) =
∑
f∈F

Iu,inter(3, f)/NPRB (4.9)

In the previous step, we computed the SINR per PRB basis. However, our focus is on
evaluating SINR over the whole carrier. The method employed for this purpose is known as
Mutual Information Effective SINR Mapping (MIESM). This approach aids in computing

the effective SINR (SINReff
u ) for a given user u spanning all PRBs. The calculation of

effective SINR involves two key stages: the transformation of each SINRu(t, f) value into
mutual information, MIu(t, f), followed by the derivation of the average MIu(t, f), denoted

as MIeffu (t), which is then mapped back to yield SINReff
u (t). This mapping is based on

the MCS-dependent curves, illustrated in Figure 4.3 [2]. We choose the curve corresponding
to 256 QAM modulation for this thesis. Since we use a Shannon-based data rate calculation,
and not adopt a MCS (modulation and coding scheme) dependent rate control algorithm, we
assume the MCS to be 256 QAM, which provides the best data rate and spectral efficiency.
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Figure 4.3: MI vs SINR curves for different modulation orders. [2]

4.2.2 Throughput calculation

Next, we can obtain the data rate for user u using the truncated Shannon rate, as shown
below:

Ru = min{Rmax, CF ∗Blog2(1 + SNReff
u )} (4.10)

Here, Rmax is the maximum achievable rate of 114.752 Mbps, as calculated using the steps
given in Section 5.1.3.2 of [26]. The correction factor CF is used to model the resources
taken away by control signaling and the inaccuracies in channel estimations. The numerical
value of 0.75 for CF is selected based on the range of such correction factors documented
in [27].

Having addressed the calculations of SINR and throughput, we will now return to the
discussion of defining solutions for the proposed problem and present the different algorithms
that will address the problem of beamforming, user scheduling, and RIS-UE association in
the subsequent section.

4.3 Algorithms to optimize radio resource management tasks

Below, we present the three algorithms to solve the problem of optimization of radio resource
management tasks, such as beamforming, user scheduling, and RIS-UE association:

1. Benchmark: This approach serves as a baseline for comparison, and thus, the RIS is
deployed but remains unused (retaining the default phase shift matrix). Hence, we
jointly optimize only scheduling and precoder for BS beamforming.

2. Algorithm 1: This algorithm builds on the benchmark by first only optimizing
scheduling without considering RIS but then tries to configure the RIS to op-
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timize the user throughput for any scheduled user and then finally optimizes the
precoder.

3. Algorithm 2: In this algorithm, we investigate RIS-aware scheduling. Algorithm 2
involves simultaneously optimizing scheduling, precoding, and RIS configu-
ration to achieve the best throughput fairly.

While we explored many scenarios in our simulation experiments, the sections below give
an overview of each of the algorithms as applied in a multi-cell MU-MIMO scenario that
will encompass all other scenarios.

4.3.1 Benchmark algorithm

In this benchmark algorithm, we fix the configuration of RIS, ΦΦΦ to the default matrix
ΦΦΦd = INININ . Then, at each TTI t, preliminary precoder w̃u,rx(t) is calculated for each receiver
antenna rx of user u0 using MRT precoder as given by Equation 4.11.

w̃u0,rx(t) =
H̄cu0 ,u0(t)[:, rx]

∗

||H̄cu0 ,u0(t)[:, rx]||2
(4.11)

Rates, R̂default
u,rx (t), are then estimated for each user-rx pair using the method described in

Section 4.2.1 based on the MRT-based precoder, w̃u,rx(t) and the CQI received.

Given the estimated data rates for all users and each rx antenna choice, we now follow the
algorithm as shown in Figure 4.4.

Figure 4.4: Benchmark:algorithm followed at a given time t to optimize precoding and
scheduling. True CSI of a given TTI is the input for all blocks. The average data rate from
the previous TTI is taken as input to the scheduler, and inter-cell-interference from the last
uplink slot is taken as input for data rate estimation.

We employ proportional-fair scheduling by calculating first a priority matrix based on the

29



proportional fairness index, PFu,rx for every user-receiver pair as given in Equation 4.12).

