
 
MASS CUSTOMIZING THE RELATIONS OF DESIGN CONSTRAINTS 

FOR DESIGNER-BUILT COMPUTATIONAL MODELS 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
BY 
 
 
 

SELEN ERCAN 
 

 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE INTERNATIONAL JOINT DEGREE OF MASTER OF SCIENCE 
IN 

THE DEPARTMENT OF ARCHITECTURE 
IN 

COMPUTATIONAL DESIGN AND FABRICATION  
TECHNOLOGIES IN ARCHITECTURE 

BY 
MIDDLE EAST TECHNICAL UNIVERSITY 
DELFT UNIVERSITY OF TECHNOLOGY 

 
 

 
SEPTEMBER 2010



 
Approval of the thesis: 

 
 

MASS CUSTOMIZING THE RELATIONS OF DESIGN CONSTRAINTS FOR 
DESIGNER-BUILT COMPUTATIONAL MODELS 

  
 
  
 
submitted by SELEN ERCAN in partial fulfillment of the requirements for the 
degree of Master of Science in Architecture Department, Middle East 
Technical University, and Delft  University of Technology by, 
  
  
Prof. Dr. Canan Özgen                                                          _______________  
Dean, Graduate School of Natural and Applied Sciences  
  
Assoc. Prof. Dr. Güven Arif Sargın                                        _______________ 
Head of Department, Architecture 
  
Assoc. Prof. Dr. Mine Özkar                                                 _______________  
Supervisor, Architecture Dept.,  METU  
  
 
   
Examining Committee Members:   
  
Prof. Dr. Can Baykan                                                       _____________________             
Architecture Dept., METU                             
  
Assoc. Prof. Dr. Mine Özkar                                      _____________________ 
Architecture Dept., METU                             
  
Assoc. Prof. Dr. Rudi Stouffs                                            _____________________ 
Building Technology Dept., TU Delft 
  
Assist. Prof. Dr. Bige Tunçer                        _____________________ 
Building Technology Dept., TU Delft 
 
Onur Yüce Gün, M.Sc.                                                      _____________________ 
Computational Design Specialist 
  
                       Date: 13.09.2010 
 



  iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I  hereby  declare  that  al l   information  in  this  document  has 
been  obtained  and  presented  in  accordance  with  academic 
rules  and  ethical  conduct.  I  also  declare  that,  as  required  by 
these  rules  and  conduct,  I  have  ful ly  cited  and  referenced  all 
material and results that are not original to this work.  
  
  
 
  
              Name, Last name: Selen Ercan 
   
  
              Signature:  
  
  
 



  iv 

 
ABSTRACT 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The  starting  motivation  of  this  study  is  to  develop  an  intuitively  strong 

approach  to  addressing  architectural  design  problems  through 

computational models. Within  the scope of  the  thesis,  the complexity of 

an architectural design problem is modeled computationally by translating 

the  design  reasoning  into  parameters,  constraints  and  the  relations 

between these. Such a model can easily become deterministic and defy 

its  purpose,  if  it  is  customized  with  pre-defined  and  unchangeable 

relations between the constraints.  

This  study  acknowledges  that  the  relations  between  design  constraints 

are bound  to change  in architectural design problems, as exemplified  in 

the graduation project of  the author. As such, any computational design 

model  should  enable  designers  to  modify  the  relations  between 

constraints. The model should be open for modifications by the designer. 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The findings of the research and the architectural design experiments  in 

the  showcase  project  suggest  that  this  is  possible  if  mass  customized 

sequences of abstract, modifiable and reusable relations  link  the design 

constraints with each other in the model. Within the scope of this thesis, 

the  designer  actions  are  mass-customized  sequences  of  relations  that 

may be modified  to  fit  the small design  tasks of  relating specific design 

constraints.  They  relate  the  constraints  in  sequence,  and  are  mass 

customized  in  an  abstract, modifiable  and  reusable manner. Within  this 

study, they are encoded in Rhino Grasshopper definitions. As these mass 

customized  relations  are  modifiable,  they  are  seen  as  a  remedy  for 

enabling  the designers  to build models  that meet  individual and  intuitive 

needs of the design problems that designers define.  

 

 
  
  
Keywords:  Design  Constraints,  Computational  Design  Model,  Designer 
Actions, Mass Customization 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Bu  çalışmanın  başlangıç  motivasyonu,  mimari  tasarim  problemlerini 

sayısal modeller  ile  ele  almak  için  sezgisel  anlamda  güçlü  bir  yaklaşım 

geliştirmektir.  Bu  tezin  bağlamında,  bir  mimari  tasarım  probleminin 

karmaşıklığı, o problemin tasarım düşüncesinin değişkenler (parameters), 

koşullar  (constraints) ve bunların  ilişkilerine dönüşümü  ile sayısal olarak 

modellenebilir.  Böyle  bir  model,  eğer  önceden  tanımlı  ve  değiştirlemez 

koşul  ilişkileri  ile özelleştirilirse, kolayca amacından sapıp determinist bir 

yapıya bürünebilir.  

Bu  çalışma,  yazarın  mezuniyet  projesinde  de  örneklendiği  gibi,  mimari 

tasarım  problemlerinde  tasarım  koşulları  ilişkilerinin  değişmeye  mecbur 

olduğunu  kabul  eder.  Bu  nedenle,  tasarımcılar  herhangi  bir  sayısal 

tasarım  modeli  ile,  tasarım  koşulları  arasındaki  ilişkileri 

değiştirebilmelidirler. Model, tasarımcının değişikliklerine açık olmalıdır. 

Yapılan  araştırmalar  ve  vitrin  projede  deneyimlenen  mimari  tasarım, 

bunun,  seri  özelleştirilmiş,  soyut,  değiştirilebilir,  ve  yeniden  kullanılabilir 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ilişki  sıralarının  modelde  tasarım  koşullarını  birbirine  bağlaması  ile 

mümkün  olduğunu  ortaya  koymaktadır.  Bu  tezin  kapsamında,  tasarımcı 

eylemleri,  belli  tasarım  koşullarını  birbirine  ilişkilendiren  küçük  tasarım 

görevlerini  yerine  getirmek  üzere  degiştirilip  ayarlanabilen  seri 

özelleştirilmiş  ilişki  sıralarıdır.  Tasarımcı  eylemleri,    koşulları  bir  sıra  ile 

ilişkilendirir  ve  soyut,  değiştirilebilir,  ve  yeniden  kullanılabilir  bir  şekilde 

seri  özelleştirilmişlerdir.  Bu  çalışmada,  ilişki  sıraları  Rhino  Grasshopper 

tanımları  içine  yazılmıştır.  Bu  seri  özelleştirilmiş  ilişkiler  değiştirilip 

ayarlanabilir  oldukları  için,  tasarımcıları,  kendi  tanımladıkları  tasarım 

problemlerinin  sezgisel  ve  bireysel  ihtiyaçlarını  karşılayan  modellleri 

geliştirebilir kılmak için çözüm olarak sunulmaktadırlar. 

 
 
 
  
Anahtar Kelimeler: Tasarım Koşulları, Sayısal Tasarım Modeli, Tasarımcı 
Eylemleri, Seri Özelleştirme 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 c  and  i  are  two  number  sliders  and  one  panel  by which  the 
author  inputs  the values directly. The other  components depend on  the 
values  of  parameters,  panels  or  number  sliders  that  they  are  linked  to. 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CHAPTER 1 
 
 

INTRODUCTION: WHAT TO MASS CUSTOMIZE AND WHY 
TO MASS CUSTOMIZE – THE SWITCHING ROLE OF THE 

DESIGNER 
 
 
 

In  this  thesis,  mass  customization  is  deemed  to  be  significant  on  two  levels: 

firstly,  it allows designers  to build  their own computational design models; and 

secondly,  it  permits  the  introduction  of  computational  design  models  into 

architectural design knowledge.  

 

Beginning with the first point, in this thesis, for developing computational design 

models, the designer is required to relate each design constraint to every other 

constraint.  The  actions  of  a  designer  in  this  regard  can  be  considered  as  the 

formation  of  mass  customized  relations  between  design  constraints.  These 

relations are abstract, modifiable and reusable, and relate the design constraints 

in sequence. For this study, in mass customization, the sequences are encoded 

in Grasshopper definitions, as will be explained  later  in  the study.  In summary, 

these  mass  customized  relations  may  overcome  the  problems  faced  when 

developing models  to  address  the  individual  and  intuitive  needs  of  the  design 

problem;  may  enter  general  usage  in  architectural  design  problems. The 

designers should either take the opportunity to mass customize these relations, 

or a library/menu of these relations should be available to them to modify.  

 

Coming  to  the  second  point  of  significance,  being  the  introduction  of  these 

computational  design  models  into  architectural  design  knowledge,  if  put  into 

computer  –  if  implemented  as  applications  or  some  software  –,  these models 

may be used by other  designers  as CAAD  tools. Moreover,  the developers  of 

the  design  models  may  adopt  them  as  well  for  their  own  use  in  different 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contexts,  scales,  etc.  It  is  suggested  in  this  study  that,  designers  are  able  to 

develop computational design models by carrying out a mass customization of 

the  way  they  design,  and  they  develop  computational  design  models  for  the 

mass  customization  of  the  way  they  design;  and  the  resulting  model  may  be 

adopted in the application of their architectural design to different situations. 

 

Researchers  such  as  Sait  Ali  Köknar  and  Arzu  Erdem  have  broached  the 

subject  in  the  past,  claiming  that  designers  work  with  thinking  tools  and  use 

existing packages of  knowledge when designing.1 Designers may use existing 

models  (from  the  projects  of  different  practices  using  computational  support, 

etc.),  and  follow  the  sequence  of  relations  that  they  have  introduced.  The 

reasoning of  the architectural design problem can be externalized  into existing 

packages  of  architectural  design  knowledge,  and  may  draw  upon  existing 

models  for  reference. This  is  related  to  the significance of mass customization 

raised in this research when the need of translation is considered.  

 

For  this study, parametric and constraint-based design models are adopted for 

externalizing design reasoning. A model  is built by  translating  the reasoning of 

the  designer  into  a  sequence  of  relations  between  design  constraints. Such  a 

translation  is  relevant  for  the  particular  method  being  applied  by  adopting 

parametric and constraint-based design models. Should another computational 

method  be  applied  then  the  reasoning  of  the  designer may  be  translated  into 

something  other  than  the  relations  between  design  constraints.  It  should  be 

noted that the externalization of reasoning into existing packages of architectural 

design  knowledge  is  a  general  issue  that  exists  for  all  architectural  design 

problems. Accordingly, designers design and communicate through “production-

like encodings of  extant  and newly  learned actions,”2  as  referred  to by Robert 

                                                        
1  Sait  Ali  Köknar,  Arzu  Erdem.  “Can  creativity  be  institutionalized?”,  A-Z  ITU  Journal  of  the  Faculty  of 
Architecture, 4(2), 2007, p.28 

2 Robert Woodbury, Andrew Burrow.  “Whither  design  space?”, Artificial  Intelligence  for Engineering Design, 
Analysis and Manufacturing, 20(2), 2006, p.68 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Woodbury and Andrew Burrow. 

 

There are a number of  crucial  questions  that  should be  raised  concerning  the 

differences between customization and mass  customization. For  instance,  is  it 

possible for designers to develop a computational design model and put it into a 

computer  from  which  they  will  be  able  to  draw  support  in  defining  a  design 

process  that  can  be  customized  for  each  new  design  problem?3  In  “A 

Perspective on Computer Aided Design after Four Decades,” Earl Mark, Mark 

Gross and Gabriela Goldschmidt  reiterate  this question, which was  first  raised 

by  Negroponte.  This  thesis  researches  the  further  question  of  whether  it  is 

possible  to  develop  such  a model  without  falling  into  the  trap  of  determinism, 

resulting  in  the designer becoming a mere end user.  These  inquiries point out 

the differences between customization and mass customization. 

 
 
  1.1 Mass Customization Overtaking Customization 
 

In  customizing  architectural  design  problems  to  achieve  a  simpler  and 

easier  automated  generation  of  design  solutions,  determinism  can  be  a 

fallback. As suggested by Alexander Koutamanis  in his paper,  “A Biased 

History of CAAD: The Bibliographic Version,” CAAD does not derive from 

the distinct ambition of the various attempts to automate the production of 

architectural  designs.  To  back  up  this  claim,  he  looks  into  history  of 

CAAD,4  and  finds  that  while  automation  in  design  has  been  popular  in 

different aspects since  the 1970s,5  the aim has always been  to  integrate 

computational methods – such as parametric and constraint-based design 

–  into  architectural  design.  Sometimes  the  intention  may  have  been  to 

                                                        
3  Earl  Mark,  Mark  Gross,  Gabriela  Goldschmidt.  “A  Perspective  on  Computer  Aided  Design  After  Four 
Decades”, eCAADe 26: architecture ‘in computro’, ed. M. Muylle, 2008, pg.171 

4  Alexander  Koutamanis.  "A  Biased  History  of  CAAD:  the  bibliographic  version",  in,  J.P  Duarte,  G  Ducla-
Soares & A.Z Sampaio (Eds.), eCAADe 23: Digital Design: the Quest for New Paradigms, p.630 

5 ibid., p.632 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replace  the  designer,  as  Negroponte  suggested  in  1975;  or  sometimes 

only to provide support; but it would be fair to say that the conventions and 

assumed  principles  of  architectural  design  have  always  been  at  the 

forefront.  If  the actual  intention  is  integration concerning  the conventions, 

the  externalization  of  individual  design  reasoning  may  emerge  as  a 

problem. A designer drawing upon the support of computational methods 

to model the complexity of architectural design problems may be unable to 

take advantage of  the components of  the computational design models  if 

they are unchangeable. The relations of design constraints are included in 

the  computational  components  of  the  particular  models  under 

consideration, and they should be changeable and open to modification by 

the designer.  

 

If  the  intention  is  to  customize  on  a  problem-by-problem  basis,  then  the 

result  may  only  be  the  provision  of  a  model  that  the  designer  can  play 

with, and may easily result in the creation of a CAAD tool that the designer 

is unable to modify.  In  this case,  the result may be a deterministic model 

that may not be sufficient  to encompass  the complexity of  the way each 

individual designer addresses architectural design problems. Additionally, 

it  may  not  be  compatible  with  the  character  of  the  architectural  design 

problem,  if  the  variety  of  parameters  and  constraints  that  can  exist  in  a 

translation of a specific design reasoning of a specific architectural design 

problem  is  taken  into  account.  Within  the  scope  of  this  thesis,  the 

translation  of  design  reasoning  into  the  computational  components  is 

crucial in this respect. It is how a designer defines the design parameters, 

constraints and the relations between them and it  is considered as a part 

of the way they design. These components should not be customized, as 

resulting models may  not  be  open  to modification  by  the  designers  and 

thus may hinder the designers  in developing design models that are able 

address the problems that they define. 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Designers  should  be  provided  with  possible  sequences  of  relations, 

allowing  them  to  develop  their  own  models.  These  are  called  designer 

actions,  meaning  mass  customized  sequences  of  relations  that  are 

abstract, modifiable and reusable, and relate various design constraints to 

each other. They are not  customized  for  specific design constraints, and 

thus bring a changeable character to the model. If an attempt to generate 

architectural  design  solutions  is  supported  by  a  computational  design 

model,  then mass  customization may  prove  to  be  advantageous  for  the 

designers  in  accessing  the  relations  between  design  constraints,  and 

making the designer the builder of the model. Mass customization enables 

designers  to  build models  that meet  the  individual  and  intuitive needs of 

the design problem that they are addressing.  

 

Since the 1980s, the intention has been to address all kinds of problems, 

from making a simple line drawing to explaining and supporting the use of 

design precedents, as stated by Koutamanis.6  This necessitates an ability 

to shift between different scales of architectural design problem, for which 

a  more  comprehensive  approach  may  be  required  that  goes  beyond 

customization,  referred  to here as mass customization. This scale shift  is 

discussed  later  in depth as an  important proposal of  the  thesis  regarding 

mass customization. To clarify here, the shift is packaged and explained in 

1/1000,  1/100  and  1/10  scales  of  the  graduation  project  of  the  author, 

which  is  being  explained  in  Chapter  5.  In  this  project,  rather  than 

customization  on  a  problem-by-problem  basis,  the  author  translates  the 

reasoning  of  the  design  problem  into  the  relations  of  design  constraints 

through  mass-customized  sequences  of  relations.  The  generality  and 

usefulness  of  this  approach  lie  in  the  ability  of  the  author  to  act  as  the 

                                                        
6  Alexander  Koutamanis.  "A  Biased  History  of  CAAD:  the  bibliographic  version",  in,  J.P  Duarte,  G  Ducla-
Soares & A.Z Sampaio (Eds.), eCAADe 23: Digital Design: the Quest for New Paradigms, p.632 
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builder of her own model.7 

In  this  research,  the  intention  is not  to come up with a CAAD tool  that  is 

specific  for  one  architectural  design  problem,  but  rather  to  offer 

suggestions  of  how  designers  may  translate  their  reasoning  on  one  or 

more  scales  of  their  design  problem  into  relations  between  design 

constraints, and thus enable them to come up with a computational design 

model that responds to different scales of the design problem as a whole. 

The  intention  in  describing  the  sequence  of  relations  that  may  exist 

between design constraints  in such a model  is  to suggest how designers 

can be the builders of their own models. 

 
 
1.2 Externalizing Individual Design Reasoning 
 
Within  this  research,  it  suggested  that  designers  should  define  the 

relations of design parameters and choose how constraints are related to 

each  other.  Even  though  no  computational method  exists  that  is  able  to 

generalize the complexity of architectural design,8 some may be applied to 

allow  the  building  of  a  computational  model.  Axel  Kilian,  in  his  paper 

“Design Innovation through Constraint Modeling,” claims that constraints in 

a design space exist  in many forms, but that no master model exists that 

can incorporate them all.9  

 
                                                        
7  In UN Studio: Design Models  - Architecture, Urbanism,  Infrastructure by UN Studio,  the paradigmatic shift 
between  the  need  of  building  a  design  model  rather  than  designing  a  building  is  discussed  with  several 
different  cases  and  categories.  Ben  Van  Berkel,  Caroline  Bos,  UN  Studio:  Design  Models  -  Architecture, 
Urbanism,  Infrastructure,  Thames and Hudson,  2006. This  point  on  “tool ward  thinking”  rather  than  “design 
ward thinking” may as well be related to Sait Ali Köknar’s point of view in “Architectural Design Tools: Toward 
a non-linear design process”, Proceedings Designtrain Congress Trailer I, 2007, pp.180-181. 
8  Generative  design  systems  may  also  be  an  efficient  method  of  grasping  the  complexity  of  architectural 
design, although there is not only one method to analyze its design space. The reason for that, as Scott Chase 
suggests in “Generative design tools for novice designers: Issues for selection,” is that generative design tools 
introduce key concepts that are the foundations of design (p.697). Moreover, generative design systems work 
with operations that are completed by using a number of “tools that perform only one task, but doing it well” in 
sequence, as also put forward by Chase (p.689), and address the design problem piece by piece. 

9 Axel Kilian. “Design Innovation through Constraint Modeling”, Digital Design: The Quest for New Paradigms, 
23rd eCAADe Conference Proceedings, 2005, p.678 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Individual  design  reasoning  necessitates  an  individual  translation.  For 

instance, in the graduation project, the land is expressed in terms of m3 of 

water  that need  to be drained. This  is one way  to  translate  the particular 

reasoning. Every designer does this differently, making each architectural 

design  project  an  architectural  design  tool,  as  Sait  Ali  Köknar  and  Arzu 

Erdem explain in their studies.10  This is very similar to the approach of this 

thesis, which seeks to assist designers in developing their own models.  

 
 
1.3 Building an Intuitive Computational Design Model: The Efficient 
Translation of Design Reasoning 
 
The  generality  and  usefulness  of  the  model  developed  in  the  author’s 

graduation project lies in the attempt to translate design reasoning into the 

computational  components11  through  mass  customized  sequences  of 

relations. These are encoded in Rhino Grasshopper definitions. 

 

If a translation of reasoning into parametric and constraint-based relations 

is  required,  then  difficulties  with  incompatibilities  may  emerge.  Most 

architectural  design  problems  “do  not  easily  translate  into  an  equation 

format,”  as  Axel  Kilian  explains.12  There  will  always  be  incompatibilities 

when  translating  architectural  design  reasoning  into  computational 

components, simply because it defies “easy mathematical expression,” as 

mentioned  by  Mark  Gross,  Stephen  Ervin,  James  Anderson  and  Aaron 

Fleisher in their studies.13 What’s more, in architectural design, constraints 

                                                        
10  Sait  Ali  Köknar,  Arzu  Erdem.  “Can  creativity  be  institutionalized?”,  A-Z  ITU  Journal  of  the  Faculty  of 
Architecture, 4(2), 2007, p.32 

11 The author builds relations by “expressing relationships and dependencies among quantities [parameters] in 
the design”. Earl Mark, Mark Gross, Gabriela Goldschmidt.  “A Perspective on Computer Aided Design After 
Four Decades”, eCAADe 26: architecture ‘in computro’, ed. M. Muylle, 2008, pg.170 

12 Axel Kilian. op.cit., p.672 

13 Mark Gross, Stephen Ervin,  James Anderson, Aaron Fleisher.  “Constraints: Knowledge  representation  in 
design”, Design Studies, 9(3), 1988, p.138 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and objectives are seldom stated at the outset,14 but rather emerge during 

the design process.  In a way,  the problem space and  the solution space 

co-evolve.15    

 

The choice of computational method can directly affect the design space. 

Different  computational  methods  bring  with  them  different  computational 

components  to  translate  the  reasoning  into.  If  some  particular  CAD 

software  is  used  to  build  the  computational  design  model,  for  instance, 

then  the entities  that  the software affords will shape the design space as 

well.16 

 

The synthetic features of the design model and the different scales of the 

architectural  design  problem  can  be  related.  The  development  of  a 

computational  design  model  is  possible  through  the  full  translation  of 

design  reasoning  into  sequences  of  relations,  which  necessitates  the 

efficient  conflict  and  concurrence  of  design  constraints.17  The  model 

developed  in  the  graduation  project  aims  to  find  a  way  to  keep  these 

synthetic  features  of  the  model  while  shuffling  between  (as  Christopher 

Alexander calls  it)  different  scales  (such as 1/1000 polder block scale or 

the  project  plot  scales  of  1/100  –  building  scale  –  and  1/10  –  building 

component  scale)  and  between  different  groups  of  constraints  in  the 

architectural design problem.  