PFu,rx =
R̂default

u,rx (t)

Rav
u (t− 1)

(4.12)

Next, multi-user scheduling is conducted using the semi-orthogonal user selection (SUS) al-
gorithm as described in [16]. With this algorithm, users are scheduled in order of decreasing
priority as long as the channel of each new co-scheduled user is sufficiently orthogonal with
the channel of the already scheduled users of a given cell. To do this, we introduce gk as
the span of the channel when k users are scheduled and γ as the orthogonality index. SUS
algorithm is conducted in the following steps for a cell c at time t:

1. Step 1 (initiation):
u0, rx0 = argmax

u∈Uc

PFu,rx (4.13)

User u0 with best PF index is scheduled and g1 = Hc,u0 [:, rx0].

2. Step 2 (considering k users are co-scheduled by far):
For the use ui and rxi, which has the next best PF, we calculate:

γ =
|g(k−1)

∗Hc,ui [:, rxi]|
||g(k−1)||2||Hc,ui[:,rxi]||2

(4.14)

If γ > γth, then the user ui is co-scheduled and we update gk as:

gk = Hc,ui [:, rxi](I−
k−1∑
j=1

gj
∗gj

||gj||22
) (4.15)

The orthogonality index, γ is tested against a threshold value, taken as 0.5, in our case.

The output of this algorithm is the scheduled users along with their respective rx antenna
index (the channel which provides the best PF index while satisfying the orthogonality
check). This scheduler is visualized in Figure 4.5, which is the zoomed-out version of the
’scheduler’ box in 4.4.

Finally, a precoding matrix for the users scheduled in the cell c is calculated using a zero-
forcing precoder as described in Equation 4.16 [17].

Wc(t) = (H̄c(t)
T
)
+
= H̄c(t)(H̄c(t)

T H̄c(t))
−1 (4.16)

where, H̄c(t) is the wideband equivalent of all the channels from the cell c to the rx antenna
corresponding to the rx antenna index of the scheduled users, as determined by the output
of SUS algorithm.

Note that the MRT precoder was used before only to estimate per-user per-rx antenna data
rates and thus to calculate PF indices. For beamforming, we actually use a ZF precoder
as it has the added advantage of interference nulling which is especially important for the
case of MU-MIMO.
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Figure 4.5: Scheduler: inputs are CSI, estimated data rates (without RIS), and average
data rates up to time t for all the users of the given cell. Output is the list of scheduled
users for this cell at time t.

We then calculate the realized data rate, Ru(t), for each user u, and the true interference
using the optimized precoder. We use the realized data rate as input to update the average
data rate, Rav

u (t) following the equation below:

Rav
u (t) = αRav

u (t− 1) + (1− α)Ru(t) (4.17)

where α is the exponential smoothing coefficient set to 0.1 [28].

4.3.2 Algorithm 1

The goal of this algorithm is to separate the scheduling and the RIS configuration deci-
sions. Thus, it optimizes the RIS configuration matrix and the precoder once the users are
scheduled. The flow of this algorithm is illustrated in Figure 4.6.

Figure 4.6: Algorithm 1: algorithm followed at a given t to optimize scheduling and then
jointly optimizing precoder and RIS configuration matrix ΦΦΦ

We observe that the steps until user scheduling remain the same for this algorithm as for
the benchmark algorithm. However, now instead of using the default RIS configuration, we
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explore the possibility of optimizing the RIS configuration matrix for any of the scheduled
users. This step of jointly optimizing the RIS configuration matrix and the precoders are
visualized in Figure 4.7.

Figure 4.7: “RIS optimization and ZF precoding” block of the Algorithm 1 flowchart: CSI,
scheduled users, and estimated data rates without RIS are the inputs; and Φ, new CSI, and
the precoder are the outputs.

The “Data rate estimation (w RIS)” block of Figure 4.7 entails the optimization of the RIS
configuration matrix considering an MRT-based precoder for each receiver antenna of each
scheduled user using the method described in [11]. Equations 3.4-3.9 of [11] are used to find
the optimal RIS configuration, Φ̂̂Φ̂Φu,rx which we then use to estimate the data rate with RIS,
R̂RIS

u,rx, according to the method described in Section 4.2.1.

We next create a new RIS priority (RP) matrix for each scheduled user u and receiver rx,
using the equation below:

RPu,rx = max(
R̂RIS

u,rx − R̂default
u,rx

R̂default
u,rx

, 0) (4.18)

The algorithm then follows the steps in Figure 4.7 to obtain the RIS configuration ma-
trix, updated channel, and precoder to calculate the realized data rates for all users. If
max(RP ) = 0, that means RIS does not provide any gain to any user and is thus config-
ured to the default configuration. ZF precoding is in the same manner as the benchmark
algorithm using Equation 4.16. On the other hand, if max(RP ) > 0, then:

u0, rx0 = argmaxRPu,rx (4.19)

and Φ̂u0,rx0 optimized for this user-rx pair is considered. Since, configuring RIS changes
the channel for all users, the orthogonality condition, as given in Equation 4.14, is checked
between channels of all the co-scheduled users. Only, if this is satisfied, we configure the RIS
for this user u0. Otherwise, we check the condition for the next best RP. If RIS is indeed
configured, then the new CSI is calculated and ZF precoding is done for all the scheduled
users based on the updated channel.
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4.3.3 Algorithm 2

In this algorithm, we aim to optimize scheduling, precoding, and the RIS configuration
matrix simultaneously. This implies that the scheduling decision should take into account
the potential benefits of optimizing the RIS configuration. The flow of this algorithm is
similar to that of benchmark algorithm and is illustrated in Figure 4.8.

Figure 4.8: Algorithm followed at a given t to optimize scheduling and then jointly opti-
mizing precoder and RIS configuration matrix ΦΦΦ

First, we estimate the data rate for each user when the RIS is optimized with the method
described in [11]. Then, we calculate the proportional fairness index for each user u and
receiver pair rx for both cases when RIS is in default configuration or optimized. Then the
users are scheduled in order of decreasing proportional fairness index as long as all channels
of co-scheduled users satisfy the orthogonality test.

There are two important things to note though for such a RIS-aware multi-user scheduling
scenario. First, whenever we would like to use RIS (due to a better-estimated data rate),
the channel will change, due to the configuration of RIS, for all the users in the network.
So, only if all the already scheduled users and this new user can pass the orthogonality
test of the SUS algorithm for this new channel, then this new user will be scheduled, with
RIS configured for it. And any further user that could be scheduled at the same TTI also
needs to pass the orthogonality test based on this new channel. Second, once the RIS is
optimized for a user u, then to test whether a new user could be co-scheduled, we don’t
consider the estimated data rate with the RIS configured, but only the one based on the
default configuration. Even though we know that due to the change in channel, this may
not be the actual data rate, scheduling based on the estimated rates when RIS is in default
configuration is done in order to simplify the algorithm. These changes to the original
scheduler result in the design of a new scheduler as visualized in Figure 4.9.

In this chapter, we defined the problem statement, limited the scope of the problem, and
provided three algorithms that can solve the problem. Next, we will compare the perfor-
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Figure 4.9: New scheduler used for Algorithm 2: Inputs are CSI, estimated data rates (with
and without RIS), and average data rates up to time t for all the users of a given cell c.
Output is the list of scheduled users for this cell.

mance achieved by these algorithms in different scenarios.
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Chapter 5

Scenarios and results

In this chapter, we analyze the performance of the proposed algorithms for different sce-
narios. First, we introduce the key performance indicators (KPIs) and then we present the
different scenarios that are used to derive the results followed by the actual results. For
each scenario, multiple snapshots, are simulated, where each snapshot represents a differ-
ence in user positions, a difference in multi-path fading (the traces used and their starting
index for each user), and a difference in the presence of a blocker, independently sampled
for each cell-user link and each RIS-user link. Simulations are conducted for the number of
snapshots that are needed to reduce the relative halfwidth of the derived 95% confidence
intervals below 5% for every KPI evaluated.

We use the following three KPIs, all defined for the innermost cell, i.e. cell 0:

• Average cell throughput: This denotes the cell throughput, averaged over all
snapshots and all TTIs.

• 10th throughput percentile: This metric denotes the 10th percentile of the distri-
bution of the average (over time) user throughputs of all the snapshots.

• RIS network usage: This metric is defined as the ratio of downlink TTIs where the
optimized RIS is used to all the downlink TTIs, averaged over the snapshots.