 

The  constraints  and  parameters  of  the  graduation  project  can  be 

                                                        
14  Earl  Mark,  Mark  Gross,  Gabriela  Goldschmidt.  “A  Perspective  on  Computer  Aided  Design  After  Four 
Decades”, eCAADe 26: architecture ‘in computro’, ed. M. Muylle, 2008, pg.171 

15  It  is also believed  that  “if we can describe some constraints—sizes of  things, spatial  relationships among 
built and open elements in the building — then we can program a computer to manage them.“ ibid. 

16 ibid., pg.169 
17  Christopher  Alexander.  Notes  on  the  Synthesis  of  Form,  Paperback  Ed.  Cambridge,  MAs:  Harvard 
University  Press,  1971,  Preface.  This  ‘efficient  conflict  and  concurrence  of  constraints’  is  exemplified  on 
several occasions in this thesis. 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exemplified as such:  the  “width of ditches” or  ”number of units” or  “m2 of 

land  occupied  on  agricultural  land  or  pasture”  or  “number  of  hours  of 

sunlight” or the “growth pattern of the agricultural product” on a numerical 

basis,  including  minimum/maximum  distances  between  two  seeds, 

tectonic properties or solid-void proportions of the same growth pattern, or 

the “radius of the openings in the surface covering the units” or the “length 

of  the  members  of  the  structure  of  the  surface  covering  the  units,”  etc. 

While developing a computational design model (in which an ability to shift 

between different groups of constraints at different scales  is a must),  the 

relating  of  different  constraints, whether  in  conflict  or  concurrence,  gains 

utmost importance. 

 

The  main  text  of  the  thesis  begins  with  a  comparison  of  the  nature  of 

programming  in  architecture  and  the  nature  of  programming  in 

computation  to  maximize  designers’  involvement  in  the  building  of  the 

design  model,  and  to  discuss  a  reconsideration  of  the  word 

“programming”.  Tool  building  is  mostly  related  to  programming  in  its 

conventional sense. By revisiting this term, the problem of incompatibilities 

between  computational  methods  and  architectural  design  may  be 

resolved.  The  thesis  proposes  the  sequencing  of  relations  that  is  called 

programming  and  involves  mass  customization,  as  a  remedy  for  the 

efficient  translation of design  reasoning  into parameters, constraints, and 

the relations between them. 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CHAPTER 2 
 
 

THE NATURE OF PROGRAMMING IN ARCHITECTURE AND 
THE NATURE OF PROGRAMMING IN COMPUTATION 

 
 
 

This  chapter  aims  reconsidering  the  issue  of  program  in  architectural 

design,  and  focuses  on  what  designers  propose  when  suggesting  a 

program  for  an  architectural  design  problem.  The  intention  here  is  to 

highlight the findings related to the role of design reasoning, which indicate 

that  it  may  be  possible  to  translate  design  reasoning  into  the  relations 

between  design  constraints,  although  this  translation  is  not  the  same  as 

the mass customization of sequences of abstract, modifiable and reusable 

relations of these constraints.  

 
 
2.1 The Nature of Programming in Architecture  

 
The  translation  of  design  reasoning  into  relations  between  design 

constraints  requires  the  perspective  of  the  designer,  and  involves 

programming  in architecture –  the proposal or choice of designer actions 

that  are  needed  for  smaller  individual  tasks  in  a  complex  architectural 

design  problem.  As  a  prerequisite,  programming  requires  the  mass 

customization  of  sequences  that  relate  the  design  constraints  to  each 

other. The outcome of this mass customization is designer actions.  

 

The  issue  of  program  in  architecture  has  been  revisited  on  several 

occasions. Anthony Vidler states that the “[program should] be flexible and 

adaptive, inventive and mobile in its response to environmental conditions 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and  technological  possibilities”.18  Vidler’s  approach  can  interpreted  as 

such:  If  the  architectural  program  can  be  defined  in  terms  of  the 

parameters, constraints and actions that need to be taken to relate these 

constraints,  then  design  reasoning  can  be  translated  into  relations 

between design constraints comprehensively and efficiently. 

 

Moreover,  for  defining  the program of  an architectural  design problem  in 

terms of parameters, constraints and the actions that need to be taken to 

relate  them,  a  brief  article  entitled  “Algorithmic  Design”  on  the  Yazdani 

Studio can be referenced. There, a clear description of program that can 

be interpreted as such can be found. In summarizing the studio’s work on 

a concert hall,  the  issue of defining the program (in  terms of parameters, 

constraints and the actions that need to be taken) is also explained: 

 
“In  the  traditional  approach,  the  designer  sees  the  building 
envelop as “window” and “wall”, and he tries to place and size the 
window  based  on  his  experience  and  his  analysis  of  various 
factors  (view, sun, wind, pattern, etc.).  In  this new approach we 
created software, which could analyze multiple inputs (view, sun, 
wind,  pattern,  etc.),  and  automate  the  “design”  of  an  exterior 
envelop which is no longer a binary relationship of “window” and 
“wall”  but  which  becomes  a  continuous  gradient  between 
“window-ness” and “wall-ness.”19 
 

  
In the author’s graduation project, agricultural constraints can be related to 

structural  and  lighting  constraints  in  different  ways,  depending  on  the 

individual reasoning of the author. In doing so, the aim may not have been 

                                                        
18 Anthony Vidler. "Toward a Theory of the Architectural Program", 2003, pg.60, Summerson also defines the 
architectural  program as  “the description  of  the  spatial  dimensions,  spatial  relationships,  and other  physical 
conditions required for the convenient performance of specific functions”, pg.63 (the literature on architectural 
program is taken from the literature survey of Ülkü Özten) 

19  Yazdani  Studio  of  Cannon  Design.  “Algorithmic  Design”,  a+u  special  issue  on:  “Architectural 
Transformations via BIM” (Eds.) Tomohisa Miyauchi, Noriko Tsukui, Atsuko Nishimaki, Kei Yokoyama. August 
2009, pp.34-39. 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the  automation  of  design  in  one  single  step,  but  rather  to  develop  an 

approach  to  building  a  model  that  supports  the  author  in  exploring  the 

design space for all scales of the architectural design problem. To clarify, 

in  using  the  computational  support  of  parametric  and  constraint-based 

design  models,  designers  have  to  translate  reasoning  into  the 

computational  components  of  these  models,  and  this  requires  the 

definition  of  the  program  in  terms  of  parameters,  constraints  and  the 

actions  that  need  to  be  taken,  which  is  interpreted  as  programming  in 

architecture. 

 

This thesis also aims demonstrating how the mass customized sequences 

of  relations may  form  a  library20  or  a menu  for  designer-built  parametric 

and  constraint-based models.  To  clarify,  if  designers  choose  to  develop 

parametric and constraint-based models,  they may also work with similar 

recursive  functions,  as  these  functions  can  be  shaped  through  various 

reasoning, meaning by which different sets of constraints can be related to 

each other. Therefore,  in  the design  space of  parametric  and constraint-

based  models,  common  recursive  actions  may  be  encoded  for 

architectural design problems.  

 

In every program proposed for an architectural design problem, there exist 

different  elements  of  design  reasoning  that  need  to  be  externalized. 

Moreover, designer actions should to be encoded in the design space to fit 

the  descriptions  of  the  various  design  tasks  of  a  complex  architectural 

design problem. They should be useful and general enough to respond to 

the specific needs of the designers if modified. Designers decide upon the 

tasks  to  be  executed,  and  should  be  able  to  adapt  the  sequences  if 
                                                        
20  In  “Learning  Computing  by  Design;  Learning  Design  by  Computing”, Proceedings  Designtrain  Congress 
Trailer I, 2007, p.104, Mine Özkar states that “the device for creating the library is the medium of orthographic 
drawing”, which in this thesis is the “plan” (of the graduation project of the author, explained in Chapter 5) but 
modeled  in Rhino Grasshopper with an  intermediary  facet  of  parametric  and  constraint-based  relations  that 
translate designers’ reasoning in the model. 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needed. Therefore, in the menu or library of relations, the sequences must 

be mass customized in an abstract, modifiable and reusable manner. 

 
 
2.2 The Nature of Programming in Computation 
 
Tool  building/making  in  architectural  design  is  mostly  related  to  the 

components  of  programming  (languages)  in  computation.  As  such,  it  is 

necessary  to discuss  the nature of programming  in computation  in  terms 

of  what  it  brings  to  (or  takes  from)  the  operation  of  the  designer  as  the 

builder of a computational design model. 

 

George Stiny and after him Mine Özkar recognizes computing as “a way of 

thought,  reasoning,  beyond  its  mechanical  usability  in  technological 

tools”21.  In  this  section,  the  intention  is  not  to  discuss  the  origins  of 

computer  programming,  nor  to  provide  a  history  of  digital  computers  but 

rather  to  discuss  programming  in  computation  and  the  translation  of 

design reasoning into computational components. 

 

An  approach  needs  to  be  developed  to  address  the  problem  of 

incompatibility  of  unchangeable  entities  of  computation with  architectural 

design.  In  building  computational  design  models,  the  aim  may  not  be 

easier automated generation of architectural design solutions. The fallacy 

of  automated  generation  may  be  seeing  the  design  solution  as  mass 

customized. However,  it should be  the sequences of  relations  that are  to 

be mass customized rather than the design solution itself.22  

 
 

                                                        
21  Mine  Özkar.  “Learning  Computing  by  Design;  Learning  Design  by  Computing”, Proceedings  Designtrain 
Congress Trailer I, 2007, p.103 

22 If a model aims at the mass customization of the design solution itself, then the designer becomes a mere 
player. The model imposes the way of defining relations between the parameters and relating the constraints 
with each other – which is different for every designer. 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2.3 Why Shall We Design with Changeable Entities? 
 

In  “Classical  and  non-classical  computation”,  Terry  Knight  and  George 

Stiny  classify  computational  means  according  to  the  aspects  of 

representation  and  process.  Accordingly,  classical  representation  is  by 

verbal  and  numerical  means  where  non-classical  representation  is  by 

visual  means  for  computation.  Although  the  split  in  the  representation 

aspect is more profound among classical and non-classical computation,23 

this  might  not  be  the  case  when  the  subject  matter  is  the  use  of  the 

computational  components  for  the  translation  of  the  reasoning  in 

architectural design.  Moreover, the split might not be on these terms but 

on the differences regarding the role of the designers. 

 

If unchangeable computational components are used for the building of a 

design model,  then  the  designers  become mere  end users  that  are  only 

allowed  to  externalize  the  design  reasoning  within  the  confines  of  the 

package in hand – into the model imposed on them, having already been 

built. Rather  then  providing  a model  to  the  designers  at  the  outset,  they 

should be given the chance to build their own model. If not, they will only 

fill  in  the  values  for  already  defined  relations  between  parameters  and 

constraints.  This  results  in  an  incompatibility,  considering  the  nature  of 

programming  in  architecture  because  as  the  model  is  already  built,  the 

designer  does  not  have  free  choice  in  the  necessary  actions  for  the 

smaller tasks in a complex architectural design problem. 

 

The  incompatibility  can  be  explained  as  follows:  Designer  action  has  a 

crucial  role  in  developing  the model,  which  is  of  help  to  the  designer  in 

generating architectural design solutions.  It  is an unavoidable  fact  that  in 

                                                        
23  Terry  Knight,  George  Stiny.  “Classical  and  non-classical  computation”, Architectural  Research Quarterly, 
5(4), 2002, p.355 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architectural  design,  constraints  and  objectives  are  seldom  stated  at  the 

outset,  and  the  problem  space  and  the  solution  space  co-evolve.  If  the 

designers do not have a hand in the modification of the relations between 

the design constraints, then the model imposes particular design solutions 

upon  the  designer,  who  is  left  with  unchangeable  components. 

Architectural programming does not involve unchangeable components or 

primitives  to design with, but  rather a description of  the designer actions 

that  are  needed  to  relate  the  constraints  with  each  other.  In  such  an 

approach to building a model, the parameters and the constraints are not 

mass customized. 

 

There is a potential danger in programmatic thinking related to CAAD and 

software  development.24  As  raised  by  Robert  Woodbury  and  Andrew 

Burrow, programming  involves  “representing and computing directly over 

concrete entities,”25 and this may be the case if the nature of programming 

is  not  efficiently  considered  regarding  the  nature  of  programming  in 

architectural design, as explained in 2.1.  

 

The  unchangeable  components  may  not  necessarily  be  to  hand  in  an 

architectural design problem; and if they are used, designers may become 

removed  from the act of building  the model.  If  they are no  longer able  to 

affect  the  relations  between  the  design  constraints,  they  become  mere 

players of a model that mass customizes the solutions that it generates. If 

this  model  is  put  into  computer  and  implemented  as  an  application  or 

some software, it may impose upon designers the way to design. In such 

cases,  the  model  is  built  without  the  designers’  involvements;  and  as  a 

                                                        
24 This danger belongs mostly to the group of deterministic CAAD tools that are explained in Chapter 4. 

25 Robert Woodbury, Andrew Burrow.  “Whither design space?”, Artificial  Intelligence  for Engineering Design, 
Analysis and Manufacturing, 20(2), 2006, p.65 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consequence  the  design  solution  already  exists  in  the  model,  mass 

customized. In architectural design, rather than solutions, it should be the 

abstract,  modifiable  and  reusable  sequences  of  relations  –  such  as 

mathematical, geometrical relations, etc. – that are encoded in the design 

space. 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CHAPTER 3 
 
 

TRANSLATION OF DESIGN REASONING INTO RELATIONS 
BETWEEN THE DESIGN CONSTRAINTS: MODELING THE 

ARCHITECTURAL DESIGN SPACE 
 
 
 

This  thesis adopts an approach favoring the mass customization of sequences 

of  relations  in  the  building  of  computational  design  models.  In  following  this 

approach,  the  role  of  the  model  is  to  support  the  designer  in  generating 

architectural  design  solutions,  and  therefore,  is  mostly  relevant  in  the  design 

space of the architectural design problem – in allowing the designer to explore a 

design  space.  Depending  upon  the  research  conducted,  this  can  be  made 

possible  if  the  model  externalizes  efficiently  the  design  reasoning  of  the 

particular architectural design problem defined by the designer.  

 

Designers  need  to  adopt  the  model  that  best  serves  the  needs  of  the 

architectural  design  problem  in  terms  of  intuitiveness  and  synthetic  character. 

Every  computational  design  model  contains  different  components;  such  as 

relations between design constraints (in parametric and constraint-based design 

models), and these components should enable efficiency in the model  in terms 

of  intuitiveness  and  synthetic  character.  This  research  will  briefly  look  into 

different available computational components; but first it is necessary to explain 

the necessity and means of externalizing design reasoning, which is a common 

act of architectural design. 

 
 

3.1 The Need to Externalize Design Reasoning in the Design Space 
 
The reason for the quest into the design space within this research is to be 

explained  as  a  priority,  as  it  is  linked with  the  role  of  the  design model. 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This role brings with it a necessity to include the essential properties of the 

model  that  match  the  properties  of  the  design  space  to  support  the 

designer.  Robert  Woodbury  and  Andrew  Burrow  also  comply  on  this  in 

their approach, which is nourished by the state of mind, “the design space 

itself is where the largest gains are to be made”.26 

 
Accordingly,  in  this  chapter  a  research  into  design  space  is made  in  an 

attempt  to  analyze  it  using  computational  thinking,  and  the  studies  of 

Robert  Woodbury  and  Andrew  Burrow  are  referenced  at  length.  They 

describe their studies on design space exploration as such:  

 

“Its [design space exploration] three main threads are accounts of 
designer  action,  development  of  strategies  for  amplification  of 
designer  action  in  exploration,  and  discovery  of  computational 
structures to support exploration.”27 
 
 

The aim of this research in referring to studies in the exploration of design 

space lies at a point between the second and third threads defined above. 

 

This section of the chapter aims to lead the discussion to the significance 

and  the  need  to  externalize  design  reasoning  in  architectural  design 

space.  In  doing  so,  the  way  a  designer’s  reasoning  is  externalized  in 

architectural design, and  the way  it  is externalized within  the  limits of  the 

components  of  the  computational  design  model,  can  be  compared  to  a 

significant extent.  

 
For the purpose of this thesis it is assumed that the design problem has to 

be  addressed  through  the  relations  defined  for  the  parameters  and  the 

                                                        
26 Robert Woodbury, Andrew Burrow.  “Whither design space?”, Artificial  Intelligence  for Engineering Design, 
Analysis and Manufacturing, 20(2), 2006, p.64 

27 ibid., p.63 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relations between constraints,28 and  these play a crucial  role  in modeling 

the  problem  space  and  the  solution  space.  This  crucial  role  exists  if  the 

computational support  is used  in exploring  the design space, however  in 

intuitive thinking, the imported data to the design space is modeled in such 

a  way  that  it  obeys  no  rules,  and  can  be  represented  in  any  way,  as 

described  by  Gabriela  Goldschmidt,29  who  goes  on  the  claim  that 

representations  are  mostly  designer  dependent.30  However,  in  cases 

where the computational support of a model is not the subject matter, the 

complexity of the architectural design problems may not be addressed in a 

single  attempt.  The model  is  of  great  help  to  the designer  in  addressing 

this complexity, and  there are  two  important aspects of  the design space 

in which  the model  should  play  a  key  role  –  the  problem  space  and  the 

design space – that should be explained first. 

 

Goldschmidt  claims  that  representation  is  the  translation  of  one  problem 

state into another, the “initial” to “goal state,” passing through intermediate 

states,31  through  “operators,” and  there exist different  types of models  to 

achieve  this. According  to Goldschmidt,  states  in  the problem space are 

figural  representations  in  which  the  operators  are  the  conceptual 

representations.32 In a design problem, “[t]he initial state is usually vague, 

and the goal state  is either unknown or ambiguous,”33   as she describes, 

                                                        
28 Here it should be reminded that, “There is a clear correspondence between the kind of constraints used by 
the  designer  and  the  types  of  design  representations  used  –  [in  intuitive  thinking  these  may  be]  words, 
numbers,  flow  diagrams,  plans,  sections,  perspectives.”  Charles,  M.  Eastman.  “On  the  analysis  of  intuitive 
design  processes”, Emerging Methods  in  Environmental  Design  and  Planning,  ed.  G.T.Moore,  Cambridge, 
MA: The MIT Press, 1970, p.21 

29  Gabriela  Goldschmidt.  “Capturing  indeterminism:  representation  in  the  design  problem  space”,  Design 
Studies, 18(4), p.442 

30 ibid., p.445 

31 ibid., p.441 
32 ibid., p.446 

33 ibid., p.441 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and therefore a full and a sufficient external representation34  can be seen 

as the “goal state” of the problem space.35 

 

Axel  Kilian’s  study  covers  the  issue  of  exploration  of  the  design  space 

through  a modeling  of  the  constraints,  which  he  explains  by  following  a 

couple  of  cases  in  his  paper,  “Design  Innovation  through  Constraint 

Modeling”.  He  claims  that  constraints  in  a  design  space  exist  in  many 

forms, and that there is no master model that could incorporate them all.36 

He  classifies  the  types  of  constraints  into  four  groups:  geometric, 

topologic,  functional  and  quantitative,37  which  he  identifies  based  on  a 

review  of  the  literature  and  on  the  case  studies  introduced  in  his  paper. 

Kilian  calls  these  constraints  “design  drivers”  for  the  exploration  of  the 

solution  space.38  The  constraints  found  in  different  scale  groups  in  the 

graduation  project  are  also  referred  to  as  design  drivers.  Within  the 

developed design model (Chapter 5), they drive the design by helping the 

designer  to  generate  solutions  for  one  small  design  task  –  such  as  the 

design of the pipe work system of hydroponics for the cultivation of plants 

in the units – of the complex architectural design problem.  

  

Discussing  the  constraints,  as  design  drivers  in  an  architectural  design 

problem would be beneficial  as  they play a  crucial  role  in  describing  the 

architectural  design  problem  by  translating  designers’  reasoning  into  a 

                                                        
34  “Representations  in  the  problem  space  can  be  internal  or  external.  Under  current  theories,  internal 
representations are the essence of cognition and imagery is the locus of much of our  internal representation 
activity. External representations can be visual or verbal (by ‘verbal’ we mean expressed in words,  in oral or 
written  form).  […]  External  visual  representations  are  expressed  mostly  in  drawings  (but  there  are  other 
modes,  e.g.  three  dimensional models).” Gabriela Goldschmidt.  “Capturing  indeterminism:  representation  in 
the design problem space”, Design Studies, 18(4), p.445 

35 ibid., p.446 

36 Axel Kilian. “Design Innovation through Constraint Modeling”, Digital Design: The Quest for New Paradigms, 
23rd eCAADe Conference Proceedings, 2005, p.678 

37 ibid., p.671 

38 ibid. 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format that is compatible for processing in the model. 

In  “A  Perspective  on  Computer  Aided  Design  after  Four  Decades,”  Earl 

Mark, Mark Gross and Gabriela Goldschmidt define  the word “constraint” 

as being anything the architect wants the building to satisfy, although they 

claim  that  it  suggests  something  restrictive.39 Moreover,  in  the studies of 

Mark  Gross,  the  idea  of  designing  has  already  been  studied  as  an 

exploration  of  constraints.  Accordingly,  in  the  paper  “Constraints: 

Knowledge Representation in Design,” Mark Gross, Stephen Ervin, James 

Anderson and Aaron Fleisher see  “designing as a process of expressing 

and  exploring  constraints  and  trying  to  achieve  objectives”.40  Thus,  the 

relations  between  the  design  constraints  (which  individual  constraint  is 

related  to which other  constraint) have primary significance  in describing 

the design problem in the best way. 

 

Mark  Gross,  Stephen  Ervin,  James  Anderson  and  Aaron  Fleisher  claim 

that  constraint  models  enable  designers  to  describe  and  explore  the 

relationships between design variables,41 referred to as design parameters 

throughout  this  thesis.  Accordingly,  each  variable  stands  for  a  number, 

while  the  network  stands  for  a  system  of  equations,  both  of  which  are 

formed by  the designers’  reasoning  in which parameters and  constraints 

may be written in equation format. It is useful, however, to identify different 

groups  of  constraints,  as  they  may  belong  to  different  scales  in  the 

architectural design space.  

 

Constraints were also grouped for the model developed in the graduation 

project of  the author. For  instance, some groups of constraints belong  to 

                                                        
39  Earl  Mark,  Mark  Gross,  Gabriela  Goldschmidt.  “A  Perspective  on  Computer  Aided  Design  After  Four 
Decades”, eCAADe 26: architecture ‘in computro’, ed. M. Muylle, 2008, p.171 

40 Mark Gross,  Stephen  Ervin,  James  Anderson  Aaron  Fleisher.  “Constraints:  Knowledge  representation  in 
design”, Design Studies, 9(3), 1988, p.134 

41 ibid., p.137 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the  scale  of  1/1000  (polder  block  scale),  such  as  those  exploring  the 

“width  of  ditches”.  Some  belong  to  1/100  scale  (project  plot  –  building 

scale),  such  as  those  exploring  the  “number  of  units”  or  “m2  of  land 

occupied on agricultural land or pasture”; while others may belong to 1/10 

scale  (project  plot  –  building  component  scale),  such  as  those  exploring 

“number  of  hours  of  sunlight”  or  (the  subgroup)  “growth  pattern  of  the 

agricultural  product”  on  a  numerical  basis  (min/max  distances  between 

two  seeds,  tectonic  properties  or  solid-void  proportions,  etc.,  Fig  3.1)  or 

the “radius of the openings in the surface covering the units” or finally the 

“length of the members of the structure of the surface covering the units”. 