We present results according to the four main scenarios: 1) Single-cell single-user MIMO
(SCSU), 2) Multi-cell single-user MIMO (MCSU), 3) Single-cell multi-user MIMO (SCMU),
and 4) Multi-cell multi-user MIMO (MCMU). Here, single-cell and multi-cell refer to the
network layout used in the simulation, as described in Section 3.1, and, SU-MIMO and MU-
MIMO refer to the single-user scheduling and multi-user scheduling in MIMO respectively.

As collaborated in Chapter 1, we wish to see the effect of the blocker (the strength as
well as probability), the number of users, the number of RIS elements, user type (indoors
or outdoors), and the deployment position of RIS on the performance evaluation of the
algorithms. We define these simulation parameters in Table 5.1 with the corresponding
range of values they can take. An underlined value defines the default setting for a given
parameter.
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Simulation Parameters Values

RIS deployment position A, B, C
Blocker probability, PBL 0.1, 0.2
Blocker strength, BL(dB) 0, 15, 30, 45

User type indoors, outdoors
Number of users (single-cell layout) 1, 2, 3, 4, 5
Number of users (multi-cell layout) 21
Number of RIS elements, NRIS 100, 400, 900, 1600

Table 5.1: Simulation parameters

The single-cell SU-MIMO scenarios are simulated extensively, i.e., for all the different simu-
lation parameter values and the outcome of this simulation helped us to limit the interesting
scenarios for other scenarios.

5.1 Single-cell SU-MIMO

In this section, we present the results for the three algorithms discussed in the previous
section for the single-cell SU-MIMO scenario.

5.1.1 Effect of blocker strength

First, we present the performance of the three algorithms: benchmark, Algorithm 1, and 2
(as discussed in Chapter 4) as the value of the blocker strength, UBL, increases from 0 to
45 dB. Results for both indoor and outdoor users are shown in Figure 5.1. The left charts
depict outcomes for outdoor users, while the right chart showcases results for indoor users.
Each chart showcases a specific KPI on the y-axis, correlated with the blocker strength
on the x-axis. In each chart, each curve represents one of the three proposed algorithms.
Vertical lines in all the charts represent a 95% confidence interval for the given KPI in this
and all the subsequent figures.

First, we look at the left chart, when all users are placed outdoors. We observe that when
blocker strength is 0 till 15 dB, the throughput plots remain the same for all three algorithms
and the RIS-assigned ratio is zero (Figures a-c)). Average cell throughput of constant 91.8
Mbps (which is equivalent to 0.8*Rmax, where Rmax was modeled (in Section 4.2.2) as the
maximum achievable rate of 114.572 Mbps for a user at a given time TTI and 0.8 is the
downlink TTIs to total TTIs ratio) is indicative of the fact that all the users of the cell in
this particular scenario (outdoors, with up to 15 dB blocker) achieve a very strong cell-user
link and is thus, are served with the maximum achievable data rate. Hence, RIS cannot
improve on the throughput and is thus not optimized. As the blocker strength increases
further to 45 dB, we observe that the throughput curves (Figures a) and b)) reduce for the
benchmark, and the RIS network usage increases (Figure c)). As the RIS is now used for
the users affected due to a blocker on the cell-user link, we observe that optimizing the
RIS, using both Algorithms 1 and 2 improves both the average cell throughput and the 10th

throughput percentile as compared to the benchmark.
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(b)
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(d)

(e)

(f)

Figure 5.1: SCSU: Performance achieved by the three algorithms for outdoor users in a-c
and for indoor users in d-f as blocker loss is varied

Next, we take a look at the right charts on the same figure where the users are placed
indoors in the network. One distinguishing observation from these charts is that RIS
network usage is higher as compared to the outdoor users (look at Figures c) and f)). Even
when there is no blocker, (i.e. 0 dB blocker loss), RIS is being optimized for more than 20%
of downlink slots. This could be understood from the fact that each indoor user experiences
an additional building penetration loss (BPL) (refer to Section 3.4.1. This reduces the signal
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strength at the user and provides the opportunity for the RIS to be used to improve the
user throughputs. However, we observe from the top and middle right charts (Figures d)
and e)), that the gain achieved by optimizing RIS in algorithms 1 and 2 is not significant.
The signal strength from the indirect BS-RIS-UE path, after suffering BPL becomes very
weak to add significant gain to the throughput. This makes RIS not useful for indoor users
in a SC-SU-MIMO network.

We also observe from Figures 5.1 b) and e), that Algorithm 2 outperforms both the benchmark
and Algorithm 1, in terms of 10th throughput percentile. This makes sense as Algorithm 2
enables RIS-aware proportional fairness-based scheduling. As the benefit from the RIS is
considered during scheduling, users that may benefit from RIS are scheduled more often as
compared to Algorithm 1 (refer to Figure c)), and thus, the network experiences better 10th

throughput percentile. However, we also observe from the top two charts that Algorithm
1 outperforms Algorithm 2 in terms of average cell throughput. On closer inspection, we
describe this as the limitation in the design of Algorithm 1. Though, Algorithm 1 works
also on proportional fairness-based scheduling, it is actually unfair in nature. Let’s look
again at the proportional fairness scheduler as described in Equation 4.12. Here, though
the estimated data rate (in the numerator) does not consider RIS, the average data rate
(in the denominator) considers the benefit of RIS. Thus, the users that have benefited
from RIS will now be served even less as the estimated data rate for them is still quite
low while the denominator is high, making the PF index to be smaller. This results in
users that have already higher data rate being served more often and thus increasing the
average cell throughput. This also explains why the RIS network usage ratio reduces after
a threshold blocker strength and correspondingly, average cell throughput starts increasing
for Algorithm 1.

From the discussion above, we can draw out the key conclusions of this section as 1) RIS is
most useful in the outdoor scenario when the blocker strength is high, 2) RIS does not prove
useful for indoor users in this scenario of SC-SU-MIMO, and 3) Algorithm 2 outperforms
the benchmark in terms of cell throughput and 10th throughput percentile and is also much
more fair as compared to the Algorithm 1.

5.1.2 Effect of blocker probability

Having discussed how the blocker strength in combination with the user type has an impact
on the throughput metrics and the RIS network usage of all three algorithms, we now wish
to see how the results may vary if the blocker probability is changed to 10%. We see the
results in Figure 5.2

Comparing 5.1 and 5.2, we see that all the trends as discussed before remain the same.
Since the blocker probability is lower now. the impact of RIS should also be lower and this
is visible by the reduced RIS network usage and the smaller improvement in the throughput
metrics.
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Figure 5.2: SCSU: Performance achieved by the three algorithms for outdoor users in a-c
and for indoor users in d-f as blocker loss is varied when PBL = 0.1.

5.1.3 Effect of RIS deployment position

Next, we wish to see the impact of the deployment position of RIS between A, B, and C on
the performance of the three algorithms. Since we do not observe gain by RIS for indoor
users in single-cell SU-MIMO scenarios, we limit this discussion to the case with outdoor
users. Results for the same are shown in Figure 5.3.
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Figure 5.3: SCSU: Performance achieved by the three algorithms for outdoor users for
RIS deployment position A in a-b, deployment position B in c-d, and for RIS deployment
position C in e-f.

An interesting observation from this figure is that all three RIS deployments have quite
similar throughput plots. The reason for this is the trade-off between reducing cell-RIS path
loss to the number of users that may benefit from a given RIS position.

Another interesting observation is that for the RIS deployment C, even the benchmark has

40



better performance than other algorithms. This can be explained due to the high signal
strength achieved by the users, (even with non-optimized RIS) due to an improved cell-RIS
link and thus, a better indirect path.

Since this discussion is inconclusive in proving the best RIS deployment position among the
three, we chose arbitrarily RIS deployment position C to be the default setting in the next
discussion based solely on the best 10th throughput percentile among all at 30 dB locker
strength.

5.1.4 Effect of number of RIS elements

Now, we wish to study the impact of the number of RIS elements on the performance of
the three algorithms. These results are presented in Figure 5.4.