To offer an example, the relation between different groups of constraints is 

ensured, as  it  is not only  the  “growth pattern of  the agricultural product,” 

but also the “m2 of land occupied on agricultural land or pasture,” etc. that 

drive the design of the surface covering the units.  

 

                        

                        
 
Fig  3.1.  Two  fabrications  from  the  exhibition  (FAB)BOTS  in  DHUB,  curator:  Marta  Male-Alemany. 
Works  by  the master  level  students  of  “Machinic  Control  1.0”  design  studio  of  AA  and  the  “Digital 
Tectonics RS3” design studio of  IAAC. These  images can help  to  illustrate  the  tectonic properties of 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the “growth pattern of the agricultural product”. 
 

 

Mark Gross, Stephen Ervin, James Anderson and Aaron Fleisher describe 

the grouping issue as follows:  

 

“  […]  variables  [parameters]  and  relationships  that  describe  the 
properties  and  behavior  of  a  single  component  (a  beam,  a  room, 
etc.)  may  be  abstracted  as  a  single  entity.  Likewise,  many  local 
relationships may be abstracted as a single larger one”.42  
 

Grouping  is given priority significance  in this research as this mechanism 

allows  designers  to  build  a  computational  design  model  with  a 

comprehensive design space as well. A model developed in such a way is 

able to respond to the whole architectural design problem, which does not 

permit linear sequence. “Architectural design cycles, refines, branches and 

backtracks”.43 

 

In the exploration of a model’s design space,44 as Kilian refers to it  in the 

cases  introduced  in  his  study,  parameters  and  constraints,  and  the 

relations between them, can be identified. Such identifications are crucial, 

as  they  may  be  used  later  to  explain  the  process  of  building  a 

computational design model. In this regard, they also play a crucial role in 

following the explanation of the model developed for the graduation project 

of  the  author. Within  the  scope  of  this  thesis,  design  reasoning  is  to  be 

translated  into  the relations defined  for  to  the design parameters and  the 

relations between design constraints. This  is necessary when developing 

a parametric and constraint-based design model, as was  the case  in  the 

                                                        
42 Mark Gross, Stephen Ervin,  James Anderson, Aaron Fleisher.  “Constraints: Knowledge  representation  in 
design”, Design Studies, 9(3), 1988, p.137 

43 ibid., p.134 

44 Axel Kilian. “Design Innovation through Constraint Modeling”, Digital Design: The Quest for New Paradigms, 
23rd eCAADe Conference Proceedings, 2005, p.671 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graduation project. 
 

                      
Fig 3.2. The example from Kilian’s study: Cone based approximation of a double curved surface using 
only  developable  surfaces.  (Taken  from:  “Design  Innovation  through  Constraint  Modeling”,  Digital 
Design: The Quest for New Paradigms, 23rd eCAADe Conference Proceedings, 2005, p.675, by Axel 
Kilian) 

 

 

In  exemplar  cases  from  Kilian’s  own  experience,  exploring  the  design 

space is explained through a modeling of the constraints. In these cases, 

he explains the way relations are defined for parameters and constraints, 

and consequently  the way problems are parameterized.  In one example, 

featuring a cone-based translation of a free form surface into developable 

cone-based  parts,  a  new  approach  to  low  cost  fabrication  of  free  from 

surfaces is offered.45 This example firstly puts forward how it is possible to 

identify  parameters,  constraints  and  the  relations  among  them;  and 

secondly,  it  suggests  possible  ways  of  relating  constraints  belonging  to 

different groups. In this example (Fig 3.2), the “degree of curvature” is one 

parameter that is explored through a constraint in which “curvature” is the 

parameter,  and  “degree”  is  the  relation  defined  for  it.  To  identify  further, 

“circles” are the other set of parameters; while “spacing” and “positioning” 

are the relations defined for them. The designer defines these to describe 

the design problem in the best possible way. 

 

                                                        
45 Axel Kilian. “Design Innovation through Constraint Modeling”, Digital Design: The Quest for New Paradigms, 
23rd eCAADe Conference Proceedings, 2005, p.675 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In the same example of Killian, the act of relating various constraints with 

each other involves some custom design reasoning, although the act itself 

may be a recursive and abstract function of architectural design problems 

and may be one that  is  taken from a geometrical  theorem, such as circle 

packing, and expressed as an algorithm. When the reasoning is translated 

into a compatible format using this function (in this case, circle packing), it 

is efficiently externalized. Moreover, as the function is mass customized in 

an abstract, modifiable and reusable manner,  it is open to general usage, 

meaning  to  various  scales,  in  addition  to  this  specific  design  task  of 

Killian’s.  

 

When one constraint controls the other, it is simply an externalizing of the 

designer’s  reasoning,  because  the  reasoning  is  translated  into  the 

relations  between  design  constraints.  The  example  in  previous  two 

paragraphs, circle packing, when expressed as an algorithm, exemplifies 

one of  the designer actions  that  translate  the  reasoning.  It simply  relates 

the  “curvature  of  the  circle”  to  the  “spacing”  and  “positioning”  of  the 

“circles”.  

 

For  this  study,  the  translation  of  design  reasoning  into  computational 

components  necessitates  also  its  quantification.  To  clarify,  when  some 

values  are  input  into  the  functions  according  to  some  specific  design 

reasoning  they  become  the  design  rules,  but  these  design  rules  are  not 

mass customized, being rather outcomes of a customization process. That 

said; this is an issue that belongs in a different discussion. 

 

Within the graduation project, the translation of reasoning into the relations 

of  design  parameters  is  seen as  the  goal  of  the  problem space. Yet,  as 

every  designer  may  have  a  different  design  reasoning  for  the  same 

architectural design problem, designers define “x” kind of  relations  for  “x” 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kind of parameters in the problem space, for “x” kind of design problems, 

and this is designer dependant. Likewise, the translation of reasoning into 

the  relations  between  design  constraints  in  the  generation  of  design 

solutions  is  seen  as  the  goal  of  the  solution  space.  For  instance,  the 

modeling of structural constraints  in  relation  to agricultural constraints  (in 

the  graduation  project)  depends  on  the  author’s  choice  for modeling  the 

design space  in  the best way  to address  the design problem. Therefore, 

designers  relate constraint  “x” with constraint  “y”  in  the solution space  to 

generate “x” kind of design solutions, and this also depends on the choice 

of the designers.  

 

By  these processes mentioned  in  the previous paragraph, designers add 

their  way  of  designing  to  the  realm  of  architectural  design.  As  Sait  Ali 

Köknar and Arzu Erdem discuss  in  “Can Creativity be  Institutionalized?”, 

almost  every  significant  architectural  design  project  introduces  a  new 

architectural  design  tool.46  Köknar  and  Erdem  also  speculate  that  a 

general  positive  response  to  an  architectural  design  project  is  highly 

related to this.47 For this thesis it  is related to a new addition to the realm 

that designers define “x” kind of relations for “x” kind of parameters in the 

problem  space,  for  “x”  kind  of  design  problems,  and  designer  relates 

constraint “x” with constraint “y” in the solution space to generate “x” kind 

of design solutions, as described previously.  

 
 
3.2 Externalizing Design Reasoning in Architectural Design 
 
In 3.1,  the aim was  to discuss  the  importance of externalizing designers’ 

reasoning in the design space; while  in this section, the aim is to discuss 

                                                        
46  Sait  Ali  Köknar,  Arzu  Erdem.  “Can  creativity  be  institutionalized?”,  A-Z  ITU  Journal  of  the  Faculty  of 
Architecture, 4(2), 2007, p.32 

47 ibid. 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how the role of the model may be closer to that of the designer.  

 

According  to  conventional  aspects  of  architectural  design,  the  designer 

sketches  the architectural design reasoning  to  integrate  it  into  the design 

space.  Referencing  to  the  protocol  analysis  study  of  Charles  Eastman, 

which broaches the task of improving a bathroom layout, Ellen Yi-Luen Do 

and Mark Gross state that designers use words and drawings to represent 

the  design  objects,  design  operations  and  “control  mechanisms”  of  the 

design problem.48   The external  representation of a designer’s  reasoning 

by  intuitive  means  is  related  to  this  point;  and  this  mechanism  of 

externalization already exists for architectural design.  

 

As  stated  by  Do  and  Gross  in  “Thinking  with  diagrams  in  architectural 

design,” all external design representations in architecture are in the form 

of drawings – except the physical models.49 This is a significant argument 

that  follows  the  same  path  of  “classical”  representation  for  architectural 

design  first discussed by Knight and Stiny.50   Further discussions on  the 

representation  of  design  reasoning  look  into  the  role  of  the  designer. 

Efficiency  in  terms  of  intuitiveness  or  synthetic  character  is  discussed  in 

relation  to  the  degree  to  which  a  designer  is  able  to  operate  on  the 

translation  of  design  reasoning  into  the  format  of  the  computational 

components of the model.  

 

First,  the  visual  and  numerical  representation  of  design  reasoning  is 

discussed,  offering  a  brief  introduction  to  the  scope  of  externalization  in 

architectural  design problems. This  is  followed by an  investigation of  the 

                                                        
48 Ellen Yi-Luen, Do, Mark Gross. “Thinking with diagrams in architectural design”, Artificial Intelligence Review 
15, 2001, p.140 

49 ibid., p.135 

50  Terry  Knight,  George  Stiny.  “Classical  and  non-classical  computation”, Architectural  Research Quarterly, 
5(4), 2002, pp.355-372 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act  of  adopting  a  computational  design model, which  is  interpreted  as  a 

method  for  externalizing  design  reasoning.  The  intention  is  to  show  that 

these models have different efficiencies in terms of intuitiveness. They can 

be  composed of  different  components with  different  levels  of  flexibility  in 

allowing the designer  to operating on the translation of design reasoning. 

Consequently,  they  offer  different  levels  of  efficiencies  in  enabling  the 

designers to find themselves in the subject solution space.  

 
 

3.2.1 Visual Representation 
 
When discussing visual representation of design reasoning, there 

are  a  number  of  different  references  to  intuitive  diagrams  and 

sketches  that  may  be  stated,  but  Christopher  Alexander’s 

explanation is particularly noteworthy. The attempts of designers 

to  externalize  in  architectural  design  is  mentioned  in  his  book 

“Notes  on  the  Synthesis  of  Form,”  in  which  he  describes  the 

activity  as  a  shuffling  back  and  forth  in  “an  abstract  pattern  of 

physical  relationships,  which  resolves  a  small  system  of 

interacting and conflicting forces”.51  In his opinion, this is the way 

of  “creating  designs  which  are  whole  by  fusing  these 

relationships,”52 and the independence of visual representation is 

related to the designer’s role.  

 

Alexander  claims  that  the  design  process  has  a  two-fold 

character:  the analytical  phase –  requirements and  the program 

as the tree sets of these requirements; 53 and the synthetic phase 

–  diagrams  and  the  realization  of  the  problem  as  the  tree  of 

                                                        
51 Christopher Alexander. Notes on the Synthesis of Form, Cambridge, MA: Harvard University Press, 1964. 

52 ibid. 

53 ibid., p.84 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diagrams.54  Following  this  approach,  one  can  conceive  the 

challenge  of  programmatic  thinking, which  exists  for  an  intuitive 

and  a  more  synthetic  process,  such  as  architectural  design. 

However, this has been the subject matter of another discussion 

on  programmatic  thinking,  as  seen  in  Chapter  2  where  it  is 

mentioned  that  this  challenge  may  become  a  problem  that 

depends  on  the  effectiveness  and  usage  of  the  definition  for 

programming  in  architecture.  In  short,  there  exist  some 

possibilities  to  externalize a designers’  reasoning,  yet  these are 

dealt with mostly in the analytical phase.  

 

In  Alexander’s  approach,  there  is  clear  explanation  of  the 

shuffling  back  and  forth  between  two  phases,  and  he  puts  the 

design solution again  in  the designer’s mind and claims  that  the 

designer never  fully understands  the context  – at  least not as a 

single  pattern.  At  this  point  it  can  be  claimed  that  the  model, 

which  helps  the  designer  to  explore  the  design  space,  is 

significant in that it allows the grasping of the design space as a 

whole.  However,  to  do  this,  design  reasoning  has  to  be  put  on 

paper;  it  needs  to  be  externalized  so  that  it  is  represented  and 

processed in the model, and thus needs to be translated into the 

computational components of the model.  

 

Moreover,  the model  has  to  have  a  basis  for  externalizing  in  a 

comprehensive  manner,  considering  the  diversity  of  design 

reasoning in architectural design problems.  

 

Here, would be of benefit  to  raise a  further question, although a 

                                                        
54 Christopher Alexander. Notes on the Synthesis of Form, Cambridge, MA: Harvard University Press, 1964, 
p.84 
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one-word  answer  is  not  the  intention:  “What  kind  of 

representational  means  does  architectural  design  necessities?” 

Such a research question is nourished by the approach of Stiny, 

which  leads  this  study  to  an  exploration  of  the  design  space  in 

terms  of  a  visual  computation  that  covers  all  the  visual 

representation of architectural deign rules, symbols, etc. that may 

be  representing  designer  actions.  Yet,  this  is  a  question  that 

should  be  answered  in  a  subsequent  research,  as  it  is  not  the 

intention  of  this  study  to  answer  this  question  with  a  sharp 

classification, being  that  this would undermine  the complexity of 

architectural design.  

 
 

3.2.2 Numerical Representation 
 
Within  the  incoherent  character  of  visual  representations,  of 

diagrams  or  sketches  for  instance  –  in  other words, within  their 

independence  and  specificity  –  a  basis  for  interaction  is  crucial 

when considering the architectural design problems. Christopher 

Alexander  describes  this  as  being  either  for  a  conflict  or 

concurrence of design constraints.55 This need leads to a unity in 

a  physical  consideration  of  quantifying  of  the  design  reasoning, 

and is for the sake of processing in the design model. 

 

A coherent language can contribute greatly to the understanding 

of the design space fully, leading to a well definition of the design 

problem. This can remove much of the need for the elimination of 

design  reasoning  from  the  design  space  of  the  model,  with 

numerical  representation  being an efficient way  considering  this 

issue.  
                                                        
55 Christopher Alexander. Notes on the Synthesis of Form, Cambridge, MA: Harvard University Press, 1964. 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In  the  search  for  a  unity  when  translating  a  diversity  of  design 

reasoning  in  the model, numerical  representations may be seen 

as an intermediary step.56 As explained by Ellen Yi-Luen Do and 

Mark Gross,  in architectural design problems,  “not only physical 

elements, but also forces and flows (e.g., forces of sun and wind 

and  flows  of  people  and  materials)”57  also  exist.  Almost  all  of 

these are computable, either geometrically or arithmetically,58 and 

must all be translated in the model.  

 

Alberti’s delineation of the city of Rome “Descripto urbis Romae” 

can  be  held  up  as  pioneering  case  in  numerical  representation. 

His aim was  to simply  translate  the urban environment of Rome 

into  numerical  values  by  measuring  the  physical  distances  to 

major architectural features of Rome from a specific point (also in 

the z-direction for their height) to provide visual information about 

the  city.  This  generated  maps  of  Rome  containing  selected 

architectural features using a numerical template.  

 

Further discussion addresses the computational components that 

form the basis of the model.  

 

 

                                                        
56 Here,  representing different  types architectural design parameters  in  the design space of  the same model 
can be exemplified: “A simpler variation is parametric design in which some quantities (dimensions, positions, 
numbers  of  elements  [parameters])  are  expressed  as  a mathematical  function  of  others.    For  example,  the 
number  of  windows  depends  on  the  length  of  the wall;  the  longer  the wall,  the more windows.  Parametric 
design  sets  up  these  dependent  relationships,  and  when  the  designer  changes  key  driving  variables, 
dependent ones  follow.  It’s  like design by constraints, except  that  the dependencies only go one way.” Earl 
Mark, Mark Gross, Gabriela Goldschmidt.  “A Perspective  on Computer  Aided Design After  Four Decades”, 
eCAADe 26: architecture ‘in computro’, ed. M. Muylle, 2008, pp.171-172. 

57 Ellen Yi-Luen, Do, Mark Gross. “Thinking with diagrams in architectural design”, Artificial Intelligence Review 
15, 2001, p.135 

58 ibid., p.144 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Fig 3.3. Numerical  representation (taken  from “The Future  Information Modeling and  the 
End  of  Theory:  Less  is  Limited,  More  is  Different”,  by  Cynthia  Ottchen,  AD  issue  on: 
“Closing  the Gap”  (Guest  Ed.) Richard Garber.  79(2), Wiley & Sons, March-April  2009, 
pp.22-27 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3.2.3  Translating  Design Reasoning  into  the Relations  between 
Design  Constraints  for  Developing  a  Computational  Design 
Model 
 
As mentioned previously, in conventional aspects, designers use 

their  reasoning  intuitively  to  explore  the  design  space,  although 

they do not grasp it fully in a single pattern. To develop a model 

that helps a designer to explore and grasp the design space as a 

whole,  the ways of  representing  reasoning explicitly  through  the 

relations between design constraints, etc., are discussed here.  

 

The  ways  of  externalizing  design  reasoning  embody  the 

strategies  of  problem  solving,  as  Özer  Çiftçioğlu  explains  in 

“Conceptual  Design  Enhancement  by  Intelligent  Technologies”. 

He  states  that  such  actions  go  beyond  the  limits  of  knowledge 

representation, which has a high level of uncertainty, and launch 

the development of strategies (i.e. rule-based systems). This may 

be  seen  as  being  highly  analytical,  as much  is  lost  in  terms  of 

intuitiveness,  and  thus may  be  seen  as  a  part  of  the  analytical 

processes. This has been mentioned previously, giving reference 

to the studies of Christopher Alexander.   

 

In  CAAD  theory,  knowledge  representation  is  classified  as  soft 

computing, which is an attempt to represent the human brain, as 

Özer Çiftçioğlu explains. As a consequence, soft computing may 

be seen as being closer to externalization in an intuitive manner, 

with  one  drawback  being  an  inability  to  go  beyond  mere 

simulation.59  

 

                                                        
59   Özer Çiftçioğlu.  “Conceptual Design Enhancement  by  Intelligent Technologies”, The Architecture Annual 
2001-2002: Delft University of Technology, ed. Arie Graafland, pp. 85-89. 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In  “A  Biased  History  of  CAAD:  The  Bibliographic  Version,” 

Alexander Koutamanis explains  that  it was  in  the 1990s that  the 

earliest instances of computerization were put into practice, being 

the transfer of manual processes to the computer.60 The manual 

processes  that  he  mentions  may  be  explained  as  the  way  a 

designer  defines  the  design  problem.  Before  transferring  such 

processes into the computer,  they need to be translated into the 

computational components of the model; after which they may be 

put  into  the  computer  as  an  application  –  perhaps  as  a  “toy” 

application,61  as  Scott  Chase  refers  to  it.  The  “methodological 

knowledge  developed  in  CAAD”62    –  through  which  design 

reasoning  can  be  externalized  –  provides  the  computational 

components of the models that are needed in such translations. 

 

Moreover,  when  considering  that  every  architectural  design 

project  can  be  seen  as  a  computational  design  model,  the 

significance  of  the  computational  components  necessary  to 

translate the design reasoning should be explained. 

 

There are significant differences between the actions of modeling 

and drawing a plan, and not just in the tools used – such as pens, 

compasses,  rulers,  cutters  and  papers,  as  Köknar  refers  to 

them.63 Within the scope of this thesis there  is deemed to be an 

                                                        
60  Alexander  Koutamanis.  "A  Biased  History  of  CAAD:  the  bibliographic  version",  in,  J.P  Duarte,  G  Ducla-
Soares & A.Z Sampaio (Eds.), eCAADe 23: Digital Design: the Quest for New Paradigms, p.634 
61  Scott  Chase  defines  “toy”  applications  as  such:  “Many  generative  design  tools  developed  to  date  are 
restricted  to a  limited number of  design  issues,  or  to a portion of  the design.  In many cases,  these can be 
considered  ‘toy’  applications.  Some were  developed  as  teaching  aids.  Others  have  served  to  demonstrate 
proof of concept, with the potential of being a more powerful design tool left for the future.” “Generative design 
tools  for novice designers:  Issues for selection”, Automation  in Construction, vol.6,  issue 4, December 2005, 
p.689 

62 Alexander Koutamanis. op.cit., p.634 
63 Sait Ali Köknar. “Architectural Design Tools: Toward a non-linear design process”, Proceedings Designtrain 
Congress Trailer I, 2007, p.178 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intermediary  facet  in  the  development  of  a  model  that  involves 

the  translation  of  design  reasoning  into  the  computational 

components of  the model.  It  is  these relations  that compose  the 

plan,  rather  than  mere  lines,  circles,  etc.  drawn  with  pens, 

compasses, rulers, cutters and papers. 

 

The crucial aspect of such a translation lies in the ability afforded 

to  the  designer  in  terms  of  modifications.  It  is  proposed  in  this 

thesis  that  the  designer  uses  mass  customized  sequences  of 

parametric  and  constraint-based  relations  in  the  model  as 

recursive functions of architectural design problems. These mass 

customized  relations are  called designer  actions,  and are  ready 

to be used in various contexts, and in various architectural design 

problems  of  different  scales,  to  relate  the  constraints  with  each 

other. 

 

Mass  customized  sequences  of  relations  are  not  unfamiliar  in 

design,  being  that  designers  are  already  used  to  working  with 

thinking  tools,64 as stated by Köknar and Erdem. Designers use 

existing  packages  of  knowledge  as  essential  thinking  tools  in 

architectural design.65 These thinking tools may be interpreted as 

design models within  the scope of  this  thesis. With  the adoption 

of  the  components  of  such  models,  design  reasoning  can  be 

externalized. Designers may draw upon existing models created 

                                                        
64  Sait  Ali  Köknar,  Arzu  Erdem.  “Can  creativity  be  institutionalized?”,  A-Z  ITU  Journal  of  the  Faculty  of 
Architecture, 4(2), 2007, p.28 

65 ibid. If designers can only describe their design problem through existing packages of knowledge, the mass 
customization  and  its  outcome  is  no  longer  something  unfamiliar  to  the  new  user  of  this mass  customized 
relation. Others or the designers themselves can use it in other contexts for building other models. After all, as 
Woodbury  and  Burrow  mention,  “designers  use  production-like  encodings  of  extant  and  newly  learned 
actions”.  They  also  claim  that  designers  use  such  encodings  in  communication  with  colleagues.  Robert 
Woodbury, Andrew Burrow.  “Whither  design  space?”, Artificial  Intelligence  for Engineering Design, Analysis 
and Manufacturing, 20(2), 2006, p.68 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in projects of  different practices  that use computational  support, 

etc.,  and  may  follow  the  sequences  of  relations  that  they 

introduce  (through  their  intermediary  facet)  by  translating  the 

reasoning  of  their  own  architectural  design  problem  into  the 

components  of  these existing models.66 Existing models  can be 

referenced when translating the design reasoning into the mass-

customized  sequences  of  relations  that  these  models 

propose/program. 

 

To  be  to  the  point,  it  is  proposed  in  this  thesis;  designers 

translate  their  reasoning  into  existing  components,67  via  an 

intermediary  facet  in  modeling  the  plan.  Throughout  the  thesis, 

“smaller carriers of actions”68 are referred to as designer actions 

that encode recursive functions of architectural design problems. 

In the chapter describing the author’s graduation project, they are 

referred  to  as Grasshopper  definitions  of  recursive  functions,  or 

sometimes as mere toggles when the function is implemented as 

an  algorithm  in  these  toggles  using  programming  languages 

(such as C# or VB).  

 

Earl  Mark,  Mark  Gross  and  Gabriela  Goldschmidt,  in  “A 

Perspective  on  Computer  Aided  Design  after  Four  Decades,” 

describe  this  intermediary  facet  as  follows:  “Parametric  and 

constraint-based  approaches  [defining  the  design  problem  in 

                                                        
66 Although a conventional aspect, the benefit of using case studies in architectural design studios is clear; and 
is assured with the author’s own experience. 

67  Gross,  Ervin,  Anderson  and  Fleisher  explain  this  issue  as  such:  “We  are  building  computer  programs: 
languages and tools to support the design process [CAAD tools – ‘toy applications’]. Computers force us to be 
more articulate, and therefore we formulate our theories about designing as computer programs.” “Constraints: 
Knowledge representation in design”, Design Studies, 9(3), 1988, p.133 

68 Sait Ali Köknar. “Architectural Design Tools: Toward a non-linear design process”, Proceedings Designtrain 
Congress Trailer I, 2007, pp.176-177. 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terms of parametric and constraint-based relations] add a layer in 

which  the  designer  expresses  relationships  and  dependencies 

among quantities (parameters) in the design”.69 

 

The addition of such a facet, or  layer, as Earl Mark, Mark Gross 

and  Gabriela  Goldschmidt  call  it,  is  a  sensible  approach, 

considering  how  it  enables  the  designer  externalize  the  design 

reasoning efficiently, and in consideration of what a good design 

representation  is.  According  to  Woodbury  and  Burrow,  good 

design  representations  “must  afford  a  disciplined  notion  of 

change; otherwise, it is not a design representation and certainly 

not  a  computable  one”.70  Parametric  and  constraint-based 

relations,  which  are  the  components  adopted  in  this  study  (for 

developing  the  subject  model),  afford  changes  if  the  proposed 

sequences of relations that are mass customized  in an abstract, 

modifiable  and  reusable manner  translate  the  design  reasoning 

into them. 

 

Even if the subject matter is whether or not the representation is 

computable,  “good  design  representations  support  designers  to 

move  from  idea  to  idea”71  in  the  architectural  design  space  – 

shifting  between  several  different  scales.  Such  representations 

are  possible  with  the  addition  of  the  particular  facet  being 

considered. 

 

This  thesis  proposes  that  the  plan  is modeled  using  parametric 

                                                        
69  Earl  Mark,  Mark  Gross,  Gabriela  Goldschmidt.  “A  Perspective  on  Computer  Aided  Design  After  Four 
Decades”, eCAADe 26: architecture ‘in computro’, ed. M. Muylle, 2008, p.170 

70 Robert Woodbury, Andrew Burrow.  “Whither design space?”, Artificial  Intelligence  for Engineering Design, 
Analysis and Manufacturing, 20(2), 2006, p.66 

71 ibid. 



  38 

and  constraint-based  relations  yet  there  exist  some  differences 

among  some  of  the  conventional  aspects  when  drawing  it.  To 

clarify the differences,  

 

1.  In  the  plan  as  a  computational  design  model, 

architectural  design  reasoning  is  expressed  in  terms  of 

parametrical  and  constraint-based  relations.  These 

relations  are  mass  customized  sequences  that  can  be 

modified when applied on a different context/scale. 

 

2.  The  model  responds  to  different  scales  in  the 

architectural  design  problem  – meaning  shifting  between 

scales  is  possible.  Each  change  (in  the  value  of  a 

parameter)  in  a  particular  scale  causes  a  change  in  the 

whole design space.  

 

3.  The  model  is  composed  of  mass-customized 

sequences  of  relations  that  encode  reusable,  recursive 

functions  of  architectural  design  problems.  These  relate 

different  groups  of  constraints  with  each  other  –  rather 

than  mere  lines,  circles,  etc.  –  without  any  parametric 

attributes.  As  will  be  explained  in  depth  in  Chapter  5, 

design parameters  that are explored  through constraints; 

such  as  noise  level  and  “distance  between  units”  are 

related  with  each  other  using  a  mass-customized 

sequence  of  relations  that  encodes  the  function  – 

expressed  as  an  algorithm  –  on  circle  packing  theorem. 

Other  parameters  in  this  sequence  include  “number  of 

units,” etc. 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Sequences  of  relations  may  be  nourished  by  mathematical  or 

geometrical  theorems  in  architectural  design  problems,  and 

implemented  as  algorithms.  What  is  encoded  in  them  is  a 

function  that  gives  a  unique  output  value  for  every  new  unique 

input value, and they may be used in design models if they fit the 

small  task  description  of  designers.  The  recursive  and  reusable 

functions  that  are  encoded  within  them  allow  the  designers  to 

translate  the  design  reasoning  into  parametric  and  constraint-

based  relations.  This  thesis  aims  to  exemplify  those  most 

commonly  used  in  architectural  design  problems  as  well, 

embodying  features  such  as  being  fed  similar  design  elements 

(and similar constraints to relate to) that have occurred in several 

different cases. This may allow them to be interpreted as design 

patterns for architectural design. 

 

There are benefits in developing a model. The designer’s mind is 

not  always  fully  efficient  in  comprehending  the  design  problem 

fully, as has been discussed earlier, and thus may not be able to 

understand  the  problem  in  a  single  pattern.  This  prohibits  the 

designer from actively manipulating the whole problem. When the 

mind  runs  out  of  mental  space,  it  often  resorts  to  externalizing 

reasoning with sketches, diagrams, charts, etc as J.V. Nickerson, 

J.E.  Corter,  B.  Tversky,  D.  Zahner  and  Y.J.  Rho  discuss.72  For 

this  reason,  the  model  has  to  embody  what  is  put  out  of 

designers’  mind.  It  resembles  an  explicit  representation  of 

reasoning and aims at the translation of all the design reasoning 

that is to be processed in the architectural design problem. 

                                                        
72 J.V. Nickerson, J.E. Corter, B. Tversky, D. Zahner, Y.J. Rho. “Diagrams as tools in the design of information 
systems”, Design Computing and Cognition'08: Proceedings of the Third International Conference on Design 
Computing and Cognition, 2008, p.104 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There are a number of critical  issues  that need  to be  taken  into 

account when quantifying qualitative design  reasoning. This has 

been  covered  previously  in  the  thesis,  citing  Axel  Kilian’s 

explanation  of  how  designers  employ  constraints  when 

constructing the design space – designers construct the way that 

they  design.  Kilian  draws  reference  from  the  studies  of  Burrow 

and  Woodbury  on  design  space,  claiming  that  constraint 

modeling is a powerful way to drive solution space 73.  

 

The modeling of constraints can take various forms, and Kilian’s 

study  can  be  referred  to  once  again  to  provide  a  specific 

example. In his study, a different format (rather than a function) is 

used  for  the  design  task  to  “produce  the  basis  of  the  circular 

cones  and  the  circle  center  points  form  the  tip”.74.  As  Kilian 

explains:  

 

“The interesting aspect  is  that  the circular base  is double 
curved following the curvature of the surface whereas the 
resulting cone surface is strictly developable [Fig 3.2]. The 
fabrication  constraint  is  therefore  embedded  in  the 
geometric property of the chosen primitive” 75 
 

In  this  example,  reasoning  is  externalized  in  the  choice  of  the 

geometric  primitive,  and  is  translated  into  that  choice  for  the 

specific design task regarding fabrication. The constraints are not 

related  numerically,  but  the  design  reasoning  is  still  translated: 

The  relation  of  the  constraints  is  ensured  by  the  choice  of  the 

                                                        
73 Axel Kilian. “Design Innovation through Constraint Modeling”, Digital Design: The Quest for New Paradigms, 
23rd eCAADe Conference Proceedings, 2005, p.671 

74 ibid. 

75 ibid. 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material.  

 

The  act  of  relating  various  constraints  with  each  other,  which 

involves some specific design reasoning, can take various forms. 

It may be one recursive function – which may be expressed as an 

algorithm or as a  formula – of a geometrical  theorem,  like circle 

packing;  or  it  may  involve  the  embedding  of  the  fabrication 

constraint  into  the  geometric  property  of  the  chosen  primitive. 

The latter act can also be mass customized, just like the function, 

because  it  is  the  sequence  of  relations  that  is  being  mass 

customized, and relations can take various forms of actions.  

 

It  is  important  to  retain  the  essential  synthetic  features  of  the 

model, no matter what kind of form the relating finds. If constraint 

models are analytical, a change in one parameter that applies to 

one constraint, for instance belonging to one specific scale, does 

not produce a result that the model continues to use as a driver in 

the exploration of  the solution space,76 and  this would disable a 

shifting  between  different  scales  of  the  architectural  design 

project.  An  example  of  a  synthetic  feature  can  be  found  in  the 

author’s  graduation project.  The  resulting  values  taken  from  the 

add-on Geco, (Ecotect add-on for Grasshopper) which is used for 

the lighting calculations, serve their need in the rest of the design 

model,  such  as  in  determining  the  values  for  the  “radius  of 

openings in the surface covering the units”. 

 

The relations between design constraints are not assumed to be 

the only computational components that exist in CAAD theory. To 

                                                        
76 Axel Kilian. “Design Innovation through Constraint Modeling”, Digital Design: The Quest for New Paradigms, 
23rd eCAADe Conference Proceedings, 2005, p.678 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clarify the theories/approaches of CAAD that provide a variety of 

computational components,  the classification of Earl Mark, Mark 

Gross, and Gabriela Goldschmidt can be used as a reference: 

 

        1. Parametric and constraint-based design 

        2. Shape grammars 

        3. Frame based design methods 

        4. Object oriented design 

        5. Generative systems 

        6. Top-down design 

        7. Knowledge based design systems 

        8. Design and cognition77 

 

For  instance,  top-down  design  or  shape  grammars  are 

considered  as  “themes  and  variations”  for  generative  design, 

according to Scott Chase.78 They both have similar roles, and are 

theories  providing  different  computational  components  that  the 

reasoning is translated into. Earl Mark, Mark Gross and Gabriela 

Goldschmidt refer to these as approaches “to design through the 

lens  of  different  ways  of  constructing  computer-aided  design 

software”.79  

Another classification is also possible here following the study of 

Knight  and  Stiny  on  classical  and  non-classical  computational 

means.  It  is  possible  to  say  that  genetic  algorithms,  as  a  soft 

computing method,  is  non-classical  in  terms of  the process,  but 

                                                        
77  Earl  Mark,  Mark  Gross,  Gabriela  Goldschmidt.  “A  Perspective  on  Computer  Aided  Design  After  Four 
Decades”, eCAADe 26: architecture ‘in computro’, ed. M. Muylle, 2008, pp.169-176. 

78  Scott  Chase.  “Generative  design  tools  for  novice  designers:  Issues  for  selection”,  Automation  in 
Construction, vol.6, issue 4, December 2005, pp.692-695. 

79 Earl Mark, Mark Gross, Gabriela Goldschmidt. op.cit.,  p.171 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classical in the representational means it uses. Their significance 

in a discussion related to the translation of design reasoning is as 

“a  host  of  outside  criteria,  not  given  directly  in  the  rules  play  a 

significant role in the outcomes”80  according to Knight and Stiny.  

 
As another method, shape grammars fall  into the group in which 

representational means are non-classical, but  the process  is still 

classical.  Their  significance  in  the  scope  of  this  thesis  is  that 

shape  grammars  have  neither  a  finite  number  of  primitives,  nor 

finitely defined rules. This feature makes shape grammars closer 

to  being  an  effective  computational  design  method  when 

externalizing the designer’s reasoning.  

 

Moreover,  in  constraint-based  automated  layout  programs, 

although the means of representation may be considered limited 

with  respect  to  the  ambiguity  of  design  problems,  they  do 

respond to several different design tasks in complex architectural 

design problems.81 However, among  the different approaches  to 

automated  space  layout,  there  exist  various  types  of 

representations. 

 

For  instance,  in  a  Quadratic  Assignment  Problem  (QAP), 

architectural  space  (architectural  design  element)  is  translated 

into discrete objects (one-to-one assignment problem); while in a 

                                                        
80  Terry  Knight,  George  Stiny.  “Classical  and  non-classical  computation”, Architectural  Research Quarterly, 
5(4), 2002, p.360 

81 This point can be clarified:  “Space  layout has been studied as a  research problem since  the 1960’s. Site 
planning, arrangement of rooms in a building, and arrangement of furniture or equipment in a room have been 
solved by computer programs. In spite of being studied for a long time, the impact of this research on practice 
in terms of providing usable systems to professionals has been very limited”. Can Baykan. “Spatial Relations 
and Architectural Plans: Layout problems and a language for their design requirements” E-Activities in Design 
and Design Education. ed. Bige Tunçer, Şaban Suat Özsarıyıldız, Sevil Sarıyıldız, Paris: Europia Productions, 
2003, p.137 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stacking  problem,  space  is  represented  as  area  (many-to-one 

assignment  problem).  What  is  selected  as  a  specimen  of 

constraint-based  automated  layout  programs  is  the  blocking  or 

the  floor  plan  layout  problem  (FloP),  in  which  space  is 

represented in terms of area and shape.82 

 

Fig  3.4.  Planar  adjacency  graph  (Taken  from  “Automated  facilities  layout:  past,  present 
and future,” Automation in Construction, vol.9, 2000, p.199, by Robin S. Liggett) 

 

 

As a difference, QAP uses a discrete grid-based system  for  the 

representation  of  space,  with  the  main  working  principle  being 

optimization  (Fig  3.4).83   On  the  other  hand,  as  an  architectural 

formulation,  the  floor  plan  generating  program  FloP  works  with 

finite,  non-zero  rectangles without holes, oriented parallel  to  the 

axes  of  an  orthogonal  coordinate  system.  As  Can  Baykan 

explains  in  “Spatial  Relations  and  Architectural  Plans:  Layout 

problems and a  language  for  their design  requirements,” among 

                                                        
82 Robin S. Liggett.  “Automated  facilities  layout: past, present and  future”, Automation  in Construction, vol.9, 
2000, p.198 

83 This type of a representation is used according to the needs of the design problem defined by the designer. 
It  involves adjacency relations between the parameters of  the architectural design problem:  “It  is concerned 
primarily  with  generating  a  layout  that  meets  adjacency  requirements  between  activities.  This  approach 
requires the construction of a planar adjacency graph [Fig 3.4] where nodes represent activities to be located 
and edges (or links) represent a direct adjacency requirement.” ibid., p.199 



  45 

these  rectangles,  the  program  uses  unary  constraints 

(dimensions, area and aspect ratio), binary constraints (rectangle 

relations,  Fig  3.5;  bounded  difference,  Fig  3.6;  and  orientation 

constraints)  and  global  constraints  to  represent  and  maintain 

topological  (adjacency,  alignment,  grouping),  geometric  (shape, 

dimension, distance) or functional relationships.84  

 

The program may be seen as a model  that  is put  into computer 

and  implemented  as  some  software.  Using  this  program,  the 

designer translates the design elements (such as the kitchen, the 

bedroom,  or  the  sink,  the  bed,  etc.)  into  the  format  that  the 

program  uses  –  being  rectangles,85  the  size  of  which  can  be 

modified. The reasoning of  the design problem  is  translated  into 

the pre-defined  relations of  the constraints  listed  in  the previous 

paragraph.  Designers  fill  in  the  values  for  the  program  to  find 

“satisficing”  solutions  (Fig  3.7),  as  Herbert  Simon  would  name 

them. To exemplify, they list the relations that can exist between 

the design elements of the problem, choosing them from the 169 

pre-defined  relations  of  the  rectangle  algebra  (Fig  3.5).  These 

relations  (binary  constraints)  are  a  part  of  the  components  that 

form the model, and design reasoning is translated into them.  

                                                        
84 Can Baykan.  “Spatial Relations and Architectural Plans: Layout problems and a  language  for  their design 
requirements” E-Activities  in Design and Design Education. ed. Bige Tunçer, Şaban Suat Özsarıyıldız, Sevil 
Sarıyıldız, Paris: Europia Productions, 2003, pp.139-142. 

85  “The solutions are not given but are constructed by a program based on  the  representations  that  it uses. 
Therefore the set of significantly different solutions to a problem differ among programs.” ibid., p.145 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Fig  3.5.  Relations  of  the  Rectangle  Algebra,  RA  (Taken  from:  “Spatial  Relations  and 
Architectural Plans:  Layout  problems and  a  language  for  their  design  requirements,”  by 
Can Baykan in E-Activities in Design and Design Education. ed. Bige Tunçer, Şaban Suat 
Özsarıyıldız, Sevil Sarıyıldız Paris: Europia Productions, 2003, p.140) 

 

 

Fig  3.6.  Types  of  distance  between  two  rectangles  (Taken  from:  “Spatial Relations  and 
Architectural Plans:  Layout  problems and  a  language  for  their  design  requirements,”  by 
Can Baykan in E-Activities in Design and Design Education. ed. Bige Tunçer, Şaban Suat 
Özsarıyıldız, Sevil Sarıyıldız Paris: Europia Productions, 2003, p.141) 

 

 

Fig 3.7. Non-trivial,  trivial,  internal and external holes, and a kitchen  layout  violating  the 
access  requirement  (Taken  from:  “Spatial  Relations  and  Architectural  Plans:  Layout 
problems and a language for their design requirements,” by Can Baykan in E-Activities in 
Design and Design Education. ed. Bige Tunçer, Şaban Suat Özsarıyıldız, Sevil Sarıyıldız 
Paris: Europia Productions, 2003, p.142) 

 

There  is  more  to  add  to  the  usefulness  and  generality  of  the 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components that are used in the translation of design reasoning. 

 

For  instance,  in  an  attempt  to  integrate  shape  grammars  with 

FloP  to  develop  a  model  for  generating  a  sample  Mamluk 

Madrasa  design,  it  has  been  seen  that  shape  grammars  and 

knowledge-based  systems  greatly  differ  in  terms  of  their 

computational  components.  If  the  shape  rules  for  generating  a 

Mamluk  Madrasa86  were  to  be  implemented  into  FloP,  some 

rigidity  in  formulating  the  design  requirements  in  the  problem 

space  is  experienced. However,  this might  be  highly  efficient  in 

some  small  design  tasks  of  architectural  design  problems.87  It 

may  appear  to  be  more  intuitive  and  synthetic  to  construct  a 

design model using declarative means such as shape grammars, 

but  automated  systems  propose  a  large  amount  of  efficiency 

depending  on  the  design  task.  This  may  result  in  an 

incompatibility  that  emerges  when  procedural  means  (i.e.  the 

means that floor plan layout system uses) and declarative means 

(i.e. shape grammars) meet. This is a challenge when developing 

an architectural design model. 

 

There  have  been  recent  studies  concerning  the  translation  of 

design  reasoning  that  respond  to  the  various  needs  of 

architectural  design  problems  of  different  scales.  These  include 

the  translation  of  the  reasoning  into  various  constraints  defined 

for  the  small  design  tasks  of  structure,  lighting,  energy, 

                                                        
86 Buthayna H Eilouti, Amer M. Al-Jokhadar. “A Generative System for Mamluk Madrasa Form-Making”, Nexus 
Network Journal, vol.9, 2007, pp. 7–29. 

87  “Formulating  a  layout  problem  as  an  optimization  problem  is  not  how  designers  intuitively  define  it.  […] 
Layout  problems are  intuitively  defined by designers as  satisficing problems; automated  systems should be 
formulated to work similarly.” Can Baykan. “Spatial Relations and Architectural Plans: Layout problems and a 
language for their design requirements” E-Activities in Design and Design Education. ed. Bige Tunçer, Şaban 
Suat Özsarıyıldız, Sevil Sarıyıldız, Paris: Europia Productions, 2003, pp.137-138. 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environment  and  building  services.  The  modeling  of  these 

constraints  enables  a  diverse  range  of  perspectives  to  be 

quantified,  as Ruwan Fernando, Robin Drogemuller,  Flora Dilys 

Salim  and  Jane  Burry  discuss  in  “Patterns,  Heuristics  for 

Architectural  Design  Support:  Making  Use  of  Evolutionary 

Modeling in Design”.88  

 
Fig  3.8.  An  exemplar  image  of  a  pattern  definition  from  the  design  patterns  study  of 
Ramesh Krishnamurti and Tsung-Hsien Wang (http://www.andrew.cmu.edu/org/tsunghsw-
design/)  inspired  by  the  design  patterns  study  of  Robert  Woodbury 
(http://www.designpatterns.ca/) 

 

 

The  use  of  design  patterns  when  translating  a  designer’s 

reasoning  in a model contributes considerably  to  the quantifying 

of  a  diverse  range  of  perspectives.  As  a  key  study,  the  design 

patterns  of  Ramesh  Krishnamurti  and  Tsung-Hsien  Wang  (Fig 

3.8) or Robert Woodbury can be referenced, among others. This 

part of the study is discussed at the end of Chapter 4. The need 

to  explore  the  design  space  in  terms  of  various  advantages 

different computational methods bring  is not avoided, yet not all 

of them are applied in this study.  

 

 
   

 
 
                                                        
88 Ruwan Fernando, Robin Drogemuller, Flora Dilys Salim, Jane Burry. “Patterns, Heuristics for Architectural 
Design  Support:  Making  use  of  evolutionary  modeling  in  design”,  Proceedings  of  the  15th  International 
Conference on Computer Aided Architectural Design Research in Asia, (2010), pp.283-292. 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CHAPTER 4 
 
 

DIFFERENT TYPES OF COMPUTATIONAL DESIGN MODELS: 
A CLASSIFICATION FOR THE ROLE OF THE DESIGNER 

 
 
 
Considering  the  issues  discussed  in  Chapter  3,  the  cases  detailed  in  this 

chapter have been chosen for further discussion on the externalization of design 

reasoning. The intention here is to look into the matter of efficient externalization 

in  design  generation  and  the  role  of  the  designer  in  using  or  developing 

computational  design  models.  In  short,  this  chapter  will  focus  on  both  the 

method and the computational components. 