On the left chart, we plot the results when the blocker loss is kept at the default setting of
30 dB. However, due to most users experiencing maximum data, we are unable to observe
the trend as the number of RIS elements varies. Thus, on the right chart, we plot results
when blocker loss is 45 dB. From Figure 5.4 d) and e), we see that the performance of both
algorithms 1 and 2 increases as the number of RIS elements increases. Intuitively, increasing
the number of RIS elements increases the captured energy and the focusing capability of the
RIS, thus providing a better indirect path. One interesting observation is that increasing the
number of RIS elements, not only increases the cell throughput but also the 10th throughput
percentile when using Algorithm 2. As users are served better with RIS, they are served
more, which makes the network decisions more fair.

5.1.5 Effect of number of users

Lastly, we analyse the impact of the number of users in a cell on the performance of the
three algorithms when a RIS is present. These results are presented in figure 5.5.

From Figure 5.5, we observe the expected decrease in the 10th throughput percentile and the
expected increase in cell throughput for the benchmark as the number of users increases. We
observe no impact on RIS network usage as the number of users varies. Thus, considering
Algorithms 1 and 2, RIS is not affected by the number of users in a cell. This especially
makes sense in this scenario when there is no intra or inter-cell interference due to additional
users. Further, since only one user is scheduled at a time, RIS is not affected by how many
users are active in total.

In this section, we described in detail the results obtained for single-cell SU-MIMO. Let
us summarize the key observations from this section before we move on to explore the
single-cell MU-MIMO scenario:

1. Blocker probability, blocker strength, and user type together decide the performance
in a RIS-aided network. Outdoor users with high blocker strength and high blocker
probability have the best improvement with RIS as compared to the benchmark of
not using RIS.

2. RIS deployment position does not play a key role in the SC-SU-MIMO scenario.
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Figure 5.4: SCSU: Performance achieved by the three algorithms as the number of RIS
elements are varied when blocker loss is 30 dB in a-c and 45 dB in d-f

3. Algorithm 2 outperforms both the benchmark and Algorithm 1 in terms of 10th

throughput percentile.

4. Increasing the number of RIS elements improves both the average cell throughput and
10th throughput percentile for algorithm 2.
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(c)

Figure 5.5: SCSU: Performance achieved by the three algorithms as the number of users is
varied.

Since, we do not expect the impact of blocker probability, RIS deployment position, or the
number of RIS elements to be any different than the SC-SU-MIMO, we skip that analysis
from now onwards. An interested reader may look at Appendix B to observe detailed results
for these scenarios. We now fix the value of blocker probability to be 0.2, RIS deployment
to be C, and NRIS to be 1600.

5.2 Single-cell MU-MIMO

This section discusses the results of a single-cell MU-MIMO scenario. We are interested in
seeing how the multi-user scheduling and hence, the addition of intra-cell interference may
affect the throughput performance of the three algorithms.

5.2.1 Effect of blocker strength

Let us start with how the blocker strength may impact the performance of the three proposed
algorithms for outdoor and indoor users. We observe these results in Figure 5.6. Note that
we have increased the limits of the y-axis for throughput plots.
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Figure 5.6: SCMU: Performance achieved by the three algorithms for outdoor users in a-c
and for indoor users in d-f as blocker loss varies.

Compared to the last scenario of SC-MU-MIMO, we see two main differences. Firstly, we
observe a significant gain for indoor users with Algorithm 2 even when there is no blocker.
This is explained by the fact that now more users are scheduled at the given time. So, the
RIS network ratio is much higher which results in any users that may benefit from RIS
being scheduled more often, hence, improving the average cell throughput.
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Secondly, we observe that now, Algorithm 2 outperforms both the benchmark and Algorithm
1 in all the metrics. Let us try to understand this by reviewing how Algorithm 1 works.
In this algorithm, first, the users are independently scheduled and then the RIS is used if
it can improve any performance. Note that in the case of MU-MIMO, as RIS is optimized,
the orthogonality for the co-scheduled users needs to be satisfied with the updated channel.
This condition is difficult to match and thus, the RIS network usage is much smaller with
Algorithm 1 as compared to Algorithm 2, leading to lower throughputs as well.