 

About  five  years  ago,  Scott C. Chase  stated  in  his  paper,  “Generative  design 

tools  for  novice designers:  Issues  for  selection,”  that  architects needed  to use 

CAD  tools  effectively  for  design,  but  left  programming  to  professional 

programmers. This might not be the case today, however the classification that 

he uses when discussing  the  issue offers  insight  into what  is what  in  this  field. 

For  instance,  one  group  of  CAAD  tools  might  be  seen  as  the  programs  put 

together by professional programmers; however almost all developers of  these 

“toy” applications (as Chase refers to them) are architects. Alternatively, another 

group may  be  classified  as  the  “effective  use  of  CAD  tools  for  design”.  Such 

classifications  are  one  way  of  handling  the  situation;  yet,  it  may  be  more 

effective  to  discuss  the  issue  in  regards  to  the  role  of  the  designer,  which  is 

related to the externalization of design reasoning. 

 

When discussing the use of CAAD software to develop a computational design 

model (such as FloP, as discussed in Chapter 3), it is also necessary to mention 

the  features  that  the  particular  software  affords.  When  using  a  CAAD  tool  to 

generate design solutions the definer can define the design problem only within 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the  limits  of  these  tools.  As  such,  dynamic  features  are  no  longer  left  to  the 

intuitive  choices  of  the  designer,  as  the  predefined  relations  of  the  design 

parameters control  them, as E. Mark, M. Gross and G. Goldschmidt discuss.  It 

is assumed that designers explore the design space of the model, the closer the 

designer  is  to being a  tool builder,  the more efficient  the computational design 

model in terms of intuitiveness, and the more synthetic the model.  

 

In  this chapter,  the means  that  the models use  (Fig 4.1)  for  translating design 

reasoning,  and  further  into  the  computational  components  of  the method,  are 

discussed  in  relation  to  each  other.  For  such  a  discussion,  it  is  considered 

necessary to follow a classification similar to the one mentioned at the beginning 

of this chapter. 

 
Fig  4.1.  Different  models  that  use  different  translations  (for  design  reasoning)  into  the  components  that 
compose  them.    (a)  The  translation  that  FloP  uses:  This  matrix  has  to  be  formed  to  define  the  rectangle 
relations between every two elements of the design problem until every element has a defined relation with the 
rest.  (b)  The  translation  that  is  used  in  Stadsbalkon:  “designtoproduction  developed  a  software  based  on 
artificial-life  methods,  which  optimized  the  exact  position,  inclination  and  strength  of  some  150  irregularly 
placed columns according  to  functional and constructional  requirements, and which could be utilized by  the 
architects  to  generate  alternative  design  solutions.”  (Taken  from: 
http://www.designtoproduction.ch/content/view/7/27/) (c) The translation that is used in the design research of 
adaptable  structures:  The modules  that  are  interpreted  as  embodying  the  recursive  functions  used  for  the 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parametric  modeling  of  adaptable  structures.  (d)  Various  design  parameters  explored  via  constraints 
exemplified below. Design  reasoning  is partly  translated  into  them  in  the particular models  in consideration. 
The models that belong to the first group are bound to work with predefined parameters, constraints and their 
relations. 
 

 

In the first group, the model is already built – modeling act is finished. Designers 

who  generate  design  solutions  with  the  model  –  which  mostly  is  put  into  the 

computer as an application or some software – do not always have a role similar 

to the developers of  it. They are unable to operate on the translation of design 

reasoning into the computational components that the model is composed of to 

develop a unique model in the particular CAAD tool. Some of the models in the 

group  are  composed  of  parametric  and  constraint-based  relations,  and  some 

are  not,  which  implies  a  change  in  the  make  up  of  the  computational 

components. What  is  common  is  that  the components are not always open  to 

the  operation  of  the  designer.  For  instance,  the  relations  between  design 

parameters are already defined, and are not always open to the operation of the 

designer  (Fig  4.2).  Designers  who  generate  design  solutions  by  developing  a 

model with the CAAD tool are only playing with it – they fill in the values via the 

interface, and thus have only a limited role in this deterministic system (Fig 4.3). 

It  is not  the designer who models, as the relations are already defined and the 

constraints  are  already  related  with  each  other  (Fig  4.2  (d)).  Fig  4.1  (d) 

exemplifies  some  pre-defined  parameters  explored  via  constraints,  which 

designers are bound to translate their design reasoning into. 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Fig 4.2. (a) Designers should be able to operate on the translation of design reasoning into the parametric and 
constraint  based  relations.  They  should  be  free  to  decide  which  constraint  should  relate  to  which  other 
constraint.  (b)  For  parametric  and  constraint  based  models,  the  reasoning  is  translated  into  the  relations 
defined  for  design  parameters  (c)  that  are  explored  by  design  constraints.  (d)  If  designers  are  not  able  to 
operate on  the  translation of design reasoning  into  the parametric and constraint based relations,  the model 
might become a deterministic one. 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represent data in the pre-defined model 
 
Fig  4.3.  Image  showing  the  situation  for  the  first  group.  The model  belongs  to  ‘Stadsbalkon’  developed  by 
Fabian  Scheurer.  Stadsbalkon:  “designtoproduction  developed  a  software  based  on  artificial-life  methods, 
which optimized the exact position, inclination and strength of some 150 irregularly placed columns according 
to  functional  and  constructional  requirements,  and  which  could  be  utilized  by  the  architects  to  generate 
alternative design solutions.” (Taken from: http://www.designtoproduction.ch/content/view/7/27/) 

 

 

The applications or some of  the software belonging to  the first group may also 

be  seen  as  being  restricted  to  specific  design  problems,  and may  not  always 

offer  the  designer  the  ability  to  develop  their  own  unique  models.  These  are 

new,  promising  developments,  but  are  not  always  the  result  of  a  thorough 

analysis  of  applicability;  and  are  unlike  some  of  the  “commercially  available 

software,” as Alexander Koutamanis calls them.89 

 

                                                        
89  Alexander  Koutamanis.  "A  Biased  History  of  CAAD:  the  bibliographic  version",  in,  J.P  Duarte,  G  Ducla-
Soares & A.Z Sampaio (Eds.), eCAADe 23: Digital Design: the Quest for New Paradigms, pp.634-635. 



  54 

For example,  the  first group may  include  tools such as  ‘Stadsbalkon’  (Fig 4.3) 

developed  by  designtoproduction  (Java);  and  ‘CADenary’  developed  by  Axel 

Kilian (Processing) among others that have been developed in processing90.  

 

Experimental  plug-ins  developed  for  some  commercial  parametric  software 

(similar to some commercial software, but not identical) may also be included in 

this  group.  Shape  grammar  implementations  are  one  such  plug-in,  developed 

for AutoCAD for the generation of design solutions91, as is the case for all of the 

tools in this group. 

 

Fig  4.4.  In  FloP,  constructing  the  automated  design  model  is  managed  by  defining  all  possible  rectangle 
relations in terms of their constraints. This matrix has to be formed to define the relations between every two 
elements of the design problem until every element has a defined relation with the rest. For design generation 
with FloP see Fig5  in 2.2.2  (Taken  from:  “Spatial Relations and Architectural Plans: Layout problems and a 
language  for  their design requirements”, by Can baykan  in E-Activities  in Design and Design Education. ed. 
Bige Tunçer, Şaban Suat Özsarıyıldız, Sevil Sarıyıldız, Paris: Europia Productions 2003, p.143) 

        

 

In the second group, the model is not yet built, and the relations of parameters 

                                                        
90 Daniel Davis (PhD Candidate, RMIT, Spatial Information Architecture Laboratory) compiles such examples 
in his blog. These include: “Dynamic Relaxation” tool (Processing): Mesh behaves like a membrane and takes 
on  form  with  least  stress.  Or  the  “Photovoltaic  Cell  Shaper”  (Processing):  A  tool  to  design  the  optimum 
photovoltaic  cell  based  on  location.  http://www.nzarchitecture.com/blog/index.php/2009/11/05/beginning-
programming/ 

91 José Nuno Beirão (PhD Candidate, TU Delft, Design Informatics), can be referred for an implementation as 
such as a plug-in for AutoCAD. 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and constraints are to be defined by the designer in the best way to describe the 

design problem;  thus, designer develops  the computational design model  from 

scratch. The CAD tools that may be used in developing the models belonging to 

this  group  indicate  their  guiding  principles  in  the  user  manuals  and  can  be 

learned from user experience, rather than from CAAD theory.92 In this way they 

differ from some commercial software, such as Rhino Grasshopper, that may be 

used to build the model. However, the computational components into which the 

reasoning  is  to  be  translated  are  based  on  the  methodological  knowledge  of 

CAAD theory. Rather  than  the computational components  themselves,  it  is  the 

means  of  translating  design  reasoning  into  these  components  that  are  under 

discussion in this thesis; and designer actions are being proposed as a remedy, 

as has been discussed thus far. 

 

The  second  group  may  be  interpreted  as  the  “effective  use  of  CAD  tools  for 

design”93. Considering the model adopted to follow the computational method in 

consideration, this group includes parametric models developed by the designer 

using  various  forms  of  parametric  software.  Different  to  the  “toy  applications,” 

some CAD tools offer lines, surfaces, etc. with which the designer translates the 

design  reasoning  from scratch  in a non-deterministic way.  In  some parametric 

software,  the  designer may  start modeling  the  constraints  using  sequences  of 

relations that are grouped according to the Grasshopper definitions of recursive 

functions explained in Chapter 5. While “toy applications” can be considered as 

CAAD  tools,  these  parametric  software  cannot,  as  they  are  rather  for  the 

building of computational design models.  

 

For  a  clear  description  of  the  differences  of  each  software,  Earl  Mark,  Mark 

Gross, and Gabriela Goldschmidt can be referred: “The internal representations 
                                                        
92  Alexander  Koutamanis.  "A  Biased  History  of  CAAD:  the  bibliographic  version",  in,  J.P  Duarte,  G  Ducla-
Soares & A.Z Sampaio (Eds.), eCAADe 23: Digital Design: the Quest for New Paradigms, p.634 

93  Scott  Chase.  “Generative  design  tools  for  novice  designers:  Issues  for  selection”,  Automation  in 
Construction, vol.6, issue 4, December 2005, p.691 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built into these tools [CAD tools, or in general, some parametric software] have 

also advanced, from simply managing points, lines, and planes [features of CAD 

tools], to parametric and constraint based representations [features of CAD tools 

–  but  the  ones  enabling  parametric  modeling,  such  as  Grasshopper]  such  as 

those  used  by  leading  practitioners  such  as  Foster  and  Partners,  KPF, 

Morphosis, and Arup” 94. 

 

Parametric  software  includes  stack-based  commercial  software,  such  as 

Generative  Components,  or  the  generative  modeling  plug-in  for  Rhino, 

Grasshopper  (GH)95.  Moreover,  performance-testing  add-ons  for  Grasshopper 

(like Kangaroo or Geco) can be added to this group, as they are effective when 

used by the designer to build a model of their own.96  

 

To be specific, the parametric model developed for the generation of adaptable 

structures in the research of Michela Turrin, Axel Kilian, Rudi Stouffs and Sevil 

Sarıyıldız97  can  be  seen as  the  source  of modules which  form  the model  (Fig 

4.5).  These  modules  translate  design  reasoning  into  relations  in  the  model, 

which in this case may be interpreted as embodying some recursive functions of 

architectural  design  problems  that  are  used  for  the  parametric  modeling  of 

adaptable structures. These functions are encoded into the design space of this 

model  in  Generative  Components  (GC),  and  thus  it  becomes  possible  to 

generate  design  solutions  for  adaptable  structures  by  exploring  the  design 

space of that particular architectural design problem.  

                                                        
94  Earl  Mark,  Mark  Gross,  Gabriela  Goldschmidt.  “A  Perspective  on  Computer  Aided  Design  After  Four 
Decades”, eCAADe 26: architecture ‘in computro’, ed. M. Muylle, 2008, p.170 

95 Other kinds of commercial software in this group include the stack based 3dsMax or Maya and CATIA with 
the associative history. CAD tools  like Revit and ArchiCAD also have parametric  features. A  full explanation 
can  be  found  on  Daniel  Davis’  blog:  http://www.nzarchitecture.com/blog/index.php/2010/01/19/parametric-
software-review/ 
96 Designers can use the resulting values coming from these performance-testing add-ons to generate design 
solutions by relating the constraints with each other accordingly. It is explained in more depth in Chapter 5. 

97  Michela  Turrin,  Axel  Kilian,  Rudi  Stouffs,  Sevil  Sarıyıldız.  “Digital  Design  Exploration  of  Structural 
Morphologies   Integrating Adaptable Modules: A design process based on parametric modeling,” Proceedings 
of the 13th International Conference on Computer Aided Architectural Design Futures, 2009, pp. 800-814. 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Fig  4.5.  The  modules  that  are  interpreted  as  embodying  the  recursive  functions  used  for  the  parametric 
modeling of adaptable structures  in  the design research of M. Turrin, A. Killian, R. Stouffs, and S. Sarıyıldız 
(Taken from: “Digital Design Exploration of Structural Morphologies   Integrating Adaptable Modules: A design 
process based on parametric modeling”, Proceedings of the 13th International Conference on Computer Aided 
Architectural Design Futures, 2009, pp. 800-814) 
 

 

Ramesh  Krishnamurti  and  Tsung-Hsien’s  design  patterns  for  parametric 

modeling  on  GH,  and  Robert Woodbury’s  design  patterns  on  GC  (along  with 

many  other  online  definitions)  may  be  considered  as  key  references  to  the 

functions by which the designers model their design reasoning, rather than only 

filling  in  values  for  already  defined  relations.  Within  the  scope  of  this  thesis, 

modeling  the design space  refers  to  the modeling of  constraints  in an  intuitive 

and a synthetic manner, ensuring that design reasoning is translated efficiently.  

 

Different translations can lead to different solution spaces, just as each designer 

may aim at a different solution space for a specific design problem. After all, it is 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the design reasoning that is to be modeled when modeling the solution space98; 

and  as  a  solution,  mass  customized  sequences  of  relations  may  allow  the 

designer to play a more efficient role (Fig 4.6). 

 

To recap, mass customized sequences of relations, known as designer actions 

in this thesis, may include mathematical or geometrical aspects in modeling the 

constraints,  however,  as  discussed  in  3.2.1,  there  exist  various ways  of mass 

customizing  relations,  such  as  one  recursive  function,  expressed  as  an 

algorithm,  of  a  geometrical  theorem  like  circle  packing;  or  by  embedding  the 

fabrication  constraint  into  the  geometric  property  of  the  chosen  primitive.  The 

common factor when using a mass customized relation is that the model is open 

to the operation of the designer both before and after developing it.  

 

The  approach  in  this  thesis,  to  translating  design  reasoning  by  modeling  the 

constraints is apparent in the use of such relations for building the model of the 

graduation project.  In Fig 4.6  (a),  full Grasshopper definition developed  for  the 

model  of  the  graduation  project  can be  seen. Different  sequences of  relations 

can  be  followed.  Different  colors  refer  to  different  functions  that  belong  to 

different  scales.  They  embody  constraints  belonging  to  different  scales.  In  Fig 

4.6  (b)  some  parameters  explored  via  constraints  are  exemplified.  These  are 

only  one  part  of  the  parameters  that  the  design  elements  are  translated  into. 

Author can modify both the parameters and the design elements. The definition 

is capable of  changes.  It  responds  to  the changes with a new model because 

the  functions are encoded with abstract, modifiable and  reusable  relations  that 

relate the design constraints following a sequence. 

 

 

                                                        
98  For  instance,  contemporary  practices  (such  as  Foster+Partners  and Gehry  Partners  and  FOA  and  Zaha 
Hadid Architects, etc.) which follow computational methods for modeling the design space of the architectural 
design projects, differ a lot in terms of their aimed solution space – differ a lot in terms of relating which design 
constraint to which for instance. 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a 

 
b 

 

 
Fig 4.6. (a) Full Grasshopper definition developed for the model of the graduation project. Different colors refer 
to different functions that belong to different scales. They embody constraints belonging to different scales. (b) 
Some parameters explored via constraints are exemplified. These are only one part of the parameters that the 
design  elements  are  translated  into. Author  can modify  both  the  parameters  and  the  design  elements.  The 
definition  is  capable  of  changes.  It  responds  to  the  changes  with  a  new model  because  the  functions  are 
encoded  with  abstract,  modifiable  and  reusable  relations  that  relate  the  design  constraints  following  a 
sequence. 

 

 

As Köknar and Erdem mention,  in architectural design,  tools may be borrowed 

from  other  disciplines,  offering  the  example  of  “circulation  as  a  separate  and 

positive  entity  inside  the  body  of  a  building,”  which  dates  back  to  the 

encyclopedia  age.99  They  also  point  out  that  the  “coin  was  imported  from  the 

respiratory  system  to  design  culture,”100;  while  also  mentioning  the  usage  of 

“collage  as  a  tool  to  compose  masses  and  integrate  buildings  to  their 

                                                        
99  Sait  Ali  Köknar,  Arzu  Erdem.  “Can  creativity  be  institutionalized?”,  A-Z  ITU  Journal  of  the  Faculty  of 
Architecture, 4(2), 2007, p.33 

100 ibid. 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surroundings,”101  which  they  claim  was  borrowed  from  the  plastic  arts  of  the 

avant-garde movements at the start of the 20th century. 

  

In Pamphlet Architecture 27: Tooling, Benjamin Aranda and Chris Lasch follow a 

similar  route,  proposing  seven  “recipes,”  borrowed  natural  phenomena  in  the 

world, that embody functions (expressed as algorithms) that keep the translation 

of  reasoning alive and allow  the designer  to dominate. They conduct a similar 

research on  the methods “to better understand”102  the designs,  in other words, 

to  better  grasp  the  complexity  of  the  design  space  of  the  architectural  design 

problems with the help of the computational design model.  

 

Aranda/Lasch propose seven algorithmic techniques that describe and simulate 

design  reasoning,  namely  spiraling,  packing,  weaving,  blending,  cracking, 

flocking  and  tiling.  In  the  foreword,  Cecil  Balmond  says  of  the  authors:  “Their 

method  offers  endless  potential  for  the  interpretation  of  program,”103  and  their 

work is also deemed highly relevant to this thesis too, in which a reconsideration 

of  the  nature  of  programming  in  architecture  is  considered  a  priority.  As  a 

reminder,  programming  in  architecture  involves  the  proposal  of  necessary 

actions for the smaller tasks of a complex architectural design problem. 

 

The seven  techniques detailed  in  the study of Aranda/Lasch use mathematics 

and  geometry  to  control  the  task  of  executing  the  aimed  relation  between  the 

design constraints. They provide examples of various usages of  these  tools  in 

different  contexts,  referencing  various  architectural  design  projects.  For 

example, they describe spiraling as an essential recipe in plant growth patterns, 

as  it  allows  the  maximum  amount  of  plant  to  grow  in  the  least  amount  of 

                                                        
101  Sait  Ali  Köknar,  Arzu  Erdem.  “Can  creativity  be  institutionalized?”,  A-Z  ITU  Journal  of  the  Faculty  of 
Architecture, 4(2), 2007, p.33 

102 B. Aranda, C. Lasch. Pamphlet Architecture 27: Tooling, New York: Princeton Architectural Press, 2006, 
p.94 

103 ibid., p.7 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space104;  but explain  that  it  can be used  to address an  infrastructural problem 

concerning car  traffic, giving an  idea of  the maximum number of cars  that can 

exist  on  the  move,  avoiding  any  major  traffic  jams  that  may  occur  (Fig  4.7). 

From  this  it  can be understood  that  such a  tool may  respond efficiently  to  the 

concurring  needs  of  agricultural  and  infrastructural  constraints,  among  others, 

as explained in Chapter 5. 

 

                 

Fig 4.7. Spiraling used in an architectural design project (Taken From: Pamphlet Architecture 27: Tooling, by 
B. Aranda, C. Lasch, New York: Princeton Architectural Press, 2006, p.19) 

 

 

Moreover, if packing, for example circle packing, is used, as can be seen in Fig 

4.8  (a),  it  affords  “stability  through  adjacency,”105  performing  the  task  of 

providing a stable structure in its simplest sense. However,  it can also be used 

to  relate  various  constraints  of  various  scales,  depending  on  the  designers’ 

reasoning.  It  is  shown  in  the  next  chapter  that  this  technique may be  used  to 

“calculate the maximum number of units that can be constructed on the project 

plot,”  similar  to  that  seen  in Fig  4.8  (b). However  in  the  latter  example,  rather 

                                                        
104 B. Aranda, C. Lasch. Pamphlet Architecture 27: Tooling, New York: Princeton Architectural Press, 2006, 
p.12 

105 ibid., p.22 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than stability, the main intention lies in achieving the minimum distance between 

units to avoid high noise levels from passing aircraft. 

 

Other  architectural  design  projects  are  given  in  the  study  of  Aranda/Lasch  to 

exemplify  different  contexts  –  such  as  the  façade  of  a  log  cabin  –  to  suggest 

possible different usages of packing. The techniques are expressed in the form 

of  algorithms,  which  are  given  in  the  recipes  for  the  techniques  (Fig  4.8  (c)). 

Scripting  is  used  as  a  tooling  device  for  the mass  customizing  of  techniques, 

meaning that all seven recipes are encoded in the form of algorithms.  

 

     

                                 

             
Fig 4.8.  (a) Packing which executes  the  task of bringing “stability  through adjacency” (b) Square packing (c) 
Recipe  for  packing  (Taken  From:  Pamphlet  Architecture  27:  Tooling,  by  B.  Aranda,  C.  Lasch,  New  York: 
Princeton Architectural Press, 2006, p.26, 25, 23) 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Accordingly,  the  concern  of  this  thesis  is  also  to  exemplify  the 

techniques/functions  that  are  most  commonly  encoded  in  the  sequences  of 

relations  of  architectural  design  problems.  For  further  examples  of  such 

relations,  called  designer  actions,  the  author’s  graduation  project  can  be 

referenced. 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CHAPTER 5 
 
 

PROGRAMMING THE DESIGNER ACTIONS: MASS 
CUSTOMIZING SEQUENCES OF RELATIONS AND 
PROCESSING PARAMETERS IN A SPECIFIC 
ARCHITECTURAL DESIGN PROBLEM 

 
 
 
This  chapter  borrows  from  the  author’s  graduation  project  to  suggest  an 

approach to the defining of designer actions, and to present different examples 

of mass-customized  sequences  of  relations  that  contain  recursive  functions  of 

architectural design problems. Efficient  translation of design reasoning relevant 

to design decisions taken at varying scales, is explained in detail. Great care is 

taken  to  ensure  that  no  constraints  are  eliminated  while  shifting  between 

different scales in the architectural design project.  