5.2.2 Effect of number of users

Next, we wish to see the impact of the number of users on the performance of three algo-
rithms. We can observe from Figure 5.7 that the RIS network usage ratio almost linearly
increases with the number of users (Figure c)). This shows as more users are present in the
network, more users are co-scheduled, and thus, the RIS is being used more often. Thus,
not only does the cell throughput increase with the number of users (refer to Figure a)), but
the performance gain from Algorithm 1 and 2 as compared to the benchmark also increases
(Figures a) and b)).

y

(a) (b)

(c)

Figure 5.7: SCMU: Performance achieved by the three algorithms for outdoor users as the
number of users varies.
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The key insight for the results obtained for SC-MU-MIMO is that though RIS may not prove
useful in a single-cell SU-MIMO case for indoor users, it clearly improves the throughput
in a single-cell MU-MIMO case, even with no blocker present. Furthermore, in the case
of MU-MIMO, it is important to jointly optimize scheduling with RIS since that proves to
have the best performance for all the defined metrics.

5.3 Multi-cell SU-MIMO

Till now, we discussed a single-cell scenario where users are constrained to be associated
with only one cell. This has also resulted in no inter-cell interference. Now, in this section,
we aim to see how the performance of the three algorithms would vary in a multi-cell
scenario.

Here, we first consider a SU-MIMO and present results for the metrics defined for the users
of the innermost cell, cell 0 in Figure 5.8.

Interestingly, we see no improvement in throughput when RIS is used, as compared to the
benchmark. This is explained by the fact that when the user of the innermost cell is blocked
on the cell-user link and thus, has a weak path, it gets associated with another cell. Since
we have constrained the RIS to be used by the users of the innermost cell, these users then
no longer benefit from RIS. In the case of indoor users with weak path loss, even when they
get optimized for RIS (look at Figure f)), we do not see any visible improvement (Figures d)
and e)) due to building penetration loss for the indoor users and high inter-cell interference.

Thus, we can conclude that under the conditions defined by our multi-cell scenario, the
given algorithms are not useful and RIS does not improve the throughput in SU-MIMO.
Another way to look is that, in the case of a multi-cell scenario, it may be useful to consider
RIS-aware cell-UE association decisions in future work.

5.4 Multi-cell MU-MIMO

We finally present the results for the multi-cell MU-MIMO scenario in Figure 5.9. We have
removed Algorithm 1 from this analysis as we already proved that it does not improve any
performance in a MU-MIMO case, and even if it does, it is at the expense of fairness.

We observe from Figures 5.9 a-b,d-e that the Algorithm 2 outperforms the benchmark.
Considering the previous discussion of MC-SU-MIMO, this seems rather counter-intuitive
as we concluded that the users with high blockers on the direct cell-user path are simply
associated with another cell. That still holds true in this discussion. It is still only the users
with weak path loss that are associated with the RIS. But, we observe from the bottom
two figures that the RIS network usage is high, which enables all the users to be scheduled
much more often and because of this high RIS network usage ratio, we observe performance
gains in the throughput KPIs.
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(d) Indoor scenario

(e)
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Figure 5.8: MCSU: Performance achieved by the three algorithms for outdoor users in a-c
and for indoor users in d-f as blocker loss varies.
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Figure 5.9: MCMU: Performance achieved by the three algorithms for outdoor users in a-c
and for indoor users in d-f as blocker loss varies.
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Chapter 6

Conclusion

In this study, we introduce three algorithms aimed at optimizing radio resource manage-
ment tasks in a 6G-enabled network. We conducted a comparative analysis of these al-
gorithms in terms of performance among themselves, as well as against various scenarios.
Our simulations encompassed both single-cell and multi-cell configurations, incorporating
both single-user and multi-user scheduling. Additionally, we evaluated performance under
distinct conditions, including user placement, blocker strength, blocker probability, and RIS
deployment positions.

To achieve our objective, we commenced with modeling the network, its components, and
the channel within a RIS-augmented framework. We outlined the methods employed for
SINR and throughput calculations. Subsequently, we explained the three algorithmic solu-
tions for radio resource management tasks in detail. Lastly, we analyzed the comprehensive
simulation results across various scenarios.

The subsequent section presents a concise summary of our conclusions. We end this chapter
by acknowledging the limitations of this thesis and identifying future avenues to extend this
research.

6.1 Summary

Our findings reveal that Algorithm 2, that optimizes RIS-aware scheduling, RIS configura-
tion matrix, and precoding matrix at the cell, consistently outperforms the benchmark, both
in terms of average cell throughput and the 10th throughput percentile. It also surpasses
Algorithm 1, which undertakes independent scheduling without considering RIS, in most
scenarios—except for SC-SU-MIMO, where Algorithm 2’s fairness superiority is evident.

Considering the objective of optimal RIS application, we draw the following conclusions:

• For SC-SU-MIMO, RIS deployment is beneficial solely for outdoor users experiencing
substantial blocker losses on the cell-user link. With a 30 dB blocker, Algorithm 2
enhances the 10th throughput percentile to twice the benchmark.
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• For SC-MU-MIMO, RIS deployment proves advantageous for both indoor and outdoor
users. Multi-user scheduling enables RIS usage in up to 78% of downlink slots, im-
proving the 10th throughput percentile by 14.8% for indoor users with 30 dB blocker.
In the context of MU-MIMO, where scheduling hinges on channel conditions, RIS
consideration during scheduling becomes vital to maximize potential benefits.

• For MC-SU-MIMO, within the existing simulation setup and proposed algorithms,
RIS deployment does not yield any network advantage.

• For MC-MU-MIMO, RIS deployment remains advantageous for both indoor and out-
door users. Multi-user scheduling permits RIS utilization in up to 60% of downlink
slots for the indoor users, leading to a 32.1% enhancement in the 10th throughput
percentile for the indoor users with 30 dB blocker loss.

• The trend in RIS deployment strategies across different RIS locations remains con-
sistent, albeit requiring more intricate analysis due to the inherent trade-off between
cell-RIS distance and the number of beneficiaries.

• In MU-MIMO, the number of users in the network significantly influences the perfor-
mance gain.

• RIS usefulness escalates with heightened blocker probability and/or increased blocker
strength.

• An increase in the number of RIS elements directly correlates to throughput improve-
ment (both cell and user 10th throughput percentile).

6.2 Future work

Throughout this study, we’ve identified several potential research directions to extend the
work presented in this thesis:

• While our study encompassed radio resource management tasks such as RIS-UE as-
sociation, user scheduling, and beamforming, an examination of BS-UE association
could further enhance the understanding, particularly in a multi-cell layout.

• A discussion pertaining to coverage was omitted in this thesis. Addressing scenarios
with high blockers where numerous users might be out of coverage and assessing the
potential for RIS improvement would be insightful.

• Although our study employed heuristic algorithms, exploring advanced AI-based so-
lutions could enhance both performance and computational feasibility.

• We operated under the assumption of perfect Channel State Information (CSI). Ad-
dressing the impact of realistic CSI and developing efficient CSI acquisition algorithms
that complement radio resource management tasks are worthwhile avenues for future
exploration.
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Appendix A

Extensive set of results

Below we provide the set of results excluded from the thesis.

A.1 SC-SU MIMO

Figure A.1 provides the counterpart of Figure5.3 by providing results for indoor users.

A.2 SC-MU-MIMO

Figure A.2 provides the effect of RIS dployment on outdoor users in SC-MU-MIMO scenario.

Figure A.3 provides the effect of RIS dployment on indoor users in SC-MU-MIMO scenario.

A.3 MC-SU-MIMO

Figure A.4 provides the effect of RIS dployment on outdoor users in MC-SU-MIMO scenario.

Figure A.5 provides the effect of RIS dployment on indoor users in MC-SU-MIMO scenario.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: SCSU: Performance achieved by the three algorithms for indoor users for RIS
deployment position A in a-b, deployment position B in c-d, and for RIS deployment position
C in e-f.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: SCMU: Performance achieved by the three algorithms for outdoor users for
RIS deployment position A in a-b, deployment position B in c-d, and for RIS deployment
position C in e-f.
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(c) (d)

(e) (f)

Figure A.3: SCMU: Performance achieved by the three algorithms for indoor users for
RIS deployment position A in a-b, deployment position B in c-d, and for RIS deployment
position C in e-f.
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: MCSU: Performance achieved by the three algorithms for outdoor users for
RIS deployment position A in a-b, deployment position B in c-d, and for RIS deployment
position C in e-f.
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(a) (b)

(c) (d)

(e) (f)

Figure A.5: MCSU: Performance achieved by the three algorithms for indoor users for
RIS deployment position A in a-b, deployment position B in c-d, and for RIS deployment
position C in e-f.
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