 

As discussed previously, programming  in architecture  involves  the proposal or 

selection  of  the  designer  actions  needed  for  the  smaller  tasks  in  a  complex 

architectural  design  problem.  As  a  prerequisite,  the  proposal  requires  a 

programming  of  the  sequences  that  relate  design  constraints with  each  other. 

This  prerequisite  will  enable  the  mass  customization  of  the  relations  that  will 

result ultimately  in designer actions. If  this  is not the case, a library or menu of 

mass-customized  sequences  of  relations  should  be  available  at  the  outset  for 

the designers to recreate them according to the needs of the design task. Both 

cases are applied by the author in the graduation project, and will be referenced 

accordingly while being explained.  

 

The project proposes a new system that will allow the co-existence of agriculture 

(and  green  areas  in  general)  and  transportation  infrastructure  in  the  Schiphol 

region  (Fig  5.1)  in  the Netherlands.  The  region  contains  a  network  of  several 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different  modes  of  transportation  (Fig  5.2),  and  the  dominant  elements  of 

architectural  design  for  this  region  include  Schiphol  Airport  and  the  adjacent 

agricultural  fields  (Fig  5.1).  A  project  plot  measuring  100m  x  100m  is  to  be 

selected  from  the  area  indicated  in  red  (measuring  7.1  km2)  in  Fig  5.2, 

depending  on  the  author’s  choice.  The  area  is  located  on  the  southeast  of 

Haarlem, southwest of Amsterdam and on the northwest of Schiphol Airport. The 

reason  for  the  parameterization  of  the  position  of  project  plot  is  related  to  the 

prior significance given to the constraints such as those exploring noise  levels, 

climatic  conditions  or  wind,  light,  etc.,  for  different  locations.  Here,  the 

parameterization  of  the  position  of  the  project  plot  is  programming  it  as  one 

parametrically defined square – that can be moved in x, y and z directions, etc. – 

in the function encoded in the Grasshopper definition, which can be seen in Fig 

5.3.  

 

 

To help visualize,  firstly an  instance  from the model  is given  in  this paragraph. 

The process explained here  is similar  to  the  latter  that explain other  instances; 

therefore this paragraph aims a brief and a direct introduction to the model and 

the sequences  in  it.  If a project plot (indicated  in green, Fig 5.3 (e)) measuring 

100m x 100m is selected from the area, which is indicated in red (measuring 7.1 

km2) in Fig 5.2, the sequence encoding the function follows as such: The curve 

indicating project plot, which can be seen  in  the Rhino scene  in Fig 5.3  (a),  is 

first set in the curve parameter – by clicking “Set one Curve” toggle”, Fig 5.3 (b) 

–  that  is named “project plot”. This curve parameter  is created  to parameterize 

the position of project plot, which is indicated in orange in Fig 5.3 (b). One curve 

with different number of edges, degree, length, etc. can be set in the parameter 

in  addition  to  a  square.  This  brings  the  modifiable  character  of  the  function 

encoded.  It  responds  to  various  curves  indicating  project  plots.  To  translate 

design reasoning, “project plot” is defined as one parameter. For this parameter, 

the relation “position” is defined. When a curve is set into the parameter, various 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numbers of units are generated. In Fig 5.3 (c) two units are generated. Number 

of  units  depends  on  the  constraints  such  as  those  exploring  noise  levels, 

climatic conditions or wind,  light, etc.,  for different  locations of  the project plot. 

The moving is further explained in Fig 5.21. In Fig 5.3 (d), the curve parameter 

“project  plot”,  can  now  be  seen  in  green  because  a  curve  is  now  set  in  the 

parameter.  

 

 

 
Fig 5.1. Schiphol Airport and the adjacent agricultural lands: These are the dominant land uses in the region, 
and are surrounded by a mobility network. 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Fig  5.2.  One  part  of  the  mobility  network  of  the  Schiphol  region.  Different  means  of  transportation  are 
highlighted,  including  the means of connecting Haarlem Station  to Schiphol Airport. An area of 7.1 km2 has 
been  chosen  for  the  architectural  design  problem,  which  is  indicated  in  red.  The  area  is  located  on  the 
southeast of Haarlem, southwest of Amsterdam and on the northwest of Schiphol Airport.  

 
 
 

 
 

Fig  5.3.  (e) A project  plot  (indicated  in  green) measuring 100m x 100m  is  selected  from  the area, which  is 
indicated in red (measuring 7.1 km2) in Fig 5.2. (a) The curve indicating project plot can be seen in the Rhino 
scene. It  is not yet parameterized. (b) The curve parameter, which  is created to parameterize project plot,  is 
indicated in orange. (c) Two units are generated when a curve is set for the parameter “project plot”. Number 
of units depends on the constraints such as those exploring noise levels, climatic conditions or wind, light, etc., 
for different locations of the project plot. (d) The curve parameter, which is created to parameterize project plot, 
is now indicated in green because a curve is set in the parameter. 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5.1 Content and the Context of the Architectural Design Problem 
 

Mobility and infrastructure have a profound effect on the formation of the 

reclaimed land (Fig 5.5) and the delta metropolis in the Randstad region 

of the Netherlands (Fig 5.4). Although the region is actually several cities 

and  a metropolitan  area,  within  the  hierarchy  of  the  European mobility 

network,  Randstad  is  considered  to  be  a  metropolis  on  its  own.  The 

name  Randstad  actually  refers  to  a  conurbation  of  cities  and  a 

metropolitan area in the region. 

 

What  needs  to  be  considered  in  the Randstad  is  the  transformation  of 

constraints  –  such  as  those  involving  land  transformations  or  various 

noise  limits,  or  the  changing  climatic  conditions  in  terms  of wind,  light, 

etc. The current constraints in the lowlands may not be the same in 10–

50  years  time.  Such  transformations  are  common  in  the  drained  and 

reclaimed lands of this region (Fig 5.5), which lie almost 5 m below sea 

level.  For  the  transformation  of  the  current  situation  in  the  Schiphol 

region  (project  site),  noise  levels,  as  well  as  climatic  conditions,  wind, 

light,  etc.,  are  considered  to  be  crucial  factors  in  the  modeling  of 

constraints to address the architectural design problem. 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Fig 5.4. Randstad of the Netherlands within the European mobility network 
 
 
 

 

 

 
 

Fig 5.5. Process of reclaiming land (a) the land is below sea level, (b) pumping stations drain the 
seawater and (c) a polder system is introduced, including agricultural fields and farmhouses. 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Fig 5.6. The polder system (Original image taken from: Man-Made Lowlands: History of water 
management and land reclamation in the Netherlands, by G. P. van de Ven (ed.) Utrecht, The 
Netherlands: Uitgeverij Matrijs, 2004) 

 

            

 

Fig  5.7.  Reclamation  of  the  Haarlemmermeer  Polder  in  1852  (Original  images  taken  from: 
Architecture  Annual  2002-2003:  Delft  University  of  Technology,  ed.  Henco  Bekkering,  The 
Netherlands: 010 Publishers, 2004 and Sea of Land: The polder as an Experimental Atlas of Dutch 
Landscape  Architecture,  by  W.  Reh,  C.  Steenbergen,  D.  Aten.  Wormerveer-Zaanstad,  The 
Netherlands : Stichting Uitgeverij Noord-Holland, 2007) 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Fig 5.8. The parking lot at Schiphol Airport (Capacity: 16,000 cars) 

 

Moreover,  there are other aspects that need to be parameterized in the 

transformation  of  the  region,  such  as  the  “number  of  passing  cars,”106 

determined by  the  amount  of  people  traveling,  etc., which  is  a  number 

that is growing due to the existence of an airport and two important cities 

in  the  region.  This  situation  makes  Haarlemmermeer,  which  was 

reclaimed  in  1852,  Fig  5.7  an  attractive  polder  for  both  national  and 

international  companies;  and  for  the  development  of  different  transport 

infrastructures,  from high-speed  rail  tracks,  to  an  underground  logistics 

system. It is also attractive for the development of single-family dwellings 

with gardens and parking space for two cars.  

 

New activities on this drained land require a new expression of land use 

and  architectural  space.  However,  spatial  claims  on  the  natural 

environment  of  the  Haarlemmermeer  Polder  –  on  the  agricultural  land 

that  has  to  be  preserved  within  the  dynamics  of  the  reclaimed  land 

(polder system) of  the Netherlands – are  threatening  the existence of a 
                                                        
106 The parking lot of Schiphol Airport (Fig 5.8) is especially important in this design problem, in that the growth 
and expansion of the infrastructure in the region is not based only to the presence of one central city. The chief 
driver of growth  is Schiphol Airport, which drives  the expansion of  infrastructure, either directly or  indirectly, 
threatening the agricultural lands. The airport both attracts and necessitates the infrastructure in the region. 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variety  of  different  agricultural  products  (Fig  5.9)  and  the  landscape  of 

the region. 

 

 

Fig 5.9. Image showing different species cultivated in the Netherlands. 

 

To  clarify,  the  threat  to  the  region  is  more  complex  than  just  the 

expansion of a  transport  line. A definition of  the modes of mobility and 

the  densification  of  various  elements  within  the  Schiphol  region  is 

needed  to  ensure  that  a  future  scenario  is  addressed  in  the  design 

space,107 which shall be discussed later.  

 

More than one architectural design solution has to be generated in order 

to  find an optimum solution,  and adopting a  parametric  and  constraint-

based design model can help  the designer  in  this  respect. Any solution 

should  take  into  account  the  co-existence  of  different  land  uses  in  the 

Schiphol region  in the future (Fig 5.10). Consequently, a solution space 

has  to  be  modeled  that  relates  different  design  constraints  in  groups, 

without eliminating any one of them. Only by modeling them in terms of 

their  relations  to  each  other  can  the  results  of  the  transformation  drive 

the  untransformed phases of  the  solution  space  that  are  related  to  the 

                                                        
107 This is another reason for adopting a computational design model to explore the design space. 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transformed groups of constraints.108 

          

Fig  5.10.  The  parking  lot  of  Schiphol  Airport  (top)  is  an  important  infrastructural  element  of  the 
mobility network  in  the region, as  is  the agricultural  land (bottom). Agricultural  land  is under  threat 
from several different forces that are trying to find architectural expression in this region. 

 

 

As  the  architectural  design  solutions  have  to  be  nourished  by  a  future 

scenario that will allow transformation of the constraints, the new system 

to be  implemented  in  the Schiphol region must be capable of  the same 

level  of  flexibility  in  constraints,  according  to  the  planning  policies  and 

future  scenarios  in  this  region.  The  system  needs  to  be  adaptable  in 

terms  of  different  land  uses  and  elements  of  infrastructure,  and  as  a 

result it must be able to deal with a transformation in the constraints. To 

this  end,  abstract, modifiable  and  reusable  sequences  of  relations  that 

translate  design  reasoning  into  the  components  of  parametric  and 

constraint-based design  is considered crucial  in  the development of  the 

                                                        
108 This also substantiates the need for a synthetic model for the exploration of the design space. 



  74 

architectural  design model.  In  summary,  the  design  problem  looks  into 

the  possibility  of  forming  a  new  system  comprising  infrastructure, 

agriculture and habitation out of a hub in the Haarlemmermeer Polder. 

 
5.2 Problem Space (Defining the Design Parameters) 
 

 

Fig 5.11. A sketch externalizing the reasoning related to the dynamics of the site, taking into account 
Schiphol Airport. Although the reasoning has been put to paper,  it has not yet been translated into 
the computational components of the model. 

 

In addressing architectural design problems, even if the reasoning has 

been put to paper in the form of a sketch (Fig 5.11), within the scope of 

this thesis externalizing design reasoning through a model refers to its 

translation into the computational components of the particular model. In 

this study, computational components of the model are the relations 

defined for the design parameters that are explored through the design 

constraints. As can be seen in Fig 5.12, several different design 

elements are parameterized; with different scales indicating different 

groups of constraints. In the same figure, the sketches positioned below 

different groups of constraints indicated by different scales show the 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instances of design reasoning that are to be translated into the particular 

components under consideration. 

           
 

Fig  5.12.  Different  scales  indicate  different  groups  of  constraints.  The  sketches  positioned  below 
different groups of constraints indicated by different scales show the instances of design reasoning 
that are to be translated into the particular components under consideration. 
 

 

Relations  are  defined  for  the  design  parameters  that  are  explored  by 

design  constraints  and  these  constraints  are  related  to  one  another  to 

develop the model under consideration. 109 It is composed of three main 

groups of constrains  in three main scales (Fig 5.14 – Fig 5.16): 1/1000, 

1/100 and 1/10 (1/10000-scale design decisions come outside the limits 

of  this  model).  The  design  problem  is  divided  into  these  three  main 

scales to allow a modeling of the constraints in groups.  

 
                                                        
109 In other words, this is the translation of design reasoning into the computational components of the model 
developed for the graduation project of the author. 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As 1/10000-scale  design decisions  are outside  the  limits  of  this  design 

model,  author  begins  exploring  the  design  space  of  the  model  with  a 

design  decision  already  taken  for  that  scale:  One  polder  module  (Fig 

5.13) is chosen from the area (of 7.1 km2, Fig 5.2) near Schiphol Airport. 

In that polder module, the position of one project plot – measuring 100m 

x 100m –  is parameterized  (Fig 5.16),  to place  it  in various  locations  in 

the  module.  Because  of  the  flexibility  regarding  its  location,  different 

values for parameters – such as different “noise contour levels;” various 

“m2 of land occupied on agricultural land or pasture;”110 different “number 

of  hours  of  sunlight;”  or  varieties  in  “growth  pattern  of  the  agricultural 

product” – can be explored. 

 

A definition of  the  relations between design parameters  is  explained  in 

the following paragraphs, for 1/1000, 1/100 and 1/10 scales respectively. 

This  translation  is  explained  for  the area allowed  for  the placing of  the 

project  plot,  depending  upon  the  author’s  choice.  In  the  section where 

this  translation  is  explained  for  1/1000  scale  through  a  grasshopper 

definition,  the  size  of  the  project  plot  has  a  greater  m2  area  than 

described  in  this  section;  however  the  design  reasoning  remains  the 

same,  differing  only  in  the  values  of  the  relations  defined  for  the 

parameters.  Within  the  limits  of  this  design  model,  the  position  of  the 

project  plot  can  be  changed  within  the  borders  of  the  selected  polder 

module (Fig 5.13). For the Haarlemmermeer Polder, one polder module, 

one polder block and one polder parcel cover areas of 2km x 3km, 1km x 

3km and 1km x 200m respectively (Fig 5.13 – Fig 5.15). According to the 

decision taken by the designer taking into account the polder system of 

Haarlemmermeer,  the  project  plot  covers  an  area  measuring  100m  x 

100m (Fig 5.16). 

                                                        
110 This parameter is defined for calculating the m2 of land set aside for infrastructure or for other land uses on 
agricultural land or pasture. 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Fig 5.13. The polder module at 1/10000 scale: The group of constraints belonging to the 1/10000 scale drives 
the design. One polder module covers an area of 2km x 3km for the Haarlemmermeer Polder. 
 
 

 
 

 
 

Fig 5.14. The polder block (all of the darker gray area in Fig 5.13) at 1/1000 scale: The design is driven by the 
group of constraints belonging to scales 1/1000, 1/100 and 1/10, which are modeled in relation to each other.  
One polder module covers an area of 1km x 3km for the Haarlemmermeer Polder. 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Fig 5.15. The polder parcel (all of the blue area in Fig 5.14) at 1/1000 scale: The design is driven by the group 
of constraints belonging to scales 1/1000, 1/100 and 1/10, which are modeled in relation to each other. One 
polder module covers an area of 1km x 200m for the Haarlemmermeer Polder. 
 
 
 

 
 

Fig 5.16. The project plot (one of the red squares in Fig 5.15) at 1/100 and 1/10 scales: The design is driven 
by the group of constraints belonging to scales 1/1000, 1/100 and 1/10, which are modeled in relation to each 
other. The project plot covers an area of 100m x 100m for every different position in which it is placed. Every 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time  the  place  of  the  project  plot  is  changed,  an  area  of  100m  x100m  is  dealt  with  for  the  changes  in  the 
values of parameters. 

 
 

While  building  the  model,  firstly,  the  design  reasoning  for  the  polder 

block scale  (Fig 5.14) has  to be  translated  in  such a way  that  the new 

system – the design – can be implemented into the existing dynamics of 

the  water  management  system  of  the  Haarlemmermeer  Polder.  As  a 

priority, the area in question needs to be drained. Relations are defined 

in such a way to best comply with the necessities of the design problem. 

Accordingly, at 1/1000 scale (Fig 5.14, 5.15), the parameters explored by 

the constraints  include  the “width of ditches”. For  the parameter  “ditch,” 

the  relation  “width”  is  defined,  by  which  the  “ditch”  is  most  efficiently 

related  with  the  other  parameters  explored  through  the  constraints 

belonging to the other scales. This is explained further in 5.3. 

 

At  1/100  scale  (project  plot  -  building  scale,  Fig  5.15),  the  parameters 

explored by the constraints include: “depth below sea level,” “number of 

units,”  “length,  width  and  the  height  of  the  surface  covering  the  units,” 

“distance between units” or  “m2 of  land occupied on agricultural  land or 

pasture” (Fig 5.17,  in  red). Some parameters may belong  to 1/10 scale 

(project plot – building component scale), such as “noise contour levels,” 

the ”number of hours of sunlight” or (the subgroup) “growth pattern of the 

agricultural product” on a numerical basis  (including min/max distances 

between  two  seeds,  tectonic  properties  or  solid-void  proportions  of  the 

same pattern, etc); or the “radius of the openings in the surface covering 

the units” or  the  “length of  the members of  the structure of  the surface 

covering the units”. These can be seen marked in grey in Fig 5.17. 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5.3 Solution Space (Relating the Design Constraints with Each 
Other)  
 

 

 
 

 
Fig  5.17.  This  image  explains  the  model  developed  by  the  author  for  the  graduation 
project  in which design parameters are explored via constraints. The various constraints 
belonging to different groups are shown in different colors. The relations formed between 
the  constraints  that  belong  to  the  same or  to  different  groups are  shown with  lines and 
arrows. 
 

 

To relate the first group of constraints at 1/1000 scale (Fig 5.17, in blue), 

a  designer  action  in  the  form  of  a  function  is  encoded  in  a  Rhino 

Grasshopper  definition  (see  appendix  for  definition).  This  function 

translates the reasoning of the designer in implementing this new system 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on the polder system of Haarlemmermeer, with acting in accordance with 

the  dynamics  of  the  existing  water management  system  (Fig  5.21).  At 

this scale, the constraints (Fig 5.18) are used to ensure a continuation of 

the existing  rules  of  the water management  system when draining one 

project  plot,  and  to  support  author’s  scenario  (in  such  actions  as 

changing the position of  the project plot).  In this way, the author  is able 

to build on the chosen project plot without having to deal with the water 

management system every time a change is made in the position of the 

plot or in the scale of the design problem. This is ensured as well for any 

other change  that may  take place on  the plot  – such as an  increase  in 

the “number of units,” which brings more construction, more weight and 

larger volumes of water to be drained. 

 

 
Fig 5.18. This sketch shows  the constraints  that are used  to ensure a continuation of  the existing 
rules  of  the  water  management  system  when  draining  one  project  plot,  and  to  support  author’s 
scenario (in such actions as changing the position of the project plot). 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The reasoning for the implementation to the existing water management 

system  has  now  been  put  to  paper,  meaning  that  it  has  been 

externalized  as  defined  in  this  thesis  (Fig  5.22).  It  has  been  translated 

into the relations defined for the parameters explored by the constraints 

and  related  to  the  other  groups  of  constraints  to  ensure  that  the 

translation  has  not  been  broken  in  any  part  of  the  architectural  design 

problem.  It  is  to  ensure  that  the  reasoning  is  fully  translated  and  the 

model addresses  the complexity of  the problem. Moreover,  if  there  is a 

change  in  the  design  parameters  and  constraints  (if  one  constraint  or 

parameter  transforms  into  one  another),  it  affects  the  whole  design 

space,  and  the  model  is  still  processing.  The  consequences  of  this 

continuity may be effective in giving the model a synthetic character.                    

                   
 

5.3.1 Relating Number of Units to Water Management System 
  

The first sequence of relations that relate two different groups of 

constraints  at  1/1000  scale  (exploring  “width  of  ditches”)  and  at 

1/100  scale  (exploring  “number  of  units”)  is  as  follows:  If  the 

project  plot  is  positioned  in  the  selected  project  site  (Fig  5.2,  in 

red),  it  is to be drained accordingly. The “number of units”  in the 

project plot determines the weight of the construction, which then 

determines the amount of water to be drained. As it can be seen 

in Fig 5.19 (b), if 6 units are to be constructed on the project plot, 

its  physical  reflection  on  the  overall  design  is  that,  the  existing 

ditch  line  is  offset  to  a  specific  value  of  width  –  that  is  1.2m  – 

according to the increasing weight of the construction to be made 

on the plot. The existing ditch line and the offset line are indicated 

in  red and  in green,  respectively  in Fig 5.19  (b).  In Fig 5.19  (a), 

the  existing  ditch  line  is  indicated  in  green.  If  2  units  are  to  be 

constructed  on  the  project  plot,  then  the  width  of  the  ditch  is 

calculated accordingly. The effect of the change in the “number of 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units” on the “width of ditches” can be seen if Fig 5.19 (a) and Fig 

5.19  (b) are compared. Grasshopper definition  that encodes  the 

function can be partially seen in Fig 5.19 (c). There, the value of 

width  is  calculated  by  multiplying  offset  value  (2m)  by  the 

“number  of  units”  and  by  dividing  by  10,  which  results  in  0.6. 

Offset  value,  and  the  “number  of  units”  are  two  of  the  design 

elements  that  are  parameterized  in  the  function. Both  the  slider 

and the panel are indicated in green in Fig 5.19 (c). Offset value 

is  parameterized with  a  number  slider  in  the  function,  by which 

the author sets different floating points. 

 

 
 

Fig  5.19.  The  “number  of  units”  in  the  project  plot  determines  the  weight  of  the  construction,  which  then 
determines the amount of water to be drained. If 6 units are to be constructed on the project plot, its physical 
reflection  on  the  overall  design  is  that,  corresponding  to  the  function  developed  and  encoded  in  the 
Grasshopper definition, (b) the existing ditch line is offset to a specific value of width – that is 1.2m – according 
to the increasing weight of the construction to be made on the plot. Existing ditch line and the offset  line are 
indicated  in  red  and  in  green,  respectively.  (a)  Existing  ditch  line  is  indicated  in  green.  If  2  units  are  to  be 
constructed on the project plot, then the width of the ditch is calculated accordingly. The effect of the change in 
the “number of units” on the “width of ditches” can be seen. (c) The value of width is calculated by multiplying 
offset value  (2m) by  the  “number of units” and by dividing by 10, which  results  in 0.6. Offset value, and  the 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“number of units” are two of the design elements that are parameterized in the function. Both of the slider and 
the panel are indicated in green. Offset value is parameterized with a number slider in the function, by which 
the author sets different floating points. 

 

 

The “number of units,” is determined according to the constraints 

that explore the parameters “noise contour level” and “number of 

passing cars,” etc., which will be explained later in greater depth. 

In  this particular  function  (Fig 5.22),  the excess water has  to be 

transferred  to  the  primary  or  secondary  drainage  canals  (Fig 

5.20,  in blue on the left) via the ditches (Fig 5.20,  in blue on the 

right).  Therefore  the  excess  water  has  to  be  transferred  to  the 

neighboring  ditches  first,  to  keep  the  land  drained  (Fig  5.21). 

However, within  the hierarchy of  the water management system 

of  the  Haarlemmermeer  Polder,  the  drainage  canals  and  the 

main  Ringvaart  and  Hoofdvaart  canals  are  assumed  to  be 

capable  of  handling  the  excess  water  feeding  from  the  smaller 

ditches. As such,  this  function does not necessitate a change  in 

these two main canals (Fig 5.20, in black on the left). 

       
 

Fig 5.20. Image showing the primary and secondary drainage canals (in blue on the left) 
and ditches (in blue on the right) of the selected site of 7.1 km2, shown in red in Fig 5.2. 

 
 

                     
 

Fig 5.21. Design reasoning regarding the dynamics of the water management system, externalized 
in a physical model 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Fig  5.22.  The  Grasshopper  model  of  a  re-forming  of  the  ditches  after  different  changes  in  position  of  the 
project  plot  can  be  seen.  In  the  created  definition,  the  ditches  are  re-formed  in  each  case  100m  from  the 
borders  of  the  project  plot  (this  interval  is  slightly  larger  in  these  examples  owing  to  the  larger  size  of  the 
project plot used).  (b) The  initial position of  the project plot  is  shown  in yellow hatching. Each of  the above 
examples show different changes in position, being: (f) moving the plot along the xy plane or (e) rotating the 
plot in a counter clockwise direction or (d) moving the rotated plot again along the xy plane or (c) rotating the 
relocated plot in a clockwise direction. (a) The scale of the design model can be seen at the top.  

 

 

5.3.2 Relating the Position of the Project Plot to Water 
Management System 

 

In the function, which manages the transfer of excess water (Fig 

5.22),  the  ditches  are  modeled  according  to  parametrical  and 

constraint-based  relations  that  form  the  sequences  created  in 

Grasshopper.  To  clarify  the  function,  the  sequence  in  the 

Grasshopper  definition  can  be  explained  as  follows:  Each  time 

the  position  of  the  project  plot  changes,  this  function  creates  a 

drained  plot  on  the  site  by  transferring  the  excess  water  to 

neighboring  ditches  (Fig  5.21)  and  by  creating  new  ditches 

according to an optimized grid. The effect of optimizing the grid to 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100m and to 50 m on the overall design can be seen in Fig 5.23. 

In Fig 5.23 (c) or (d) the panel, which is created to parameterize 

the value of optimizing the grid, can be seen in green. In Fig 5.23 

(c) the value is set to 100m and in Fig 5.23 (d) it is set to 50 m by 

the author. The value could be parameterized differently such as 

with  a  number  slider  or  etc.  The  relation  (“divide”  component  in 

Fig 5.23  (c) or  (d)), which  links  this parameter  to  the  rest of  the 

definition,  is modifiable and open to changes or  transformations. 

This  grid  is  optimized  according  to  the  constraints  of  the  water 

management  system  in  the  Haarlemmermeer  Polder,  being  the 

size of one polder parcel or minimum and maximum values of m3 

of water in the ditches or canals, and those exploring the “width” 

or “depth” of the ditches and canals, etc. 

 

 
 
Fig 5.23. The difference between optimizing the grid (a) to 100m and (b) to 50m can be seen. (c) The panel, 
which  is created  to parameterize  the value of optimizing  the grid, can be seen  in green. The value  is set  to 
100m. (d) The panel, which is created to parameterize the value of optimizing the grid, can be seen in green. 
The value is set to 50m. 

 

 

According  to  the  optimized  grid,  the  ditches  are  re-formed  in 

every  100m  from  the  borders  of  the  project  plot.  This  value  of 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100m  should  be  changed  in  if  the  constraints  change  –  if  the 

polder changes for  instance. This  interval  is slightly  larger  in Fig 

5.22 (b), (c), (d), (e), (f) due to the larger size of project plot. The 

initial position of the project plot is shown in yellow hatching in Fig 

5.22  (b). Various changes  in  the position of  the plot are shown, 

such as:  (f) moving  the  plot  along  the  xy  plane,  (e)  rotating  the 

plot in a counter-clockwise direction or (d) moving the rotated plot 

again  along  the  xy  plane  or  (c)  rotating  the  relocated  plot  in  a 

clockwise  direction.  It  is  suggested  that  the  function  encoded 

here  may  be  used  in  other  contexts  or  in  other  scales  in  the 

project  only  by  feeding  some  different  elements  of  the  design 

problem into it. This is a mass customized sequence of relations 

that  respond  to  general  usage.  The  function  encoded  in  the 

sequence, which has been explained so  far, can be seen  in Fig 

5.24.  In  this  image,  the significant parameters and the panel, by 

which  the  design  elements  are  parameterized  at  1/1000  scale, 

can be seen (Fig 5.24 (a), (b), (c)). If a transformation is needed, 

these  three  should  be  transformed  into  new  ones  and  the 

sequence, which  is  indicated with the  lightest  tone of blue  in Fig 

5.24, responds with a new function. A full definition can be found 

in the appendix. 

 



  88 

 
Fig 5.24. Significant parameterizations at 1/1000 scale can be seen: (a) “Selected site” in the Schiphol region, 
(b) the optimizing of the grid of the “selected site”, (c) and the “position of project plot”. “Position of project plot” 
is  related  to  the other constraints at 1/100 scale.  It  links  the  two scales.  In 1/100 scale  it  is  linked (d)  to  the 
circle packing  function,  (e)  to  the  function  that calculates  the effect of  the noise  level,  (f)  to  the  function  that 
calculates the “width of ditches”, and (g) to the function that calculates the building density in the plot. (h) It is 
also related to other parameters in the same scale that is 1/1000. In all, the particular curve that has been set 
into  the  “project plot” parameter,  is also set  into  the  “curve”  input parameters’ of  the various components of 
these functions.  

 

 

Author  operates  on  the  values  and  relations  of  the  parameters 

shown  in  Fig  5.24  (a),  (b),  (c)  for  changes  in  the  water 

management  system  of  the  selected  project  site,  or  changes  in 

the size of the project plot, etc. Only by modeling the constraints 

in  terms  of  their  relations  to  each  other  can  the  results  of  a 

change  drive  rest  of  the  solution  space  that  are  related  to  the 

changed groups of constraints. “Position of project plot” is related 

to the other constraints at 1/100 scale – it links the two scales. In 

1/100  scale,  it  is  linked  to  the  circle  packing  function  (Fig  5.24 

(d)),  to  the  function  that  calculates  the  effect  of  the  noise  level 

(Fig 5.24 (e)), to the function that calculates the “width of ditches” 

(Fig  5.24  (f)),  and  to  the  function  that  calculates  the  building 

density  in  the  plot  (Fig  5.24  (g)).  It  is  also  related  to  other 

constraints  in  the same scale  that  is 1/1000 (Fig 5.24 (h).  In all, 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the  particular  curve  that  has  been  set  into  the  “project  plot” 

parameter,  is  also  set  into  the  “curve”  input  parameters’  of  the 

various components of these functions. If there is a change in the 

parameter “position of project plot”,  it  is  to ensure that  the result 

of  this  change drives  the design of  the parts  shown  in Fig  5.24 

(d),  (e),  (f),  (g),  (h)  which  are  linked  to  the  parameter  “project 

plot”.  The  consequences  of  this  continuity  may  be  effective  in 

giving the model a synthetic character. 

          
 
 

b                                                             

 
                      c 

 
 
                      d 
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Fig 5.25. (b) The Grasshopper model of the plan in the event of a change in the “position of project plot”. The 
project  plot  can  also  be  seen  in  Fig  5.15.  The  function  encoded  in  the  definition  calculates  the  “number  of 
units” every time the position of the project plot changes - yet the position change is explored not by moving 
the  project  plot  to  various  locations  in  the  site,  but  by  changing  the  values  of  parameters  such  as:  “noise 
contour  level”  or  “number  of  passing  cars”,  etc.  This  definition  uses  circle  packing  to  find  the  maximum 
“number of units” that can be constructed on the project plot. (c) Constructed units for a specific situation (for a 
specific noise level, etc.) and the “number of stories per unit”  in that specific situation can be seen. (d) Each 
time the position of the project plot changes; a different surface covering each unit is generated as well. The 
design  of  these  surfaces  will  be  explained  later.  (a)  The  scale  of  the  design  model  to  which  the  function 
belongs can be seen at the top in red. 
 
 

5.3.3 Relating the Position of the Project Plot to Noise levels and 
the Number of People Traveling 

 
It  is  not  only  the  first  group  of  constraints  belonging  to  1/1000 

scale that drives the design of the project plot  in 1/100 and 1/10 

scales. For  instance, as  the value  for  the parameter  “number of 

passing  cars”  changes,  which  is  determined  according  to  the 

value  “number  of  people  traveling”  –  or  the  value  for  the 

parameter “noise contour level” changes, the “number of units” to 

be constructed on the project plot changes accordingly (Fig 5.25 

(b), (c), (d)). Circle packing is used when modeling the particular 

constraints  (Fig 5.25  (b)); and  is used  to calculate  the minimum 

“distance  between  units”  to  ensure  the  maximum  “number  of 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units” in the project plot. In the calculation of finding the maximum 

“number of units”, the “number of passing cars” is the parameter 

explored  by  the  concurring  constraint,  while  the  “noise  contour 

level” is the parameter explored by the conflicting one.   

 

       
 
Fig  5.26.  Significant  parameterizations  and  significant  relations  of  parameters,  number  sliders,  panels  and 
components  at  1/100  scale  can  be  seen  in  the  Grasshopper  definition.  Numbers  from  1-10  indicate  the 
significant  relations  in  the  sequence  that  encodes  the  function.  Letters  from  b-k  indicate  significant 
parameterizations, including 2 parameters, 1 panel, 6 number sliders from b-h, by which the author inputs the 
values to the function. The rest, being i, j, k, are the 3 panels created to parameterize the values depending on 
the  values  of  b,  c,  d,  e,  f,  g,  h.  To  be  specific,  these  are;  (b)  2  number  sliders  and 1  point  parameter  that 
determine the effect of the noise source, (c) which has been parameterized with the curve parameter named 
“NOMOS99_Lijnden”, indicating the station located in Lijnden; (d) the panel created to parameterize the size of 
one unit being 10m x 10m; (e) the number slider created for  the value of offsetting to calculate the “width of 
ditches;” (f) the number slider created for the “number of passing cars;” (g) the number slider created for the 
value of “floor height;” (h) the number slider created for the value of the number of stories in units; (i) the panel 
created for “number of units;” (j) the panel created for “m2 of land occupied on agricultural land or pasture;” (k) 
the panel created for the maximum height of the units, which should not exceed certain limits. (a) On the left, 
the curve parameter, which is created to parameterize “position of project plot”, can be seen. 
 

 

To clarify in the Grasshopper scene, significant parameterizations 

and some significant linking between parameters, number sliders, 

panels and components at 1/100 scale can be seen  in Fig 5.26. 

In this image, numbers from 1-10 indicate the significant relations 

in  the  sequence  that  encodes  the  function.  In  the  same  image, 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letters from b-k indicate significant parameterizations, including 2 

parameters, 1 panel, and 6 number sliders from b-h, by which the 

author inputs the values to the function. The rest, being i, j, k, are 

the  3  panels  created  to  parameterize  the  values  depending  on 

the  values  of  b,  c,  d,  e,  f,  g,  and  h.  To  be  specific,  This 

parameterization  involves  the  translation  of  design  reasoning 

into: 2 number sliders and 1 point parameter  that determine  the 

effect  of  the  noise  source  (Fig  5.26  (b)),  which  has  been 

parameterized  with  the  curve  parameter  named 

“NOMOS99_Lijnden,” indicating the station located in Lijnden (Fig 

5.26  (c));  the panel created  to parameterize  the size of one unit 

being 10m x 10m (Fig 5.26 (d)); the number slider created for the 

value of offsetting to calculate the “width of ditches” (Fig 5.26 (e)); 

the number  slider  created  for  the  “number of  passing  cars”  (Fig 

5.26 (f));  the number slider created for the value of “floor height” 

(Fig  5.26  (g));  the  number  slider  created  for  the  value  of  the 

number  of  stories  in  units  (Fig  5.26  (h));  the  panel  created  for 

“number of units” (Fig 5.26 (i));  the panel created for “m2 of  land 

occupied on agricultural  land or pasture” (Fig 5.26 (j));  the panel 

created  for  the  maximum  height  of  the  units,  which  should  not 

exceed certain  limits  (Fig 5.26  (k)); and  the expressions defined 

in the particular components of these.   

 

Significant  relations  in  the  sequence  that  encodes  the  function 

are  indicated with  numbers,  from  1-10,  in  Fig  5.26.  “Number  of 

units”  (Fig  5.26  (i))  is  determined  taking  into  account  “noise 

contour  levels”  in  order  to  ensure  the project  plot  is  suitable  for 

inhabitation. The noise level at a specific location determines the 

minimum “distance between units” (Fig 5.26 (1))  in a project plot 

of 100m x 100m positioned  in  that specific  location. The size of 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one unit in the plot is set 10m x10m (Fig 5.26 (d)). The aim here 

is to prevent the reflection of noise from passing aircraft between 

densely packed units of  inhabitation. In this way, noise level  is a 

determining  factor  in  the maximum  “number of  units”  to be built 

on the plot, alongside other constraints.  

 

In  Fig  5.26  (2)  and  (3)  the  linking  of  the  output  parameter  of 

“circle  packing”  component  and  the  “size  of  unit”  panel, 

respectively,  to  the  components  that  result  in  “number  of  units” 

panel,  can be  seen. Here,  one  thing  should be noted: The new 

system,  which  proposes  a  new  mode  of  mobility,  needs  to  be 

adaptable  in  terms  of  different  land  uses  and  elements  of 

infrastructure,  and  as  a  result  it  must  be  able  to  deal  with  a 

transformation in the constraints. For the system to be adaptable 

to  different  land  uses  designer  should  be  able  to  parameterize 

different  elements  of  infrastructure,  etc.  if  needed  –  the  model 

should be open  to  the operation of  the designer.  In  the  function 

encoded  in  Grasshopper  definition  (Fig  5.26),  it  is  possible  to 

parameterize different elements of design, rather than noise level 

for instance, for calculating the maximum “number of units” to be 

constructed. Maximum  noise  level  can  transform  into maximum 

sea level  if  it  is needed. This new constraint can also be related 

to the ones which noise level has once been related because the 

function  is  encoded  with  abstract,  modifiable  and  reusable 

relations.  It  responds  to  changes  with  a  new  model  for  a  new 

design  scenario.  The  change  is  effective  on  the  whole  design 

space and the model is still processing. 

 

The constraints in Fig 5.26 also include those exploring “building 

density,” “building height” and “number of stories per unit,” etc. In 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this  particular  case,  the  ranges  of  these  values  are  determined 

according  to  the  allowed  values  for  construction  in  the  site 

adjacent to Schiphol Airport. In Fig 5.26 (4) and (5) the linking of 

the panels “size of unit” and “number of units,” respectively, to the 

component  that  results  in  the  panel  “m2  of  land  occupied  on 

agricultural  land  or  pasture”;  and  in  Fig  5.26  (6)  and  (7)  the 

linking of  the same panels  to  the component of  the function that 

calculates the “building density” in project plot, can be seen. The 

panel “number of units” (Fig 5.26 (i)) is also linked to the function 

that calculates the “width of ditches” (Fig 5.26 (8)). In Fig 5.26 (9) 

and  (10),  it  can  be  seen  that,  number  sliders  “floor  height”  and 

“number of passing cars” are linked to the components that result 

in  the  panel  “maximum  building  height.”  With  the  function 

encoded in this definition, the part of the design scenario at 1/100 

scale – constructing units as the new mode of mobility according 

to  the  amount  of  people  traveling  and  noise  levels,  etc.  –  is 

parameterized and explored (Fig 5.27).  

 

 
Fig 5.27. The part of the design scenario related to the infrastructure on the site and its parameterization: This 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parameterization  involves  the  translation  of  design  reasoning  into  “width  of  ditches,” “noise  contour  level,” 
“distance between units,” “m2 of  land occupied on agricultural  land or pasture,” “number of people traveling,” 
“number  of  units,”  “number  of  stories  per  unit,”  “building  density,”  ‘building  height,”  etc.,  and  into  the 
expressions defined between these. 
 

 

The number of people  traveling  is a determinant of  the  “number 

of  units”  on  the project  plot,  because  these units  are  temporary 

homes (Fig 5.28) for people requiring access to Schiphol Airport, 

and are willing to purchase “closeness” to the most important hub 

in  the  mobility  network.  For  such  people,  the  main  priority  is 

purchasing  the  least possible  traveling  time  rather  than  the unit. 

What matters  is  not  the  unit  itself,  but  its  proximity  to  Schiphol 

Airport.  This  purchase  is  seen  as  a  new  mode  of  mobility,  as 

discussed in 5.1, and this new mode of mobility is proposed as a 

norm of  inhabitation  in various  locations (hubs) of  the Randstad, 

rather than ownership in the conventional sense. 

 
 

5.3.4 Relating the Structure of the Surface Covering the Units to 
the Growth Pattern of the Agricultural Products 

 
Mobility  in  the  Randstad  nourishes  the  design  of  a  system  for 

people who may need to be  in one place at one moment and  in 

another place after very little traveling time. With this new system, 

the  time  lost  through  traveling  in  the  Schiphol  region  might  be 

avoided  by  defining  the  mode  of  mobility  in  these  terms  –  and 

seeing  the  new mode mobility  as  purchasing  closeness  though 

the  temporary  units  for  rental,  etc.  (Fig  5.28).  By  cultivating 

agricultural  products  within  the  unit,  the  agricultural  land  use  is 

preserved  as  well,  which  may  be  lost  for  this  new  mode  of 

mobility.  Therefore,  in  the  program  suggested,  infrastructure, 

agriculture and  inhabitation can co-exist. To do this, each unit  is 

modeled  in  such  a  way  that  makes  it  possible  to  cultivate 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agricultural  products  within  the  unit  through  hydroponics  (Fig 

5.29). 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Fig 5.28. Plans, sections and internal views of the units in the new system. At the bottom, different units of the 
project plot can be seen. 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                       a 

 
b 

       
 
c 
 
Fig 5.29. (a) Pipe work for the hydroponics can be seen. (b) The growth pattern of tulips, which has driven the 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design of the pipe work in which they are grown. (c) Four elements compose the units of the new system: pipe 
work system for hydroponics, tubular structure for the inner and outer needs of the units, slabs and Etfe 
panels. 

 

 

The pipe work for hydroponics can be seen in Fig 5.29 (a). In Fig 

5.29 (b),  it can be seen how the growth pattern of  the tulips has 

driven the design of the pipes in which they are grown. The four 

elements  that  compose  the  units  of  the  new  system  are:  pipe 

work system  for hydroponics,  tubular structure  for  the  inner and 

outer  needs  of  the  units,  slabs  and Etfe  panels  In  Fig  5.29  (c). 

The  structure  of  the  surface  is  composed  of  Etfe  panels,  the 

tubular  structure  and  the  pipe  work  system.  There  are  other 

constraints  that drive  the design of  the unit,  rather  than  just  the 

growth  pattern  and  the  irrigation  needs  of  the  plants.    Different 

surfaces  that  have  been  fabricated  with  various  values  for  the 

parameters  that  these  constraints  explore  can  be  seen  in  Fig 

5.30. 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Fig 5.30. One of the fabrications of the first surfaces generated to cover the units can be seen on the top. 
Other surfaces are fabricated using different values for the parameters “radius of the openings in the surface 
covering the units” and with one specific growth pattern, etc., as can be seen below. 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In modeling the surface, the relations between different groups of 

constraints of different scales are ensured as  follows:  the group 

of constraints at 1/100 scale that explore such parameters as “m2 

of  land  occupied  on  agricultural  land  or  pasture”  (being  the 

“number  of  units”  multiplied  by  the  area  of  one  unit,  which  is 

approximately  10m  x  10m),  determine  the  value  of  the 

dimensions  of  the  surface  covering  the  units.  This  surface  (Fig 

5.31 (b)) aims to preserve the agricultural land that may be lost in 

introducing this new mode of mobility to this region. As such, the 

quantity  of  land  that  is  lost  in m2  determines  the  dimensions  of 

the  surface  to  cover  these  units  and  the  pipe  work  for  the 

cultivation of plants – the amount of pipe work necessary for the 

hydroponics.  

 

The grasshopper definition encoding  the  function  that generates 

the structure of the surface covering the units can be seen in Fig 

5.31.  Numbers  from  1-6  indicate  significant  sequences  of 

relations in the definition. Letters from a-i, except c and i, indicate 

the  components  of  the  function,  which  embody  significant 

parameterizations  of  the  design  scenario  in  their  output 

parameters.    c  and  i  are  two  number  sliders  and  one  panel  by 

which  the  author  inputs  the  values  directly.  The  other 

components depend on  the values of  the parameters, panels or 

number  sliders  that  they  are  linked  to.  The  sequences  of 

relations, named, “Etfe panels,” “tubular structure” and “pipe work 

system”,  can  be  seen  at  the  bottom  in  Fig  5.31.  These  names 

indicate  the parts of  the  function  that  generates  the  structure of 

the surface. 

 

The  panel,  which  is  created  for  the  design  of  the  pipe  work 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system, can be seen in Fig 5.31 (i). The author inputs a series of 

numbers  into  this  panel  according  to  the  “growth  pattern  of  the 

agricultural  product”.  Joining  the  points  that  this  series  of 

numbers  set,  generates  the  pipe  work  of  hydroponics  in  which 

the plants are grown. What  is more, as can be seen  in Fig 5.31 

(1), the lofted surface is set to the input surface parameter of the 

component, which  results  in  the merge component  “members of 

the structure of  the surface”. 6 different  surfaces have been set 

through this linkage (at different times) to generate the units  that 

can be seen in Fig 5.25 (d).  

 

In Fig 5.31, it can be seen that, after being processed in (c) and 

being resulted in (d); (2) links the output surface parameter of (d) 

to  the  components  that  are  linked  to  (e).  (e)  is  the  circle 

component  that  creates  the  openings  according  to  constrained 

values  of  radius,  etc..  The openings  are  linked  (Fig  5.31  (3))  to 

the  part  of  the  function,  which  generates  the  Etfe  panels.  The 

radius (of the openings) is the relation that links the surface to the 

tubular  structure  (Fig  5.31  (4)),  as  these  tubes  should  have  the 

same radius with  the openings  that  they are positioned on –  the 

tubes are constrained to have the same radius with the openings. 

In Fig 5.31  (5) and  (6)  the  linking of  the  tubular  structure  to  the 

pipe work system of hydroponics, which is physically attached to 

these  tubes  (5.29  (a)), can be seen. This  is  the sequence  to be 

followed  for  the  particular  reasoning  of  preserving  agricultural 

land. 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Fig 5.31. The grasshopper definition encoding the function that generates the structure of the surface covering 
the units can be seen. Numbers from 1-6 indicate significant sequences of relations in the definition. From a-i, 
except  c  and  i,  the  components  of  the  function,  which  embody  significant  parameterizations  of  the  design 
scenario in their output parameters, can be seen.  c and i are two number sliders and one panel by which the 
author  inputs  the  values  directly.  The  other  components  depend  on  the  values  of  parameters,  panels  or 
number sliders that they are linked to. The sequences of relations, named “Etfe panels,” “tubular structure” and 
“pipe work system”, can be seen at the bottom. These names indicate the parts of the function that generates 
the structure of the surface. The scale of the design model to which the definition belongs can be seen in Fig 
5.17 in red. 

 
 
In the encoded function, which is partly shown in Fig 5.31, there 

exist more parameters  that are explored  through constraints. As 

can  be  followed  in  the  lines  and  arrows  in  Fig  5.17,  “growth 

pattern  of  the  agricultural  product”  and  the  “number  of  hours  of 

sunlight,” etc. drive  the design of  the surface covering  the units, 

in  addition  to  “m2  of  land  occupied  on  agricultural  land  or 

pasture”. Moreover, it  is ensured that the tectonic properties and 

the  solid-void  proportions  of the  same  growth  pattern  of  the 

agricultural product also drive  the design of  the same surface  in 

terms  of  structural  behavior  (Fig  5.32  (a)),  and  in  terms  of  the 

lighting  qualities  of  the  inner  spaces  of  the  units  (Fig  5.32  (g)). 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These relations exist in the model as components into which the 

reasoning  is  translated,  generating  the  surface  in  favor  of 

inhabitation. What is more, all constraints related to the design of 

the  structure  of  the  surface,  including  the  min/max  distances 

between two seeds, etc., conflict and concur for the co-existence 

of cultivation and  inhabitation. To clarify,  in Fig 5.31 (c), number 

sliders  named  “u  division”  and  “v  division”  can  be  seen.  These 

determine  the  number  of  divisions  on  the  surface  in  u  and  v 

directions111.  These  sliders  are  created  for  the  “length  of  the 

members of  the structure of  the surface covering  the units” and 

the  distance  between  two  seeds,  etc.  It  is  the  author  who 

determines  the  values  in  these  number  sliders  according  to  the 

“growth  pattern  of  the  agricultural  product”,  or  the  structural 

constraints, etc. 

 
 
5.3.5 Relating the Radius of the Openings in the Surface 
Covering the Units to the Number of Hours of Sunlight 
 
To ensure the conflict and concurrence are driven by the results 

of the calculations, (Fig 5.32 (c), (d), (e), (f)), firstly the parameter 

sunlight is defined in terms of the number of hours. The openings 

in  the  surface  (Fig 5.32  (b))  through which  the plants  and  inner 

space  of  one  unit  receive  sunlight  are  defined  in  terms  of  their 

radii. These are related  in the Grasshopper definition as follows: 

the “number of hours of sunlight” – which is calculated in Ecotect 

and transferred back to Grasshopper as a list of numerical values 

using the add-on Geco developed by [Uto], Fig 5.32 (c), (e), (f) – 

determines  the  “radius  of  the  openings  in  the  surface  covering 

                                                        
111  This  sequence of  relations  is  taken  from http://www.co-de-it.com/wordpress/code/grasshopper-code as  a 
mass-customized  designer  action  and  modified  to  serve  the  needs  of  the  design  task  of  this  part  of  the 
scenario. 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the  units.”  This  takes  into  account  the  needs  of  the  agricultural 

products  to  be  cultivated  in  the  units  and  the  required  lighting 

qualities of the inner space (Fig 5.32 (g)). 

 

 
 
Fig 5.32. The design of  the surface  is driven by the constraints  that explore parameters such as “m2 of  land 
occupied on agricultural  land or pasture,” which determines  the dimensions of  the surface. The sequence  is 
programmed as such: the “growth pattern of the agricultural product” and the (c) “number of hours of sunlight” 
determine the (a) “length of the members of the structure of the surface covering the units” and the (b) “radius 
of the openings in the surface covering the unit,” respectively. (a) The structural constraints for the members of 
the structure of the surface covering the units are as follows: c+d = a’+b,’ where a, b, c, d and a’, b’, c’, d’ are 
the  lengths  of  the members.  (d)  The  openings  in  the  surface  can  be  seen  below.  (c)  “Number  of  hours  of 
sunight” are calculated  in Ecotect and  (e)  the  results are  transferred back  to Grasshopper using  the add-on 
Geco, developed by [Uto], Ursula Frick and Thomas Grabner (http://utos.blogspot.com/) (f) With this add-on, 
the “number of hours of sunlight” for any defined period of time, is calculated. Specifically, these calculations 
determine the optimum values of the radius of the openings in the surface, which have to provide sunlight in 
the right amount and on the right day of the year considering, the needs of the tulips, for example. The lighting 
needs of the occupants are also taken into consideration. (g) The lighting qualities of the inner spaces can be 
seen in the centre. 

 

 

To  summarize,  the  design  of  the  surface  is  driven  by  the 

constraints that explore parameters such as “m2 of land occupied 

on agricultural land or pasture,” which determines the dimensions 

of  the  surface.  The  sequence  is  programmed  as  such:  the 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“growth  pattern  of  the  agricultural  product”  and  the  “number  of 

hours  of  sunlight”  (Fig  5.32  (c))  determine  the  “length  of  the 

members of  the structure of  the surface covering  the units”  (Fig 

5.32 (a)) and the “radius of the openings in the surface covering 

the units” (Fig 5.32 (b)), respectively. The structural constraint for 

the members of the structure of the surface covering the units is 

as  follows: c+d = a’+b’, where a, b, c, d and a’, b’, c’, d’ are  the 

lengths  of  the  members  (Fig  5.32  (a)).  The  openings  in  the 

surface  can  be  seen  in  Fig  5.32  (d).  The  “number  of  hours  of 

sunlight” are calculated in Ecotect and the results are transferred 

back  to Grasshopper  using  the add-on Geco  (Fig  5.32  (c),  (e)), 

developed  by  [Uto],  Ursula  Frick  and  Thomas  Grabner112.  With 

this  add-on,  the  “number  of  hours  of  sunlight”  in  any  defined 

period  of  time  is  calculated.  Specifically,  these  calculations 

determine the optimum values of the radii of the openings in the 

surface, which have  to  provide  sunlight  in  the  right  amount  and 

on  the right day of  the year, considering  the needs of  the  tulips, 

for example. The  lighting needs of  the occupants are also  taken 

into consideration, as can be seen in Fig 5.32 (g). 

 

 

 

 

 

 

 

 

 
                                                        
112 Thomas Grabner and Ursula Frick. @ [UTO]: A COLLECTION OF PAST AND ONGOING WORKS, 
http://utos.blogspot.com/ 
 



  107 

CHAPTER 6 
 

 
THE PROPOSED REMEDY IN MASS CUSTOMIZING 
PARAMETRIC AND CONSTRAINT BASED REALTIONS 

 
 
 

This  study  researches  ways  to  enable  the  designer  to  build  computational 

models through mass customization. The solution can be found in programming 

sequences of relations that encode designer actions in the form of functions, by 

which  the designer  relates  the design constraints with each other  to develop a 

computational design model.  

 

As  a  supportive  showcase,  the  graduation  project  of  the  author  is  used  to 

experiment with various designer actions in an architectural design problem, and 

to  suggest  several  examples  of  recursive  functions  in  architectural  design. 

Designer actions may exist  in various forms  in addition to  functions. Within  the 

limits  of  this  study,  they  are  encoded  in  Rhino  Grasshopper  definitions,  with 

parametric and constraint-based  relations. A  full  definition can be  found  in  the 

appendix, where definitions of various functions are shown in different colors. 

 
 

6.1 A Brief Summary and the Discussion Path 
 

If  computational  support  is  used when modeling  the  design  space,  the 

degree of determinacy of the design solutions depends on the degree of 

the  relations  that  are  open  to  the  operation  of  the  designer.  If  the 

constraints and relations are predefined and hidden in the model,113 out 

                                                        

113  In http://www.nzarchitecture.com/blog/   Daniel Davis discusses  that  in Grasshopper,  relationships are not 
hidden. In graph-based parametric modelling tools like Grasshopper and GC, which graphically represent the 
relationship between nodes,  the means may be considered more architect-friendly when compared  to other 
means, although design problems might be similar. 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of  reach  of  the  designer,  this  blocks  the  dynamic  features  of  the 

model.114 When generating design solutions using computational design 

models, it should not be ignored that dynamic features depend no longer 

directly  on  the  reasoning  of  the  designer,  but  on  the  efficiency  of  the 

translation  of  this  reasoning  into  the  components  of  the  model.115  

Therefore, the solution space is dynamic only as much as these relations 

are dynamic, and as much as these relations are open to the operation 

of  the  designer.  This  part  of  the  discussion  was  covered  in  the 

classification  in  Chapter  4,  in  which  the  differences  in  the  role  of  the 

designer were highlighted in various cases. 

 

In  the  model  developed  by  the  author  for  the  graduation  project,  this 

dynamic character can be achieved, to a considerable extent. To clarify, 

the  addition  or  preservation  of  the  constraints  when  shifting  between 

different  scales  in  the  architectural  design  project  is  possible  with  the 

crucial  support  of  Rhino  Grasshopper.  There  have  been  recent 

researches  into  the ease  that  the graphical  interfaces of  such software 

bring  to  the  designers  to  make  them  the  builder  of  the  models,116 

however this falls outside the scope of this thesis. 

 
                                                        
114 In design models of generative systems built with Rhino Grasshopper or Generative Components, “the user 
defined  transactions  and  parameters  generate  forms,  and  then  allow  the  designer  to  make  dynamic 
modifications  in  order  to  adjust  the  results,”  as  discussed  by  E.  Mark,  M.  Gross,  G.  Goldschmidt.  “A 
Perspective on Computer Aided Design After Four Decades”, eCAADe 26: architecture  ‘in computro’, ed. M. 
Muylle, 2008, p.173 

 
115 ibid., p.175 

116 Changing  relations  is  relatively easier with  the means  that Grasshopper offers  if  the way of  representing 
relations  in  this parametrical software  is also considered. M. Maleki and R. Woodbury state  that  in  terms of 
accessing and modifying object  properties  and dependencies  to  bring  the model  closer  to  the designer:  “In 
parametric modeling, an object may be dependent on other objects or variables  if other objects or variables 
are used to determine the value of its properties. In programming in the model, these dependencies are shown 
by links connecting object properties to each other. For each object, inputs come from the left side and outputs 
exit  from  the  right.  This  is  similar  to  Generative  Components’  symbolic  view  and  Grasshopper’s  graphic 
representation of the model. In fact, they represent the same information. The main difference is that the graph 
is embedded in the model”. M. Maleki and R. Woodbury, “Programming in the Model: Combining task and tool 
in computer-aided design”, Proceedings of the 15th International Conference on Computer Aided Architectural 
Design Research in Asia, (2010), p.121 
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This research also aims to point out that if the model is already built, one 

particular design reasoning in a specific design problem may be imposed 

upon  the designer  that may not be compatible with architectural design 

problem  in  hand.  There  may  be  a  number  of  possible  parametrical 

relations  that  can  be  defined  when  addressing  a  specific  architectural 

design  problem  with  a  parametric  and  constraint-based  design  model, 

and designers have their own ways of doing this. To clarify this problem, 

architectural design reasoning may not be quantified easily or in a single 

step, and for this reason the different means of representation have been 

researched  and  discussed  in  Chapter  3.  Yet,  in  that  particular 

discussion, a need for a basis – for translating design reasoning without 

eliminating any part of it – in the model was highlighted. The contribution 

of this discussion may be linked to the attempt to build a comprehensive 

model  that  aims  to  support  the  designer  in  exploring  the  architectural 

design  space  in  all  scales  of  the  project,  taking  into  account  also  any 

changes in the constraints of the architectural design problem. 

 
 

6.2 Mass-customized Sequences of Relations Overtaking Pre-
defined Relations in Parametric and Constraint-Based Design 
Models 

 
The  design  reasoning  needs  to  be  modeled  with  parametric  and 

constraint-based  relations  in  the  graduation  project  because  the 

conditions are changing in Randstad of  the Netherlands –  in the project 

region. The design scenarios are undergoing continuous  transformation 

in  the  particular  region,  resulting  in  a  need  for  design models  that  are 

open to transformation. The parametric design model has been of great 

help to the author to generating various design solutions under changing 

conditions  by  allowing  the  comprehension  of  the  architectural  design 

space  as  a  whole.  It  is  impossible  to  grasp  the  complexity  of  all  the 

transformations  of  the  constraints  that  result  from  the  changing 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conditions, and their impact on each other, without modeling them using 

an  intermediary  facet  that  includes  parametric  and  constraint-based 

relations.  

 

Mass-customized  sequences  of  relations  can  be  used  in  different 

contexts or in different scales of an architectural design problem, just like 

using  the  conventional  line  tool  found  in  some  CAD  software.  These 

sequences do not belong to one specific type of design problem, as they 

encode  reusable  designer  actions.  However,  exactly  what  can  be 

referred to as a designer action is of utmost importance, and the author’s 

graduation  project  is  used  as  a  showcase  for  this  very  reason.  This 

research may  be  expanded  further  by  encoding  them  one  by  one  in  a 

comprehensive study and  in an experimental project  to come up with a 

solid proposal  for  the  library of some software – such as the generative 

modeling  plug-in  of  Rhino,  Grasshopper,  which  enables  designers  to 

develop computational design models. 

 

The designer actions that Grasshopper definitions encode are seen as a 

potential library/menu of the software by which the author can model the 

design space of the architectural design problem. It has been discussed 

throughout  the  text  that  designers  use  thinking  tools;  and  they 

communicate via encodings to externalize their reasoning. Reasoning is 

externalized  through  the  existing  packages  of  knowledge,  and  this 

externalization  and  the  encodings  already  exist  in  architectural  design. 

This  is  the evidence  that mass customization of sequences of  relations 

by encoding designer actions in them is not alien to architectural design. 

Using mass-customized sequences of  relations  to address architectural 

design problems is seen as a way of making the designer the builder of 

the model; as otherwise, modeling may become a deterministic act  that 

is closed to further modifications or operations by the designer. 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It is not the intention to suggest that designer actions are not researched 

in general while developing models to be put into the computer as CAAD 

tools. Before models are implemented as applications or software, most 

of  them  are  also  built  on  theories  that  look  into  what  kind  of  designer 

actions  exist  for  the  defined  architectural  design  problem.  Designers 

model  the  relations  for  design  parameters  and  the  relations  between 

design  constraints  accordingly  using  them.  However,  there  exists  one 

problem, in that the model is already built, and the designer is not always 

able to operate on  it, only being able to fill  in  the values for  the already 

defined  relations.  In  this  case,  the  design  elements  have  also  been 

previously defined. This  is mostly seen  in  the second group of models, 

which  are  discussed  in  Chapter  4.  In  these  models,  designers  cannot 

reach  the  translation of  reasoning, which  they need  to be able  to do  to 

enable  the  transformation  of  constraints.  In  this  case,  the models may 

easily become deterministic, considering the limited role of the designers 

when using them. 

 

Designers  should be able  to  access  the  components  that make up  the 

model, and change  them. For example,  they should be able  to change 

the  design  elements  that  are  fed  into  the  parameters.  For  this  reason, 

the sequences of relations should be available to designers to play with 

and  modify,117  maybe  as  a  menu  or  library,  and  designers  should  be 

allowed  to  develop  their  own  design  models  to  address  the  design 

problems that they define.  

 
 
 
 

                                                        
117 Or they should be let to program them. 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6.3 Conclusions and Contributions 
 
There  are  various  ways  of  externalizing  reasoning  in  architectural 

design.  Throughout  this  thesis,  this  externalization  is  seen  as  the 

translation of reasoning into the computational components of the design 

model that are parametric and constraint-based relations. It  is proposed 

in this thesis that, this may be achieved by feeding the design elements, 

etc.,  into  the  recursive  functions  of  architectural  design  that  the mass-

customized relations encode. These functions respond to general usage 

and can be modified to translate various design reasoning.  

 

Externalization  is  done  synthetically  and  intuitively  through  the  mass-

customized sequences of relations. They open up the design constraints 

to which they relate to changes according to the changing values of the 

parameters  that  these constraints explore. This change may as well be 

feeding a different design element  into one parameter of  the model. As 

the constraints are also open to transformation, a different model may be 

achieved  using  the  same  sequence.  Simply,  the  designer  is  able  to 

operate on the sequences.  

 

In  the  graduation  project,  circle  packing  has  been  used  in  one  of  the 

functions that embody a reusable designer action that exists recursively 

in  architectural  design  problems.  To  be  specific,  for  1/100  scale  of  the 

project  there exists  the problem of calculating the maximum “number of 

units”  that  can be constructed on  the project plot. The author needs  to 

make this calculation for the defined design problem, as can be seen in 

Chapter 5. At  this scale, design  reasoning  is  translated  into  “number of 

units,” “distance between units,” “number of passing cars (determined by 

the amount of people traveling),” “noise contour level”, etc., and into the 

expressions that are defined between these. The function, in which circle 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packing  is  used,  embodies  all  of  these  and  translates  the  design 

reasoning  to  execute  the  defined  task,  which  is  to  find  the  maximum 

“number  of  units”  that  can  be  constructed  on  the  project  plot  with  the 

least possible noise  levels.  In addition  to  this usage of circle packing  in 

the  graduation  project,  it  can  also  be  used  to  afford  “stability  through 

adjacency” as it has been discussed at the end of Chapter 4 referencing 

to  the  study  of  Aranda/Lasch.  In  the  graduation  project,  rather  than 

stability,  the  main  concern  lies  in  achieving  the  minimum  distance 

between  units  to  avoid  high  noise  levels,  but  the  function  that  circle 

packing  is  used  in,  can  respond  to  several  usages  in  several  different 

scales. Therefore,  it  is proposed that this function allows the parametric 

and  constraint-based  modeling  of  various  design  reasoning.  In  the 

Grasshopper definition of the project, it can be modified according to the 

particular design task because it has been mass customized beforehand 

with  abstract,  modifiable  and  reusable  relations  as  a  Grasshopper 

component.  

 
 

6.4 Assessment of Limitations as a Further Study 
 

One  limitation of  this study  is  that not all of  the computational methods 

listed in Chapter 3 are applied for the graduation project. The potential of 

parametric and constraint-based design models have been tested, but a 

further  study  might  look  at  possibilities  of  coming  up  with  a 

methodological study – of the know-how – to categorize the way different 

practices  use  computational  support  in  architectural  design,  and  may 

reference  such  practices  as  Gehry  Partners,  Foster+Partners,  Zaha 

Hadid  Architects,  FOA,  etc.  For  instance,  the mathematical model  that 

was developed for the structure of the Great Court at the British Museum 

by  Foster  +  Partners  is  significantly  different  to  any  of  the  models’  of 

Gehry  Partners,  because  the  practices  have  significantly  different 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reasoning behind their designs and they model different solution spaces. 

Practices  introduce  new  ways  of  reasoning  in  their  design  projects 

through  their models.  It  is assumed  that with every architectural design 

project that uses computational support, a new way of defining “x” kind of 

relations  for  “x” kind of parameters  in  the problem space  for  “x” kind of 

design problems, and a new way of relating constraint “x” with constraint 

“y”  in  the solution space  for generating  “x”  kind of design solutions are 

added to architectural design knowledge.  

 

The discussion on predefined  relations  in models  criticizes approaches 

that do not allow the designer to operate on the model; but at the same 

time,  it  does  not  totally  aim  to  discount  this  suggestion  of  possible 

frequent  design  reasoning  and  elements,  etc.  that  may  exist  for  some 

specific  design  problems.  For  instance  in  parametric  and  constraint-

based design models, some frequencies or similarities might occur when 

relating  design  constraints  to  each  other.  This  is  not  to  suggest  a 

deterministic  approach,  yet  such  an  approach  may  lead  to  the 

identification of these frequencies and similarities as design patterns for 

architectural design problems. After all, the mass-customized sequences 

that  are  studied  in  this  thesis  can  be  fed  similar  design  elements  and 

similar  reasoning  in  general  at  varying  frequencies.  This  may  cause 

them to be interpreted as design patterns. 

 

The reasoning introduced by different practices118 can be considered as 

reusable  patterns,  and  to  understand  the  reason  behind  this,  the 

explanation of Mark Garcia in the Design Patterns issue of AD magazine 

can be referenced: 

 

                                                        
118 What these practices have in common is that they all model their design space using computational support 
for the exploration of the design space. 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“The  etymology  of  ‘pattern’  is  from  the  Latin  pater,  or  patronus, 
meaning father, patron, god or master, from which is derived the 
notion of pattern as a model,  example, matrix,  stencil  or mould. 
The  contemporary  concept  of  pattern  is  as  a  sequence, 
distribution,  structure  or  progression,  a  series  or  frequency  of  a 
repeated/repeating unit, system or process of  identical or similar 
elements”.119  

 

A study of patterns in the models of different practices is suggested as a 

further  research;  yet  first  it  is  necessary  to  make  a  comprehensive 

analysis of how designer actions make the emergence of these patterns 

possible when dealing with architectural design problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
119 AD issue on: “Patterns of Architecture” (Guest Ed.) Mark Garcia. 79(6), Wiley & Sons, November-
December 2009, p.8 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APPENDIX A 

 

 

GRASSHOPPER DEFINITION OF THE GRADUATION PROJECT: (Various 

functions belonging to different design tasks at different scales are shown in 

different colors.) 
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